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Abstract

In Software-Defined Networking (SDN) enabled cloud data centers, live VM

migration is a key technology to facilitate the resource management and fault

tolerance. Despite many research focus on the network-aware live migration

of VMs in cloud computing, some parameters that affect live migration per-

formance are neglected to a large extent. Furthermore, while SDN provides

more traffic routing flexibility, the latencies within the SDN directly affect the

live migration performance. In this paper, we pinpoint the parameters from

both system and network aspects affecting the performance of live migration

in the environment with OpenStack platform, such as the static adjustment

algorithm of live migration, the performance comparison between the parallel

and the sequential migration, and the impact of SDN dynamic flow scheduling

update rate on TCP/IP protocol. From the QoS view, we evaluate the pattern

of client and server response time during the pre-copy, hybrid post-copy, and

auto-convergence based migration.

Keywords: Live VM migration, Software-Defined Networking, Cloud

Computing, Virtual Machine, Performance Measures, OpenStack,
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1. Introduction

With the rapid adoption of cloud computing environments for hosting a va-

riety of applications such as Web, Virtual Reality, scientific computing, and big

data, the need for delivering cloud services with Quality of Service (QoS) guar-

antees is becoming critical. For cloud data center management, it is important5

to prevent the violation of Service Level Agreement (SLA) and maintain the

QoS in heterogeneous environments with different application contexts. There-

fore, there has been a lot of focus on optimizing the service latency and energy

efficiency dynamically in order to benefit both cloud computing tenants and

providers. Virtual Machines (VMs), as one of the major virtualization tech-10

nologies to host cloud services, can share computing and networking resources.

In order to alleviate SLA violation and meet the QoS guarantees, the placement

of VMs needs to be optimized constantly in the dynamic environment. Live VM

migration is the key technology to relocate running VMs between physical hosts

without disrupting the VMs’ availability [1]. Thus, in SDN-enabled data centers,15

live VM migration as a dynamic management tool facilities various objectives of

the resource scheduling [2, 3, 4], such as load balancing, cloud bursting, resource

overbooking, and energy-saving strategy, fault tolerance, scheduled maintenance

as well as evacuating VMs to other data centers before the incidents like earth-

quake and flooding which require VM location adjustment.20

The live VM migration technologies can be categorized into the pre-

copy memory [1] and post-copy memory migration [5]. During the pre-

copy live migration, the Virtual Machine Monitor (VMM), such as KVM and

Xen, iteratively copy memory (dirty pages produced in the last round) from

the running VM at the source host to the VM container at the target host.25

However, the post-copy live migration first suspends the VM at the source host

and resumes the VM at the target host by migrating a minimal subset of VM

execution state. At the same time, the source VM still pro-actively pushing

the remained pages to the resumed VM. A page-fault happens when the VM

attempt to access an un-transferred page which can be solved by fetching the30
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pages from the source VM. However, in many circumstances such as in Wide

Area Network (WAN) environment (inter-data centers and between edge and

core cloud computing), and some production Data Centers where some servers

don’t share the same storage system, there is no Network File System (NFS)

between the source and the target hosts to share ephemeral disks. The live35

migration with block storage, also called block live migration, is used by

combining memory migration with live disk migration. Besides the memory

migration of live VM migration, the live disk migration is used [6, 7] to transfer

the ephemeral disk of the VM instance to the target host.

The goal of this paper is to tackle an important aspect in the field of VM40

migration, namely understanding the parameters that affect the performance of

live VM migration in SDN-enabled cloud computing. The performance of live

migration could be evaluated by measuring three metrics:

• Migration Time is the time duration from the initialization of the pre-

migration process on the source host to the successful completion of the45

post-migration process on both hosts.

• Downtime refers to the duration that the VM is suspended due to the

stop-and-copy, Commitment and Activation phase. From the client per-

spective, the service is unavailable.

• Transferred Data is the amount of data transferred between the source50

and destination host during the migration process.

There are continuous efforts to improve live VM migration, such as im-

proving the performance of live migration algorithm [8, 9], modeling for better

prediction of the cost [10, 11], network-aware live migration to alleviate the in-

fluence of migration on SLA and application QoS [12, 13, 14], optimizing the55

multiple live VM migration planning [15, 16, 17, 18], and benchmarking the

live migration effects on applications [19, 20]. Nonetheless, many parameters,

such as downtime adjustment and non-network overheads, that affect the live

migration time and downtime are neglected to a large extent. During a live VM

4



migration, the downtime threshold for the last memory-copy iteration could be60

changed as time elapses. This will affect the memory-copy iteration rounds,

which leads to different migration time and downtime. Computing overheads of

live VM migration can also constitute a large portion of total migration time,

which will affect the performance of multiple VM migrations.

On the other hand, some work focus on the live VM migration in Software-65

Defined Networking (SDN) scenarios [15, 2, 18]. By virtualizing the network

resources, we could use SDN to dynamically allocate bandwidth to services and

control the route of network flows. Due to the centralized controller, SDN can

provide a global view of the network topology, states of switches, and statistics

on the links (bandwidth and latency). Based on the information, orchestrator70

can calculate the ‘best’ path for each flow and call SDN controller Northbound

APIs to push the forwarding rules to each switch in the path. However, the

latencies of the flow entry installation on the switch and the communication

between SDN controller and switches could impact the traffic engineering per-

formance in the SDN-enabled cloud data centers. Thus, the scheduling update75

rate of choosing the ‘best’ path will affect the live migration traffic.

Moreover, although some work [19, 20] focus on the impacts of live migration

on the cloud services, such as multi-tier web application, the worst-case response

time pattern as well as the technologies, such as hybrid post-copy and auto-

convergence, for a successful live migration need to be investigated further.80

Hybrid post-copy (H-PC) [5] is the strategy that combines pre-copy and post-

copy migration. The post-copy mode will be activated after the certain pre-

copy phase where most of the memory has been transferred. Based on the CPU

throttling, Auto-convergence (AC) [21] will decrease the workload where the

memory write speed is relative to the CPU executing speed.85

We evaluate the live migration time, downtime, and total transferred data

using OpenStack [22] as the cloud computing platform. OpenStack uses the

pre-copy live migration with the default driver Libvirt (virtualization API) [23].

Our study is fundamentally useful to resource scheduling, such as energy-saving

strategy, load balancing, and fault tolerant, driven by SLA. The contributions90
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are fourfold, and are summarized as follows:

• Evaluation of the performance of block live migration in OpenStack with

different configuration of static downtime adjustment algorithm. Experi-

mental results can be used as reference to dynamically configure optimal

migration time and downtime.95

• Modeling and identification of the trade-off between sequential and parallel

migration when the host evacuation happens in the same network path.

• Evaluation of the effect of flow scheduling update rate on the migration

performance as well as TCP/IP protocol in SDN-enabled clouds. Exper-

imental results can guide to optimize the update rate and select the best100

path of SDN forwarding scheduler in order to achieve better migration

performance.

• Evaluation of the response time of a multi-tier web application under pre-

copy, hybrid post-copy and auto-convergence based live migration. Specif-

ically, experimental results demonstrate the worst-case response time and105

the situation when the pre-copy migration could not finish in a reasonable

time.

The rest of the paper is organized as follows. Section 2 introduces the re-

lated work and motivations. In Section 3, we present the system overview of

SDN-enabled data centers and details of the live migration in OpenStack. The110

mathematical models of block live migration, sequential and parallel migrations

are presented in Section 4. In Section 5, we describe the objectives, testbed

specifications, metrics, and the experimental setup of the evaluated parameters.

We quantitatively show how these parameters can dramatically affect the mi-

gration time and service performance. Finally, we conclude our work in Section115

6.

2. Related Work
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Clark et al. [1] firstly proposed the live VM migration comparing to the naive

stop-and-copy method. During the iterative memory copy phase of live migra-

tion implemented in Xen virtualization platform, rapid dirtying pages which120

updated extremely frequently, called Writable Working Set (WWS), was in-

troduced. These pages will not be transmitted to the destination host in the

iteration round in order to reduce the total migration time and transferred data.

In addition, the authors elaborated the implementation issues and features with

regard to the managed migration (migration daemons of Xen in host and des-125

tination hosts), self migration (implementation the mechanism within the OS),

dynamic rate-limiting for each iteration round, rapid page dirtying, and paravir-

tualized optimizations (stunning rogue process, i.e. limit write faults of each

process, and freeing page cache pages, i.e. reclaiming back cold buffer cache

pages). Although pre-copy migration is widely used in various virtualization130

platforms, such as Xen, QEMU/KVM, VMWare, it is worth noting that migra-

tion algorithms and performance of different hypervisors are different in terms

of dirty pages detection and transmission and stop-and-copy threshold [24]. For

instance, the page skip (WWS) mechanism does not be implemented in KVM.

In order to alleviate the overheads caused by live VM migrations, the pre-135

diction model is required to estimate the live migration performance in advance.

Akoush et al. [10] proposed a model to estimate the migration time and down-

time of live VM migration based on the two main functions of migration, i.e.

peek and clean. The peek function returns the dirty bitmap and the clean

function returns the dirty pages and resets them to clean state. They used140

both average dirty page rate (AVG) and history based page dirty rate (HIST)

in their prediction algorithms. The HIST model could capture the variability

of live migration and help to decide the moment at which migration begins to

minimize the migration cost. Moreover, Liu et al. [25] introduced the rapid

page dirtying in its migration performance prediction model. In order to obtain145

a more accurate prediction model, the authors refined the previous prediction

model of migration performance by estimating the size of WWS. Based on the

observation, it is an approximated proportional size of the total dirty pages in

7



each iterative memory copy round with regard to previous iteration time and

dirty pages rate. The authors also proposed an energy consumption model of150

live migration based on the linear regression between total transferred data and

measured energy consumption. The synthesized cost for migration decision is

based on the estimated values of downtime, migration time, transferred data,

and energy cost. Furthermore, based on prediction model of migration cost,

different migration strategies for load balancing, fault toleration, and server155

consolidation are proposed [11]. The algorithms choose the proper migration

candidates in order to minimize the total migration cost while satisfying the re-

quirements of rescheduling algorithms. Contrary to their work we focus on the

mechanism and performance of proposed parameters and corresponding models.

160

Prediction models of live migration which assume a static downtime thresh-

old [10, 25, 11] or constant dirty page rate [18] cannot reflect the real migration

time and downtime in OpenStack. The downtime threshold in OpenStack uses

a static adjustment algorithm. It is increased monotonically with a certain time

interval and steps during the migration in order to reduce the migration time.165

A misconfigured downtime configuration will lead to a poor performance of live

migration, such as unstable downtime which results in the SLA violation and a

long-time migration that degrades the network performance. Therefore, in order

to dynamically set optimal configurations, we need to have a better understand-

ing of the relationship between downtime adjustment configurations and170

migration performance in OpenStack.

Planning of the sequential and parallel migration in intra and inter-data

centers to optimize the server evacuation time and minimize the influence of live

migration has attracted interest recently [15, 16, 18]. However, they only focus

on the network aspect of multiple live migration planning to decide the sequence175

of sequential and concurrent live migration in order to minimize the migration

duration. As mentioned in [10], the total migration time includes pre-migration,

pre-copy phase, stop-and-copy phase and post-migration overheads. The most

proportion of migration time could be the operation overheads. Therefore, in
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order to have a better algorithm of the multiple VM evacuation planning, we180

need to pinpoint the impacts of non-network overheads on the parallel and

sequential migration in the same path.

Moreover, Software-Defined Networking (SDN) [26] as a powerful feature in

Cloud computing provides a centralized view of topology and bandwidth on

every path. We could flexibly implement network scheduling algorithm and set185

bandwidth limit for live migration and other application traffics. In a highly

dynamic network environment, the ‘best’ path decided by scheduling algorithm

based on an update rate could change frequently. Therefore, not only the band-

width but traffic pattern, SDN control plan [27] and flow table latency [28] could

also affect the live migration performance. Understanding the SDN latency190

in the flow scheduling is very important for achieving better live migration per-

formance.

With different application context, the impacts of live migration on ap-

plication performance could change dramatically. For instance, the workload

of a multi-tier web application with specific write and communication pattern195

[19, 20] is different with the workload in scientific computing applications. The

response time should be soft real-time to satisfy the QoS of application. There-

fore, network service suffers more from the disruption due to the downtime and

the performance degradation due to the live VM migration. As there are few

works on this topic, evaluating the live migration effects on the response time200

of different types of network-sensitive applications is desirable. However, cur-

rent work did not consider the worst-case response time and the situation when

the pre-copy migration could not finish in a reasonable time. Thus, we need to

evaluate the response time distribution of the web application during the mi-

gration, and the impacts of strategies, hybrid post-copy, and auto-convergence,205

on application response time which perform a successful live migration.
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3. System Overview

In SDN-enabled data centers, the computing resources are under control of

cloud management platform, such as OpenStack, while the networking resources

are managed by SDN controller. The management module (orchestrator) co-210

ordinates the SDN controller and the OpenStack services by using northbound

RESTful APIs to perform VM migration planning in resource scheduling algo-

rithm such as the SLA-aware energy-saving strategy as shown in Fig. 1. In

OpenStack, Nova service runs on top of Linux servers as daemons to provides

the ability to provision the compute servers. Meanwhile, Neutron component215

provides ‘connectivity as a service’ between network interfaces managed by other

services like Nova.

More specifically, the cloud controller of Infrastructure as a Service (IaaS)

platform, OpenStack, is in charge of configuring and assigning all computing

and storage resources, such as allocating flavor (vCPU, memory, storage) to220

VMs, placing the VMs on physical hosts using Nova component. It keeps all

the information about physical hosts and virtual machines, such as residual

storage and available computing resources. At the same time, all computer

nodes update the states of hosted VMs to OpenStack Nova service. Further-

more, Neutron, the OpenStack network component, provides the management225

of virtual networking, such as start, update and bind the VM’s port, as well

as the communication between VMs. However, the OpenStack Neutron does

not control network devices (switches). It only controls networking modules in

compute nodes and network nodes.

Therefore, the SDN controller uses OpenFlow [29] protocol through south-230

bound interfaces to manage the forwarding planes on network devices (switches).

The open-source virtual switch, Open vSwitch (OVS) [30], provides the virtu-

alization switching stack supporting OpenFlow and other standard protocols.

Therefore, without expensive dedicated switches, we could install OVS in the

white box as the OpenFlow switch in SDN-enabled data centers. Based on the235

link information between OpenFlow devices, the SDN controller calculates the
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Figure 1: System Overview

forwarding tables for all network traffics. The OpenFlow switches forward the

traffic flow according to the received forwarding tables from SDN controller. It

also measures the received and transmitted data size as well as the bandwidth

and latency between each other.240

3.1. Live Migration in OpenStack

In this section, we present the details of block live migration in OpenStack.

Providing a comprehensive solution to control the computing and network re-

sources in the datacenter, OpenStack uses Libvirt [23] to manage hosts in order
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to support different kinds of virtualization. Nova live migration interacts with245

Neutron to perform the pre- and post-live-migration operations, and uses Libvirt

to handle the actual live migration operations. The pre-copy live VM migration

is used by default driven by libvirt.

Since libvirt 1.0.3, the QEMU’s Network Block Device (NBD) server and

“drive-mirror” primitive [6] are used to perform live storage migration (without250

shared storage setup). Similarly, since VMWare ESX 5.0, it uses VMKernel data

mover (DM) and IO mirroring to perform live storage migration [7]. It separates

the storage streaming data flows from the instance’s RAM and hypervisor’s

internal state data flows. The disk transmission will perform concurrently with

IO mirroring and VM migration. The write operation can be categorized into255

three types: 1) Into the block has been migrated, the writes will be mirrored

to the target. 2) Into the block being migrated, the writes will be sent to the

target first and wait in the queue until the region migration finished. 3) Into the

block which will be migrated, the writes are issued to the source disk without

mirroring. By caching the backing file or instance image when it boot in the260

Nova compute host, the mirror action could just apply to the top active overlay

in the image chain. Thus, the actual disk transmission will be reduced.

Similar to the pre-copy migration described in [1], the block live migration

in OpenStack includes 9 steps (Fig. 2):

1. Pre-live migration (PreMig): Creates VM’s port (VIF) on the target265
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host, updates ports binding, and sets up the logical router with Neutron

server.

2. Initialization (Init): Preselects the target host to speed the future mi-

gration.

3. Reservation (Reserv): Target host sets up the temporary share file270

server; and initializes a container for the reserved resource on the target

host.

4. Disk Transmission: For live storage migration, starts to perform storage

migration and synchronizes the disk through IO mirroring.

5. Iterative pre-copy: For pre-copy VM migration, sends dirty pages that275

are modified in the previous iteration round to the target host. The entire

RAM is sent in the first round.

6. Stop-and-copy: the VM is paused during the last iteration round ac-

cording to the downtime threshold (remained amount is less than the

required).280

7. Commitment (Commit): Source host gets the commitment of a success-

fully received instance copy from the target host.

8. Activation (Act): Reassigns computing resource to the new VM and

delete the old VM on the source host.

9. Post-live migration (PostMig): On the target host, updates port state285

and rebinds the port with Neutron. VIF driver unplugs the VM’s port on

the source host.

Where copying overheads are due to the pre-copy iteration and downtime is

caused by the stop-and-copy, commitment and parts of the activation and post-

migration operations. Although the network-related phases (disk transmission,290

pre-copy iteration, and stop-and-copy) usually dominate the total migration

time, the pre- and post-live-migration, initialization, reservation, commitment,
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and activation could add a significant overhead to the migration performance

in certain scenarios (large available network bandwidth, small disk size or low

dirty page rate). The pre-live-migration, initialization, reservation could be295

classified as pre-migration overheads while the commitment, activation and

post-live-migration as post-migration overheads.

Downtime Adjustment Algorithm: Unlike the stop conditions that are

used in QEMU or Xen migration algorithm, the downtime threshold in Open-

Stack live migration increases monotonically in order to minimize the downtime300

for lower dirty page rate VM while increasing the availability of high dirty page

rate VM migration with a reasonable downtime. The downtime adjustment al-

gorithm used in Libvirt is basically based on three static configuration values

(max downtime, steps, delay):

• live migration downtime: The maximum threshold of permitted down-305

time;

• live migration downtime steps: The total number of adjustment steps un-

til the maximum threshold is reached;

• live migration downtime delay : Multiplies the total data size with the fac-

tor equals to the time interval between two adjustment steps in seconds.310

For example, the setting tuple (400, 10, 30) means that there will be 10 steps to

increase the downtime threshold with 30 seconds delay for each step up to the

400ms maximum. With the total 3 GB RAM and Disk data size, the downtime

threshold at time t, as Td−thd(t), will be increased at every 90 seconds start-

ing from 40ms, i.e. Td−thd(0) = 40ms, Td−thd(90) = 76ms, ..., Td−thd(900) =315

400ms, ..., Td−thd(t > 900) = 400ms. The mathematical model of downtime

adjustment algorithm is shown in Equation (9). Although OpenStack only sup-

port static downtime adjustment in configuration files, we could use the virsh

command to interact with the on-going migration based on the elapsed time.
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4. Mathematical Model320

We present the mathematical model of block live migration as well as the

sequential and parallel migrations in the same network path.

4.1. Block Live Migration

The mathematical model of block live migration is presented in this section.

According to the OpenStack live migration process, the components of pre and325

post-migration overheads can be represented as:

Tpre = PreMig + Init + Reserv

Tpost = Commit + Act + PostMig
(1)

We use D and M to represent the system disk size and the VM memory

size, and let ρ denotes the average compression rate used in memory com-

pression algorithm [31]. Let ρ
′

and R
′

denotes the average disk compression

rate and mirrored disk write rate. Let Ri and Li denote the average dirty330

page rate need to be copied and bandwidth in iteration round i. In total n

round iterative pre-copy and stop-and-copy stages, Ti denotes the time interval

of ith round iteration shown in Fig. 2. Therefore, the transferred volume Vi

in round i can be calculated as:

Vi =

 ρ ·M

ρ · Ti−1 ·Ri−1

ifi = 0

otherwise
(2)

As shown in Fig. 2, the time interval of the ith iteration can be calculated as:335

Ti = Vi/Li =ρi+1 ·
∏i−1

j=0
Rj ·M

/∏i

j=0
Lj (3)

In [18], they assume that, when Ri, Li are constant, the average dirty page

rate is not larger than the network bandwidth in every iteration. Let ratio

σ = ρ · R/L. Therefore, Ti = ρ ·M · σi
/
L. The total time of iterative memory

pre-copy Tmem can be calculated as:

Tmem =
ρ ·M
L
· 1− σn+1

1− σ
(4)
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Then, the transmission time of live storage migration Tblk can be represented340

as:

Tblk ≤ ρ
′
·
(
D +R

′
· Tblk

)/
L (5)

Thus, the upper bound transmission time of the live storage migration is:

Tblk ≤
ρ

′ ·D
L− ρ′ ·R′ (6)

For a more accurate Tblk, one need to simulate the write behavior based on

the actual workload. The network part of block live migration is the maximum

value of Equation (4) and (6):345

Tcopy = Max {Tblk, Tmem} (7)

The total migration time of block live migration Tmig can be represented as:

Tmig = Tpre + Tcopy + Tpost (8)

Let (θ, s, d) denotes the setting tuple (max downtime, steps, delay) of the

downtime adjustment algorithm. Therefore, the live migration downtime thresh-

old at time t can be represented as:

Td−thd(t) = bt/(d · (D +M))c · (θs− θ)
/
s2 + θ/s (9)

The downtime threshold of remained dirty pages accordingly will be350

Vd−thd(t) = Td−thd(t) · Ln−1 (10)

where Ln−1 is the n-1 round bandwidth estimated by the live migration algo-

rithm and Ln−1 = L when transmission bandwidth is a constant.

The live migration changes to the stop-and-copy phase when remained dirty

pages is less than the current threshold, as Vn ≤ Vd−thd(t). Using the Equation

(2) in the inequality, the total round of memory iteration can be represented as:355

n =

⌈
logσ

Vd−thd(t)

M

⌉
(11)

Therefore, the upper bound of actual migration downtime is Tdown = Td +

T
′

post ≤ Td−thd(t) + T
′

post, where Td is the time that transferring the remained
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Figure 3: An example of sequential and parallel migrations

dirty pages and storage and T
′

post is the time spent on the part of post-migration

overheads to resume the VM.

4.2. Sequential and Parallel Migrations360

When applying energy-saving policy, hardware maintenance, load balancing

or encountering devastating incidents, we need to evacuate part of or all VMs

from several physical hosts to others through live VM migrations as soon as

possible. In this section, we establish the mathematical model of sequential and

parallel live VM migrations which share the same network traffic path. For ex-365

ample, there are 4 same live migrations sharing the same network path as well as

source and destination hosts. In Figure 3, lower graph shows the sequential live

migration. Because each migration fully uses the path bandwidth, the network

transmission part is much smaller than the part of parallel migration shown in

the upper graph at which 4 migrations share the bandwidth evenly. However, in370

this example, the total network bandwidth is extremely large comparing to the

dirty rate and the memory size of each VM is relatively small. Therefore, the

pre and post migration overheads contribute substantially to the total migration

time. As the result, even though sharing the same network path could extend

the memory iteration, parallel migration running the pre and post migration on375

multicore in this situation actually outperforms the sequential algorithm.

Because the pre-live-migration process of next migration is executed after

the completion of current migration, there is a bandwidth gap between every
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sequential live migration because of the non-network overheads. Therefore, the

total evacuation time of N VM sequential migrations could be calculated as the380

sum of every migration’s overhead processing time and network transmission

time:

Tseq =
∑N

1
Tmig =

∑
Toverhead +

∑
Tnetwork (12)

The response time of VM migration task refers to the time interval from

the point that migration task is released and the point it is finished. The

migration time indicates the real execution time of the migration task which385

excludes the waiting time which is the time interval between the migration task

release point and the actual start point. The evacuation duration refers to

the time interval from the beginning of the first released migration task to the

end of the last finished task of all VM migrations.

Pre- and post-migration overheads refer to the operations that are not part390

of the direct network transmission process. These non-network operations could

add a significant overhead to the total migration time and downtime. For more

concise explanation, we assume that every VM in parallel migration has same

dirty page rate and flavor. Let m denotes the allowed parallel number, p

denotes the processing speed of one core. We assume that the largest allowed395

parallel migration is smaller than the minimum core number on the hosts, m ≤

Num(cores),m ≤ N . Whenm > N , m = N in the corresponding equations. As

every migration sharing the network bandwidth equally, L/m is the transmission

rate for each migration. Therefore, using the previous equations, the network

transmission time of parallel m migrations can be represented as:400

Tmnetwork = Max

{
m · Tblk,

m · ρ ·M
L

· 1− (mσ)
n+1

1−mσ

}
(13)

It is clear that Tmnetwork ≥ ΣmT 1
network.

Let Wpre,Wpost denote the workload of pre and post-migration overheads.

As the overheads are significant when the network bandwidth L allocated to the

path is more than sufficient or the dirty page rate R is small, we assume that:

ΣmWpre/m · p ≥ Tmnetwork (14)
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Let X = bN/mc denotes total X busy rounds of m cores. Therefore, the405

maximum evacuation time of parallel migration Tpar = Max(T
′

par, T
′′

par) can

be represented as:

T
′

par =
∑Xm

1 Wpre

m·p +
∑N

Xm+1Wpre

N−Xm+2 + TN−Xnetwork +
∑N

Xm+1Wpost

N−Xm+2

=
(bN/mc+1)·Wpre+Wpost

p + TN−Xnetwork

T
′′

par =
∑m

1 Wpre

m·p + Tmnetwork +
∑Xm

1 Wpost

m·p +
∑N

Xm+1Wpost

N−Xm+2

=
(bN/mc+1)·Wpost+Wpre

p + Tmnetwork

(15)

As 0 ≤ σ < 1, we could get the upper bound of parallel network transmission

time:

Tmnetwork ≤Max

{
m · Tblk,

m · ρ ·M
L · (1−mσ)

}
(16)

Moreover, the average response time of N sequential and parallel migrations410

can be represented as:

T seqresponse = (N + 1)/2 ·
(
Woverhead/p+ T 1

network

)
(17)

T parresponse = Woverhead/p+ Tmnetwork (18)

Furthermore, the lost time of network transmission and the saved time of

overhead processing for m concurrent live migration can be calculated as:

∆network = Tmnetwork − ΣmT 1
network (19)

415

∆workload = ΣmToverhead − ΣmToverhead/m · p (20)

Therefore, when ∆network < ∆workload, the evacuation time of parallel migra-

tion is smaller than the sequential migration.

All proposed models and results of single migration and sequential and par-

allel migrations for block live migration also apply to the general live VM mi-

gration with disk sharing by deleting the live disk transmission parts, Tblk and420

D, in the models.

5. Performance Evaluation

There are several parameters which can influence the live VM migration per-

formance in SDN-enabled data centers from system view, such as the flavor,
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CPU, memory, and static downtime adjustment, network view, such as paral-425

lel and sequential migrations, available bandwidth, and dynamic flow scheduling

update rate, and application view, such as response time under different mi-

gration strategies. In this section, we explore the impacts of these parameters on

migration performance. The migration time, downtime, and transferred data

shown in the results are the average values. In OpenStack, we can use the430

nova migration-list to measure the duration of live migration. The downtime of

live migration could be calculated by the time stamp difference of VM lifecycle

event (VM Paused and VM Resumed) in both Nova log files. Each configured

migration experiment is performed 6 times.

Table 1: Specifications of physical hosts in CLOUDS-Pi

Machine CPU Cores Memory Storage Nova

3 × IBM X3500 M4 Xeon(R) E5-2620 @ 2.00GHz 12 64GB (4 × 16GB DDR3 1333MHz) 2.9TB compute1-3

4 × IBM X3200 M3 Xeon(R) X3460 @ 2.80GHz 4 16GB (4 × 16GB DDR3 1333MHz) 199GB compute4-7

2 × Dell OptiPlex 990 Core(TM) i7-2600 @ 3.40GHz 4 8GB (4 × 16GB DDR3 1333MHz) 399GB compute8-9

5.1. Testbed and its Specification435

As current production system will not allow users to access or modify the

low-level infrastructure elements, such as resource management interfaces and

SDN controllers and switches, needed for experiments, we created our own

testbed. CLOUDS-Pi [32], a low-cost testbed environment for SDN-enabled

cloud computing, is used as the research platform to test virtual machine block440

live migration. We use OpenStack combined with OpenDayLight [33] (ODL)

SDN controller to manage the SDN-enabled Data Centers, which contains 9 het-

erogeneous physical machines connected through Raspberry Pis as OpenFlow

switches whose specifications are shown in Table 1. The Raspberry Pis are in-

tegrated with Open vSwitch (OVS) as 4-port switches with 100 Mbps Ethernet445

Interfaces. The network physical topology is shown in Fig. 4. The OpenStack

version we used is Ocata and the Nova version is 15.0.4 and the Libvirt ver-

sion is 3.2.0. The Ubuntu tool stress-ng [34] is used as the micro-benchmark
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Figure 4: SDN-enabled Data Center Platform

Table 2: Specifications of VM flavors in OpenStack

No. Name vCPUs RAM Disk No. Name vCPU RAM Disk

1 nano 1 64MB 1GB 5 medium 2 3.5GB 40GB

2 tiny 1 512MB 1GB 6 large 4 7GB 80GB

3 micro 1 1GB 10GB 7 xlarge 8 15.49GB 160GB

4 small 1 2GB 20GB

to stress memory and CPU to pinpoint the impacts of parameters on migration

performance.450

It will allow researchers to test any SDN-related technology in the real en-

vironment. Allowed network speed in the testbed is scaled together with the

size of computing cluster. Although the testbed’s scale is small regarding the

number of computer nodes and the network, it can represent the key elements in

the large-scale systems. The evaluation results produced by the testbed will be455

more serious in a large scale environment. Furthermore, as we do not focus on

the IO stress on the migrating storage, the evaluation results could also benefit

the live migration with shared storage, as well as the live container migration.
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Figure 5: Primary VM parameters

5.2. Primary Parameters

First, we evaluate the fundamental parameters, such as flavor, memory and460

CPU loads, which affect the migration time, downtime and total transferred

data of block live VM migration in OpenStack. As we measured, the amount

of data from destination to source can be omitted because it only accounts for

around 1.8 percent of total transferred data. The transferred data is measured

by the SDN controller through OpenFlow protocol. We set 7 flavors in Open-465

Stack, which are nano, tiny, micro, small, medium, large, xlarge (Table 2). Not

only the RAM size but the ephemeral disk size can affect the migration time

as well as the total transferred data (Equation 8). We evaluate these primary

parameters by migrating instances from compute2 to compute3. In the flavor
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experiment, we use two Linux images, CirrOS and Ubuntu-16.04, and the small-470

est flavor suitable for the Ubuntu image is micro. The image size of CirrOS is

12.65 MB, and Ubuntu is 248.38 MB. In memory stress experiment, we evaluate

the migration performance of different memory-stressed Ubuntu-16.04 instance

with micro flavor from 0 to 80 percent. In CPU stress memory experiment,

we compare the migration performance with 0 to 100 stressed CPU between475

Ubuntu instance with 0 memory stress (mem0) and 40 percent memory-stressed

(mem40) VMs.

Flavor: Figure 5a illustrates the migration performance (migration time,

downtime, and total transferred data) of idle VMs with different flavors. Larger

RAM and disk sizes lead to longer migration time and total transferred data.480

The VM block live migration cost with the same flavor could be a huge difference

due to the system disk size and the required RAM of different OS instance. Ac-

cording to the downtime adjustment algorithm, a longer migration time can lead

to a larger downtime. However, the difference of downtime is small compared

to the significant difference of migration time. From flavor micro to xlarge, the485

transferred data is increased linearly. Furthermore, the transferred date vs. fla-

vor figure illustrates that there is a constant data size difference between CirrOS

and Ubuntu with the same flavor. With the same flavor, VM with a larger and

more complex OS installed has a longer migration time and larger transferred

data as the data size difference of the OS base image and dirty rate caused by490

OS processes.

Memory: The dirty page rate (and dirty block rate) directly affects the

number of pages that are transferred in each pre-copy iteration. Fig. 5b shows

that the performance of different memory-stressed Ubuntu instances from 0 to

80 percent on the migration time, downtime, total data transferred from source.495

As shown in Equation (8) and (9), the relationship between the dirty page rate

and live migration performance is not linear due to the downtime adjustment

algorithm. The downtimes of migrations may be constant with different dirty

page rates because of the delay of every downtime adjustment, such as 0 and 20

percent memory-stressed VMs. With the downtime adjustment algorithm, the500
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downtimes of live migrations with drastically different dirty page rate remain

at a stable range.

CPU: Higher CPU workloads can lead to a migration performance degra-

dation because of the page copying operation overhead during the pre-copy iter-

ations. Meanwhile, the high CPU workloads can also cause interference among505

memory-intensive tasks which leads to a large migration time. We examine

the block live migrations based on various CPU loads from 0 to 100 percent.

Figure 5c shows that, without stressed memory, the CPU loads inside VMs are

irrelevant to the downtime and duration of live migration with the minor copy-

ing overhead due to the pre-copy iterations. However, as the CPU usage of a510

40-percent-stressed memory task is 100 percent, an extra CPU workload can

lead to a larger amount of total transferred data and migration time. For idle

VMs, the migration time and transferred data are constant under various range

of CPU workload. For more busy VMs, extra CPU workload leads to a linear

increase in migration time and transferred data size.515

5.3. Downtime Configuration Effectiveness

In OpenStack, the live VM migration time could shift dramatically based

on different configuration tuples (max downtime, steps, delay). Although only

implemented in OpenStack, the downtime adjustment algorithm can also apply

to other cloud computing platforms. In this experiment, the Ubuntu-16.04520

instance with micro flavor is migrated between NOVA compute node compute2

and compute3. We perform migrations based on the different step or delay

settings and other two default values, i.e., (500, 4, 75) and (500, 10, 5), with 0

to 75 percent stressed memory VM.

Figure 6 indicates that for less memory stressed VMs (low dirty page rate),525

the static algorithm based on short delay could lead to a higher downtime with

a slightly different migration time. However, for heavy memory stressed VMs

(high dirty page rate), the adjustment of large delay setting, such as delay40,

delay110, leads to an extremely long migration duration. The larger adjustment

step setting leads to a larger migration time with a smaller downtime. However,530
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Figure 6: Live migrations based on different step and delay settings

step8 (500, 8, 75) leads to a better result in migration time compared to step12

and in downtime compared to step4 when VM memory is 75 percent stressed.

We also notice that the setting (500, 10, 5) is a better choice when VM has

high dirty page rate and (500, 4, 75) is better when the rate gets lower. When

the dirty page rate is high, the migration time gets benefits from quickly raised535

downtime threshold while the downtime remains at a stable range. When it

is low, the downtime gets benefits from smaller downtime threshold with slow

adjustment. We should dynamically configure the optimal downtime setting

tuple to improve both migration time and downtime based on the migration

model for every live migration task.540

5.4. Live VM Migration in Parallel

The default NOVA configuration of max allowed parallel migration is max co-

ncurrent live migrations=1, which means only one live migration could be per-
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Figure 7: (a) Sequential migrations with different number of VMs; and (b) Multiple live

migrations of 10 VMs where x-axis indicates the max allowed concurrent migration.

formed at the same time. In this experiment, we evaluate the migration duration

of one compute host that needs to evacuate all VMs to another. First, we need545

to change the default max allowed parallel migration to perform maximum m

live migrations in parallel. The CirrOS instances with tiny flavor are migrated

between node compute2 and compute3. All migration operations are released

at the same time with different maximum parallel migration. We measure the

response time of each migration task and the total evacuation time of 10 idle550

CirrOS VMs. We also exam the sequential live migration with several VMs

from 2 to 10.

Figure 7a indicates that the response time (rt), migration time (mt) and

evacuation duration (dur) of sequential live migrations increase linearly with the

number of VMs. Figure 7b only demonstrates the rt and dur, as the mt equals to555

the rt in this parallel migration experiments. However, the parallel migrations

could significantly reduce the total evacuation time and each migration time of

10 idle VMs. With the max allowed concurrent migration increasing from 1 to

10, the total live migration evacuation time decreases by 59.6%. Meanwhile, the
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migration time of each VM decreases up to 50%.560

As shown in Equation (19), (20), when ∆network < ∆workload, the pre- and

post-migration overheads constitute a large portion of the total migration time,

e.g., parallel migration of the tiny flavor CirrOS VMs with 100Mbps bandwidth

(Fig. 7b). Therefore, several pre- and post-live-migration processes concurrently

running on both hosts can reduce the total evacuation time (15) and average565

response time (18) compared to the sequential live migrations (12), (17). There-

fore, when the multiple VM evacuation happens in the same network path, we

need to decide the sequential and parallel live migration based on both network

and computing aspects to achieve a better total migration time (duration).

5.5. Network-Aware Live Migration570

As the networking resources are limited, we pinpoint the essential network

aspects that influence the efficiency of block live migration in SDN-enabled cloud

computing, such as, the available network bandwidth, network patterns, SDN

flow scheduling algorithms.
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Figure 8: Block live migrations with TCP and UDP background traffic

TCP and UDP Traffic: Block live Migration is highly relative to the575

network bandwidth as well as the background traffic on the links. The to-

tal migration time and downtime are negatively correlated with the network

bandwidth. Therefore, we measure the migration performance under the de-

fault downtime configuration with various network traffic scenarios with differ-

ent constant bandwidth rate (CBR) in TCP and burst transmission in UDP.580

UDP datagrams are sent in the same data size in every 10 seconds. The iperf3

[35] is used to generate background traffic between live migration source and
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destination hosts through the same path in SDN-enabled data center network.

The image of VM is Ubuntu-16.04 with micro flavor under no stressed memory.

Figure 8 indicates that, when the dirty page rate is 0, the transferred data is585

not linearly increased with the migration time. The migration time is increased

linearly with the bandwidth decreasing.

Dynamic SDN Flow Scheduling: In this experiment, we pinpoint the

impact of the flow scheduling algorithm update rate on block live migration in

SDN-enabled cloud computing. When SDN controller is proactively scheduling590

the flows, latencies exist between controller and switches (PacketOut message

send to the switches and PacketIn to the controller). Moreover, in the flow

tables, latencies occur when installing, deleting flow entities. The scheduler

based on SDN controller (OpenDayLight) REST APIs proactively pushes the

end-to-end flow in a certain time period to dynamically set the best path. The595

idle Ubuntu-16.04 instance with micro flavor is migrated from compute3 to

compute9. As shown in Fig. 4, there are two shortest paths between compute3

and compute9 that each one contains 5 OpenFlow nodes (OpenFlow-enabled

switches). A round-robin scheduler rescheduling the traffic of live migration

periodically based on these paths. We also use iperf3 to generate TCP and600

UDP traffic to evaluate the latency, TCP window size, and packet loss rate.

Figure 9a shows that the migration time is positively correlated with the

update rate while the transferred data is just slightly increased. As the dy-

namic scheduling update rate increases, the link bandwidth rapidly decreases

which leads to a large migration time. Meanwhile, Figure 9b indicates that the605

TCP throughput goes down more frequently with high flow update rate. The

TCP congestion window size decreases to 1.41 KBytes when the bandwidth is 0

bits/sec. Figure 10 shows the TCP and UDP protocol performance with differ-

ent update rates from 0.1Hz to 10Hz. The packet loss rate increase linearly with

the update rate and the average maximum TCP latency (Round-Trip Time) is610

2 times larger at 2Hz than the minimum value at 0.1Hz. When the TCP traffic

suffers the bandwidth degradation, the UDP transmission rate is always around

90 Mbps regardless of the scheduling update rate.
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Figure 9: Live migrations based on different SDN scheduling update rate

With the high flow entries updating in OpenFlow-enabled switches, the la-

tencies between SDN controller and switches, and inside the switch flow tables615

have a significant influence on traffic forwarding performance. The network

congestion leads to the high packet loss rate. The period of no traffic interval

is caused by the TCP congestion avoidance algorithm. It decreases the data

transfer rate when encounters packet loss based on the assumption that the

loss due to the high latency and network congestion. Furthermore, the flow620

update rate could also impact the TCP window size that causes the bandwidth

jitters due to the TCP slow start. In a highly dynamic network, the available

bandwidth and delays in the routing paths can change frequently. Therefore, it

is essential that optimize the update rate and best path selection of SDN for-

warding scheduler based on the trade-off between OpenFlow-enabled switches625

performance (bandwidth degradation due to delays inside switches and between

controller and switches) and the available network bandwidths and delays.

29



0.1 0.2 0.5 1 2 5 10
Update Rate (Hz)

2

4

6

RT
T 

(m
s)

0

10

20

30

Pa
ck

et
 lo

ss
 R

at
e 

(%
)

avg.
min

max
loss rate

(a) TCP latency and packet loss rate

0.1 0.2 0.5 1 2 5 10
Update Rate (Hz)

0.0

0.1

0.2

0.3

Jit
te

r (
m

s)

5

10

15

Pa
ck

et
 lo

ss
 R

at
e 

(%
)

jitter
loss rate

(b) UDP jitter and packet loss rate

Figure 10: Network performance with different SDN scheduling update rate

Table 3: Request response time without VM migration

Exp. Duration(s) RT(ms) HTTP0 HTTP200 Total

Initial 1200 74.21 35 42310 51634

Initial 500 75.90 22 17435 21438

Initial 400 75.77 22 13893 17088

scheduled 400 65.380 17 14175 17357

5.6. Impacts on Multi-tier Application Response Time

In this experiment, we evaluate the impact of VM live migration on the real

web application, such as MediaWiki, using WikiBench [36]. It uses MediaWiki630

in the application server and real database dumps in the database server. In

client VM, the wikijector as traffic injector controls the simulated client to

reply the traces of real Wikipedia traffic. Regarding the scale of the testbed,

we use 10 percent of Wikipedia trace to simulate the real traffic. The database

and MediaWiki Apache servers are allocated in compute3, and one WikiBench635

injector as the client VM located in compute9. The client and server VMs are

the Ubuntu instances with micro flavor and database server is with large flavor.

The first scenario (c-93) is migrating the client VM to compute3 to simulate

the consolidation (scheduled) to reduce the latency. The second one (s-39) is

migrating the application server to compute9 in order to evaluate the effect of640

live migration on application response time.
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Table 4: Application performance in 400 seconds

Exp. MT(s) RT(ms) HTTP0 HTTP200 Total

c-93 248.34 84.201 20 14166 17348

s-39 N/A 192.273 109 13410 16558
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Figure 11: Response time of Wikipedia in 400s

In the scenario c-93, the major application traffic is outbound traffic from

the destination host. Therefore, the live migration traffic would just slightly

affect the QoS of web service. Table 3 indicates that the application response

time (RT) is improved after the VM consolidation (scheduled). Figure 11a645

shows the initial response time (std-200) of the success requests (HTTP 200)

and the response time of success requests during the client VM migration (mig-

200). It indicates that the response time is increased during the migration

and the worst-case response time occurs after the downtime of client’s live

VM migration because the application server needs to process extra requests650
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Table 5: Server migration under different strategies

Exp. MT(s) Duration(s) RT(ms) HTTP0 HTTP200 Total

s-39 N/A 400 192.27 109 13410 16558

AC 908 1200 245.33 6722 18461 29915

H-PC 237 500 156.73 190 16906 20912

and migration downtime postpones the response time of the requests which are

sent before and during the downtime. On the other hand, if the injector and

application server are located in the same host when the migration is performing,

due to all requests happened inside the host, the live migration traffic will not

affect the application response time.655

However, in scenario s-39, i.e., the application traffic is sent to client VM

(compute9 ), the pre-copy live migration traffic flow will contend for the shared

bandwidth due to the same traffic direction. Therefore, the worst case re-

sponse time may occur not only after downtime but during the migration

time as shown in Fig. 11b. Meanwhile, Table 4 shows that the average response660

time of requests is dramatically larger than the migration of client VM. The

request timeout (HTTP 0) happens much often due to the server migration.

We notice that the server migration from compute3 to compute9 cannot

finish in 20 minutes. For memory-intensive instances, like the Wikipedia server,

there are two optional strategies to perform a successful live migration: Hybrid665

post-copy (H-PC) and Auto-convergence (AC). Thus, we evaluate the

migration performance and impacts on the response time of the hybrid post-

copy and auto-convergence strategies for Wikipedia server in the scenario s-39.

Table 3 shows the initial response time of 1200 seconds, 500 seconds and 400

seconds time intervals without any migration as well as the average migration670

time (Duration), response time (RT), and the number of success (HTTP200),

timeout (HTTP0), and total requests.

Hybrid post-copy: With the start of pre-copy mode, the post-copy mi-

gration will be activated if the memory copy iteration does not make at least
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Figure 12: Response time of successful server migrations

10 percent increase over the last iteration. It will suspend the VM and process675

state on the source host. The VM will resume on the target host and fetch all

missing pages as needed. However, the post-copy page fetching will slow down

the VM which degrades the service performance and the VM will reboot if the

network is unstable. The average response time of hybrid post-copy is bet-

ter than the pre-copy migration as shown in Table 5. The timeout requests680

are slightly increased during the post-copy migration. Furthermore, Figure 12a

indicates response time of success and timeout requests without migration (std-

200, std-0) and during the hybrid post-copy (mig-200, mig-0). It illustrates that

under a stable network environment, the impacts of missing page fetching on

application response time is less than pre-copy iteration traffic.685

Auto-convergence: By throttling down the VM’s virtual CPU, auto-

convergence will only influence the workloads where the memory write speed
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is dependent on the CPU execution speed. As migration time flows it will con-

tinually increase the amount of CPU throttling until the dirty page rate is low

enough for migration to finish. Figure 12b indicates that the task of Wikipedia690

request has a worse response time under a larger throttling amount. The

request tasks are highly related to the CPU execution speed. Therefore, the

throttling down leads to a successful migration of the Wikipedia server. How-

ever, as the timeout threshold of a request is 2 seconds, the performance of the

server is devastated under the last throttling down, i.e., most requests are timed695

out (mig-0). A larger timeout threshold for requests should be set according

to the amount of throttling down. Although it can successfully perform the

live server migration, the average response time is even larger than the pre-

copy migration requests’ (Table 5). Moreover, compare to the hybrid post-copy

strategy, the auto-convergence leads to a much larger migration time.700

For memory-intensive VMs, H-PC is a better strategy in a stable network

environment. Otherwise, AC is the option for applications that dirty page rate

is highly related to the CPU speed. Due to the throttling down, service time

out should be increased accordingly.

6. Conclusions and Future Work705

We established the mathematical model of block live migration to have a

better understanding of the static downtime adjustment algorithm in Open-

Stack, as well as the parallel and sequential migration cost in the same network

path. For the downtime adjustment algorithm, we should dynamically set the

downtime configuration (maximum downtime, adjustment steps, and delays)710

to achieve the optimal migration performance. When non-network overheads,

such as pre- and post-migration workloads, constitute a large portion of to-

tal migration time, parallel migration should be chosen to reduce the response

time, downtime, and the total evacuation time of multiple migrations in the

same path. We also evaluated the impacts of SDN scheduling update rate on715

live migration performance. The result suggests that a high update rate leads
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to a large TCP/UDP packet loss which will affect the migration performance.

From the QoS perspective, we investigated the response time pattern of

client and server live migrations with pre-copy, hybrid post-copy, and auto-

convergence strategies. For memory-intensive VM, as the pre-copy migration720

cannot finish in a reasonable time, we should choose hybrid post-copy to perform

a successful migration if the network environment is stable. Otherwise, we could

perform the auto-convergence feature during the pre-copy migration. However,

the auto-convergence dramatically influences the application response time, i.e.,

requests are timed out because of the CPU slowdown. Moreover, for the pre-725

copy migration of server VM, as the migration and application traffic flows

contend with each other, the worst-case response time will not just occur after

the downtime but during the migration. Moreover, the models and parameters

in our paper are compatible with other optimization technologies for single live

VM migration [1, 3, 8, 9] or algorithms of multiple migrations [12, 14, 15, 16,730

17, 18] because these work focus on different optimization factors. Therefore,

the results in our paper still stand and can benefit other optimization methods

and algorithms.

In the future, we plan to investigate the impact of these parameters’ evalu-

ation outcomes on the resource management in SDN-enabled cloud computing.735

In particular, we intend to investigate and develop: (a) the prediction model

of live VM migration with static downtime adjustment algorithm and the op-

timal downtime adjustment configuration for different live migration tasks; (b)

Deadline-aware multiple live VM migration planning by considering the parallel

and sequential sequence in multiple and one network path; (c) SDN latency-740

aware traffic scheduling algorithm based on the trade-off between bandwidth

increasing and rescheduling rate; and (d) QoS-aware resource scheduling strat-

egy by considering application traffic pattern to minimize the influence of live

migrations on application response time.
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