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Neutrosophic Measure and Neutrosophic Integral  

Florentin Smarandache 

University of New Mexico, Math & Science Division, 705 Gurley Ave., Gallup, NM 87301, USA, E-mail: smarand@unm.edu 

Abstract. Since the world is full of indeterminacy, the 
neutrosophics found their place into contemporary 
research. We now introduce for the first time the notions 
of neutrosophic measure and neutrosophic integral. 
Neutrosophic Science means development and 
applications of neutrosophic logic/set/measure/integral/ 
probability etc. and their applications in any field. It is 
possible to define the neutrosophic measure and 
consequently the neutrosophic integral and neutrosophic 
probability in many ways, because there are various types 

of indeterminacies, depending on the problem we need to 
solve. Indeterminacy is different from randomness. 
Indeterminacy can be caused by physical space materials 
and type of construction, by items involved in the space, 
or by other factors. Neutrosophic measure is a 
generalization of the classical measure for the case when 
the space contains some indeterminacy. Neutrosophic 
Integral is defined on neutrosophic measure. Simple 
examples of neutrosophic integrals are given. 

Keywords: neutrosophy, neutrosophic measure, neutrosophic integral, indeterminacy, randomness, probability. 

1 Introduction to Neutrosophic Measure 

1.1 Introduction 
Let <A> be an item. <A> can be a notion, an attribute, 

an idea, a proposition, a theorem, a theory, etc. 
And let <antiA> be the opposite of <A>; while 

<neutA> be neither <A> nor <antiA> but the neutral (or 
indeterminacy, unknown) related to <A>. 

For example, if <A> = victory, then <antiA> = defeat, 
while <neutA> = tie game. 

If <A> is the degree of truth value of a proposition, 
then <antiA> is the degree of falsehood of the proposition, 
while <neutA> is the degree of indeterminacy (i.e. neither 
true nor false) of the proposition. 

Also, if <A> = voting for a candidate, <antiA> = voting 
against that candidate, while <neutA> = not voting at all, 
or casting a blank vote, or casting a black vote. In the case 
when <antiA> does not exist, we consider its measure be 
null {m(antiA)=0}. And similarly when <neutA> does not 
exist, its measure is null { m(neutA) = 0}. 

1.2 Definition of Neutrosophic Measure 

We introduce for the first time the scientific notion of 
neutrosophic measure. 

Let X  be a neutrosophic space, and Σ  a   
σ -neutrosophic algebra over X . A neutrosophic 
measure ν  is defined by for neutrosophic set A∈ Σ  by 

3: X Rν → , 

( ) ( )A = m(A), m(neutA),m(antiA)ν ,  (1) 

with antiA = the opposite of A, and neutA = the neutral 
(indeterminacy) neither A nor anti A (as defined above); 

for any A X⊆  and A∈ Σ , 
m(A) means measure of the determinate part of A; 
m(neutA) means measure of indeterminate part of A; 
and m(antiA) means measure of the determinate part of 

antiA; 
where ν  is a function that satisfies the following two 

properties: 
a) Null empty set: ( ) ( )0 0 0, ,ν Φ = .  

b) Countable additivity (or σ -additivity): For all
countable collections { }n n L

A
∈

  of disjoint neutrosophic 

sets in Σ , one has: 

 1n n n n
n L n L n Ln L

A m( A ), m( neutA ), m( antiA ) ( n )m( X )ν
∈ ∈ ∈∈

   = − −   
  
  

where X is the whole neutrosophic space, 
and

1n n nn L
n L n L

m( antiA ) ( n )m( X ) m( X ) m( A ) m( antiA ).
∈∈ ∈

− − = − = ∩   

1.3 Neutrosophic Measure Space 

A neutrosophic measure space is a triplet ( )X , ,νΣ .

1.4 Normalized Neutrosophic Measure 

A neutrosophic measure is called normalized if 

( ) ( )1 2 3X ( m( X ),m( neutX ),m( antiX )) x ,x ,xν = = ,  

with 
1 2 3 1x x x+ + = ,  

and 
1 2 30 0 0x ,x ,x≥ ≥ ≥ .  (3) 

Where, of course, X is the whole neutrosophic measure 
space. 
1.5 Finite Neutrosophic Measure Space 

(2) 

4

4
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Let A X⊂ . We say that ( ) ( )1 2 3A a ,a ,aν =  is finite if all 

a1, a2, and a3  are finite real numbers. 
A neutrosophic measure space ( )X , ,νΣ  is called finite 

if ( ) ( )X a ,b ,cν =  such that all a, b, and c are finite (rather 

than infinite). 

1.6 σ-Finite Neutrosophic Measure 
A neutrosophic measure is called  σ-finite if X can be 

decomposed into a countable union of neutrosophically 
measurable sets of fine neutrosophic measure. 

Analogously, a set A  in X is said to have a σ-finite 
neutrosophic measure if it is a countable union of sets with 
finite neutrosophic measure. 

1.7 Neutrosophic Axiom of Non-Negativity 
We say that the neutrosophic measure ν  satisfies the 

axiom of non-negativity, if:  
 A∀ ∈Σ , 

( ) ( )1 2 3 1 2 30 if 0 0, and 0A a ,a ,a a ,a aν = ≥ ≥ ≥ ≥ . (4) 

While a neutrosophic measure ν , that satisfies only 
the null empty set and countable additivity axioms (hence 
not the non-negativity axiom), takes on at most one of the 
±∞  values. 

1.8 Measurable Neutrosophic Set and Measurable 
Neutrosophic Space 

The members of Σ  are called measurable neutrosophic 
sets, while ( )X ,Σ   is called a measurable neutrosophic 
space. 

1.9 Neutrosophic Measurable Function 
A function ( ) ( )X Yf : X , Y ,Σ → Σ , mapping two 

measurable neutrosophic spaces, is called neutrosophic 
measurable function if ( )1 Y XB , f B−∀ ∈Σ ∈Σ  (the 

inverse image of a neutrosophic Y -measurable set is a 
neutrosophic X -measurable set). 

1.10 Neutrosophic Probability Measure 
As a particular case of neutrosophic measure ν  is th 

neutrosophic probability measure, i.e. a neutrosophic 
measure that measures probable/possible propositions        

( )0 3Xν− +≤ ≤ ,     (5) 

where X is the whole neutrosophic probability sample 
space.  

We use nonstandard numbers, such 1+ for example, to 
denominate the absolute measure (measure in all possible 
worlds), and standard numbers such as 1 to denominate the 
relative measure (measure in at least one world). Etc. 

We denote the neutrosophic probability measure by 
NP  for a closer connection with the classical probability 
P . 

1.11 Neutrosophic Category Theory 

The neutrosophic measurable functions and their 
neutrosophic measurable spaces form a neutrosophic 
category, where the functions are arrows and the spaces 
objects. 

We introduce the neutrosophic category theory, which 
means the study of the neutrosophic structures and of the 
neutrosophic mappings that preserve these structures. 

The classical category theory was introduced about 
1940 by Eilenberg and Mac Lane. 

A neutrosophic category is formed by a class of 
neutrosophic objects X ,Y ,Z ,...  and a class of 

neutrosophic morphisms (arrows) , , ,...ν ξ ω  such that: 

a) If ( )Hom X ,Y  represent the neutrosophic

morphisms from X  to Y , then ( )Hom X ,Y and

( )Hom X ',Y '  are disjoint, except when X X '=  and

Y Y '= ; 
b) The composition of the neutrosophic morphisms

verify the axioms of 
i) Associativity: ( ) ( )ν ξ ω ν ξ ω=   

ii) Identity unit: for each neutrosophic object X
there exists a neutrosophic morphism denoted Xid , called 

neutrosophic identity of X  such that Xid ν ν=  and 

Xidξ ξ=  

  Fig. 2 

1.12 Properties of Neutrosophic Measure 
a) Monotonicity.

If 1A  and 2A  are neutrosophically measurable, with 

1 2A A⊆ , where 

( ) ( ) ( )( )1 1 1 1A m A ,m neutA ,m( antiA )ν = , 

and ( ) ( ) ( )( )2 2 2 2A m A ,m neutA ,m( antiA )ν = , 

then 

1 2 1 2 1 2( ) ( ), ( ) ( ), ( ) ( )m A m A m neutA m neutA m antiA m antiA≤ ≤ ≥
  (6) 

Let ( ) ( )1 2 3X x ,x ,xν =  and ( ) ( )1 2 3Y y , y , yν = . We 

say that ( ) ( )X Yν ν≤ , if 1 1x y≤ , 2 2x y≤ , and 
3 3x y≥ .  

b) Additivity.

4
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If
1 2A A = Φ , then ( ) ( ) ( )1 2 1 2A A A Aν ν ν= + ,    

(7)  
where we define 
( ) ( ) ( )1 1 1 2 2 2 1 2 1 2 3 3a ,b ,c a ,b ,c a a ,b b ,a b m( X )+ = + + + −  

(8) 
where X is the whole neutrosophic space, and 

3 3 1 2( ) ( ) ( ) ( ) ( )

( ).

a b m X m X m A m B m X a a

m antiA antiB

+ − = − − = − −
= ∩

(9) 

1.13 Neutrosophic Measure Continuous from 
Below or Above 

A neutrosophic measure ν  is continuous from below 

if, for 1 2A ,A ,...  neutrosophically measurable sets with 

1n nA A +⊆ for all n , the union of the sets nA  is

neutrosophically measurable, and 

( )
1

n n
n

n

A lim Aν ν
∞

→∞=

  = 
 
                  (10) 

And a neutrosophic measure ν  is continuous from 

above if for 1 2A ,A ,...  neutrosophically measurable sets, 

with 1n nA A +⊇  for all n , and at least one nA  has finite 

neutrosophic measure, the intersection of the sets nA  and 

neutrosophically measurable, and 

 ( )
1

n n
n

n

A lim Aν ν
∞

→∞=

  = 
 
 .        (11)                   

1.14 Generalizations 
Neutrosophic measure is a generalization of the fuzzy 

measure, because when ( ) 0m neutA =  and m(antiA) is

ignored, we get  

( ) ( )( ) ( )0 0A m A , , m Aν = ≡      (12)

and the two fuzzy measure axioms are verified: 
a) If A = Φ , then ( ) ( )0 0 0 0A , ,ν = ≡
b) If A B⊆ , then ( ) ( )A Bν ν≤ . 

The neutrosophic measure is practically a triple 
classical measure: a classical measure of the determinate 
part of a neutrosophic object, a classical part of the 
indeterminate part of the neutrosophic object, and another 
classical measure of the determinate part of the opposite 
neutrosophic object. Of course, if the indeterminate part 
does not exist (its measure is zero) and the measure of the 
opposite object is ignored, the neutrosophic measure is 
reduced to the classical measure. 

1.15 Examples 
Let’s see some examples of neutrosophic objects and 

neutrosophic measures. 
a) If a book of 100 sheets (covers included) has 3

missing sheets, then 

( ) ( )97 3 0book , ,ν =    (13) 

where ν is the neutrosophic measure of the book 
number of pages. 

b) If a surface of 5 × 5 square meters has cracks of
0.1 × 0.2 square meters, then ( ) ( )24 98 0 02 0surface . , . ,ν = ,             

(14), where ν is the neutrosophic measure of the surface. 
c) If a die has two erased faces then

( ) ( )4 2 0die , ,ν = , (14) 

where ν is the neutrosophic measure of the die’s 
number of correct faces. 

d) An approximate number N  can be interpreted as

a neutrosophic measure N d i= + , where d  is its

determinate part, and i  its indeterminate part. Its anti part 

is considered 0. 
For example if we don’t know exactly a quantity q ,

but only that it is between let’s say [ ]0 8 0 9q . , .∈ , then

0 8q . i= + , where 0.8 is the determinate part of    q , and

its indeterminate part [ ]0 0 1i , .∈ .

We get a negative neutrosophic measure if we 
approximate a quantity measured in an inverse direction on 
the x-axis to an equivalent positive quantity. 

For example, if [ ]6 4r ,∈ − − , then 6r i= − + , where  -6

is the determinate part of r, and [ ]0 2i ,∈  is its

indeterminate part. Its anti part is also 0. 
e) Let’s measure the truth-value of the proposition
G = “through a point exterior to a line one can draw 

only one parallel to the given line”. 
The proposition is incomplete, since it does not specify 

the type of geometrical space it belongs to. In an Euclidean 
geometric space the proposition G is true; in a Riemannian 
geometric space the proposition G is false (since there is 
no parallel passing through an exterior point to a given 
line); in a Smarandache geometric space (constructed from 
mixed spaces, for example from a part of Euclidean 
subspace together with another part of Riemannian space) 
the proposition G is indeterminate (true and false in the 
same time). 

( ) (1,1,1)Gν = .     (15) 

f) In general, not well determined objects, notions,
ideas, etc. can become subject to the neutrosophic theory. 

2 Introduction to Neutrosophic Integral 

2.1 Definition of Neutrosophic Integral 

Using the neutrosophic measure, we can define a 
neutrosophic integral. 

The neutrosophic integral of a function f is written as: 

X
fdν   (16) 

where X is the a neutrosophic measure space, 

5
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and the integral is taken with respect to the 
neutrosophic measure ν .  

Indeterminacy related to integration can occur in 
multiple ways: with respect to value of the function to be 
integrated, or with respect to the lower or upper limit of 
integration, or with respect to the space and its measure. 

2.2 First Example of Neutrosophic Integral: 
Indeterminacy Related to Function’s Values 

Let  fN: [a, b]  R   (17)
where the neutrosophic function is defined as: 

fN (x) = g(x)+i(x)   (18)
with g(x) the determinate part of fN(x), and i(x) the 
indeterminate part of fN(x),where for all x in [a, b] one 
has: ( ) [0, ( )], ( ) 0i x h x h x∈ ≥ .                    (19) 

Therefore the values of the function fN(x) are 
approximate, i.e. ( ) [ ( ), ( ) ( )]Nf x g x g x h x∈ + .  (20) 

Similarly, the neutrosophic integral is an approxi-
mation: 

( ) ( ) ( )
b b b

N

a a a

f x d g x dx i x dxν = +    (21) 

1.10 Second Example of Neutrosophic Integral: 
Indeterminacy  Related to the Lower Limit 

Suppose we need to integrate the function 

f: X R      22) 

on the interval [a, b] from X, but we are unsure about the 

lower limit a.  Let’s suppose that the lower limit “a” has a 

determinant part “a1” and an indeterminate part ε, i.e. 

a = a1+ε    (23) 

where 

[0, 0.1]ε ∈ .   (24) 

Therefore 

1

1( ) i
b b

X

a a

fd f x dxν = −    (25) 

where the indeterminacy i1 belongs to the interval: 

1

1

0.1

1 [0, ( ) ]
a

a

i f x dx
+

∈  .      (26) 

Or, in a different way: 

1

2

0.1

( ) i
b b

X

a a

fd f x dxν
+

= +   (27)

where similarly the indeterminacy i2 belongs to the 
interval: 

1

1

0.1

2 [0, ( ) ]
a

a

i f x dx
+

∈ 
.     (28) 
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Abstract. A single valued neutrosophic set (SVNS), 
which is the subclass of a neutrosophic set, can be 
considered as a powerful tool to express the 
indeterminate and inconsistent information in the process 
of decision making. Then, correlation is one of the most 
broadly applied indices in many fields and also an 
important measure in data analysis and classification, 
pattern recognition, decision making and so on. 
Therefore, we propose another form of correlation 
coefficient between SVNSs and establish a multiple 

attribute decision making method using the correlation 
coefficient of SVNSs under single valued neutrosophic 
environment. Through the weighted correlation 
coefficient between each alternative and the ideal 
alternative, the ranking order of all alternatives can be 
determined and the best alternative can be easily 
identified as well. Finally, two illustrative examples are 
employed to illustrate the actual applications of the 
proposed decision-making approach.  

Keywords: Correlation coefficient; Single valued neutrosophic set; Decision making. 

1 Introduction 

To handle the indeterminate information and 
inconsistent information which exist commonly in real 
situations, Smarandache [1] firstly presented a 
neutrosophic set from philosophical point of view, which is 
a powerful general formal framework and generalized the 
concept of the classic set, fuzzy set, interval-valued fuzzy 
set, intuitionistic fuzzy set, interval-valued intuitionistic 
fuzzy set, paraconsistent set, dialetheist set, paradoxist set, 
and tautological set [1, 2]. In the neutrosophic set, a truth-
membership, an indeterminacy-membership, and a falsity-
membership are represented independently. Its functions 
TA(x), IA(x) and FA(x) are real standard or nonstandard 
subsets of ]−0, 1+[, i.e., TA(x): X → ]−0, 1+[, IA(x): X → ]−0, 
1+[, and FA(x): X → ]−0, 1+[. Obviously, it will be difficult 
to apply in real scientific and engineering areas. Therefore, 
Wang et al. [3] proposed the concept of a single valued 
neutrosophic set (SVNS), which is the subclass of a 
neutrosophic set, and provided the set-theoretic operators 
and various properties of SVNSs. Thus, SVNSs can be 
applied in real scientific and engineering fields and give us 
an additional possibility to represent uncertainty, 
imprecise, incomplete, and inconsistent information which 
exist in real world. However, the correlation coefficient is 
one of the most frequently used tools in engineering 
applications. Therefore, Hanafy et al. [4] introduced the 
correlation of neutrosophic data. Then, Ye [5] presented 

the correlation coefficient of SVNSs based on the 
extension of the correlation coefficient of intuitionistic 
fuzzy sets and proved that the cosine similarity measure of 
SVNSs is a special case of the correlation coefficient of 
SVNSs, and then applied it to single valued neutrosophic 
multicriteria decision-making problems. Hanafy et al. [6] 
presented the centroid-based correlation coefficient of 
neutrosophic sets and investigated its properties. 
Recently , S. Broumi and F. Smarandache [8] Correlation 
coefficient of interval neutrosophic set and investigated its 
properties. 

In this paper, we propose another form of correlation 
coefficient between SVNSs and investigate its properties. 
Then, a multiple attribute decision-making method using 
the correlation coefficient of SVNSs is established under 
single valued neutrosophic environment. To do so, the rest 
of the paper is organized as follows. Section 2 briefly 
describes some concepts of SVNSs. In Section 3, we 
develop another form of correlation coefficient between 
SVNSs and investigate its properties. Section 4 establishes 
a multiple attribute decision-making method using the 
correlation coefficient of SVNSs under single valued 
neutrosophic environment. In Section 5, two illustrative 
examples are presented to demonstrate the applications of 
the developed approach. Section 6 contains a conclusion 
and future research. 
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2 Some concepts of SVNSs 

Smarandache [1] firstly presented the concept of a 
neutrosophic set from philosophical point of view and gave 
the following definition of a neutrosophic set. 
Definition 1 [1]. Let X be a space of points (objects), with 
a generic element in X denoted by x. A neutrosophic set A 
in X is characterized by a truth-membership function TA(x), 
an indeterminacy-membership function IA(x), and a falsity-
membership function FA(x). The functions TA(x), IA(x) and 
FA(x) are real standard or nonstandard subsets of ]−0, 1+[, 
i.e., TA(x): X → ]−0, 1+[, IA(x): X → ]−0, 1+[, and FA(x): X
→ ]−0, 1+[. There is no restriction on the sum of TA(x), 
IA(x) and FA(x), so −0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 
3+. 

Obviously, it is difficult to apply in practical problems. 
Therefore, Wang et al. [3] introduced the concept of a 
SVNS, which is an instance of a neutrosophic set, to apply 
in real scientific and engineering applications. In the 
following, we introduce the definition of a SVNS [3]. 
Definition 2 [3]. Let X be a space of points (objects) with 
generic elements in X denoted by x. A SVNS A in X is 
characterized by a truth-membership function TA(x), an 
indeterminacy-membership function IA(x),

 
and a falsity-

membership function FA(x) for each point x in X, TA(x), 
IA(x), FA(x) ∈ [0, 1]. Thus, A SVNS A can be expressed as 

{ }XxxFxIxTxA AAA ∈= |)(),(),(, . 

Then, the sum of TA(x), IA(x) and FA(x) satisfies the 
condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 
Definition 3 [3]. The complement of a SVNS A is denoted 
by Ac and is defined as  

{ }XxxTxIxFxA AAA
c ∈−= |)(),(1),(, .  

Definition 4 [3]. A SVNS A is contained in the other 
SVNS B, A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), 
and FA(x) ≥ FB(x) for every x in X. 
Definition 5 [3]. Two SVNSs A and B are equal, written as 
A = B, if and only if A ⊆ B and B ⊆ A. 

3 Correlation coefficient of SVNSs 

Motivated by another correlation coefficient between 
intuitionistic fuzzy sets [7], this section proposes another 
form of correlation coefficient between SVNSs as a 
generalization of the correlation coefficient of intuitionistic 
fuzzy sets [7]. 
Definition 6. For any two SVNSs A and B in the universe 
of discourse X = {x1, x2,…, xn}, another form of 
correlation coefficient between two SVNSs A and B is 
defined by 

{ }
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Theorem 1. The correlation coefficient N(A, B) satisfies 
the following properties: 

(1) N(A, B) = N(B, A); 
(2) 0 ≤ N(A, B) ≤ 1; 
(3) N(A, B) = 1, if A = B. 

Proof. (1) It is straightforward. 
(2) The inequality N(A, B) ≥ 0 is obvious. Thus, we 

only prove the inequality N(A, B) ≤ 1. 
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where (x1, x2, …, xn) ∈ Rn and (y1, y2, …, yn) ∈ Rn, we can 
obtain 
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Thus, [ ] [ ] 2/12/1 ),(),(),( BBNAANBAN ⋅≤ .

Then,  { }),(),,(max),( BBNAANBAN ≤ .

Therefore, N(A, B) ≤ 1.  
(3) If A = B, there are TA(xi) = TB(xi), IA(xi) = IB(xi), and 

FA(xi) = FB(xi) for any xi ∈ X and i = 1, 2, …, n. Thus, there 
are N(A, B) = 1.  

In practical applications, the differences of importance 
are considered in the elements in the universe. Therefore, 
we need to take the weights of the elements xi (i = 1, 2,…, 
n) into account. Let wi be the weight for each element xi (i
= 1, 2,…, n), wi ∈ [0, 1], and 1

1
= =

n

i iw , then we have the 

following weighted correlation coefficient between the 
SVNSs A and B: 
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If w = (1/n, 1/n,…, 1/n)T, then Eq. (2) reduce to Eq. 
(1). Note that W(A, B) also satisfy the three properties of 
Theorem 1. 
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Theorem 2. Let wi be the weight for each element xi (i = 1, 
2,…, n), wi ∈ [0, 1], and 1

1
= =

n

i iw , then the weighted 

correlation coefficient W(A, B) defined in Eq. (2) also 
satisfies the following properties: 

(1) W(A, B) = W(B, A); 
(2) 0 ≤ W(A, B) ≤ 1; 
(3) W(A, B) = 1, if A = B. 
Since the process to prove these properties is similar to 

that in Theorem 1, we do not repeat it here. 

4 Decision-making method using the correlation 
coefficient of SVNSs 

This section proposes a single valued neutrosophic 
multiple attribute decision-making method using the 
proposed correlation coefficient of SVNSs.  

Let A = {A1, A2,…, Am} be a set of alternatives and C = 
{C1, C2,…, Cn} be a set of attributes. Assume that the 
weight of an attribute Cj (j = 1, 2,…, n), entered by the 
decision-maker, is wj, wj ∈ [0, 1] and 1

1
= =

n

j jx . In this 

case, the characteristic of an alternative Ai (i = 1, 2,…, m) 
with respect to an attribute Cj (j = 1, 2,…, n) is represented 
by a SVNS form: 

},...,2,1,|)(),(),(,{ njCCCFCICTCA jjAjAjAji iii
=∈= , 

where )( jA CT
i

, )( jA CI
i

, )( jA CF
i

∈ [0, 1] and 0 ≤ )( jA CT
i

 

+ )( jA CI
i

 + )( jA CF
i

 ≤ 3 for Cj ∈ C, j = 1, 2, …, n, and i = 

1, 2, …, m. 
For convenience, the values of the three functions 

)( jA CT
i

, )( jA CI
i

, )( jA CF
i

 are denoted by a single valued 

neutrosophic value (SVNV) aij = tij, iij, fij (i = 1, 2, …, m; 
j = 1, 2,…, n), which is usually derived from the evaluation 
of an alternative Ai with respect to an attribute Cj by the 
expert or decision maker. Thus, we can establish a single 
valued neutrosophic decision matrix D = (aij)m×n: 
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In the decision-making method, the concept of ideal 
point has been used to help identify the best alternative in 
the decision set. The ideal alternative provides a useful 
theoretical construct against which to evaluate alternatives. 
Generally, the evaluation attributes can be categorized into 
two kinds, benefit attributes and cost attributes. Let H be a 
collection of benefit attributes and L be a collection of cost 
attributes. An ideal SVNV can be defined by an ideal 
element for a benefit attribute in the ideal alternative A* as 

)(min),(min),(max,, ****
ij

i
ij

i
ij

i
jjjj fitfita ==  for j ∈ H, 

while an ideal SVNV can be defined by an ideal element 
for a cost attribute in the ideal alternative A* as 

)(max),(max),(min,, ****
ij

i
ij

i
ij

i
jjjj fitfita ==  for j ∈ 

L. 

Then, by applying Eq. (2) the weighted correlation 
coefficient between an alternative Ai (i = 1, 2, …, m) and 
the ideal alternative A* is given by 
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Then, the bigger the measure value W(Ai, A*) (i = 1, 2, 
. . . , m) is, the better the alternative Ai is, because the 
alternative Ai is close to the ideal alternative A*. Through 
the weighted correlation coefficient between each 
alternative and the ideal alternative, the ranking order of all 
alternatives can be determined and the best one can be 
easily identified as well. 

5 Illustrative examples 

In this section, two illustrative examples for the 
multiple attribute decision-making problems are provided 
to demonstrate the application of the proposed decision-
making method. 

5.1 Example 1 

Now, we discuss the decision-making problem adapted 
from the literature [5]. There is an investment company, 
which wants to invest a sum of money in the best option. 
There is a panel with four possible alternatives to invest 
the money: (1) A1 is a car company; (2) A2 is a food 
company; (3) A3 is a computer company; (4) A4 is an arms 
company. The investment company must take a decision 
according to the three attributes: (1) C1 is the risk; (2) C2 is 
the growth; (3) C3 is the environmental impact, where C1 
and C2 are benefit attributes and C3 is a cost attribute. The 
weight vector of the three attributes is given by w = (0.35, 
0.25, 0.4)T. The four possible alternatives are to be 
evaluated under the above three attributes by the form of 
SVNVs.  

For the evaluation of an alternative Ai with respect to 
an attribute Cj (i =1, 2, 3, 4; j =1, 2, 3), it is obtained from 
the questionnaire of a domain expert. For example, when 
we ask the opinion of an expert about an alternative A1 
with respect to an attribute C1, he or she may say that the 
possibility in which the statement is good is 0.4 and the 
statement is poor is 0.3 and the degree in which he or she 
is not sure is 0.2. For the neutrosophic notation, it can be 
expressed as a11 = 0.4, 0.2, 0.3. Thus, when the four 
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possible alternatives with respect to the above three 
attributes are evaluated by the expert, we can obtain the 
following single valued neutrosophic decision matrix D: 





















=

8.0,3.0,6.02.0,1.0,6.01.0,0.0,7.0

8.0,3.0,5.03.0,2.0,5.03.0,2.0,3.0

8.0,2.0,5.02.0,1.0,6.02.0,1.0,6.0

5.0,2.0,8.03.0,2.0,4.03.0,2.0,4.0

D . 

Then, we utilize the developed approach to obtain the 
most desirable alternative(s). 

From the single valued neutrosophic decision matrix, 
we can obtain the following ideal alternative: 

}8.0,3.0,5.0,,2.0,1.0,6.0,,1.0,1.0,7.0,{ 321
* = CCCA . 

By using Eq. (3), we can obtain the values of the 
weighted correlation coefficient W(Ai, A*) (i =1, 2, 3, 4): 

W(A1, A*) = 0.8016, W(A2, A*) = 0.9510, W(A3, A*) = 
0.8588, and W(A4, A*) = 0.9664. 

Thus, the ranking order of the four alternatives is A4  
A2  A3  A1. Therefore, the alternative A4 is the best 
choice among the four alternatives.  

5.2 Example 2 

A multi-criteria decision making problem is concerned 
with a manufacturing company which wants to select the 
best global supplier according to the core competencies of 
suppliers. Now suppose that there are a set of four 
suppliers A = {A1, A2, A3, A4} whose core competencies are 
evaluated by means of the four attributes: (1) C1 is the 
level of technology innovation; (2) C2 is the control ability 
of flow; (3) C3 is the ability of management; (4) C4 is the 
level of service, where C1, C2 and C2 are all benefit 
attributes. Assume that the weight vector for the four 
attributes is w = (0.3, 0.25, 0.25, 0.2)T. 

The proposed decision making method is applied to 
solve this problem for selecting suppliers. 

For the evaluation of an alternative Ai (i =1, 2, 3, 4) 
with respect to a criterion Cj (j =1, 2, 3, 4), it is obtained 
from the questionnaire of a domain expert. For example, 
when we ask the opinion of an expert about an alternative 
A1 with respect to a criterion C1, he or she may say that the 
possibility in which the statement is good is 0.5 and the 
statement is poor is 0.3 and the degree in which he or she 
is not sure is 0.1. For the neutrosophic notation, it can be 
expressed as a11 = 0.5, 0.1, 0.3. Thus, when the four 
possible alternatives with respect to the above four 
attributes are evaluated by the similar method from the 
expert, we can obtain the following single valued 
neutrosophic decision matrix D:  





















=

1.0,2.0,7.02.0,3.0,4.05.0,2.0,2.02.0,1.0,6.0

2.0,2.0,6.04.0,0.0,5.03.0,1.0,5.01.0,3.0,4.0

2.0,3.0,5.01.0,0.0,9.04.0,2.0,3.03.0,2.0,4.0

1.0,2.0,3.02.0,1.0,7.04.0,1.0,5.03.0,1.0,5.0

D

Then, we employ the developed approach to obtain the 
most desirable alternative(s). 

From the single valued neutrosophic decision matrix, 
we can obtain the following ideal alternative: 

{
}
=

1.0,2.0,7.0,,1.0,0.0,9.0,

,3.0,1.0,5.0,,1.0,1.0,6.0,

43

21
*

CC

CCA . 

By applying Eq. (3), we can obtain the values of the 
weighted correlation coefficient W(Ai, A*) (i =1, 2, 3, 4): 

W(A1, A*) = 0.7998, W(A2, A*) = 0.8756, W(A3, A*) = 
0.7580, and W(A4, A*) = 0.7532. 

Thus, the ranking order of the four alternatives is A2  
A1  A3  A4. Therefore, the alternative A2 is the best 
choice among the four alternatives.  

From the two examples, we can see that the proposed 
single valued neutrosophic multiple attribute decision-
making method is more suitable for real scientific and 
engineering applications because it can handle not only 
incomplete information but also the indeterminate 
information and inconsistent information which exist 
commonly in real situations.  

6 Conclusion 

In this paper, we proposed another form of the 
correlation coefficient between SVNSs. Then a multiple 
attribute decision-making method has been established in 
single valued neutrosophic setting by means of the 
weighted correlation coefficient between each alternative 
and the ideal alternative. Through the correlation 
coefficient, the ranking order of all alternatives can be 
determined and the best alternative can be easily identified 
as well. Finally, two illustrative examples illustrated the 
applications of the developed approach. Then the 
technique proposed in this paper is suitable for handling 
decision-making problems with single value neutrosophic 
information and can provide a useful way for decision-
makers. In the future, we shall continue working in the 
applications of the correlation coefficient between SVNSs 
to other domains, such as data analysis and classification, 
pattern recognition, and medical diagnosis. 
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Abstract.In this paper we extend the neutrosophic group 
and subgroup to soft neutrosophic group and soft neutro-

sophic subgroup respectively. Properties and theorems 
related to them are proved and many examples are given. 

Keywords:Neutrosophic group,neutrosophic subgroup,soft set,soft subset,soft group,soft subgroup,soft neutrosophic group, soft 
,neutrosophic subgroup.

1 Introduction 

The concept of neutrosophic set was first introduced by 
Smarandache [13,16] which is a generalization of the clas-
sical sets, fuzzy set [18], intuitionistic fuzzy set [4] and in-
terval valued fuzzy set [7]. Soft Set theory was initiated by 
Molodstov as a new mathematical tool which is free from 
the problems of parameterization inadequacy. In his paper 
[11], he presented the fundamental results of new theory 
and successfully applied it into several directions such as 
smoothness of functions, game theory, operations research, 
Riemann-integration, Perron integration, theory of proba-
bility. Later on many researchers followed him and worked 
on soft set theory as well as applications of soft sets in de-
cision making problems and artificial intelligence. Now, 
this idea has a wide range of research in many fields, such 
as databases [5, 6], medical diagnosis problem [7], deci-
sion making problem [8], topology [9], algebra and so 
on.Maji gave the concept of neutrosophic soft set in [8] 
and later on Broumi and Smarandache defined intuition-
istic neutrosophic soft set. We have worked with neutro-
sophic soft set and its applications in group theory. 

2 Preliminaries

2.1 Nuetrosophic Groups

Definition 1 [14]  Let  ( ),G *   be any group and let

G Iá È ñ { }: ,a bI a b G= + Î  . Then neutrosophic

group is generated by  I   and  G   under  *   denoted by  

( ) { },N G G I= á È ñ *  .  I   is called the neutrosoph-

ic element with the property  2I I=  . For an integer  n 
, n I+   and  nI   are neutrosophic elements and  

0. 0I =  . 
1
I

-
 , the inverse of  I   is not defined and hence does not

exist. 

Theorem 1 [ ]14   Let  ( )N G   be a neutrosophic

group. Then 

1) ( )N G   in general is not a group;

2) ( )N G   always contains a group.

Definition 2 A pseudo neutrosophic group is defined as a 
neutrosophic group, which does not contain a proper sub-
set which is a group. 

Definition 3 Let  ( )N G   be a neutrosophic group.

Then, 

1) A proper subset  ( )N H   of  ( )N G   is said to be a

neutrosophic subgroup of  ( )N G   if  ( )N H   is a

neutrosophic group, that is,  ( )N H   contains a

proper subset which is a group.

2) ( )N H   is said to be a pseudo neutrosophic sub-

group if it does not contain a proper subset which is a
group.

Example 1 ( ( ), )N Z +  ,  ( ( ), )N Q + ( ( ), )N R +   and  

( ( ), )N C +   are neutrosophic groups of integer, rational, 

real and complex numbers, respectively. 

Example 2 Let  { }7 ,1, 2, ..., 6Z o=   be a group under

addition modulo  7  .  

( ) { }7 , ' ' mod 7N G Z I ulo= á È ñ +  is a neutro-

sophic group which is in fact a group. For 

( ) { }7: ,N G a bI a b Z= + Î   is a group under ` 

+  ' modulo  7  . 

Definition 4 Let  ( )N G   be a finite neutrosophic group.

Let  P   be a proper subset of  ( )N G   which under the



14 Neutrosophic Sets and Systems, Vol. 1, 2013 

Muhammad Shabir, Mumtaz Ali, Munazza Naz, and Florentin Smarandache, Soft Neutrosophic Group 

operations of  ( )N G   is a neutrosophic group. If

( ) ( )( )/o P o N G   then we call  P   to be a Lagrange

neutrosophic subgroup. 

Definition 5 ( )N G   is called weakly Lagrange neutro-

sophic group if  ( )N G   has at least one Lagrange neu-

trosophic subgroup. 

Definition 6 ( )N G   is called Lagrange free neutrosoph-

ic group if  ( )N G   has no Lagrange neutrosophic sub-

group. 

Definition7 Let  ( )N G   be a finite neutrosophic group.

Suppose  L   is a pseudo neutrosophic subgroup of  

( )N G   and if  ( ) ( )( )/o L o N G   then we call  L

to be a pseudo Lagrange neutrosophic subgroup. 

Definition 8 If  ( )N G   has at least one pseudo La-

grange neutrosophic subgroup then we call  ( )N G   to

be a weakly pseudo Lagrange neutrosophic group. 

Definition 9 If  ( )N G   has no pseudo Lagrange neutro-

sophic subgroup then we call  ( )N G   to be pseudo La-

grange free neutrosophic group. 

Definition 10 Let  ( )N G   be a neutrosophic group. We

say a neutrosophic subgroup  H   of  ( )N G   is normal

if we can find  x   and  y   in  ( )N G   such that

H xHy=   for all  ( ),x y N GÎ   (Note  x y=   or

1y x-=   can also occur). 

Definition 11 A neutrosophic group  ( )N G   which has

no nontrivial neutrosophic normal subgroup is called a 
simple neutrosophic group. 

Definition 12 Let  ( )N G   be a neutrosophic group. A

proper pseudo neutrosophic subgroup  P   of  ( )N G   is

said to be normal if we have  P xPy=   for all  

( ),x y N GÎ  . A neutrosophic group is said to be

pseudo simple neutrosophic group if  ( )N G   has no

nontrivial pseudo normal subgroups. 

2.2 Soft Sets

Throughout this subsection  U   refers to an initial 

universe,  E   is a set of parameters,  ( )P U   is the pow-

er set of  U  , and  A EÌ  . Molodtsov [12] defined the 
soft set in the following manner: 

Definition13 [ ]11  A pair  ( ),F A   is called a soft set

over  U   where  F   is a mapping given by  F :

( )A P U  .

In other words, a soft set over  U   is a parameterized fami-

ly of subsets of the universe  U  . For  e AÎ  ,  ( )F e

may be considered as the set of  e  -elements of the soft set 

( ),F A  , or as the set of e-approximate elements of the

soft set. 
Example 3 Suppose that  U   is the set of shops.  E   is 
the set of parameters and each parameter is a word or sen-
tence. Let  

high rent,normal rent,

in  good condition ,in bad condition
E

ì üï ïï ï= í ýï ïï ïî þ
 . 

Let us consider a soft set  ( ),F A   which describes the

attractiveness of shops that Mr. Z   is taking on rent. Sup-
pose that there are five houses in the universe  

{ }1 2 3 4 5, , , ,U h h h h h=   under consideration, and that  

{ }1 2 3, ,A e e e=   be the set of parameters where 

e1   stands for the parameter 'high rent,

e2   stands for the parameter 'normal rent,

e3   stands for the parameter 'in good condition.
Suppose that 

1 1 4( ) { , }F e h h=  , 

2 2 5( ) { , }F e h h=  , 

3 3 4 5( ) { , , }F e h h h=  . 

The soft set  ( ),F A   is an approximated family

{ ( ), 1, 2, 3}iF e i =   of subsets of the 

set  U   which gives us a collection of approximate de-
scription of an object. Thus, we have the soft set (F, A) as 
a collection of approximations as below: 

( , ) {F A =  high rent  1 4{ , },h h=  normal rent  

2 5{ , },h h=  in good condition  { }3 4 5, , }h h h=  . 

Definition 14 [ ]3  . For two soft sets  ( ),F A   and
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( ),H B   over  U  ,  ( ),F A   is called a soft subset of

( ),H B   if

1) A BÍ   and

2) ( ) ( )F e H eÍ , for all  e AÎ  .

This relationship is denoted by  ( ) ( ), ,F A H BÌ  .

Similarly  ( ),F A   is called a soft superset of  ( ),H B

if  ( ),H B   is a soft subset of  ( ),F A   which is denot-

ed by  ( ) ( ), ,F A H BÉ  .

Definition 15 [ ]3  . Two soft sets  ( ),F A   and

( ),H B   over  U   are called soft equal if ( ),F A   is a

soft subset of  ( ),H B   and  ( ),H B   is a soft subset of

( ),F A  .

Definition 16  Let [ ]3  ( ),F A   and  ( ),G B   be two

soft sets over a common universe  U   such that  
A B fÇ ¹  . Then their restricted intersection is denot-

ed by ( , ) ( , ) ( , )RF A G B H CÇ =   where  ( ),H C

is defined as  ( ) ( ) ( )H c F c G c= Ç   for all 

c C A B= Ç  .

Definition 17[ ]3   The extended intersection of two soft 

sets  ( ),F A   and  ( ),G B   over a common universe  U

is the soft set  ( ),H C  , where  C A B= È  , and for

all  e CÎ  ,  ( )H e   is defined as

( ) if 

( ) ( ) if 

( ) ( ) if .

F e e A B

H e G e e B A

F e G e e A B

ìï -ïïïï= -íïïï Ç Çïïî





We write  ( , ) ( , ) ( , )F A G B H CeÇ =  . 

Definition 18 [ ]3 The restricted union of two soft sets  

( ),F A   and  ( ),G B   over a common universe  U   is

the soft set  ( ),H C  , where  C A B= È  , and for all

e CÎ  ,  ( )H e   is defined as the soft set  ( ),H C =

( ) ( ), ,RF A G BÈ   where  C A B= Ç   and  

( ) ( ) ( )H c F c G c= È   for all  c CÎ  . 

Definition 19[ ]3  The extended union of two soft sets  

( ),F A   and  ( ),G B   over a common universe  U   is

the soft set  ( ),H C  , where  C A B= È  , and for all

e CÎ  ,  ( )H e   is defined as

( ) if 

( ) ( ) if 

( ) ( ) if .

F e e A B

H e G e e B A

F e G e e A B

ìï -ïïïï= -íïïï È Çïïî





We write  ( , ) ( , ) ( , )F A G B H CeÈ =  . 

2.3 Soft Groups

Definition 20[ ]2  Let  ( ),F A   be a soft set over  G  .

Then  ( ),F A   is said to be a soft group over  G   if and

only if  ( )F x G   forall  x AÎ  .

Example 4 Suppose that  

3 { ,(12),(13),(23),(123),(132)}G A S e= = =  

. Then  ( ),F A   is a soft group over  3S   where  

( ) { }
( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
( ) ( ) ( ) ( ){ }

,

12 , 12 ,

13 , 13 ,

23 , 23 ,

123 132 , 123 , 132 .

F e e

F e

F e

F e

F F e

=

=

=

=

= =

Definition 21[ ]2  Let  ( ),F A   be a soft group over  G  .

Then 

1) ( ),F A   is said to be an identity soft group over  G

if  ( ) { }F x e=   for all  x AÎ  , where  e   is the

identity element of G and

2) ( ),F A   is said to be an absolute soft group if

( )F x G=   for all  x AÎ  .

Definition 22 The restricted product  ( ),H C   of two soft

groups  ( ),F A   and  ( ),K B   over  G   is denoted by

the soft set  ( ) ( ) ( ), , ,H C F A K B


=


  where

C A B= Ç   and  H   is a set valued function from  C
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to  ( )P G   and is defined as  ( ) ( ) ( )H c F c K c=   for

all  c CÎ  . The soft set  ( ),H C   is called the restrict-

ed soft product of  ( ),F A   and  ( ),K B   over  G . 

3 Soft Neutrosophic Group 

Definition 23 Let  ( )N G   be a neutrosophic group and

( ),F A   be soft set over  ( )N G  .Then  ( ),F A   is

called soft neutrosophic  group over  ( )N G   if and only

if  ( ) ( )F x N G  , for all  x AÎ .

Example 5 Let  

( )4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3 ,

2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
N Z

I I I I I I

ì ü+ + +ï ïï ï=í ýï ï+ + + + + +ï ïî þ
 

be a neutrosophic group under addition modulo  4 .  Let  

{ }1 2 3 4, , ,A e e e e=   be the set of parameters, then

( ),F A  is soft  neutrosophic group over  ( )4N Z

where 

( ) { } ( ) { }
( ) { }
( ) { }

1 2

3

4

0,1, 2, 3 , 0, , 2 , 3 ,

0, 2, 2 , 2 2 ,

0, , 2 , 3 , 2, 2 2 , 2 , 2 3 .

F e F e I I I

F e I I

F e I I I I I I

= =

= +

= + + +

Theorem 2 Let  ( ),F A   and  ( H, A )  be two soft neu-

trosophic  groups over  ( )N G  . Then their intersection

( ) ( ), ,F A H AÇ   is again a soft neutrosophic group

over  ( )N G  .

Proof  The proof is straightforward. 

Theorem 3 Let  ( ),F A   and  ( ),H B   be two  soft neu-

trosophic groups over N(G). If  A B fÇ =  , then  

( ) ( ), ,F A H BÈ   is a soft neutrosophic group over

( )N G  .

Theorem 4 Let  ( ),F A   and  ( ),H A   be two soft neu-

trosophic groups over  ( )N G  . If  ( ) ( )F e H eÍ for

all  e AÎ  , then  ( ),F A   is a soft neutrosophic sub-

group of  ( ),H A  .

Theorem 5 The extended union of two  soft  neutrosophic  

groups  ( ),F A   and  ( ),K B   over  ( )N G   is not a

soft neutrosophic  group over  ( )N G  .

Proof  Let   ( ),F A   and  ( ),K B   be two soft  neutro-

sophic  groups over  ( )N G  . Let  C A B= È  , then

for all  ,e CÎ ( , ) ( , ) ( , )F A K B H CeÈ =   where

( )
( ) ( )

( ) ( )

If ,

If ,

If .

F e e A B

H e K e e B A

F e K e e A B

= Î -

= Î -

= È Î Ç
 

As union of two subgroups may not be again a subgroup. 

Clearly if  e C A B= Ç  , then  ( )H e   may not be

a subgroup of  ( )N G  . Hence the extended union

( ),H C   is not a soft neutrosophic group over  ( )N G  .

Example 6  Let  ( ),F A   and  ( ),K B   be two  soft

neutrosophic  groups over  ( )2N Z   under addition 

modulo  2  , where  

( ) { } ( ) { }1 20,1 , 0,F e F e I= =
And 

( ) { } ( ) { }2 30,1 , 0,1 .K e K e I= = +
Then clearly their extended union is not a  soft neutrosoph-
ic  group as  

( ) ( ) ( ) { }2 2 2 0,1,H e F e K e I= È =   is not a 

subgroup of  ( )2N Z  . 

Theorem 6 The extended intersection of two  soft neutro-

sophic  groups over  ( )N G   is  soft neutrosophic  group

over  ( )N G  .

Theorem 7 The restricted union of two  soft neutrosophic  

groups  ( ),F A   and  ( ),K B   over  ( )N G   is not a

soft neutrosophic  group over  ( ).N G

Theorem 8 The restricted intersection of two soft  neutro-

sophic groups over  ( )N G   is  soft neutrosophic  group

over  ( )N G  .

Theorem 9 The restricted product of two  soft neutrosoph-
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ict groups  ( ),F A   and  ( ),K B   over ( )N G   is a

soft neutrosophic  group over ( )N G .

Theorem 10 The  AND   operation of two  soft neutro-

sophic  groups over  ( )N G   is  soft neutrosophic  group

over  ( )N G  .

Theorem 11 The  OR   operation of two soft neutrosophic  

groups over  ( )N G   may not be a  soft neutrosophic

group. 
Definition 24 A  soft neutrosophic  group which does not 
contain a proper soft group is called  soft pseudo neutro-
sophic  group. 
Example 7 Let  

{ }2 2( ) 0,1, ,1N Z Z I I I= È = +   be a neu-

trosophic group under addition modulo  2.   Let 

{ }1 2 3, ,A e e e=   be the set of parameters, then

( ),F A   is a  soft pseudo neutrosophic  group over

( )N G   where

( ) { }
( ) { }
( ) { }

1

2

3

0,1 ,

0, ,

0,1 .

F e

F e I

F e I

=

=

= +

Theorem 12 The extended union of two  soft pseudo neu-

trosophic  groups  ( ),F A   and  ( ),K B   over

( )N G   is not a soft  pseudo neutrosophic  group over

( )N G  .

Example 8  Let  

{ }2 2( ) 0,1, ,1N Z Z I I I= È = +   be a neu-

trosophic group under addition modulo  2.   Let  ( ),F A

and  ( ),K B   be two  soft pseudo neutrosophic  groups

over  ( )N G  , where

{ } { }
{ }

1 2

3

( ) 0,1 , ( ) 0, ,

( ) 0,1 .

F e F e I

F e I

= =
= +

And 

( ) { } ( ) { }1 20,1 , 0,1 .K e I K e= + =  

Clearly their restricted union is not a soft  pseudo neutro-
sophic  group as union of two subgroups is not a subgroup. 

Theorem 13  The extended intersection of two  soft pseudo 

neutrosophic  groups  ( ),F A   and  ( ),K B   over

( )N G   is again a  soft pseudo neutrosophic  group over

( )N G  .

Theorem 14 The restricted union of two  soft pseudo neu-

trosophic  groups  ( ),F A   and  ( ),K B   over

( )N G   is not a  soft pseudo neutrosophic  group over

( )N G  .

Theorem 15 The restricted intersection of two  soft pseudo 

neutrosophic  groups  ( ),F A   and  ( ),K B   over

( )N G   is again a soft  pseudo neutrosophic group over

( ).N G

Theorem 16 The restricted product of two soft pseudo 

neutrosophic  groups  ( ),F A   and  ( ),K B   over

( )N G   is a  soft pseudo neutrosophic  group over

( ).N G

Theorem 17 The  AND   operation of two  soft pseudo 

neutrosophic  groups over  ( )N G   soft pseudo neutro-

sophic soft group over  ( )N G  .

Theorem 18 The  OR   operation of two  soft pseudo neu-

trosophic  groups over  ( )N G   may not be a soft  pseudo

neutrosophic  group. 
Theorem19 Every  soft pseudo neutrosophic  group is a  
soft neutrosophic  group. 
Proof The proof is straight forward. 
Remark 1  The converse of above theorem does not hold. 

Example 9  Let  ( )4N Z   be a neutrosophic group and  

( ),F A   be a soft neutrosophic  group over  ( )4N Z  . 

Then 

( ) { } ( ) { }
( ) { }

1 2

3

0,1, 2, 3 , 0, , 2 , 3 ,

0, 2, 2 , 2 2 .

F e F e I I I

F e I I

= =
= +

But  ( ),F A   is not a  soft pseudo neutrosophic group as

( ),H B   is clearly a proper soft subgroup of  ( ), .F A

where  

( ) { } ( ) { }1 20, 2 , 0, 2 .H e H e= =

Theorem 20 ( ),F A   over  ( )N G   is  a  soft pseudo



18 Neutrosophic Sets and Systems, Vol. 1, 2013 

Muhammad Shabir, Mumtaz Ali, Munazza Naz, and Florentin Smarandache, Soft Neutrosophic Group 

neutrosophic  group if  ( )N G    is a  pseudo neutrosoph-

ic group. 

Proof  Suppose that  ( )N G   be a pseudo neutrosophic

group, then it does not contain a proper group and for all  

,e AÎ   the  soft neutrosophic   group  ( ),F A   over

( )N G   is such that  ( ) ( ).F e N G   Since each

( )F e   is a pseudo neutrosophic subgroup which does not

contain a proper group which make  ( ),F A   is soft

pseudo neutrosophic  group. 
Example 10  Let  

{ }2 2( ) 0,1, ,1N Z Z I I I= È = +   be a pseudo 

neutrosophic group under addition modulo  2.   Then 

clearly  ( ),F A   a  soft pseudo neutrosophic soft group

over  ( )2N Z  , where 

( ) { } ( ) { }
( ) { }

1 2

3

0,1 , 0, ,

0,1 .

F e F e I

F e I

= =
= +

Definition 25  Let  ( ),F A   and  ( ),H B   be two  soft

neutrosophic  groups over  ( )N G  . Then  ( ),H B   is a

soft neutrosophic  subgroup of  ( ),F A  , denoted  as

( ) ( ), ,H B F A  , if

1) B AÌ  and

2) ( ) ( )H e F e  , for all  e AÎ  .

Example 11 Let  4 4( )N Z Z I= È   be a soft  neu-

trosophic  group under addition modulo  4  , that is 

( )4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3 ,
.

2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
N Z

I I I I I I

ì ü+ + +ï ïï ï= í ýï ï+ + + + + +ï ïî þ
 

Let  ( ),F A   be a  soft neutrosophic  group  over

( )4N Z  , then 

( ) { } ( ) { }
( ) { }

( ) { }

1 2

3

4

0,1, 2, 3 , 0, , 2 , 3 ,

0, 2, 2 , 2 2 ,

0, , 2 , 3 , 2, 2 2 ,2 , 2 3 .

F e F e I I I

F e I I

F e I I I I I I

= =

= +

= + + +

( ),H B   is a soft  neutrosophic  subgroup of  ( ),F A  ,

where  

( ) { } ( ) { }
( ) { }

1 2

4

0, 2 , 0, 2 ,

0, , 2 , 3 .

H e H e I

H e I I I

= =
=

Theorem 21  A soft group over  G   is always a  soft neu-
trosophic  subgroup of a  soft neutrosophic  group over  

( )N G   if  .A BÌ

Proof   Let ( ),F A   be a soft  neutrosophic  group over

( )N G   and  ( ),H B   be a soft group over  .G   As

( )G N GÌ   and for all

( ) ( ),b B H b G N GÎ Ì  . This implies

( ) ( )H e F e  , for all  e AÎ   as  .B AÌ   Hence

( ) ( ), , .H B F A

Example 12 Let  ( ),F A   be a soft  neutrosophic  group

over  ( )4N Z  , then 

( ) { } ( ) { }
( ) { }

1 2

3

0,1, 2, 3 , 0, , 2 , 3 ,

0, 2, 2 , 2 2 .

F e F e I I I

F e I I

= =
= +

Let  { }1 3,B e e=   such that  ( ) ( ), ,H B F A  ,

where  

( ) { } ( ) { }1 30, 2 , 0, 2 .H e H= =  

Clearly  B AÌ   and  ( ) ( )H e F e   for all

.e BÎ  

Theorem 22 A  soft neutrosophic group over  ( )N G
always contains a soft group over G. 
Proof The proof is followed from above Theorem. 

Definition 26 Let  ( ),F A   and  ( ),H B   be two  soft

pseudo neutrosophic  groups over  ( )N G  . Then

( ),H B   is called  soft pseudo neutrosophic  subgroup of

( ),F A  , denoted as  ( ) ( ), ,H B F A  , if

1) B AÌ
2) ( ) ( )H e F e  , for all  e AÎ  .

Example 13  Let  ( ),F A   be a soft  pseudo neutrosophic

group over  ( )4N Z  , where
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( ) { } ( ) { }1 20, , 2 , 3 , 0, 2 .F e I I I F e I= =

Hence  ( ) ( ), ,H B F A   where

( ) { }1 0, 2 .H e I=  

Theorem 23 Every  soft  neutrosophic  group  ( ),F A

over  ( )N G   has  soft neutrosophic  subgroup as well as

soft pseudo neutrosophic subgroup. 
Proof    Straightforward. 

Definition 27  Let  ( ),F A   be a soft  neutrosophic

group over  ( )N G  , then  ( ),F A   is called the identity

soft neutrosophic  group over  ( )N G   if

( ) { },F x e=  for all  x AÎ  , where  e   is the iden-

tity element of  G  . 

Definition 28 Let  ( ),H B   be a  soft neutrosophic

group over  ( )N G  , then  ( ),H B   is called  Full-soft

neutrosophic   group over  ( )N G   if

( ) ( )F x N G=  , for all  x AÎ  .

Example 14  Let  
: ,  and 

( )
 is indeterminacy

a bI a b R
N R

I

+ì üï ïï ï= í ýï ïï ïî þ



is a neutrosophic real group where  R   is set of real num-

bers and  2I I=  , therefore  nI I=  , for  n   a posi-

tive integer. Then  ( ),F A   is a Full-soft neutrosophic

real group where 
( ) ( ), for all F e N R e A= 

Theorem 24 Every Full-soft neutrosophic  group contain 
absolute soft group. 
Theorem 25 Every absolute soft group over  G   is a  soft 
neutrosophic  subgroup of Full-soft neutrosophic  group 

over  ( )N G  .

Theorem 26  Let  ( )N G   be a neutrosophic group. If

order of  ( )N G   is prime number, then  the  soft neutro-

sophic  group  ( ),F A   over  ( )N G   is either identity

soft neutrosophic  group or Full-soft neutrosophic  group. 
Proof  Straightforward. 

Definition 29 Let  ( ),F A   be a  soft neutrosophic  group

over  ( )N G  .  If  for all  e AÎ  , each  ( )F e  is  La-

grange  neutrosophic subgroup  of  ( )N G  , then

( ),F A   is called  soft Lagrange neutrosophic  group

over  ( )N G  .

Example 15  Let  { }( )3 / 0N Z {1,2, , 2 }I I=   is  a

neutrosophic group under multiplication modulo  3  . Now 

{ }1,2  , { }1, I   are subgroups of  { }( )3 / 0N Z

which divides order of  { }( )3 / 0N Z  . Then the  soft 

neutrosophic   group

( ) ( ) { } ( ) { }{ }1 2, 1, 2 , 1,F A F e F e I= = =
is an example of  soft Lagrange neutrosophic  group. 

Theorem 27 If  ( )N G   is Lagrange neutrosophic group,

then  ( ),F A   over  ( )N G   is soft  Lagrange neutro-

sophic  group but the converse is not true in general. 
Theorem 28 Every  soft Lagrange neutrosophic  group is 
a  soft neutrosophic  group. 
Proof  Straightforward. 
Remark 2 The converse of the above theorem does not 
hold. 
Example 16 Let  ( ) {1,2, 3, 4, , 2 , 3 , 4 }N G I I I I=   

be a neutrosophic group under multiplication modulo  5   

and  ( ),F A   be  a  soft neutrosophic   group over

( )N G  , where

( ) { } ( ) { }
( ) { }

1 2

3

1, 4, , 2 , 3 , 4 , 1, 2, 3, 4 ,

1, , 2 , 3 , 4 .

F e I I I I F e

F e I I I I

= =
=

 But clearly it is not  soft Lagrange neutrosophic  group as 

( )1F e   which is a subgroup of  ( )N G   does not divide

order of  ( )N G  .

Theorem 29 If  ( )N G   is a neutrosophic group, then the

soft Lagrange neutrosophic  group is a  soft neutrosophic   
group. 

Proof  Suppose that  ( )N G   be a neutrosophic group

and  ( ),F A   be a  soft Lagrange neutrosophic  group

over  ( )N G  . Then by above theorem  ( ),F A   is also

soft neutrosophic   group. 
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Example 17 Let  ( )4N Z   be a neutrosophic group and

( ),F A   is a  soft Lagrange neutrosophic  group over

( )4N Z   under addition modulo  4  , where 

( ) { } ( ) { }
( ) { }

1 2

3

0,1, 2, 3 , 0, , 2 , 3 ,

0, 2, 2 , 2 2 .

F e F e I I I

F e I I

= =
= +

But  ( ),F A   has a proper soft group  ( ),H B  , where

( ) { } ( ) { }1 30, 2 , 0, 2 .H e H e= =

Hence  ( ),F A   is  soft neutrosophic  group.

Theorem 30 Let  ( ),F A   and  ( ),K B   be two  soft

Lagrange neutrosophic  groups over  ( )N G  . Then

1) Their extended union  ( ) ( ), ,F A K BeÈ  over  

( )N G   is not  soft Lagrange neutrosophic  group

over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is not soft  Lagrange neutrosophic

group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over

( )N G   is not  soft Lagrange neutrosophic  group

over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is not  soft Lagrange neutrosophic

group over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



 over  

( )N G   is not soft  Lagrange neutrosophic  group

over  ( )N G  .

Theorem 31 Let  ( ),F A   and  ( ),H B   be two  soft

Lagrange neutrosophic  groups over  ( )N G  .Then

1) Their  AND   operation  ( ) ( ), ,F A K B   is not

soft Lagrange neutrosophic  group over  ( )N G  .

2) Their  OR   operation  ( ) ( ), ,F A K B   is not a

soft Lagrange neutrosophic  group over  ( )N G  .

Definition 30  Let  ( ),F A   be a  soft neutrosophic

group over  ( )N G  . Then  ( ),F A   is called  soft weak-

ly Lagrange neutrosophic  group if atleast one  ( )F e  is a

Lagrange neutrosophic subgroup of  ( )N G  , for some

e AÎ  . 

Example 18 Let  ( ) {1,2,3, 4, ,2 , 3 , 4 }N G I I I I=
be a neutrosophic group under multiplication modulo  5  , 

then  ( ),F A   is a  soft weakly Lagrange neutrosophic

group over  ( )N G  , where

( ) { } ( ) { }
( ) { }

1 2

3

1, 4, ,2 ,3 , 4 , 1,2,3, 4 ,

1, ,2 ,3 , 4 .

F e I I I I F e

F e I I I I

= =

=

As  ( )1F e   and  ( )3F e   which are subgroups of 

( )N G   do not divide order of  ( )N G  .

Theorem 32 Every  soft weakly Lagrange neutrosophic 

group  ( ),F A   is  soft neutrosophic  group.

Remark 3 The converse of the above theorem does not 
hold in general. 

Example 19 Let  ( )4N Z   be a neutrosophic group un-

der addition modulo  4   and  { }1 2,A e e=   be the set 

of parameters, then  ( ),F A   is a soft  neutrosophic

group over  ( )4N Z  , where 

( ) { } ( ) { }1 20, , 2 , 3 , 0, 2 .F e I I I F e I= =  

 But not  soft weakly Lagrange neutrosophic   group over  

( )4 .N Z  

Definition 31 Let  ( ),F A   be a  soft neutrosophic  group

over  ( )N G  . Then  ( ),F A   is called soft  Lagrange

free neutrosophic  group if   ( )F e  is not Lagrangeneu-

trosophic subgroup of  ( )N G  , for all  e AÎ  .

Example 20 Let  ( ) {1,2, 3, 4, , 2 , 3 , 4 }N G I I I I=   

be a neutrosophic group under multiplication modulo  5   
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and   then ( ),F A   be a  soft Lagrange  free neutrosophic

group over  ( )N G  , where

( ) { } ( ) { }1 21,4, ,2 ,3 ,4 , 1, ,2 ,3 ,4 .F e I I I I F e I I I I= =

As  ( )1F e   and  ( )2F e   which are subgroups of 

( )N G   do not divide order of  ( )N G  .

Theorem 33 Every  soft Lagrange free neutrosophic  

group  ( ),F A   over  ( )N G   is a  soft neutrosophic

group but the converse is not true. 

Definition 32 Let  ( ),F A   be a  soft neutrosophic  group

over  ( )N G  . If for all  e AÎ  , each  ( )F e   is a

pseudo Lagrange neutrosophic subgroup of ( )N G  , then

( ),F A is called  soft pseudo Lagrange neutrosophic

group over  ( )N G  .

Example 21 Let  ( )4N Z   be a neutrosophic group un-

der addition modulo  4   and  { }1 2,A e e=   be the set 

of parameters, then  ( ),F A   is a  soft pseudo Lagrange

neutrosophic  group over  ( )4N Z   where 

( ) { } ( ) { }1 20, , 2 , 3 , 0, 2 .F e I I I F e I= =  

Theorem 34 Every soft  pseudo Lagrange neutrosophic 
group is a soft  neutrosophic  group but the converse may 
not be true. 
Proof  Straightforward. 

Theorem 35  Let  ( ),F A   and  ( ),K B   be two  soft

pseudo Lagrange neutrosophic  groups over  ( )N G  .

Then 

1) Their extended union  ( ) ( ), ,F A K BeÈ   over

( )N G   is not a soft pseudo Lagrange neutrosophic

group over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is not pseudo Lagrange neutrosophic

soft group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over  

( )N G   is not pseudo Lagrange neutrosophic soft

group over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is also not soft  pseudo Lagrange neu-

trosophic  group over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



  over 

( )N G   is not  soft pseudo Lagrange neutrosophic

group over  ( )N G  .

Theorem 36 Let  ( ),F A   and  ( ),H B   be two  soft

pseudo Lagrange neutrosophic  groups over  ( )N G  .

Then 

1) Their  AND   operation  ( ) ( ), ,F A K B   is not

soft  pseudo Lagrange neutrosophic  group over

( )N G  .

2) Their  OR   operation  ( ) ( ), ,F A K B   is not a

soft pseudo Lagrange neutrosophic soft group over

( )N G  .

Definition 33 Let  ( ),F A   be a  soft neutrosophic  group

over  ( )N G  . Then  ( ),F A   is called  soft weakly

pseudo Lagrange neutrosophic  group if atleast one  

( )F e  is a pseudo Lagrange neutrosophic subgroup of

( )N G  , for some  e AÎ  .

Example 22 Let  ( ) {1,2,3, 4, ,2 , 3 , 4 }N G I I I I=
be a neutrosophic group under multiplication modulo  5   

Then  ( ),F A   is a  soft weakly pseudo Lagrange neutro-

sophic  group over  ( )N G  , where

( ) { } ( ) { }1 21, , 2 , 3 , 4 , 1, .F e I I I I F e I= =  

As ( )1F e   which is a subgroup of  ( )N G   does not di-

vide order of  ( )N G  .

Theorem 37 Every soft  weakly pseudo Lagrange neutro-

sophic  group  ( ),F A   is  soft neutrosophic  group.

Remark 4 The converse of the above theorem is not true in 
general. 
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Example 23 Let  ( )4N Z   be a neutrosophic group un-

der addition modulo  4   and  { }1 2,A e e=   be the set

of parameters, then  ( ),F A   is a soft  neutrosophic

group over  ( )4N Z ,where 

( ) { } ( ) { }1 2), , 2 , 3 , 0, 2 .F e I I I F e I= =  

But it is not  soft weakly pseudo Lagrange neutrosophic  
group. 

Theorem 38 Let  ( ),F A   and  ( ),K B   be two  soft

weakly pseudo Lagrange neutrosophic  groups over  

( )N G  . Then

1) Their extended union  ( ) ( ), ,F A K BeÈ   over

( )N G   is not  soft weakly pseudo Lagrange neutro-

sophic  group over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is not  soft weakly pseudo Lagrange

neutrosophic  group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over

( )N G   is not soft  weakly pseudo Lagrange neutro-

sophic group over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is not soft  weakly pseudo Lagrange

neutrosophic  group over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



 over  

( )N G   is not  soft weakly pseudo Lagrange neutro-

sophic  group over  ( )N G  .

Definition 34 Let  ( ),F A   be a  soft neutrosophic  group

over  ( )N G  . Then  ( ),F A   is called  soft pseudo La-

grange free neutrosophic  group if  ( )F e  is not pseudo

Lagrange neutrosophic subgroup of  ( )N G  , for all

e AÎ  . 

Example 24 Let  ( ) {1,2,3, 4, ,2 , 3 , 4 }N G I I I I=
be a neutrosophic group under multiplication modulo  5   

Then  ( ),F A   is a  soft pseudo Lagrange free neutro-

sophic  group over  ( )N G  , where

( ) { } ( ) { }1 21, ,2 , 3 , 4 , 1, , 2 , 3 , 4 .F e I I I I F e I I I I= =

As  ( )1F e   and  ( )2F e   which are subgroups of  

( )N G
 
do not divide order of  ( )N G  .

Theorem 39 Every soft  pseudo Lagrange free neutrosoph-

ic  group ( ),F A   over  ( )N G   is a soft  neutrosophic

group but the converse is not true. 

Theorem 40  Let  ( ),F A   and  ( ),K B   be two  soft

pseudo Lagrange free neutrosophic  groups over  ( )N G

. Then 

1) Their extended union  ( ) ( ), ,F A K BeÈ   over

( )N G   is not  soft pseudo Lagrange free neutro-

sophic  group over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is not  soft pseudo Lagrange free neu-

trosophic  group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over

( )N G   is not pseudo Lagrange free neutrosophic

soft group over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is not soft  pseudo Lagrange free neu-

trosophic  group over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



 over  

( )N G   is not  soft  pseudo Lagrange free neutro-

sophic  group over  ( )N G  .

Definition 35 A  soft neutrosophic  group ( ),F A   over

( )N G   is called  soft normal neutrosophic  group over
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( )N G   if  ( )F e   is a normal neutrosophic subgroup of

( )N G  , for all  e AÎ  .

Example 25 Let  ( ) { , , , , , , , }N G e a b c I aI bI cI=

be a neutrosophic group under multiplicationwhere 2a
2 2 , , ,b c e bc cb a ac ca b ab ba c= = = = = = = = =  . 

Then  ( ),F A   is a soft  normal neutrosophic  group over

( )N G   where

( ) { }
( ) { }
( ) { }

1

2

3

, , , ,

, , , ,

, , , .

F e e a I aI

F e e b I bI

F e e c I cI

=

=

=
Theorem 42  Every soft  normal neutrosophic group 

( ),F A   over  ( )N G   is a soft  neutrosophic  group but

the converse is not true. 

Theorem 42  Let  ( ),F A   and  ( ),H B   be two soft

normal neutrosophic  groups over  ( )N G  . Then

1) Their extended union  ( ) ( ), ,F A K BeÈ   over

( )N G   is not soft  normal neutrosophic  group over

( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is  soft normal neutrosophic   group

over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over

( )N G   is not  soft normal neutrosophic  group over

( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is soft  normal neutrosophic  group

over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



  over  

( )N G   is not soft  normal neutrosophic soft group

over  ( )N G  .

Theorem 43 Let  ( ),F A   and  ( ),H B   be two  soft

normal neutrosophic  groups over  ( )N G  . Then

1) Their  AND   operation  ( ) ( ), ,F A K B   is soft

normal neutrosophic   group over  ( )N G  .

2) Their  OR   operation  ( ) ( ), ,F A K B   is not

soft normal neutrosophic  group over  ( )N G  .

Definition 36 Let  ( ),F A   be a soft  neutrosophic  group

over  ( )N G  . Then  ( ),F A   is called  soft pseudo

normal neutrosophic   group if  ( )F e   is a pseudo nor-

mal neutrosophic subgroup of  ( )N G  ,  for all  e AÎ
. 
Example 26 Let  

( ) { }2 2 0,1, ,1N Z Z I I I= È = +   be a neu-

trosophic group under addition modulo  2  and  let 

{ }1 2,A e e=   be the set of parameters, then  ( ),F A

is soft  pseudo normal neutrosophic   group over  

( ),N G   where

( ) { } ( ) { }1 20, , 0,1 .F e I F e I= = +  

As  ( )1F e   and  ( )2F e   are pseudo normal subgroup 

of  ( )N G  .

Theorem 44 Every soft  pseudo normal neutrosophic  

group ( ),F A   over  ( )N G   is a  soft neutrosophic

group but the converse is not true. 

Theorem 45 Let  ( ),F A   and  ( ),K B   be two  soft

pseudo normal neutrosophic  groups over  ( )N G  . Then

1) Their extended union  ( ) ( ), ,F A K BeÈ  over  

( )N G   is not soft  pseudo normal neutrosophic

group over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is  soft pseudo normal neutrosophic

group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over  

( )N G   is not soft  pseudo normal neutrosophic
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group over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is soft  pseudo normal neutrosophic

group over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



 over  

( )N G   is not soft  pseudo normal neutrosophic

group over  ( )N G  .

Theorem 46  Let( ),F A   and  ( ),K B   be two soft

pseudo normal neutrosophic  groups over  ( )N G  . Then

1) Their  AND   operation  ( ) ( ), ,F A K B   is

soft pseudo normal neutrosophic   group over

( )N G  .

2) Their  OR   operation  ( ) ( ), ,F A K B   is not

soft pseudo normal neutrosophic   group over

( )N G  .

Definition 37 Let  ( )N G   be a neutrosophic group.

Then  ( ),F A   is called  soft conjugate neutrosophic

group over  ( )N G
 
if and only  if  ( )F e   is  conjugate

neutrosophic  subgroup of ( )N G , for all  e AÎ  .

Example 27 Let  

( )
0,1, 2, 3, 4, 5, , 2 , 3 , 4 , 5 ,

1 , 2 , 3 , ..., 5 5

I I I I I
N G

I I I I

ì üï ïï ï= í ýï ï+ + + +ï ïî þ
 

 be a neutrosophic group under addition modulo  6   and 

let  { }0,3,3 , 3 3P I I= +   and

{ }0,2, 4,2 2 , 4 4 ,2 , 4K I I I I= + +   are  conju-

gate  neutrosophic subgroups of  ( )N G  .  Then

( ),F A   is  soft conjugate neutrosophic  group over

( )N G  , where

( ) { }
( ) { }

1

2

0, 3, 3 , 3 3 ,

0, 2, 4, 2 2 , 4 4 , 2 , 4 .

F e I I

F e I I I I

= +
= + +

Theorem 47  Let  ( ),F A   and  ( ),K B   be two  soft

conjugate neutrosophic  groups over  ( )N G  . Then

1) Their extended union  ( ) ( ), ,F A K BeÈ   over

( )N G   is not soft  conjugate neutrosophic  group

over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is again  soft conjugate neutrosophic

group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over

( )N G   is not  soft conjugate neutrosophic  group

over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is  soft conjugate neutrosophic   group

over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



 over  

( )N G   is not  soft conjugate neutrosophic   group

over  ( )N G  .

Theorem 48 Let  ( ),F A   and  ( ),K B   be two  soft

conjugate neutrosophic  groups over  ( )N G  . Then

1) Their  AND   operation  ( ) ( ), ,F A K B   is

again  soft conjugate neutrosophic  group over

( )N G  .

2) Their  OR   operation  ( ) ( ), ,F A K B   is not

soft conjugate neutrosophic  group over  ( )N G  .

Conclusion

In this paper we extend the neutrosophic group and sub-
group,pseudo neutrosophic group and subgroup to  soft 
neutrosophic  group and  soft neutrosophic subgroup and 
respectively soft pseudo neutrosophic group and soft pseu-
do neutrosophic  subgroup. The normal neutrosophic sub-
group is extended to soft  normal neutrosophic  subgroup. 
We showed all these by giving various examples in order 
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to illustrate the soft part of the neutrosophic notions used. 
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Abstract: Neutrosophy can be widely applied in 
physics and the like. For example, one of the reasons 
for 2011 Nobel Prize for physics is "for the discovery 
of the accelerating expansion of the universe through 
observations of distant supernovae", but according to 
neutrosophy, there exist seven or nine states of 
accelerating expansion and contraction and the 
neutrosophic state in the universe. Another two 
examples are "a revision to Gödel's incompleteness 

theorem by neutrosophy" and "six neutral 
(neutrosophic) fundamental interactions". In addition, 
the "partial and temporary unified theory so far" is 
discussed (including "partial and temporary unified 
electromagnetic theory so far", "partial and temporary 
unified gravitational theory so far", "partial and 
temporary unified theory of four fundamental 
interactions so far", and "partial and temporary unified 
theory of natural science so far"). 

Keywords: Neutrosophy, application, neutrosophic example, physics, partial and temporary unified theory so far. 

1 Introduction 

Neutrosophy is proposed by Prof. Florentin 
Smarandache in 1995. 

Neutrosophy is a new branch of philosophy that studies 
the origin, nature, and scope of neutralities, as well as their 
interactions with different ideational spectra. 

This theory considers every notion or idea <A> 
together with its opposite or negation <Anti-A> and the 
spectrum of "neutralities" <Neut-A> (i.e. notions or ideas 
located between the two extremes, supporting neither <A> 
nor <Anti-A>). The <Neut-A> and <Anti-A> ideas 
together are referred to as <Non-A>. 

Neutrosophy is the base of neutrosophic logic, 
neutrosophic set, neutrosophic probability and statistics 
used in engineering applications (especially for software 
and information fusion), medicine, military, cybernetics, 
and physics. 

Neutrosophic Logic is a general framework for 
unification of many existing logics, such as fuzzy logic 
(especially intuitionistic fuzzy logic), paraconsistent logic, 
intuitionistic logic, etc. The main idea of NL is to 
characterize each logical statement in a 3D Neutrosophic 
Space, where each dimension of the space represents 
respectively the truth (T), the falsehood (F), and the 
indeterminacy (I) of the statement under consideration, 
where T, I, F are standard or non-standard real subsets of ]-
0, 1+[ without necessarily connection between them. 

More information about Neutrosophy may be found in 
references [1-4]. 

Now we discuss the neutrosophic examples in physics 
and the like. 

2 Discussion on "the accelerating expansion of 
the universe" 

     One of the reasons for 2011 Nobel Prize for physics is 
"for the discovery of the accelerating expansion of the 
universe through observations of distant supernovae". But 
according to neutrosophy, "the accelerating expansion of 
the universe" is debatable. 

Supposing that "the expansion of the universe" is an 
idea <A>, its opposite or negation <Anti-A> should be 
"the contraction of the universe", and the spectrum of 
"neutralities" <Neut-A> should be "the stable state of the 
universe" (i.e. the state located between the two extremes, 
supporting neither expansion nor contraction).   

In fact, the area nearby a black hole is in the state of 
contraction, because the mass of black hole (or similar 
black hole) is immense, and it produces a very strong 
gravitational field, so that all matters and radiations 
(including the electromagnetic wave or light) will be 
unable to escape if they enter to a critical range around the 
black hole. 

The viewpoint of "the accelerating expansion of the 
universe" unexpectedly turns a blind eye to the fact that 
partial universe (such as the area nearby a black hole) is in 
the state of contraction. 

As for "the stable state of the universe", it should be 
located at the transition area between expansion area and 
contraction area. 

Again, running the same program to the state of "the 
expansion of the universe", supposing that "the 
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accelerating expansion of the universe" is an idea <A>, its 
opposite or negation <Anti-A> should be "the decelerating 
expansion of the universe", and the spectrum of 
"neutralities" <Neut-A> should be "the uniform expansion 
of the universe" (i.e. the state located between the two 
extremes, supporting neither accelerating expansion nor 
decelerating expansion). 

Similarly, running the same program to the state of "the 
contraction of the universe", it can be divided into three 
cases: "the accelerating contraction of the universe", "the 
decelerating contraction of the universe", and "the uniform 
contraction of the universe". 

To sum up, there exist seven states in the universe: 
accelerating expansion, decelerating expansion, uniform 
expansion, accelerating contraction, decelerating 
contraction, uniform contraction, and stable state.  

In addition, according to neutrosophy, another kind of 
seven states is as follows: long-term expansion, short-term 
expansion, medium-term expansion, long-term contraction, 
short-term contraction, medium-term contraction, and 
stable state. 

It should be noted that, the stable state can be also 
divided into three cases, such as: "long-term stable state", 
"short-term stable state", and "medium-term stable state"; 
thus there exist nine states in the universe.  

Considering all possible situations, besides these seven 
or nine states, due to the limitations of human knowledge, 
there may be other unknown states. 

From this example we can see that, all of the absolute, 
solitary and one-sided viewpoints are completely wrong. 
But with the help of neutrosophy, many of these mistakes 
may be avoided. 

3 A revision to Gödel's incompleteness theorem 
by neutrosophy  

According to reference [4], the main contents of the 
revision are as follows. 

As well-known, neutrosophy paves the way to consider 
all possible situations. But we can see that in the proof of 
Gödel's incompleteness theorem, all possible situations are 
not considered.  

First, in the proof, the following situation is not 
considered: wrong results can be deduced from some 
axioms. For example, from the axiom of choice a paradox, 
the doubling ball theorem, can be deduced, which says that 
a ball of volume 1 can be decomposed into pieces and 
reassembled into two balls both of volume 1. It follows 
that in certain cases, the proof of Gödel's incompleteness 
theorem may be faulty. 

Second, in the proof of Gödel's incompleteness 
theorem, only four situations are considered, that is, one 
proposition can be proved to be true, cannot be proved to 

be true, can be proved to be false, cannot be proved to be 
false and their combinations such as one proposition can 
neither be proved to be true nor be proved to be false. But 
those are not all possible situations. In fact, there may be 
many kinds of indeterminate situations, including it can be 
proved to be true in some cases and cannot be proved to be 
true in other cases; it can be proved to be false in some 
cases and cannot be proved to be false in other cases; it can 
be proved to be true in some cases and can be proved to be 
false in other cases; it cannot be proved to be true in some 
cases and cannot be proved to be false in other cases; it can 
be proved to be true in some cases and can neither be 
proved to be true, nor be proved to be false in other cases; 
and so on.  

Because so many situations are not considered, we may 
say that the proof of Gödel's incompleteness theorem is 
faulty, at least, is not one with all sided considerations. 

In order to better understand the case, we consider an 
extreme situation, where one proposition as shown in 
Gödel's incompleteness theorem can neither be proved, nor 
disproved. It may be assumed that this proposition can be 
proved in 9999 cases, only in 1 case it can neither be 
proved, nor disproved. We will see whether or not this 
situation has been considered in the proof of Gödel's 
incompleteness theorem.  

Some people may argue that, this situation is 
equivalent to the one where the proposition can neither be 
proved, nor disproved. But the difference lies in the 
distinction between the part and the whole. If one case may 
represent the whole situation, many important theories 
cannot be applied. For example the general theory of 
relativity involves singular points; the law of universal 
gravitation does not allow the case where the distance r is 
equal to zero. Accordingly, whether or not one may say 
that the general theory of relativity and the law of universal 
gravitation cannot be applied as a whole? Similarly, the 
situation also cannot be considered as the one that can be 
proved. But, this problem may be easily solved with the 
neutrosophic method.  

Moreover, if we apply the Gödel's incompleteness 
theorem to itself, we may obtain the following possibility: 
in one of all formal mathematical axiom systems, the 
Gödel's incompleteness theorem can neither be proved, nor 
disproved. 

If all possible situations can be considered, the Gödel's 
incompleteness theorem can be improved in principle. But, 
with our boundless universe being ever changing and being 
extremely complex, it is impossible "considering all 
possible situations". As far as "considering all possible 
situations" is concerned, the Smarandache’s neutrosophy is 
quite good, possibly, the best. Therefore this paper 
proposes to revise the Gödel's incompleteness theorem into 
the incomplete axiom with Smarandache’s neutrosophy. 

Considering all possible situations with Smarandache’s 
neutrosophy, one may revise the Gödel's Incompleteness 
theorem into the incompleteness axiom: Any proposition in 
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any formal mathematical axiom system will represent, 
respectively, the truth (T), the falsehood (F), and the 
indeterminacy (I) of the statement under consideration, 
where T, I, F are standard or non-standard real subsets of ]-
0, 1+[. 

4 Six neutral (neutrosophic) fundamental 
interactions 

As well-known, according to the present 
understanding, there are four fundamental interactions or 
forces: gravitational, electromagnetic, weak and strong 
interaction. 

While, in accordance with the neutrosophy theory that 
between an entity and its opposite there exist intermediate 
entities, thus besides the existing four fundamental 
interactions there must exist six neutral (neutrosophic) 
fundamental interactions (as six new forms of fundamental 
interaction). For example, between strong interaction and 
weak interaction there exists intermediate interaction, 
namely neutral (neutrosophic) strong-weak fundamental 
interaction (NSW fundamental interaction), it neither 
strong interaction nor weak interaction, but something in 
between. Similarly, considering other five pairs of opposite 
interactions: strong and electromagnetic fundamental 
interaction, strong and gravitational fundamental 
interaction, weak and electromagnetic fundamental 
interaction, weak and gravitational fundamental 
interaction, and electromagnetic and gravitational 
fundamental interaction respectively, other five neutral 
(neutrosophic) fundamental interactions are as follows: 
neutral (neutrosophic) strong-electromagnetic fundamental 
interaction (NSE fundamental interaction), neutral 
(neutrosophic) strong-gravitational fundamental interaction 
(NSG fundamental interaction), neutral (neutrosophic) 
weak-electromagnetic fundamental interaction (NWE 
fundamental interaction), neutral (neutrosophic) weak-
gravitational fundamental interaction (NWG fundamental 
interaction) and neutral (neutrosophic) electromagnetic-
gravitational fundamental interaction (NEG fundamental 
interaction).  

Thus, there may be ten fundamental interactions all 
together. 

5 Several unified theories 

Whether or not the unified theory can be existed? 
According to neutrosophy, there are three cases as follows: 
the unified theory can be existed, the unified theory cannot 
be existed, and the neutrosophic case (such as the "partial 
and temporary unified theory so far").   

Now we discuss the "partial and temporary unified 
theory so far" .  

What is the "unified theory"? In 1980, Stephen 
Hawking once claimed, physicists have seen the outline of 
"final theory", this theory of everything can express all 

laws of nature with a single and beautiful mathematical 
model, perhaps that it is so simple and can be written on a 
T-shirt. 

In other words, for any field, the strict "unified 
theory" refers to that all the laws of this field can be 
expressed in a single mathematical model. 

If following this concept to understand the strict 
"unified theory", we have to say, such a "unified theory" is 
simply cannot be existed. In other words, there is only 
"partial and temporary unified theory so far".  

Now we discuss that the strict "unified 
electromagnetic theory" cannot be existed. 

5.1 Why the strict "unified electromagnetic 
theory" cannot be existed and applying least 
square method to establish "partial and 
temporary unified electromagnetic theory so far" 

It might be argued that Maxwell's equations are 
"unified electromagnetic theory". Facing with this 
argument, we ask three questions. First, whether or not all 
the electromagnetic laws can be included or derived by 
Maxwell's equations? Second, whether or not the later 
appeared high temperature superconductivity problem and 
the like can be solved by Maxwell's equations? Third, 

whether or not the faster-than-light （FTL） problems can 

be solved by Maxwell's equations? If negative answers 
were given to these three questions, then it should be 
acknowledged that Maxwell's equations are not strict 
"unified electromagnetic theory", but only "partial and 
temporary unified electromagnetic theory". 

Based on the same reason, the "theory of the unified 
weak and electromagnetic interaction" cannot be existed, 
and there is only "partial and temporary theory of the 
unified weak and electromagnetic interaction so far". 

Now we establish the "partial and temporary unified 
electromagnetic theory so far". 

First of all, for any field, applying least square 
method to establish this field’s "partial and temporary 
unified theory so far" (the corresponding expression is 
"partial and temporary unified variational principle so 
far"). 

Supposing that for a certain domain Ω, we already 
establish the following general equations 

0=iF    )2,1( ni →=  （1） 

On boundary V, the boundary conditions are as 
follows 

0=jB   )2,1( mj →=      （2） 

Applying least square method, for this field and the 
domains and boundary conditions the "partial and 
temporary unified theory so far" can be expressed in the 
following form of "partial and temporary unified 
variational principle so far" 
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min'  （3） 

where: 0min  was introduced in reference [5], indicating 

the minimum and its value should be equal to zero. iW

and 'jW  are suitable positive weighted constants; for the 

simplest cases, all of these weighted constants can be taken 
as 1. If only a certain equation is considered, we can only 
make its corresponding weighted constant is equal to 1 and 
the other weighted constants are all equal to 0. 

By using this method, we already established the 
"partial and temporary unified water gravity wave theory 
so far" and the corresponding "partial and temporary 
unified water gravity wave variational principle so far" in 
reference [6]; and established the "partial and temporary 
unified theory of fluid mechanics so far" and the 
corresponding "partial and temporary unified variational 
principle of fluid mechanics so far" in reference [7]. 

Some scholars may said, this is simply the application 
of least square method, our answer is: the simplest way 
may be the most effective way. 

It should be noted that, due to that time we cannot 
realize that the strict "unified theory" cannot be existed, 
therefore in references [6] and [7], the wrong ideas that 
"unified water gravity wave theory", "unified water gravity 
wave variational principle", "unified theory of fluid 
mechanics" and "unified variational principle of fluid 
mechanics" were appeared. Now we correct these mistakes 
in this paper. 

It should also be noted that, Eq.(2) can be included in 
Eq.(1), therefore we will only discuss Eq.(1), rather than 
discuss Eq.(2). 

Now we write Maxwell's equations as follows 

01 =F ，      in domain 1Ω
where： ρ−•∇= DF1  

02 =F ，      in domain 2Ω
where： tBEF ∂∂+×∇= /2

03 =F ，      in domain 3Ω
where： BF •∇=3

04 =F ，      in domain 4Ω
where： tDjHF ∂∂−−×∇= /4

In addition, for isotropic medium, the following 
equations should be added 

05 =F ，     in domain 5Ω
where： EDF rεε 05 −=

06 =F ，     in domain 6Ω

where： HBF rμμ06 −=
07 =F ，     in domain 7Ω

where： EjF γ−=7

Besides these equations, the Coulomb's law reads 

08 =F ，      in domain 8Ω

where：
2

21
8 r

qkq
fF −= , according to the experimental 

data, k =9.0×109N·m²/C². 
Due to the limited space, other equations of 

electromagnetism are no longer listed. Also, a number of 
conservation equations (such as the equation of 
conservation of energy), and a number of laws (such as the 
law of composition of velocities), are also no longer listed. 
All of them will be discussed below. 

In addition, some solitary equations established only 
for the solitary points or special cases can be written as 
follows 

0=jS     )2,1( mj →=    （4） 

For example, the scale factor in the Coulomb's law 
can be written as the following solitary equation  

 01 =S

where： −= kS1 9.0×109N·m²/C²。 

Another example is that, in plasma problem, the 
shielding distance (Debye distance) can be written as the 
following solitary equation 

 02 =S  

where： 2
02 / nekTDS ε−= . 

Also due to limited space, other electromagnetic 
solitary equations are no longer listed. 

For the reason that some solitary equations cannot be 
run the integral process, they will be run the square sum 
process. 

Applying least square method, "partial and temporary 
unified electromagnetic theory so far" can be expressed in 
the following form of "partial and temporary unified 
electromagnetic variational principle so far" 

 =+Ω=Π
Ω

m

jjii

n

i SWdFW
i 1

0
22

1
EM min'    （5） 

where: the subscript EM denotes that the suitable scope is 

the electromagnetism, all of the equations 0=iF  denote 

so far discovered (derived) all of the equations related to 

electromagnetism, all of the equations 0=iS  denote so 

far discovered (derived) all of the solitary equations related 

to electromagnetism, and iW  and 'jW  are suitable 

positive weighted constants. 
Clearly, here n  and m  are all very large integers. 
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5.2 Applying least square method to establish 
"partial and temporary unified gravitational theory 
so far"  

Firstly, it should be noted that, for different 
gravitational problems, the different formulas or different 
gravitational theories should be applied. The "universal 
gravitational formulas or equations" actually cannot be 
existed. For this conclusion, many scholars do not realize 
it. In addition, all of the different gravitational formulas 
can be written as the form of Eq.(1) (namely the form that 
the right side of the expression is equal to zero). 

The first formula should be mentioned is Newton's 
universal gravitational formula 

2r

GMm
F −=     （6） 

It can be written as the following form 

01 =F  （6’） 

where： 21 r

GMm
FF +=

Prof. Hu Ning derived an equation according to 
general relativity, with the help of Hu's equation and 
Binet’s formula, in reference [8] we derived the following 
improved Newton's formula of universal gravitation

42

22

2

3

rc

mpMG

r

GMm
F −−=  （7） 

where: G is gravitational constant, M and m are the masses 
of the two objects, r is the distance between the two 
objects, c is the speed of light, p is the half normal chord 
for the object m moving around the object M along with a 
curve, and the value of p is given by: p = a(1-e2) (for 
ellipse), p = a (e2-1) (for hyperbola), p = y2/2x (for 
parabola). 

This formula can give the same results as given by 
general relativity for the problem of planetary advance of 
perihelion and the problem of gravitational defection of a 
photon orbit around the Sun. 

It can be written as the following form 

02 =F     （7’） 

where： 42

22

22

3

rc

mpMG

r

GMm
FF ++=

It should be noted that, according to Eq.(6) and Eq.(7) 
the FTL can be existed. 

In some cases, we should also consider the following 
gravitational formula including three terms 

F
GMm

r

GMp

c r

wG M p

c r
= − + +2 2 2

2 2 2

4 41
3

( )   （8） 

where: w is a constant to be determined.  
It can be written as the following form 

03 =F  （8’） 

where: )
3

1(
44

222

2223 rc

pMwG

rc

GMp

r

GMm
FF +++=  

But for the example that a small ball rolls along the 
inclined plane in the gravitational field of the Earth, all of 
the above mentioned formulas cannot be applied. In 
reference [5], we present the following gravitational 
formula with the variable dimension fractal form (the 
fractal dimension is variable, instead of constant). 

δ−−= 2/ rGMmF     （9） 

where： u1210206.1 −×=δ , u  is the horizon distance

that the small ball rolls. 
It can be written as the following form 

04 =F   （9’） 

where： δ−+= 2
4 / rGMmFF

In addition, the gravitational field equations of 
Einstein's theory of general relativity, and the gravitational 
formula and gravitational equations derived by other 
scholars, can also be written as the form of Eq.(1) (namely 
the form that the right side of the expression is equal to 
zero). 

In some cases, when dealing with gravitational 
problem, we should also consider some principle of 
conservation, such as the principle of conservation of 
energy. Here we write the principle of conservation of 
energy as the form of Eq.(1) (namely the form that the 
right side of the expression is equal to zero). So do the 
other principles of conservation. 

In references [9], we discussed two cases to apply the 
principle of conservation of energy directly and indirectly. 

To apply the principle of conservation of energy 
directly is as follows. 

Supposing that the initial total energy of a closed 
system is equal to )0(W , and for time t  the total

energy is equal to )(tW , then according to the principle 

of conservation of energy, it gives 

  )0(W = )(tW   （10） 

It can be written as the following form 

5F = 01
)0(

)( =−
W

tW
  （11） 

To apply the principle of conservation of energy 
indirectly is as follows. 

Supposing that we are interested in a special 

physical quantity Q ，not only it can be calculated by 

using the principle of conservation of energy, but also 
can be calculated by using other gravitational formula. 
For distinguishing the values, let’s denote the value 

given by other laws as Q ，while denote the value given 
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by the principle of conservation of energy as 'Q ，then 

the equation to apply the principle of conservation of 
energy indirectly is as follows 

6F = 01
'

=−
Q

Q
   （12） 

Now we discuss some solitary equations established 
only for the solitary points or special cases.  

The first one is the solitary equation about the 
gravitational constant. 

 11
1 1067.6 −×−= GS N•m2/kg2 =0        （13） 

The second one is considering the deflection angle for 
the problem of gravitational defection of a photon orbit 
around the Sun. 

By using general relativity or improved Newton's 
formula of universal gravitation (namely Eq.(7)), the 

deflection angle 0φ  reads 

0φ =1.75” 

However, according to the experiment, we should 
have φ =1.77±0.20, taking the average, it gives 

 φ =1.77” 

According to this expression, the corresponding 
solitary equation is as follows 

 0"77.12 =−= φS        （14） 

Other solitary equations include: the solitary 
equations established by the values of planetary advance of 
perihelion, the solitary equations established by the 
unusual values of gravity at different times during total 
solar eclipse, and the like. Due to the limited space, they 
are no longer listed. 
   Applying least square method, "partial and temporary 
unified gravitational theory so far" can be expressed in the 
following form of "partial and temporary unified 
gravitational variational principle so far" 

 =+Ω=Π
Ω

m

jjii

n

i SWdFW
i 1

0
22

1
G min'   （15） 

where: the subscript G denotes that the suitable scope is 

the gravity, all of the equations 0=iF  denote so far 

discovered (derived) all of the equations related to gravity, 

all of the equations 0=iS  denote so far discovered 

(derived) all of the solitary equations related to gravity, 

and iW  and 'jW  are suitable positive weighted constants. 

It should be noted that, as we establish "partial and 
temporary unified theory so far" and the corresponding 
"partial and temporary unified variational principle so far", 
the including phenomenon is allowed. For example, the 
three terms gravitational formula Eq.(8) includes Eq.(7), 
while Eq.(7) includes Eq.(6). But we still consider these 
three equations simultaneously. This is because that, in 
some cases Eq.(7) is more convenient; as for Eq.(6), it is 

enough in most cases, moreover, putting Eq.(6) at the most 
prominent position, express our respect to Newton who is 
the greatest scientist in the history. In addition, the 
coexisting phenomenon is also allowed. For example, the 
gravitational formulas of classical mechanics, the 
gravitational field equations of Einstein's theory of general 
relativity, and the equations of other gravitational theories 
are coexisting. For the solution that is satisfying two or 
more than two theories simultaneously, or solving the 
problems in different fields simultaneously, and the like, 
we will discuss them in other papers (such solutions may 
only be reached with the method of variational principle).  

Now we discuss the applications of variational 
principle Eq.(15). 

Example 1. Setting 12 =W  and 1'1 =W  in 

variational principle Eq.(15), and other weighted constants 
are all equal to 0, namely applying Eq.(7) and Eq.(13) to 
derive the changing rule for the gravitational coefficient 

'G  (instead of the gravitational constant G ) and make the 
gravitational formula in accordance with the inverse square 
law. 

In references [10], changing Eq.(7) into the following 
form in accordance with the inverse square law 

2

'

r

MmG
F −=

It gives 

42

22

22

3'

rc

mpMG

r

GMm

r

MmG −−=−

Then we have the changing rule for the gravitational 
coefficient 'G  as follows 

)
3

1('
22rc

GMp
GG +=                                （16）

For problem of Mercury’s advance of perihelion, we 
have 

GGG )101623.11(')100381.51( 78 −− ×+≤≤×+
For problem of gravitational defection of a photon 

orbit around the Sun, we have 
GGG 5.2'≤≤

Example 2. Setting 14 =W  and 16 =W  in 

variational principle Eq.(15), and other weighted constants 
are all equal to 0, namely applying Eq.(9) and Eq.(12) to 
determine the unknown δ  in Eq.(9). 

According to Eq.(12), variational principle Eq.(15) 
can be simplified into the following form applied the law 
of conservation of energy indirectly 

 =−=Π
2

1

0
2 min)1

'
(

x

x

dx
Q

Q
    （17） 
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The solution procedure can be found in reference [9]. 
For the final optimum approximate solution, the value of 
Π  calculated by the improved universal gravitational 
formula and improved Newton’s second law is equal to 

0.1906446, it is only 0.033% of the value of 0Π
calculated by the original universal gravitational formula 
and original Newton’s second law. 

Example 3. Setting 13 =W  and 1'2 =W  in 

variational principle Eq.(15), and other weighted constants 
are all equal to 0, namely applying Eq.(8) and Eq.(14) to 
determine the unknown w  in Eq.(8). 

The solution procedure can be found in reference 
[10], the final result is as follows. 

The range of value of w  is as follows 
 0.08571≤w ≤0.42857 

Taking the average, it gives 
 w =0.25714 

For the problem of gravitational defection of a photon 
orbit around the Sun, the general relativity cannot give the 
solution that is exactly equal to the experimental value, 
while the method presented in this paper can do so. 

It should be noted that, for variation principle Eq.(15), 
if there is an exact solution, then its right side can be equal 
to 0, here the variational principle Eq.(15) is exactly 

equivalent to 0=iF  and 0=iS  (see example 1 and 

example 3). If there is only an approximate solution, the 
right side of variational principles Eq.(15) can only be 
approximately equal to 0, at this moment we can apply the 
appropriate optimization method to seek the best 
approximate solution, and the effect of the solution can be 
judged according to the extent that the value of Π  is close 
to 0 (see example 2). 

5.3 Other "partial and temporary unified theory so 
far", especially "partial and temporary unified 
theory of natural science so far" 

To extend the above mentioned method, we can get 
various "partial and temporary unified theory so far".  

For unified dealing with the problems of four 
fundamental interactions, applying least square method, 
"partial and temporary unified theory of four fundamental 
interactions so far" can be expressed in the following form 
of "partial and temporary unified variational principle of 
four fundamental interactions so far" 

 =+Ω=Π
Ω

m

jjii

n

i SWdFW
i 1

0
22

1
G.E.S.W min' （1

8） 

where: the subscript G.E.S.W denotes that the suitable 
scope is the four fundamental interactions, all of the 

equations 0=iF  denote so far discovered (derived) all of 

the equations related to four fundamental interactions, all 

of the equations 0=iS  denote so far discovered (derived) 

all of the solitary equations related to four fundamental 

interactions, and iW  and 'jW  are suitable positive 

weighted constants. 
For unified dealing with the problems of natural 

science, applying least square method, "partial and 
temporary unified theory of natural science so far" can be 
expressed in the following form of "partial and temporary 
unified variational principle of natural science so far" 

 =+Ω=Π
Ω

m

jjii

n

i SWdFW
i 1

0
22

1
NATURE min'

（19） 

where: the subscript NATURE denotes that the suitable 
scope is all of the problems of natural science, all of the 

equations 0=iF  denote so far discovered (derived) all of 

the equations related to natural science, all of the equations 

0=iS  denote so far discovered (derived) all of the 

solitary equations related to natural science, and iW  and 

'jW  are suitable positive weighted constants. 

In this way, the theory of everything to express all of 
natural laws, described by Hawking that a single equation 
could be written on a T-shirt, is partially and temporarily 
realized in the form of "partial and temporary unified 
variational principle of natural science so far". 

As already noted, for "partial and temporary unified 
theory so far" and the corresponding "partial and 
temporary unified variational principle so far", the 
including phenomenon and coexisting phenomenon are 
allowed. Here we would like to point out that, besides the 
including process and coexisting process, the neutrosophic 
one, namely the simplifying process is also allowed. For 
example, the first simplifying result of "partial and 
temporary unified theory of natural science so far" is 
"theory of conservation of energy", it can be expressed in 
the following form of "first simplifying variational 
principle for partial and temporary unified theory of 
natural science so far" (it is shorted as "variational 
principle of conservation of energy"). 

 =−=Π − 2

1
0

21SIMPLE
NATURE min)1)0(/)((

t

t
dtWtW   （20） 

This "variational principle of conservation of energy" 
can be applied for unified dealing with many problems in 
physics, mechanics, astronomy, biology, engineering, and 
even many issues in social science. For example, in 
reference [11], based on "theory of conservation of 
energy", for some cases we derived Newton's second law, 
the law of universal gravitation, and the like. 
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Further topics are finding more simplifying processes 
(simplifying variational principles) and their combinations. 
These will make "partial and temporary unified theory of 
natural science so far" simpler, clearer, more perfect, and 
more practical. 

For this purpose, the neutrosophy will give very 
important contribution. 
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Abstract. In this paper we introduce the notion of filter 
on the neutrosophic crisp set, then we consider a 
generalization of the filter’s studies. Afterwards, we 
present the important neutrosophic crisp filters. We also 

study several relations between different neutrosophic 
crisp filters and neutrosophic topologies. Possible 
applications to database systems are touched upon. 
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1 Introduction 
The fundamental concept of neutrosophic set, 

introduced by Smarandache in [6, 7, 8] and studied by 
Salama in [1, 2, 3, 4, 5, 9, 10], provides a groundwork to 
mathematically act towards the neutrosophic phenomena 
which exists pervasively in our real world and expand to 
building new branches of neutrosophic mathematics.  
Neutrosophy has laid the foundation for a whole family of 
new mathematical theories, generalizing both their crisp 
and fuzzy counterparts, such as the neutrosophic crisp set 
theory. 

2 Preliminaries 
We recollect some relevant basic preliminaries, and in 

particular, the work of Smarandache in [6, 7, 8] and 
Salama et al. [1, 2, 3, 4, 5, 9, 10]. Smarandache introduced 
the neutrosophic components T, I, and F which represent 
the membership, indeterminacy, and non-membership 
values respectively, where ] [+1,0 - is the non- standard unit

interval. 

3 Neutrosophic Crisp Filters 

3.1 Definition 1 
First we recall that a neutrosophic crisp set A is an 

object of the form A = <A1, A2, A3>, where A1, A2, A3 are 
subsets of X, and 

1 2 1 3 2 3, , .A A A A A Aφ φ φ∩ = ∩ = ∩ =  

Let Ψ  be a neutrosophic crisp set in the set X. We call 
Ψ  a neutrosophic crisp filter on X if it satisfies the 
following conditions: 

( )1N Every neutrosophic crisp set in X, containing a

member of Ψ , belongs toΨ . 
( )2N Every finite intersection of members of Ψ

belongs toΨ . 

( )3N Nφ  is not inΨ .

In this case, the pair ( )Ψ,X is neutrosophically

filtered byΨ . 
It follows from ( )2N and ( )3N that every finite

intersection of members of Ψ is not Nφ (not empty). We

obtain the following results. 

3.2 Proposition 1 
The conditions ( )2N and (N1) are equivalent to the

following two conditions: 
( )aN2 The intersection of two members of Ψ belongs

toΨ . 

( )aN1 NX  belongs to Ψ .

3.3 Proposition 1.2 
Let Ψ  be a non-empty neutrosophic subsets in X 

satisfying ( )1N .

Then,  

(1) Ψ∈NX iff NφΨ ≠ ;

(2) Ψφ ∉N  iff ≠Ψ  all neutrosophic  crisp subsets

of  X. 
From the above Propositions (1) and (2),   we can 

characterize the concept of neutrosophic crisp filter. 

3.4 Theorem 1.1 
Let Ψ  be a neutrosophic crisp subsets in a set X. Then 

Ψ  is neutrosophic crisp filter on X, if and only if it 
satisfies the following conditions:  

(i) Every neutrosophic crisp set in X, containing a 
member of Ψ , belongs toΨ . 

(ii) If Ψ∈BA, , then Ψ∈∩ BA . 

(iii) N
X φΨΨ ≠≠ .
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Proof: It ̓s clear. 

3.5 Theorem 1.2 

Let φ≠X . Then the set{ }NX  is a neutrosophic crisp

filter on X. Moreover if A is a non-empty neutrosophic 

crisp set in X, then { }BAB X ⊆∈ :Ψ  is a neutrosophic

crisp filter on X. 

Proof: Let { }BABN X ⊆∈= :Ψ . Since

Ψ∈NX and  ,Ψφ ∉N
X

N ΨΨφ ≠≠ .  

Suppose Ψ∈VU , , then VAUA ⊆⊆ , . 

Thus 111 VUA ∩⊆ , 
222 VUA ∩⊆  or

222 VUA ∪⊆ , and  333 VUA ∪⊆  for all Xx ∈ . So

VUA ∩⊆ and hence .NVU ∈∩  

4 Comparison of Neutrosophic Crisp Filters 

4.1 Definition 2 

Let 1Ψ and 2Ψ  be two neutrosophic crisp filters on a

set X. We say that 2Ψ  is finer than 1Ψ , or 1Ψ is coarser

than 2Ψ , if 21 ΨΨ ⊂ .

If also 21 ΨΨ ≠ , then we say that 2Ψ is strictly finer

than 1Ψ , or 1Ψ is strictly coarser than 2Ψ .

We say that two neutrosophic crisp filters are 
comparable if one is finer than the other. The set of all 
neutrosophic crisp filters on X is ordered by the relation: 

1Ψ coarser than 2Ψ , this relation inducing the inclusion

relation in XΨ .

4.2 Proposition 2 

Let Jjj ∈)(Ψ  be any non-empty family of neutrosophic

crisp filters on X. Then jJj ΨΨ ∈∩= is a neutrosophic

crisp filter on X. In fact, Ψ is the greatest lower bound of 

the neutrosophic crisp set Jjj ∈)(Ψ  in the ordered set of all

neutrosophic crisp filters on X.  

4.3 Remark 2 
The neutrosophic crisp filter induced by the single 

neutrosophic set NX is the smallest element of the ordered

set of all neutrosophic crisp filters on X.  

4.4 Theorem 2 
Let Α be a neutrosophic set in X. Then there exists a 

neutrosophic filter )(ΑΨ  on X containing Α if for any 

given finite subset { }nSSS ,...,, 21  of Α , the intersection

Nii S φ≠∩ =1 . In fact )(ΑΨ  is the coarsest 

neutrosophic crisp filter containing Α . 

Proof )( Suppose there exists a neutrosophic filter 

)(ΑΨ on X containing A . Let B be the set of all finite 

intersections of members of A . Then by axiom ( )2N ,

)(ΑΨ⊂B . By axiom ( )3N , )(ΑΨφ ∉N . Thus for

each member B of B, we get that the necessary condition 
holds  

)(⇐ Suppose the necessary condition holds. 

Let { }B ofmember  a  contains  :)( AAA XΨΨ ∈= ,

where B is the family of all finite intersections of members 
of A. Then we can easily check that )(AΨ  satisfies the 

conditions in Definition 1. We say that the neutrosophic 
crisp filter )(AΨ defined above is generated by A, and A 

is called a sub-base of )(AΨ .  

4.5 Corollary 2.1 
Let Ψ  be a neutrosophic crisp filter in a set X, and A a 

neutrosophic set. Then there is a neutrosophic crisp 

filter /Ψ which is finer than Ψ and such that /Ψ∈A if
and A is a neutrosophic set. Then there is a neutrosophic 

crisp filter /Ψ which is finer than Ψ and such that
/Ψ∈A iff NUA φ≠∩ for each Ψ∈U .

4.6 Corollary 2.2 

A set Nϕ of a neutrosophic crisp filter on a non-empty

set X, has a least upper bound in the set of all neutrosophic 
crisp filters on X if for all finite sequence 

njJjj ≤≤∈ 0,)(Ψ of elements of Nϕ and all 

),1( njA jj ≤≤∈Ψ Njj A φ≠∩=1 .

4.7 Corollary 2.3 
The ordered set of all neutrosophic crisp filters on a 

non-empty set X is inductive. 
If Λ  is a sub-base of a neutrosophic filter Ν on X, 

then Ψ  is not in general the set of neutrosophic sets in X 
containing an element of Λ ; for Λ  to have this property it 
is  necessary and sufficient that every finite intersection of 
members of Λ  should contain an element of Λ . Hence, 
we have the following results. 

4.8 Theorem 3 
Let β  be a set of neutrosophic crisp sets on a set X. 

Then the set of neutrosophic crisp sets in X containing an 
element of β  is a neutrosophic crisp filter on X if β  

possesses the following two conditions: 
)( 1β The intersection of two members of β  contain a 

member of β . 
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)( 2β Nφβ ≠ and βφ ∉N .

4.9 Definition 3 
Let Λ and β be two neutrosophic sets on X satisfying 

conditions )( 1β and )( 2β . We call them bases of 

neutrosophic crisp filters they generate. We consider two 
neutrosophic bases equivalent, if they generate the same 
neutrosophic crisp filter. 

4.10 Remark 3 
Let Λ  be a sub-base of neutrosophic filter Ψ . Then 

the set β of finite intersections of members of Λ  is a base 

of a neutrosophic filter Ψ . 

4.11 Proposition 3.1 
A subset β of a neutrosophic crisp filter Ψ  on X is a 

base of Ψ  if every member of Ψ  contains a member 
of β . 

Proof )( Suppose β is a base of Ν . Then clearly, 

every member of Ψ contains an element of β . )(⇐  

Suppose the necessary condition holds. Then the set of 
neutrosophic sets in X containing a member of 

β coincides with Ψ  by reason of Jjj ∈)(Ψ .

4.12 Proposition 3.2 

On a set X, a neutrosophic crisp filter /Ψ with base
/β is finer than a neutrosophic crisp filterΨ with base 

β if every member of β contains a member of /β . 

Proof: This is an immediate consequence of 
Definitions 2 and 3.  

4.13 Proposition 3.3 

Two neutrosophic crisp filters bases β  and  /β  on a 

set X are equivalent if every member of β contains a 

member of /β  and every member of /β and every 

member of /β  contains a member of β . 

5 Neutrosophic Crisp Ultrafilters 

5.1 Definition 4 
A neutrosophic ultrafilter on a set X is a neutrosophic 

crisp filter Ψ such that there is no neutrosophic crisp filter 
on X which is strictly finer than Ψ  (in other words, a 
maximal element in the ordered set of all neutrosophic 
crisp filters on X). 

 Since the ordered set of all neutrosophic crisp filters on 
X is inductive, Zorn's lemma shows that:  

5.2 Theorem 4 
Let Ψ  be any neutrosophic ultrafilter on a set X; then 

there is a neutrosophic ultrafilter other than Ψ . 

5.3 Proposition 4 
Let Ψ  be a neutrosophic ultrafilter on a set X. If A  

and B are two neutrosophic subsets such 
that Ψ∈∪ BA , then Ψ∈A or Ψ∈B . 

Proof: Suppose not. Then there are neutrosophic sets 
A and B in X such that ΨΨ ∉∉ BA , and 

Ψ∈∪ BA Let { }ΨΨΛ ∈∪∈= MAM X : . It is

straightforward to check that Λ  is a neutrosophic crisp 
filter on X, and Λ  is strictly finer than Ψ , since 

Λ∈B .This contradiction proves the hypothesis that Ψ is 
a neutrosophic crisp ultrafilter. 

5.4 Corollary 4 
Let Ψ  be a neutrosophic crisp ultrafilter on a set X 

and let njj ≤≤1)(Ψ  be a finite sequence of neutrosophic

crisp sets in X. If ΨΨ ∈∪
= j

j 1
, then at least one of the jΨ

belongs to Ψ . 

5.5 Definition 5 
Let Α  be a neutrosophic crisp set in a set X. If U is 

any neutrosophic crisp set in X, then the neutrosophic crisp 
set UA ∩ is called trace of U on A, and it is denoted by 

AU . For all neutrosophic crisp sets U and V in X, we 

have ( ) .AAA VUVU ∩=∩

5.6 Definition 6 
Let Α  be a neutrosophic crisp set in a set X. Then the 

set AΛ  of traces XΨΑ ∈ of members of Λ is called the

trace of Λ  on Α . 

5.7 Proposition 5 
Let Ψ  be a neutrosophic crisp filter on a set X 

and XΨΑ ∈ . Then the trace AΨ  of  Ψ on A  is a

neutrosophic crisp filter if each member of Ψ  intersects 
with A . 

Proof: The result in Definition 6 shows that AΨ
satisfies ( )2N . If ,APAM ⊂⊂∩ then 

( ) APMP ∩∪= . Thus AΨ  satisfies ( )1N . Hence AΨ is

a neutrosophic crisp filter if it satisfies ( )3N , i.e. if each

member of Ψ  intersects with A . 
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5.8 Definition 7 
Let Ψ  be a neutrosophic crisp filter on a set X 

and XΨΑ ∈ .  If the trace is AΨ  of  Ψ on Α , then AΨ  is

said to be induced by Ψ and Α . 

5.9 Proposition 6 
Let Ψ  be a neutrosophic crisp filter on a set X 

inducing a neutrosophic filter AΝ  on XΨΑ ∈ . Then the

trace Aβ  on Α of a base β of Ψ  is a base of AΨ .

References 

[1] A.A. Salama and S.A. Alblowi, “Generalized Neutrosophic 
Set and Generalized Neutrosophic Topological Spaces”, in 
Journal computer Sci. Engineering, Vol. (2) No. (7) (2012). 

[2] A.A. Salama and S.A. Albolwi, “Neutrosophic set and 
Neutrosophic topological space”, in ISORJ. Mathematics, 
Vol.(3), Issue(4), pp-31-35 (2012). 

[3] A.A. Salama and S.A. Albalwi, “Intuitionistic Fuzzy Ideals 
Topological Spaces”, Advances in Fuzzy Mathematics, 
Vol.(7), Number 1, pp. 51- 60, (2012). 

[4] A.A.Salama, and H.Elagamy, “Neutrosophic Filters”, in 
International Journal of Computer Science Engineering and 
Information Technology Reseearch (IJCSEITR), Vol.3, 
Issue(1),Mar 2013, pp 307-312 (2013). 

[5] S. A. Albowi, A. A. Salama & Mohmed Eisa, “New 
Concepts of  Neutrosophic Sets”, in International Journal of 
Mathematics and Computer Applications Research 
(IJMCAR),Vol.3, Issue 4, Oct 2013, 95-102 (2013). 

[6] Florentin  Smarandache, “Neutrosophy and  Neutrosophic 
Logic”, First International Conference on Neutrosophy, 
Neutrosophic Logic, Set, Probability, and Statistics, 
University  of   New Mexico, Gallup, NM 87301, USA 
(2002). 

[7] Florentin  Smarandache, “An introduction to the 
Neutrosophy probability applied in Quantum Physics”, 
International Conference on Introduction Neutrosophic 
Physics, Neutrosophic Logic, Set, Probability, and 
Statistics, University  of   New Mexico, Gallup, NM 87301, 
USA 2-4 December (2011). 

[8] F. Smarandache. “A Unifying Field in Logics: Neutrosophic 
Logic”. Neutrosophy, Neutrosophic Set, Neutrosophic 
Probability. American Research Press, Rehoboth, NM, 
1999. 

[9] I. Hanafy, A.A. Salama and K. Mahfouz, “Correlation of 
Neutrosophic Data”, in International Refereed Journal of 
Engineering and Science (IRJES) , Vol.(1), Issue 2 PP.39-
43 (2012). 

[10] I.M. Hanafy, A.A. Salama and K.M. Mahfouz, 
“Neutrosophic Crisp Events and Its Probability”, in 
International Journal of Mathematics and Computer 
Applications Research (IJMCAR) Vol. (3), Issue 1, Mar 
2013, pp 171-178 (2013). 

Received: November 12, 2013.   Accepted: December 5, 2013

37 



Neutrosophic Sets and Systems, Vol. 1, 2013 

 Florentin Smarandache&Ştefan Vlăduţescu, Communication vs. Information, an Axiomatic Neutrosophic Solution

Communication vs. Information, an Axiomatic 
Neutrosophic Solution 

Florentin Smarandache1, and Ştefan Vlăduțescu2 

1 University of New Mexico, 200 College Road, Gallup, NM 87301, U.S.A.. E-mail: fsmarandache@gmail.com 
2 University of Craiova, 13 A. I. Cuza Street, Craiova, 200585, Romania. E-mail: stefan.vladutescu@yahoo.com 

Abstract. Study represents an application of the neutrosophic 
method, for solving the contradiction between communication 
and information. In addition, it recourse to an appropriate 
method of approaching the contradictions: Extensics, as the 
method and the science of solving the contradictions.  

The research core is the reality that the scientific 
research of communication-information relationship has 
reached a dead end. The bivalent relationship communication-
information, information-communication has come to be 
contradictory, and the two concepts to block each other.  

After the critical examination of conflicting positions 
expressed by many experts in the field, the extensic and 
inclusive hypothesis is issued that information is a form of 
communication. The object of communication is the sending of 
a message. The message may consist of thoughts, ideas, 
opinions, feelings, beliefs, facts, information, intelligence or 
other significational elements. When the message content is 
primarily informational, communication will become 
information or intelligence. 

The arguments of supporting the hypothesis are: 
a) linguistic (the most important being that there is

"communication of information" but not "information of 

communication"; also, it is clarified and reinforced the over 
situated referent, that of the communication as a process),  

b) systemic-procedural (in the communication system
is developing an information system; the informing actant is a 
type of communicator, the information process is a 
communication process),  

c) practical (the delimitation eliminates the efforts of
disparate and inconsistent understanding of the two concepts),  

d) epistemological arguments (the possibility of inter-
subjective thinking of reality is created), linguistic arguments, 

e) logical and realistic arguments (it is noted the
situation that allows to think coherently  in a system of 
concepts - derivative series or integrative groups)  

f) and arguments from historical experience (the
concept of communication has temporal priority, it appears 13 
times in Julius Caesar’s writings ).  

In an axiomatic conclusion, the main arguments are 
summarized in four axioms: three are based on the pertinent 
observations of specialists, and the fourth is a relevant 
application of Florentin Smarandache’s neutrosophic theory.

Keywords: neutrosophy, communication, information, message, extensics 

1. Clarification on the used methodological tool
With the Extensics as a science of solving the

conflicting issues, "extensical procedures" will be used to 
solve the contradiction. In this respect, considering that the 
matter-elements are defined, their properties will be 
explored ("The key to solve contradictory problems, Wen 
Cai argues, the founder of Extensics (Cai, 1999, p. 1540), 
is the study of properties about matter-elements"). 
According to „The basic method of Extensics is called 
extension methodology” (...), and "the application of the 
extension methodology in every field is the extension 
engineering methods" (Weihai Li & Chunyan Yang, 2008, 
p. 34).

With neutrosophic, linguistic, systemic, and 
hermeneutical methods, grafted on "extension 
methodology" a) are "open up the things", b) is marked 
"divergent nature of matter-element", c) "extensibility of 
matter-element" takes place and c) "extension 
communication" allows a new inclusion perspective to 

open,  a sequential ranging of things to emphasize at a 
higher level and the contradictory elements to be solved. 
"Extension" is, as postulated by Wen Cai (Cai, 1999, p. 
1538) "opening up carried out". 

2. The subject of communication: the message.
The subject of informing: the information. The 
information thesis as species of message  

In order to finish our basic thesis that of the 
information as a form of communication, new arguments 
may be revealed which corroborate with those previously 
mentioned. As phenomena, processes, the communication 
and information occur in a unique communication system. 
In communication, information has acquired a specialized 
profile. In the information field, the intelligence, in his 
turn, strengthened a specific, detectable, identifiable and 
discriminative profile. It is therefore acceptable under the 
pressure of practical argument that one may speak of a 
general communication system which in relation to the 
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message sent and configured   in the communication 
process could be imagined as information system or 
intelligence system. Under the influence of the systemic 
assumption that a (unitary) communicator transmits or 
customize transactionally with another (receiving) 
communicator a message, one may understand the 
communicational system as the interactional unit of the 
factors that exerts and fulfill the function of 
communicating a message. 

In his books "Messages: building interpersonal 
communication skills" (attained in 1993 its fourth edition 
and in 2010 its twelfth) and "Human Communication" 
(2000), Joseph De Vito (the renowned specialist who has 
proposed the name "Communicology" for the sciences of 
communication - 1978), develops a concept of a simple 
and productive message. The message is, as content, what 
is communicated. As a systemic factor, it is emerging as 
what is communicated. To remember in this context is that 
the German Otto Kade insisted that what it is 
communicated to receive the title of "release". According 
to Joseph De Vito, through communication meanings are 
transmitted. "The communicated message" is only a part 
of the meanings (De Vito, 1993, p. 116). Among the 
shared meanings feelings and perceptions are found (De 
Vito J., 1993, p. 298). Likewise, information can be 
communicated (De Vito, 1990, p. 42), (De Vito, 2000, p. 
347) (also, Fârte, 2004; Ciupercă, 2009; Cojocaru, Bragaru 
& Ciuchi, 2012; Cobley & Schulz, 2013). 

In a "message theory" called "Angelitics", Rafael 
Capurro argues that the message and information are 
concepts that designate similar but not identical 
phenomena. In Greek "Angelia" meant message; from 
here, "Angelitics" or theory of the message (Angelitics is 
different from Angeologia dealing, in the field of religion 
and theology, with the study of angels). R. Capurro set 
four criteria for assessing the relationship between 
message and information. The similarity of the two 
extends over three of them. The message, as well as the 
information, is characterized as follows: „is supposed to 
bring something new and/or relevant to the receiver; can 
be coded and transmitted through different media or 
messengers; is an utterance that gives rise to the receiver’s 
selection through a release mechanism of interpretation”. 
"The difference between these two is the next: „a message 
is sender-dependent, i.e. it is based on a heteronomic or 
assymetric structure. This is not the case of information: 
we receive a message but we ask for information” 
(http://www.capurro.de/angeletics_zkm.html) (see also, 
Capurro, 2011; Holgate, 2011). To request information is 
to send a message of requesting information. Therefore, 
the message is similar to the information in this respect 
too. In our opinion, the difference between them is from 
genus to species: information is a species of message. The 
message depends on the transmitter and the information, 
as well. Information is still a specification of the message, 
is an informative message. C. Shannon asserts that the 

message is the defining subject of the communication. He 
is the stake of the communication because „the 
fundamental problem of communication is that of 
reproducing at one point either exactly or approximately a 
message selected at another point” (Shannon, 1948, p. 31). 

The communication process is in fact the 
"communication" of a complex and multilayered message. 
'Thoughts, interests, talents, experiences"(Duck & 
McMahan, 2011, p. 222), "information, ideas, beliefs, 
feelings "(Wood, 2009, p. 19 and p. 260) can be found in a 
message. G. A. Miller, T. M. Newcomb and Brent R. 
Ruben consider that the subject of communication is 
information: "Communication - Miller shows – means that 
information is passed from one place to another” (Miller, 
1951, p. 6). In his turn, T. M. Newcomb asserts: „very 
communication act is viewed as a transmission of 
information” (Newcomb, 1966, p. 66) and Brent R. Ruben 
argues: „Human communication is the process through 
which individuals in relationships, groups, organizations 
and societies create, transmit and use information to relate 
to the environment and one another” (Ruben, 1992, p. 18). 

Professor Nicolae Drăgulănescu, member of the 
American Society of Information Science and Technology, 
is the most important of Romanian specialists in the 
Science of information. According to him, 
"communicating information" is the third of the four 
processes that form the "informational cycle", along with 
generating the information, processing/storing the 
information and the use of information. The process of 
communication, Nicolae  Drăgulanescu argues, is one of 
the processes whose object is the information 
(http://ndragulanescu.ro/publicatii/CP54.pdf, p. 8) (also, 
Drăgulănescu, 2002; Drăgulănescu, 2005). The same line 
is followed by Gabriel Zamfir too; he sees the information 
as "what is communicated in one or other of the available 
languages" (Zamfir, 1998, p. 7), as well as teacher Sultana 
Craia: communication is a "process of transmitting a piece 
of information, a message" (Craia, 2008, p. 53). In general, 
it is accepted that information means transmitting or 
receiving information. However, when speaking of 
transmitting information, the process is considered not to 
be information but communication. Therefore, it is created 
the appearance that the information is the product and 
communication would only be the transmitting process. 
Teodoru Ştefan, Ion Ivan şi Cristian Popa assert: 
"Communication is the process of transmitting 
information, so the ratio of the two categories is from the 
basic product to its transmission" (Popa, Teodoru & Ivan 
I., 2008, p. 22). The professors Vasile Tran and Irina 
Stănciugelu see communication as an "exchange of 
information with symbolic content" (Tran & Stănciugelu, 
2003, p. 109). The communication is an over-ranged 
concept and an ontological category more extended than 
informing or information. On the other hand, information 
is generated even in the global communication process. 
From this point of view, information (whose subject-
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message is information) is a regional, sectorial 
communication. Information is that communication whose 
message consists of new, relevant, pertinent and useful 
significances, i.e. of information. This position is shared 
by Doru Enache too (Enache, 2010, p. 26). 

The position set by Norbert Wiener, consolidated by L. 
Brillouin and endorsed by many others makes from the 
information the only content of the message. N. Wiener 
argues that the message "contains information" (Wiener 
N., 1965, p. 16), L. Brillouin talks about "information 
contained in the message" (Brillouin, 2004, p. 94 and p. 
28). 

Through communication "information, concepts, 
emotions, beliefs are conveyed" and communication 
"means (and subsumes) information" (Rotaru, 2007, p.10). 
Well-known teachers Marius Petrescu and Neculae 
Năbârjoiu consider that the distinction between 
communication and information must be achieved 
depending on the message. A communication with an 
informational message becomes information. As a form of 
communication, information is characterized by an 
informative message and a "message is informative as 
long as it contains something unknown yet" (Petrescu & 
Năbârjoiu, 2006, p. 25). One of the possible significant 
elements that could form the message content is thus the 
information as well. Other components could be thoughts, 
ideas, beliefs, knowledge, feelings, emotions, experiences, 
news facts. Communication is "communicating" a 
message regardless of its significant content. 
 
3. The information thesis as a form of commu-
nication 

The question of the relationship between commu-
nication and information as fields of existence is the 
fingerprint axis of communication and information 
ontology. The ontological format allows two formulas: the 
existence in the act and the virtual existence. The 
ontological component of the concepts integrates a 
presence or a potency and an existential fact or at a 
potential of existence (Zins, 2007; Allo, 2007; Stan, 2009; 
Burgin, 2010; Case, 2013). 

In addition to the categorial-ontological element, in the 
nuclear ratio of communication-information concepts it 
shows comparative specificities and regarding attributes 
and characteristics, on three components, epistemological, 
methodological and hermeneutical. 

In a science which would have firmly taken a strong 
subject, a methodology and a specific set of concepts, this 
ontological founding decision would be taken in an axiom. 
It is known that, in principle, axioms solve within the 
limits of that type of argument called evidence (clear and 
distinct situation), the relations between the systemic, 
structural, basic concepts. Specifically, in Extensics, 
scientists with an advanced vision, substantiated by 
professor Wen Cai, axioms govern the relationship 
between two matter-elements with divergent profiles. For 

the communication and information issues that have 
occurred relatively recently (about three quarters of a 
century) in subjects of study or areas of scientific concern 
not a scientific authority to settle the issue was found. The 
weaknesses of these sciences of soft type are visible even 
today when after non accredited proposals of science 
("comunicology" - communicology Joseph De Vito, 
"communicatics," - "comunicatique" of Metayer G., 
informatology - Klaus Otten and Anthony Debons, 1970) 
it was resorted to the remaining in the ambiguity of 
validating the subject "The sciences of communication and 
information" or "The sciences of information and 
communication", enjoying the support of some courses, 
books, studies and dictionaries (Toma, 1999; Tudor, 2001; 
Strechie, 2009; Ţenescu, 2009). 

This generic vision of unity and cohesion wrongs both 
the communication and information (Vlăduțescu, 2004; 
Vlăduțescu, 2006). In practice, the apparent unjust overall, 
integrative, altogether treatment has not an entirely and 
covering confirmation. In almost all humanist universities 
of the world the faculties and the communication courses 
are prevailing, including those of Romania and China. 
Professor Nicolae Drăgulănescu ascertained in what 
Romania is concerned, that in 20 colleagues commu-
nication (with various denominations) is taught and in only 
two the informing-information is taught. 

The main perspectives from which the contradictory 
relationship of communication-information was 
approached are the ontological, the epistemological and 
the systemic. In most cases, opinions were incidental. 
When it was about the dedicated studies, the most 
common comparative approach was not programmatically 
made on one or more criteria and neither directly and 
applied.  

In his study "Communication and Information" (19 
March 9, pp. 3-31), J. R. Schement starts from the 
observation that "in the rhetoric of the Information Age, 
the communication and information converge in 
synonymous meanings." On the other hand, he retains that 
there are specialists who declare in favor of stating a 
firming distinction of their meanings. To clarify exactly 
the relationship between the two phenomena, i.e. concepts, 
he examines the definitions of information and 
communication that have marked the evolution of the 
"information studies" and the "communication studies". 
For informing (information) three fundamental themes 
result: information-as-thing (M. K. Buckland), infor-
mation-as-process (N. J. Belkin - 1978, R. M. Hayes, 
Machlup & Mansfield, Elstner - 2010 etc.), Information-
as-product-of - manipulation (C. J. Fox, R. M. Hayes). It is 
also noted that these three subjects involve the assessing of 
their issuers, a "connection to the phenomenon of com-
munication". In parallel, from examining the definitions of 
communication it is revealed that the specialists 
"implicitly or explicitly introduce the notion of infor-
mation in defining communication". There are also three 
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the central themes of defining communication: commu-
nication-as-transmission (C. Shannon, W. Weaver, E. 
Emery, C. Cherry, B. Berelson, G. Steiner), commu-
nication-as-sharing-process (R. S. Gover, W. Schramm), 
communication-as-interaction (G. Gerbner, L. Thayer). 
Comparing the six thematic nodes, Schement emphasizes 
that the link between information and communication is 
"highly complex" and dynamic "information and 
communication is ever present and connected" (Schement, 
1993, p. 17). In addition, in order that “information exist, 
the potential for communication must be present”. The 
result at the ontological level of these findings is that the 
existence of information is (strictly) conditioned by the 
presence of communication. That is for the information to 
occur communication must be present. Communication 
will precede and always condition the existence of 
information. And more detailed: communication is part of 
the information ontology. Ontologically, information 
occurs in communication also as potency of 
communication (Vlăduțescu, 2002). J. R. Schement is 
focused on finding a way to census a coherent image 
leading to a theory of communication and information 
("Toward a Theory of Communication and Information" - 
Schement, 1993, p. 6). He avoids to conclusively asserting 
the temporal and linguistic priority, the ontological 
precedence and the amplitude of communication in 
relation to information. The study concludes that  

1. "Information and communication are social 
structures" ("two words are used as interchangeable, even 
as synonyms" – it is argued) (Schement, 1993, p. 17),  

2. "The study of information and communication share 
concepts in common" (in both of them communication, 
information, "symbol, cognition, content, structure, 
process, interaction, technology and system are to be 
found" - Schement, 1993, p. 18),  

3. "Information and communication form dual aspects 
of a broader phenomenon" (Schement J.R., 1993, p. 18). 

In other words, we understand that: a) linguistically 
("words", "terms", "notions", "concepts", "idea of") 
communication and information are synonyms; b) as area 
of study the two resort the same conceptual arsenal. 
Situation produced by these two elements of the 
conclusion allows, in our opinion, a hierarchy between 
communication and information. If it is true that 
ontologically and temporally the communication precedes 
information, if this latter phenomenon is an extension 
smaller than the first, if eventual sciences having 
communication as object, respectively information, benefit 
from the one and the same conceptual vocabulary, then the 
information can be a form of communication. Despite this 
line followed coherently by the linguistic, categorical-
ontological, conceptual and definitional epistemological 
arguments brought in the reasoning, the third part of the 
conclusion postulates the existence of a unique 
phenomenon which would include communication and 
information (3. "Information and communication form two 

aspects of the same phenomenon "- Schement JR, 1993, p. 
18). This phenomenon is not named. The conclusive line 
followed by the arguments and the previous conclusive 
elements enabled us to articulate information as one of the 
forms of communication. Confirmatively, the fact that J. 
R. Schement does not name a phenomenon situated over 
communication and information, gives us the possibility of 
attracting the argument in order to strengthen our thesis 
that information is a form of communication. That is 
because a category of phenomena encompassing 
communication and information cannot be found. J. R. 
Schement tends towards a leveling perspective and of 
convergence in the communication and information 
ontology. Instead, M. Norton supports an emphasized 
differentiation between communication and information. 
He belongs to those who see communication as one of the 
processes and one of the methods "for making information 
available". The two phenomena "are intricately connected 
and have some aspects that seem similar, but they are not 
the same" (Norton, 2000, p. 48 and p. 39). Harmut B. 
Mokros and Brent R. Ruben (1991) lay the foundation of a 
systemic vision and leveling understanding of the 
communication-information relationship. Taking into 
account the context of reporting as a core element of the 
internal structure of communication and information 
systems, they mark the information as a criterion for the 
radiography of relationship. The systemic-theoretical non-
linear method of research founded in 1983 by B. R. Ruben 
is applied to the subject represented by the phenomena of 
communication and information. Research lays in the 
"Information Age" and creates an informational reporting 
image. The main merit of the investigation comes from the 
relevance given to the non-subordination between 
communication and information in terms of a unipolar 
communication that relates to a leveling information. 
Interesting is the approach of information in three 
constituent aspects: "informatione" (potential information 
- that which exists in a particular context, but never 
received a significance in the system), "information" 
(active information in the system) and "information" 
(information created socially and culturally in the system). 
The leveling information is related to a unified 
communication (Hofkirchner, 2010; Floridi, 2011; Fuchs, 
2013; Hofkirchner, 2013). On each level of information 
there is communication. Information and communication 
is co-present: communication is inherent to information. 
Information has inherent properties of communication. 
Research brings a systemic-contextual elucidation to the 
relationship between communication and information and 
only subsidiarily a firm ontological positioning. In any 
case: in information communication never misses. 

In the most important studies of the professor Stan 
Petrescu: "Information, the fourth weapon" (1999) and 
"About intelligence. Espionage-Counterespionage" (2007), 
information is understood as "a type of communication" 
(Petrescu, 1999, p. 143) and situated in the broader context 
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of "knowledge on the internal and international 
information environment " (Petrescu, 2007, p. 32). 

 
 4. Axiomatic conclusion: four axioms of com-
munication-information ontology 

4.1. The message axiom.  
We call the ontological segregation axiom on the 

subject or the Tom D. Wilson - Solomon Marcus’ axiom, 
the thesis that not any communication is information, but 
any information is communication. Whenever the message 
contains information, the communicational process will 
acquire an informational profile. Moreover, the 
communicational system becomes informational system. 
Derivatively, the communicator becomes the "informer" 
and the communicational relationship turns into 
informational relationship. The interactional basis of 
society, even in the Information Age, is the 
communicational interaction. Most social interactions are 
non-informational. In this respect, T. D. Wilson has noted: 
„We frequently receive communications of facts, data, 
news, or whatever which leave us more confused than 
ever. Under formal definition, these communications 
contain no information” (Wilson, 1987, p. 410). 
Academician Solomon Marcus takes into account the 
undeniable existence of a communication "without a 
transfer of information" (Marcus, 2011a, p. 220; Marcus, 
2011b). For communications that do not contain 
information we do not have a separate and specific term. 
Communications containing information or just 
information are called informing. 

Communication involves a kind of information, but as 
Jean Baudrillard stated (Apud Dâncu, 1999, p. 39), "it is 
not necessarily based on information". More specifically, 
any communication contains cognition that can be 
knowledge, data or information. Therefore, in 
communication, information may be missing, may be 
adjacent, incidental or collateral. Communication can be 
informational in nature or its destination. That 
communication which by its nature and organization is 
communication of information is called informing. 

The main process ran in Information System is 
informing. The function of such a system is to inform. The 
actants can be informants, producers-consumers of 
information, transmitters of information, etc. The 
information action takes identity by the cover enabled 
onto-categorial by the verb "to inform". In his turn, Petros 
A. Gelepithis considers the two concepts, communication 
and information to be crucial for "the study of information 
system" (Gelepithis, 1999, p. 69). 

Confirming the information axiom as post reductionist 
message, as reduced object of communication, Soren Brier 
substantiates: „communication system actually does not 
exchange information” (Brier, 1999, p. 96). Sometimes, 
within the communication system information is no longer 
exchanged.  

However, communication remains; communication 
system preserves its validity, which indicates and, 
subsequently, proves that there can be communication that 
does not involve information (Bates, 2006; Dejica, 2006; 
Chapman & Ramage, 2013). 

On the other hand, then  
a) when in the Information System functional 

principles such as "need to know"/"need to share" are 
introduced, 

b) when running processes for collecting, analyzing 
and disseminating information, 

c) when the beneficiaries are deciders, "decision 
maker", "ministry", "government", "policymakers" and 

d) when the caginess item occurs, this Information 
System will become Intelligence System (see Gill, Marrin 
& Phytian, 2009, p. 16, p. 17, p. 112, p. 217), (Sims & 
Gerber, 2005, p. 46, p. 234; Gill P.& Phytian, 2006, p. 9, 
p. 236, p. 88; Johnson, 2010, p. 5, p. 6, p. 61, p. 392, p. 
279; Maior, 2009; Maior, 2010).  Peter Gill shows that 
"Secrecy is the Key to Understanding the essence of 
intelligence" (Gill, 2009, p. 18), and Professor George 
Cristian Maior emphasizes: "in intelligence, collecting and 
processing information from secret sources remain 
essential" (Major, 2010, p. 11). 

Sherman Kent, W. Laqueur, M. M. Lowenthal, G.-C. 
Maior etc. start from a complex and multilayered concept 
of intelligence, understood as meaning knowledge, 
activity, organization, product, process and information. 
Subsequently, the question of ontology, epistemology, 
hermeneutics and methodology of intelligence occurs. 
Like Peter Gill, G.-C. Maior does pioneering work to 
separate the ontological approach of intelligence from the 
epistemological one and to analyze the "epistemological 
foundation of intelligence" (Maior, 2010, p. 33 and p. 43). 

The intelligence must be also considered in terms of 
ontological axiom of the object. In this regard, noticeable 
is that one of its meanings, perhaps the critical one, places 
it in some way in the information area. In our opinion, the 
information that has critical significance for accredited 
operators of the state, economic, financial and political 
power, and holds or acquires confidential, secret feature is 
or becomes intelligence. Information from intelligence 
systems can be by itself intelligence or end up being 
intelligence after some specialized processing. 
"Intelligence is not just information that merely exists" 
(Marinică & Ivan, 2010, p. 108), Mariana Marinică and 
Ion Ivan assert, it is acquired after a "conscious act of 
creation, collection, analysis, interpretation and modeling 
information" (Marinică & Ivan, 2010, p. 105).        

4.2. Linguistic axiom.  
A second axiom of communication-information 

ontological segregation can be drawn in relation to the 
linguistic argument of the acceptable grammatical context. 
Richard Varey considers that understanding "the 
difference between communication and information is the 
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central factor" and finds in the linguistic context the 
criterion to validate the difference: „we speak of giving 
information to while communicate with other” (Varey, 
1997, p. 220). The transmission of information takes place 
"to" or to someone, and communication takes place 
"with". Along with this variant of grammatical context it 
might also emerge the situation of acceptability of some 
statements in relation to the object of the communication 
process, respectively the object of the information process. 

The statement "to communicate a message, 
information" is acceptable. Instead, the statement "to 
inform communication" is not. The phrase 
"communication of messages-information" is valid, but the 
phrase "informing of communication", is not. Therefore, 
language bears knowledge and "lead us" (Martin 
Heidegger states) to note that, linguistically, 
communication is more ontological extensive and that 
information ontology is subsumed to it (Henno, 2013; Gîfu 
& Cristea, 2013; Gorun & Gorun, 2011). 

The ontical and ontological nature of language allows 
it to express the existence and to achieve a functional-
grammatical specification. Language allows only 
grammatical existences. As message, the information can 
be "communicated" or "communicable". There is also the 
case in which a piece of information cannot be 
"communicated" or "communicable". Related, 
communication cannot be "informed". The semantic field 
of communication is therefore larger, richer and more 
versatile (Ştefan Buzărnescu, 2006). Communication 
allows the "incommunicable". 

4.3. Teleological axiom.  
In addition to the axiom of segregating 

communication, of informing in relation to the object 
(message), it may be stated as an axiom a Magoroh 
Maruyama's contribution to the demythologization of 
information. In the article "Information and 
Communication in Poly Epistemological System" in "The 
Myths of Information", he states: „The transmission of 
information is not the purpose of communication. In 
Danish culture, for example, the purpose of 
communication is frequently to perpetuate the familiar, 
rather than to introduce new information” (Maruyama, 
1980, p. 29). 

The ontological axiom of segregation in relation to the 
purpose determines information as that type of 
communication with low emergence in which the purpose 
of the interaction is transmitting information. 

4.4. The neutrosophic communication axiom. 
Understanding the frame set by the three axioms, we 

find that some communicational elements are 
heterogeneous and neutral in relation to the criterion of 
informativity. In a speech some elements can be 
suppressed without the message suffering informational 
alterations. This means that some message-discursive 

meanings are redundant; others are not essential in relation 
to the orexis-the practical course or of practical touch in 
the order of reasoning. Redundancies and non-nuclear 
significational components can be elided and 
informational and the message remains informationally 
unchanged. This proves the existence of cores with 
neutral, neutrosophic meanings. (In the epistemological 
foundations of the concept of neutrosophy we refer to 
Florentin Smarandache’s work, A Unifying Field in 
Logics, Neutrosophic Logic, Neutrosophy, Neutrosophic 
Set, Neutrosophic Probability and Statistics, 1998) 
(Smarandache, 1998; Smarandache, 1999; Smarandache, 
2002; Smarandache, 2005; Smarandache, 2010a; 
Smarandache, 2010b; Smarandache & Păroiu, 2012). 

On the operation of this phenomenon are based the 
procedures of textual contraction, of grouping, of serial 
registration, of associating, summarizing, synthesizing, 
integrating. 

We propose to understand by neutrosophic 
communication that type of communication in which the 
message consists of and it is based on neutrosophic 
significational elements: non-informational, redundant, 
elidable, contradictory, incomplete, vague, imprecise, 
contemplative, non-practical, of relational cultivation. 
Informational communication is that type of 
communication whose purpose is sharing an informational 
message. The issuer's fundamental approach is, in 
informational communication, to inform. To inform is to 
transmit information or, specifically, in the professor’s Ilie 
Rad words: "to inform, that is just send information" 
(Moldovan, 2011, p. 70) (also, Rad, 2005; Rad, 2008). In 
general, any communication contains some or certain 
neutrosophic elements, suppressible, redundant, elidable, 
non-nuclear elements. But when neutrosophic elements are 
prevailing communication is no longer informational, but 
neutrosophic. Therefore, the neutrosophic axiom allows us 
to distinguish two types of communication: neutrosophic 
communication and informational communication. In most 
of the time our communication is neutrosophic. The 
neutrosophic communication is the rule. The informational 
communication is the exception. In the ocean of the 
neutrosophic communication, diamantine islands of 
informational communication are distinguished. 
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Abstract. Image segmentation is an important step in 
image processing and analysis, pattern recognition, and 
machine vision. A few of algorithms based on level set 
have been proposed for image segmentation in the last 
twenty years. However, these methods are time 
consuming, and sometime fail to extract the correct 
regions especially for noisy images. Recently, 
neutrosophic set (NS) theory has been applied to image 
processing for noisy images with indeterminant 
information. In this paper, a novel image segmentation 
approach is proposed based on the filter in NS and level 
set theory. At first, the image is transformed into NS 

domain, which is described by three membership sets (T, 
I and F). Then, a filter is newly defined and employed to 
reduce the indeterminacy of the image. Finally, a level 
set algorithm is used in the image after filtering operation 
for image segmentation. Experiments have been 
conducted using different images. The results 
demonstrate that the proposed method can segment the 
images effectively and accurately. It is especially able to 
remove the noise effect and extract the correct regions on 
both the noise-free images and the images with different 
levels of noise. 

 
Keywords: Image segmentation, Neutrosophic set, Directional alpha-mean filter, Level set.

1 Introduction 

Image segmentation is an essential process and is also one 
of the most difficult tasks in image processing field. It is 
defined as a process dividing an image into different 
regions such that each region is homogeneous, but the 
union of any two adjacent regions is not homogeneous.  

Image segmentation approaches are based on either 
discontinuity and/or homogeneity. The approaches based 
on discontinuity tend to partition an image by detecting 
isolated points, lines and edges according to the abrupt 
changes of the intensities. The approaches based on 
homogeneity include thresholding, clustering, region 
growing, and region splitting and merging [1]. 

Neutrosophy set (NS) provides a powerful tool to deal 
with the indeterminacy, and the indeterminacy is 
quantitatively described using a membership [2]. In 
neutrosophic set, a set A is described by three subsets: 
<A>, <Neut-A> and <Anti-A>, which is interpreted as 
truth, indeterminacy, and falsity set.  It provides a new tool 
to describe the image with uncertain information, which 
had been applied to image processing techniques [3], such 
as image segmentation, thresholding and denoise. 

In this paper, we proposed a novel image segmentation 
method based on NS theory. The image is mapped into NS 
domain and a new filter, directional alpha-mean filter is 
defined in NS domain, and used to remove the 
indeterminance on the image. Finally, the image on NS 

domain is segmented using the method based on level set 
active contour model. 

The remainder of this paper is organized as follows. 
The next section describes the neutrsosophic image, the 
directional alpha-mean filter, and the segmentation 
algorithm integrated with level set model. Section three 
reports the experiments and the relevant discussion. 
Concluding remarks are drawn in Section four. 

2 Proposed method 

2.1 Neutrosophic image 

An image might have a few indeterminate regions, 
such as noise, shadow, and boundary. It is hard for the 
classic sets to interpret the indeterminate regions on 
images clearly. In a neutrosophic set, a subset I, is named 
as indeterminate set and employed to interpret the 
indeterminacy in the image. 

A neutrosophic image is described by three 
membership sets T, I and F. The pixel P(i,j) in the image 
domain is transformed into the neutrosophic set domain, 
denoted as PNS(i,j) and PNS(i,j)={T(i,j), I(i,j), F(i,j) } (T, I 
and F are the membership values belonging to bright pixel 
set, indeterminate set and non-bright pixel set, 
respectively, which are defined as follows [4]: 
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where ( , )wg i j  is the mean value of intensity in the local 

neighborhood, whose size is w w× . ( , )i jδ  is the 

absolute value of the difference between intensity ( , )g i j  

and its local mean value ( , )wg i j . The value of I measures 

the indeterminacy degree of PNS.  
 

2.2 Directional α-mean operation 

In [3], an α-mean operation was defined on a 
neutrosophic image, and it removed noise efficiently.  
However, it might blur the image and reduce the contrast, 
which could reduce the performance of the segmentation. 
To overcome this drawback, a directional α-mean 
operation (denoted as DAM) is newly proposed to remove 
the noise effect and preserve the edges at the same time. 

The function of the directional mean filter DMF  is 
defined as [5]: 
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where ( , )ThG i j  and ( , )TvG i j  are the norm of the gradient 

at ( , )i j  of the subset T at the horizontal and vertical 

direction, respectively. σ  is a threshold value and selected 
as 0.01here.  

The directional α-mean filter DAMF  is defined using 
the subset T and I as: 
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2.3 Level set 

Level set method was proposed in [6], and applied for 
image segmentation [7]. The level set method tracks the 
evolution of the boundaries between different objects, 
which are embedded as the zero level set. 

The level set active contour models can be divided into 
two classes: edge based and region based. The edge based 
model tries to find a curve with the maximum edge 
indicator value which can minimize the energy 
function ( )J C [8]: 

( ) ( ) ( )( )( ) 'J C C s g Im C s ds=        (6) 

where g() is an edge indicator function, C is the boundary, 
and it can be represented implicitly as the zero level set of a 
true positive function : Rφ Ω → , Ω is the domain of 

image. The evolution equation of boundary C can be 
derived as: 
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where v() is a term for increasing the evolution speed to 
reach the boundary. 

The region based model uses the inside/outside mean 
values to compose the energy function [9]: 
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where 1c and 2c are the mean intensities of the regions 

inside and outside the boundary C, respectively. L and S are 
the length of C and the area inside C. S1 and S2 are the 
region inside and outside of C, respectively. The associated 
level set flow can be represented as: 
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where ()δ is the Dirac function, and n denotes the exterior 

normal to the boundary ∂Ω . div() is the divergence function 
on the image. 

Usually, edge based approaches often suffer from 
noise, especially, when the image has a low signal/noise 
ratio; while the region based approaches are more adaptive 
to noise or vanishing boundaries due to considering the 
entire information of the regions to build an energy 
function. 

2.4 Segmentation algorithm based on 
neutrosophic set and level set (NSLS) 

A segmentation algorithm is proposed based on the 
directional α-mean filter and level set on neutrosophic 
image. Firstly, the image is transferred into the NS domain. 
Then, the DAMF is processed in the NS image. Finally, the 
boundary of region is segmented using the level set active 
contour algorithm based on the region model. The energy 
function is defined using the T subset after DAMF 
processing.   
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3 Experimental results and discussion 

To test the performance of the proposed method, a few 
of images and images with different noise levels are 
employed. The NFLS method is compared with that of the 
segmentation algorithm based on the traditional level set 
[9], which is noted as TLS. 

 
(a) Original image. (b) Segmentation result of NSLS at 

800 iterations. 

 
(c) Segmentation result of TLS at 
800 iterations. 

(d) Segmentation result of TLS at 

1500 iterations. 

Figure 1: Comparison result on the “liver tumour” image with different 
iterations. 

  
(a) Original image. (b) The segmentation 

result of NSLS at 50 
iterations. 

(c) The segmentation 
result of TLS at 50 
iterations. 

Figure 2: Comparison result on the “cells” image with same iterations. 

 
(a) Image with Gaussian noise 
(variance = 25). 

(c) Segmentation result of NSLS at 
1000 iterations. 

(d) Segmentation result of TLS at 
1500 iterations. 

(e) Segmentation result of TLS at 
2000 iterations. 

Figure 3: Comparison result on the noisy “liver tumour” image with 
different iterations.

 

 
(a) Image with Gaussian noise 
(variance = 25).

(b) Segmentation result of NSLS at 
50 iterations. 

 
(c) Segmentation result of TLS at 
50 iterations. 

(d) Segmentation result of LS at 
200 iterations. 

Figure 4: Comparison result on the noisy “three cells” image with 
different iterations.

 
An experiment is performed to compare the time 

consumption of NSLS and LS methods. The NSLS takes 
less than 33 seconds per image on average for an AMD 
Phenom(tm) 9500 Quad-core Processor, 2.2 GHz. Table 1 
compares the  computational time on different images for 
different algorithms. The NSLS takes less iteration and 
fewer CPU times than the TLS method. 
 

Image TLS NSLS 

Iteration CPU time (s) Iteration CPU time (s)

Liver tumour 1500 99.57 800  53.03
Cells 50 2.88 50  4.56 

Noisy liver tumour 2000 255.34 1000  66.01 
Noisy cells 200 13.19 50  4.56 

Table 1: Comparison of the CPU times on images with and without 
noise. 

 
From the comparisons, it can be seen clearly that the 

NFLS method has better performance on the image 
segmentation than the traditional level set method with 
high segmentation accuracy and low iteration time.  

 On noisy images, the NFLS segments the most objects 
with entire shape, while the performances of the traditional 
method are affected by the noise and some objects are 
divided into several regions. The results by the NSLS are 
smoother and more connected. Furthermore, the boundary’ 
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position and orientation are more accurate. The outper-
formance benefits from the fact that the NSLS approach 
handles the indeterminacy of the images well and DAMF 
operation remove the effect of noise and other 
indeterminant information, and preserve the determinant 
information in NS domain. 

4 Conclusion 

In this paper, a novel image segmentation approach is 
proposed based on neutrosophic filtering and level set 
theory. The image is transformed into neutrosophic set 
domain, and described using three membership sets (T, I 
and F). The directional alpha-mean filter (DAMF) is 
employed to reduce the image’s indeterminacy, and the 
image is segmented on the T subset after DAMF 
processing using level set algorithm. The experimental 
results show that the proposed method can perform better 
on clear images and noisy images, due to the fact that the 
proposed approach can handle the indeterminacy of the 
images well. The proposed method can be used widely in 
many image processing applications. 
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Abstract. The purpose of this paper is to define the so called 
"neutrosophic crisp points" and "neutrosophic crisp ideals", 

and obtain their fundamental properties.  Possible application 
to GIS topology rules are touched upon. 

 
Keywords: Neutrosophic Crisp Point, Neutrosophic Crisp Ideal. 

1 Introduction 

      Neutrosophy  has laid the foundation for a whole 
family of new mathematical theories, generalizing both 
their crisp and fuzzy counterparts. The idea of 
"neutrosophic set" was first given by Smarandache [12, 
13]. In 2012 neutrosophic operations have been 
investigated by Salama at el. [4 - 10]. The fuzzy set was 
introduced by Zadeh [13]. The intuitionstic fuzzy set was 
introduced by Atanassov [1, 2, 3]. Salama at el. [9] defined 
intuitionistic fuzzy ideal for a set and generalized the 
concept of fuzzy ideal concepts, first initiated by Sarker 
[11]. Here we shall present the crisp version of these 
concepts.  

2 Terminologies 

     We recollect some relevant basic preliminaries, and in 
particular the work of Smarandache in [12, 13], and 
Salama at el. [4 -10]. 

3  Neutrosophic Crisp Points  
     One can easily define a natural type of neutrosophic 
crisp set in X, called "neutrosophic crisp point" in X, 
corresponding to an element Xp ∈ : 

3.1 Definition  
   Let X be a nonempty set and Xp ∈ . Then the 

neutrosophic crisp point Np  defined by 

{ } { }c
N ppp ,,φ= is called  a  neutrosophic crisp point 

(NCP for short) in X, where NCP is a triple ({only one 
element in X}, the empty set,{the complement of the same 
element in X}).  
     Neutrosophic crisp points in X can sometimes be 
inconvenient when expressing a neutrosophic crisp set in X 
in terms of neutrosophic crisp points. This situation will 

occur if
321

,, AAAA = , and 1Ap ∉ , where 321 ,, AAA  

are three subsets such that φ=∩ 21 AA , 

φ=∩ 31 AA , φ=∩ 321 AA .  Therefore we define the 

vanishing neutrosophic crisp points as follows: 
 

 

3.2 Definition  

     Let  X  be  a nonempty set, and Xp ∈ a fixed element 

in X. Then the neutrosophic crisp set { } { }c
NN ppp ,,φ=  

is called “vanishing neutrosophic crisp point“ (VNCP for 
short) in X, where VNCP is a triple (the empty set,{only 
one element in X},{the complement of the same element in 
X}). 
 
3.1 Example 
      Let { }dcbaX ,,,=   and   Xbp ∈= . Then 

{ } { }dcabpN ,,,,φ=  Now we shall present some 

types of inclusions of a neutrosophic crisp point to a 
neutrosophic crisp set: 

3.3 Definition 

        Let { } { }c
N ppp ,,φ= be a NCP in X and 

321
,, AAAA =  a neutrosophic crisp set in X.  

(a) Np  is said to be contained in A  ( ApN ∈ for short) 

iff 1Ap ∈ .  

(b) Let NNp  be a VNCP in X, and 
321

,, AAAA =  a 

neutrosophic crisp set in X. Then NNp  is said to be 

contained in A  ( Ap
NN ∈ for short ) iff 3Ap ∉ . 

3.1 Proposition 

       Let { }JjD j ∈:  is a family of   NCSs in X. Then  

)( 1a
j

Jj
N Dp

∈
∩∈     iff jN Dp ∈ for each Jj ∈ . 

)( 2a
j

Jj
N Dp

N ∈
∩∈  iff jN Dp

N
∈ for each Jj ∈ . 

)( 1b
j

Jj
N Dp

∈
∪∈     iff Jj ∈∃  such that jN Dp ∈ . 
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)( 2b  
j

Jj
N Dp

N ∈
∩∈  iff Jj ∈∃  such that jN Dp

N
∈ . 

 
Proof 
  Straightforward.  

3.2 Proposition  

        Let  
321

,, AAAA =  and 
321

,, BBBB =  be two 

neutrosophic crisp sets in X. Then  

a) BA ⊆   iff   for each Np  we have 

BpAp NN ∈⇔∈  and for each 
NNp  we have 

BpAp
NNN ∈∈ . 

b)   BA =  iff   for each Np  we have 

BpAp NN ∈∈  and for each 
NNp   we 

have BpAp
NNNN ∈⇔∈ . 

Proof  
Obvious.  

3.4 Proposition 

    Let  
321

,, AAAA =  be a neutrosophic crisp set in X. 

Then  

{ }( ) { }( )AppAppA NNNNNN ∈∪∪∈∪= :: . 

Proof  

        It is sufficient to show the following equalities: 
{ }( ) { }( )ApAppA NNN ∈∪∪∈∪= ::}1 φ , φ=3A  

and { }( ) { }( )AppAppA NN
c

N
c ∈∩∩∈∩= :}{:}{3  , 

which are fairly obvious. 
 

3.4 Definition 

            Let YXf →: be a function. 

(a) Let Np  be a nutrosophic crisp point in X. Then 

the image of Np  under f , denoted by )( Npf , is 

defined by { } { }c
N qqpf ,,)( φ= , where )( pfq = . 

(b) Let NNp  be a VNCP in X. Then the image of 

NNp  under f , denoted by ),( NNpf  is defined by 

{ } { }c
NN qqpf ,,)( φ= , where )( pfq = .  

It is easy to see that )( Npf  is indeed a NCP in Y, 

namely NN qpf =)( , where )( pfq = , and it is 

exactly the same meaning of the image of a NCP under 
the function f .  

)( NNpf is also a VNCP in Y, namely  

,)( NNNN qpf = where )( pfq = . 

3.4 Proposition  

       Any NCS A in X can be written in the 
form

NNNNNN
AAAA ∪∪= , where { }AppA NN

N
∈∪= : , 

N
N
A φ=  and { }AppA NNNN

NNN
∈∪= : . It is easy to show 

that, if 
321

,, AAAA = , then c

N
AAxA 11 ,,, φ= and 

32 ,,, AAxA
NN

φ= . 

 
3.5 Proposition  
           Let YXf →:  be a function and 

321
,, AAAA =  

be a neutrosophic crisp set in X.  Then we 
have )()()()(

NNNNNN
AfAfAfAf ∪∪= . 

Proof 

         This is obvious from
NNNNNN

AAAA ∪∪= . 

 

4  Neutrosophic Crisp Ideal Subsets 

4.1 Definition 

       Let X be non-empty set, and L a non–empty family of 
NCSs. We call L a neutrosophic crisp ideal (NCL for 
short) on  X  if  

i. LBABLA ∈⊆∈  and  [heredity],  

ii. LL and  ∈∨∈∈ BABLA [Finite 
additivity]. 

A neutrosophic crisp ideal L is called a σ - 

neutrosophic crisp ideal if  { } LM
jj ≤

Ν∈
  , implies 

LM j
Jj

∈∪
∈

(countable additivity). 

      The smallest and largest neutrosophic crisp ideals on a 
non-empty set X are { }Nφ and the NSs on X. Also, 

cf NCL  ,LNC  are denoting the neutrosophic crisp 

ideals (NCL for short) of neutrosophic subsets having 
finite and countable support of X respectively. Moreover, 
if A is a nonempty NS in X, then { }ABNCSB ⊆∈ :  is an 

NCL on X. This is called the principal NCL of all NCSs,  
denoted by NCL A . 
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4.1 Remark  

i. If   LX N ∉ , then L is called neutrosophic proper 

ideal. 

ii. If  LX N ∈ , then L is called neutrosophic improper 

ideal. 

iii. LN ∈ϕ . 

4.1 Example 
     
Let { }cbaX ,,= , { } { } { }ccbaaA ,,,,= ,

{ } { } { } ,,, caaB = { } { } { } ,,, cbaC = { } { } { } ,,, ccaD =  

{ } { } { } ,,,, cbaaE = { } { } { } ,,,, ccaaF = { } { } { }ccbaG ,,,=
. Then the family { }GFEDBAL N ,,,,,, φ=  of 

NCSs is an NCL on X. 
 
4.2 Definition 

      Let L1 and L2 be two NCLs on X. Then L2 is said to be 

finer than L1, or L1 is coarser than L2, if L1 ≤ L2. If also L1 

≠ L2. Then L2 is said to be strictly finer than L1, or L1 is 
strictly coarser than L2. 

Two NCLs said to be comparable, if one is finer 
than the other. The set of all NCLs on X is ordered by the 
relation: L1 is coarser than L2; this relation is induced the 
inclusion in NCSs. 

     The next Proposition is considered as one of the useful 
result in this sequel, whose proof is 

clear.
321

,, jjjj AAAL = . 

4.1 Proposition 

      Let { }JjL j ∈:  be any non - empty family of 

neutrosophic crisp ideals on a set X. Then 
Jj

jL
∈

 and 


Jj

jL
∈

 are neutrosophic crisp ideals on X, where 

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL

∈∈∈∈
∪∩∩=∩ or

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL

∈∈∈∈
∪∪∩=∩  and 

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL

∈∈∈∈
∩∪∪=∪ or 

.,,
321 j

Jj
j

Jj
j

Jj
j

Jj
AAAL

∈∈∈∈
∩∩∪=∪  

 

          In fact, L is the smallest upper bound of the sets of 
the Lj in the ordered set of all neutrosophic crisp ideals on 
X. 

4,2 Remark  
     The neutrosophic crisp ideal defined by the single 

neutrosophic set 
Nφ  is the smallest element of the ordered 

set of all neutrosophic crisp ideals on X. 

4.2 Proposition 

     A neutrosophic crisp set
321

,, AAAA =   in the 

neutrosophic crisp ideal L on X is a base of L iff every 
member of L is contained in A. 

Proof 
(Necessity) Suppose A is a base of L. Then 

clearly every member of L is contained in A. 
(Sufficiency) Suppose the necessary condition 

holds. Then the set of neutrosophic crisp subsets in X 
contained in A coincides with L by the Definition 4.3. 

4.3 Proposition 
      A neutrosophic crisp ideal L1, with 

base
321

,, AAAA = , is finer than a fuzzy ideal L2 with 

base 
321

,, BBBB = , iff every member of B is 

contained in A. 

Proof 
        Immediate consequence of the definitions. 

4.1 Corollary  
       Two neutrosophic crisp ideals bases A, B, on X, are 
equivalent iff every member of A is contained in B and 
vice versa. 

4.1 Theorem 

       Let JjAAA jjj ∈= :,,
321

η  be a non-empty 

collection of neutrosophic   crisp subsets of X. Then there 
exists a neutrosophic crisp ideal 







 ∪⊆∈=

∈
j

Jj
AANCSAL :)(η  on X for some finite 

collection { }η⊆= njAj ,...,2,1: .  

Proof  

       It’s clear.  

4.3 Remark 

 The neutrosophic crisp ideal L(η) defined above is said to 

be generated by η and η is called sub-base of   L(η). 
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4.2 Corollary 

     Let L1 be a neutrosophic crisp ideal on X and A ∈ 
NCSs, then there is a  neutrosophic crisp ideal L2 which is 

finer than L1 and such that A∈ L2 iff 2LBA ∈∪  for each 

B∈ L1. 

  Proof      
      It’s clear. 

4.2 Theorem 

     If { }3,21 ,,, AAAL Nφ=  is a neutrosophic 

crisp ideals on X, then:  

i) [ ] { }c
N AAAL 3,21 ,,,φ=  is a 

neutrosophic crisp ideals on X. 

ii) { }c
N AAAL 1,23 ,,,φ=  is a 

neutrosophic crisp ideals on X. 
 

    Proof  

Obvious. 
 
4.3 Theorem 

      Let 1321
,, LAAAA ∈= ,  and  

,,, 2321
LBBBB ∈= where 1L  and 2L are 

neutrosophic crisp ideals on X, then A*B is a 
neutrosophic crisp set:  

332211
,, BABABABA ∗∗∗=∗ where 

{ }33221111
,, BABABABA ∩∩∩∪=∗ ,

{ }33221122
,, BABABABA ∩∩∩∩=∗ and 

{ }33221133
,, BABABABA ∩∩∩∩=∗ .  
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Abstract. Smarandache (1995) defined the notion of 

neutrosophic sets, which is a generalization of Zadeh's 

fuzzy set and Atanassov's intuitionistic fuzzy set. In this 

paper, we first develop some similarity measures of 

neutrosophic sets. We will present a method to calculate 

the distance between neutrosophic sets (NS) on the basis 

of the Hausdorff  distance. Then we will use this distance 

to generate a new similarity measure to calculate the 

degree of similarity between NS. Finally we will prove 

some properties of the proposed similarity measures.  

1 Introduction 
Smarandache introduced a concept of 

neutrosophic set which has been a mathematical tool 

for handling problems involving imprecise, 

indeterminacy, and inconsistent data [1, 2].The 

concept of similarity is fundamentally important in 

almost every scientific field. Many methods have 

been proposed for measuring the degree of similarity 

between fuzzy sets (Chen, [11]; Chen et al., [12]; 

Hyung, Song, & Lee, [14]; Pappis& Karacapilidis, 

[10]; Wang, [13]...). But these methods are unsuitable 

for dealing with the similarity measures of 

neutrosophic set (NS). Few researchers have dealt 

with similarity measures for neutrosophic set and 

single valued neutrosophic set  ([3, 4,17,18]), (i.e. the 

crisp neutrosophic sets, where the components T, I, F 

are all crisp numbers). Recently, Jun [3] discussed 

similarity measures on interval neutrosophic set 

(which an instance of NS) based on Hamming 

distance and Euclidean distance and showed how 

these measures may be used in decision making 

problems. Furthermore, A.A.Salama [4] defined the 

correlation coefficient, on the domain of neutrosophic 

sets, which is another kind of similarity measurement. 

In this paper we first extend the Hausdorff  distance 

to neutrosophic set which plays an important role in 

practical application, especially in many visual tasks, 

computer assisted surgery and so on. After that a new 

series of similarity measures has been proposed for 

neutrosophic set using different approaches. 

Similarity measures have extensive application in 

several areas such as pattern recognition, image 

processing, region extraction, psychology [5], 

handwriting recognition [6], decision making [7], 

coding theory etc. 

This paper is organized as follows: Section2 

briefly reviews the definition of Hausdorff distance 

and the neutrosophic set. Section 3 presents the new 

extended Hausdorff distance between neutrosophic 

sets. Section 4 provides the new series of similarity 

measure between neutrosophic sets, some of its 

properties are discussed. In section 5 a comparative 

study was done. Finally the section 6 outlines some 

conclusions. 

2 Preliminaries 
In this section we briefly review some definitions 

and examples which will be used in the rest of the 
paper.  

2.1Definition: Hausdorff  Distance 
The Hausdorff  distance (Nadler, 1978)  is  the 

maximum distance of a set to the nearest point in the 

other set. More formal description is given by the 

following  

Given two finite sets A = {a1, ..., ap} and B = {b1, ..., 

bq}, the Hausdorff  distance H (A, B) is defined as:  

H (A, B) = max {h (A, B), h (B, A)}                           

(1) 

where  

H (A, B) = max min d (a, b)                         (2)                                                                

a∈A b∈B 

a and b are elements of sets A and B 

respectively; d (a, b) is any metric between these 

elements.  
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The two distances h (A, B) and h (B, A) are 

called directed Hausdorff  distances.  

The function h (A, B) (the directed Hausdorff 

distance from A to B) ranks each element of A based 

on its distance to the nearest element of B, and 

then the largest ranked such element (the most 

mismatched element of A) specifies the value of 

the distance. Intuitively, if h(A, B) = c, then each 

element of A must be within distance c of some 

element of B, and there also is some element of A 

that is exactly distance c from the nearest element 

of B (the most mismatched element).  In general h 

(A, B) and h (B, A) can attain very different values 

(the directed distances are not symmetric). 

Let us consider the real space R, for any two 

intervals A= [a1,a2] and B= [b1,b2], the Hausdorff 

distance H(A,B) is given by 

H (A, B) =max { , }        (3) 

2.2 Definition (see [2]). Let U be an universe of 

discourse  then the neutrosophic set A is an object 

having the form A = {< x: TA(x),IA(x),FA(x) >,x ∈ U}, 

where the functions T, I, F : U→]−0,1+[  define 

respectively the degree of membership (or Truth) , the 

degree of indeterminacy, and the degree of non-

membership (or Falsehood) of the element x ∈ U to the 

set A with the condition.  
−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.                     (4) 

From philosophical point of view, the 

neutrosophic set takes the value from real standard or 

non-standard subsets of ]−0,1+[. So instead of ]−0,1+[ 

we need to take the interval [0,1] for technical 

applications, because ]−0,1+[will be difficult to apply 

in the real applications  such as in scientific and 

engineering problems.  

2.3 Definition (see [18] ): Let X be a space of points

(objects) with generic elements in X denoted by x 

(Wang et al., 2010). An SVNS A in X is 

characterized by a truth-membership function TA(x), 

an indeterminacy-membership function IA(x), and a 

falsity-membership function FA(x) for each point x in 

X, TA(x), IA(x), FA(x) [0, 1].  

When X is continuous, an SVNS A can be written 

as 

 A=  (5) 

When X is discrete, an SVNS A can be written as 

A=  (6)      

2.4 Definition (see [2,18]). A neutrosophic set or 

single valued neutrosophic set (SVNS ) A is 

contained in another neutrosophic set B i.e. A ⊆ B if 

∀x ∈ U, TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x). 

2.5 Definition (see [2]). The complement of a 

neutrosophic set A is denoted by Ac and is defined as 

TA
c
(x) = FA(x), IA

c
(x) = IA(x), and  

F A
c
(x) = TA(x) for every x in X. 

A complete study of the operations and application 

of neutrosophic set can be found in [1] [2] [18]. 

In this paper we are concerned with neutrosophic 

sets whose TA, IA and FA values are single points in 

[0, 1] instead of subintervals/subsets in [0, 1]. 

3 Extended Hausdorff Distance Between Two 

Neutrosophic Sets
Based on the Hausdorff  metric, Eulalia Szmidt 

and Janusz Kacprzyk  defined a new distance 

between intuitionistic fuzzy sets and/or interval-

valued fuzzy sets in[8], taking into account three 

parameter representation (membership, non-

membership values, and the hesitation margins) of A-

IFSs which fulfill the properties of the Hausdorff 

distances. Their definition is defined by: 

 (7) 

where A = {< x, µA(x), νA(x), πA(x) >} and B = 

{< x, µB(x), νB(x), πB(x)>}. 

The terms and symbols used in [8] are changed so 

that they are consistent with those in this section. 

In this paper we are interested in extending the 

Hausdorff distance formulation in constructing a new 

distance for neutrosophic set due to its simplicity in 

the calculation. 

Let X={x1,x2, …, xn} be a discrete finite set. 

Consider a neutrosophic set A in X, where TA(xi), 

IA(xi), FA(xi)  [0, 1], for every xi   X, represent its 

membership, indeterminacy, and non-membership 

values respectively denoted  by A = {< x, TA(xi) , IA(xi),

FA(xi) >}.  

Then we propose a new distance between A  NS 

and B  NS defined by 

   (8) 

Where = H (A, B) denote the 

extended Hausdorff  distance between two 

neutrosophic sets A and B. 

Let A, B and C be three neutrosophic sets. For all 

xi X we have: 

 = H (A, B) 

=

     (9) 

The same between A and C are written as: 

For all xi X 

H (A, C) 

=
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     (10) 

and between B and C is written as: 

For all xi X  

H (B , C) 
=

       (11) 

3.1 Proposition: 

The above defined distance   between NS 

A and B satisfies the following properties (D1-D4): 

(D1)  ≥ 0.           (12) 

(D2)  =0 if and only if A = B; for all A, B 

 NS. (13) 

(D3)  = .               (14)     

(D4) If A⊆B⊆C, C is an NS in X, then 

 (15) 

 And 

 (16) 

Remark: Let A, B  NS, A  B if and only if , for 

all xi in X 

(17)
It is easy to see that the defined measure 

satisfies the above properties (D1)-(D3). Therefore, we 

only prove (D4). 

Proof of (D4) for the extended  Hausdorff  distance 

between two  neutrosophic  sets. Since 

A  B  C implies  ,  for all xi in X 

We prove that 

(18)     

α - If 

 (19)      
Then 

H (A, C) =  but we have 

(i)   For all xi in X,  

(ii) (20) 

 And ,  X   

(21) 

(iii) X ,  

       

(22) 

  And ,for all xi in X  

(23) 

On the other hand we have,  X   

(iv)

(24) 
  and 

Combining  (i), (ii), and (iii) we obtain 

Therefore, for all xi in X 

And 

That is 
 and . 

 (25) 

β - If

(26)

Then 

H (A, C) =  but we have  X     

  (27) 

(a)   (28) 
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And              

(b) 

(29) 

  And        (30) 

On the other hand we have  X     : 

(c)  and   (31) 

Combining (a) and (c) we obtain: 

Therefore,     X      

And 

That is 

and 

      

(32) 

 -  If  

(33)

Then 

H (A, C) =  but we have for all xi in X                                                                   

(34) 

(a) 

(35)    

and      ( 

36)                                                       

(b) X 

(37) 

and  X

(38)

On the other hand we have for all xi in X 

(c)   X  

(39) 

and 

(40)

Combining (a), (b), and (c) we obtain 

Therefore, for all xi in X 

. 

And 

That is 

and 

. 

(41) 

From α, β , and , we can obtain the property (D4). 

3.2 Weighted Extended Hausdorff  Distance 
Between Two Neutrosophic Sets. 

In many situations the weight of the 

element xi  X should be taken into account. 

Usually the elements have different 

importance. We need to consider the weight 

of the element so that we have the following 

weighted distance between NS. Assume that 

the weight of xi  X is wi where X={x1, x2,.., 

xn}, wi  [0,1], i={1,2,3,.., n} and 1. 

Then the weighted extended Hausdorff 

distance between NS A and B is defined as: 

    (42) 

It is easy to check that  satisfies the four 

properties D1-D4 defined above. 

4 Some new similarity measures for neutro-

sophic sets
The distance measure between two NS is 

used in finding the similarity between 

neutrosophic sets. We found in the literature 

different similarity measures, and we extend 

them to neutrosophic sets (NS), several of 

them defined below: Liu [9] also gave an 

axiom definition for the similarity measure of 

fuzzy sets, which also can be expressed for 

neutrosophic sets (NS) as follow: 
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4.1.Definition: Axioms of a Similarity Measure 

 A mapping S:NS(X) NS(X) [0,1], 

NS(X) denotes the set of all NS in 

X={x1,x2,…,xn}, S(A, B) is said to be the 

degree of similarity between A  NS and B  

NS, if S(A,B) satisfies the properties of 

conditions (P1-P4): 

(P1) S (A, B) = S (B, A).  (43)                                                 

(P2) S(A,B) = (1,0,0) =  .If  A = B  for all 

A,B  NS.      (44) 

(P3)  0,  0, 

0.      (45)                                                                            

(P4) If A⊆B⊆C for all A, B, C  NS, then S 

(A, B) S (A, C) and S (B, C)  S (A, C). 

 (46) 

Numerical Example: 

Let  A  B   C. with TA  TB  TC and 

IA IB IC and FA FB FC for each xi  NS. 

For example: 

A= { x1 (0.2, 0.5, 0.6); x2 (0.2, 0.4, 0.4) } 

B= { x1 (0.2, 0.4, 0.4); x2 (0.4, 0.2, 0.3) } 

C= { x1 (0.3, 0.3, 0.4); x2 (0.5, 0.0, 0.3) } 

In the following we define a new similarity 

measure of neutrosophic set and discuss its 

properties. 

4.2 Similarity Measures Based on the Set –
Theoretic Approach. 

In this section we extend the similarity 

measure for intuitionistic and fuzzy set 

defined by Hung and Yung [16] to 

neutrosophic set which is based on set-

theoretic approach as follow.  

4.2.Definition: Let A,B be two neutrosophic 

sets in X={x1,x2,.., xn}, if A = {< x, TA(xi), 

IA(xi), FA(xi) >} and B= {< x, TB(xi), IB(xi), 

FB(xi) >} are neutrosophic values  of X in A 

and B respectively, then the similarity 

measure between the neutrosophic sets A and 

B can be evaluated by the function 

For all xi in X 

/n 

(47) 

/n 

(48) 

)/n 

(49) 

and 

(50) 

where 

 denote the degree of similarity 

(where we take only the T's). 

 denote the degree of indeterminate 

similarity (where we take only the I's). 

 denote degree of nonsimilarity 

(where we take only the F's). 

Min  denotes the minimum between each 

element of A and B. 

Max denotes the minimum between each 

element of A and B. 
Proof of (P4) for the (1). 

Since A⊆B⊆C implies,  for all xi in X 

Then, for all xi in X 

 (51) 

 (52) 

 (53) 

Therefore, for all xi in X 

    (54) 

(since  ) 

Furthermore, for all xi in X 

    (55) 

Or 

  or     (56) 

(since  ) 

Inequality (53) implies that, for all xi in X 

 (57) 

From the inequalities (54) and (57), the property 

(P4) for   is proven. 

In a similar way we can prove that  and 

. 

We will to prove that . For all 

xi  X we have: 

=

(58) 

Since 
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Similarly we prove  for all xi 

in X  

(59) 

=

(60) 

Since 

Then   S(A, C) S(A, B) where 

S(A,C)=( , , ) and 

S (A, B) = ( , , ). 

(61) 
In a similar way we can prove that S (B, C)  S (A, 

C). If A⊆B⊆C therefore S (A, B) satisfies (P4) 

of definition 4.1. 

By applying (50), the degree of similarity 

between the neutrosophic sets (A, B), (A, C) 

and (B, C) are: 

S(A, B) = = (0.75, 0.35, 

0.30) 

S (A, C) = = (0.53, 0.7, 

0.30) 

S (B, C) = = (0.73, 

0.63, 0) 

Then  (49) satisfies property P4: S(A, C)  S(A, 

B) and S(A, C)  S(B, C). 

Usually, the weight of the element xi  X should be 

taken into account, then we present the following 
weighted similarity between NS. Assume that the 

weight of xi  X={1,2,…,n} is wi (i=1,2,…, n) when 

wi  [0,1], . 

Denote /n 

(62) 

/n 

(63) 

)/n 

(64) 

and   

(65) 

It is easy to check that  satisfies the four 

properties P1-P4 defined above. 

4.3 Similarity Measure Based on the Type1 
Geometric Distance Model  

In the following, we express the definition 

of similarity measure between fuzzy sets 

based on the model of geometric distance 

proposed by Pappis and Karacapilidis in [10] 

to similarity of neutrosophic set. 

4.3.Definition: Let A,B be two neutrosophic 

sets in X={x1, x2,..., xn}, if A = {< x, TA(xi), 

IA(xi), FA(xi) >} and B= {< x, TB(xi), IB(xi), 

FB(xi) >} are neutrosophic values  of X in A 

and B respectively, then the similarity 

measure between the neutrosophic sets A and 

B can be evaluated by the function    

For all xi in X 

(66) 

(67) 

(68) 

and 

(69) 

We will prove this similarity measure 
satisfies the properties 1-4 as above. The 
property (P1) for the similarity measure (69) 
is obtained directly from the definition 4.1. 

Proof: obviously, (68) satisfies P1-P3-P4 of 

definition 4.1. In the following L (A, B) will be proved 

to satisfy (P2) and (P4). 

   Proof of (P2) for the (69) 

     For all xi in X 

First of all, 

     (70) 

(71) 

(72) 

Then  = (1, 

0, 0) if A=B for all A, B  NS. 

(73) 

   Proof of P3 for the (69) is obvious. 

By applying (69) the degree of similarity 

between the neutrosophic sets (A, B), (A, C) 

and (B, C) are: 
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L (A, B) = = (0.8, 0.2, 

0.17). 

L (A, C) = = (0.67, 0.5, 

0.17). 

L (B, C) = = (0.85, 0.33, 

0). 
The result indicates that the degree of 

similarity between neutrosophic sets A and B 

 [0, 1]. Then (69) satisfies property P4: L(A, 

C) L(A, B) and L(A, C)  L(B, C).

4.4 Similarity Measure Based on the Type 2 
Geometric Distance model  

In this section we extend the similarity measure 
proposed by Yang and Hang [16] to neutrosophic set 
as follow: 

4.4.Definition: Let A, B be two neutrosophic 
set in X={x1,x2,.., xn}, if A = {< x, TA(xi), 
IA(xi), FA(xi) >} and B= {<x, TB(xi), IB(xi), 
FB(xi) >} are neutrosophic values  of X in A 
and B respectively, then the similarity 
measure between the neutrosophic set A and 
B can be evaluated by the function: 

For all xi in X 

 (A, B) = .          

(74)                                                                              

 (A, B) =  .         

(75)                                                                            

 (A, B) = . 

And 

  for 

all i={x1,x2 ,.., xn}   (76) 

The proofs of the properties P1-P2-P3 in 
definition 4.1 (Axioms of a Similarity Measure) of 
the similarity measure in definition 4.4 are obvious. 

Proof of (P4) for the (76). 

Since for all xi in X 

Then for all xi in X 

(77) 

+ 

) 

Then (A, C) (B, C).                       (78) 

Similarly, (A, C) (A, B) can be proved 

easily. 

For (A, C) (B, C) and (A, C) (B, 

C) the proof is easy.

Then by the definition 4.4, (P4) for definition 4.1,

is satisfied as well. 
By applying (76), the degree of similarity 

between the neutrosophic sets (A, B), (A, C) 
and (B, C) are: 

M(A, B)=(  (A,B),  (A,B),  (A,B))=(0.95 , 0.075 , 

0.075) 

M(A, C)= ( (A,C), (A,C), (A,C))=(0.9, 0.15 , 

0.075) 

M(B, C)= (  (B,C),  (B,C),  (B,C))=(0.9, 0.075 , 0) 

Then (76) satisfies property P4: 
 M (A,  C)  M (A, B) and M (A,  C)  M (B, C). 

(79) 

Another way of calculating similarity (degree) of 
neutrosophic sets is based on their distance. There are 
more approaches on how the relation between the two 
notions in form of a function can be expressed. Two 
of them are presented below (in section 4.5 and 4.6).  

4.5 Similarity Measure Based on the Type3 
Geometric Distance Model. 

In the following we extended the similarity 
measure proposed by Koczy in [15] to 

neutrosophic set (NS). 

4.5.Definition: Let A, B be two neutrosophic 

sets in X={x1,x2,.., xn}, if A = {< x, TA(xi), 

IA(xi), FA(xi) >} and B= {< x, TB(xi), IB(xi), 

FB(xi) >} are neutrosophic values  of x in A 

and B respectively, then the similarity 

measure between the neutrosophic sets A and 

B can be evaluated by the function 

  denotes the degree of 

similarity. 

     (80) 

  denotes the degree of 

indeterminate similarity.  (81) 
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. 

(83) 

. 

(84) 

. 

(85) 

and   H (A, B) = ( , ). 

(86)     

By applying the (86) in  numerical example we 
obtain: 

= (0.2, 0.2, 0.2), then H (A, B) = (0.83, 

0.17, 0.17). 

= (0.3, 0.4, 0.1), then H (A, C) = (0.76, 

0.29, 0.17). 

= (0.1, 0.2, 0), then H (B, C) = (0.90, 

0.17, 0). 

It can be verified that H (A, B) also has the 
properties (P1)-(P4). 

4.6 Similarity Measure Based on Extended 
Hausdorff  Distance  

It is well known that similarity measures 

can be generated from distance measures. 

Therefore, we may use the proposed distance 

measure based on extended Hausdorff 

distance to define similarity measures. Based 

on the relationship of similarity measures and 

distance measures, we can define a new 

similarity measure between NS A and B as 

follows: 

 (87)  

Where represent the extended 

Hausdorff  distance between  neutrosophic sets 

(NS) A and  B. 
According to the above distance properties 

(D1-D4).It is easy to check that the similarity 
measure (87) satisfies the four properties of 
axiom similarity defined in 4.1 

By applying the (87) in numerical example we 
obtain: 

0.8 

0.7 

0.85 

Then (5) satisfies property P4: 
N(A, C)  N(A, B) and N(A, C)  N(B, C) 

Remark: It is clear that the larger the value of 

N(A, B),  the more the similarity between NS A and 

B. 

Next we define similarity measure between NS A 

and B using a matching function. 

4.7 Similarity Measure of two Neutrosophic 
Sets Based on Matching Function. 

Chen [11] and Chen et al. [12] introduced a 

matching function to calculate the degree of similarity 

between fuzzy sets. In the following, we extend the 

matching function to deal with the similarity measure 

of NS. 

4.7 Definition Let F and E be two neutrosophic 

sets over U. Then the similarity between them, 

denoted by K (F, G) or KF, G   has been defined based 

on the matching function as: 

For all xi in X 

        (88) 

Considering the weight wj [0, 1] of each 

element xi X, we get the weighting similarity 

measure between NS as: 

For all xi in X 

  (89) 

If each element xi∈ X has the same importance, 

then (89) is reduced to (88). The larger the value 

of  the more the similarity between F and G. 

Here  has all the properties described as listed 

in the definition 4.1. 
By applying the (88) in  numerical example we 

obtain: 

0.75, 0.66, and 

0.92 

Then (87) satisfies property P4: K(A, C)  K(A, 

B) and K(A, C)  K(B, C) 

2 Comparision of various similarity measures
In this section, we make a comparison 

among similarity measures proposed in the 

paper. Table 1 show the comparison of 

various similarity measures between two 

neutrosophic sets respectively. 

A, B A, C B, C 

 (50) (0.75, 0.35, 0.3) (0.53, 0.7, 0.3) (0.73, 0.63, 

0) 

 (69) (0.8, 0.2,0.17) (0.67, 0.5, 0.17) (0.85, 0.33, 
0) 

 (76) (0.95, 0.075, 

0.075) 

(0.9, 0.15, 0.075) (0.9, 0.075, 

0) 

 (86) (0.83, 0.17, 0.17) (0.76, 0.29, 0.17) (0.9, 0.17, 0) 

 (87) 0.8 0.7 0.85 

 (88) 0.75 0.66 0.92 

Table 1: Example results obtained from the similarity measures 

between neutrosophic sets A , B and C. 

Each similarity measure expression has its own 

measuring. They all evaluate the similarities in 

neutrosophic sets, and they can meet all or most of  the 

properties of similarity measure. 
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 (87) 0.8 0.7 0.85 

 (88) 0.75 0.66 0.92 

Table 1: Example results obtained from the similarity measures 

between neutrosophic sets A , B and C. 

Each similarity measure expression has its own 

measuring. They all evaluate the similarities in 

neutrosophic sets, and they can meet all or most of  the 

properties of similarity measure. 

In definition 4.1, that is P1-P4. It seems from the 

table above that from the results of similarity measures 

between neutrosophic sets  can be  classified in two 

type of similarity measures: the first type which we 

called “crisp similarity measure” is illustrated by 

similarity measures (N and K) and the second type 

called  “neutrosophic similarity measures” illustrated 

by similarity measures (S, L, M and H). The 

computation of measure H , N and S are much simpler 

than that of  L, M and K.  

Conclusions 
In this paper we have presented a new distance called 

"extended Hausdorff distance for neutrosophic sets" or 

"neutrosophic Hausdorff distance". Then, we defined a new 

series of similarity measures to calculate the similarity 

between neutrosophic sets. It’s hoped that our findings will 

help enhancing this study on neutrosophic set for 

researchers. 
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Abstract. The interval neutrosophic set (INS) can be 
easier to express the incomplete, indeterminate and 
inconsistent information, and TOPSIS is one of the most 
commonly used and effective method for multiple 
attribute decision making, however, in general, it can 
only process the attribute values with crisp numbers. In 
this paper, we have extended TOPSIS to INS, and with 
respect to the multiple attribute decision making 
problems in which the attribute weights are unknown and 

the attribute values take the form of INSs, we proposed 
an expanded TOPSIS method. Firstly, the definition of 
INS and the operational laws are given, and distance 
between INSs is defined. Then, the attribute weights are 
determined based on the Maximizing deviation method 
and an extended TOPSIS method is developed to rank the 
alternatives. Finally, an illustrative example is given to 
verify the developed approach and to demonstrate its 
practicality and effectiveness. 

Keywords: interval neutrosophic set; TOPSIS; multiple attribute decision making; Maximizing deviation method; Hamming 
distance. 

1 Introduction 

In real decision making, there exist many multi-criteria 
decision-making (MCDM) problems. Because of the 
ambiguity of people's thinking and the complexity of 
objective things, the attribute values of the MCDM 
problems cannot always be expressed by crisp numbers, 
and it maybe is easier to be described by fuzzy 
information. The fuzzy set (FS) theory, which is proposed 
by Zadeh [1], is one of the most effective tools for 
processing fuzzy information; however, its disadvantage is 
that it only has a membership, and is unable to express 
non-membership. On the basis of FS, Atanassov [2,3] 
proposed the intuitionistic fuzzy set (IFS) by adding a non-
membership function, i.e., there are membership (or called 
truth-membership) ( )AT x  and non-membership (or called 
falsity-membership) ( )AF x  in intuitionistic fuzzy sets, and 
they satisfy the conditions 

( ), ( ) [0,1]A AT x F x ∈ and 0 ( ) ( ) 1A AT x F x≤ + ≤ . Further, 
Atanassov and Gargov [4], Atanassov [5] proposed the 
interval-valued intuitionistic fuzzy set (IVIFS) by 
extending the truth-membership function and falsity-
membership function to interval numbers. IFSs and IVIFSs 
can only handle incomplete information not the 
indeterminate information and inconsistent information. In 
IFSs, the indeterminacy is 1- ( )- ( )A AT x F x  by default. 
However, in practice, the decision information is often 

incomplete, indeterminate and inconsistent information. In 
order to process this kind of information, Smarandache [6] 
further proposed the neutrosophic set (NS) by adding an 
independent indeterminacy-membership on the basis of 
IFS, which is a generalization of fuzzy set, interval valued 
fuzzy set, intuitionistic fuzzy set, and so on. In NS, the 
indeterminacy is quantified explicitly and truth-
membership, indeterminacy membership, and false-
membership are completely independent.  

   Recently, NSs have become an interesting research 
topic and attracted widely attentions. Wang et al. [7] 
proposed a single valued neutrosophic set (SVNS) from 
scientific or engineering point of view, which is an 
instance of the neutrosophic set. Ye [8] proposed the 
correlation coefficient and weighted correlation coefficient 
for SVNSs, and he have proved that the cosine similarity 
degree is a special case of the correlation coefficient in 
SVNS. Ye [8a] proposed Single valued neutrosophic cross-
entropy for multicriteria decision making problems. 
Similar to IVIFS, Wang et al. [9] proposed interval 
neutrosophic sets (INSs) in which the truth-membership, 
indeterminacy-membership, and false-membership were 
extended to interval numbers, and discussed some 
properties and comparing method of INSs. Ye [10] 
proposed the similarity measures between INSs based on 
the Hamming and Euclidean distances, and developed a 
multicriteria decision-making method based on the 
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similarity degree. However, so far, there has been no 
research on extending TOPSIS for INSs.  

TOPSIS (The Order Performance technique based on 
Similarity to Ideal Solution), which was proposed by 
Hwang and Yoon [11] is one of popular decision making 
methods. In last 20 years, many researchers have extended 
this method and proposed different modifications, and it 
has been applied usefully in the practice to solve many 
problems in different fields for decision makers.  
Chen [12] extended the TOPSIS for group decision making 
problems in which the importance weights of various 
criteria and ratings of alternatives with respect to these 
criteria take the form of linguistic variables. The key of the 
proposed method is that these variables are transformed 
into triangular fuzzy numbers. Jin et al. [13] extended 
TOPSIS method to MADM problems in which the 
attribute values are the intuitionistic fuzzy sets, and applied 
it to the evaluation of human resources. Wei and Liu [14] 
extended TOPSIS method to the uncertain linguistic 
variables, and applied it to the risk evaluation of High-
technology. Liu [15] proposed an extended TOPSIS 
method to resolve the multi-attribute decision-making 
problems in which the attribute weights and attribute 
values are all interval vague value. Firstly, the ideal and 
negative ideal solutions are calculated based on the score 
function. Then the distance between the interval Vague 
values is defined, and the distances between each 
alternative and the ideal and negative ideal solutions are 
calculated. The relative closeness degree is calculated by 
TOPSIS method, and then the ordering of the alternatives 
is confirmed according to the relative closeness degree. Liu 
and Su [16] proposed an extended TOPSIS based on 
trapezoid fuzzy linguistic variables, and gave the  method 
for determining attribute weights. Liu [17] proposed an 
extended TOPSIS method for multiple attribute group 
decision making based on generalized interval-valued 
trapezoidal fuzzy numbers. Mohammadi et al. [18] used 
fuzzy group TOPSIS method for selecting adequate 
security mechanisms in e-business processes. Verma et al. 
[19] proposed an interval-valued intuitionistic fuzzy 
TOPSIS method for solving a facility location problem.  
     Obviously, because TOPSIS is an important decision 
making method, and the interval neutrosophic set can be 
easier to express the incomplete, indeterminate and 
inconsistent information, it is important to establish an 
extended TOPSIS method based on  INS.  In this paper, we 
will establish an extended TOPSIS method for the multiple 
attribute decision making problems in which the attribute 
weights are unknown and attribute values take the form of 
INSs. In order to do so, the remainder of this paper is 
shown as follows. In section 2, we briefly review some 
basic concepts and operational rules of INS and propose 
the Hamming distance and the Euclidian distance between 
interval neutrosophic values (INVs) or interval 
neutrosophic sets, and give a proof of Hamming distance 

and a calcualtion example. In Section 3, we propose a 
method for determining the attribute weights based on the 
Maximizing deviation method and extend the TOPSIS 
method  to rank the alternatives, and give the detail 
decision steps. In Section 4, we give an example to 
illustrate the application of proposed method, and compare 
the developed method with the existing method. In Section 
5, we conclude the paper. 

2 The Interval Neutrosophic Set 

2.1 The Definition of the Interval Neutrosophic Set 

Definition 1 [6]. Let X be a universe of discourse, with a 
generic element in X denoted by x. A neutrosophic set 
(NS) A in X is  

{ ( ), ( ), ( ) }A A AA x T x I x F x x X= ∈( ) |     (1) 

where, AT , AI and AF are the truth-membership 

function, indeterminacy-membership function, and the 
falsity-membership function, respectively. 

( ), ( )A AT x I x and ( )AF x  are real standard or nonstandard 

subsets of 0 ,1− +   .  

There is no restriction on the sum of 

( ), ( )A AT x I x and ( )AF x , so

0 ( ) ( ) ( ) 3A A AT x I x F x− +≤ + + ≤ . 

The NS was presented from philosophical point of 
view. Obviously, it was difficult to use in the actual 
applications. Wang [7] further proposed the single valued 
neutrosophic set (SVNS) from scientific or engineering 
point of view, which is a generalization of the existing 
fuzzy sets, such as classical set, fuzzy set, intuitionistic 
fuzzy set and paraconsistent sets etc., and it was defined as 
follows. 
Definition 2 [7]. Let X be a universe of discourse, with a 
generic element in X denoted by x. A single valued 
neutrosophic set A in X is 

{ ( ), ( ), ( ) }A A AA x T x I x F x x X= ∈( ) |     (2) 

where, AT , AI and AF are the truth-membership 

function, indeterminacy-membership function, and the 
falsity-membership function, respectively. For each point x 
in X, we have ( ), ( ), ( ) [0,1]A A AT x I x F x ∈ , 

and 0 ( ) ( ) ( ) 3A A AT x I x F x≤ + + ≤ .  

In the actual applications, sometimes, it is not easy to 
express the truth-membership, indeterminacy-membership 
and falsity-membership by crisp values, and they may be 
easier to be expressed by interval numbers. Wang et al. [9] 
further defined interval neutrosophic sets (INSs) shown as 
follows. 
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Definition 3 [7]. Let X be a universe of discourse, with a 
generic element in X denoted by x. A interval neutrosophic 
set A in X is  

{ ( ), ( ), ( ) }A A AA x T x I x F x x X= ∈( ) |     (3) 

where, AT , AI and AF are the truth-membership function, 

indeterminacy-membership function, and the falsity-
membership function, respectively. For each point x in X, 
we have ( ), ( ), ( ) [0,1]A A AT x I x F x ⊆ , 

and 0 sup( ( )) sup( ( )) sup( ( )) 3A A AT x I x F x≤ + + ≤ .  

For convenience, we can
use ([ , ],[ , ],[ , ])L U L U L Ux T T I I F F=  to represent a value in 

INS, and call interval neutrosophic value (INV). 

2.2 The Operational Rules of the Interval 
Neutrosophic Values 

Definition 4. Let 1 1 1 1 1 1([ , ],[ , ],[ , ])L U L U L Ux T T I I F F= and 

2 2 2 2 2 2([ , ],[ , ],[ , ])L U L U L Uy T T I I F F= be two INVs, then the 

operational rules are defined as follows. 
(1) The complement of x  is  

1 1 1 1 1 1([ , ],[1 ,1 ],[ , ])L U U L L Ux F F I I T T= − −     (4) 

(2) 
(

)
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, ,

, , ,

L L L L U U U U

L L U U L L U U

x y T T T T T T T T

I I I I F F F F

 ⊕ = + − + − 

      
  (5) 

(3)
(

)
1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

[ , ],[ ,

], ,

L L U U L L L L U U

U U L L L L U U U U

x y T T T T I I I I I I

I I F F F F F F F F

⊗ = + − + −

       + − + − 
    (6) 

(4) 
(

)
1 1

1 1 1 1

1 (1 ) ,1 (1 ) ,

( ) , ( ) , ( ) , ( ) 0

L n U n

L n U n L n U n

nx T T

I I F F n

 = − − − − 

      >   
 (7) 

(5) 
(

)
1 1 1 1

1 1

( ) , ( ) , 1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) 0

n L n U n L n U n

L n U n

x T T I I

F F n

   = − − − −   

 − − − −    > 
   (8) 

2.2 The Distance between two INSs 

In the following, we will discuss the distance between 
two INSs. 
Definition 5. Let 1 1 1 1 1 1([ , ],[ , ],[ , ])L U L U L Ux T T I I F F= ,  

2 2 2 2 2 2([ , ],[ , ],[ , ])L U L U L Uy T T I I F F= and 

3 3 3 3 3 3([ , ],[ , ],[ , ])L U L U L Uz T T I I F F= be three INVs, S be a 

collection of all INVs, and f  be a mapping with 

ˆ ˆ:f S S R× → . If ( ),d x y meets the following

conditions. 

(1) ( )0 , 1d x y≤ ≤ , ( ), 0d x x =

(2) ( ) ( ), ,d x y d y x=

(3) ( ) ( ) ( ), , ,d x y d y z d x z+ ≥

Then we can call ( ),d x y  a distance between

twoINVs x and y . 

Definition 6. Let 1 1 1 1 1 1([ , ],[ , ],[ , ])L U L U L Ux T T I I F F= ,  

and 2 2 2 2 2 2([ , ],[ , ],[ , ])L U L U L Uy T T I I F F=  be two INVs, then  

(1) The Hamming distance between x  and y  is defined 

as follows 

( ) (
)

1 2 1 2 1 2 1 2

1 2 1 2

1
,

6
L L U U L L U U

H

L L U U

d x y T T T T I I I I

F F F F

= − + − + − + −

  + − + −

(9) 

Proof. 
Obviously, (9) can meet the above conditions (1) and 

(2) in Definiation 5. 
    In the following, we will prove (9) meets condition (3). 

For any an INV 3 3 3 3 3 3([ , ],[ , ],[ , ])L U L U L Uz T T I I F F= , we 

have 

( ) (
)

(

)

1 3 1 3 1 3 1 3

1 3 1 3

1 2 2 3 1 2 2 3

1 2 2 3 1 2 2 3

1 2 2 3 1 2 2 3

1 2 2 3

1
,

6

1

6

1

6

L L U U L L U U
H

L L U U

L L L L U U U U

L L L L U U U U

L L L L U U U U

L L L

d x z T T T T I I I I

F F F F

T T T T T T T T

I I I I I I I I

F F F F F F F F

T T T T

= − + − + − + −

 + − + −

= − + − + − + −

  + − + − + − + −

  + − + − + − + −

≤ − + −(

)

1 2 2 3

1 2 2 3 1 2 2 3

1 2 2 3 1 2 2 3

L U U U U

L L L L U U U U

L L L L U U U U

T T T T

I I I I I I I I

F F F F F F F F

+ − + −

  + − + − + − + −

  + − + − + − + −

and  
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(

)
(

)
(

1 2 2 3 1 2 2 3

1 2 2 3 1 2 2 3

1 2 2 3 1 2 2 3

1 2 1 2 1 2 1 2

1 2 1 2

2 3 2 3 2 3 2 3

1

6

1

6

1

6

L L L L U U U U

L L L L U U U U

L L L L U U U U

L L U U L L U U

L L U U

L L U U L L U

T T T T T T T T

I I I I I I I I

F F F F F F F F

T T T T I I I I

F F F F

T T T T I I I I

− + − + − + −

  + − + − + − + −

  + − + − + − + −

= − + − + − + −

  + − + −

  + − + − + − + −

)2 3 2 3

( , ) ( , )

U

L L U U

H H

F F F F

d x y d y z

  + − + −

= +

i.e., ( ) ( ) ( ), , ,H H Hd x y d y z d x z+ ≥ . 

 (2) The Euclidian distance between x  and is defined 
as follows. 

( )
( ) ( )( ( )
( ) ( ) ( ) )

2 2 2

1 2 1 2 1 2

2 2 2

1 2 1 2 1 2

1

6,

L L U U L L

E
U U L L U U

T T T T I I
d x y

I I F F F F

− + − + −
=

   + − + − + −
(10) 

The proof is similar to that of (9), it is omitted here. 
Further, we extend the distance between two INVs x  

and y to two INSs. 

Definition 7 Let
([ , ],[ , ],[ , ])L U L U L U

i i i i i iX T T I I F F= ( 1,2, , )i n= 

and ([ , ],[ , ],[ , ])L U L U L U
i i i i i iY T T I I F F=       ( 1,2, , )i n=  be two 

INSs, then  

(1) The Hamming distance between X  and Y  is defined as follows 

( ) ( )
1

1
,

6

n
L L U U L L U U L L U U

H i i i i i i i i i i i i
i

d X Y T T T T I I I I F F F F
n =

= − + − + − + − + − + −      

(11) 

(2) The Euclidian distance between X  and Y  is defined as follows 

( ) ( ) ( )( ( ) ( ) ( ) ( ) )2 2 2 2 2 2

1

1
,

6

n
L L U U L L U U L L U U

E i i i i i i i i i i i i
i

d X Y T T T T I I I I F F F F
n =

= − + − + − + − + − + −        (12) 

For example, if two INSs X  and Y are 
(([0.5,0.6],[0.2,0.3],[0.9,0.9]), 
([0.8,0.9],[0.4,0.4],[0.2,0.3]), ([0.3,0.4],[0.8,0.9],[0.7,0.8])) 
and (([0.7,0.8], 
[0.4,0.5],[0.2,0.3]),([0.5,0.6],[0.5,0.5],[0.3,0.4]),([0.1,0.2],[
0.2,0.4],[0.3,0.4])), then the distances of Hamming and 
Euclidian between X  and Y can be calculated as follows. 

( ) (

)

1
, 0.5 0.7 0.6 0.8 0.2 0.4

6 3
0.3 0.5 0.9 0.2 0.9 0.3 0.8 0.5 0.9 0.6

0.4 0.5 0.4 0.5 0.2 0.3 0.3 0.4 0.3 0.1

0.4 0.2 0.8 0.2 0.9 0.4 0.7 0.3 0.8 0.4

0.3

Hd X Y = − + − + −
×

+ − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + − + −

=

( ) ( 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2

1
, (0.5 0.7) (0.6 0.8)

6 3

(0.2 0.4) (0.3 0.5) (0.9 0.2) (0.9 0.3)

(0.8 0.5) (0.9 0.6) (0.4 0.5) (0.4 0.5)

(0.2 0.3) (0.3 0.4) (0.3 0.1) (0.4 0.2)

(0.8 0.2) (0.9 0.4) (0.7 0.

Ed X Y SQRT
= − + − ×

+ − + − + − + −
+ − + − + − + −
+ − + − + − + −

+ − + − + − )2 23) (0.8 0.4)

0.26

+ −

=

3 An extended TOPSIS Method for multiple 
attribute decision making based on INSs 

For a multiple attribute decision problem, let 

( )1 2, , , mA A A A=   be a discrete set of alternatives, 

1 2 n( , , , )C C C C=   be the set of attributes, 

1 2( , , , )T
nW w w w=   be the weighting vector of the 

attributes, and meents
1

1, 0
n

j j
j

w w
=

= ≥ . where jw  is 

unknown. Suppose that ij m n
X x

×
 =    is the decision 

matrix, where ([ , ],[ , ],[ , ])L U L U L U
ij ij ij ij ij ij ijx T T I I F F= takes 

the form of the INVs for alternative iA  with respect to 

attribute jC .  

The steps of the ranking the alternatives based on these 
conditions are shown as follows 
Step 1. Standardized decision matrix 

In general, there are two types in attributes, the more 
the attibute value is, the better the alternative is, this type is 
called benifit type; on the contrary, the more the attibute 
value is, the worse the alternative is, this type is called cost 
type.  
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In order to to eliminate the influence of the attribute 
types, we need convert the cost type to benifit type. 
Suppose the standardized matrix is expressed by 

ij m n
R r

×
 =   , where 

([ , ],[ , ],[ , ])L U L U L U
ij ij ij ij ij ij ijr T T I I F F=       , then we have 

cos

ij ij

ij ij

r x if the attrbute j is benifit type

r x if the attrbute j is t type

 =            


=            
 (13) 

 Where, x  is the complement of x .  
Step 2. Calculate attribute weights 

Because the attribute weights are completely unkown, 
we need to determine the attribute weights. The 
maximizing deviation method, which is proposed by Wang 
[20],  is a good tool to calculate the attribute weights for 
MADM problems with numerical information. The 
principle of this method is described as follows.  

For a MADM problem, if the attribute values for all 
alternatives have little differences, such an attribute will 
play a small important role in ranking the alternatives, 
especially, for an attribute, if the attribute values for all 
alternatives are equal, the attribute has no effect on the 
rankng results. Contrariwise, if attribute values for all 
alternatives under an attribute have obvious differences, 
such an attribute will play an important role in ranking the 
alternatives.  Based on this view, if the attribute values of 
all alternatives  for a given attribute have a little deviations, 
we can assign a little weight for thsi attribute; otherwise, 
the attribute which makes larger deviations should be set a 
bigger weight. Especially, if the attribute values of all 
alternatives are all equal with respect to a given attribute, 
then the weight of such an attribute may be set to 0.   

For a MADM problem, the deviation values of 

alternative iA  to all the other alternatives under the 

attribute jC  can be defined as
1

( ) ( , )
m

ij j ij lj j
l

D w d r r w
=

= , then 

1 1 1

( ) ( ) ( , )
m m m

j j ij j ij lj j
i i l

D w D w d r r w
= = =

= =   represents the 

total deviation values of all alternatives to the other 
alternatives for the attribute jC . 

1 1 1 1

( ) ( ) ( , )
n n m m

j j j ij lj j
j j i l

D w D w d r r w
= = = =

= =  represents the 

deviation of all attributes for all alternatives to the other 
alternatives. The optimize model is constructed as follows: 

    
1 1 1

2

1

max ( ) ( , )

. 1, 0, 1,2

n m m

j ij lj j
j i l

n

j j
j

D w d r r w

s t w w j n

= = =

=

 =


 = ≥ = ……




  (14) 

Then we can get 

    1 1

2

1 1 1

( , )

( , )

m m

ij lji l
j n m m

ij ljj i l

d r r
w

d r r

= =

= = =

=  
  

    (15) 

Furthermore, we can get the normalized attribute weight 
based on this model: 

   1 1

1 1 1

( , )

( , )

m m

ij lj
i l

j n m m

ij lj
j i l

d r r
w

d r r

= =

= = =

=



 (16) 

Step 3. Use the extended TOPSIS method to rank the 
alternatives  

The basic principle of TOPSIS is that the best 
alternative should have the shortest distance to the positive 
ideal solution and the farthest distance to the negative ideal 
solution. The positive ideal solution  (marked as V+ ) is a 
best solution in which each attribute value is the best one 
of all alternatives, and the negative ideal solution (marked 
as V- ) is another worst solution in which each attribute 
value is the worst value of all alternatives. The steps of 
ranking the alternatives by the extended TOPSIS are 
shown as follows. 

(1) calculate the weighted matrix  

  

1 11 2 12 1

1 21 2 22 2

1 1 2 2

( )

n n

n n
ij m n

m m n mn

w r w r w r

w r w r w r
Y y

w r w r w r

×

 
 
 = =
 
 
 





   



  (17) 

 Where ([ , ],[ , ],[ , ])L U L U L U
ij ij ij ij ij ij ijy T T I I F F=        

(2) Determine the positive ideal solution and negative ideal 
solution: 
   According to the definition of INV, we can define the 
absolute positive ideal solution and negative ideal solution 
shown as follows. 

  
([1,1],[0, 0],[0, 0]

1, 2, ,
([0, 0],[1,1],[1,1]

j

j

y
j n

y

+

−

 =      = ⋅ ⋅ ⋅
=

 (18) 
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  or we can select the virtual positive ideal solution and 
negative ideal solution by selecting the best values for each 
attribute from all alternatives. 

([max , max ],[min , min ],

[min , min ])

([min , min ],[max , max ],

[max , max ])

L U L U
j ij ij ij iji ii i

L U
ij ij

i i

L U L U
j ij ij ij ij

i i i i

L U
ij ij

i i

y T T I I

F F

y T T I I

F F

+

−
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   

 

   

 

  (19) 

1,2, ,j n= ⋅⋅⋅

 (3) Calculate the distance between the alternative iA  and 

positive ideal solution/ Negative ideal solution 

The distance between the alternative iA  and positive 

ideal solution/ negative ideal solution is: 

1

1

( , )

1, 2, ,

( , )

n

i ij j
j

n

i ij j
j

d d y y

i m

d d y y

+ +

=

− −

=

 =
    = ⋅⋅ ⋅
 =




    (20) 

(4) Calculate the relative closeness coefficient 

.( 1, 2, , )i
i

i i

d
RCC i m

d d

+

+ −= = ⋅⋅ ⋅
+

 (21) 

(5) Rank the alternatives 
Utilize the relative closeness coefficient to rank the 

alternatives. The smaller iRCC  is, the better alternative iA

is. 

4 An application example 

In order to demonstrate the application of the proposed 
method, we will cite an example about the investment 
selection of a company (adapted from [10]). There is a 
company, which wants to invest a sum of money to an 
industry. There are 4 alternatives which can be considered 
by a panel, including: (1) A1 is a car company; (2) A2 is a 
food company; (3) A3 is a computer company; (4) A4 is an 
arms company. The evaluation on the alternatives is based 
on three criteria: (1) C1 is the risk; (2) C2 is the growth; 
(3) C3 is the environmental impact. where C1 and C2 are 
benefit criteria, and C3 is a cost criterion. Suppose the 
criteria weights are unkown. The final decision 
information can be obtained by the INVs, and shown in 
table 1. 

Table 1 The evaluation values of four possible alternatives with respect to the three criteria 

1C 2C 3C

1A ([0.4,0.5],[0.2,0.3],[0.3,0.4]) ([0.4,0.6],[0.1,0.3],[0.2,0.4]) ([0.7,0.9],[0.2,0.3],[0.4,0.5])

2A ([0.6,0.7],[0.1,0.2],[0.2,0.3]) ([0.6,0.7],[0.1,0.2],[0.2,0.3]) ([0.3,0.6],[0.3,0.5],[0.8,0.9])

3A ([0.3,0.6],[0.2,0.3],[0.3,0.4]) ([0.5,0.6],[0.2,0.3],[0.3,0.4]) ([0.4,0.5],[0.2,0.4],[0.7,0.9])

4A ([0.7,0.8],[0.0,0.1],[0.1,0.2]) ([0.6,0.7],[0.1,0.2],[0.1,0.3]) ([0.6,0.7],[0.3,0.4],[0.8,0.9])

4.1 Ranking the alternatives in this example 

We adopt the proposed method to rank the 
alternatives. 
To get the best alternative(s), the following steps are 

involved: 
(1) Convert the cost criterion to benefit criterion. Since 

C3 is a cost criterion, we can replace 3 ( 1,2,3,4)ix i = with 

3 ( 1, 2,3, 4)ix i = , and get the decision matrix R : 

([0.4,0.5],[0.2,0.3],[0.3,0.4])  ([0.4,0.6],[0.1,0.3],[0.2,0.4])

([0.6,0.7],[0.1,0.2],[0.2,0.3])  ([0.6,0.7],[0.1,0.2],[0.2,0.3])

([0.3,0.6],[0.2,0.3],[0.3,0.4])  ([0.5,0.6],[0.2,0.3],[0.3,0.4])

([0.7,

R =

0.8],[0.0,0.1],[0.1,0.2])  ([0.6,0.7],[0.1,0.2],[0.1,0.3])








([0 .4 ,0 .5 ],[0 .7 ,0 .8 ],[0 .7 ,0 .9 ])

([0 .8 ,0 .9 ],[0 .5 ,0 .7 ],[0 .3 ,0 .6 ])

([0 .7 ,0 .9 ],[0 .6 ,0 .8 ],[0 .4 ,0 .5 ])

([0 .8 ,0 .9 ],[0 .6 ,0 .7 ],[0 .6 ,0 .7 ])








(2) Calculate attribute weights 
About the distance in formula (16), we can use the 

Hamming distance defined in (9), and get 
( , )ij ljd r r , 1, 2,3, 4; 1,2,3.i l j= =  

11 11 12 12 13 13( , ) ( , ) ( , ) 0d r r d r r d r r= = =  

21 11 22 12 23 13( , ) 0.133, ( , ) 0.083, ( , ) 0.300d r r d r r d r r= = =  

31 11 32 12 33 13( , ) 0.033, ( , ) 0.050, ( , ) 0.250d r r d r r d r r= = =

41 11 42 12 43 13( , ) 0.233, ( , ) 0.100, ( , ) 0.217d r r d r r d r r= = =  

11 21 12 22 13 23( , ) 0.133, ( , ) 0.083, ( , ) 0.300d r r d r r d r r= = =  

21 21 22 22 23 23( , ) ( , ) ( , ) 0d r r d r r d r r= = =  
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31 21 32 22 33 23( , ) 0.133, ( , ) 0.100, ( , ) 0.083d r r d r r d r r= = =  

41 21 42 22 43 23( , ) 0.100, ( , ) 0.017, ( , ) 0.083d r r d r r d r r= = =  

11 31 12 32 13 33( , ) 0.033, ( , ) 0.050, ( , ) 0.250d r r d r r d r r= = =

21 31 22 32 23 33( , ) 0.133, ( , ) 0.100, ( , ) 0.083d r r d r r d r r= = =  

31 31 32 32 33 33( , ) ( , ) ( , ) 0d r r d r r d r r= = =

41 31 42 32 43 33( , ) 0.233, ( , ) 0.117, ( , ) 0.100d r r d r r d r r= = =

11 41 12 42 13 43( , ) 0.233, ( , ) 0.100, ( , ) 0.217d r r d r r d r r= = =  

21 41 22 42 23 43( , ) 0.100, ( , ) 0.017, ( , ) 0.083d r r d r r d r r= = =  

31 41 32 42 33 43( , ) 0.233, ( , ) 0.117, ( , ) 0.100d r r d r r d r r= = =

41 41 42 42 43 43( , ) ( , ) ( , ) 0d r r d r r d r r= = =  

  Then according to (16), we can get the attribute 
weights shown as follows. 

1 2 30.366, 0.197, 0.437w w w= = =

(3) Use the extended TOPSIS method to rank the 
alternatives 

(i) calculate the weighted matrix  

  In formula (17), we can calculate 

j ijw r ( 1, 2,3, 4; 1,2,3)i j= = by formula (7). For 

example, we can calculate 

0.366 0.366 0.366 0.366
1 11

0.366 0.366

([1 (1 0.4) ,1 (1 0.5) ],[0.2 ,0.3 ]

,[0.3 ,0.4 ])

([0.171,0.224],[0.555,0.643],[0.643,0.715])

w r = − − − −

   
=

Then we can get the weighted matrix Y

([0 .171,0 .224],[0 .555 ,0 .643],[0 .643 ,0 .715])

([0 .285,0 .357],[0 .430 ,0 .555],[0 .555 ,0 .643])

([0 .122,0 .285],[0 .555 ,0 .643],[0 .643 ,0 .715])

([0 .357,0 .445],[0 .000 ,0 .430],[0 .430 ,0 .555])

Y



=




([0.096,0.165],[0.635,0.789],[0.728,0.835])

([0.165,0.211],[0.635,0.728],[0.728,0.789])

([0.128,0.165],[0.728,0.789],[0.789,0.835])

([0.165,0.211],[0.635,0.728],[0.635,0.789])

([0.200,0.261],[0.856,0.907],[0.856,0.955])

([0.505,0.634],[0.739,0.856],[0.591,0.800])

([0.409,0.634],[0.800,0.907],[0.670,0.739])

([0.505,0.634],[0.800,0.856],[0.800,0.856])








(ii) Determine the positive ideal solution and negative ideal 
solution. 
   According to (19), we can get the virtual positive ideal 
solution and negative ideal solution shown asa follows. 

(([0.357,0.445],[0.000,0.430],[0.430,0.555]) 

      ([0.165,0.211],[0.635,0.728],[0.635,0.789]) 

      ([0.505,0.634],[0.739,0.856],[0.591,0.739]))

y+ =

(([0.122,0.224],[0.555,0.643],[0.643,0.715])

       ([0.096,0.165],[0.728,0.789],[0.789,0.835])

       ([0.200,0.261],[0.856,0.907],[0.856,0.955]))

y − =

(iii) Calculate the distance between the alternative iA  and

positive ideal solution/ Negative ideal solution 
According to (19), we can get the distance between the 

alternative iA  and positive ideal solution/ negative ideal 

solution  shown as follows. 

1 2 3 40.532, 0.180, 0.377, 0.065d d d d+ + + += = = =  

1 2 3 40.034, 0.385, 0.189, 0.501d d d d− − − −= = = =  

(iv) Calculate the relative closeness coefficient 
  According to (21), we can calculate the the relative 
closeness coefficient shown as follows. 

1 2 3 40.941, 0.319, 0.666, 0.114RCC RCC RCC RCC= = = =  

  (v) Rank the alternatives 
According to the relative closeness coefficient, we can 

get the ranking from the best to worst. 

4 2 3 1A A A A  

4.2 Compare with the existing method 

In order to further illustrate the effectiveness of the 
proposed method in this paper, we compare with method 
proposed by Ye [10]. However, because the attribute 
weights and positive ideal solution/ Negative ideal solution 
are different from Ye [10], the ranking result is different; 
in addition, Ye [10] only consider the similarity measure 
between each alternative and positive ideal solution. If we 
adopt the same attribute weights and positive ideal solution 
ideal solution, and only consider the distance between each 
alternative and positive ideal solution, we can get the same 
ranking result from these two methods. Comparing with 
the method proposed by Ye [10], the method proposed in 
this paper can solve the multiple attribute problems with 
unknown weights, and can provide a compromise solution 
which considers the distances to positive ideal solution and 
Negative ideal solution. In addition, it is simpler in 
calculation process than Ye [10].   

5 Conclusions 
The interval neutrosophic set can be easier to express 

the incomplete, indeterminate and inconsistent 
information, and it is a generalization of fuzzy set, interval 
valued fuzzy set, intuitionistic fuzzy set, and so on. This 
paper proposed the operational laws of the interval 
neutrosophic set, and defined the Hamming distance and 
the Euclidian distance. Then Maximizing deviation method 
is used to determine the attribute weights and the TOPSIS 
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method is extended to interval neutrosophic set. Finally, an 
illustrative example has been given to show the steps of the 
developed method. It shows that this method is simple and 
easy to use and it constantly enriches and develops the 
theory and method of multiple attribute decision making, 
and proposed a new idea for solving the MADM problems. 
In the future, we shall continue working in the extension 
and application of the proposed method.  
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