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Abstract

The recent discovery of gravitational waves (GWs) by the LIGO collaboration has

opened a new observing window on the universe, but it is limited to the GWs in the

frequency range of 10− 1000 Hz. The main motivation of this thesis is to consider the

possibility of detecting low frequency (nHz) GWs. In the pursuit of these waves, we

need to find their source of origin and build a detector with the required sensitivity.

Low-frequency waves are expected as a result of coalescing binary supermassive black

holes (SMBBHs). We hope to detect these waves in the near future using pulsar

timing arrays (PTAs). Thus, this thesis can be divided into two parts: searching for

SMBBHs and using pulsars for improving the sensitivity of PTAs.

SMBBHs are expected to form as a result of galaxy mergers. However, despite

numerous attempts, so far we have been able to find only a handful of these systems.

This raises various questions about the merger rate, the timescale of a merging process,

and the sensitivity and resolving power of the available instruments. 0402+379 is the

most compact confirmed SMBBH, with two compact cores at a separation of 7.3 pc.
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We have studied this source at 5, 8, 15 and 22 GHz using the Very Long Baseline

Array (VLBA) over a timeline of 12 years. With some assumptions about the orbit,

we measure the orbital period P ≈ 28000 years and SMBBH mass M ≈ 15× 109 M�.

A strong frequency-dependent core shift is evident, which we use to infer magnetic

fields near the jet base. Subsequently, we search for more compact SMBBHs so that

we can study their orbital motion within our lifetime. We select a sample of 18

sources from the VLBA imaging polarimetry survey based on their morphology and

host galaxy properties. We also include NGC7674, which was recently claimed to be

an SMBBH candidate. We observe these sources at multiple frequencies using the

VLBA.

PTAs consist of a large array of pulsars which are being used to detect the GWs.

However, when the signal from a pulsar traverses the interstellar medium (ISM), its

signal gets affected, contributing to PTA noise. In order to improve the sensitivity of

PTAs, it is necessary to understand the properties of the ISM. The main effects of

the ISM are dispersion, scattering, and scintillation. All these effects are strongly

dependent on frequency such that they have a large impact at lower frequencies.

Hence, in order to study these effects, we study a sample of eight pulsars at frequencies

below 100 MHz using the Long Wavelength Array. This provides us with insights into

the distribution of inhomogeneities in the ISM which we hope will help in improving

the sensitivity of PTAs.
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Chapter 1

Introduction

“When you look at the stars and the galaxy, you feel that you are not just from any

particular piece of land, but from the solar system.” - Kalpana Chawla

The title of this dissertation may sound a bit dispersed but that is actually the

theme of this dissertation. This work is a combination of a study of pulsars and a

search for SuperMassive Binary Black Holes (SMBBHs). Pulsars are rotating neutron

stars which are abundant across our galaxy. On the other hand, SMBBHs are really

massive black holes (106 − 109M�) and have thus far rarely been detected . Both

of these sources are exotic and very different from one another in their physical

properties, yet they are tied with a common thread - Gravitational Waves (GWs). In

this chapter, we explore the basic aspects of all these different topics which lays the

foundation of this dissertation. Section 1 gives an overview of pulsars and Section

2 details the interaction of the pulsar signal with their surroundings. In Section 3,

we discuss GW astronomy, its sources and the role of pulsars in their detection. In

Section 4, we present the outline of this thesis.
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1.1 Pulsars

Neutron stars were first predicted by Walter Baade and Fritz Zwicky in 1934 (Baade

and Zwicky, 1934). However, they were first discovered in 1967 by Jocelyn Bell, when

she was a graduate student at Cambridge University. She found a periodic signal

originating outside our solar system (Hewish et al., 1968). This radio source was soon

theorized to be a rotating neutron star with a magnetic field (Gold, 1968). Since then

many new discoveries have been made in the past four decades while understanding

pulsar astrophysics. It has also enabled testing of the validity of Einstein’s general

theory of relativity (Will, 2014). Due to their exotic nature, we continue to use them

as laboratories to understand extreme conditions which cannot be created in the lab.

In simple terms, pulsars are rotating neutron stars. Their formation takes place

when the outer layer of a massive star (8− 20M�) (Stairs, 2004) explodes and its core

collapses during a supernova explosion. The core counteracts the gravitational collapse

with the degeneracy pressure provided by the tightly packed neutrons. Their expected

mass is about 1.4 M� (Chandrasekhar, 1931) and the observed mass obtained from

binary systems ranges between 1.2− 2.1M� (Kiziltan et al., 2013, Özel and Freire,

2016). Neutron stars are very compact and have a radius of about 10 km with a

high density ranging between 1012 − 1014gm cm−3 (Lyne, 2006). The exact equation

of state for a neutron star is still under investigation. Neutron stars have beamed

emission along their magnetic axis. If there is a misalignment between the magnetic

axis and the rotation axis, the signal arrives in the form of pulses. A rotating neutron

star, with misaligned magnetic field axis, is known as a pulsar! The word pulsar is a

contraction of the words “pulsating star”.

1.1.1 Pulsar Energetics

Pulsars emit across the entire electromagnetic spectrum ranging from radio waves

to gamma-rays. However, the mechanism for radio emission differs from those at

higher frequencies. In the canonical model (Fig. 1.1), pulsars have a bipolar magnetic
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field, with closed and open field lines. The magnetosphere around the pulsar is filled

with plasma and it co-rotates with the pulsar. However, this co-rotation breaks down

before the light-cylinder where the speed of charged particles approaches the speed of

light. The charged particles move along the open magnetic field lines and emit via

the mechanism of synchrotron emission. This contributes to radio emission which is

also highly polarized. However, the exact emission mechanism is still not understood.

Figure 1.1: A toy model for pulsar emission and its magnetosphere: The radio
emission originates from the magnetic poles in two narrow beams. It is caused by
open field lines originating from the polar caps. The magnetosphere co-rotates
with the pulsar within the light cylinder. Adapted from Lyne (2006).

The rotating magnetic dipole loses rotational energy due to magnetic dipole

radiation. This causes a decay in the period of the pulsar over a sufficiently long

timescale, and results in orbital period lengthening. The rate of increase in period, P
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is Ṗ = dP/dt, which is related to the loss of rotational kinetic energy (Ė) given by

Ė = 4π2IṖP−3, (1.1)

where I is the moment of inertia. The above equation is equal to the the loss of

radiation power (Lorimer et al., 2005). Using these two relations, the evolution of

the rotational period can be given by

Ṗ = CP 2−n, (1.2)

where C is a constant and n is the braking index. For a pure magnetic dipole model,

n = 3. This braking index can be used to obtain the characteristic age (τc) of a

pulsar using the following relation

τc =
P

(n− 1)Ṗ
. (1.3)

Typical characteristic ages of pulsars are from 100 kyr to 10 Gyr. Note that this

does not represent the exact age of a pulsar. For example, the characteristic age of

the Crab pulsar is 1240 years which is comparable to the actual age of this pulsar of

about 950 years. This discrepancy is likely due to deviations from n = 3 which have

been observed in numerous cases (e.g. Archibald et al., 2015).

Assuming the same spin-down model, the magnetic strength of a pulsar at the

surface can be obtained by

B = 3.2× 1019(PṖ )0.5Gauss. (1.4)

Note that this is a lower limit on the magnetic field as it has been obtained for

an orthogonal rotator. The observed strength of the magnetic strength is between

1011 − 1013 Gauss for normal pulsars and between 108 − 1010 Gauss for millisecond

pulsars (MSPs) (Lyne, 2006).

1.1.2 Pulsar statistics

Pulsars are highly periodic in nature and their period (P ) can be measured with high

precision. The currently available range of periods for pulsars is from 1.27 ms (Hessels
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Figure 1.2: P − Ṗ diagram. This figure shows the entire population of pulsars.
It is evident from the plot that there are two types of pulsar population: the
central region shows normal pulsars and the bottom left shows MSPs. Using their
spin period (P) and spin period derivative ( Ṗ ), their magnetic field strength on
the surface, their age, and their spin-down energy can be obtained. The shaded
region denotes the pulsar graveyard and its boundary is the death line. Credit:
Michael Lam

et al., 2006) to 23.5 seconds for the longest period (Tan et al., 2018). So far more

than 2500 isolated pulsars and about 200 binary pulsars have been discovered. Based

on the period of a pulsar, they can be classified into two categories: milli-second

pulsars (MSPs) and normal-pulsars. MSPs, as the name suggests, have a period of
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the order of a few milliseconds. Fig. 1.2 shows a distribution of pulsars based on

their P and Ṗ values. The central region consists of normal pulsars (∼ 1 s) which are

powered by rotation. As time progresses, normal pulsars move to the lower right side

which represents the pulsar death-region. In this region, their emission mechanism

shuts off and they are no longer detectable. The population on the lower left side

represents the MSPs. Unlike normal-pulsars, these pulsars are believed to be recycled

pulsars where an old neutron star accretes from its binary companion. This accretion

causes an increase in the mass of the neutron star and increases its rotational speed.

This is why MSPs are also known as “recycled” pulsars.

As pulsars spin down due to the loss of rotational energy, their period of rotation

elongates. Apparently, MSPs have a lower spin-down rate as their magnetic field is

weaker compared to normal pulsars which make them stable rotators. This is why

they are used in the pulsar timing arrays (PTAs) (Section 3.2). To date about 260

MSPs have been discovered1.

1.1.3 Pulsar Profile Properties

A pulsar emits a train of periodic pulses. The observed pulse profile shape depends on

how the line of sight crosses the polar cap region as the pulsar rotates. The simplest

model of the radio beam is a cone-shaped beam framed by the arrangement of dipole

magnetic field lines (Radhakrishnan and Cooke, 1969). Although each pulse differs

from another, an average over thousands of pulses at the same frequency forms a

steady integrated profile. Each pulsar carries a unique pulse profile, which can be

used as a fingerprint.

Pulse profiles of majority of the pulsars vary with frequency. The first frequency

dependent effect is that the total width and separation between the profile components

increases as we go towards lower frequencies. The variation is interpreted using the

radius-to-frequency mapping (Cordes, 1978). According to this model, emission at

higher frequencies originates closer to the surface of the pulsar leading to a narrower

1http://www.atnf.csiro.au/people/pulsar/psrcat/
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profile as compared to those at lower frequencies. This effect is seen more strongly in

case of normal pulsars as compared to the MSPs.

Integrated pulses are complex in nature and consist of a number of distinct

components. The average number of components in a normal pulse profile is about 3

and for an MSP is 5 (Kramer et al., 1998). Detection of additional components may

require observations with higher sensitivity. Another frequency dependent effect is

the variation in the number of components in the pulse profile. Based on the number

of components, the structure of a magnetosphere can be discerned.

Pulsars are generally weak radio sources. The mean flux density of pulsars varies

with the observing frequency. This dependence can be given by a simple power law

: S(ν) ∝ να. The typical range of spectral indices is between −4 and 0 with the

average spectral index value of −1.4± 1.0 (Bates et al., 2013). Interestingly, large

deviations from this simple power law have been observed as many pulsars show a

turnover in spectra below 100 MHz (Bilous et al., 2016). In this thesis, we have used

frequencies below 100 MHz (Chapter 4 & 5), where the turnover can be seen.

In addition to the frequency dependence, a few time-dependent variations in the

integrated pulse profile have also been observed. These are caused either due to

changes in the pulsar magnetosphere or due to their interaction with their surroundings.

We further invegtigate these temporal variations in more detail in Chapter 5, where

we explore the underlying cause of the variation in the pulse profile of PSR B1508+55.

1.2 Interstellar medium

The space between the stars is filled with gas, dust, and ionized plasma. When a

pulsar signal traverses through the ionized interstellar medium (ISM), it deviates

from its original path. The primary observable effects are dispersion, Faraday

Rotation, scattering, and scintillation. Studying these phenomena helps us probe

the characteristics of the ISM. For the purpose of this thesis, we will only focus

on the ionized plasma since it interacts with radio waves and plays a key role in
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causing phase deviations. Below we discuss all the effects mentioned earlier, with the

exception of Faraday Rotation, which is beyond the scope of this thesis.

1.2.1 Dispersion

Dispersion is the largest contributing frequency dependent effect. For example, when

you shine a light on a prism, it splits into its constituting colors as different frequencies

travelling at different speeds. Similarly, when light traverses the ISM, it gets dispersed.

This causes a frequency dependent delay in the arrival time of pulses such that the

higher frequencies arrive earlier than lower frequencies. Fig. 1.3 shows a frequency

dependent delay caused by dispersion in the pulse profile for PSR B0950+08. The

difference between the pulse arrival time at two frequencies can be given by,

δt = t2 − t1 = K ·DM(
1

f 2
1

− 1

f 2
2

), (1.5)

where t2 and t1 are the arrival times at two different frequencies and K is the dispersion

constant equal to e2/2πmec. DM is the dispersion measure in units of pc cm−3. It is

the integrated column density of free electrons along the line of sight to a pulsar, also

defined as

DM =

∫ D

0

nedl, (1.6)

where ne is the electron density along the line of sight and D is the distance to

the pulsar. Before averaging pulse profiles in frequency, we need to correct for the

dispersion effect. Otherwise, the average profile gets smeared out. We correct for

this frequency dependent delay using incoherent and coherent dedispersion methods.

Interested readers may refer to Stairs (2002) for more detail about dedispersion.

Correction for the dispersion delay helps in measuring the DM value, which can be

used to obtain the mean electron density for pulsars where distance measurements

are available. It can also be used to measure the distance to a pulsar assuming the

electron density distribution from a model such as the NE2001 model (Cordes and
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Figure 1.3: The upper panel contains the average profile of PSR B0950+08. The
lower panel shows the delay in pulse with decreasing frequency caused due to the
dispersion effect. The phase delay wraps around four times indicating a strong
effect at the observed frequency of 79.2 MHz. Credit: K. Bansal

Lazio, 2002). Dispersion is also useful in distinguishing a terrestrial signal from those

of astrophysical origin.

The DM value of a pulsar depends on its location in the Galaxy. If it is located

near the Galactic center, the expected DM is quite high, whereas pulsars outside the

Galactic plane have DM values below ∼ 250 pc cm−3. For extragalactic sources, it is

even higher as it has a contribution from both the ISM and the intergalactic medium.

In Chapter 4 and 5, we will discuss how we obtained the DM values using TEMPO

(van Straten et al., 2012) in more detail. We also study the time-dependent variation
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in the DM for all the sources in our sample. Variations in DM over time have been

observed for multiple sources (e.g. the Crab Pulsar). It is due to a change in the line

of sight caused by the relative motion of a pulsar with respect to the Earth through

the turbulent ISM. It can also be due to solar winds which also contributes to changes

in DM. In this thesis, we have studied eight pulsars at frequencies below 100 MHz.

You can see from Equation 1.5 DM ∝ f−2, indicating that at low frequencies this

effect is stronger. This implies that DM measurements below 100 MHz will be of

high precision, enabling us to measure small changes in DM. Such DM variations

can provide further insight into the turbulence of the ISM.

1.2.2 Scattering

The ISM is highly turbulent and inhomogeneous. It can be described using the thin-

screen model (Williamson, 1972) which approximates that the random irregularities

in the ISM between the source and the observer are concentrated into a thin screen.

It also assumes that the size of the screen is infinite, implying that there is no loss of

flux density due to scattering. Fig. 5.6 shows a schematic of the thin-screen model.

Consider a pulsar at a distance D from the observer with a scattering screen at

distance Ds from the pulsar. When the pulsar signal moves through this screen, it

undergoes random phase scattering, modifying its original path and delaying the

pulse signal. The time delay (tsc) compared to an unscattered light ray is given by

tsc = Ds(1−
Ds

D
)a2/2c, (1.7)

where a is the scattering angle. This delay results in an asymmetric exponential

temporal broadening in the pulse profile. Pulse broadening has a strong frequency

dependence with pulse profiles at lower frequencies having broader tails. The magni-

tude of the scattering depends on the scale of inhomogeneities. These irregularities

in the ISM cause a fluctuation in the refractive index which in turn affects the phase

of a wavefront. Phase delay due to one irregularity of size d, with plasma fluctuation
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Figure 1.4: Schematic of the interaction of pulse signal with the ISM: A pulsar
emits spatially coherent EM radiation which interacts with the scattering screen
at a distance of Ds from the pulsar. The scattering angle is a, which denotes the
phase deviation in the straight line path of a ray caused due to scattering. The
angle of observation (θ is the angular width of the source. As the distance to the
pulsar is large (D ∼ kpc), these angles (θ, a) are small. Credit: M. Meyer

electron density of δne, is

φ = reδnedc/ν, (1.8)

where re is the classical electron radius. The rms phase delay due to various inhomo-

geneities along the entire line of sight is

φrms = (D/d)1/2 < ∆φ2 >1/2 ∝ re(Dd)1/2< ∆n2
e >

ν
, (1.9)

where D is the distance to the source. This will lead to the rms scattering angle (a)

of

arms =
φrms/k

d
∝ re (

D

d
)1/2< ∆n2

e >
1/2

ν2 . (1.10)
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The above equations are based on derivations in Lang (1971) and references therein.

By substituting the value of arms in Equation 1.7, we obtain tsc ∝ ν−α, showing a

strong frequency dependence. α is the scattering index and its value depends on the

distribution of inhomogeneity in the ISM. For a Gaussian distribution in electron

density τsc ∝ ν−4. However, for Kolmogorov distribution this proportionality changes

to ν−4.4 (Rickett, 1977, Romani et al., 1986).

Electron density variations for an isotropic and homogeneous medium can be

described as power law wavenumber spectrum,

Pδne =
C2
ne

(z)

(q2 + k2
o)
β/2

exp(− q2

4k2
i

), (1.11)

where C2
ne

(z) is the scattering strength, q is the three dimensional wavenumber, and

1/ko and 1/ki are outer and inner scale of turbulence. These scales represent the

boundary beyond which there is no turbulence. When the wavenumber ko << q << ki

the above equation gets simplified to Pδne = C2
ne

(z)q−β. An upper limit on the inner

scale of turbulence of 108m was obtained by Armstrong et al. (1994). The isotropic

model remains valid as long as the diffractive scale of scattering is much smaller than

inner scale limit of turbulence.

An example of pulsar scattering can be seen in Fig. 1.5. From the above formula-

tion, and this figure, we can see that temporal broadening depends on the frequency

and is significant for low-frequency observations. Hence, studying the temporal

broadening at frequencies below 100 MHz (Chapter 4) will be useful to understand

the underlying processes as long as the SNR is adequate. Scattering time also depends

on the distance to the pulsar. In order to have a smaller effect on pulse arrival time,

nearby MSPs (D ≤ 1kpc) are preferred. We will discuss this in more detail in Section

3.2.
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Figure 1.5: This plot shows variation in pulse profile broadening with frequency
for PSR J0742-2822. As we go towards the lower frequencies, the amount of
scattering increases which results into a broadened profile. Here, due to high
scattering, the profile becomes undetectable below 148.5 MHz. Adapted from
Kirsten et al. (2019)

1.2.3 Scintillation

Another effect of multi-path propagation is scintillation. This is a variation in the

flux density of a source with time and frequency. Depending on the distance between



Chapter 1. Introduction 14

Figure 1.6: Interstellar Scintillation: The top panel is a dynamic spectrum for
PSR B1133+16 and the bottom panel consist of their autocorrelation functions.
It was observed with the Arecibo Observatory at 432 MHz. These plots have
been adapted from Stinebring et al. (2019).

the source and observer, there are two kinds of scintillation: weak and strong. These

regimes are determined on the basis of coherence radius defined as s0 = 1/(kθ0),

where k = 2π/λ and θ0 is the size of a circular image on the thin screen. Within the

coherence length, the phase difference is less than 1 radian. When the Fresnel scale
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(rF = (D/k)1/2) is in the far field limit, rF >> s0, weak scattering takes place, and

when it is in the near field zone, rF << s0, strong scattering takes place. In this

thesis, all the observations fall into the strong scattering regime as these have been

caused due to large phase perturbations.

Strong scintillation gets further divided into diffractive and refractive scintillation

based on the time scale of variation in intensity. In the case of diffractive scintillation,

the intensity changes over a few minutes to days whereas in case of refractive

scintillation there are weaker variations in intensity over weeks to months. In

all the scintillation types, depending on the phases of the wavefronts, constructive

and destructive interference takes place. However, in order to have constructive

interference, the points need to be within the coherence radius, implying

δΦ = 2πδνtsc = C1, (1.12)

where δν is the coherence bandwidth (Cordes, 1986, Lyne and Rickett, 1968) and C1

is a constant which is 1.16 for a Kolmogorov distribution (Cordes et al., 1985). This

interference leads to the formation of bright patches in the dynamic spectra, also

known as the ‘scintle’ (Fig. 1.6). A dynamic spectra is a 2-D observational plot which

shows intensity as a function of frequency and time. These scintles form due to the

relative motion of the pulsar, observer, and the thin-screen. The 2-d Fourier transform

of the dynamic spectra is used to obtain the secondary spectrum. Stinebring et al.

(2001) found that the scintles in the dynamic spectra result in scintillation arcs in the

secondary spectra (bottom panel). These parabolic arcs are used to find the distance

to the screen. Thus a secondary spectra plays an important role in providing insight

into the sizes and distribution of scattering surfaces in the Galaxy. Scintillation

measurements are useful for testing assumptions of the thin-screen model (Section

1.2.4). We utilize them to interpret the results from our scattering study at low

frequencies (Chapter 4).
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1.2.4 Deviation from the thin-screen model

Both scattering and scintillation have been studied for numerous sources. A large

number of them have been found to show deviations from the isotropic model of ISM.

For example, Brisken et al. (2009) studied scintillation in PSR B0834+06 at 322.5

MHz, where along with the parabolic arcs they also observe an elongated image of the

pulsar. They suggest that these observations are the result of scattering due to highly

anisotropic filaments in ISM. It is expected that scattering may have a preferred

direction due to the presence of the magnetic field in the galaxy. This will lead to

the extended images of point sources behind the scattering screen along one axis.

However, the exact scale of anisotropy is unknown. In a few cases, multiple arcs and

arclets have been observed (Stinebring, 2006). These imply the existence of multiple

screens which contradicts the thin screen model where we consider only one screen.

The estimated scattering spectral index values for various pulsars are smaller than

the predicted values (Geyer et al., 2017, Lewandowski et al., 2013, 2015, Löhmer

et al., 2001, 2004), but also some values are larger than expected (Rickett, 1990,

Tuntsov et al., 2013). These deviations suggest anomalous scattering mechanisms

and their corresponding geometries.

We discuss temporal broadening in more detail in Chapter 4, where we explore this

phenomenon for seven pulsars. We also describe the methods we employ to obtain the

spectral index as both scattering and pulse evolution have a frequency dependence,

complicating the deconvolution. With the advantage of having simultaneous multi-

frequency observations, we measure the frequency scaling index of scattering and its

evolution over time for these pulsars. This study enables us to compare our results

with theoretical predictions and probe the distribution of inhomogeneities in the ISM.
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1.3 Low frequency Gravitational Waves

GWs were predicted by Einstein’s general theory of relativity about 100 years ago.

These are quadrupolar fluctuations in the curvature of space-time that are produced

due to an accelerating mass. The first direct detection of GWs was made recently

when Abbott et al. (2016) detected GWs from a binary black hole merger using

the laser interferometry gravitational observatory (LIGO). This discovery has now

opened a new window which astronomers hope to use to explore parts of the cosmos

undetectable with our traditional methods - Electromagnetic (EM) waves. This

is a remarkable achievement for which Barry C. Barish (Caltech), Kip S. Thorne

(Caltech), and Rainer Weisswas (MIT) were awarded the Nobel Prize in Physics in

2017.

There are several sources for GWs such as black hole mergers, black hole-neutron

star mergers, neutron star mergers, and supermassive-black hole (SMBH) mergers.

The frequency of the GWs depends on the interacting system. Just like EM waves

that have a large range of frequencies, GWs also have a range of frequencies (Fig. 1.7).

GWs from the stellar mass mergers have frequencies from ten to thousands of Hz.

Both LIGO and VIRGO are sensitive to these frequencies and will continue detecting

GWs from similar systems in the future. However, the merger of SMBHs in the center

of merging galaxies results in GWs in the frequency range of nano-Hertz. These

waves can be detected using an instrument known as the PTA.

Besides these two types of experiments, two space-based interferometers are also

being developed: the Laser Interferometer Space Antenna (LISA) and a joint project

between NASA and the European Space Agency. These instruments will be sensitive

to GW frequencies on the scale of milli-Hertz (mHz). These instruments are designed

primarily to observe mHz GWs from massive black hole binaries and extreme mass

ratio inspirals (massive black holes with small compact object companions).

PTA observations will be complementary to both ground and space-based GW

experiments. Recently LIGO was upgraded to improve their sensitivity. This process

has helped them understand their system better. Similarly, a deeper understanding
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of the PTA noise sources is required as the signal propagates through the ISM to the

telescope to confidently detect the GWs.

Figure 1.7: This figure shows the entire GW spectrum. The vertical axis indicates
the amplitude of h of each expected GW which are observed by a different
observatory depending on their frequency. The ground-based observatory is LIGO
which made its first discovery in 2015. There are space-based interferometers
which are supposed to operate in the 2030s. Detection of GW from PTAs is
still in progress and hope to have detection in the early 2020s. Credit: North
American Nanohertz Observatory for Gravitational Waves (NANOGrav)

1.3.1 Supermassive Binary Black Holes

There are primarily four types of black holes: Primordial black holes, Stellar mass

black holes, Intermediate mass black holes, and Supermassive black holes (SMBH).

Primordial black holes are the smallest of all the types and due to their small mass
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they should radiate away as predicted due to Hawking radiation. They are expected

to form when the universe was very young. Stellar mass black holes have masses

ranging from about five to hundreds of times the mass of the Sun. These types of

black holes form when a high mass star undergoes a supernova explosion such that it

sheds away its outer layers and the core collapses. Although there were many known

stellar black hole candidates, their existence was confirmed only recently when the

LIGO first detected the GW signature. Intermediate black holes have mass ranging

from few thousands to a few 100 thousand times the mass of the Sun. There is

suggestive evidence for these black holes, however, they have not yet been confirmed.

The last category consist of SMBHs. These black holes have masses ranging from

106 − 109 M�. These black holes reside at the heart of most of the large galaxies

in the universe, including our own Galaxy, the Milky Way. Strong evidence of the

existence of these black holes was found recently when the Event Horizon Telescope

(EHT; Akiyama et al., 2019) imaged the shadow of a SMBH at the center of a nearby

galaxy (M87), making it the first black hole image ever.

When both the merging galaxies have an SMBH at their respective centers,

their merger is expected to form a supermassive binary black hole (SMBBH) system.

SMBBHs are important for understanding the formation of galaxies, galactic dynamics,

and of course, the future nano-hertz GWs. So far only a handful of SMBBHs are

known despite the large number of merging galaxies. This has been one of the main

driving questions behind the multitude of searches for these system. Hence, it is

important that we understand their EM emission before we get evidence of their GW

counterpart.

Galaxy mergers are of two types: major and minor. In major mergers, the

interacting galaxies have comparable masses whereas in minor mergers one galaxy is

significantly larger than the other. In case of a major merger, the dynamical friction

drags both of the SMBHs to the center of the newly formed galaxy. The orbit of the

SMBHs decays as they interact with the stars, gas, and dust in their surrounding and

forms a gravitationally bound binary system. During the 3-body scattering with stars,

a loss cone forms (Sesana et al., 2007) due to which further orbital decay stalls. This
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is also known as the last-parsec problem. According to simulations, the further decay

of the orbit is possible if the binary system either resides in a gas-rich environment

where the gas may funnel down the system (Cuadra et al., 2009, Escala et al., 2004)

or there is a triaxial symmetry (Khan et al., 2013, 2016). Once the binary system

manages to evolve to mpc separation, GWs drive the further decay of the orbit; the

black holes coalesce and then eventually merge (Begelman et al., 1980, Milosavljević

and Merritt, 2003). Despite the last-parsec phase being theoretically the longest

phase in the evolution of a galaxy merger, we have been unable to find sub-parsec

SMBBH sources.

There are numerous observational explanations that account for the lack of their

detections. First of all, the physical separation of the gravitationally bound SMBBHs

is too small to image them directly. The second limitation arises if only one of the

two black holes accretes sufficiently to be detectable. The rate of accretion depends

on the amount of surrounding gas. Hence, a search for more SMBBHs will enable us

to constrain the merger rates at various phases of a merger as we have no reliable

estimate of how much time is spent in each stage. Moreover, it will provide insights

into how gas and stellar population play a role in governing these stages.

Clearly, galaxy mergers play a key role in galaxy evolution. GW detection of

SMBBHs combined with their EM counterparts (multi-messenger) will enable us

to improve our understanding of how SMBHs co-evolve with their host galaxies as

well as the dynamical interactions between binaries and their galactic environments.

However, their co-detection in EM and GW will depend on the merger rate and the

distribution of Active Galactic Nuclei (AGN) in the local universe as well as on the

timescale of various stages.

1.3.2 Pulsar Timing

As mentioned earlier, pulsars emit regular pulses which makes them high precision

astronomical clocks. A measurement of the arrival time of pulses is known as pulsar

timing, which accounts for every rotation of a pulsar. Any deviation in the times of
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arrivals (TOAs) of the pulses from the expected pulse profile model can be exploited

to study various phenomena. These include mass determinations of neutron stars

and testing of the general theory relativity and other theories of gravity (Will, 2014).

It also constrains changes in the fundamental constants (Lazaridis et al., 2009, Zhu

et al., 2015) and most importantly, in the future, it will be used as a detector for

low-frequency (nanohertz) GWs (e.g., Arzoumanian et al., 2016).

The first step in obtaining the TOAs is to transform them into an inertial reference

frame, typically the Solar system barycenter. The average pulse profile is used as

a model for obtaining TOAs for subsequent observations. The TOAs need to be

corrected for various delays such as DM, Romer delay, Einstein delay, and Shapiro

delay caused due to the orbital motion of the Earth and effect of the solar bodies.

The uncertainty of a TOA measurement depends on the pulse width (W ) and the

signal to noise ratio (S/N) of the profile. It scales as

σTOA ∝
W

S/N
∝ 1/

√
(Np). (1.13)

Low TOA uncertainty can be achieved by increasing the number of pulses and reducing

the width of the profile. MSPs are ideal for this purpose as their rapid spin periods

result in pulse widths that are much narrower than normal pulsars. A common σTOA

for a MSP is ∼ 1µs.

The timing model consists of rotation (P , Ṗ ), proper motion, parallax, and binary

orbital motion of a pulsar. It also accounts for the effect of the ISM by including the

DM. Interestingly, modeling all of these parameters for an individual pulsar is a large

active area of research, which pulsar timing arrays are built upon. The deviations

from this model are called timing residuals (R), given by

R = tobs − tmodel. (1.14)

In the case of an ideal timing model, the timing residuals would be zero. However,

timing residuals are non-zero due to both intrinsic and external processes. Intrinsic

processes such as pulsar spin variations are caused by glitches or pulsar precession in

a binary system. However, such variations are usually observed in normal pulsars but
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rarely in MSPs. External effects are due to the inhomogeneous and turbulent ISM.

Due to the relative motion of a pulsar through the ISM, the line of sight changes.

This would affect its DM, as well as the pulse profile, which would subsequently

affect TOAs. The turbulent ISM can contribute to the pulse shape due to multi-path

scattering. We need to account for all these effects before we can observe the influence

of GWs.

GWs deform the space as they propagate in different directions. They are

quadripolar which would cause stretching along one direction and shrinking along the

perpendicular direction. This will cause a time-dependent variation in the separation

between pulsars and the Earth, causing a deviation in the TOAs. The effect of a GW

will be present in the time residuals of every pulsar. We expect that for pulsars in

the same direction these deviations would correlate. This correlation depends on the

angular separation between pulsars, also known as the famous Hellings-Downs curve

(Hellings and Downs, 1983).

Figure 1.8: Hellings and Downs curve for isotropic and stochastic GW background
as a function of the angle between pulsars and the Earth (Jenet and Romano,
2015).

Once we account for all the timing noise sources, we are left with timing residuals
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which are expected to be the result of only the GWs. The curve in Fig. 1.8 tells

what we should see correlation of timing residuals when they are affected due to the

GWs. Our goal is to minimize the timing noise and detect the GWs with a high

degree of confidence. The amplitude of the timing residuals caused by GWs from a

binary system is on the scale of ∼ 100ns (Jenet et al., 2001). As the strength of GWs

signal is weak, we need to use a large sample of MSPs to have high sensitivity. A

PTA consists of a large array of MSPs which are being monitored concurrently. This

increases the observation time to attain our goal of sensitivity.

There are three main PTAs across the entire planet; the European Pulsar Timing

Array (EPTA; Kramer and Champion, 2013), NANOGRAV (McLaughlin, 2013),

and the Parkes Pulsar Timing Array (PPTA; Manchester et al., 2013). All three

collaborations combine their residuals in a global effort to form the International

Pulsar Timing Array (IPTA; Manchester, 2013). We hope this work will be helpful

in attaining the required limit for the pulsar timing arrays.

1.4 Thesis Outline

We have covered two important aspects of the search of Gravitational Waves from

SMBBHs. The first aspect is the search for SMBBHs using the electromagnetic

signature. A galaxy merger of two galaxies which host a SMBH at their respective

centers should form a SMBBH. Despite there being millions of galaxies in the

observable universe, we have only found a handful of SMBBHs. This raises questions

about the general picture - what is the actual distribution of supermassive black holes

in the universe? Assuming that SMBHs are abundant in nature, how do they grow

in size? If they grow by the process of merging - what is the merger rate? Answering

these questions will enable us to understand galaxy dynamics on a large scale.

Chapter 2 contains the study of the orbital motion of core components in the

SMBBH system 0402+379. This is the most compact binary SMBBH with a separation

of about 7 pc. We also estimate the magnetic field near the base of a core using
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the “core-shift” effect. As we are interested in the orbital trajectory of SMBBHs, in

Chapter 3, we attempt to search for more SMBBHs systems.

In Chapter 4, we study scatter broadening for a sample of seven pulsars for a span

of about three years. We also measure the variation in DM for the same epochs. In

chapter 5, we study the effect of ISM reflection in the case of PSR B1508+55, where

we see a variation in the component separation over time.

Finally, we summarize our results and conclude this thesis in Chapter 6. We also

discuss future prospects for the work presented here.
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Chapter 2

Constraining the Orbit of SMBBH

0402+379

The contents of this chapter were originally published as part of Bansal et al. 2017,

The Astrophysical Journal, 875 (2), 146

Abstract: The radio galaxy 0402+379 is believed to host a supermassive black

hole binary (SMBBH). The two compact core sources are separated by a projected

distance of 7.3 pc, making it the most compact resolved SMBBH known. We present

new multi-frequency VLBI observations of 0402+379 at 5, 8, 15 and 22 GHz, and

combine with previous observations spanning 12 years. These show a strong frequency-

dependent core shift, which we use to infer magnetic fields near the jet base. After

correcting for these shifts we detect significant relative motion of the two cores at

β = v/c = 0.0054± 0.0003 at PA = −34.6◦. With some assumption about the orbit,

we use this measurement to constrain the orbital period P ≈ 3× 104y and SMBBH

mass M ≈ 15 × 109M�. While additional observations are needed to confirm this

motion and obtain a precise orbit, this is apparently the first black hole system in a

visual binary.



Chapter 2. Constraining the Orbit of SMBBH 0402+379 26

2.1 Introduction

It is commonly believed that the later stages of galaxy evolution are governed by

mergers. It is very common for galaxies to collide and interact with each other.

Considering that most galaxies in the universe harbor supermassive black holes

(SMBH) at their centers (Richstone et al., 1998), it can be inferred that massive black

hole pairs should be the outcome of such mergers through the hierarchical formation

of galaxies (Begelman et al., 1980). This implies that SuperMassive Black Hole

Binaries (SMBBH) should be relatively common in the universe. However, despite

very extensive searches, very few such systems have been observed (Burke-Spolaor,

2011, Tremblay et al., 2016). The reason for this could be that black holes in a binary

system either merge quickly, or that one of them escapes the system (Merritt and

Milosavljević, 2005). Hence, understanding these SMBBH systems is important to

understand a variety of processes ranging from galaxy evolution to active galactic

nuclei (AGN) to black hole growth.

There are two types of galaxy mergers, major and minor. Major mergers result

when the interacting galaxies are of similar sizes (mass ratio less than 3:1 (Stewart

et al. (2009), and references therein)), whereas in the case of minor mergers one galaxy

is significantly larger than the other. A crucial expectation related to galaxy mergers

is the emission of gravitational waves. When galaxies merge, due to the dynamical

friction between them, the black holes at their corresponding centers sink towards

a common center. This leads to the formation of a binary system, such that its

orbit decays due to the interaction between the stars, gas, and dust of both galaxies.

The two black holes may reach a small enough separation that energy losses from

gravitational waves allow the binary to coalesce into a single black hole (Begelman

et al., 1980, Milosavljević and Merritt, 2003).

Numerous simulations have been performed to study these SMBH mergers. These

simulations deal with various aspects such as black hole mass ratio, self or non-

gravitating circum-binary discs, orbital spin, black hole spins, gas or stellar dynamics

etc. (Barnes, 2002, Callegari et al., 2009, 2011, Dotti et al., 2007, Escala et al., 2004,
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2005, Khan et al., 2011, Merritt and Milosavljević, 2005, Schnittman, 2013, Sesana

et al., 2006). In spite of several attempts, attaining the required resolution (last

parsec problem ∼ 0.01 pc) to study the black hole coalescence has been challenging.

The fate of the merger at the parsec scale depends on the amount of surrounding stars

and gas, and their interaction with the binary. In the case of a stellar background,

due to 3-body scattering, formation of loss cone takes place (Sesana et al., 2007),

whereas, in the case of gas rich mergers tidal forces inhibit the gas from falling onto

the binary, hence creating a gap (Dotti et al. (2012), and references within). The

loss cone causes a decay period longer than the Hubble time (Merritt et al., 2007,

Milosavljević and Merritt, 2003), and hardening can be attained for a triaxial stellar

remnant with the loss cone being replenished (Merritt and Vasiliev, 2010) and an

expected coalescence time of ∼ 108 years (Khan et al., 2011). For gas-rich mergers,

the gap doesn’t inhibit gas flow (Roedig et al., 2012) and a massive circumbinary disc

around the binary promotes the decay leading to a timescale for an equal mass binary

∼ 107M� that is less than the age of the Universe (Hayasaki, 2009). For higher mass

black holes (∼ 108−9M�) the timescales are greater. In a recent study by Khan et al.

(2016), they report that for massive galaxies at high redshifts (z > 2) it takes about

few million years for black holes to coalesce once they form a binary, whereas, at

lower redshifts where nuclear density of host is lower, it may take longer time of order

a Gyr.

Gravitational waves from merging black holes are expected as a result of Einstein’s

General Theory of Relativity (Einstein, 1916, 1918, Janssen et al., 2002, Kox et al.,

1997)1. In September 2015, the Laser Interferometer Gravitational Wave Observatory

(LIGO) discovered a gravitational wave (GW) source GW150914, and identified it as

a merging binary black hole (BBH) (Abbott et al. 2016a). Although the masses of the

two BHs are much smaller (∼30 M�) in comparison to SMBBHs (∼107 − 1010M�),

this discovery provides the first observational evidence for the existence of binary BH

systems that inspiral and merge within the age of the universe. It motivates further

studies of binary-BH formation astrophysics, and with the upcoming detectors such

1http://einsteinpapers.press.princeton.edu/
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as evolving Laser Interferometer Space Antenna (eLISA, Amaro-Seoane et al. (2012)),

it will be possible to detect low-frequency GW (around one mHz), emitted from

the inspiral of massive black holes (Klein et al., 2016). While mergers of SMBBH’s

are expected to be common emitters of GW radiation, modulating pulsar timing

observations have not yet detected any evidence for a GW signal (Arzoumanian et al.,

2016). Pulsar timing observations, unlike LIGO, should be more sensitive to SMBBH

mergers (Shannon et al., 2015). 0402+379, with a separation of 7.3 pc between its

core components, is one of the most important precursors of GW sources, and is

important to understand the reason behind the low incidence of such systems. From

the elliptical morphology of the 0402+379 host galaxy (Andrade-Santos et al., 2016),

we believe this object to be the result of a major merger.

The radio galaxy 0402+379 was first observed by Xu et al. (1995) as a part of the

first Caltech Jodrell Bank Survey (CJ1), although at that time it was not identified

as a SMBBH. This source first acquired attention as a Compact Symmetric Object

(CSO) candidate (small AGN with jets oriented close to the plane of the sky such that

the radio emission from the jets is detected on both sides of the core) in 2003, in the

full polarimetry analysis by Pollack et al. (2003). Subsequently, Maness et al. (2004)

studied this source at multiple frequencies using the VLBA2 (Very Long Baseline

Array), and on the basis of its properties, they classified it to be an unusual CSO.

Rodriguez et al. (2006) studied this source in more detail and arrived at the conclusion

that it is a SMBBH. This source contains two central, compact, flat spectrum and

variable components (designated C1 and C2, see Fig. 2.1), a feature which has not

been observed in any other compact source. This is one of the only spatially resolved

SMBBH candidates (Deane et al., 2014, Gitti et al., 2013). The milliarcsecond scale

separation requires high resolving power available only with a telescope such as the

VLBA. Although other systems like RBS 797 and J1502+1115 (a triple system) with

a separation of about 100 pc have been detected, no system other than 0402+379

has been resolved at parsec scales. We believe that this SMBBH is in the process of

merging.

2The National Radio Astronomy Observatory is operated by Associated Universities,
Inc., under cooperative agreement with the National Science Foundation.



Chapter 2. Constraining the Orbit of SMBBH 0402+379 29

Rodriguez et al. (2006) imaged this source at multiple frequencies, studying the

component motion at 5 GHz, but finding no significant detection of core displacement.

In this paper, we incorporate new 2009 and 2015 epochs of 0402+379 VLBA obser-

vations at 5, 8, 15 and 22 GHz, while re-analyzing the 2003 and 2005 observations.

These data show strong evidence for a frequency dependent core-shift effect (Lobanov,

1997, Sokolovsky et al., 2011). After accounting for this effect, our data set allows a

detection of the relative motion of the two cores, making this the first visual SMBBH.

We comment on the implications for the orbital period and masses. Throughout this

discussion, we assume H0 = 71 kms−1Mpc−1 so that 1 mas = 1.06 pc.

2.2 Observations and Data Reduction

2.2.1 VLBA Observations

Observations were conducted on December 28, 2009 and June 20, 2015 with the

VLBA at 4.98, 8.41, 15.35, and 22.22 GHz. For the 2015 observations, the total time

on source was 70 min at 5 GHz, 260 min at 8 GHz, 290 min at 15 GHz, and 330

min at 22 GHz. 3C84 and 3C111 were observed for bandpass and gain calibration,

respectively. The data recording rate was 2048 Mbps with two bit sampling. Each

frequency was measured over eight intermediate frequencies (IFs) such that every IF

consisted of a bandwidth of 32 MHz across 64 channels in both circular and their

respective cross polarizations.

Standard data reduction steps including flagging, instrumental time delay, band-

pass corrections, and frequency averaging were performed with the NRAO Astro-

nomical Image Processing System (AIPS) (Ulvestad et al., 2001, van Moorsel et al.,

1996). For all iterative self-calibration methods the initial model was a point source.

Further cleaning, phase and amplitude self-calibration were executed manually using

Difmap (Shepherd et al., 1995). The source structure was later model-fitted in the

visibility (u, v) plane with Difmap using circular and elliptical Gaussian components.
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Fully calibrated VLBI archival data from the 2003 epoch (Maness et al., 2004)

at 15 GHz, and the 2005 (Rodriguez et al., 2006) epochs at 5, 8, 15 and 22 GHz,

have been included to study the core component motion with frequency and time.

The visibilities were imaged and model fitted in Difmap, as with the 2009 and 2015

data, to obtain the core positions. The calibrator 3C111 has been observed in the

same configuration across all four epochs. Details of the observations can be found in

Table 2.1 .

2.3 Measurement and Fits

The new 2015 data set provides the most sensitive measurement of the source geometry.

Using model fitting in Difmap to the visibilities we determine the Gaussian size, axis

ratio and position angle for each core component. These measurements are listed in

Table 2.2. Additional Gaussian components are included in each model to account

for the extended structure. We then follow Rodriguez et al. (2006) and Maness et al.

(2004) in fixing these parameters in fits to the other epochs, while allowing only the

positions and fluxes of C1 and C2 to vary. These are listed in Table 2.3, with the

relative positions listed as angular separation r and position angle θ measured north

through east. The reported flux density errors combine the map rms σrms and an

estimated systematic error in quadrature: σS = [(0.1Sν)
2 + σrms]

1/2.

The effective position errors are more difficult to estimate. The statistical errors

≈ a/2(S/N) (Fomalont, 1999) are very small (∼ 2 µas), and systematic effects

certainly dominate. We made an initial check on these errors, by re-doing the

previous Stokes I map analysis in Stokes LL and RR. 0402+379 is an unpolarized

source so we expect data from both Stokes RR and LL to yield similar distance

measurements. Another way to obtain these error estimates is to split the data in

time or frequency. However, these maps would have a different (u,v) coverage, thus

making it difficult to make a comparison between them. If the polarization-dependent

structure differences are small as expected, then any measured differences can be

attributed to systematic errors. This technique has been discussed previously by



Chapter 2. Constraining the Orbit of SMBBH 0402+379 31

Roberts et al. (1991) and McGary et al. (2001). Decomposing the relative positions

into RA(x) and DEC(y), we find that the median shifts in the core centroid positions

are σx = 7 µas and σy = 8 µas for the higher frequencies, and σx = 31 µas and

σy = 34 µas at 5 GHz.

2.3.1 Analysis

The core component flux density arises from the surface at which the self-absorption

optical depth is unity (Blandford and Königl, 1979). Since this is strongly frequency

dependent, we expect an asymmetric extended structure, such as the jet base which

defines the core, to have a frequency-dependent centroid. This effect is very obvious

in the raw positions (Fig. 2.2), where the lower frequency centroids are shifted to

the NE along the larger scale outflow position angle (Fig. 2.1a). Similar shifts have

been detected in a number of AGN (Lobanov, 1997, Sokolovsky et al., 2011). Since

we are measuring position relative to C1, any extension to that source may also

contribute to the relative core shift; this need not be at the same position angle.

However the combined shift appears to be dominated by C2 and we indeed find that

the frequency-dependent shift is along the 47◦ (N-E) position angle of the C2 outflow.

According to Lobanov (1997) the shift can be parameterized as rc = aν−1/k, where a

is the shift amplitude and k depends on the jet geometry, particle distribution and

magnetic field. For example a conical jet with a synchrotron self-absorbed spectrum

gives k = 1 (Lobanov, 1997).

By correcting to an infinite frequency we can mitigate the effect of this core shift

on the position of the nucleus (Fig. 2.3). We are of course especially interested in the

relative motion of C1 and C2 and so our model includes a fiducial relative position

(at epoch 2000.0) as well as relative proper motion in RA and DEC. Thus our model

has six fit parameters (if we include the core shift position angle as a fit parameter,

we do indeed obtain 46± 1◦, but prefer to fix this via the larger scale jet axis). Our

data set are the 13 r, θ (x, y) position pairs over four epochs and four frequencies, so

the fit has 26− 6 = 20 degrees of freedom (DoF).
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Using our measurements and the position error estimates above, we performed a χ2

minimization to determine the model parameters. These are listed in Table 2.4. The

parameter error estimates are somewhat subtle. Since the fit minimum has χ2/DoF =

2.78, we must have systematic errors beyond those estimated above. The conventional

approach is to uniformly inflate all errors until the effective χ2/DoF=1. This is

equivalent to estimating errors using the χ2 surface with increases of +1, +2 ... ×

χ2/DoF. We list these “1 σ” and “2 σ” confidence intervals in Table 2.4.

However, this uniform inflation assumes that all errors have a Gaussian distribution

and are equally underestimated. This is unlikely to be true. An alternative approach

is to estimate errors via a bootstrap analysis (Efron 1987). This has the virtue of

using only the actual data values (not the error estimates), but does pre-suppose that

the observed data values are an unbiased draw from an (unknown) error distribution

about the true values. Although our set of 13 position pairs is somewhat small

for a robust bootstrap, we generated 10,000 re-sampled realizations of the data set,

replacing five pairs in each realization with random draws from the remaining pairs.

Each realization was subject to the full least-squares fit for all model parameters.

The histograms of the fit values for the individual parameters were used to extract

95% confidence intervals for each quatity. These confidence intervals are listed in

Table 2.4. They accord fairly well with the inflated χ2 estimates.

In general, the parameters appear well-constrained. The core-shift coefficients

a and k are estimated to ∼3 % accuracy (Table 2.4). The epoch position range is

somewhat larger in the bootstrap error analysis, evidently as a result of the substantial

offset of the 2009.9 position from the general trend.

The coefficient k depends on the shape of electron energy spectrum, magnetic

strength and particle density distribution (Lobanov, 1997). If k=1, it implies that the

jet has a conical shape, where synchrotron self-absorption is the dominant absorption

mechanism. We have obtained k = 1.591 ± .232 (via the bootstrap technique), in

accordance with the literature (Sokolovsky et al. (2011)) where the highest reported k

value is ∼ 1.5. This implies that our observations are consistent with the synchrotron

self-absorption mechanism.
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The core-shift depends mainly on the frequency as well as the magnetic field and

spectral index (Lobanov, 1997). All our measurements are derived from the same

frequencies over time, however, there is a possibility of variation with magnetic field

and spectral index. We calculated the spectral index for three epochs (2005, 2009

and 2015) using the peak intensities, and we have found these values to range from

−0.58 to −0.98 and −0.43 to −0.50 for C1 and C2 respectively. From these ranges of

spectral index, we can see that the variation over 10 years is quite small (∼ 0.4). To

our knowledge, no time varying core-shift offsets have been reported in the literature.

For our analysis, we assume that the core-shift is constant over time.

In Fig. 2.3 we plot the relative C2 core position, shifted to infinite frequency

according to the best-fit a and k, for each of the 13 observation frequencies and

epochs. The plotted error ellipses for the 8, 15 and 22 GHz observations are the

formal σx and σy from the polarization analysis. There are large outliers, especially

the 2009.9 epoch. However, the overall shift is quite significant with motion detected

in both RA and DEC, at > 3 σ in the χ2 analysis and at well over 95% confidence in

the bootstrap analysis. Additional epochs, especially at high frequency will, however,

be needed to make the motion visually clear.

To compare these above results, we also studied the motion of jet components.

We find that the bright southern jet components continue to move away from the

core, consistent with the previous results (Rodriguez et al., 2006). For the weaker

northern hotspot, the agreement is not as good, as it seems to exhibit inconsistent

motion for some frequencies. However, this may be the result of errors in the previous

measurements based on 5 GHz observations.

Using our best-fit µRA and µDec, we shift the raw data points (Table 2.4) to

epoch 2000.0. For each frequency, we obtain an average relative RA and DEC, which

are subsequently subtracted from the fiducial 2000.0 point (Table 2.4) to obtain

the distance from the core (rc). This has been plotted to demonstrate our fitted

frequency dependence, shown in Fig. 2.4. The plotted errors have been obtained by

error propagation using the above stated errors (σx and σy).
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2.3.2 Magnetic Field Estimate

The core-shift effect is useful to deduce various jet related physical parameters,

including the magnetic field strength. Lobanov (1997) and Hirotani (2005), for

example provide a derivation that assumes equipartition between the particle and

magnetic field energy densities in the jet. An alternate formulation by Zdziarski et al.

(2015) avoids the equipartition assumption, using the flux density Fv at a jet axis

distance h to estimate the magnetic field strength as

BF (h) =
3.35× 10−11 DL[pc] δ ∆θ[mas]5 tanΘ2

h[pc] (ν−1
1 − ν−1

2 )5 [(1 + z)sin i]3 Fv[Jy]2
(2.1)

where z is redshift, DL is the luminosity distance in pc, δ = [Γj(1 − βjcos i)]
−1 is the

Doppler factor, Γj is the minimum Lorentz factor, βj is the jet bulk velocity factor

(obtained from Rodriguez et al. (2009)), i is the inclination angle, ∆θ is the observed

angular core shift (Lobanov 1998), and Θ = arctan

√
d
2−b2φ
2r

is the jet half opening angle

(Pushkarev et al., 2012). From the latest 8 GHz map, we have obtained the full width

at half maximum of a Gaussian fitted to the transverse jet brightness component,

d = 4.130 ± 0.017 mas (minor axis of jet); the beam size along the jet direction,

bφ = 1.26 mas; and the distance to the core along the jet axis, r = 26.320 ± 0.017

mas. Since the extended jet components are not readily detected at 15 and 22 GHz,

we assume the same opening angle for all frequencies. Table 2.5 gives our estimated

values for these parameters, with the origins in the footnotes. The numerical constant

in the above equation has been obtained for p = 2, where p is index of the electron

power law (see Zdziarski et al. (2012, 2015)).

From a weighted linear fit of δθ against ν−1
1 −ν−1

2 , we obtain a slope = 1.128±0.152

and intercept = 0.008 ± 0.010. Instead of calculating δθ

ν
−1
1 −ν−1

2

for each frequency

separately, its slope has been used in calculating the magnetic field strength. Our

fit indicates a magnetic field strength 0.71± 0.25 G at h = 1 pc, similar to that for

other jets (O’Sullivan and Gabuzda, 2009).
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2.3.3 Orbital Models

Our measured proper motion µRA = −0.89 ± 0.07µas/y, µDec = 1.29 ± 0.10µas/y

(symmetric width of the 95 % CL bootstrap range) corresponds to a proper motion

µ of 1.57 ± 0.08µas/y at PAµ = −34.6 ± 2.9◦ (if we use the “1 σ” χ2 errors, the

amplitude uncertainty is ±0.38µas/y). Thus this is at least a 4 σ detection. It is

consistent with the non-detection of a proper motion in Rodriguez et al. (2006),

where 15 years of 5 GHz data (1990-2005) were used to estimate µ = 6.7± 9.4µas/y;

our higher frequency data and core-shift correction are essential for measuring the

much smaller motion.

We now ask if this proper motion is consistent with a shift due to the relative

orbits of the two BH. At z = 0.055, it corresponds to a projected space velocity

of β = v/c = 0.0054 ± 0.0003, so a Keplerian analysis suffices. First, the ratio

2πr/µ = 2π × 7.02 mas/0.00157 mas/y = 28,000 y gives a characteristic orbital

timescale. Thus over our 12 y baseline, the core position PA has rotated by less than

a degree. This does not allow us to fit for precise orbital parameters. In particular,

we have four measurements from the VLBI analysis (relative position and proper

motion) while we need six parameters to define the relative orbit.

We note that the above derived ∼ 28000 y period is rather close to the Earth’s

spin axis precession period of ∼ 26000 y, we believe this to be a coincidence. The

differential astrometry performed here should not be expected by precession as that

term has been removed with the correlator model and affects both the sources in an

identical way.

If we assume circular motion (e = 0), then we can determine the relative orbit

in terms of one additional free parameter. In practice it is easiest to select the PA

of the projected orbit normal (measured N through E) and then resolve the relative

positions x and y (in mas) and relative velocities vx and vy (in mas/y) in this rotated

coordinate system. Then the orbit parameters are

v = (v2
x − vxvyx/y)1/2
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a = −(x2 − x y vx/vy)1/2

cos(i) = [−y vy/(x vx)]1/2

θ = π + atan
(

[−y vx/(x vy)]1/2 − [1− y vx/(x vy)]1/2
)

where a and v are the relative orbit radius and velocity, i is the inclination and θ gives

the phase at our observation epoch. In fact it is more interesting to plot the total mass

M = v2a/G and period P = 2πa/v against the orbit inclination i (Fig. 2.5). Note

that with our assumption of a circular orbit only fairly large inclinations are consistent

with our C1-C2 offset and relative motion (Fig. 2.3). Typical orbital periods are

indeed 20-30ky, but the masses required by our apparent velocity are quite large

≥ 15× 109 M�. With our nominal fit errors, the minimum mass is M9 = 15.4± 1.3.

If one relaxes the e = 0 assumption, smaller masses are allowed, but then the solution

is nearly unconstrained.

The orbital eccentricity grows as the orbit shrinks since both stars and gas extract

energy and angular momentum from the binary. For a stellar background, it depends

on the mass ratio, with equal mass binaries producing orbits that are usually circular

or slightly eccentric with e < 0.2 (Merritt et al., 2007). If a pair during the binary

formation starts out with a non-zero eccentricity it may never become circular instead

it tends to become more eccentric (Matsubayashi et al., 2007). In the case of gas

driven mergers, it depends on the disc thickness and the SMBBH’s location inside

the disc. The critical value of e is reported to be ∼ 0.6, such that system with high

eccentricities tend to shrink to this value (Armitage and Natarajan, 2005, Cuadra

et al., 2009, Roedig et al., 2012). In the case of 0402+379, it has been found to be

embedded in cluster gas (Andrade-Santos et al., 2016), which makes it likely to have

a non-zero eccentricity.

In Rodriguez et al. (2009) HI absorption measurements were used to infer kinematic

motion about an axis inclined ∼ 75◦ to the Earth line of sight, passing through C2,

the origin of the kpc-scale jets. If we look at the solution derived here we see that

the PA = 47◦ axis corresponds to i = 71.3◦ (Fig. 2.5 & Fig. 2.6 ), in reasonable

agreement with the HI estimate. The binary spin can be different from the orbital
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angular momentum, however, it’s been found that if the amount of gas accreted is

high (1-10% of the black hole) on the timescales of binary evolution, it can change

according to the orbital axis (Schnittman (2013), and references therein). Binary

orbital axis and individual black hole spins tend to realign due to interaction with

external gas except when the mass ratios are extreme (>> 1) whereas, torques from

stars can cause misalignments of the binary orbit orientation from the disc (Miller

and Krolik, 2013). For this fit we have P = 49 ky and M = 16.5× 109 M�.

Because we find a large proper motion µ we expect the orbital motion to induce

a substantial radial velocity in the relative orbit. Some values are given in Fig. 2.6

and for PA = 47◦ we expect a relative vr = 700 km/s. While the HI measurements

do show velocity differences of this order, we do not see such large velocities in

the optical line peaks. Examining the Keck spectra in Romani et al. (2013) we see

that the stellar features of the elliptical host center on 16, 618± 53 km/s, while the

Seyfert I-type narrow-line core emission centers on 16, 490 km/s. Narrow line emission

extends several arcsec from the core spanning ∼ 300 km/s while in the unresolved

kpc core the velocity dispersion is ∼ 750 km/s. Thus, while at least 2 × 1010 M�

lies within the central kpc, we do not see multiple components shifted by > 500

km/s. However, the full line width does accommodate such velocities and the wings

of the Hα complex are centered at ∼ 17, 020 km/s suggesting that fainter broad line

emission might include components spread over > 1000 km/s. Further vr above is

the relative velocity; if only the heavier component has bright optical emission, then

the broad line velocity shift from the background galactic velocity (arguably near

the center of mass velocity) will be reduced to mvr/MTot. Indeed, Rodriguez et al.

(2009) assume that the jet-producing C2 core is the dominant mass and the center

of rotation. If this core also dominates the broad line emission, then we expect that

our VLBI relative velocity is dominated by the motion of C1 and the optical radial

velocity shift from the host velocity may be small.

We must also compare with other core mass estimates. As noted above the optical

lines indicate several ×1010 M� in the central kpc. HI absorption velocities require

> 7× 108 M� (Rodriguez et al., 2009). And finally the host bulge luminosity also
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indicates a large hole mass M• ∼ 3 × 109 M� (Romani et al., 2013). All of these

suggest substantial hole mass. The very large M9 ∼ 15 masses implied by our fits are

not excluded but do stretch the available mass budget.

2.3.4 Comments on the resolved SMBBH Population

The process of hierarchical merging should make close SMBBH common, but to

date few candidates at sub-kpc separations have been seen. The resolved (massive)

SMBBH seem to be preferentially in galaxy clusters or their products. For example

the SMBBH candidate RBS 797 (Gitti et al., 2013) resides in a cool-core cluster

at z=0.35. 0402+379 itself lies in a massive galaxy and dense X-ray halo (likely

a fossil cluster) at z = 0.055. So such environments seem to be a good place to

look for additional systems. Another path to discovering multi-BH nuclei has been

described by Deane et al. (2014) who find J1502+1115 to be a triple system, with a

closest pair separation of 140 pc at redshift z=0.39. Compact radio jets in the closest

pair of this source exhibit rotationally symmetric helical structure, plausibly due to

binary-induced jet precession. However the total number of resolved compact cores

at pc scales seems very small with 0402+379 remaining the only clear example out of

several thousand mapped sources (Burke-Spolaor, 2011, Tremblay et al., 2016).

Of course systems of even smaller separation are of the greatest interest since at

r ∼ 0.01 pc losses from gravitational radiation will dominate and the merging binaries

can be an important signal in pulsar timing studies (Ravi et al., 2015). At present,

we rely on arguments about evolution of the wider systems to infer the existence

of merging SMBBH. If such evolution occurs we might hope for a discovery of an

intermediate r ∼ 0.1 pc scale massive > 109 M� system at low z where sufficient

resolution for a kinematic binary study is possible with high frequency VLBI. Such a

binary would have P < 103 y and a well-constrained visual orbit should be achievable,

making possible a precision test of the SMBBH nature (Taylor, 2014). However, we

should note that our study of the galactic halo of 0402+379 (Andrade-Santos et al.,

2016) implies that it has stalled at its present 7 pc separation for several Gyr, so
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the path between resolvable and gravitational radiation-dominated SMBBH may not

always be smooth.

2.4 Conclusion

In this study of 0402+379, we have focused on two aspects: frequency dependent core-

shift and secular relative core motion. Both effects are observed, but the measured

values present interpretation challenges.

The strong observed core-shift matches well with the large-scale jet axis. It also

provides quite typical estimates for the jet base magnetic field of ∼ 0.45− 0.95 G.

However the core-shift index 1.591 (1.556-1.823 95% CL range) is somewhat large

(expected k ∼ 1), with the highest reported value in literature is k ∼ 1.5 (Sokolovsky

et al., 2011). This may be an artifact of our constant core-shift fit assumption, as

perturbations could arise from the epoch-to-epoch variation in the underlying core

component fluxes.

After accounting for this core shift the infinite frequency relative positions of

the C1 and C2 cores undergo a statistically significant secular proper motion. The

motion corresponds to β = 0.0054 ± 0.0003 and, if orbital, it represents the first

direct detection of orbital motion in a SMBBH, and promotes this system to a visual

binary. Although we do not have sufficient observables to solve for an orbit, we can

find plausible orbits, even assuming e = 0. Intriguingly such orbits align well with the

large scale jet axis and have similar inclination to those estimated with HI absorption

VLBI. But the required masses are quite large (highest reported mass is 21 billion

M�, McConnell et al. (2011)). To test our orbital picture, additional VLBI epochs to

confirm the consistency of the proper motion will be essential, and further studies

of the core dynamics, especially at sub-kpc scales will also be very important. We

should not forget that including a finite orbital eccentricity can allow smaller masses,

but we will need additional kinematic constraints to motivate such solutions.

Thus discovery of possible orbital motion in 0402+379 presents the exciting
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prospect of probing a SMBBH’s kinematics. Certainly, extensions to our high

frequency VLBI campaign can improve the measurements, but this proper motion is

perhaps the most exciting as a spur to searches for tighter, faster and more easily

measured examples of resolved SMBBHs.
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Table 2.1: Observations

Frequency Date Integration BW Polarization IF Reference
(GHz) time (min) (MHz)
4.98 01/24/2005 69 8 2 4 Rodriguez et al. (2006)
4.98 12/28/2009 286 32 4 4 This paper
4.98 06/20/2015 70 32 4 8 This paper
8.15 06/13/2005 69 8 2 4 Rodriguez et al. (2006)
8.15 12/28/2009 261 32 4 8 This paper
8.15 06/20/2015 261 32 4 8 This paper
15.35 03/02/2003 478 16 2 4 Maness et al. (2004)
15.35 01/24/2005 122 8 2 4 Rodriguez et al. (2006)
15.35 12/28/2009 292 32 4 8 This paper
15.35 06/20/2015 286 32 4 8 This paper
22.22 06/13/2005 251 8 2 4 Rodriguez et al. (2006)
22.22 12/28/2009 325 32 4 8 This paper
22.22 06/20/2015 334 32 4 8 This paper
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Table 2.2: Stationary Gaussian Model Components

Frequency a(C1) b/a(C1) φ(C1) a(C2) b/a(C2) φ(C2)
(GHz) (mas) (o) (mas) (o)
5 0.563 0.000 82.80 1.270 0.130 6.60
8 0.451 0.420 74.00 0.420 0.490 8.60
15 0.249 0.360 77.00 0.230 0.000 21.40
22 0.218 0.160 78.90 0.170 0.390 27.80

Fixed model parameters of Gaussian components for C1 and C2 of the model brightness
distribution at each frequency. These are: a, semi-major axis; b/a, axial ratio (where
b is semi-minor axis); Φ, component orientation for both C1 and C2. All angles are
measured from North through East.
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Table 2.3: Variable Gaussian Model Components

Epoch Frequency Sν(C1) Sν(C2) r θ
(GHz) (Jy) (Jy) (mas) (o)

2005.07 5 0.057 ± 0.005 0.014 ± 0.001 6.942 -75.70
2009.99 5 0.058 ± 0.005 0.016 ± 0.001 6.841 -75.93
2015.43 5 0.060 ± 0.006 0.013 ± 0.001 6.884 -75.79
2005.45 8 0.067 ± 0.006 0.016 ± 0.002 6.913 -76.46
2009.99 8 0.052 ± 0.004 0.017 ± 0.002 6.920 -76.42
2015.43 8 0.083 ± 0.008 0.018 ± 0.002 6.913 -76.33
2003.17 15 0.070 ± 0.007 0.020 ± 0.002 6.929 -76.96
2005.07 15 0.054 ± 0.005 0.016 ± 0.002 6.959 -76.81
2009.99 15 0.029 ± 0.003 0.012 ± 0.001 6.985 -76.96
2015.43 15 0.058 ± 0.005 0.015 ± 0.001 6.956 -76.77
2005.45 22 0.037 ± 0.003 0.011 ± 0.001 6.950 -77.08
2009.99 22 0.020 ± 0.002 0.011 ± 0.001 6.984 -77.16
2015.43 22 0.040 ± 0.003 0.012 ± 0.001 6.969 -77.04

Variable model parameters of Gaussian components for C1 and C2 of the model
brightness distribution at different epoch and frequency. These are as follows: Sν ,
flux density at each frequency; r, θ, polar coordinates of the center of the component
C2 relative to the center of component C1 (it has been assumed to be at a fixed
position). Errors in flux have been estimated using both flux systematics and map
rms (

√
((0.1 ∗ Sν)2 + rms2)).



Chapter 2. Constraining the Orbit of SMBBH 0402+379 44

Table 2.4: Fitting Parameters

Technique χ2

Parameters Value Bootstrap (95% ) 1 σ 2 σ
∆RA0(mas) -6.863 -6.892, -6.855 -6.859, -6.868 -6.858, -6.869
∆DEC0(mas) 1.474 1.448, 1.478 1.470, 1.478 1.468, 1.480
µRA(µas/y) -0.887 -0.970, -0.831 -1.245, -0.549 -1.389, -0.405
µDEC(µas/y) 1.286 1.200, 1.401 0.878, 1.672 0.713, 1.836
a (mas) 0.756 0.700, 0.818 0.739, 0.777 0.731, 0.785
k 1.591 1.556, 1.823 1.565, 1.617 1.555, 1.628

Fitted parameters values (Column 2) and their corresponding confidence intervals
obtained from two different technique: bootstrap analysis (Column 3) and χ2 mini-
mization (Column 5 & 6). ∆RA0 and ∆DEC0 are infinite frequency core offsets at
epoch 2000.0; µRA and µDEC are proper motion estimates; a and k are core-shift
fitting parameters (rc = a ν(−1/k)).
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Table 2.5: C2 Jet parameters

Redshift Luminosity Half opening Bulk Velocity Inclination Lorentz Doppler Factor

z Distance DL (Mpc) angle Θ (
◦
) factor βapp angle i (

◦
) factor Γj δ

0.055 242.2
a

4.29
b

0.4
c

71.3
d

1.077
e

1.11
f

a Luminosity distance was obtained for cosmological model : H0 = 71 kms−1Mpc−1,
ΩΛ = 0.73, ΩM = 0.27

b Pushkarev et al. (2012)

c Rodriguez et al. (2009).

d Section 2.3.1.

e Lorentz factor, Γj = (1 + β2
app)

1
2 (Zdziarski et al., 2015).

f Doppler factor, δ = [Γj(1 − βjcos i)]−1 (Zdziarski et al., 2015).
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Figure 2.1: Naturally weighted 2015.43 VLBA maps of 0402+379 at 5, 8, 15 and
22 GHz. Designated C1 and C2, are the core components in 0402+379 (Maness
et al., 2004, Rodriguez et al., 2006). Contours are drawn beginning at 0.15 σ (a),
1 σ (b), 1 σ (c) & 1.5 σ (d), and increase by a factor of 2 thereafter. (a) Note
that the core components are slightly resolved here. There is a bridge between
these two components, and we believe this is a jet emanating from C1, as has
been discussed in this paper. (b) A jet emerging from C2, moving in the direction
of hotspots can be identified here clearly. We have used this map to obtain the
jet-axis angle. (c) A very faint jet emanating from C2, similar to 8 GHz map,
can be seen here. (d) No jets are visible at this frequency.
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Figure 2.2: We have plotted projected relative RA vs. DEC of component C2
with respect to C1 (at origin), at 5 GHz (c’s), 8 GHz (x’s), 15 GHz (u’s), and 22
GHz (k’s). This is the raw, uncorrected, modelfit positions. An offset in position
with frequency can be seen due to the core-shift effect discussed in the text.
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Figure 2.3: Position of C2 relative to C1 in time after removing the effect of the
core shift. The black line is a proper motion fit; the best fit positions at each
epoch are labeled by points along the line.
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Figure 2.4: Plot of the core-shift measurement in distance from the central engine
for 0402+379 as a function of frequency. Black circles are observed distance offset
from estimated infinite frequency core position at each frequency, and the black
solid curve is the fitted function, with rc = a(ν(−1/k)) (See Table 2.5).
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Figure 2.5: Orbital solutions for mass (red) and period (blue) as a function of
inclination angle. Points mark solutions with the projected PA given by the label
numbers (in degrees North through East).
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Figure 2.6: Circular orbit fits for the four PA values marked in figure 5. All are
consistent with the observed offset and proper motion (red). The mass, period
and relative radial velocity for the solutions for each PA value are listed in the
figure.



52

Chapter 3

A Search for Compact

Supermassive Black Holes

In this chapter, we report on a search for compact binary supermassive black holes.

In our recent study of the most compact supermassive binary black hole (SMBBH)

0402+379, we found the orbital period to be ∼ 28000 years. In order to study the

orbital dynamics of SMBBHs within our lifetime, we need to search for compact

systems that have a shorter orbital period, on the timescale of a few thousand years.

For this purpose, we have selected a sample of 19 sources, of which 18 sources were

previously observed using the very long baseline array (VLBA) at 5 GHz in the

VLBA Imaging and Polarimetry Survey (VIPS). We now study these sources at

higher frequencies, 15 and 22 GHz, using the VLBA to determine their true nature.

Understanding the growth of black holes is of great interest in this new era of multi-

messenger astrophysics as these are the preferred targets for planned gravitational

wave observatories.

3.1 Introduction

Most large galaxies are thought to harbor a supermassive black hole (SMBH) (Rich-

stone et al., 1998) at their center including our own Milky Way. Recently, the Event
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Horizon Telescope for the first time imaged a SMBH residing inside M87 (Akiyama

et al., 2019). This is a remarkable feat which also confirms the existence of super-

massive black holes. Considering the cold dark matter cosmology model, galaxies

are expected to evolve via the process of merging (Begelman et al., 1980). When

both merging galaxies have an SMBH at their respective centers, it is expected to

form an SMBBH system. Based on the separation between SMBHs, these systems

can be classified into two categories: Dual AGNs (DAGN, ∼ kpc) and SMBBHs

(∼ pc). Despite numerous attempts, only a handful of systems have been found

(Burke-Spolaor, 2011, Tremblay et al., 2016). This raises questions such as how do

SMBHs evolve inside a merger? How often do galaxies collide? Does a collision give

rise to a binary system, and how quickly do these black holes merge after binary

formation? There is substantial evidence that the growth of a galaxy and SMBH are

inter-related (Kormendy and Ho, 2013). Hence, understanding these SMBBH systems

is crucial to understanding a variety of processes ranging from galaxy evolution in

general to the evolution of black holes inside them.

Gravitational waves from merging black holes are expected as a result of Einstein’s

General Theory of Relativity. With the recent discovery of GWs (Abbott et al., 2016),

their existence has been confirmed and a new exploring window has opened. However

currently, this window is limited to the search of stellar mass black holes. While

mergers of SMBBHs are expected to be common emitters of GW radiation, they have

not yet detected any evidence for a GW signal. With the upcoming detectors such as

evolving Laser Interferometer Space Antenna (eLISA, Amaro-Seoane et al. (2012)), it

will be possible to detect low-frequency GWs (∼ mHz). Additionally, pulsar timing

observations would be more sensitive to SMBBH mergers (Shannon et al., 2015) with

nHz GWs .

In this study, our aim is to search for compact SMBBHs at redshift below 0.1 so

that we are not too far away to attain the required resolution (at least 0.5 mas ∼ 1pc)

and sensitivity for their detection. These studies are also important to understand

jet structures. For example, Bansal et al. (2017) studied the core-shift effect which

enabled them to measure the magnetic field near the core. To pursue these goals, we
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select a sample of 19 sources and observe them with the VLBA at 15 and 22 GHz.

In Section 2, we describe the criteria used for candidate selection. Section 3 details

the observations and data reduction technique. In Section 4, we discuss our results

followed by conclusions and future work in Section 5.

3.2 Candidate Selection

Candidates were selected by redshift, galaxy bulge size, and on the basis of possible

secondary nucleus or suggestion of a second axis. We have employed this rough

estimate to cull the 1127 VLBI-imaged VIPS sources (Helmboldt et al., 2007), using

cataloged redshifts and host magnitudes. VLBA studies and indications of a complex

structure such that they could host double nuclei. In practice a large fraction of the

short period candidates passed this inspection and, upon examination most were

hosted by high mass ellipticals or S0s, often with substantial X-ray halos, further

bolstering the likelihood of large hole mass. A few showed signs of a recent interaction.

These are thus prime candidates for further VLBI study. Of course, these selection

criteria do not guarantee that the sources host an SMBBH. However, they greatly

increase the odds that if an SMBBH is present and resolved at scales below our 5

GHz limit, it will likely have an orbital period at least an order of magnitude less

than that of 0402+379.

3.3 Observations and Data Reduction

We observed 19 sources using the VLBA at two frequencies 15.24 and 22.1 GHz.

The data recording rate was 2048 Mbps with two-bit sampling. Each frequency was

measured over eight intermediate frequencies (IFs) such that every IF consisted of a

bandwidth of 32 MHz across 64 channels in dual polarization.

These sources were divided into four sections in the sequential order of their RA

to have a better spatial (u,v) coverage. The first and second section was observed
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on October 11, 2018. DA193 was used for fringe fitting and bandpass calibration.

The third section was observed on November 8, 2018. Since the fringe finder for this

section (J1423+4802) was not observed across all the antennas, we used another bright

source in our sample J14197+5423. The fourth section was observed on November 29,

2018. Although 3C345 was observed as a fringe finder, data from antenna 3 (Hancock)

was missing when this source was observed. So we instead used J2327+0940 which is

a bright source and has been observed for long (∼8 min) observation time intervals.

List of observed sources, their redshift, and observation time at both the frequencies

have been included in Table 3.1.

Initial data reduction was performed using the Astronomical Image Processing

System (AIPS). This includes identifying the bad data points using POSSM plot and

then subsequently flagging them using UVFLG. In VLBA, antennas are separated

by a large distance which requires fringe correction to correct for the delay in the

observations. We corrected for this phase delay using FRING which uses a bright

source for a time range where it has been observed across all the antennas. These

solutions were later applied to the remaining sources. Using the same time range

of the fringe finder, bandpass solutions were obtained using BPASS. We then used

VLBAUTIL, a script which applies a-priori amplitude corrections and digital sampling

corrections. After applying the initial phase and amplitude calibration, we averaged

the frequency channels in each IF and split out each source file.

Difmap was used for further cleaning and self-calibration. A point source model

was used for iterative self-calibration except for NGC7674, which was phase-referenced

using J2327+0940. NGC7674 is a weak source at both 15 and 22 GHz, hence cannot

be self-calibrated.

3.4 Results

In this study, we attempted to search for SMBBHs in a sample of 19 sources using

the VLBA. Since VLBA provides high resolution, we anticipated detecting SMBBHs
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Table 3.1: Observational parameters comparison

Source Redshift Obs. Time Obs. Time
15 GHz (min) 22 GHz (min)

J07375+5941 4.062E-02 62 80
J08392+2850 7.902E-02 60 73
J09096+1928 2.796E-02 63 86.5
J09433+3614 2.233E-02 63 82.1
J11412+5953 1.147E-02 64 72.2
J11473+3501 6.289E-02 57.5 66
J11488+5924 1.079E-02 63.8 65.5
J11579+5527 3.646E-03 64 67
J12030+6031 6.533E-02 64.2 66.8
J12201+2916 2.254E-03 62.1 65.3
J12302+2518 1.350E-01 48.1 65
J12562+5652 4.146E-02 60.4 63.2
J13176+4115 6.614E-02 60.4 64.5
J14118+5249 7.647E-02 60.2 64
J14197+5423 1.520E-01 61.2 55.5
J16044+1744 4.093E-02 48 78.8
J16062+1814 3.694E-02 48 78.1
J17283+5013 5.499E-02 43 73.5
NGC 7674 2.892E-02 26 37.7

Notes: Redshift of each source; Duration of observation at 15 and 22 GHz.

while resolving them. Unfortunately, we do not detect any SMBBH. However, during

our data reduction, we came across two interesting sources: NGC 7674 and Mrk 231.

Below we discuss them in more detail.

3.4.1 NGC7674

NGC7674 was recently studied by Kharb et al. (2017), where they used archival

VLBA data at 15 GHz. They reported a detection of two compact cores at a projected

separation of 0.35 parsec, suggesting a compact SMBBH. The specified peak values

for these cores, C1 and C2 are 0.74 and 0.76 mJy/beam. We have observed this

source at two frequencies 15.24 and 22.1 GHz. To compare our results, we looked

at the coordinates as mentioned in Kharb et al. (2017) for C1 and C2 and have
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obtained the pixel value at x = −17.2y = −14.8 (mas) of 0.236 mJy/beam and at

x = −17.4, y = −14.8 (mas) of 0.291 mJy/beam at 15 GHz. The rms noise for our

data is 110 micro-Jy/beam as compared to 200 micro-Jy/beam as reported in Kharb

et al. (2017), implying higher sensitivity for our data. Similarly, we see no detection

at 22 GHz. This implies that previously suggested cores (Kharb et al., 2017) are

likely not black holes but two noise bumps.

3.4.2 J1256+5562

Mrk 231 is a nearby ultraluminous infrared galaxy with relativistic jets. In this study,

we have observed this source at two frequencies where it shows two bright components

enveloped inside a lobe (Fig. 3.1). This observation appears very similar to 0402+379,

which also consists of two bright components. This raised our interest in this source

and we decided to further investigate it.

Mrk231 has also been studied at 2.3, 5, and 8 GHz using the VLBA (Taylor et al.,

1999, Ulvestad et al., 1999), where it shows two lobes along the North-South direction

(Fig. 3.2: Morganti et al., 2016) and an unresolved central component. These lobes

get resolved out when observed at higher frequencies such as 15 GHz. The central

unresolved component also starts to resolve in the 15 GHz map. We compare the

15 GHz map in Ulvestad et al. (1999) with our recent observation after accounting

for the beam size. It appears that both the components align, suggesting no change

in their relative position over about 20 years. This is consistent with the relative

motion study in Reynolds et al. (2017), where they carried out a multi-epoch study

of MRK 231 at 8, 15, 22, and 43 GHz using the VLBA. In their analysis, both the

components are resolved at 43 GHz and show no relative motion over a timescale of

about 9 years.

The component C1 shows nearly flat spectra with a turnover near 12 GHz, an

indication of a compact core. On the other hand, C2 has a steeper spectrum (Reynolds

et al., 2017, Ulvestad et al., 1999), likely a jet component. We fit for the Gaussian

components at both 15 and 22 GHz using model fitting in Difmap (see Table 3.2)
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Table 3.2: MRK 231 Gaussian Components

Components Flux Major Axis Ratio Phi Frequency
(mJy) (mas) (deg) (GHz)

C1 15.24 154.62 0.408 0.249 70.844
C2 15.24 219.40 0.258 0.747 -68.6962
C1 22.12 62.62 0.120 0.0 50.88
C2 22.12 107.3 0.246 0.6589 -55.486
C3 22.12 30 0.360 0.525 70.48

Model fitting components for MRK 231 at 15 and 22 GHz; their flux density; major
axis size & ratio of major and minor axis, phase angle.

for the component details). At 15 GHz, there are only two components (C1 and C2)

whereas there are three components at 22 GHz as component C1 splits into two (C1

and C3). The phase angle of C3 aligns with that of C2, suggesting a connecting jet.

Reynolds et al. (2017) report detection of C1 and C2 and a flare emission component

emanating from C1 directed towards C2. We note that this emission component was

observed only at 43 GHz which differs from our observations. They also detected a

change in the flux density of C2. From these observations, they suggested this flare is

along the jet axis directed towards the secondary component.

In a separate study of MRK 231, Yan et al. (2015) suggest this source to be an

SMBBH on the basis of its unique optical-UV spectrum. However, its true status

can only be determined once we detect motion between C1 and C2. For a binary

supermassive black hole, we expect it to move perpendicular to the line joining them

which would not be true if C2 is a jet component.

3.5 Conclusion and Future Work

In this study, we have selected a sample of 18 sources from VIPS on the basis of their

interacting morphology and an additional source NGC 7674, an SMBBH candidate.

No SMBBHs were found. A non-detection of SMBBH in this sample raises various

questions. First of all what morphology should be considered while searching for
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(a) (b)

Figure 3.1: VLBA images of MRk231 at 15 GHz (a) and 22 GHz (b). Contours
are drawn beginning at level 1σ and increasing by a factor of 2 thereafter. The
data have been weighted with natural weighting scheme.

these candidates? We have selected sources which showed signs of a merger. A

non-detection suggests that sources can show interactions without it being in an

SMBBH. Or possibly the SMBBHs are still present in the lobe but require a higher

resolution. In Mrk 231, we estimated the mass of the lobe using its luminosity and

size and used it to obtain an estimate of the orbital period. However, as we go towards

higher frequencies, the lobe starts to resolve out and actual luminosity will be lower

implying lower mass and longer period.

Having defined the status of NGC7674 further strengthens the conjecture that

these sources are rare or difficult to detect. A detection of GWs with PTAs will

certainly confirm the SMBH mergers as well as help deduce their timescale. However,
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Figure 3.2: VLBA images of MRk231 at 2.3 GHz (left) and 5 GHz (right). Contour
levels are the same multiples of the lowest contour. In both the maps, there are
two lobes along the North-South direction and a central bright component. This
figure has been adapted from Ulvestad et al. (1999).

the electromagnetic counterpart will enable us to probe their dynamics and deduce

merger rates. Since only 10% of the quasars are radio loud, a multi-frequency approach

extending to other frequencies such as optical, gamma-rays would be worth pursuing.

In the literature, there are various different ways to search for these sources. First in

the list is searching for double Broad Line Regions (BLR) as an initial test. Although

this is not a foolproof technique as a Doppler shift in rotating discs or accretion

discs around isolated SMBHs carries a similar signature. Another method includes

periodic variation in luminosity. Several candidates including OJ287 and PKS 2247-

131 have been identified using this technique where they show a variation in optical

and gamma-ray flux, respectively, on the timescales of decades. In the future, a new

search method can be developed which searches for a periodic variation at higher

frequencies and then follow them using the VLBI techniques.

The analysis of our sample is still in progress. Our next goal is to classify these

sources on the basis of their source structure such as extended jet sources, short

jet sources, compact symmetric objects, or point source. This will help us further
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investigate their morphology and understand their dynamics.

For the sources which have extended structures or CSO candidates, we plan

on model-fitting them. This will be used to obtain their core-shift measurement.

Core-shift values at two frequencies can be used to obtain the magnetic field near

the core. Obtaining absolute position is not possible since we do not know where the

central core lies. Hence, another component/source is required to obtain a relative

position of the core. We note that it is important that the other component does not

show core-shift effect along the same axis to avoid any confusion.

–
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Chapter 4

Scattering study of Pulsars below

100 MHz using LWA1

The contents of this chapter were originally published as part of Bansal et al. 2019,

The Astrophysical Journal, 875 (2), 146

Abstract: Interstellar scattering causes pulsar profiles to grow asymmetrically, thus

affecting the pulsar timing residuals, and is strongest at lower frequencies. Different

Interstellar medium models predict different frequency (ν) and dispersion measure

(DM) dependencies for the scattering time-scale τsc. For Gaussian inhomogeneity the

expected scaling relation is τsc ∝ ν−4 DM2, while for a Kolmogorov distribution of

irregularities, the expected relation is τsc ∝ ν−4.4 DM2.2. Previous scattering studies

show a wide range of scattering index across all ranges of DM. A scattering index

below 4 is believed to be either due to limitations of the underlying assumptions of

the thin screen model or an anisotropic scattering mechanism. We present a study of

scattering for seven nearby pulsars (DM < 50 pc cm−3) observed at low frequencies

(10− 88 MHz), using the first station of the Long Wavelength Array (LWA1). We

examine the scattering spectral index and DM variation over a period of about three

years. The results yield insights into the small-scale structure of ISM as well as the

applicability of the thin screen model for low DM pulsars.
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4.1 Introduction

The interstellar medium (ISM) consists of an ionized and turbulent plasma which

causes a delay in time and variations in the phase of radio signals. The subsequent

interference gives rise to a diffraction pattern and broadens the apparent size of a

source. Some observable ISM effects are dispersion, scattering, angular broadening,

and interstellar scintillation. The dispersion causes a delay between the pulse arrival

times of the upper and lower ends of a broadband pulsar signal. The scattering of a

pulse signal causes temporal broadening, making average profiles grow asymmetrically

broader at lower frequencies (e.g. Lewandowski et al., 2013, 2015, Löhmer et al., 2001,

2004). Pulsars are compact sources and emit short periodic pulses making them good

sources for studying and understanding these propagation effects.

Assuming that the scattering occurs due to a thin screen between the observer and

the source, the pulse broadening function can be expressed in terms of an exponential

function ∼ exp(−t/τsc) with scattering parameter τsc (Scheuer, 1968). This is also

known as the thin-screen model where different ISM models of electron density

fluctuations predict different frequency dependencies for the scattering parameter

given by τsc ∝ ν−α, where α is the scattering time spectral index. This model

considers an isotropic homogeneous turbulent medium. For Gaussian inhomogeneity

(Cronyn 1970; Lang 1971), the scaling relation is:

τsc ∝ ν−4DM2, (4.1)

while for a purely Kolmogorov distribution of inhomogeneities (Romani et al., 1986),

the expected relation is:

τsc ∝ ν−4.4DM2.2. (4.2)

In both Equation 1 and 2, ν and DM are frequency and dispersion measure, respec-

tively. The DM is given by
∫
nedl, where ne is the electron density and dl is the path
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length along the line of sight (LOS). Measurements of DM have helped us understand

the distribution of free electrons and estimate pulsar distances in our Galaxy (Cordes

and Lazio, 2002, Yao).

The amount of observed scattering can be estimated by assuming a spectrum of

electron density fluctuations. A simple power-law model is given by:

Pne(q) = C2
neq

−β, (4.3)

where q is the amplitude of a three dimensional wavenumber and C2
ne is the fluctuation

strength along a given LOS. The above simplification is valid when the inverse of

wave-number q (1/q) is much larger than the inner scale, and much lower than the

outer scale Lambert and Rickett (1999). The value of β ranges between 2 and 4 and

is related to the scattering spectral index via:

α =
2β

(β − 2)
. (4.4)

This simplified version of the scattering strength (Equation 4.3) may not be valid

for real cases which are difficult to predict since we do not have information about

the inner/outer scales. When the diffractive scale drops below the inner scale, the

dependence becomes quadratic. This change in diffractive scale with observing

frequency leads to flatter spectra in comparison to the theoretical value at lower

frequencies (see Lewandowski et al., 2015, Rickett et al., 2009).

In previous scattering studies, while the average value of α seems to agree with the

theoretical models, for individual pulsars large deviations have been detected across

all ranges of DM (Lewandowski et al., 2015). For large DMs (> 300 pc cm−3), Löhmer

et al. (2001) report a mean value for α of 3.400± 0.013 obtained from frequencies

between 600 MHz and 2.7 GHz. The authors explain that this could be due to the

presence of multiple screens between the pulsar and the observer. Lewandowski

et al. (2013, 2015) report α in the range of 2.61− 5.61, obtained for a sample of 60
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pulsars. They also see α values below 2.61 but discarded them due to poor data

quality. Geyer and Karastergiou (2016) simulated anisotropicaly scattered data and

fit it with the isotropic model which results in α values less than the theoretically

predicted values as well as the effect of non-circular scattering screens leading to low

α values (∼ 2.9). Scattering spectra with α < 4 have been interpreted as a limitation

of assumptions underlying the thin scattering model. Plausible deviations from the

thin screen assumptions include a truncated scattering screen (Cordes and Lazio,

2001), the impact of an inner cut-off scale (Rickett et al., 2009), and anisotropic

scattering mechanisms (Stinebring et al., 2001).

Moreover, ISM scattering accounts for one of the largest time-varying sources of

noise in timing residuals of pulsars, which are used by pulsar timing arrays (PTAs) to

detect gravitational waves from supermassive binary black holes (for more details see

Arzoumanian et al., 2018, Ferdman et al., 2010, Shannon et al., 2015). Despite pulsars

exhibiting steep spectra which imply higher flux at lower frequencies (Sieber, 1973),

a large population of pulsars at lower frequencies are marginalized from the PTA

analysis, where dispersion and scattering effects are greatest. These reasons further

motivate us to undertake a study of propagation effects with pulsars at low frequencies.

In this paper we focus on the scattering effects for a sample of pulsars observed at

low frequencies (10− 88 MHz), using the first station of the Long Wavelength Array

(LWA1). We examine the scaling relations for scattering with time and frequency.

We model for both the frequency dependence of the scattering time as well as the

DM since α depends on both.

This paper has been organized in the following manner. In Section 2 we describe

our observations and preliminary data reduction; in Section 3, we describe the

scattering analysis methods. In Section 4, we describe our results for our sample

of seven pulsars and Section 5 contains a detailed discussion and comparison with

previous observations.
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4.2 Observations

The LWA1 (Taylor et al., 2012) is a radio telescope array located near the Karl G.

Jansky Very Large Array in central New Mexico. It consists of 256 dual-polarized

dipole antennas operating in the frequency range 10− 88 MHz. The outputs of the

dipoles can be formed into four fully independent dual-polarization beams such that

each beam has two independent frequency tunings (chosen from the range 10− 88

MHz) with a bandwidth of up to 19.6 MHz in each tuning. The ability of the

LWA1 to observe multiple frequencies simultaneously provides a powerful tool for

studying frequency dependence of pulsar profiles (Ellingson et al., 2013). At these

low frequencies, the pulses experience scattering and dispersion effects to a much

greater extent than at higher frequency. Thus, the LWA1 can be used to make very

precise measurements of these effects for studying the ISM properties.

The LWA Pulsar Data Archive1 (Stovall et al., 2015) contains reduced data

products for over 100 pulsars (Stovall et al., in prep) observed since 2011. The data

products used for this study are produced by coherently de-dispersing and folding

the raw LWA data using DSPSR2. We used archival observations at four frequency

bands: 35.1, 49.8, 64.5, and 79.2 MHz. The archival data have already been corrected

for DM effects via coherent de-dispersion, and consist of 4096 phase bins for each of

512 spectral channels. The data are saved in the form of 30-second sub-integrations.

We excise RFI using a median zapping algorithm that removes data points with

intensity more than six times compared to the median within a range of frequency

channels. These files are then further reduced in two ways, one is to obtain total

average profiles with two to four channels (depending on the signal to noise ratio of a

pulsar) for scattering studies and the other with eight channels for obtaining the pulse

time of arrivals (TOAs) for measuring the DM variation over time. For scattering

study, we reduce the number of phase bins to 256 to smooth the average profiles.

These tasks are performed using the PSRCHIVE command pam (van Straten et al.,

1https://lda10g.alliance.unm.edu/PulsarArchive/
2http://dspsr.sourceforge.net/index.shtml
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2012). We also remove the baseline from the observed profiles and then normalize

them by their peak amplitude.

Table 4.1: Selected Pulsars Observed with LWA1

Source DMLWA1 Period Distance PMRA PMDec

(pc cm−3) (s) (kpc) (mas/yr) (mas/yr)
B0329+54 26.7639(1) 0.71452 1.00 17.0(0.3) -9.5(0.4)
B0823+26 19.4789(2) 0.5307 0.32 61.0(3) -90.0(3)
B0919+06 27.2986(5) 0.4306 1.10 18.8(.9) 86.4(0.7)
B1822−09 19.3833(9) 0.7690 0.30 -13(11) -9(5)
B1839+56 26.774(1) 1.6529 2.19 -30(4) -21(2)
B1842+14 41.498(1) 0.3755 1.68 -9(1) 45(1)
B2217+47 43.488607(5) 0.5385 2.39 -12(8) -30(6)

Notes: The list of sources studied in this paper. DM and Period values have been
obtained from Stovall et al. (2015). Values for the Distance, PMRA and PMDec have
been obtained from ATNF3 pulsar catalogue.

In our preliminary study of scattering, we obtain archival data for seven pulsars

(Table 4.1) for all the available epochs since the commission of LWA1. For each

pulsar, we split each frequency band into two channels except for two pulsars: PSR

B1822−09 and PSR B1839+56. For PSR B1822−09 we have used four channels to

compare our results with previous studies by Krishnakumar et al. (2015). In case of

PSR B1839+56, we have reduced the data to four channels to improve our sample

size as the S/N at higher frequency bands (64.5 and 79.2 MHz) is poor. The analyzed

frequency range was cut for all the pulsars with regard to full LWA capabilities due

to S/N issues coming from the shape of pulsar spectra and/or sensitivity. We list

center frequencies used for each pulsar in Table 4.2.

These seven pulsars were previously noted to have profile shapes below 100 MHz

that are consistent with the effects of interstellar scattering (Stovall et al., 2015) and

we follow the same data reduction procedure for all of them (see Section 4.3).

3http://www.atnf.csiro.au/people/pulsar/psrcat/ .
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4.3 Analysis

After obtaining the average profiles for each pulsar, we follow the same technique

as reported in Krishnakumar et al. (2015, hereafter, KK15) to model scattering on

this dataset. This formulation is based on the simple thin screen model (Williamson,

1972). The observed pulse profile can be expressed as a convolution of the frequency

dependent intrinsic pulse Pi(t, ν) with the impulse response, characterizing the

pulse scatter broadening in the ISM, s(t) the dispersion smear across the narrow

spectral channel D(t), and the instrumental impulse response, I(t). This results in

P (t) = Pi(t, ν) ∗ s(t) ∗D(t) ∗ I(t), where ∗ denotes convolution. Following the same

analysis as in KK15, we ignore the effect of I(t) as our instrument is stable in time

on the timescale of each observation. D(t) can also be ignored as we use coherent

dedispersion which corrects for dispersion smearing in the narrow spectral channel.

4.3.1 Intrinsic Pulse Model

The average pulse profile of a pulsar varies intrinsically with frequency in the number

of components, their width, amplitude ratio, and separation between them. Hence,

it is important to account for frequency dependent effects. Since the intrinsic pulse

profile of a pulsar is unknown, we obtain an expected intrinsic profile model (IPM)

at our frequency of interest using higher frequency average profiles for each source in

Table 4.1. We assume the effects of scattering at higher frequencies are too small to

affect the pulse shape. Average profiles at multiple frequencies enable us to obtain

frequency dependent variation in the parameters affecting the pulse shape. For the

IPM, we obtain average pulse profiles at frequencies ranging between ∼ 100− 410

MHz from the European Pulsar Network (EPN4). However, if one of the profiles in

the above frequency range has poor signal to noise ratio (S/N) or two average profiles

are close in frequency (143 and 151 MHz), it is difficult to accurately determine the

frequency evolution. In such cases, we either consider no frequency evolution (see

4http://www.epta.eu.org/epndb/
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Table 4.2) or include our 79.2 MHz data (highest central frequency in the LWA1 band)

depending on its S/N. Differences in these average profiles apart from the intrinsic

frequency effects of interest can also stem from different telescopes, instrumentation,

observation date, and duration.

We model these profiles using a sum of Gaussians as explained in Kramer et al.

(1994). The number of Gaussian components increases with each iteration and is

limited to a maximum of five. We use various criteria to limit the number of Gaussian

components, for example, the iteration stops when the amplitude of the residual

maxima is < 5% of maximum peak intensity or the chi-square value increases with

the addition of a new Gaussian component.

We assume that the number of components does not change within the selected

range of frequencies (79.2− 410 MHz). Once we obtain a set of Gaussian parameters

for a profile at one of the frequencies (preferably LOFAR high band since it offers

high S/N), we use these parameters as an initial condition and apply them to rest of

the frequency profiles. We then fit for changes in the main component width based

on a power law in frequency (for the list of parameters, see Table 4.2), as pulsars

have broader pulse profiles at lower frequencies (Lyne, 2006). We also assume that

spacing between the components and their relative amplitudes do not vary within

our frequency selection. We consider the radius-to-frequency mapping only for the

pulse width. Two pulsars (PSR B0329+54 & PSR B0919+06) in our sample have

more than two components which makes determining the evolution of the component

separation very complicated. In order to have consistent analysis we refrain from

applying radius-to-frequency mapping for the remaining pulsars.
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Table 4.2: IPM Frequency Parameters

Pulsar Epochs Number of Frequencies Frequency
(MJD) Components Used (MHz) Dependence (a, b)

B0329+54 57144− 58254 4 40.0, 44.9, 54.7 0.00655, -0.0811
59.6, 69.4, 74.3

B0823+26 57219− 57899 2 44.9, 54.7, 59.6 ...
69.4, 74.3

B0919+06 57312− 58139 3 44.9, 54.6, 59.6 ...
69.4, 74.3

B1822–09 57232− 57919 1 47.3, 52.2, 57.2 0.0188, -0.166
62.0, 67.0, 71.8

B1839+56 57225− 58209 1 27.8, 32.6, 37.6 ...
42.4, 47.4, 52.2
57.2, 62.0

B1842+14 57242− 58210 2 49.7, 59.6, 69.4 0.461, -0.917
74.2, 84.1

B2217+47 57242− 58085 1 44.9, 54.6, 59.6, 0.127, -0.602
69.4, 74.3, 84.1

Notes: This table lists the range of epochs that have been included in this study for
each pulsar; the number of Gaussian components; list of frequencies used for each
pulsar, and frequency modeling parameters for the main component width to obtain
the IPM given by a× νb (discussed in Section 4.3.1).

4.3.2 Pulse Broadening

From the high-frequency models described above, we derive the frequency dependence

and a new IPM is obtained for all the LWA1 center frequencies separately. The IPM

is convolved with an exponential function with a scattering time (τsc) to obtain a

template. This new template is a function of relative flux, phase offset, and scattering

timescale. We then use a least square fitting algorithm to fit the template to the

observed pulse profiles. This fitting uses the standard deviation of observed pulse

profile as the uncertainty and estimates error bars on the fitting parameters. We
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Figure 4.1: Fitting example for B2217+47 epoch MJD 57372. Top to bottom plots
show fitting of intrinsic pulse models convolved with an exponential scattering
function to the observed data. For B2217+47, the noise in the data increases as
we go towards the lower frequencies.

assume that error on the template is negligible compared to the uncertainty in the

data and will not affect the fitting parameters.
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Figure 4.2: Example of α fit for PSR B2217+47 at epoch MJD 57372.

To align the pulse phase of the template and data, we use a low pass filtering

technique to smooth the data. To do this, we first calculate the Fourier transform of

the average profile. Then we filter out all the frequencies > 30% of the maximum

frequency (fmax) and rescale the intensities for frequencies between 20− 30% of fmax

by (N −ni)/N where ni is the index of the frequency point and N is the total number

of points within the specified frequency range. Intensities at frequency < 10% of the

fmax are scaled by 1. We include these two frequency ranges to avoid sharp edges.

We then take the inverse Fourier transform of the filtered profile and use that to

find the peak location. Since this filters out all the high Fourier frequencies, noise

interferes less with determining the phase of the peak.

We plot the fitting examples for PSR B2217+47 at all six frequencies in Fig. 4.1 to

demonstrate our procedure. As can be seen, our templates (Fig. 4.1) fit the observed

dataset with a reduced chi-square in the range of 1−3 for all frequencies. Subsequently,
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we use τsc obtained from Fig. 4.1 to obtain an α value for PSR B2217+47 (Fig. 4.2).

Similarly, we have obtained an IPM for all the pulsars in our sample and used them

to fit our observations.

4.3.3 DM Variation

Since the scattering time can be related to DM (see Equation 4.1 and 4.2) along the

LOS, it is important to study if there are any variations in DM over the duration of

our observations. For our study, we measure δDM using the pulsar timing software

TEMPO5 DMX parameters. These measure an offset of DM from a fiducial value for

multiple epochs each having a specified time span. We used a time span of about

three years.

For the DM analysis, the number of frequency channels in the archive files is

reduced to eight for each epoch at two frequencies, 64.5 and 79.2 MHz, using the

PSRCHIVE task pam. We only use the higher frequencies since they have a better S/N.

The TOAs for these profiles are obtained using pat (a PSRCHIVE algorithm). For

the timing model, we first apply ephemeris changes using the task pam to make sure

that all of the epochs have the same ephemeris, and then average profiles across all

the epochs for each frequency using psradd, followed by smoothing the profile using

psrsmooth. We then align the 64.5 MHz and 79.2 MHz pulse models, before obtaining

the TOAs. We have converted the TOAs to the solar system barycentre using the

DE405 model (Standish, 1998). The time difference between the observed TOA and

the timing model gives timing residuals for each observation. We combine these

timing residuals from both the frequencies into one file and fit for the above-listed

parameters.

5http://tempo.sourceforge.net/
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Figure 4.3: The top and middle panel consist of scattering index values (α) and
scattering time at 69.4 MHz, respectively, over time for PSR B0329+54. The
bottom panel consists of δDM values (blue) and solar elongation angle (red) over
time. All four measurements have been made at the same epochs for a span of
about three years. For more details see Section 3.

4.4 Results

We have studied scattering in seven pulsars using the LWA1 data. Below we discuss

our results for each pulsar individually.

4.4.1 PSR B0329+54

PSR B0329+54 is known to have 9 emission components, one of the highest number

of components for any pulsar (Gangadhara and Gupta, 2001). We have used four

components where the amplitude of these components is above 5% of the main

component amplitude. The frequency evolution for the main component has been

obtained from three frequencies: 79.2, 143, and 408 MHz (obtained from EPN).
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We have plotted α, τsc, δDM, and the solar elongation angle in Fig. 4.3. The

measured median α value is 4.05 ± 0.14. This estimate is in agreement with the

prediction of the Gaussian distribution where the α value is expected to be 4.0. The

fitting to the α value over time yields a slope equal to 0.13 ± 0.11 year−1. This is

consistent with there being little or no variation in the scattering index with time.

PSR B0329+54 has been found to have periodic variation in its timing residuals

with two different periods likely due to the presence of potential planets (Starovoit

and Rodin, 2017) in its orbit. This contributes to the timing noise, hence, we have

obtained the DM values for this pulsar in a slightly different manner. Instead of fitting

for δDM across all epochs simultaneously, we have fit for each epoch individually.

Fig. 4.3(b) shows the variation in δDM values with an overall change of about 0.0015

pc cm−3 over a span of about 3 years. These variations do not correlate with the

solar elongation angle (Fig. 4.3c) where the trend is periodic. We do not expect this

pulsar to exhibit variation in DM due to the solar wind since the closest distance of

approach is 34.2◦.This pulsar is also known to exhibit mode switching (Chen et al.,

2011), where the relative amplitude of the component changes and the total pulse

width becomes narrower as the profile components change their phases. These mode

changes are simultaneous across frequency but non-uniform (Bartel et al., 1982),

hence, will introduce a frequency-dependent variation in timing residuals. Apart from

mode change, it is also known to have planets in its orbit which will again affect the

timing residuals. Hence, this apparent variation in δDM is not due to any physical

change in ISM, but instead the high timing noise of this pulsar.

4.4.2 PSR B0823+26

PSR B0823+26 pulse profile consists of a main pulse, post-cursor, and an inter-pulse

(Rankin and Rathnasree, 1995). The amplitude of both inter-pulse and post-cursor

is less than 5% of the main pulse. However, we note there are two additional wing

components on both sides of the main pulse that are above 5% of the main pulse’s

amplitude at 143 MHz and 151 MHz. It is difficult to obtain frequency dependency
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Figure 4.4: α, τsc at 69.4 MHz, δDM, and solar elongation angle for every epoch
for PSR B0823+26

from only these two nearby frequencies especially when it involves multiple components.

Hence, for the IPM, we have used the profile at 151 MHz and considered no frequency

evolution.

This pulsar is known to exhibit nulling, detected in LOFAR observations (Sobey

et al., 2015), which causes several observations without any pulse, hence, have been

excluded from this analysis. We have plotted the α and DM values over time in

Fig. 4.4 top and bottom plots, respectively. The estimated median α value for this

pulsar is 1.55± 0.09, which is quite small in comparison to the expected theoretical

value. We fit a trend to the α values over time and have found the slope value to be

−0.16± 0.13 year−1. This is consistent with there being little or no variation in the

scattering index over time.

From the δDM plot (Fig. 4.4b), we see a periodic variation of ∼ 1.7 × 10−3 pc

cm−3 over a period of about half a year. This periodicity in DM can be attributed to
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the solar wind, due to its close proximity to the Sun (Fig. 4.4c). The closest distance

of approach for this pulsar is about 7◦.

4.4.3 B0919+06

The number of components in B0919+06 is a matter of some debate since this pulsar

is known to exhibit abnormal emission which causes flares a few degrees in phase

before the normal emission (Han et al., 2016, Rankin et al., 2006). The timescale of

this emission is about 15 seconds and expected to occur once in 1000 pulses. Since for

our analysis we average an hour long archival observation in time, we do not detect

it. The Gaussian fitting of the 135 MHz profile yields three components and the 408

MHz profile shows only two components, where the post-cursor component is missing.

Due to this we only derive the IPM from 135 MHz with no frequency evolution. Since

135 MHz is closer to the frequencies we are working with as compared to 408 MHz

which is six times larger. This provides us best possible fits for this pulsar.

The average α value is 2.88 ± 0.18. The slope value is −0.28 ± 0.15 year−1.

The epochs ranging from MJD 57744 to 57903, either have poor data quality or

fewer number of frequencies, hence, have not been included in the fitting plot. For

B0919+06, the scattering time (∼ 5 ms) is small in comparison to PSR B2217+47

and B0329+49 (∼ 30 ms) at the frequencies of LWA1. This could imply that pulsars

with similar DM values (PSR B0329+54) have different scattering timescales, as it

also depends on the location of a source in the galaxy.

This pulsar appears to have a steep spectrum at the LWA frequencies and,

consequently, the S/N deteriorates when we go towards the higher end of the spectrum.

Hence, we ignore the last channel (84.1 MHz) for scattering index estimation. For

some of the epochs, the average profile fits poorly with the model for the mid-range

frequencies and we get a lower scatter timescale for a higher frequency. It seems that

this may be attributed to the error in τsc and these error bars may be underestimated.

The δDM plot (Fig. 4.5c) exhibits variation over time with no overall change in
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Figure 4.5: α, τsc at 69.4 MHz, δDM, and solar elongation angle for every epoch
for B0919+06

δDM value. The minimum solar elongation angle for this pulsar is 8.36◦. Thus, we

expect the variation in δDM due to the solar winds (Fig. 4.5c) to be periodic which

does not align with our δDM observations. This pulsar is known to show variation

in the frequency derivative (Perera et al., 2014). The observed trend in δDM can,

therefore, be explained as a combined effect of both the solar wind and the varying

frequency derivative.

4.4.4 PSR B1822−09

PSR B1822−09 is a single component pulsar. We have obtained frequency evolution

from these four frequencies: 87, 149, 400, and 408 MHz. For this pulsar, we have

reduced the data to four channels instead of 2 to compare our results with Krish-

nakumar et al. (2017) (hereafter, KK17 and see Section 5.1), as they also reduced

it to four channels for their analysis. We have plotted α, δDM, and relative solar



Chapter 4. Scattering study of Pulsars below 100 MHz using LWA1 79

2

4

6

α

Scattering Index for B1822-09

Fit

9

14

19

τ s
c
 (

m
s)

Scattering Time at 62.0 MHz

57222 57402 57582 57762

2

0

2

δD
M

 (
p

c 
cm

−
3
) δDM= DM - 19.38358×10−3

13

63

113

163

D
is

ta
n

ce
 (

D
e
g

)

Figure 4.6: α, τsc at 62.0 MHz, δDM , and solar elongation angle for every epoch
for PSR B1822−09

distance over the observation time in Fig. 4.6. The median α value is 4.18 ± 0.13.

This value falls in the range of both the Kolmogorov and Gaussian models. The

scattering index remains constant over the duration of our observations with a slope

equal to 0.11± 0.25 year−1.

PSR B1822−09 is a nearby pulsar with a DM of 19.38 pc cm−3 (Table 4.1). Its

minimum solar elongation angle is about 13 degrees. As can be seen in the Fig. 4.6c,

there is an overall increment in δDM value of 4.8 × 10−3 pc cm−3 over a span of

about three years. Additionally, there are smooth rises and dips with a magnitude of

2.4× 10−3 over a span of 167 days, which are due to change in the solar separation

angle. The transverse speed of 22 km s−1, implying that LOS of this pulsar remains
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Figure 4.7: α, τsc at 57.2 MHz, δDM, and solar elongation angle for every epoch
for B1839+56

the same. The overall increase in δDM implies turbulence in the ISM along the LOS.

Since the LOS remains the same, the scattering index remains constant

4.4.5 B1839+56

PSR B1839+56 is another single component pulsar. We have derived the IPM using

143 MHz profile. Due to poor S/N at 79.2 MHz, we were unable to obtain frequency

evolution for this pulsar. We have plotted the α, δDM values, and relative solar

distance for this pulsar in Fig. 4.7. The median value of α is 2.70 ± 0.16. The α

remain mostly constant with an estimated slope of 0.10± 0.05 year−1.
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Figure 4.8: α, τsc at 69.4 MHz, δDM, and solar elongation angle for every epoch
for B1842+14

The δDM values for B1839+56 are small compared (of the order of 10−4 pc cm−3)

to the other pulsars (of the order of 10−3pc cm−3) discussed in this paper. Also,

these error bars are comparable to the variation in δDM , thus, implying insignificant

variation in DM over time.

4.4.6 B1842+14

This is a double component pulsar at LWA frequencies. The IPM has been obtained

using the LOFAR data at 143 MHz and the LWA profile at 79.2 MHz. We only use

frequency evolution of the main component as discussed in Section 3.1. We have

plotted α, τsc at 69.4 MHz, δDM, and relative solar distance in Fig. 4.8. The median

α value is 3.24± 0.11. The α remains constant over the duration of our observations

with a fitted slope value equal to 0.09± 0.12 year−1.
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From the δDM plot (Fig. 4.8c), we see a moderately constant δDM until epoch

MJD 57756 and a linear change of 5.8 × 10−3 pc cm−3 over 455 days. This does

not correlate with the solar elongation angle and the closest angular distance of this

pulsar to the Sun is about 37◦, which is too far away to affect the DM significantly.

The transverse velocity of this pulsar is about 365 km s−1 (Table 4.1), which would

affect the LOS, hence, the δDM. We note that this change in LOS does not affect

scattering index.

4.4.7 B2217+47

PSR B2217+47 is typically known to have a single component below 300 MHz (Kuzmin

et al., 1998), however, recently it was found to have an additional component (Pilia

et al., 2016). This component changes its relative position to the main component

over time (Michilli et al., 2018). Since we do not have all the frequency data for the

same epoch, we choose to ignore this component and only use the main component

for IPM. We obtain the frequency evolution of the pulse component using 79.2, 143,

and 151 MHz. This pulsar also has the highest S/N in our sample (Stovall et al.,

2015).

For PSR B2217+47, we have plotted α values for all epochs to see if there is any

variation over time (Fig. 4.9a). The median α is 3.58± 0.10. The green dotted line

represents the linear fit with an estimated slope of −0.44± 0.10 year−1, which implies

a decrement in α at a level of 4.4σ.

Fig. 4.9c shows a variation in δDM values over time. The overall variation in

δDM is about 0.005 pc cm−3 over a span of 661 days. To understand the variation

in DM, we plot the solar elongation of this pulsar during our observation period

(Fig. 4.9c), which changes periodically, different from both α and δDM trends. The

closest angular distance of PSR B2217+47 from the Sun is about 50◦ which does

not affect the pulsar DM significantly. Since both scattering index and δDM values

vary with time, we test if they are correlated using Spearman rank-order correlation.

We estimate the correlation index between the α and δDM values equal to −0.56
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Figure 4.9: α,τsc at 69.4 MHz, δDM, and solar elongation angle for every epoch
for B2217+47. We include scattering time to show its correlation with δ DM (see
section 4.7).

(P-value = 0.003), implying a negative correlation between them. We also estimate

the correlation index between δDM values and scattering timescales at multiple

frequencies. For the higher frequency bands, there is a positive correlation with the

similar magnitude as α, thus confirming our expectation that variation in DM affects

the scattering timescale (see Equation 4.1 and 4.2).

4.5 Discussion & Conclusion

We will now summarize our results and discuss what information is gained from time

evolution of scattering parameters. We will also discuss how our results align with

the thin screen model and the underlying assumptions.
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4.5.1 Scattering Spectral Index Distribution

Assuming that the scattering time follows a power law (see Equations 4.1 and 4.2), we

performed a weighted least-squares fit to estimate the spectral indices for the pulsars

in our sample. Our results show that α values except for two pulsars in our sample

show deviations from the theoretical power law. Scattering spectral index allows us

for an estimate of electron density index (β; see Equation 4.4). Table 4.3 summarizes

the scattering spectral index median value and β for our sample of pulsars. Since

Equation 4.4 is only applicable for α > 4, we have been able to obtain this only for

PSR B0329+54 and PSR B1822−09 (see Xu and Zhang, 2017 for more details).

The α measurements for PSR B0329+54 and PSR B1822−09 are consistent with

the theoretical value of 4.4 for a Kolmogorov distribution. Our median α value for

these pulsars slightly differs from α values of 4.3± 0.1 and 5.0± 0.5, respectively, as

reported in KK17. The reason for this discrepancy is likely a result of a different IPM.

They have used the 87 MHz profile with no frequency evolution for the IPM whereas

we have used a higher frequency (151 MHz) with frequency evolution (refer Section

4.3 and 4.4). We also note that assuming no frequency evolution overestimates the

τsc and hence, the value for α.

PSR B0823+26 has the lowest value of α, 1.55± 0.40 among all the pulsars. We

compare this observation with scattering measurement done by Kuzmin and Losovsky

(2007) where they report the α value for this pulsar is 3.68 (no error bar reported).

This is quite different from our observation, however, their value was obtained using

only two frequencies, which makes it less reliable. Another way of obtaining scattering

spectral index is by using spectral dependence of the decorrelation bandwidth, as done

by Daszuta et al. (2013) for PSR B0823+26. The decorrelation bandwidth is related

to the scattering time by 2πτscδνd = C1, where νd is the decorrelation bandwidth.

They have found this value to be 3.94 ± 0.36, which also differs significantly from

our observation. However, this decorrelation bandwidth measurement is at higher

frequencies (> 300 MHz) which raises a question of if the scattering index varies with

frequency.
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Other pulsars with a large α deviation from theoretical expectations are B1839+56

and B0919+06 with estimated median values of 2.70±0.16 and 2.88±0.18, respectively.

We compare our α measurement for B0919+06 with Kuzmin and Losovsky (2007),

where they have reported a value of 3.05± 0.08. This agrees with our measurement

within the error bars, and compared to PSR B0823+26 is likely to be more reliable

since it was obtained using three frequencies.

PSR B2217+47 has a median α value of 3.58 ± 0.10. This is lower than the

theoretical value for a Gaussian distribution of 4, but closer to that theoretical

expectation than α values for four pulsars in our sample. Similar to PSR B0329+54

and B1822−09, our α value for B2217+47 agrees with values reported in the literature

(4.2± 0.1, see KK17) but is slightly higher than our median due to a different IPM.

For PSR B1839+56 and PSR B1842+14, this is the first time scattering spectral

index has been estimated. In this study, we have considered no frequency evolution

for three pulsars (for example PSR B0823+26, see Table 4.2) in our sample for which

we suggest that the reported values should be on the higher end.

Table 4.3: Scattering Results

Pulsar α β
B0329+54 4.05± 0.14 3.95
B0823+26 1.55± 0.09 ..
B0919+06 2.83± 0.18 ..
B1822−09 4.18± 0.13 3.83
B1839+56 2.70± 0.16 ..
B1842+14 3.24± 0.11 ..
B2217+47 3.58± 0.10 ..

Notes: α and β values are median values obtained in this study. α and β are scattering
index and electron density index, respectively ( refer Equation 4.3 and 4.4).

4.5.2 Deviation from theoretical models

PSR B0823+26 is the nearest source in our sample and shows large deviations in the

scattering index from the thin screen model. There are three possible explanations

for this observation. First, this pulsar shows intrinsic variation such as nulling,
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sub-pulse drifting, and mode switching, which may affect the average profile and

hence, the evaluation of scattering time. This pulsar also has a small scattering

time in comparison to PSR B1822−09 even though both sources have the same DM.

The second explanation for this observation is that since scattering time is small in

comparison to the pulse width, it is difficult to obtain the true scattering time and

hence, we get a flatter index. The third explanation is based on inner scale effects.

Since at lower frequencies the diffraction scale can become smaller than the inner

scale, which causes a flatter spectra as compared to the theoretical model. This

explains the discrepancy in observed α value with that reported in Daszuta et al.

(2013) since they had observed it at a higher frequency, implying steeper spectra.

As mentioned in the introduction, deviation from the theoretical models has been

observed in many scattering observations across all ranges of DM, more often for

high DM pulsars (Lewandowski et al., 2013, 2015). KK17 claim that α estimates for

DMs < 50 pc cm−3 are in good agreement with those expected for a Kolmogorov

spectrum with an average value of 3.9± 0.5. However, on an individual basis these

sources show a deviation from the expected value.

There are various plausible explanations for these deviations. First of all, the

thin screen model assumes an infinite thin screen. This assumption seems valid in

the case of medium-range DMs. For large DMs, the probability of having multiple

screens increases, hence, the assumption of the thin screen becomes less valid. In

the literature, most of the scattering studies (Lewandowski et al., 2013, 2015) have

been conducted for high DM pulsars (DM> 300 pc cm−3), where α < 4 have been

attributed to multiple finite scattering screens. For the low DM sources, the scattering

screen can be finite which can lead to α values less than or equal to 4.0 (Cordes and

Lazio, 2001). Spectra with α < 4, are expected as a result of finite scattering screen

by Rickett et al. (2009) and anisotropic scattering mechanisms by Stinebring et al.

(2001).

In a recent simulation study, Geyer and Karastergiou (2016) find that for anisotropic

scattering, spectral index of scattering time is < 4 with the infinite and finite screen.

Anisotropy in scattering implies elongated scattering angle in one direction as com-
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pared to other direction. However, the effect of anisotropy would be more distinctive

in the case of image broadening as compared to temporal broadening. We note

that in case of PSR B2217+47 where we see a change in scattering index with time,

its velocity along Declination is only 2.5 times the RA which makes it difficult to

interpret if the observed trend is due to change in anisotropy. We discuss this source

further in more detail in Section 5.3. In order to conclusively determine the effect

of anisotropy, in addition to measuring the temporal broadening, we either need to

image the source simultaneously or study its dynamic spectrum. From this study, we

suggest that low DM pulsars do not always follow Kolmogorov distribution or the

Gaussian distribution. It is likely due to the deviation of the scattering model from

the thin screen model even for the nearby pulsars.

Apart from DM, another important factor that will likely affect the scattering is

the location of a pulsar in the Galaxy. Among the previous studies, Lewandowski,

Kowalińska, and Kijak (2015) report no correlation between the scattering spectral

index and the distance or the position of the source in our Galaxy. Similarly, KK17

do not suggest any trend in their data with respect to the location in our Galaxy

and emphasize that to draw conclusions from such a plot, we need DM-independent

distance measurements.

4.5.3 Time Evolution of Scattering parameters

The main focus of this paper is to study the evolution of α with time and to understand

it in more detail we also obtain variation in DM in parallel for the same epochs. In

our sample of seven pulsars, only B2217+47 shows a significantly varying α, whereas

we see a variation in DM for all pulsars except PSR B1839+56. This variation in

DM can be periodic, linear or a combination of both depending on the underlying

effects. A linear trend in DM can be explained either due to the change in LOS due

to the proper motion of a pulsar or a change in distance to the screen along the LOS

(Lam et al., 2016, Petroff et al., 2013). Periodic variation in DM can be attributed to

either ionosphere or the solar wind. We estimated the contribution of the ionosphere
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to DM which is of the order of < 10−4 pc cm−3, about 10 times smaller than the

DM variations we measured, hence would not affect our observations. We used an

IONEX Global Ionosphere Model6 to model the slant total electron content in the

ionosphere and converted that to a DM since they are the same measurement with

different units. From our observations we note that solar wind will affect the DM for

the slow pulsars with a minimum solar elongation of about 15◦.

For PSR B0823+26, the δDM plot shows periodic variation, which is mainly due

to the change in solar elongation angle. Similarly, for B1822−09, we see smooth

periodic rises and dips due to change in angular distance to the Sun, as well as an

overall change of 0.001 pc cm−3 per year in δDM. This implies a slight variation in

the column density along the LOS.

We note that we have derived these DM values from timing solutions which also

depend on the intrinsic properties of a pulsar including the ISM. In such cases, the

derived DM values may not represent the actual DM of the ISM. This is true for

PSR B0329+54 and B0919+06 for which intrinsic variations in pulsar cause large

timing residuals. The δDM plot for PSR B0329+54 shows variation in δDM, however,

the actual variation is in the timing residuals due to the possibility of planets in its

orbit (Starovoit and Rodin, 2017). The δDM variation for B0919+06 also includes

variation in pulsar frequency derivative. Since the trend in δDM for both pulsars are

due to intrinsic reasons, this requires further investigation and is beyond the scope of

this paper. This, however, is beyond the scope of this analysis.

We expect a change in DM due to the change in LOS will also affect the scattering

spectral index. This is the case of PSR B2217+47 which shows a decrement in α

values with time. The α and δDM are anti-correlated and the scattering time at

higher frequencies is positively correlated with δDM (Fig. 4.9). This pulsar is known

to have an additional component, a trailing component in the main pulse (Michilli

et al., 2018). However, we do not see this additional component at our frequencies.

We see a similar change in DM as reported in Michilli et al. (2018) of 0.004pc cm−3

6ftp://cddis.gsfc.nasa.gov/gnss/products/ionex/
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over the same duration. This implies that this pulsar is encountering a gas cloud with

a higher density and its structure is changing, which is affecting the pulse broadening.

We note that variations in DM may not affect the scattering spectral index if the

motion is parallel to the LOS since the ISM structure would remain the same along

the LOS (Lam et al., 2016). In the case of PSR B1842+14, there is a change in DM

but no variation in the scattering index. This implies that this change is likely due

to a change in electron density along the LOS and the structure of ISM remains the

same.

4.6 Summary

We present a study of scattering spectral index and DM variation for seven pulsars

over the timescale of ∼ 3 years using the LWA1. This is the first time a systematic

evolution of α has been reported according to our survey of the literature. Most of the

pulsars in our sample exhibit constant α throughout the observations with the slope

value consistent with zero. The exception to this is PSR B2217+47 where we measure

a decrement in α over our observation period of three years which anti-correlates with

a change in DM. For PSR B0823+26, we obtain the smallest α value of 1.55± 0.40,

indicating inner scale effects.

The median scattering spectral index for five of the seven studied pulsars is

below 4, implying deviation from both Gaussian and Kolmogorov inhomogeneities for

DM < 50 pc cm−3. α measurements at lower frequencies and their deviations from

theoretical models have led to an improved understanding of correlations between

ISM structure and pulsar scattering, but the detailed structure of the ISM and the

physical interpretation still remain unclear. Anisotropy is another likely explanation

for these deviations in scattering spectral index. However, to effectively understand

the anisotropy in the ISM, we need to study the dynamic spectra parallel to the

temporal broadening for a larger sample of pulsars. More observations of other pulsars

at these low frequencies will be helpful in understanding the distribution of scattering
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spectral index with DM. Similarly, DM-independent distance measurements will be

helpful in obtaining the scattering index distribution across the Galaxy.
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Chapter 5

Detection of Echoes in PSR

B1508+55 using the LWA1

Content of this chapter has been submitted to the Astrophysical Journal, and is

currently under review.

Abstract: PSR B1508+55 is known to have a single component profile above 300

MHz. However, when we study it at frequencies below 100 MHz using the first station

of the Long Wavelength Array, it shows multiple components. These include the main

pulse, a precursor, and a trailing component. The separation of the trailing component

from the main peak evolves over the course of a three year study. This evolution is

likely an effect of the pulse signal getting refracted off an ionized gas cloud (acting as

a lens) leading to what appears to be a trailing component in the profile as the pulsar

signal traverses the interstellar medium. Using this interpretation, we identify the

location and electron density of the lens affecting the pulse profile.

5.1 Introduction

Although individual pulses from pulsars are quite varied, pulsars typically have a

stable integrated pulse profile over time-scales of years to decades (Helfand et al.,
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1975, Liu et al., 2012). This is why they are also considered to be one of the best

clocks in nature and are being incorporated for the search of gravitational waves by

the pulsar timing arrays (EPTA1, PPTA2 and NanoGrav3). Despite this stability,

numerous pulsars have been observed to manifest a continuous pulse profile evolution.

Pulse variations can be classified on the basis of the length of its timescale. Short

scale variations such as nulling and mode change occur on timescales ranging from a

few pulse periods to hours and days (Wang et al., 2007). Longer timescale variations

such as intermittent pulsars where the spin down rate undergoes a quasi-periodic

cycle between phases occur on the range of months to years (Lyne et al., 2017). This

study concerns longer timescale variations and, therefore, only those will be discussed

in the following. These variations can be due to various reasons such as variations

in the pulsar magnetosphere (Hobbs et al., 2010). Some pulsars in binary systems

have been observed to vary due to geodetic precession, free precession or propagation

effects as the signal travels through the turbulent ionized interstellar medium (ISM,

Keith et al., 2012). Recently, (Cordes and Shannon, 2008) mention a specific case

when there is an asteroid in the pulsar orbit. This may affect the pulse profile either

due to geodetic precession or if the debris of the asteroid interacts with the pulsar

magnetosphere. Thus, studying pulse profile changes in radio pulsars can provide

insights into the underlying physical mechanisms responsible for the observed changes

and improve the precision of pulsar timing experiments.

To provide a few examples, PSR B1828–11, PSR J0738+4042, and recently,

B2217+47 have all been found to show such profile variations. PSR B1828–11 shows

quasi-periodic profile variation which has been interpreted to be due to free precession

of the pulsar (Stairs et al., 2000). This interpretation, however, was later questioned

by Lyne et al. (2010) when they found quasi-periodic profile changes in six pulsars

(including PSR B1828–11), which are correlated with the spin-down rate, implying a

relation to intrinsic processes of the pulsar. In the case of PSR J0738–4042, pulse

1European Pulsar Timing Array (Stappers et al., 2006)
2Parkes Pulsar Timing Array (Manchester et al., 2013)
3North American Nanohertz Observatory for Gravitational Waves (McLaughlin, 2013)
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variations were at first associated with a magnetospheric change (Karastergiou et al.,

2011) and later due to an interaction between its magnetosphere and an asteroid

(Brook et al., 2013). Recently, PSR B2217+47 has been found to show variations on

the time scale of months to years in its pulse profile shape (Michilli et al., 2018). The

authors list three plausible causes which include free spin of the pulsar, variations in

pulsar emission due to perturbations in the plasma filling the magnetosphere, and

structures in the ISM creating a transient component in the form of echoes, strongly

favoring the last cause.

While studying scattering in pulsars below 100 MHz (Bansal et al., 2019), we

noticed a variation in the pulse profile of PSR B1508+55 with time. We found

this feature very intriguing and decided to explore this pulsar in more detail. PSR

B1508+55 has been studied using the Very Long Baseline Array and has been found

to be a hyperfast pulsar with a speed of about 1000 km s−1 (Chatterjee et al., 2005).

It is known to be a single component pulsar above 300 MHz (Naidu et al., 2017).

In this paper, we study PSR B1508+55 at three LWA1 frequencies: 49.8, 64.5, and

79.2 MHz. We analyze how the pulse profile evolves with frequency and time. The

observations used in this study are described in Section 5.2 along with the data

reduction methods employed. In Section 5.3, we analyze the changes in the different

pulsar characteristics as a function of time. We discuss different ways for the origin

of these variations and compare them with results from previous studies of PSR

B2217+47 in Section 5.4. We conclude the study by summarizing our results in

Section 5.5.

5.2 Observations and Data reduction

The LWA1 (Taylor et al., 2012) is a radio telescope array located near the Karl G.

Jansky Very Large Array in central New Mexico. It consists of 256 dual-polarization

dipole antennas operating in the frequency range of 10 to 88 MHz. The outputs

of the dipoles can be formed into four fully independent dual-polarization beams.

Each beam has two independent frequency tunings (chosen from the range of 10− 88
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MHz), each tuning with a bandwidth of up to 19.6 MHz. The ability of the LWA1 to

observe multiple frequencies simultaneously provides a powerful tool for studying the

frequency dependence of pulsar profiles (eg. Ellingson et al., 2013).

The LWA Pulsar Data Archive4 (Stovall et al., 2015) contains reduced data

products for over 100 pulsars (Stovall et al., in prep) observed since 2011. The data

products used for this study were produced by coherently de-dispersing and folding

the raw LWA1 data using DSPSR5. We used archival observations at three frequencies:

49.8, 64.5, and 79.2 MHz with a bandwidth of 19.6 MHz. The archival data consists

of 4096 phase bins, 30 s sub-integrations time sections, and 512 frequency channels.

We excise RFI using a PSRCHIVE median zapping algorithm. It removes data points

with an intensity more than six times compared to the median within a range of

frequency channels. We then process this data in two different ways to obtain profile

evolution and dispersion measure (DM) evolution over time.

5.2.1 Average pulse profile evolution

For this purpose, we average all the frequency channels and reduce the number of

phase bins to 512 to smooth the average profiles. These tasks are performed using the

PSRCHIVE command pam (van Straten et al., 2012). To further enhance the signal

to noise ratio (S/N) of the trailing component, we average the data across epochs

using a sliding window average with a width of three. We remove the offset baseline

from the average profiles and then normalize them by their maximum amplitude at

all frequencies. These normalized profiles are cross-correlated with a reference profile

such that profiles at all the epochs are aligned with each other. We assume that flux

density of this source is constant and the component separation is independent of

the absolute flux value of pulsar. Moreover, these are archival observations, thus

obtaining flux calibration is not possible.

We derive the reference profiles from higher frequency data at 79.2 (LWA1), 143,

4https://lda10g.alliance.unm.edu/PulsarArchive/
5http://dspsr.sourceforge.net/index.shtml
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Figure 5.1: Average profiles of PSR B1508+55 at 49.8, 64.5, and 79.2 MHz.

and 151 MHz (EPN6). These higher frequency profiles are modeled using a sum of

Gaussians as explained in Kramer et al. (1994). Using the width of the Gaussian

component, we derive pulse width evolution parameters as a function of frequency.

For more details about this technique refer to Bansal et al. (2019). Using these

parameters, we obtain reference profiles at 49.8 and 64.5 MHz. To demonstrating

the evolution of component separation with time we need to estimate the relative

location of the post-cursor. This is why we only fit for the main component in the

reference profiles as this is the component to be subtracted. After removing the main

component, we fit the post-cursor component using a Gaussian profile. This yields

the amplitude, width, and position of the post-cursor component. The position of the

main component (its maximum) is subtracted from that of the post-cursor component

for all the epochs to obtain the separation between the two.

6http://www.epta.eu.org/epndb/ (Bilous et al., 2016)
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Table 1. Ephemeris obtained for PSR B1508+55.

Parameter Value

RA 15h09m25.63s ± 0.002
DEC 55 : 31 : 32.38± 0.01
F0 (Hz) 1.35193283734 ± 0.00000000006

F1 (sec−2) -9.19957D-15 ± 8.8D-20
POSEPOCH 52275.0000

DM (pc cm−3) 19.616

Note: RA - Right Ascension; DEC- Declination; F0 - Pulsar Frequency; F1: Rate of
change of F0; DM - Dispersion Measure. Various parameters which were fitted for
obtaining a variation in DM using pulsar timing.

5.2.2 DM Evolution

For the DM measurements of PSR B1508+55, the number of frequency channels

in the archive files is reduced to 16 for every epoch at all three frequencies using

pam. We then obtain profile templates by averaging profiles across all the epochs

for each frequency using psradd, followed by smoothing the profile using psrsmooth.

Profile templates are aligned in the phase before obtaining the TOAs. Using pat

(a PSRCHIVE algorithm), we obtain the time of arrivals (TOAs) for these profiles.

We combine these TOAs from all three frequencies into one file and then fit for the

pulsar’s spin, astrometric, and DMX values using the pulsar timing software TEMPO7

(Table 5.1). These measure an offset of DM from a fiducial value for multiple epochs

each having a specified time span. Here, we have used a time span of about three

years.

5.3 Variation in PSR B1508+55

In this paper, we explore various features such as the component separation, spectral

index, and timing residuals of PSR B1508+55. Below we discuss each of them in

more detail.

7http://tempo.sourceforge.net/
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(a) (b)

Figure 5.2: Stacked residual profiles at 49.8 MHz (a) and 64.5 MHz (b) from all
the available epochs. The reference profile (black) has been subtracted from the
original data. The magenta points denote the location of the main component and
the green dots denote the location of the trailing component, changing relative to
the magenta points with time. For more details see Section 5.3.1.

Fig. 5.1 shows averaged profiles at 49.8, 64.5, and 79.2 MHz obtained by averaging

profiles at all the epochs available in the LWA1 archive. These profiles show a precursor
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component present at all frequencies with no sign of a post-cursor component. The

precursor is located about 9◦ before the main component and is not apparent for

an individual epoch. It was detected only after averaging pulse profile over all

available epochs. The amplitude of this precursor is about 3% of the main component

amplitude, implying that this component is too weak to model accurately. Since it is

not changing with time we believe it is intrinsic to the pulsar. Michilli et al. (2018)

report a similar weak precursor for PSR B2217+47 at 150 MHz. Its detection at low

frequencies is likely due to a broad emission region in the pulsar magnetosphere. This

precursor for PSR B1508+55 has not been reported in the literature below 100 MHz.

Fig. 5.2 (a) and (b) show stacked residual profiles at 49.8 and 64.5 MHz. The

reference profile (black profile) has been subtracted from the original data. At

individual epochs, pulse profiles show a trailing component, which moves relative to

the main component. The morphology of the trailing component is complex. It is

difficult to determine the exact number of peaks in this component due to its low S/N

as compared to the main component. Hence, for the sake of simplicity, we assume

it to have one peak which is fitted using a Gaussian. We have cut the phase after

0.55 as we do not detect any other components beyond this point. Magenta colored

dots represent the position of the main component and green colored dots have been

placed at the location of the fitted trailing component to demonstrate its evolution

relative to the main pulse. We note that a Gaussian may not necessarily fit the

maxima of the trailing components, as these are not symmetric, unlike a Gaussian

profile.

5.3.1 Profile Evolution

The relative amplitude of the second component for both the frequencies remains

mostly constant. At all the epochs, the trailing component has a lower amplitude

at 64.5 MHz as compared to 49.8 MHz. We find the median value of the relative

amplitude to be 0.27 ± 0.02 at 49.8 MHz and 0.19 ± 0.01 at 64.5 MHz. Using

these ratios, we estimate the relative spectral index of the trailing component to be
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Figure 5.3: Trailing component separation obtained from subtracting the main
pulse component at two frequencies: 49.8 and 64.5 MHz.

.

−2.53± 0.18, thus implying steep spectra. This is why it has poor S/N at 79.2 MHz

and we were unable to include this frequency in this analysis.

We note that this source shows temporal broadening, however, it is difficult to fit

for scattering parameters over time. Its pulse profile shows a trailing component at

our frequencies and their separation from the main component changes over time. At

certain epochs when this trailing component overlaps with the main component, we

cannot distinguish the two. We believe that this would certainly affect the estimated

component separation.

Fig. 5.3 shows the pulse separation evolution obtained from the pulse subtraction

method. At both frequencies, component separation follows a similar trend which

confirms the evolution of separation between the two components. Error bars on the

pulse separation have been obtained from the least-square fitting algorithm. Michilli

et al. (2018) report a paper in preparation as having similar results using LOFAR.
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5.3.2 DM Variation
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Figure 5.4: Timing Residual before (top) and after (bottom) accounting for the
change in DM. The y-axis changes scale by a factor of a little over two between
the pre-fit and post-fit panels

Our DM observations show changes in δDM across all three bands – 49.8, 64.5,

and 79.2 MHz. Fig. 5.4 shows the timing residuals for this pulsar before and after

fitting for the change in DM. Table 5.1 consists of pulsar timing fitting parameters.

Fig. 5.4 shows that δDM values over the period of observation. DM values start out

almost constant and then there is a gradual decline with the overall change of 6×10−3

pc cm−3 over 1000 days. We find that this variation is unlikely due to solar winds as

the minimum solar elongation angle for this pulsar is 60◦. We also note that there is

an offset of about 250 days between the decay in δ DM and component separation.

This suggests that the DM change is likely independent of the pulse variation.
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Figure 5.5: Above plot shows δDM variation over time. δDM values represent
change in DM compared to the average DM value of 19.616 pc cm−3 for PSR
B1508+55. The error bars on δDM values are smaller than the size of the points.

5.4 Discussion

Michilli et al. (2018) discussed three plausible cases for their observation of shifting

components in PSR B2217+47. Now we discuss how our results compare with these

cases. The first plausible reason is the precession of a pulsar. Pulsar precession takes

place when there is a misalignment between the angular momentum vector and the

rotation axis. Plausible causes for this alignment include a non-symmetrical surface

of the pulsar or a change in the magnetosphere. All the six pulsars studied by Lyne

et al. (2010) show variations in their main pulse shape correlated with spin-down rate.

We attempted to measure the spin down rate for PSR B1508+55 using a combination

of three subsequent epochs. The value of the spin-down rate was constant within the

errors.

Fig. 5.4 shows timing residuals for PSR B1508+55 before (top) and after (bottom)

accounting for the changes in DM. In Fig. 5.4 top panel, there is no quasi-periodic

variation in the timing residuals on the time scales of our measurements as expected
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from a variation in spin-down rate due to geodetic precession. It shows that at

each epoch the spread in the TOA residuals is due to different DM values as we

have included three different frequencies. At some epochs, the TOA residuals clump

together, when the DM value is equal to the true DM value. We find that the TOAs

residuals are due to changes in DM only.

PSR 1508+55 is an old pulsar (∼ 2.3 million years8), and thus we would expect the

magnetosphere to be more stable as compared to a young pulsar. Moreover, we would

expect the effect of both precession and magnetosphere to affect higher frequencies

as they are closer to the surface and, in case of PSR B1508+55, no such variation at

frequencies above 300 MHz has been observed. This is why both pulsar precession as

well as a change in magnetosphere is unlikely to explain our observations.

Another plausible explanation includes the effect of ISM structures. When the

pulsar signal travels through the ISM, structures near the line of sight (LOS) can

reflect the pulse signal such that it manifests as a trailing component. Detection

of the trailing component will depend on the nature of the ISM structure as it

would affect the amplitude and spectral nature of the reflected pulse signal. PSR

B2217+47, B0531+21, and PSR B1508+55 show similar characteristics where the

trailing component moves relative to the main component. However, in the case of

PSR B0531+21, it is thought not to be caused by the ISM structure since both the

pulsar and the structures causing the echo are both inside the supernova remnant

(Lyne et al., 2001).

PSR B1508+55, similar to PSR B2217+47, shows a change in DM of ∼ 6×10−3 pc

cm−3 over a period of three years (Fig. 5.5). However, in the case of PSR B2217+47,

Michilli et al. (2018) associate it with the pulse profile evolution whereas in our case

we see a clear offset of 250 days between the timescale of the two effects. Looking at

Figures 4 and 5 in Michilli et al. (2018), it appears that there may be an offset for

PSR B2217+47 as well. Another difference is that in case of PSR B2217+47, the

8Characteristic Age of a pulsar, τage = P
2Ṗ

, Lyne (2006)
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minimum phase delay between the main component and transient post-cursor is 1

ms at 150 MHz while in the case of PSR B1508+55 is 15.1 ms at 49.8 MHz. Since

these observations differ in frequencies where we expect small dispersion at higher

frequencies which will imply 9 times larger delay at 49.8 MHz as compared to 150

MHz (delay due to dispersion ∝ (ν1/ν2)2). We expect that the minimum delay will

happen at the closest approach of the pulsar and the ISM structure. This could

account for the remaining 6-ms delay at LWA frequencies if the closest approaches

are different in the two cases. This implies that the change in DM and pulse shape

will be correlated when the LOSs aligns. Hence, the observed DM change is likely

independent of the pulsar profile change due to a misalignment of the LOS with the

ISM structure.

The scattering from the ISM structure affects the amplitude of the pulse signal,

and consequently, the amplitude of the trailing component. We compare the ratio

of the trailing component amplitude with that of the main component for PSR

B1508+55 with PSR B2217+47. We find the median value of the relative amplitude

to be 0.27± 0.02 at 49.8 MHz and 0.19± 0.01 at 64.5 MHz. Using these ratios, we

estimate the relative spectral index of the trailing component to be −2.53± 0.18. In

the case of PSR B2217+47, the relative spectral index of the trailing component has

been found to be −1.60 ± 0.03. Both observations suggest a steep spectral nature

of the trailing component. This is probably why no observations above 300 MHz

previously detected the trailing component.

The above discussion suggests that such observations are not intrinsic to the

pulsar but due to the interaction of the pulsar signal with ISM. The steep spectral

nature of the post-cursor for both pulsars explains our observations at low frequencies.

Additionally, low frequencies are highly sensitive to ISM effects which makes them

more suitable for this type of study. However, it requires high sensitivity to detect

such an effect. In our scattering sample of eight pulsars over a span of three years

only PSR B1508+55 shows variation in its component separation over time. The

reason is likely due to high scattering at these frequencies, which obscures the trailing

component, which makes it probably a rare phenomena.
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5.4.1 Properties of ISM structure

From the above discussion, we find that echoes in the case of PSR B1508+55 best

explain our observations. Considering this interpretation, we calculate the physical

characteristics of this structure below.

We use the pulse delay (τd) to estimate the distance of this structure from the

Earth. We use the ISM scattering model proposed by Michilli et al. (2018) and use

their Equation A7. We fit for this equation using our measured component delay

between MJD 57448 and MJD 57916. We use these two epochs as there are turnovers

before and after them. The estimated distance between the lens and pulsar is between

220− 450 pc (X2 in Fig. 5.6). This makes the average distance from Earth to the lens

in the ISM about 10% in comparison to the pulsar (2.37 ± 0.23 kpc, refer Chatterjee

et al., 2005), implying that the lens is relatively close to the Earth. We note that the

large error in pulsar distance makes it difficult to estimate X2 more precisely.

We note that the component delay is roughly symmetric here as compared to

the profile evolution presented by Michilli et al. (2018). If the lens causing these

echoes was stationary and the pulsar was moving towards it, we would expect to see

a decrement in the phase delay and then increment. However, in this case we see

that first there is an increment in the phase delay followed by decrement and then

a slow increment. This trend suggests that the lens is likely oscillating relative to

the pulsar. To further test its periodicity, we would need to study this source over a

longer period. We searched for nearby sources along the LOS and remained unable

to find any at the estimated distance from Earth.

The ISM lens consists of plasma, which has refractive properties. An average

electron density (ne in cm−3) of the lens can be obtained using the following relation

(Hill et al., 2005),

ne = 5.4θr/λ
2, (5.1)
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where θr is the refracted angle in mas and λ is the observing wavelength in m.

By using the geometrical relations, we estimate the deflection angle (δ = θr) by

obtaining all three sides of the triangle (Fig. 5.6). We calculate the third side (X1)

of the triangle using the extra path length measurement, traveled by light, using

X1 + X2 −D = τd × c. We estimate the deflection angle to be ∼ 404 mas. Using

both observing frequencies (49.8 and 64.5 MHz), we obtain the electron density to

be ∼ 60 − 100 cm−3. This value is of the same order of magnitude as reported in

Michilli et al. (2018) and consistent with the extreme scattering event electron density

obtained in Hill et al. (2005).

In order for us to see the scattered signal, the angle θr (Fig. 5.6) needs to be

within our beam size. We calculate this angle to be 0.36”, which is much smaller

than the beam size of LWA1 of 2.5 degrees at 64.5 MHz.

D

X1
X2𝛿 = θr 

EarthPulsar

Gas 

Figure 5.6: A simplified cartoon showing this scattering of pulsar signal from the
ISM ionized gas cloud. The main component travels along D and the post-cursor
along X1-X2. The angle δ is the deflection angle, which is equal to the refractive
angle. This figure has been adapted from Michilli et al. (2018).

5.5 Conclusion

In this paper we study pulse profile variation in PSR B1508+55. This variation was

discovered serendipitously while studying the scattering for a sample of eight pulsars

using the LWA1. We compare our results from Michilli et al. (2018), where they
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have observed a similar phenomena for PSR B2217+47. Our analysis of component

separation and DM evolution suggests that this observation is result of echoes due to

presence of structures in the ISM. We estimate the distance of this structure from

the Earth ∼ 340 pc with an ionized density of 60− 100 cm−3. This study suggests

that observing pulsars at lower frequencies enables us to explore such structures in

the ISM which could be a rare phenomena. We also report on the discovery of a faint

precursor component in the profile of PSR B1508+55 below 100 MHz, suggesting a

possible broad magnetosphere at lower frequencies.
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Chapter 6

Conclusions and Future Work

6.1 Summary

With the goal of detecting nano-Hz gravitational waves using pulsar timing arrays,

we have covered two major aspects: their source of emission and reducing the noise

in pulsar timing for increasing the chances of their detection using PTAs. We have

observed and studied two very diverse sources: supermassive binary black holes

(SMBBHs) and pulsars. Now, we reflect on the results we have obtained during this

study.

Orbital Motion of 0402+379 We have searched for many SMBBHs, and so far

0402+379 is the only confirmed SMBBH. In Chapter 2, we have studied this source at

multiple frequencies for a time span of about 12 years. We have obtained the orbital

motion of its core components and estimated the combined mass to be 9× 109M�

and the orbital period to be 28000 yr. Using the multi-frequency observations of this

source, we also measured the core-shift effect for the jets originating from C2. We

estimated the magnetic field near the base of the jet to be ∼ 1 Gauss.

Searching for more SMBBHs: The above estimated orbital period is too long

for astronomers to obtain the entire orbital motion within their lifetime. This is why

we carried out a search for compact SMBBH candidates. In Chapter 3, we selected a
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sample of 19 sources and studied them using the VLBA. Unfortunately, we found

no new SMBBHs. Although it is a bit disheartening, it encourages us to understand

them in more detail. This also raises the issue of why there are so few SMBBHs

detected.

Scattering Study: SMBBHs are expected to emit GWs in the frequency range

of nano-hertz. While the pulsar timing arrays attempt to improve their sensitivity by

continuously monitoring millisecond pulsars (MSPs), there is a simultaneous need

to understand their noise sources. One of the biggest timing noise contributors is

the interstellar medium (ISM) due to its turbulent nature. The ISM introduces both

chromatic and white noise. To probe the ISM, we have studied pulsar scattering in

seven sources using the LWA1, as described in Chapter 4. To obtain the scattering

index, we have developed software which deconvolves the expected pulse profile from

the exponential scattering function. This is the first time a systematic variation

in the scattering index over time has been reported. Our results suggest that the

scattering index for the majority of sources in our sample remains constant except

for PSR B2217+47. In the case of this pulsar, we measure a decrement in scattering

spectral index over our observation period of three years. We simultaneously study a

change in its DM which anti-correlates with the trend in scattering spectral index.

This suggests that there is an ionized gas cloud along the path to the pulsar.

We measure the mean scattering index for the remaining pulsars. In most of

the cases, there is a clear deviation from the theoretically expected value of 4 and

4.4. These deviations imply limitations of the thin-screen model with alternative

explanations such as finite screen, anisotropic scattering, anomalous scattering, and

the effect of inner scale effects at low frequencies. It suggests that the current

scattering model, needs to be modified to accommodate these deviations.

In Chapter 5, we study the scattering in PSR B1508+55, where we see a variation

in the separation between the main component and the trailing component over a

span of three years. This observation is likely an effect of refraction off of an ionized

gas cloud along the line of sight. We find its electron density to be 100 cm−3 and

distance to the cloud to be about 400 pc.
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We hope this understanding of scattering will help us improve the ISM models.

This will help the PTA community to attain a better sensitivity.

6.2 Future Work

6.2.1 Search for SMBBHs

SMBBHs are rare and difficult to detect. A non-detection of SMBBHs in this study,

emphasizes the need to develop approaches for their systematic search. Since only 10%

of the quasars are radio loud, it implies that a multi-frequency approach extending

to other frequencies such as optical or gamma-rays would be worth pursuing. Several

SMBBH candidates have been identified using the double-peaked broad lines or by

detecting a periodic variation in optical flux. We suggest that future searches should

use a combination of multi-frequencies to select an initial sample and then observe

them using the VLBI techniques.

We need to observe at least a thousand sources to identify one SMMBH candidate.

New telescopes such as the Square Kilometer Array or the next generation Very Large

Array (ngVLA) with their large collecting area will survey these sources faster. The

long baselines of the proposed ngVLA will be useful to attain the required resolution.

A detection of GWs with PTAs will certainly confirm the supermassive black hole

mergers as well as it will provide the timescale scale of their evolution. This can be

used to determine the current evolution stage of a SMBBH. This will enable us to

have a focused approach instead of blind surveys.

6.2.2 Role of Magnetic Field

In this thesis, we observed a sample of 19 sources to search for SMBBH. By comparing

our observations with those at lower and higher frequencies, we can probe their

morphologies based on their source structure and understand their properties. As we
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have observed these sources at two radio frequencies, their core-shift effect can be

used to measure the magnetic field intensity near the base of the jet. However, this

would be limited to compact symmetric objects only. We can compare these values

with archival observations, and see if there is any variation in the magnetic field over

time. This would help us investigate the role of the magnetic field in jet dynamics.

6.2.3 Science at Low Frequencies

Scattering Study of MSPs: LWA is a unique system as it operates at frequencies

below 100 MHz. This ability of LWA can be used to pursue various science goals

which would not be possible with any other instrument. In this thesis, we obtained

scattering measurements for normal pulsars using the LWA1. This study can be

further extended by applying the same techniques to MSPs, which are the prime

candidates of PTAs. In the case of PTAs, MSPs are used at frequencies above 1 GHz,

where the effect of the ISM is weak. Thus, studying MSPs at low frequencies will

enable us to probe the ISM along their line of sight.

Scintillation Measurements: LWA can be used to study scintillation for nearby

pulsars. As mentioned earlier in Chapter 1 that scintillation arcs can help us probe

the scale of inhomogeneities in the ISM. However, due to the large phase deviations

at low frequencies, it is difficult to detect scintles. We have searched for scintles

in several nearby pulsars using the LWA1, and have detected them in two sources.

Currently, LWA has two operating stations and by combining their data, scintillation

can be obtained with high S/N. These can later be used to obtain scintillation arcs.

Search for pulsars in globular clusters: Since LWA operates at low frequen-

cies, DM can be measured very precisely. This can be used to measure the electron

density of globular clusters by studying pulsars inside them. Globular clusters have a

high density of stars which also increases the probability of finding binaries in them.

However, as the signal travels through the ISM, it gets scattered, and as a result, its

intensity is reduced. This makes the study of globular clusters at low frequencies very

difficult due to their large distance from the Earth. If we successfully detect pulsars
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in globular clusters, their timing residuals can be used to measure a change in DM

over time. This will enable us to explore the physical properties of globular clusters

and their evolutionary history.
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