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Abstract

To better understand and to improve therapies for complex diseases such as cancer

or diabetes, it is not sufficient to identify and characterize the interactions between

molecules and pathways in complex biological systems, such as cells, tissues, and the

human body. It also is necessary to characterize the response of a biological system

to externally supplied agents (e.g., drugs, insulin), including a proper scheduling

of these drugs, and drug combinations in multi drugs therapies. This obviously

becomes important in applications which involve control of physiological processes,

such as controlling the number of autophagosome vesicles in a cell, or regulating the

blood glucose level in patients affected by diabetes. A critical consideration when

controlling physiological processes in biological systems is to reduce the amount of

drugs used, as in some therapies drugs may become toxic when they are overused. All

of the above aspects can be addressed by using tools provided by the theory of optimal

control, where the externally supplied drugs or hormones are the inputs to the system.

Another important aspect of using optimal control theory in biological systems is to
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identify the drug or the combination of drugs that are effective in regulating a given

therapeutic target, i.e., a biological target of the externally supplied stimuli.

The dynamics of the key features of a biological system can be modeled and

described as a set of nonlinear differential equations. For the implementation of

optimal control theory in complex biological systems, in what follows we extract

a network from the dynamics. Namely, to each state variable xi we will assign a

network node vi (i = 1, ..., N) and a network directed edge from node vi to another

node vj will be assigned every time xj is present in the time derivative of xi. The node

which directly receives an external stimulus is called a driver nodes in a network.

The node which directly connected to an output sensor is called a target node.

From the control point of view, the idea of controllability of a system describes

the ability to steer the system in a certain time interval towards the desired state with

a suitable choice of control inputs. However, defining controllability of large complex

networks is quite challenging, primarily because of the large size of the network, its

complex structure, and poor knowledge of the precise network dynamics. A network

can be controllable in theory but not in practice when a very large control effort is

required to steer the system in the desired direction. This thesis considers several

approaches to address some of these challenges. Our first approach is to reduce the

control effort is to reduce the number of target nodes. We see that by controlling

the states of a subset of the network nodes, rather than the state of every node,

while holding the number of control signals constant, the required energy to control

a portion of the network can be reduced substantially. The energy requirements

exponentially decay with the number of target nodes, suggesting that large networks

can be controlled by a relatively small number of inputs as long as the target set is

appropriately sized. We call this strategy target control.

As our second approach is based on reducing the control efforts by allowing the

prescribed final states are satisfied approximately rather than strictly. We introduce
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a new control strategy called balanced control for which we set our objective function

as a convex combination of two competitive terms: (i) the distance between the

output final states at a given final time and given prescribed states and (ii) the

total control efforts expenditure over the given time period. Based on the above

two approaches, we propose an algorithm which provides a locally optimal control

technique for a network with nonlinear dynamics. We also apply pseudo-spectral

optimal control, together with the target and balance control strategies previously

described, to complex networks with nonlinear dynamics. These optimal control

techniques empower us to implement the theoretical control techniques to biological

systems evolving with very large, complex and nonlinear dynamics. We use these

techniques to derive the optimal amounts of several drugs in a combination and

their optimal dosages. First, we provide a prediction of optimal drug schedules and

combined drug therapies for controlling the cell signaling network that regulates

autophagy in a cell. Second, we compute an optimal dual drug therapy based on

administration of both insulin and glucagon to control the blood glucose level in type

I diabetes. Finally, we also implement the combined control strategies to investigate

the emergence of cascading failures in the power grid networks.
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Chapter 1

Introduction

1.1 Introduction

To better understand and to improve therapies for complex diseases such as cancer

or diabetes, it is not sufficient to identify and characterize the interactions between

molecules and pathways in complex biological systems, such as cells, tissues, and the

human body. It also is necessary to characterize the response of a biological sys-

tem to externally supplied agents ( such as drugs, hormones) and to define a proper

scheduling of these drugs, especially when they are used in combination therapies.

This obviously becomes important in applications which involve control of physiolo-

gical processes, such as controlling the number of autophagosome vesicles in a cell,

or regulating the blood glucose level in patients affected by diabetes.

The aim of this thesis is to control a complex biological system where the external

agents are used as external control signals. For example, the externally supplied

agents are drugs, hormones, etc. Insulin and/or glucagon can be used to regulate

the blood glucose level in patients affected by diabetes, where the key features of

the physiological process in a diabetic patient represent the complex biological sys-
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tem and external insulin and/or glucagon are the external control inputs. Another

example is controlling the number of autophagosome vesicles in a cell by using ex-

ternally supplied drugs, where molecularly targeted drugs are known. The dynamics

of the key features of a biological system can be modeled and described as a set of

nonlinear differential equations.

A critical consideration when controlling physiological processes in biological sys-

tems is to reduce the amount of drugs used, as in some therapies drugs may become

toxic when they are overused. All of the above aspects can be addressed by using

tools provided by the theory of optimal control, where the externally supplied agents

(either drugs or hormones) are the inputs to the system. Another important aspect

of using optimal control theory in biological systems is to identify the drug or the

combination of drugs that are effective in regulating a given therapeutic target, i.e.,

a biological target of the externally supplied stimuli.

In order to proceed with the implementation of optimal control theory in complex

biological systems, in what follows we extract a network from the dynamics. Namely,

to each state variable xi we will assign a network node vi(i = 1, 2, · · · , N) and a

network directed edge from node vi to another node vj will be assigned every time

xj is present in the time derivative of xj. A schematic diagram of a simple network

with driver and target nodes is presented in Fig. 2.1.

Controllability of complex networks such as gene regulatory networks, neuronal

networks, communication networks, networks of infrastructures, food webs, power

grids, etc. is not a new topic for the scientific research community [1–14]. From

the control point of view, the idea of controllability of a complex network represents

the ability to steer the network from an arbitrary initial condition towards a desired

state with a suitable choice of control signals.

Different types of control strategies have been presented in [6, 8–12, 14–18] to
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control a broad range of networks such as power grids [19, 20], communication net-

works [21, 22], gene regulatory networks [23], neuronal systems [24, 25], food webs

[26], and social systems [27]. However, defining controllability of large complex net-

works is quite challenging, primarily because of the large size of the network, its

complex structure, and imperfect knowledge of the precise network dynamics. A

network can be controllable in theory but not in practice when a very large control

effort is required to steer the network in the desired direction. This thesis considers

several approaches to address some of these challenges.

In chapter 2, we present our first approach to reduce the control effort. The

approach is based on reducing the number of the network target nodes. That is, by

controlling the states of a subset of the nodes of a network, rather than the state of

every node, while holding the number of control signals constant, the required effort

to control a portion of the network can be reduced substantially. In the networks,

often controlling every member is unnecessary, which makes the control action more

‘expensive’, by which we mean it requires more effort than needed. For instance, in

a foodweb a predator population may need to be reduced in order to increase a prey

population, but other species in the foodweb may not need be affected. In marketing,

an advertisement agency may want to change the opinion of a certain demographic,

but does not need to reach every member of a social network. A certain task, sent

to a robotic network may need to be performed by only a subset of its members.

There are many control goals that can be conceived of for complex networks, where

the desired final state should only be prescribed for some of the members of the

network but not for all of them. One of the characterizations to quantify a control

effort is the control energy, the cumulative of the square of control action over the

time of the control action. We can reduce the amount of control signals used in

an attempt to avoid off-target effects. We call this control strategy target control.

We find that the energy requirements exponentially decay as the number of target

nodes decreases, suggesting that large networks can be controlled by a relatively
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small number of inputs as long as the target set is appropriately sized. In controlling

biological system we expect using lower control signals can be beneficial, as in some

therapy certain drugs may become toxic when they are overused.

In chapter 3, we present the second control approach. Due to the lack of a

proper definition of control objectives, constraints, and the choice of the control

strategy, the control efforts may increase and sometimes becomes unfeasible. By

composing proper control objectives and constraints, the effort for optimal control

can be reduced further. For example, we are driving a car along a road and want

to reach a specific position. We could reduce the control effort by compensating

some effort by allowing a small deviation from the desired path or the desired final

condition. As our second control strategy, we propose that the control effort can be

reduced even more if the prescribed final states are not satisfied strictly. We introduce

a new control strategy called balanced control for which we set our objective function

as a convex combination of two competitive terms: (i) the distance between the final

output states at a given final time and given prescribed states and (ii) the total

control effort expenditure over the given time period. We show how the control

energy of complex network can be reduced substantially by following the balance

control approach.

The above two optimal control methods are mathematically developed for linear

time invariant systems (LTI) associated with a complex network. However, in real-

ity, most complex biological systems evolve based on nonlinear dynamics and so the

extracted complex networks from these systems are governed by nonlinear dynam-

ics. Recent work investigates control strategies for complex networks governed by

nonlinear dynamical equations. [8, 14, 16, 20, 28–33].

Though our proposed optimal control techniques are derived for LTI systems,

the idea of target control and balance control can be applied to biological networks

governed by nonlinear dynamics. Optimal control techniques are being used for years
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in designing optimal chemotherapies in HIV [34, 35] and cancer [35–39], in optimal

vaccination and treatment for epidemics [40, 41], in controlling epidemics [42–44], in

controlling cascading failures in power grids [45, 46], and in regulating blood glucose

in diabetic patients [47–54]. While controlling such biological networks optimally, we

have several objectives: 1) Reduce the amount of control inputs to avoid off-target

effects and associated toxicities (in some therapy some drugs become toxic when they

are overused). This corresponds to implementation of the target control strategy. 2)

Reduce the amount of control action by composing proper control objectives and

constraints so that the condition on the target state becomes a soft constraint. By

this we mean a constraint which is relaxed and fall in some interval around a nominal

value, whereas a hard constrain must be exactly satisfied at the nominal value.

This corresponds to implementation of the balance control strategy. 3) Identify

combinations of control signals that provide a desired control performance.

For a given nonlinear dynamical system, we extract a complex network, identify

the driver and target nodes, and design a nonlinear optimal control problem, by

keeping in mind the above 3 ideas. As we will see, optimal control strategies that

are obtained by following the above steps limit the overall control effort expendit-

ure. Finally, we use pseudo-spectral optimal control (PSOC) [55] and interior point

optimization techniques [56] to solve the nonlinear optimal control problem, as math-

ematical framework exists to solve this type of nonlinear optimal control problems

analytically. In chapter 4, we briefly present the pseudo-spectral optimal control and

interior point optimization techniques.

For implementation in biological systems, our goal is to design optimal drug

dosing schedules that minimize the amount of drug needed to achieve an important

activity/process in the system. As we will see, we will achieve this goal by designing

combinatorial drug therapies.

In chapter 5, we consider the Glucose-Insulin-Glucagon (GIG) model which de-
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scribes the bodily response to exogenously supplied insulin and glucagon in patients

affected by Type I diabetes. The model was first proposed in [57] and later updated

in [58] and [59]. Insulin and glucagon are pancreatic hormones that help regulate

the levels of glucose in the blood. Insulin is produced by the beta-cells in the pan-

creas and carries glucose from the bloodstream to the cells throughout the body.

Glucagon releases glucose from the liver into the bloodstream in order to prevent

hypoglycemia. In people affected by diabetes insulin is either absent (type I dia-

betes) or not produced in the proper amount (type II diabetes). In type I diabetes

the body’s immune system attacks and destroys the beta cells. As a result, insulin

is not produced and glucose accumulates in the blood which may cause serious harm

to several organs. Type II diabetes is a metabolic disorder in which the beta cells

are unable to properly regulate the blood glucose within proper limits. We present a

network representation of the GIG model in Fig. 1.1. Each one of the state variable

xi, i = 1, · · · , 17, is associated with a node which is shown as a green circle in the

figure. A directed edge (shown as a black arrow in the figure) is drawn from node

xi to node xj, if the state xi appears in the time derivative of the state xj. In this

model, uI and uG are the insulin and glucagon, respectively, i.e., external inputs

acting on the nodes Isc1 and Hsc1. Thus the set of drivers node D = {Isc1, Hsc1}. In
this model the plasma glucose Gp is the main variable we are trying to affect through

the control action, thus the set of target nodes T = {Gp}. In the figure, the driver

nodes are colored cyan and the target nodes are colored magenta. As can be seen, the

effect of the control inputs on the target node is mediated by the network structure,

thus this particular structure plays an important role in our ability to control the

network output. The optimal control theory has been used before to regulate the

glucose level for diabetes patients, but most of the works are done where the models

were either overly simplified or linear [47–54, 60–67]. Moreover, most of the works

done above considered only insulin as a control input. Here, we use both insulin

and glucagon as control inputs. An outstanding research question, which we address
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here, is the determination of the temporal dosages of both insulin and glucagon, in

the case of a dual therapy. We also evaluate the performance limits of the control

strategy in the blood glucose problem, and discuss the advantages of the dual drug

therapy compared to the single drug therapy.

In chapter 6, we apply optimal control methods to design drug schedules for ma-

nipulating autophagy, a stress-relieving/homeostatic cellular recycling process that,

when nutrients are in limited supply, generates building blocks for protein synthesis

through degradation of cytoplasmic contents [68], such as cytotoxic protein aggreg-

ates that are too large for proteosomal degradation and damaged organelles (e.g.,

depolarized mitochondria). Autophagy also plays an important role in immunity

[69, 70]; the autophagic degradative machinery can be directed to target intracel-

lular microbes, such as Mycobacterium tuberculosis, for destruction. Cytoplasmic

contents that are targeted for autophagic degradation are first trapped in double-

membrane vesicles, termed autophagosomes or autophagic vesicles (AVs), and then

delivered to lysosomes for digestion [71, 72]. In cancer, and other contexts, auto-

phagy is a double-edged sword [73]. It can protect cancer cells from stresses of the

tumor environment (e.g., lack of nutrients because of defective vasculature) or induce

cell death if recycling is excessive. Thus, there are potential benefits to be gained by

using drugs to either upregulate autophagy (to kill malignant cells through excessive

recycling) or downregulate autophagy (to kill cancer cells that rely on autophagy

for survival) [74]. Although there is much current interest in using combinations of

molecularly targeted drugs to improve outcomes for cancer patients [75, 76], relat-

ively little work has been done in the area of formal therapy design, meaning therapy

selection and/or scheduling driven by insights from mathematical models [77, 78].

We use optimal control to design monotherapy and dual therapy to regulate the AVs

in cancer cells. The therapy design approach presented in this thesis is flexible and

allows for the evaluation of drug combinations.
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In chapter 7, we finally consider the implementation of optimal control to power-

grid networks. A power-grid system consists of generators, buses, and transmission

lines. In the absence of any undesirable external intervention, the power-grid system

is synchronized. When a power-grid system experiences this type of intervention,

we may identify such intervention as an attack to the system. We aim to identify

the sequence of transmission line failures in a power-grid system and also rank the

buses in terms of their vulnerability under the assumption that power grid system

is under attack such as natural disaster, weapons of mass destruction, deliberate

human-made attacks or cyber-attacks. We are interested in both the spatial aspect,

i.e., the choice of the targets, and the particular temporal sequence, i.e., the times at

which the attacks are scheduled over a given time period. We will attempt to solve a

constrained optimization problem, with the goal of calculating the most devastating

attack to a known critical infrastructure, given a fixed amount of resources available

to the attackers (e.g., only a certain number of attacks can be completed in the given

time span). As we will see, the temporal aspect, i.e., the particular sequence of the

attacks, will play a crucial role on the overall impact of the coordinated attack, as

particular sequences of attacks are more prone to generating cascading failures.
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Figure 1.1: Network representation of the GIG model with color-coded input signals
(blue) and output sensors (magenta). Nodes directly connected to the pink output
is target node, that is, they have a prescribed final state that we wish to achieve in
finite time, tf . The set of node V in the network, the set of driver nodes D, and the
set of target nodes T .
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Chapter 2

Target Control of Complex Networks

2.1 Introduction

The most complex networks that arise in science and engineering are governed by

nonlinear dynamics, and because of the uncertainty of the precise dynamics, the con-

trollability of complex networks become difficult [6, 79, 80]. Nonetheless, controlling

the linear systems have proven to be adequate in many applications by approximating

nonlinear systems as linear systems in local regions of state space [81]. Controllab-

ility of complex networks governed with linear dynamics such as gene regulatory

networks, neuronal networks, communication networks, networks of infrastructures,

food webs, power grids, etc. has become intensely focused in the scientific research

community [1–14]. From the control point of view, the idea of controllability of

complex networks describes the ability to steer the network from an arbitrary initial

condition toward the desired state with a suitable choice of a control signal. Differ-

ent types of control strategies have been proposed in [6, 8–12, 14–18] to control a

broad range of networks such as power grid [19, 20], communication networks [21,

22], gene regulatory networks [23], neuronal systems [24, 25], food webs [26], and
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social systems [27]. If a network is controllable, the control signal that derives the

system from an arbitrary initial condition towards the desired sates is not necessar-

ily unique. One important metric to characterize these control signals is the control

energy, the cumulative of the square of control signal over the time of the control

action. From optimal control theory, we can define the control signal that, for a given

distribution of the control input signals, satisfies both our initial and final conditions

as well as minimizes the control energy required to perform the task [82]. However,

the controllability concept just provides a yes/no answer that does not take into

account the energy needed to control a network [17]. A consequence is that even

if a network is controllable with a particular set of driver nodes, the control energy

may unrealistically large. Reducing the control energy, with a fixed set of driver

nodes, is a more difficult task. Moreover, if the size of a network is prohibitively

large, then the network can be controllable in theory but not in practice because

unfeasible amounts of control energy are required to steer the system towards the

desired direction. While controlling a complex network, thus it becomes essential to

reduce the required control energy. The minimum energy framework has been ex-

amined in [16, 17] which have shown that based on the underlying network structure,

the set of driver nodes, the desired final state, and other parameters, the energy to

control a network may lie on a distribution that spans a broad range of orders of

magnitude. One of the methods to reduce the required energy was investigated in

[18], where additional control signals were added in optimal locations in the network

according to each node’s distance from the current set of control signals. Refs. [16,

17] have only investigated the control energy for complex networks when the target

set coincides with the set of all nodes. Refs. [14, 79] examined methods to choose a

minimal set of independent control signals necessary to control just the targets. In

addition, in spite of the numerous attempts [16–18, 83–87], no clear strategy has yet

emerged for the related problem of reducing and scaling the control energy.

The aim of this chapter is to shed light on reducing the minimum control energy
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of complex networks and propose a scaling relation for the minimum control energy.

With respect to the current literature, we control the states of a subset of the nodes

of a network, rather than the state of every node. We show that by controlling the

states of a subset of the nodes of a network, while holding the number of control

signals constant, the required energy to control a portion of the network can be

reduced substantially. We find that the energy requirements exponentially decay

with the number of target nodes, suggesting that large networks can be controlled

by a relatively small number of inputs as long as the target set is appropriately sized.

We name this control method target control. We validate our conclusions in human-

maid and real networks with linear dynamics to arrive at an energy scaling law to

better design control objectives regardless of system size, energy restrictions, state

restrictions, input node choices and target node choices.

2.2 Preliminaries

We begin by introducing some of the basic ideas in the context of dynamical systems,

graphs and complex networks.

Graph and Network

A graph G(V , E), consists of a set V = {xi}, i = 1, . . . , n to be the set of n nodes and

a set E of edges, where E is identified with a set of ordered pairs {xi, xj} of nodes

xi, xj ∈ V . If a node xi affects a node xj then there exist an edge {xi, xj} ∈ E . A

weighted graph has weights associated with each edge. A network is a graph when

the point of interests is real phenomena, e.g., physical, biological, social science, etc.

In Fig. 2.1, we present the graphical representation of a simple 5 nodes network.
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Dynamical System

A dynamical system is a system which is defined by a set of state variables in a space,

and each state variable represents a component of the system and evolves according

to a first-order differential equation. A dynamical system with n state variables can

be mathematically formulated as

ẋ(t) = f((x(t), t) (2.1)

where x(t) ∈ Rn×1 is the time varying state vector, the function f ∈ Rn×1 defines the

rule how a state variable evolves with time, and t is the physical time.

Complex Networks or Dynamical Networks

Complex networks typically consist of two parts; a set of nodes with their inter-

connections that represent the topology of the network, and the dynamics which

describe the time evolution of the network nodes. The prescribed dynamics of the

nodes can be linear or non-linear. We can construct a dynamic network from a dy-

namical system, simply by considering a state variable as a node and by drawing a

link from a node xi to another node xj if xi is present in the time derivative of xj.

Figure 2.1 demonstrates a simple schematic diagram of a 5 nodes networks in where

V = {x1, x2, x3, x4, x5} is the set of nodes and ψi,j represents the interaction between

the nodes xi and xj.

Controllability of Complex Network

A complex network is controllable if a set of appropriate control signals can drive

the network from an arbitrary initial condition to any final condition in finite time.
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Driver Nodes and Target Nodes

Driver nodes are the nodes in a network which directly receive the external control

signal. Target nodes are the nodes in a network which have prescribed states that

must be satisfied. We define D the set of driver nodes and T the set of target nodes.

In Fig. 2.1, we demonstrate the driver nodes which directly receive the external

control signals from the cyan nodes and the target nodes which has prescribed state

conditions directly connected to the pink output nodes.

2.3 Methods

2.3.1 Problem Formulation

We introduce the minimum energy target control problem for complex networks. We

consider linear dynamical systems. The linear time invariant (LTI) network dynamics

are,

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(2.2)

where x(t) = [x1(t), . . . , xn(t)]T is the n × 1 time-varying state vector, u(t) =

[u1(t), . . . , um(t)]T is the m × 1 time-varying external control input vector, and

y(t) = [y1(t), . . . , yp(t)]
T is the p× 1 time-varying vector of outputs, or target states.

The matrix A ∈ Rn×n is the adjacency matrix that describes the topology, or inter-

action, of the n nodes, or states. The elements Aij of A is nonzero if node i receives

a signal from node j. In addition, the diagonal values of A, aii, i = 1, . . . , n, which

represent self-regulation, such as birth/death rates in food webs, station keeping in

vehicle consensus, degradation of cellular products, etc., are chosen to be unique

at each node (see proposition 1 in [88]). These diagonal values are chosen to also
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guarantee that A is Hurwitz so the system in Eq. (2.2) is internally stable. The

matrix B ∈ Rn×m is the control input matrix that describes how the m control input

signals are injected, and the matrix C ∈ Rp×n is the output matrix that expresses

the relations between the states that are designated as the outputs. To formulate

target control problem we assume that B(C) has columns (rows) that are all ver-

sors, i.e., each control input, ui(t), i = 1, ...,m, is directed towards a single node and

each output, yj(t), j = 1, ..., p, is the state of a single node. Our selection of the

matrix B is due to our assumption that different network nodes may be selectively

affected by a particular control signal, e.g., a drug interacting with a specific node in

a protein network. A small sample schematic is shown in Fig. 2.1 that demonstrates

the graphical layout of our problem emphasizing the graph structure and the role of

input and target nodes. In Fig. 2.1 nodes 1 and 3 are driver nodes receiving directly

to the external source. We define D ⊆ V as the subset of input nodes. Here by an

target node, we mean a node that directly connected to the pink outputs, that is

they have a prescribed final state that we wish to achieve in finite time, tf , such as

nodes 1, 2 and 4 in Fig. 2.1. We define Tp ⊆ V as the subset of target nodes and

p = |Tp| as the number of target nodes. The minimum energy target control problem

for complex networks where the word target refers to those nodes with a prescribed

final condition. The problem is as follows:

min
u(t)

J =
1

2

∫ tf

t0

uT (t)u(t)dt (2.3a)

s.t. ẋ(t) = Ax(t) +Bu(t) (2.3b)

y(t) = Cx(t) (2.3c)

x(t0) = x0, y(tf ) = yf (2.3d)

After computing the Hamiltonian and solving the resulting system of ODEs, the

minimum energy control signal which minimizes the objective function in Eq. (2.3)

and derive the system from an arbitrary initial condition to a prescribed final output
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states within the finite time interval [t0, tf ] to be,

u∗(t) = BT eA
T (tf−t)CT

(
CWCT

)−1 (yf − eA(tf−t0)x0
)

(2.4)

For details derivation, please see Appendix A.1. With the optimal control input

u∗(t), the time evolution of the output states is,

y(t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−τ)Bu(τ)dτ, (2.5)

and the states can also be determined,

x(t) = eA(t−t0)x0 −
∫ tf

t0

eA(t−τ)BBT eA
T (tf−τ)dτCT ν̂f (2.6)

Here ν̂f is constant vector and is determined by the prescribed final condition for

the targeted nodes,

ν̂f = −
(
CWCT

)−1 (yf − eA(tf−t0)x0
)

(2.7)

The controllability Gramian matrix W is symmetric, positive semi-definite and is

given by

W =

∫ tf

t0

eA(tf−τ)BBT eA
T (tf−τ)dτ (2.8)

If the system (A,B,C) is output controllable, then the matrix Wp = CWCT is

positive definite. Wp is the output controllability Gramian and is a p × p principal

submatrix of W . The optimal control energy corresponding to the optimal control

input u∗(t) is,

E(p) =
(
yf − CeA(tf−t0)x0

)T (
CWCT

)−1 (yf − CeA(tf−t0)x0
)

= βTW−1
p β (2.9)

where the vector β = yf−CeA(tf−t0)x0 is the control maneuver. The five node network

example of the benefits of target control is shown in Fig. 2.2A-F. In the first scenario,

Fig. 2.2A-C, each node has a prescribed final state (p = n = 5) and in the second

scenario 2.2D-E only 3 nodes are targeted (p = 3). The energy is calculated for each
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scenario by integrating the curves in Figs. 2.2C and 2.2F from which we find that

E(5) = 1.21×104 and E(3) = 72.81. Even though the second scenario has almost one

half of the targets, the energy is reduced by 99% (compare also the different scales

on the y-axis of Figs. 2.2C and 2.2F ).

2.3.2 Worst Case Direction

The optimal energy, E(p) = βTW−1
p β in 2.9, associated with the optimal control

input u∗(t) in Eq. 2.4, depends on the number of target nodes p in the target set

Tp. According to the choice of the matrix C (rows are linearly independent versors),

the reduced Gramian Wp in Eq. (2.8) is a p-dimensional principal submatrix of W .

We denote the eigenvalues of Wp as µ(p)
i , i = 1, . . . , p, which are ordered such that

0 < µ
(p)
1 ≤ . . . ≤ µ

(p)
p when the triplet (A,B,C) is output controllable. We define

the magnitude of the vector, |β| = β. According to the Min-Max theorem, we can

provide an upper and lower bounds for the optical control energy E(p). The upper

and lower bounds of E(p) are the functions of the minimum and maximum eigenvalues

of Wp, receptively, and given by,

0 <
β2

µ
(p)
p

≤ βTW−1
p β ≤ β2

µ
(p)
1

<∞. (2.10)

The upper bound of the control energy for any control action is max
{
E(p)

}
∼ 1

µ
(p)
1

,

which we call the ‘worst-case’ energy for the minimum control energy problem and

denote by E
(p)
max. For an arbitrary vector β, which can be represented as a linear

combination of the eigenvectors of Wp, the energy can be defined as a weighted sum

of the inverse eigenvalues, 1/µ
(p)
i , which includes the worst-case energy. Moreover,

for the large scale-free networks that are of interest in applications, typically µ(p)
1 <<

µ
(p)
j , j = 2, . . . , p, and 1/µ

(p)
1 provides the approximate order of the energy required

to move the system in any arbitrary direction of state space.

We investigate how the selection of the target nodes affects E(p)
max, the inverse of
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the smallest eigenvalue of the output GramianWp. In order to better understand the

role of the number of target nodes on the worst-case energy, we consider an iterative

process by which we start from the case when every node is in the target set, Tn = V ,
and progressively remove nodes. Say µ(i)

j (µ(i−1)
j ) is an eigenvalue ofWi before (after)

removal of a target node. By Cauchy’s interlacing theorem we have that,

0 < µ
(i)
1 ≤ µ

(i−1)
1 ≤ µ

(i)
2 ≤ µ

(i−1)
2 ≤ . . . ≤ µ

(i)
i−1 ≤ µ

(i−1)
i−1 ≤ µ

(i)
i (2.11)

In particular, from Eq. (2.11), we note that µ(i)
1 ≤ µ

(i−1)
1 , indicating that the smallest

eigenvalue cannot decrease after removal of a target node. This implies that the

maximum energy E(i)
max ≥ E

(i−1)
max for all i such that 1 ≤ i ≤ n− 1.

2.3.3 Choice of Input Nodes

According to our problem formulation, the adjacency matrices A have unique diag-

onal elements along the main diagonal. These type of matrices of the underlying net-

works can be controlled with a single control input attached to the power-dominating

set (PDS) of the underlying graph. (see Theorem 1 and proof in [88]). The PDS

is the smallest set of nodes from which all other nodes can be reached, i.e., there

is at least one directed path from the nodes in the PDS to every other node in the

network. In our work presented here, we compute an over-estimate of the PDS (that

retains the property that all other nodes in the network are reachable) and attach a

unique control input to each node in the set. We then add additional nodes, chosen

randomly, to the set of input nodes until there are m input nodes where m is pre-

defined integer less than n. Thus, if there are m input nodes, then there are m

control inputs (see the sample network in Fig. 2.1).
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2.3.4 Numerical Controllability

A network can be controllable theoretically but it is quite hard to control numerically

depending on the dimension and the structure of the network. This issue arises in

Gramian based control schemes as the condition number of the Gramian can be

quite large for certain ‘barely’ controllable systems. For this chapter, we use the

multi-precision package Advanpix for Matlab so we can examine the trends of the

minimum eigenvalue of the output controllability Gramian Wp even when there is a

relatively small number of control inputs which would otherwise make some networks

be not numerically controllable using double precision. We use the Matlab toolbox

Advanpix [89] allows the computation of the eigendecomposition of the Gramian W

to be performed in an arbitrarily precise manner. Say µi and vi are the ith eigenvalue

and eigenvector, respectively. The average residual error, using Advanpix, is,

〈|Wvi − µivi|〉 = O(10−a). (2.12)

Typical values of a used throughout this paper are 100 to 200.

Also to approximate the integral in Eq. (2.4), we use Legendre-Gauss (LG) quadrat-

ure with appropriate weights and points.

E(p)
c =

∫ tf

t0

u∗Tc (t)u∗c(t)dt ≈
tf − t0

2

L∑

i=1

wiu
∗T
c (τi)u

∗
c(τi) (2.13)

We choose L = 50 and compute the necessary LG weights wi and LG points τi,

i = 1, . . . , 50.
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2.4 Result

2.4.1 Energy Scaling with Reduction of Target Space

From Eq. (2.11), it is clear, but not obvious that µ(p)
1 increases as p decreases. We

would like to determine the rate of increase of µ(p)
1 as p decreases. We assume at each

step p, Tp contains p nodes in the target set (such that Tp ⊂ Tp+1 and p decreases

from n− 1 to 1) and the output controllability Gramian is partitioned such that Wp

is a principal minor of Wp+1.

Wp+1 =


 wpp wT

p

wp Wp


 (2.14)

Here W̄p is the matrix Wp+1 except that the first row of Wp+1 in Eq. (2.14) has been

replaced with zeros. The vectors vp (v̄p) is the left (right) eigenvector associated with

the smallest eigenvalue of Wp (W̄p). The relation between two consecutive values,

µ
(p)
1 and µ(p+1)

1 , can be expressed linearly as µ(p)
1 = µ

(p+1)
1 ηp where

logE(j)
max − logE(k)

max =

j−1∑

i=k

log ηi = (j − k) log η̄(k→j). (2.15)

The notation [a]1 denotes the first value of a vector a. Each value of ηp exactly

quantifies the rate of increase at each step of the specific process. ηp also relates the

maximum energies between two consecutive steps as,

E(p+1)
max = E(p)

maxηp. (2.16)

This allows us to relate any two target sets of size k and j such that 1 ≤ k < j ≤ n

and Tk ⊂ Tj,

logE(j)
max − logE(k)

max =

j−1∑

i=k

log ηi = (j − k) log η̄(k→j) (2.17)

20



Chapter 2. Target Control of Complex Networks

where η̄(k→j) is the geometric mean of ηi, i = k, . . . , (j − 1), which is independent of

the order of the nodes chosen to be removed between Tk and Tj. To define a network

characteristic parameter η, we average Eq. (2.17) over many possible choices of the

target sets Tk and Tj, where we have selected k = n/10 and j = n,

η ≡ n
〈

log η̄( n
10
→n)
〉

(2.18)

where the symbol 〈·〉 indicates an average over many possible choices of n/10 nodes

for the target set. By applying Eq. (2.18) to Eq. (2.17) and by setting k = n/10 and

j = p > k (for the an extended discussion see Appendix A.2, we achieve the scaling

equation used throughout the simulations,

〈
logE(p)

max

〉
∼ p

n
η. (2.19)

The above relation shows that the energy decays exponentially as p/n decreases.

Further details of the scaling law and its relation to the spectral characteristics of

the output controllability Gramian can be found in Appendix A.2.

2.4.2 Scaling Law and Network Topology

The rate of this exponential decrease in energy, η, depends on network topology. One

common way to characterize the topology of a network is by its degree distribution.

Often the in-degree (For each node i we count the number of receiving connections,

called the in-degree kin
i ) and out-degree (the number of outgoing connections, called

the out-degree kout
i ) distributions of networks that appear in science and engineering

applications are scale-free, i.e., p(k) ∼ k−γ where k is either the in-degree or out-

degree with corresponding γin and γout, and most often 2 ≤ γ ≤ 3 [80].

The average in-degree and average out-degree for a network is kav. We compute the

value of η for fifty scale-free model networks, constructed with the static model in

Ref. [90] for specific parameters kav, the average degree, and γin = γout = γ, the
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power law exponent of the in- and out-degrees, and take the mean over the realiza-

tions.

We observe the linear relationship in Eq. (2.19) in Fig. 2.3, where p
n
is decreased from

1 (the target set Tn = V) to 0.1 (the target set consists of 10% of the nodes drawn

randomly from the set of all nodes). We see in Fig. 2.3 that η varies with both of

the network parameters γ and kav. A large value of η indicates that target control

is highly beneficial for that particular network, i.e., the average energy required to

control a portion of that network is much lower when the size of the target set is

reduced. In Figs. 2.3A and 2.3B, the exponentially increasing value of the worst-case

energy E(p)
max is shown with respect to the size of the target set normalized by the

size of the network, p/n, for various values of γin = γout = γ when kav = 2.5 and 8.0,

respectively. The bars in Figs. 2.3A and 2.3B are one standard deviation over the

fifty realizations each point represents, or in other words, when p nodes are in the

target set Tp, it is most likely that E(p)
max will lie between those bars. The decrease

of η as γ and kav increase for scale-free networks is displayed in Fig. 2.3B. Overall,

we see that η is largest for sparse, nonhomogeneous networks (i.e., low kav and low

γ) which are also the ‘hardest’ to control, i.e., they have the largest worst-case en-

ergy when all of the nodes are targeted. This indicates that target control will be

particularly beneficial when applied to metabolic interaction networks and protein

structures, some of which are symmetric and which are known to have low values of

γ [80], as seen in Fig. 2.3C, where both classes of networks are shown to have large

values of η.

The effects other network parameters have on η are examined in Fig. 2.4. Figure

2.4A displays some sample curves for E(p)
max for shorter or longer values of (tf − t0),

the time horizon. We observe the linear relationship in Eq. (2.19) in Fig. 2.4 The

inset shows how η increases as the time horizon (tf− t0) decreases. We see that when

(tf−t0) approaches zero from the right, η increases sharply, which shows the increased

benefit of target control as the time horizon is reduced. Figure 2.4B examines how
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E
(p)
max changes for various numbers of input nodes (represented as a fraction of the

total number of nodes in the network). The inset collects values of η for different

values of nd, which increases as the number of input nodes is decreased. The role of

the time horizon [17] and the number of input nodes [16] on the control energy have

been discussed in the literature for the case in which all the nodes were targeted.

Comparing the results between both panels in Fig. 2.4 and the results in Fig.

2.3, we see that each parameter has more or less of an effect on the control energy.

Shortening the time horizon from the nominal value tf = 1 (which was used in Fig.

2.3) by four orders of magnitude doubled the value of η. Decreasing the value num-

ber of input nodes from n/2 (the number used in Fig. 2.3) to only n/5 also roughly

doubled the value of η. In comparison, increasing the heterogeneity of the network,

by decreasing the power-law exponent γ, from three to slightly larger than two in-

creased η ten to twenty fold. Clearly the underlying topology, as described by the

power-law exponent, plays the largest role in determining (and thus affecting) the

control energy.

For the simulations in Figs. 2.3 and 2.4, around 50% of the nodes are chosen to be

input nodes (which we have verified yields a controllable pair (A,B)).

2.4.3 Scaling Law and Real Networks

We also analyze datasets collected from various fields in science and engineering to

study how the worst-case energy changes with the size of the target set for networks

with more realistic structures. We are particularly interested in the possibility that

these networks display different properties in terms of their target controllability,

when compared to the model networks analyzed. To this end, we consider different

classes of networks, e.g., food webs, infrastructure, metabolic networks, social inter-

actions, etc. For each network we choose edge weights and diagonal values from the
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uniform distribution as discussed in the section 2.2. Overall we see a similar relation-

ship in terms of the average degree kav and η in Fig. 2.5C as for the model networks

in Fig. 2.5C. The real datasets which have a large worst-case energy when all of the

nodes are targeted, E(n)
max, tend to also have the largest value of η which acts as a

measure of the rate of improvement with target control. It should be noted that the

value of η varies little within each class of networks (e.g., food webs, infrastructure,

metabolic networks, social interactions, etc. as seen in Fig. 2.5C ) which suggests

that the structure of each class is similar. Fields of study where networks tend to

have a large η would benefit the most from examining situations when a control law

could be implemented that only targets some of the elements in the network.

For an arbitrary network, η cannot be accurately determined from a single value

of E(p)
max as some networks which have a large worst-case energy when every node is

targeted can have a much smaller worst-case energy when only a small portion of

the network is controlled as compared to other networks. It is interesting to note

from Figs. 2.5A and 2.5B that at some target fraction p/n the energy trends of

two different real networks may cross. Specifically, in Fig. 2.5A, when every node

is targeted, p/n = 1, the s420st [91] circuit has a larger maximum energy, E(n)
max,

than the TM-met [92] metabolic network. However, when p/n is smaller than 0.6, it

requires, on average, more energy to control a portion of the TM-met network than

an equivalent portion in the s420st network. The same type of behavior is seen in

Fig. 2.5B between three networks: Food web Carpinteria [93], a protein interaction

network prot_struct_1 [91] and social network FB forum [94]. In summary, we can

see that one can estimate the value of η from the average degree of the network but

to determine the worst-case energy, at least one point along the energy curve for a

specific cardinality of the target set is also required (as in Figs. 2.5A and 2.5B).

We numerically compute values of η for real datasets and compiled in Table 2.1. For

the simulations in Figs. 2.5, around 50% of the nodes are chosen to be input nodes

the pair (A,B) is controllable.
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2.4.4 Practical Computation of η.

Here we provide additional details on how Figs. 2.3, 2.4, and 2.5, which show the

exponential scaling of the energy with respect to the cardinality of the target set,

were generated. For large networks, computing the mean over all possible sets of

target nodes is computationally expensive. Instead, we approximate η by computing

the mean value of logE
(p)
max for some sample values of p, p = n/10, 2n/10, . . . , n by

randomly choosing p nodes to be in a target set and computing the inverse of the

smallest eigenvalue of Wp. In each of the simulations, we compute the mean and

standard deviation of the logarithm of the smallest eigenvalue of Wp for typically

50 iterations. By plotting the values of
〈

logE
(p)
max

〉
, we see that a linear model is

appropriate and we compute a linear least-squares best fit for the data. The linear

curve fit provides a good approximation of logE
(p)
max as shown in Figs. 2.3, 2.4, and

2.5.

2.5 Discussion

In this chapter, we frame an optimal control problem to optimally control a portion of

a complex network for assigned initial conditions and final conditions, while holding

the input nodes and target nodes fixed. We provide an analytic solution to this

problem in terms of a reduced Gramian matrix Wp, where the dimensions of this

matrix are equal to the number of target nodes one attempts to control. We show

that for a fixed number of input nodes, the energy required to control a portion

of the network decreases exponentially when the cardinality of the target set, so

even controlling a significant number of nodes requires much less energy than when

every node is targeted. We observe the energy reduction, expressed as the rate η,

in various networks, both model and real networks. The energy reduction is largest

for networks which are heterogeneous (small power-law exponent γ in a scale-free
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degree distribution) and sparse (small kav), with a short time horizon and fewer

control inputs. The control of these networks typically has especially large control

energy demands. Thus target control is most beneficial for those networks which

are most difficult to control. The potential applications for developing target

controls are numerous, networks from networked robots to economic policies, where

the required purpose is to affect only specific sectors. We experiment some of the

datasets from the literature in many fields and find that they are also experience the

reduced energy benefits from target control. The networks which describe metabolic

interactions and protein structures have some of the largest values of η suggesting

target control would by the most beneficial in those fields.

The observed decrease of the control energy over many orders of magnitude indicates

a substantial potential impact of this research in applications where control over the

entire network is not necessarily required. In chapter 5 and 6, we benefit from this

target control approach to optimally regulate a specific state of a complex network

governed by the nonlinear dynamics. The target control is also applicable to other

control actions generated with respect other cost functions that appears often in

the control of many real systems The scaling factor η for a network with respect to

quadratic cost function remains nearly same with respect to the minimum energy

control input in Eq. (2.3) [95].
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V = {x1, x2, x3, x4, x5}
D = {x1, x3}

T3 = {x1, x2, x4}
Figure 2.1: A simple network of five nodes and color-coded input signals (blue) and
output sensors (pink). Note that each control input is directly connected to a single
node, and each output sensor receives the state of a single node. Nodes directly
connected to the pink outputs are target nodes, that is, they have a prescribed final
state that we wish to achieve in finite time, tf . The set of nodes in the network
V = {x1, x2, x3, x4, x5}, the set of driver nodes D = {x1, x3} , and the set of target
nodes T = {x1, x2, x4}. The interaction function ψi,j between the nodes xi and xj.
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Figure 2.2: (A) The state evolution is shown where the initial condition is the origin
and the final state for each target node is yi(tf) = 1, i = 1, 2, 3, 4, 5. (B) The optimal
control inputs u1(t) and u2(t) evolution are shown where the initial condition is the
origin and the final state for each target node is yi(tf) = 1, i = 1, 2, 3, 4, 5. (C )
The square of the magnitude of the control inputs is also shown. The energy, or the
control effort, is found by integrating the square of the magnitude of the the control
inputs. For this case, E =

∫
|u(t)|2 ≈ 1.21 × 104 (a.u.). (D) The same network

as in (A) but now only nodes x1, x2 and x4 are declared as target nodes. The
state evolution is shown where the initial condition remains the origin but the final
condition is only defined for yi(tf) = 1, i = 1, 2, 4. (F ) The square of the magnitude
of the control input is also shown. Note the different vertical axis scale as compared
to (C ). For the second case, E =

∫
|u(t)|2 ≈ 72.81 (a.u.).
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Figure 2.3: The variation of η with respect to model network parameters.
(A) The maximum control energy is computed for model networks constructed with
the static model and the Erdos-Renyi model while varying the target node fraction.
For the static model, four different power-law exponents are used. The average degree
of each model network is kav = 2.5 and its size is n = 500. The input node fraction
nd = 0.5, chosen such that the pair (A,B) is controllable. Each set of target nodes
is chosen randomly from the nodes in the network. Each point represents the mean
value of the control energy taken over 50 realizations. The error bars represent one
standard deviation. Note the linear growth of the logarithm of the control energy.
The slopes of these curves are the values of η corresponding to each set of parameters.
A linear fit curve is provided in gray. Also, as γ grows, i.e., the scale free models
become more homogeneous, the slope approaches that of the Erdos-Renyi model.
(B) The same study as in (A) except that kav = 8.0. The same behavior is seen
but note the difference in scales of the vertical axis. Each point is the mean over 50
realizations, and error bars represent one standard deviation. (C ) The study in (A)
and (B) is performed for more values of kav and the value of η is computed for each
curve.
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Figure 2.4: Energy scaling as time horizon and input node fraction are
varied. Besides the average degree and power-law exponent which describe the
underlying graph of the network (Fig. 2.3), there are other parameters that can
affect the control energy such as the time horizon and the number of designated input
nodes. (A) The time horizon, defined as tf − t0, is varied for networks constructed
using the static model with the following properties: n = 500, γin = γout = 3.0,
kav = 5.0, and nd = 0.5. As we choose t0 = 0, the time horizon is equivalent to just
tf. The main plot shows how the log of the maximum control energy changes with
target node fraction, p/n. Each point represents the mean over 50 realizations, and
error bars represent one standard deviation. The inset shows how η changes with the
time horizon. We see a sharp increase as the time horizon decreases. (B) We also
investigate how η varies with the number of input nodes. The same class of network
is examined as in (A): n = 500, γin = γout = 3.0 and kav = 5.0. For both simulations,
nodes are randomly and independently chosen to be in each target set. We see that
η grows as the number of input nodes decreases as shown in the inset.
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Figure 2.5: Values of η for real datasets. (A) We compute the maximum control
energy required for the s420st circuit network and the TM metabolic network for
increasing target node fraction, p/n. Each point represents the mean of fifty realiz-
ations where each realization is a specific choice of the nodes in the target node set.
Error bars represent one standard deviation. (B) The same analysis performed for
the Carpinteria food web, the protein structure 1 network, and a Facebook forum
network. Each points represents the mean of fifty realizations where each realization
is a specific choice of the nodes in the target node set. Error bars represent one
standard deviation. For both (A) and (B), the linear behavior exists only when the
target fraction increases greater than p/n = 0.1. (C ) We numerically compute values
of η for real datasets (compiled in Table 2.1) for comparison when nd = 0.45 or lar-
ger. The values of η are plotted against each network’s average degree as the degree
distribution that best describes the degree sequence may or may not be scale-free.
Nonetheless, we see a similar trend, that low average degree networks have a larger
value of η, as demonstrated in Fig. 2.3(C). Also worth noting is that networks from
the same class (as defined in the legend) tend to have similar values of η.
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Name n l kav d η

Circuit
s208st[91] 122 188 1.54 14 13.16
s420st[91] 252 399 1.58 16 12.78
s838st[91] 512 819 1.6 20 11.86

Citation

Kohonen[96] 3772 12731 3.38 9 6.32
SG[96] 1024 4919 4.8 11 5.37
SW[96] 233 994 4.27 7 5.84
Scien[96] 2729 10413 3.82 13 6.12

Foodweb

Carpinteria[93] 128 2290 17.89 6 7.36
Florida[96] 128 2106 16.45 5 5.14

Grassland[96] 113 832 7.36 3 3.92
LRL[97] 183 2494 13.63 6 4.29

StMarks[96] 54 356 6.59 7 4.74
Ythan[98] 92 417 4.53 3 5.77

Infrastructure

AirTrafficControl[99] 1226 2615 2.13 25 5.11
IEEETG[100] 118 358 3.03 14 5.01

NorthEuroGrid[101] 236 640 2.71 23 6.04
USAir500[102] 500 5960 11.92 9 4.29

Metabolic

CE_met[92] 1173 2864 2.44 30 13.24
EN_met[92] 916 2176 2.38 28 14.72
SC_met[92] 1511 3833 2.54 22 10.09
TM_met[92] 830 1980 2.39 18 14.09
TP_met[92] 485 1117 2.3 15 11.94

Yu-11 (New)[103, 104] 1144 2293 2.0 16 50.83
CCSB-YI1 (New)[104, 105] 1278 3450 2.7 14 24.06

ProtStruct
prot_struct_1[91] 95 213 2.24 11 8.95
prot_struct_2[91] 53 123 2.32 6 7.0
prot_struct_3[91] 99 212 2.14 10 9.1

Social

EmailURV[106] 1133 10903 9.62 8 4.49
FBForum[94] 899 7089 7.89 9 6.23
Jazz[107] 198 5484 27.7 6 3.36
RHS[108] 217 2672 12.31 6 3.67

UCIrvine[109] 1899 20296 10.69 8 3.56

Table 2.1: Real datasets from literature. Both in the manuscript and here in the
supplementary information, we examine how target control may benefit real networks
compiled in datasets found throughout the scientific and engineering literature. We
include the name, the reference, and some basic properties for each of the networks,
as well as our computed value of η. In the table, n is the number of nodes, l is the
number of edges, kav is the average degree, d is the diameter of the graph, and η is
the scaling of the minimum control energy.
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Chapter 3

Balance Control of Complex

Networks

3.1 Introduction

In chapter 2, we have seen that by controlling the states of a subset of the nodes of

a network, rather than the state of every node, while holding the number of control

signals constant, the , the required energy to control a portion of the network can be

reduced substantially. In fact, the energy requirements exponentially decay with the

reduction of the number of target nodes. In this chapter we reduce the control

energy further by relaxing the output final states from their exact prescribed final

states to be close as much as possible to the prescribed final states. We introduce a

new control strategy called balanced control where we set our performance measure

as a convex combination of two objective functions: 1) a function which minimizes

the distance from the final output states at final time to the desired final states and

2) a function which minimizes the control effort to achieve the first goal over the

finite time period.
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3.2 Material and Method

3.2.1 Problem Formulation

We introduce the balance control problem for complex networks. In this chapter,

similar to 2, we assume the networks have stable dynamics. The scale free model

networks we consider throughout the paper are constructed with the static model

[90]. Diagonal noise, δi, is included, drawn from a uniform distribution between −1

and 1 so that the eigenvalues of the adjacency matrix are all unique. The weighted

adjacency matrix A is stabilized with a value ε such that each diagonal value of A

is {aii} = δi + ε where i = 1, . . . , n. The value ε is chosen such that the maximum

eigenvalue of A is equal to −1. The matrix B is constructed by choosing which

nodes in the network require an independent control signal. The matrices B (C) are

composed of m (p) versors as columns (rows). The set of input nodes is chosen in the

same way as it was done in chapter 2. A small sample schematic diagram is shown

in Fig. 3.1A that demonstrates the graphical layout of our problem emphasizing the

graph structure and the role of input nodes and targets. Here by an input node, we

mean a node that directly receives one and only one control input such as nodes 1 in

Fig. 3.1A and by a target node we mean a node which corresponds to one and only

one output such as nodes 1, 2 and 3 in Fig. 3.1A.In our optimal balanced control

problem, we attempt to minimize the following cost function,

min
u(t)

J =
1− α

2
[
(
y(tf )− yf

)T (y(tf )− yf
)
]

+
α

2

∫ tf

t0

u(t)Tu(t)dt

(3.1)

subject to the following constraints,

ẋ(t) = Ax(t) +Bu(t) (3.2a)

y(t) = Cx(t), x(t0) = x0 (3.2b)
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Here the final constraints are in the objective function and we call these constraints

soft constraints as we do not require them to be satisfied exactly. Note that if we set

C = In, where In is the n×n identity matrix, then y(t) = x(t). The vector yf is the

prescribed final output state of the nodes described by the matrix C. Here α ∈ (0, 1)

is a scaling parameter by which we can penalize the two performance measures in

the cost function in (3.1) to balance the control energy. Note that in the case in

which α = 1, the cost function in Eq. (3.1) becomes the cost function associated

with the optimal output cost control problem in Eq. (2.3), where different from Eq.

(3.1), the final desired state is imposed on as a hard constraint. After computing the

Hamiltonian and solving the resulting system of ODEs, the minimum energy control

signal which minimizes the objective function in Eq. (3.1) over the finite time interval

[t0, tf ] to be,

u∗(t) = −BT eA
T (tf−t)CTU−1p

(
CeA(tf−t0)x0 − yf

)
(3.3)

For details derivation, please see Appendix B.1. With the optimal control input

u∗(t), the time evaluation of the output states is

y(t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−τ)Bu∗(τ)dτ (3.4)

and states can also be determined,

x(t) = eA(t−t0)x0

− 1− α
α

∫ t

t0

eA(t−τ)BBT eA
T (tf−τ)dτCT ν̄

(3.5)

where

ν̄ =
α

1− αU
−1
p β, (3.6)

the p× p matrix

Up =

(
α

1− αIp +Wp

)
(3.7)
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and

β =
(
CeA(tf−t0)x0 − yf

)
. (3.8)

Different from the formulation of linear optimal control commonly seen in texts on the

subject, we approach the problem in two unique ways. First, we consider the control

action that minimizes the cumulative magnitude of the control input, restricted by

a left boundary condition applied to the state of the system (the initial condition)

and a final condition applied to only the outputs of the system. Second, we make

specific the methodology as it applies to networks by restricting our definitions of

the matrices B and C matrices as discussed previously.

3.2.2 Optimal Energy

The energy associated with the control input in Eq. (3.3), while only targeting the

nodes for balanced control in Tp, is defined as ε(p) =
∫ tf
t0
u∗(t)Tu∗(t)dt. Note that

ε(p) also depends on which p nodes are in the set, Tp. The energy ε(p) is a measure

of the ‘effort’ which must be provided to achieve the control goal. In the subsequent

definitions and relations, when a variable is a function of p, we more specifically

mean it is a function of a specific target set under balanced control of size p of which

there are n!
p!(n−p)! possible sets. We can define the minimum balanced control energy

(MBCE) when the control input is of the form in Eq. (3.3) as,

ε(p) =
(
yf − CeA(tf−t0)x0

)T
U−1p WpU

−1
p

×
(
yf − CeA(tf−t0)x0

)
= βTMpβ

(3.9)

where the vector β = CeA(tf−t0)x0−yf andMp = U−1p WpU
−1
p is the p×p symmetric,

real, semi-positive definite matrix. Note that the matrix Mp has the same set of ei-

genvectors as the matrixWp. Moreover, the following relation relates the eigenvalues
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of Mp and Wp:

µ
(p)
i =

(
α

1− α + λ
(p)
i

)−1
λ
(p)
i

(
α

1− α + λ
(p)
i

)−1
(3.10)

where, we denote the eigenvalues of Mp as µ(p)
i and the eigenvalues of Wp as λ(p)i ,

i = 1, . . . , p. It follows that the energy expression (3.9) defines an ellipsoid in the

variable β. The axes of the ellipsoid are unaffected by the particular choice of

the parameter α, while the width of each axis changes with the square root of the

corresponding eigenvalue of the matrix Mp.

3.2.3 Worst Case Direction

We consider the eigenvalues of Mp as µ(p)
i , i = 1, . . . , p, which are ordered such that

0 ≤ µ
(p)
1 ≤ . . . ≤ µ

(p)
p . By defining the magnitude of the vector, |β| = β, we can

define the ‘worst-case’ (or maximum) energy according to the Rayleigh quotient,

0 ≤ β2µ
(p)
1 ≤ βTMpβ ≤ β2µ(p)

p <∞. (3.11)

The upper extreme of the control energy denoted by ε(P )
max, for the control action in

Eq. (3.3) is max
{
ε(p)
}
∼ µ

(p)
p , which is what we call the ‘worst-case’ energy for

optimal balance control. For an arbitrary vector β, which can be represented as a

linear combination of the eigenvectors ofMp, the energy can be defined as a weighted

sum of the eigenvalues, µ(p)
i , which includes the worst-case energy.

3.2.4 Energy Scaling with the Penalizing Factor α

From 2,the minimum energy in Eq. (2.3) for the optimal output cost control is,

E(p) =
(
yf − CeA(tf−t0)x0

)T (
CWCT

)−1

×
(
yf − CeA(tf−t0)x0

)
= βTWpβ

37



Chapter 3. Balance Control of Complex Networks

We would like to determine the limiting energy when α→ 0 in Eq. (3.9). At each p,

Tp, contains p nodes in the target set and Up is p×p invertible matrix. When α→ 0,

Up → Wp, the output controllability Gramian and MBCE energy on this limit,

lim
α→0

ε(p) = E(p) (3.12)

We also provide the limiting behavior on α for the worst case energy direction,

lim
α→0

ε(p)max = E(p)
max (3.13)

A small, three node example of the benefits of balanced control is shown in Fig.

3.1, where each node is the target set (p = n = 3). Fig. 3.1A displays a sample

network with the three nodes. Input node (node 1) is in blue and target nodes

for balanced control are in magenta (nodes 1, 2, 3). Node 1 is directly connected to

an input u1 and target nodes 1,2,3 are directly connected to output y1, y2 and y3

respectively. In panel (B), we examine the limiting relationship in Eq. (3.12) for the

three node network. From Fig. 3.1B, we also see how the balanced control strategy

reduces the control energy as the penalizing factor α increases. For large value of

α = 10−1, the output states and the optimal control input are provided in panel (C )

and (E ), respectively. For small value of α = 10−6, the output states and the optimal

control input are provided in panel (D) and (F ), respectively. From panel (E ) and

(F ), the integral of the magenta curves are ε(3) ≈ 4.2 and ε(3) ≈ 219 respectively. We

see that the energy can be reduced by 55 times in the former case.

3.2.5 Optimal Return in Limiting Case

In the cost function (3.1), the two performance measures are multiplied each by a

penalizing factor. It is important to investigate the relationship between the optimal

return corresponding to each performance measure as α varies. The optimal return
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value corresponding to (3.1) can be written,

J∗ =
1− α

2
ζ2 +

α

2
ε(p) = J∗1 + J∗2 (3.14)

where ζ = ||y(tf )−yf ||, the final state error at time tf , J∗1 = 1−α
2
ζ2, and J∗2 = α

2
ε(p).

We call the ratio J∗1/J∗ the optimal error return ratio and J∗2/J∗ the optimal energy

return ratio. Note that the sum of the two ratios is equal to 1, i.e., J∗1/J∗+J∗2/J∗ = 1.

Figure 3.2 shows how the ratios J∗1/J∗ and J∗2/J∗ vary with α for the case of a

scale free network with n = 300, γin = γout = 2.5, and κ = 8. We set the fraction of

target nodes, p/n = 0.8 and the final time tf = 1. The values on the abscissa axis

are −logα so that large values of α are shown on the left hand side and small values

of α are shown on the right hand side. When α → 0, ζ → 0 faster than α (which

multiplies ε(p)). Therefore, when α is very small J∗ is dominated by J∗2 , and we see

from Fig. 3.2 that J∗1/J∗ → 0, J∗2/J∗ → 1 as α → 0. On the other hand, from the

Fig. 3.2, we see that as α approaches 1, J∗2/J∗ → 0 and J∗1/J∗ → 1. As α increases

(decreases), the error component (the energy component) becomes dominant in the

optimal return value in Eq. (3.14).

3.2.6 Numerical Controllability

The controllability Gramian, Wp, can be calculated as a function of the eigendecom-

position of the state matrix A = V ΛV −1 as it has been driven in chapter 2. We use

the multi-precision package Advanpix for Matlab. The Matlab toolbox Advanpix

[89] allows the computation of the eigen-decomposition of Wp to be performed in an

arbitrarily precise manner. This precision allows us to calculate the eigen decompos-

ition of Wp, the invertible matrix Up and the matrix Mp numerically. We also use

Advanpix when computing the energy in Eq. (3.9) for the cost function in Eq. (3.1).
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3.3 Results

We perform numerical simulations to examine the two important results discussed

in subsection 3.2.4. For our simulations in Figures 3.3 - 3.4, we consider scale-free

model networks, constructed with the static model in Ref. [90] for specific parameters

kav, the average degree, and γin = γout = γ, the power law exponent of the in- and

out-degrees, and we choose the initial state at the origin, x0 = 0, and final state

||yf || = 1. We choose 10 different yf uniformly distributed on the unit sphere, and

we take the mean of all results over 10 realizations. We also consider tf = 1 and the

fraction of input nodes nd = 0.4. In Figs. 3.3 - 3.4, the solid line corresponds to the

output cost control energy, E(p), where p/n is the associated target set.

On the left half panels of Fig. 3.3, we consider the networks (n = 300) are scale-free

constructed with the static model such that kav = 8.0 in each case. Each point is the

average of 10 realizations and the bars represent one standard deviation. The target

nodes are chosen from the set of nodes randomly and independently at every iteration.

In Fig. 3.3A, the expected limiting relation discussed in the subsection 3.2.4 is seen

for each network irrespective of power-law exponent (γin = γout). We notice that,

when the network is more heterogeneous (γ is low, e.g. γ = 2.5), the terminal

balancing is more beneficial compared to the networks that are more homogeneous

(γ is high, e.g. γ = 3) as the balanced control energy remains close to the output

control energy for homogeneous networks. We observe results qualitatively similar

for any size of the terminal target set. On the left half panels of Fig 3.3, we consider

the networks (n = 300) are scale-free constructed with the static model such that

γin = γout = 2.5 in each case. Each point is the average of 10 realizations and the

bars represent one standard deviation. Each set of target nodes is chosen from the set

of nodes randomly and independently at every iteration. In Fig. 3.3B, the expected

limiting relation discussed in the subsection II.F is seen for each network irrespective
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of average degree (κ). We notice that, when the network is more sparse (κ is low,

e.g. κ = 5), the terminal balancing is more beneficial compared to the networks that

are dense (κ is high, e.g. κ = 15) as the balanced control energy remains close to

the output control energy for dense networks. This result holds for any size of the

target sets. In panel (C ) - (D), we show the error ζ of the final state at final time tf

for the same target nodes and in panel (E ) - (F ), we show that the optimal return

function J∗ decreases as α decreases.

Besides the average degree and power-law exponent which describe the network

(Fig. 3.3), there are other parameters that can affect the control energy such as the

time horizon and the number of designated input nodes. In Fig. 3.4, each panel of

(A) - (F ) corresponds to the size of target node set p/n = 0.8. The target nodes

are chosen from the set of nodes randomly and independently for every iteration.

Each point is the average of 10 realizations and the bars represent one standard

deviation. The network has properties: n = 300, γin = γout = 2.5, kav = 8.0.

On the left half panels, we show the limiting relationship holds as the time horizon

defined as tf − t0 changes. We notice that, when the time horizon is small (e.g.

tf − t0 = 0.01), the terminal balancing is more beneficial compared to large time

horizon (e.g. tf − t0 = 10) as the balanced control energy remains close to the

output control energy for large time horizon. On the right half panels, we show the

limiting relationship holds as the number of input nodes nd changes. We notice that,

when the number of designated input nodes is small (e.g. nd = 0.4), the terminal

balancing is more beneficial compared to large number of input nodes (e.g. nd = 1 )

as the balanced control energy remains close to the output control energy for large

number of inputs. This result holds for any size of the target sets. In panel (C ) -

(D), we show the error ζ of the final state at final time tf for the same target nodes

and in panel (E ) - (F ), we show that the optimal return function J∗ decreases as α

decreases.
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We also analyze datasets collected from various fields in science and engineering

to study how the worst-case energy for MBCE changes with α and the size of the

target set under balanced control for networks with more realistic structures. In

Fig. 3.5, we consider six groups of dataset: Circuit [91], Protein Structure [91],

Metabolic [92], Food Web [93, 96–98], Social [106–109], and Infrastructure [100–102].

For our simulation, we consider tf = 1 and nd = 0.45 and we take 30 realizations for

one particular target fraction and take the mean over several realizations. We only

show the results in Fig. 3.5 for p/n = 0.1 (for sufficient values of p our results are

qualitatively same). For comparison among the real dataset, we choose one network

from different groups of networks and plot ε(p)max verses α in Fig. 3.5. We see for small

α, say α = 10−10, the Metabolic network is benefited more as the control energy for

balanced control reduces significantly from output control energy (magenta solid

line). On the other hand the Food Web and Social network are not benefited as

much as balanced control energy remains approximately the same, in comparison.

However, for large values of α, say α = 10−1, all of the networks need approximately

the same amount of energy for balanced control.

3.4 Conclusion

In this chapter, we provide an energy efficient control strategy we call balanced

control strategy. We see that by changing the penalizing factor α in the cost function

in Eq. (3.1), the control energy that is needed for balanced control can be reduced

dramatically. For example, in Fig. 3.1B, we see that the control energy can be

reduced if we relax the final state conditions. We also see the limiting behavior that

in the limit α → 0 MBCE approaches the output cost control energy. The above

two results are general regardless of the network types, size and other properties.

See Figs. 3.1B, 3.3, 3.4, and 3.5. From figure 3.3A,C,A and 3.3B,D,F, we get
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the information that sparse and heterogeneous networks can benefit more from our

balanced control strategy than dense and homogeneous networks, respectively. We

discuss the effect of other parameters, especially time horizon and number of input

nodes on the MBCE and its limiting behavior. Several real datasets have also been

examined to verify this results. In Fig. 3.5, we compare the results for different

groups of real networks and conclude that the biological networks (e.g. metabolic,

protein structure) are those that benefit most from the balanced control strategy.
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Figure 3.1: Example Network. Panel (A) displays a sample network with the
three nodes. Each node has self regulation labeled by aii. Input node (node 1) is in
blue and target nodes for balanced control are in magenta (node 1, 2, 3). Node 1 is
directly connected to an input u1 and target nodes 1,2,3 are directly connected to
output y1, y2 and y3 respectively. In panel (B), we examine the limiting relationship
in Eq (3.12) for the three node network. For large value of α = 10−1, the output
states and the optimal control input are provided in panel (C ) and (E ) respectively.
For small value of α = 10−7, the output states and the optimal control input are
provided in panel (D) and (F ) respectively.
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Figure 3.2: Ratio of optimal return J∗. Ratio of optimal error return J∗1/J∗ and
ratio of optimal energy return J∗2/J

∗ are plotted versus the scaling parameter, α.
For the simulation, we choose a scale free network with n = 300, γin = γout = 2.5,
and κ = 8. We set the fraction of target nodes, p/n = 0.8 and the final time tf = 1.
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Figure 3.3: The limiting relationship of ε(p) with respect to model network
parameters γ and κ. Each panel of (A) - (B) corresponds to the size of target
fraction, p/n = 0.8. On left half panels, the log of the control energy for balance
control, ε(p), the final state error ζ and the optimal return J∗ corresponding to
networks with a fixed kappa = 8 and different power-law exponent (γin = γout) are
plotted versus α, respectively. The solid line corresponds to the output cost control
energy, E(p). The expected limiting relation is seen for each network irrespective
of power-law exponent (γin = γout). On the right half panels, log ε(p), ζ and log J∗

corresponding to networks with a fixed γinγout = 2.5 and different average degree
(κ) are plotted versus α, respectively. The expected limiting relation is seen for each
network irrespective of average degree (κ).
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Figure 3.4: The limiting relationship of ε(p) as Time Horizon and Input Node
Fraction are varied. In of (A) - (B) corresponds to the size of target fraction,
p/n = 0.8. On left half panels, the log of the control energy for balance control, ε(p),
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Overview of Pseudo-Spectral Optimal

Control of Networked Systems

4.1 Introduction

Before discussing the Pseudo-Spectral Optimal Control (PSOC), we briefly review

the general optimal control problem (OCP) and the set of necessary conditions, de-

rived from Pontryagin’s maximum principle, which an optimal solution must satisfy.

Afterwards, we describe how PSOC discretizes the OCP, approximating the original

OCP as a nonlinear programming (NLP) problem.

4.2 Optimal Control

Optimal control theory combines aspects of dynamical systems, optimization, and

the calculus of variations [110] to solve the problem of finding a control law for a

given dynamical system such that the prescribed optimality criteria are achieved. A
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constrained optimal control problem can generally be written as,

min
u(t)

J(x(t),u(t), t) = E (x(t0),x(tf ), t0, tf ) +

∫ tf

t0

F (x(t),u(t), t) dt

s.t. ẋ(t) = f(x(t),u(t), t)

eL ≤ e(x(t0),x(tf ), t0, tf ) ≤ eU

hL ≤ h(x(t),u(t), t) ≤ hU

t ∈ [t0, tf ]

(4.1)

The OCP is solved by finding a time varying control input u∗(t) that minimizes

the quantity J(x(t),u(t), t) subject to a system’s dynamics and other constraints in

Eq. (4.1). The objective function (or cost function) J(x,u, t) is composed of two

parts, (i) E : Rn × Rn × R × R 7→ R which is a cost associated with the endpoint

behavior of the system x(t0) and x(tf ), and (ii) F : Rn × Rm × R 7→ R which is a

running cost over the entire time interval [t0, tf ]. The system dynamics is described

by the function f : Rn × Rm × R 7→ Rn. Constraints on the endpoints (x(t0) and/or

x(tf )) are described by e : Rn × Rn × R × R 7→ Re. While we only specify initial

conditions, more complicated relations between the endpoints of the states can be

specified as well. Finally, path constraints, such as bounds on the states or control

inputs, are described by h : Rn × Rn × R 7→ Rh.

4.3 Pseudo-Spectral Optimal Control

In general, there exists no analytic framework that is able to provide the optimal

time traces of the controls u∗(t) and the states x∗(t) in (4.1), and so we must resort

to numerical techniques.

Pseudo-Spectral Optimal Control (PSOC) is a computational method for solving

optimal control problems. Here we present a brief overview of the theory of pseudo-
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spectral optimal control. PSOC has become a popular tool in recent years [55, 111]

that has let scientists and engineers solve optimal control problems like (4.1) reliably

and efficiently in applications such as guiding autonomous vehicles and maneuvering

the international space station [55]. PSOC is an approach by which an OCP can

be discretized by approximating the integrals by quadratures and the time-varying

states and control inputs with interpolating polynomials. Here we summarize the

main concept of the PSOC. We choose a set ofN+1 discrete times {τi} i = 0, 1, . . . , N

where τ0 = −1 and τN = 1 with a mapping between t ∈ [t0, tf ] and τ ∈ [−1, 1]. The

discretization scheme that includes the endpoints and is normalized by the mapping,

t =
tf − t0

2
τ +

tf + t0
2

(4.2)

The times {τi} are chosen as the roots of an (N + 1)th order orthogonal polynomial

such as Legendre polynomials or Chebyshev polynomials. The choice of dicretization

scheme is important to the convergence of the full discretized problem. For instance,

if we choose the roots of a Legendre polynomial as the discretization scheme, the

associated quadrature weights can be found in the typical way for Gauss quadrature.

The time-varying states and control inputs are found by approximating them with

Lagrange interpolating polynomials,

x̂(τ) =
N∑

i=0

x̂iLi(τ) (4.3a)

û(τ) =
N∑

i=0

ûiLi(τ), (4.3b)

where x̂(τ) and û(τ) are the approximations of x(τ) and u(τ), respectively, and

Li(τ) is the ith Lagrange interpolating polynomial. The Lagrange interpolating

polynomials are defined as,

Liτ =
N∏

j=0,j 6=i

τ − τj
τi − τj

(4.4)
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The dynamical system is approximated by differentiating the approximation x̂(τ) =
∑N

i=0 x̂iLi(τ) with respect to time.

dx̂
dτ

=
N∑

i=0

x̂i
dLi
dτ

(4.5)

Let Dk,i = d
dτ
Li(τk) which allows one to rewrite the original dynamical system con-

straints in (4.1) as the following set of algebraic constraints.
N∑

i=0

Dk,ix̂i −
tf − t0

2
f(x̂k, ûk, τk) = 0n, k = 1, . . . , N

x̂N − x̂0 −
N∑

k=1

N∑

i=0

wkDk,ix̂i = 0n

(4.6)

The last set of algebraic constraints arise from the consistency condition
∫ tf
t0
ẋ(t)dt =

x(tf ) − x0. Similarly to the consistency condition, the integral in the cost function

is,

J =

∫ tf

t0

F (x,u, t) ≈ Ĵ =
tf − t0

2

N∑

k=1

F (x̂k, ûk, τk) (4.7)

The original time-varying states, control inputs, the dynamical equations constrained

and the cost function are now discretized approximation of the continuous NLP

problem. Thus the discretized approximation of the original OCP is compiled into

the following nonlinear programming (NLP) problem.

min
ui

i=0,...,N

Ĵ =
tf − t0

2

N∑

i=0

wif(x̂i, ûi, τi)

s.t.
N∑

i=0

Dk,ix̂i −
tf − t0

2
f(x̂k, ûk, τk) = 0, k = 0, . . . , N

x̂N − x̂0 −
N∑

k=1

N∑

i=0

wkDk,ix̂i = 0n

eL ≤ e(x̂0, x̂N , τ0, τN) ≤ eU

hL ≤ h(x̂k, ûk, τk) ≤ hU , k = 0, . . . , N

ti =
tf − t0

2
τi +

tf + t0
2

(4.8)
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With the above results, we now present the application to the full multi-phase

optimal control problem. In general, let us assume there are p > 1 phases where we

set p = 2 for simplicity. Each phase is active within the interval t ∈ [t
(p)
0 , t

(p)
f ]. In

each phase there is a cost function J (p), a dynamical system f(p), a set of endpoint

constraints e(p), and a set of path constraints h(p). If two phases, p and q, are linked,

then there also exists a set of linkage constraints Φ(p,q).

min
u(p)

P∑

p=1

J (p) =
P∑

p=1

∫ t
(p)
f

t
(p)
0

F (p)(x(p),u(p), t)dt

s.t. ẋ(p)(t) = f(p)(x(p),u(p), t)

hL,(p) ≤ h(p)(x(p),u(p), t) ≤ hU,(p)

eL,(p) ≤ e(p)(x(p)(t
(p)
0 ),x(p)(t

(p)
f ), t

(p)
0 , t

(p)
f ) ≤ eU,(p)

ΦL,(p,q) ≤ Φ(p,q)(x(p),x(q),u(p),u(q)) ≤ ΦU,(p,q)

(4.9)

Each phase is discretized with its own set of points, {τ (p)i } so that,

x(p)(τ) ≈ x̂(p)(τ) =
N∑

i=1

x̂(p)
i Li(τ) (4.10)

so that the full multi-phase NLP is,

min
u(p)
i

P∑

p=1

t
(p)
f − t

(p)
0

2

N∑

k=1

F (p)(x̂(p)
k , û(p)

k , τk)

s.t.
N∑

i=0

Dk,ix̂
(p)
i −

t
(p)
f − t

(p)
0

2
f(p)(x̂(p)

k , û(p)
k , τk) = 0n, p = 1, . . . , P, k = 1, . . . , N

x̂(p)
N − x̂(p)

0 −
t
(p)
f − t

(p)
0

2

N∑

k=1

N∑

i=0

wkDk,ix̂i = 0n, p = 1, . . . , P

eL,(p) ≤ e(p)(x̂(p)
0 , x̂(p)

N , t
(p)
0 , t

(p)
f ) ≤ eU,(p), p = 1, . . . , P

hL,(p) ≤ h(p)(x̂(p)
k , û(p)

k , τk) ≤ hU,(p), k = 1, . . . , N, p = 1, . . . P

ΦL,(p,q) ≤ Φ(p,q)(x̂(p)
0 , û(p)

0 , x̂(q)
N , û(q)

N ) ≤ ΦU,(p,q), p, q = 1, . . . , P

(4.11)
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To perform the discretization described in this subsection, we use the open-source

C++ PSOC package PSOPT [112].

Next we show that Eq. (4.11) can be expressed in the typical NLP form [56]. Let

z(p) contain all of the variables for phase p.

z(p) =




x̂(p)
0

...

x̂(p)
N

û(p)
0

...

û(p)
N




∈ R(n+m) (4.12)

Next, let z contain the variables for every phase,

z =




z(1)
...

z(P )


 ∈ R(N+1)(n+m) (4.13)

With some algebraic manipulation, the entire discretized multi-phase OCP can be

rewritten as an NLP in the typical form.

min
z

c(z)

s.t. g(z) = 0

d(z) ≤ 0

(4.14)

To solve the large-scale NLP in Eq. (4.14) we employ an interior-point algorithm

[56]. Specific details of the algorithm are outside the scope of this paper. We used

the open-source C++ package IPOPT [113] to solve each instance of Eq. (4.14). We

direct interested readers who would like to learn more about the technical detailed

involved when solving Eq. (4.14) to the documentation provided with IPOPT.

The optimal solution returned, z∗, is separated into its component parts; first by

splitting it into the phases z(p)∗, and second by reconstructing the discrete states and
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control inputs, x̂∗i and û∗i . The continuous time control inputs and states are then

reconstructed using the Lagrange interpolating polynomials in Eq. (4.3). With the

continuous time states and control inputs, x∗(t) and u∗(t), we then verify that the

necessary conditions are met to within an acceptable tolerance.

4.4 Necessary Conditions of PSOC Solutions

We can use the Pontryagin’s principle to drive a set of necessary conditions which

a candidate solution must satisfies to be an optimal solution of the OCP in (4.1)

[114]. In Ref. [114], the so-called HAMVET procedure has been proposed based on a

slightly modified version of Pontryagin’s principle to provide the necessary conditions

for the general OCP in (4.1). We use the conditions to verify that the solution is

optimal. The HAMVET procedure is based on the following steps:

• Construction of the Hamiltonian : (H)

• Adjoint equations : (A)

• Minimization of the Hamiltonian : (M)

• Evaluation of the Hamiltonian Value condition : (V)

• Evolution of the Hamiltonian : (E)

• Transversality conditions : (T)

In what follows, we construct the necessary conditions for the general OCP based

on the HAMVET procedure. A detailed analysis can be found in Ref. [114].

55



Chapter 4. Overview of Pseudo-Spectral Optimal Control of Networked Systems

4.4.1 Construction of the Hamiltonian

The Hamiltonian H corresponding to the general OPC problem is

H(λ,x,u, t) = F (x,u, t) + λT f(x,u, t) (4.15)

where λ(t) ∈ Rn is the adjoint covector which is a function of time t. The control

input that minimizes the OCP satisfies the Hamiltonian Minimization Condition

(HMC), that is,

(HMC)

{
min
u(t)

H(λ,x,u, t)

s.t. hL ≤ h(x,u, t) ≤ hU
(4.16)

4.4.2 Adjoint equations

The Karush-Kuhn-Tucker (KKT) conditions can be used to solve the HMC. We

define the Lagrangian of the Hamiltonian H̄ as

H̄(µ,λ,x,u, t) = H(λ,x,u, t) + µTh(x,u, t) (4.17)

where µ(t) ∈ Rh is the path covector which is a function of time t. Then the evolution

of the adjoint covector λ(t) is given by,

−λ̇ =
∂H̄

∂x
(4.18)

Note that condition in (4.18) enforces the continuity but not differentiability of λ(t).

So, the piecewise continuity of λ(t) is a necessary condition for an optimal control
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solution.

4.4.3 Minimization of the Hamiltonian

By the KKT condition, the minimization condition for the Hamiltonian yields

∂H̄

∂u
= 0 (4.19)

with the complementary conditions for path constraints,





µi ≤ 0 if hi(x,u, t) = hLi

µi = 0 if hLi < hi(x,u, t) < hUi

µi ≥ 0 if hi(x,u, t) = hUi

µi unrestricted if hLi = hUi

(4.20)

If there are path constraints, then one of the necessary conditions is

µi(t)(hi − hLi )(hi − hUi ) = 0 (4.21)

Along with the minimization of the Hamiltonian, there is an endpoint minimization

condition (EMC) as well. The endpoint minimization problem is defined as

(EMC)

{
min E(x(t0),x(tf ), t0, tf )

s.t. eL ≤ e(x(t0),x(tf ), t0, tf ) ≤ eU
(4.22)
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To solve the EMC by KKT, we define the endpoint Lagrangian Ē as

Ē(ν,x(t0),x(tf ), t0, tf ) =E(x(t0),x(tf ), t0, tf )

+ νT e(x(t0),x(tf ), t0, tf )
(4.23)

where ν ∈ Re is the endpoint covector. Note that, ν is a constant vector. The

complementary conditions for event constraints are given by





νi ≤ 0 if ei(x(t0),x(tf ), t0, tf ) = eLi

νi = 0 if eLi < ei(x(t0),x(tf ), t0, tf ) < eUi

νi ≥ 0 if ei(x(t0),x(tf ), t0, tf ) = eUi

νi unrestricted if eLi = eUi

(4.24)

4.4.4 Hamiltonian Value condition

The lower Hamiltonian H is defined as the Hamiltonian evaluated at u(t) = u∗(t),

the solution to the HMC problem, i.e.,

H = min
u∈U

H(λ,x,u, t) (4.25)

where U is the set of feasible control inputs, i.e., they satisfy all of the constraints

imposed by Eq. (4.1). The lower Hamiltonian must satisfy the endpoint value con-

ditions as a regular Hamiltonian

H(λ(t0),x(t0), t0) =
∂Ē

∂t0

H(λ(tf ),x(tf ), tf ) = −∂Ē
∂tf

(4.26)

which provides another necessary conditions to check for the optimal control solution.
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4.4.5 Time Evolution of the Hamiltonian

As the lower HamiltonianH is obtained from the evaluation of the Hamiltonian at the

u∗(t), x∗(t) and λ∗(t), where x∗(t) and λ∗(t) are the states and costates associated

with the optimal control solution u∗(t), H is a function of time t only. Thus the

evolution of the lower Hamiltonian H can be defined as

Ḣ =
dH
dt

=
∂H

∂t
(4.27)

If H in (4.15) does not depend explicitly on time, then another necessary condition

is

Ḣ = 0 or H = constant (4.28)

4.4.6 Transversality conditions

The endpoints of the adjoint covector λ(t) are related to the partial derivatives of

the endpoint Lagrangian Ē. The transversality conditions for the adjoint covector

λ(t) are

λ(t0) = − ∂Ē

∂x(t0)
and λ(tf ) =

∂Ē

∂xf
(4.29)

In chapter 6, we verify the necessary conditions for the optimal control problem

that we formulate and solve in that chapter.
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Chapter 5

Optimal Regulation of Blood Glucose

Level in Type I Diabetes using

Insulin and Glucagon

5.1 Introduction

As our first implementation o the optimal control strategies, as discussed in chapter

1 to biological systems, we consider the Glucose-Insulin-Glucagon (GIG) model [57–

59, 115] which describes the response of the body to exogenously supplied insulin

and glucagon in patients affected by Type I diabetes. Common therapies for diabetes

involve the administration of exogenous insulin. Currently glucagon is not typically

included in therapies because it does not preserve its chemical properties at room

temperature and also because diabetic patients are still able to produce it.

The control of glucose levels in diabetic patients is an active field of research

[47–50, 60–64, 116–121]. The approval by the FDA of a simulator which replaces

in-vivo with in-silico therapy testing has greatly benefited this area of research. This
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simulator implements a mathematical model, first proposed in [57] and updated in

[58, 59, 115], and provides an alternative to often slow, dangerous and expensive

human testing.

Typically, insulin is administered manually approximately half an hour before

each meal where the amount is determined from the current glucose level (measured

through a blood sugar test), the expected glucose intake, and the patient’s sensitivity

to insulin. In what follows we will refer to this as the standard therapy. In 1992 the

first insulin pumps were introduced to the market. They delivered both a consistent

basal amount of insulin and an insulin bolus determined by the patients based on

their glucose level. It was only in 2016 that the first autonomous system for glycemic

control was approved by the FDA. The system consists of an insulin pump, a sensor

that measures the blood glucose level continuously in time, and control software that

is able to regulate the insulin level in the blood without needing any input from the

patient.

Many control techniques have been proposed and tested to regulate blood glucose

levels using insulin pumps including PID (proportional–integral–derivative) control

[60–65], fuzzy logic control [117–119] and bio-inspired techniques [120] which do

not rely on a mathematical model. In [66] closed loop control has been used on a

so called “minimal model" [122–124]. In [47–51] a linear model predictive control

(MPC) has been used in a model with fixed structure but for which parameters

are constantly updated to adapt to the patient’s response. In [52] linear MPC has

been used in silico. In [53] MPC has been applied to a system linearized around

the operating points of a physically derived nonlinear model and in [67] multiple

model probabilistic predictive control has been used. In [54] MPC has been applied

together with a moving horizon estimation technique to a linear model. Most of the

models used when designing the above controllers are simplified versions of the FDA

approved model and all the control techniques considered only use insulin (but not
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glucagon) as control input.

Because insulin delivered exogenously is not subject to normal physiological feed-

back regulation, hypoglycemia is common in patients with Type 1 diabetes who un-

dergo treatment [125]. For these patients it has been proposed that exogenous insulin

can be used to lower their blood glucose level and exogenous glucagon can be used

to prevent hypoglycemia [126, 127]. Currently, a commercial pump that delivers

both insulin and glucagon is not available, and the development of a two-hormones

artificial pancreas is still the subject of clinical research [128–136]. An outstand-

ing research question, which we address in this paper, is the determination of the

temporal dosages of both insulin and glucagon, in the case of the dual therapy.

Following the study in [137] which optimized multi-drug therapies for autophagy

regulation, here we seek to determine an optimal strategy for delivery of both insulin

and glucagon. We consider the combined effects of insulin and glucagon in regulating

blood glucose levels in patients with Type 1 diabetes, using the model in [58] and

nonlinear optimal control theory. Additionally, the objective function that we seek to

minimize is the Blood Glucose Index which is a well known tool to measure the risk

for a patient to enter either hyperglycemia or hypoglycemia. To design the optimal

control problem, we use the balance control technique of ref. [138], which introduces a

trade-off between the error allowed with respect to a state based cost (Blood Glucose

Index) and the control effort. Our goal is to evaluate the performance limits of a

control algorithm in the blood glucose problem, and to discuss the advantages of

the dual therapy compared to the single therapy. Note that even though we do not

attempt to design a closed-loop control strategy that works without the patient’s

intervention, the solution we propose can be adapted for that purpose.

From solving the optimal control problem for a family of objective functions

derived from the balance control paradigm, we observe the emergence of a pattern,

from which we propose a simple rule for the delivery of insulin and glucagon similar
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to the standard therapy, but for the case that both insulin and glucagon are used.

While this therapy is suboptimal, we see that it still performs better than the optimal

solution with insulin alone.

Finally, we test the robustness of the optimal solution. While optimal control does

not guarantee robustness of the optimal solution with respect to model uncertainty

or parameter mismatches, we see that our proposed solution still performs well in

the presence of model parameter perturbations and variations affecting the time and

glucose intake of the meal.

5.2 Model and Parameters

We consider the model in [58, 59] which is a system of nonlinear ordinary differential

equations (ODEs). The equations are given in Eqs. (C.1)-(C.9) in the section C.1 in

Appendix C. We write the ODEs in Eqs. (C.1)-(C.9) in the form

ẋ(t) = f(x(t),u(t), D(t),Θ)

G(t) = x1/VG
(5.1)

where the state vector is x = [x1(t), x2(t), ..., x17(t)]
T and t is the physical time

(in min). In Table 5.1 we tabulate all of the variables xi and their names. The

control input vector is u(t) = [uI(t), uG(t)]T , where uI(t) ≥ 0 is the exogenous

insulin infusion rate (in insulin Unit/min) and uG(t) ≥ 0 is the exogenous glucagon

infusion rate (mg/min). Both uI(t) and uG(t) are the external inputs to the system

in Eq. (5.1). The scalar quantity D(t) represents the exogenous glucose input, that

is, the glucose intake with a meal. The output of the system is the quantity G(t),

which measures the density of glucose in the blood, obtained as the ratio between

the plasma glucose and the distribution volume of glucose VG.

When uI(t) = 0, uG(t) = 0 and D(t) = 0, the model reaches (for physically
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meaningful parameters) a steady state, also known as the basal condition of a patient.

The basal condition depends upon the parameters of the models Θ. We denote by

ΘGb a set of parameters for which the basal glucose level G is equal to Gb. The basal

levels for the other states are found according to Eqs. (C.11).

Table 5.1: Variables and their physical meaning

Variables Names Representing Units

x1 Gp Mass of glucose in plasma mg/kg
x2 Gt Mass of glucose in tissue mg/kg
x3 Il Mass of insulin in liver pmol/kg
x4 Ip Mass of insulin in plasma pmol/kg
x5 I ′ Mass of delayed in compartment 1 pmol/L
x6 XL Amount of delayed insulin action on EGP (Endogenous glucose production) pmol/L
x7 Qsto1 Amount of solid glucose in stomach mg
x8 Qsto2 Amount of liquid glucose in stomach mg
x9 Qgut Amount of glucose in intestine mg
x10 X Amount of interstitial fluid pmol/L
x11 SRs

H Amount of static glucagon ng/L/min
x12 H Amount plasma glucagon ng/L
x13 XH Amount of delayed glucagon action on EGP ng/L
x14 Isc1 Amount of nonmonomeric insulin in the subcutaneous space pmol/kg
x15 Isc2 Amount of monomeric insulin pmol/kg
x16 Hsc1 Amount of glucagon in the subcutaneous space 1 ng/L
x17 Hsc2 Amount of glucagon in the subcutaneous space 2 ng/L

5.3 Problem Formulation

We formulate a nonlinear optimal control problem with two control goals. The first

goal is to regulate the glucose at levels corresponding to low clinical risk of either

hyperglycemia or hypoglycemia during a time period over which a meal is consumed.

We assume that a meal is ingested at time t = τD, which we assume to be modeled as

a Dirac delta function D(t) = Dδ(t−τD). To evaluate the clinical risk of a particular
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glycemic value, Kovatchev et al. [139, 140] proposed the Blood Glucose Index (BGI),

defined as

BGI (G(t)) = 10
(
1.509

(
(lnG(t))1.084 − 5.3811

))2
,

where a small BGI value corresponds to low risk of either hyperglycemia or hypogly-

cemia. This metric also takes into account the fact that (i) the target blood glucose

range as defined by the Diabetes Control and Complications Trial [141] (between 70

and 180 mg/dL) is not symmetric about the center of the range and (ii) hypoglycemia

occurs at glucose levels closer to the basal level than hyperglycemia. The second goal

is to limit the overall usage of insulin and/or glucagon over the period [t0, tf ].

We formulate the optimization problem according to these two goals,

min
u(t)

J =

∫ tf

t0

[αpBGI (G(t)) + αIu
p
I(t) + αGu

p
G(t)] dt, (5.2)

subject to the following constraints,

ẋ(t) = f(x(t),u(t), Dδ(t− τD),ΘGb), u(t) = [uI(t) uG(t)]T (5.3a)

GL < G(t) < GU (5.3b)

uLI ≤ uI(t) ≤ uUI (5.3c)

0 ≤ uG(t) ≤ uUG (5.3d)

0 ≤
∫ tf
t0
uI(t)dt ≤ φUI (5.3e)

0 ≤
∫ tf
t0
uG(t)dt ≤ φUG (5.3f)

x(t0) = x̄ (5.3g)

In Eqs. (5.2) and (5.3), the insulin infusion rate uI(t) and the glucagon infusion rate

uG(t) are the two control inputs. The three coefficients αp, αI and αG in Eq. (5.2)

are tunable factors through which we may vary the weight associated with each of
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the three terms in the cost function J . The first coefficient, αp is dimensionless while

the units of αI and αG are (U/min)−p and (mg/min)−p, respectively. Note that by

setting uG = 0 in Eq. (5.3d), we have an optimal control problem in terms of insulin

only.

The first term in the objective function (5.2) defines a regulation problem, i.e.,

we try to maintain the glucose at low risk levels. The second and third terms in the

cost function are chosen to avoid using excess insulin or glucagon. For p = 1 in Eq.

(5.2), the second and third terms define a ‘minimum fuel’ problem, thus we call the

optimization problem ReMF (Regulation and Minimum Fuel). In this case, we expect

the optimal solution to consist of pulsatile inputs u∗I(t) and u∗G(t) [110, 142]. For

p = 2, the second and third term inside the cost function define a ‘minimum energy’

problem, thus we call the optimization problem ReME (Regulation and Minimum

Energy). In this case, we expect the optimal control inputs u∗I(t) and u∗G(t) to be

continuous. The set of equations in (5.3a) coincide with the ODEs in Eqs. (C.1)-

(C.9)of the supplemental information. In Eq. (5.3b) GL and GU are the lower and

upper bounds for G(t), they can be set in order to avoid undesired hypoglycemic

or hyperglycemic states. In Eqs. (5.3c) and (5.3d) uUI and uUG are upper bounds for

the insulin and glucagon delivery rates, respectively. These constraints are set by

the maximum infusion rates allowed by the insulin pump. In Eq. (5.3c) uLI ≥ 0 is

the lower bound for uI(t), i.e., a minimum insulin delivery rate that can be used to

set a basal insulin infusion rate to counteract endogenous glucose production [143].

Finally, in Eqs. ((5.3e), (5.3f)), φUI and φUG set limits to the total limits of insulin and

glucagon that can be delivered over the time period [t0, tf ]. The initial condition x̄

in Eq. (5.3g) defines the patient’s condition before administration of the therapy. In

the Results section, we discuss how we choose the bounds on G(t), uI(t), uG(t), φI ,

φG, the control time period [t0, tf ] and the initial condition x̄.

Our goal is to find an optimal solution which satisfies the constraints in Eq. (5.3)
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and minimizes the objective function (5.2). Note that the BGI only depends upon

G(t): we are making no attempt to control the states of the system, only its output.

In the literature, such an approach is often referred to as target control [95, 110].

5.4 Method

The equations (5.2) and (5.3) together form a constrained optimal control problem,

which can generally be written as Eq. (4.1). We have used PSOPT [112], an open-

source PSOC library, to perform the above PSOC discretization procedure. The

NLP in (4.8) can be solved with a number of different techniques, but here we use

an interior point algorithm [56] as implemented in the open-source software Ipopt

[113].

5.5 Results

We now describe in more detail the optimal control problem in Eqs. (5.2) and (5.3)

by setting the constraint and parameter values. In Fig. 5.1(A) we plot the function

BGI(G) versus the glucose G. The minimum BGI (G) occurs at G = Gd = 112.51

mg/dL, which corresponds to a clinical target set for the glucose level [141]. Based

on the data in [144], the average fasting plasma glucose level of patients with type

I diabetes is Gb = 130 (mg/dL). Thus, we set the the basal glucose level Gb = 130

(mg/dL). The parameters ΘGb are set so that the steady state glucose is 130 (mg/dL)

in the absence of a meal and of exogenously supplied insulin, i.e., we compute Θ130.

We set the upper and lower bounds for the glucose level, GL and GU in Eq.

(5.3b), to satisfy the target blood glucose range, 90 ≤ G(t) ≤ 180 [141]. The control

time period is [t0, tf ] = [0, 300] minutes, and we assume that a meal with 70 grams
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Figure 5.1: (A) The Blood Glucose Index (BGI(G(t))) as a function of the blood
glucose G(t). The function is minimized at G(t) = Gd = 112.51 (mg/dL). (B) The
response of glucose (G(t)) to different time-constant basal insulin infusion rates in
the absence of a meal. We see that as ub increases, the glucose is further down
regulated.

of glucose is consumed at time t = 60 min (i.e. D(t) = 70δ(t− 60)).

We consider a situation in which the patient’s glucose level is partially controlled

by providing a constant but low insulin infusion rate ub > 0 (which is common for

patients who use an insulin pump) [143] and serves to compensate for the endogenous

glucose production. In figure 5.1B we show glucose response G(t) for different values

of constant ub in the absence of a meal. We observe that for ub = 0.0024 (U/min),

G(t) converges to the desired glucose level Gd. We thus set the lower bound of

uI(t) in Eq. (5.3c), uLI = ub, while its upper bound is set to uUI = 15 (in U/min),

the maximum insulin flow allowed in commercial pumps [145]. In the absence of

commercially available glucagon pumps, we will assume that a pump mechanically

similar to an insulin pump is used to deliver glucagon. Since the maximum flow

rate for an insulin pump is 0.15 mL/min (1 mL of insulin solution contains 100 U of

insulin), and normally 1 mg of glucagon is diluted in 1 mL of solution, the maximum

glucagon flow rate in Eq. (5.3d) is set to uUG = 0.15 mg/min.

The amount of insulin administered in a bolus to a patient with a basal glucose

level lower than 150 mg/dL normally ranges between 0.12 and 0.2 U/kg [146]. As
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the body mass of the in-silico patient we consider is 78 kg, we set φUI = 16 U in

Eq. (5.3e). The maximum total amount of glucagon administered in one shot to

a patient who is in a hypoglycemic state is 1 mg, and a second identical shot can

be administered after thirty minutes. We thus choose the maximum total amount

of glucagon used (as defined in Eq. (5.3f)) throughout the five hour therapy to be

φUG = 1mg.

The choice of the initial condition x̄ in Eq. (5.3g) is critical. We select the

initial condition so that the solution of our optimal control problem only attempts

to regulate glucose in response to a meal. In the results presented we have set the

initial condition equal to the values of the states when uI(t) = ub after a period

of fasting (the final point of the blue curve in Fig. 5.1(B). If we were to select any

alternative initial condition then the solution to the optimal control problem would

try to ‘correct’ the initial condition as well, making comparisons between solutions

difficult.

Once the parameters, bounds, the control time period and the initial condition

are set, we solve the nonlinear optimal control problem using PSOPT . We first

solve the optimal control problem without glucagon (i.e. uUG = 0), and then we solve

the optimal control problem using both insulin and glucagon.

To evaluate the effectiveness of the obtained results, we introduce the following

measures.

• The cumulative insulin rI(t) and cumulative glucagon rG(t) used up to time t,

rI(t) =

∫ t

t0

uI(τ)dτ, rG(t) =

∫ t

t0

uG(τ)dτ.

• The total amount of insulin φI = rI(tf ) and the total amount of glucagon

φG = rG(tf ) used up to final time tf .
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• The integral of BGI over the entire time period [t0, tf ],

∆ =

∫ tf

t0

BGI(G(t))dt.

where a large ∆ indicates that the patient is at higher risk of either hypergly-

cemia or hypoglycemia for a prolonged period of time.

• The maximum and minimum values attained by the blood glucose level over

the entire time period [t0, tf ],

Gmax = max
t∈[t0,tf ]

G(t), Gmin = min
t∈[t0,tf ]

G(t),

which measure the risk for either hyperglicemia or an hypoglicemia [140, 147],

respectively.

5.5.1 Insulin as Control Input

In this section we use only insulin as control input, i.e., we set uG = 0 in Eq. (5.3a).

As the orders of magnitude of the terms BGI and upI in the objective function are

different, it is important to find the appropriate values of the scaling factors αp and

αI . In what follows, we use a Pareto-front analysis to determine these values. We

first rewrite the objective function as

J =

∫ tf

t0

[εBGI(G(t)) + upI ] dt (5.4)

where ε = αp/αI . In Figs. 5.2(A–D) we plot ∆, Gmin, Gmax and φI as functions

of the coefficient ε. By looking at these plots, we see that the four measures can

be divided into two groups. On the one hand, ∆ and Gmax (panels (A) and (C )),

improve (decrease) as ε increases, with a sharp transition around ε = 10 for the

ReMF problem and around ε = 103 for the ReME problem. On the other hand,

Gmin and φI (panels (B) and (D), behave in the opposite way, i.e., they improve

70



Chapter 5. Optimal Regulation of Blood Glucose Level

10−2 100 102 104

102

103

A)

ε

∆

10−2 100 102 104
90

95

100

105

110

B)

ε

G
m
in

10−2 100 102 104
120

140

160

180

C )

ε

G
m
a
x

10−2 100 102 104

6

8

10

D)

ε

φ
I

6 8 10
101

102

103

E )

φI

∆

ReMF (P = 1)
ReME (P = 2)

Figure 5.2: Performance of the optimal control solution as a function of ε. Large
(small) values of ε correspond to a large (small) weight associated with the BGI
index in the objective function, compared to the weight for insulin expenditure. The
first four plots show our metrics as functions of the objective function coefficients:
(A) ∆ vs. ε, (B) Gmin vs. ε, (C ) Gmax vs. ε, and (D) φI vs. ε. (E ) We also project
the Pareto front into the ∆ - φI plane. We see a clear trade-off between ∆ and φI
as we vary ε. By increasing ε we can decrease the values of ∆ and Gmax. However,
the values of ∆ and Gmax do not further decrease for ε larger than 10 for the ReMF
problem (p = 1) and the value of ∆ does not further decrease for ε larger than 103

for the ReME problem (p = 2). We choose ε = 10 for p = 1 and ε = 103 for p = 2,
which are indicated by dashed circles in the figure, for the remaining simulations.

(insulin decreases and the minimum glucose level increases) as ε decreases, again

with a sharp transition around ε = 10 for the ReMF problem and around ε = 103

for the ReME problem. Because the four curves in Figs. 5.2(A–D) are monotone, all

the points are Pareto-efficient, i.e., it is not possible to improve one objective (e.g.

∆) without worsening the other one (e.g. φI). We notice that past a certain value of

ε (10 in the ReMF case, 103 in the ReME case) ∆ and Gmax do not further decrease

and Gmin and φI remain unchanged. We choose as weights αp = 10 and αI = 1

for p = 1, while we choose αp = 103 and αI = 1 for p = 2 (these are highlighted
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by dashed circles in Fig. 5.2). The reason for these choices (for both values of p) is

that these values yield φI ∼ 10 units, which is equal to two thirds of the maximum

amount of insulin that can be supplied (φUI ), and Gmin ∼ 93mg/dL, which is far from

the hypoglycemic risk region.

In Fig. 5.2(E ), we plot a projection of the Pareto front in the ∆ and φI plane.

Looking at this plot, the trade-off between ∆ and φI is evident; if the total amount of

insulin expenditure increases, ∆ decreases and vice-versa. The ReMF and the ReME

therapies can also be compared in Fig. 5.2(E ). The ReMF Pareto front dominates

the ReME one (both ∆ and φI are lower on the blue curve (p = 1) compared to the

magenta curve (p = 2)). This indicates that a shot of insulin (the optimal solution of

a ReMF problem is typically a pulsatile function) performs slightly better in terms

of ∆ than a therapy in which the insulin is delivered over a longer period of time

while using less insulin.

Figure 5.3 shows the results of the optimal control problem for the selected values

of αp and αI . The blue and magenta curves are the optimal solutions of the ReMF and

of the ReME problem, respectively. The orange curve corresponds to the case that

10 U of insulin are injected 30 minutes before the time of the meal, i.e., the standard

therapy. We observe that for P = 1 the optimal insulin infusion rate is pulsatile

with a pulse appearing at t ∼ 20 minutes, which is 40 minutes before the time of

the meal. We obtained qualitatively similar results for different choices of the model

parameters, with the pulse typically appearing at a time in the interval t ∈ [20, 30]

minutes. It is noteworthy that the optimal solution is close to the standard insulin

based therapy for glucose regulation in diabetics. The optimal insulin infusion rate is

continuous when we solve the ReME problem, also shown in the inset of Fig. 5.3(B).

Note that the ReMF and ReME therapies perform very similarly with respect to

glucose as the peak insulin infusion rate occurs at approximately the same time and

the total amount of insulin administered is nearly equal.
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5.5.2 Insulin and Glucagon as Control Inputs

In the previous section we tuned the weights αp and αI inside the objective function

(5.2). We now consider the case that uG > 0 and we tune αG, the weight associated

with the glucagon expenditure in the objective function (5.2), by keeping αp = 10,

αI = 1 for P = 1 and αp = 103, αI = 1 for p = 2 , as previously determined.
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Figure 5.3: (A) The time evolution of glucose G(t) (in mg/dL). The blue curve cor-
responds to the pulsatile optimal insulin supply rate uI(t) (shown in (B) obtained by
solving the ReMF problem. The magenta curve corresponds to the continuous op-
timal insulin supply rate uI(t) (shown in (B) obtained by solving the ReME problem.
The orange curve is the time evolution of G(t) corresponding to the standard therapy
(10 U of insulin injected 30 minutes before the time of the meal). (B) Time evolution
of the optimal insulin infusion rates uI(t) (in U/min). Color code is consistent with
(A). (C ) Cumulative insulin supply rI(t) (in U) as a function of t.
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Figure 5.4: Performance of the optimal control solution as a function of αG. (emphA)
∆ vs. αG. (B) Gmin vs. αG. (C ) Gmax vs. αG. (D) φI vs. φG. (E ) ∆ vs. φG. We
select αG = 10−2 for both of the REMF and REME problems, which are indicated
by dashed circles in the figure.

In Fig. 5.4(A), 5.4(B) and 5.4(C ), we plot the optimal ∆, Gmin and Gmax as

functions of the parameter αG, respectively. A large value of αG indicates that we are

placing a large weight on the expenditure of glucagon within the objective function

(5.2), i.e., the larger the value of αG, the less glucagon we use. By looking at Fig.

5.4(A), we observe that the values of ∆ decrease as αG decreases, i.e. we can obtain

lower (improved) values of ∆ if we allow for a larger expenditure of glucagon. We

note that past a certain value of αG (10−2 in the both the ReMF and ReME problems)

no further reduction in ∆ is observed. As in the previous case, the maximum glucose

level Gmax, shown in Fig. 5.4(C ), improves (decreases) when ∆ improves (decreases).

Interestingly, different from the previous case, also the minimum glucose level Gmin

(Fig. 5.4(C ) improves (increases) with ∆ and Gmax: this is a consequence of the fact

that we are using both insulin and glucagon as control inputs, which enables us to

avoid both hypoglycemia and hyperglycemia.
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In Fig. 5.4(D) we plot the projection of the Pareto front in the (φI , φG) plane.

By looking at the figure, φI and φG appear to be positively correlated and related

by an approximately linear relation. While the timing of administration of insulin

and glucagon is different, we see that overall the more insulin is used in the optimal

solution, the more glucagon is used as well. This is because the two hormones have

opposite effects in the regulation problem and thus they work so as to balance each

other. This is also consistent with the observation that with the dual therapy (insulin

and glucagon) it becomes possible to simultaneously improve ∆, Gmin, and Gmax.

From the data in Fig. 5.4(D) we derive the following approximate linear relationship

between φG and φI ,

φG(φI) = 0.1596φI − 1.5796 (5.5)

Obviously, glucagon should be used only when φG(φI) > 0.

Panel 5.4(E ) shows a projection of the Pareto front on the (φG,∆) plane. We see

again that the ReMF front dominates the ReME one, i.e., a pulsatile therapy gives

better results than a continuous therapy in terms of ∆ and also uses lower amounts

of the two hormones (smaller φG, and thus smaller φI due to the positive correlation

found in Fig. 5.4(D).

The Pareto front is monotonically decreasing in Fig. 5.4(E ) which indicates a

trade-off between the total amount of hormones used and the achievable glucose

control performance. We choose the value of αG for which the ratio between the

increase in ∆ and the decrease in φG is minimized, i.e. αG = 10−2 for both ReMF

and ReME problems, which are indicated by dashed circles in the figure.

Figures 5.5(A) and 5.5(B) show the results of the optimal control problem for

αp = 10, αI = 1 and αG = 10−2 when P = 1; and αp = 103, αI = 1 and αG = 10−2

when p = 2. In Fig. 5.5(A) we plot the time evolution of glucose G(t) for the different

optimal solutions. The blue curve corresponds to the solution of the ReMF problem
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when only insulin is used (the blue curve in Fig. 5.3(A). The red and green curves

correspond to the solution of the ReMF and the ReME problems for the dual therapy.

We observe that G(t) reaches the desired level Gd faster if we use both insulin and

glucagon as control inputs, compared to the case that only insulin is used. We also

see that in this case both Gmax decreases and Gmin increases. We therefore conclude

that the therapy with both insulin and glucagon performs better than the therapy

with only insulin, as the risks for both hypoglycemia and hyperglycemia are reduced

and glucose fluctuations are suppressed.

In Fig. 5.5(B) we plot the optimal insulin infusion rates and in Fig. 5.5(C ) we

plot the cumulative insulin supply rI(t) as a function of time t. We observe that for

the ReMF problem, the pulse in insulin appears at t = 32 minutes in the case that

both insulin and glucagon are used (28 minutes before the meal), whereas the pulse

appears at t = 20 minutes when only insulin is used. From Fig. 5.5(D), we see that,

for the ReMF problem, the glucagon delivery function is pulsatile with a main pulse

appearing at t = 145 min (one hour and 25 minutes after the meal) and a secondary

pulse appearing at t = 203. The dual therapy shows a noticeable difference between

the ReMF solution and the ReME solution. As expected, the solutions of the ReME

problem are continuous. The glucose response to the ReME therapy is better than

the glucose response to the ReMF solution. Specifically, the green curve has smaller

oscillations (in panel (A) at the cost of small increases in the total amounts of used

insulin and glucagon (compare panels (C ) and (E )).

Based on the results in Fig. 5.5, we propose a possible ad-hoc dual therapy to be

used as an alternative to the standard therapy. Rather than administering insulin

half an hour before the meal (standard therapy), better glucose regulation can be

achieved with a slightly larger insulin injection half an hour before a meal followed by

a glucagon injection one hour and thirty minutes after a meal. The insulin injection

of the ad-hoc dual therapy is 25% larger than the one used in the standard therapy,
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which is consistent with the relation between φI for the monotherapy ReMF optimal

solution and the one used in the dual therapy.

In Fig. 5.6 we present a comparison between the glucose response to the standard

insulin base therapy (orange curve) and the proposed ad-hoc dual therapy (cyan

curve) for the case of a meal with 70 grams of glucose (for the particular patient

considered this corresponds to 10 units of insulin half an hour before the meal) and

the proposed ad-hoc dual therapy (which consists of 12.43 units of insulin thirty

minutes before the meal and 0.40 mg of glucagon one hour and thirty minutes after

the meal). We observe that the ad-hoc dual therapy performs better in terms of all

of the proposed measures (∆, Gmin, Gmax, φI and φG) as opposed to the standard

insulin based therapy.

5.6 Robustness Analysis

We now analyze the robustness of the optimal control therapies we have proposed

with respect to model parameter mismatches, which is a fundamental step for imple-

mentation of model based control. We consider two different types of mismatches.

The first type accounts for variability in the patient’s behavior, in terms of both the

time of the meal τD and the amount of glucose intake D. The second type accounts

for deviations in the parameter estimation, as well as the temporal variability of the

parameters that a patient may experience during the day [59].

5.6.1 Robustness Against Variability of the Meal Time and

Glucose Intake

In this section we analyze the robustness of the optimal ReMF therapies (both mono-

therapy and dual therapy) with respect to the two “control" parameters the patient
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has. The first one is the variation in the meal time, (τ̄D − τD) (min), where τ̄D is

the time of a meal and τD is the time of a meal we assumed in order to compute the

optimal therapies. The second one is the variation of glucose in the meal, (D̄ −D),

where D̄ is the glucose intake in a meal and D is the glucose intake we assumed to

compute the optimal therapies. We consider variations in the meal time τ̄D in the

interval [30, 90] min and variations of the glucose intake D̄ in the interval [40, 100] g.

The results of this study are illustrated in Fig. 5.7. Figure 5.7 provides a visual

assessment of the quality of the optimal therapies in terms of the three proposed

measures ∆, Gmax and Gmin (the over-bar stands for evaluation at the perturbed

parameter values (τ̄D, D̄)). The color in Fig. 5.7 varies according to the control

performance from green (good) to red (dangerous). In the upper panels (A–C )

we consider the optimal ReMF monotherapy, while in the lower panels (D-F ) we

consider the optimal ReMF dual thearpy. Cross symbols indicate the application of

the optimal control therapies under ideal condition, i.e., when τ̄D = τD and D̄ = D.

The black curves labeled by 180, 90 and 70 in Figs. 5.7(B), 5.7(C ), 5.7(D), 5.7(E )

are the curve level plots for Ḡmax = GU , Ḡmin = GL and Ḡmin = 70, respectively.

The black curves labeled by 180 in Figs. 5.7(B), and 5.7(E ), are the curve level plots

for Ḡmax = GU .

We see from Figs. 5.7(A) and 5.7(D) that the optimal therapies for the ReMF

problem (using only insulin or both insulin and glucagon) are robust with respect

to variations in the control parameters: ∆̄ remains well bounded in most of the

considered parameter space. In particular we see from Figs. 5.7(B) and 5.7(E ) that

the proposed optimal therapies are robust against hyperglicemic events: for example,

even if D̄ exceeds D by 50% and τ̄D exceeds τD by 30 minutes, the patient will not

enter the hyperglycemic regime (Gmax > 300). Figures 5.7(C ) and 5.7(F ) reveal

that the proposed therapies suffer from a certain lack of robustness with respect to

hypoglycemic events (Gmin < 70), the most dangerous ones. The dangerous cases
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are, however, confined to extreme situations in which D̄ < 0.5D and τ̄D = τD + 30

minutes. Figures 5.7(C ) and 5.7(F ) show also that the optimal therapy for the

ReMF problem with both insulin and glucagon is more robust (larger green region

and smaller yellow region) than the optimal therapy for ReMF problem with only

insulin (smaller green region and larger yellow region): thus the use of glucagon

alleviates the risk of severe, life-threatening hypoglycemia.

We obtain qualitatively similar results when performing the same analysis for the

other therapies we proposed (the ReME therapies and the ad-hoc dual therapy).

5.6.2 Robustness to Parameter Mismatches

We consider perturbation of the model parameters up to 20% of their nominal values,

Θ̄i = Θi(1 + ϕ), (5.6)

where ϕ is a random number from a normal distribution N (0, 0.0672), Θi is a nom-

inal parameter for a given patient with basal glucose level Gb and Θ̄i represents the

associated perturbed parameter. We then apply the optimal insulin and glucagon

dosing, calculated for the unperturbed system, to 100 perturbed systems. This is

analogous to testing the computed optimal control therapy on a specific patient, but

the patient’s parameters may vary due to imperfect knowledge or due to the para-

meter variability throughout the day. The results of this study are illustrated with a

Control Variability Grid Analysis (CVGA), see Fig. 5.8. The CVGA provides a sim-

ultaneous visual and numerical assessment of the overall performance of the glycemic

control strategies in terms of the achieved minimum/maximum glucose values in the

space of parameters mismatches. In Fig. 5.8, points in the light green region indicate

accurate blood glucose control while points in the dark green regions indicate the

patient is not immediately at risk of either hypoglycemia or hyperglycemia. Points
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in the top two yellow/orange regions indicate an elevated risk of hyperglycemia and

points in the the right two yellow/orange regions indicate an elevated risk of hy-

poglycemia. Finally, points in the red corner region indicate an elevated risk of both

hyperglycemia and hypoglycemia. Each point reported in the figure is a plot of Gmax

vs. Gmin. Here, the black dots correspond to the glucose response when a certain

therapy is applied to a system with perturbed parameters. Cross symbols indicate

application of the optimal control therapies to the unperturbed systems.

For the of monotherapy (ReMF in Fig. 5.8A and ReME in Fig. 5.8B) we find

that the control is 67% and 61% accurate, respectively. For the dual therapy case

(ReMF in Fig. 5.8(C ) and ReME in Fig. 5.8(D) we find the control is more ac-

curate than for the case of monotherapy, 92% and 94% accurate, respectively. The

least robust control is obtained with the standard therapy (shown in Fig. 5.8(E ),

attaining only 37% accuracy. Note that the optimal dual therapies (Figs. 5.8(C ) and

5.8(D)) are not only more robust than the optimal insulin therapies (Figs. 5.8(A)

and 5.8(B)), but also than the standard therapy (Fig. 5.8(E )). We also see that the

ad hoc therapy (Fig. 5.8(E )) is more robust than the standard therapy (Fig. 5.8(E )).

5.7 Discussion

In this paper we have used the Glucose-Insulin-Glucagon mathematical model pro-

posed in [58, 59, 115], which describes how the body responds to exogenously supplied

insulin and glucagon in patients affected by Type I diabetes and designed an optimal

dosing schedule of either insulin or insulin and glucagon together to regulate the

blood glucose index (BGI), while limiting the total amount of insulin and glucagon

administered. The numerical optimal control software PSOPT has been used to

solve this optimal control problem. While the numerical solution requires knowledge

of the set of model parameters, which are patient specific, the solutions we obtain
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provide insight into the best possible glucose regulation with insulin or with insulin

and glucagon together. Our approach is in agreement with the results of references

[148–150], in which simplified models are used to analytically establish general the-

oretical properties and control limitations for the glucose regulation problem.

Two distinct regulation problems have been considered: the minimum fuel prob-

lem (ReMF) which yields pulsatile (shot-like) type solutions and the minimum energy

problem (ReME) which yields longer periods of time over which insulin is admin-

istered but with smaller delivery rates. This has allowed us to compare standard

therapies which typically consist in shots of insulin with therapies in which insulin

is delivered continuously. In [151, 152] it has been proven that the optimal control is

pulsatile when the aim of the control is to minimize the variation in the maximum

and minimum output response, the system is positive (like the one we are consid-

ering) and the disturbance (the meal, in our case) is pulsatile. Our work indicates

that pulsatile control is still a good choice when more complex objective functions

are chosen. Moreover, a pulsatile control appears to be optimal for alternative more

realistic models of the meal (for example, a meal that is consumed over a window

of 15 minutes). We also see that a continuous hormones delivery can achieve better

results in the case of the dual therapy, thus pointing out the importance of developing

a commercial pump able to deliver both insulin and glucagon.

For both the ReMF and ReME problems, we compute the optimal hormone

dosing schedules when only insulin is available and when both insulin and glucagon

are available. The solution of the insulin only ReMF problem, astoundingly, is nearly

equal to the standard method of insulin based glucose regulation. Similarly, the

solution of the ReMF problem when insulin and glucagon are used is also pulsatile,

except that the amount of insulin administered is larger and the administration time

is closer to the time of the meal, while the glucagon is mostly delivered in a shot

about an hour and thirty minutes after the meal.
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The solution for the ReME problem when insulin only is available as well as

when both insulin and glucagon are available is different from the ReMF solution

in that, rather than being pulsatile, insulin and possibly glucagon are delivered at

a slower rate over longer periods of time. Nonetheless, the total amount of insulin

and possibly glucagon is about the same, and the peak of the longer delivery time

occurs approximately at the same time of the shot according to the solution of the

ReMF problem. The obtained glucose profiles for the optimal ReMF and ReME

problem solutions do not differ too much from each other: taken together, these

results indicate that the amounts of insulin and glucagon, and the peak times of

delivery, are the most important factors to determine when computing the optimal

solutions.

Based on the above results, we have proposed the following ad hoc therapy when

insulin and glucagon are used in combination: Administer a shot of insulin (with

25% more insulin than the amount required by the standard therapy based on the

planned meal) 30 minutes before eating. Administer a shot of glucagon of an amount

specified by Eq. (5.5) one hour and thirty minutes after completing the meal. This

therapy should be used with caution as the amount of insulin injected can lead to

hypoglycemia if the shot of glucagon is not administered as well.

All optimal dosing schedules we computed were tested for robustness with re-

spect to variations in the meal timing and size and with respect to variability of

the parameters. The therapies we proposed typically maintain the patient in the

healthy region even under variable conditions and patient behavior. Note, however,

that the proposed therapies are open-loop, thus cannot compensate for unexpected

behavior that can arise due to modeling simplifications (e.g. we do not consider

how physical activity influences the blood glucose levels [153, 154]), measurement

noise or bias. A step towards the real application of our methodology is a real-time

closed-loop strategy; this is possible, since the typical time needed to compute an
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optimal solution on a standard laptop (i7-8550U CPU with 16GB RAM) is around 2

minutes. Another main limitation of our study is that real life constraints and long

term physiological effects may make a therapy based on exogenous administration of

both insulin and glucagon impractical.

Our optimal control strategies require knowledge of the meal time and meal gluc-

ose amount. This is somewhat undesirable, as recent advances in diabetes therapy

have moved towards devices that do not require the user to provide information about

the meals. Our results emphasize the importance of incorporating information about

the meals in the dosing schedules and indicate a potential benefit of providing the

pump with the ability to interpret the patient’s behavior. The results from this

chapter have been published in [155].
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Figure 5.5: (A) Time evolution of glucose G(t) (in mg/dL). The blue curve corres-
ponds to uI(t) obtained by solving the ReMF problem . The red curve corresponds
to uI(t) and uG(t) obtained by solving the ReMF problem using the dual therapy.
The green curve corresponds to uI(t) and uG(t) obtained by solving the ReME prob-
lem using the dual therapy. (B) Time evolution of the insulin infusion rate uI(t) (in
mg/dL). Color code is consistent with (A). (C ) The cumulative insulin supply rI(t)
as a function of time t. (D) Time evolution of the glucagon infusion rate uG(t) (in
mg/dL). (E ) The cumulative glucose supply rG(t) as a function of time t.
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Figure 5.7: Robustness of the optimal control solution against variations in the
meal timing and the amount of glucose in the meal. (A)–(C ) show the results
obtained for the ReNF problem (P = 1) with only insulin provided, (D)-(F ) ReMF
(P = 1) problem with both insulin and glucagon provided. Cross symbols indicate
the application of the optimal control therapies for D̄ = D and τ̄D = τD. The
blue cross symbols correspond to the optimal therapies for the ReMF problem with
only insulin. The red cross symbols correspond to the optimal therapies for the
ReMF problem with both insulin and glucagon. (A) and (D) are plots of ∆̄/∆ in
the control parameters space (τ̄D, D̄). (B) and (E ) are the plots of Ḡmax in the
control parameters space (τ̄D, D̄). (C ) and (F ) are the plots of Ḡmin in the control
parameters space (τ̄D, D̄).
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Chapter 6

Prediction of Optimal Drug

Schedules for Controlling Autophagy

6.1 Introduction

For implementation of optimal control approaches in biological systems, our goal is

to design optimal drug dosing schedules that minimize the amount of drug needed to

achieve an important activity/process in a system. Our second aim is to design com-

binatorial drug therapies. Formal approaches to combinatorial drug therapy design

are potentially useful for at least three reasons. First, all possible combinations of

drugs may be difficult, if not impossible, to evaluate experimentally simply because

of the large number of possible combinations. Second, an ability to extrapolate ac-

curately beyond well-characterized scenarios with the aid of predictive models would

be valuable for individualized treatment, especially in cases where molecular causes

of disease are diverse and vary from patient to patient, as in many forms of cancer

[156]. Third, it is often non-obvious how the immediate effects of drug perturbations

propagate through a cellular regulatory network to affect cellular phenotypes and
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fates [157] or how combinations might be deployed to avoid or delay the emergence

of resistance, a common response of malignant cells to targeted therapies [158].

Although there is much current interest in using combinations of molecularly

targeted drugs to improve outcomes for cancer patients [75, 76], relatively little work

has been done in the area of formal therapy design, meaning therapy selection and/or

scheduling driven by insights from mathematical models [77, 78]. Formal approaches

to therapy design are potentially useful for at least three reasons. First, all possible

combinations of drugs may be difficult, if not impossible, to evaluate experimentally

simply because of the large number of possible combinations. Second, an ability to

extrapolate accurately beyond well-characterized scenarios with the aid of predictive

models would be valuable for individualized treatment, especially in cases where

molecular causes of disease are diverse and vary from patient to patient, as in many

forms of cancer [156]. Third, it is often non-obvious how the immediate effects of

drug perturbations propagate through a cellular regulatory network to affect cellular

phenotypes and fates [157] or how drug combinations might be deployed to avoid or

delay the emergence of resistance, a common response of malignant cells to targeted

therapies [158]. Predictive models promise to help identify new robust therapies.

Here, we apply mathematical modeling and optimal control methods to design

drug schedules for manipulating autophagy, a stress-relieving/homeostatic cellular re-

cycling process that, when nutrients are in limited supply, generates building blocks

for protein synthesis through degradation of cytoplasmic contents [68], such as cyto-

toxic protein aggregates that are too large for proteosomal degradation and damaged

organelles (e.g., depolarized mitochondria). Autophagy also plays an important role

in immunity [69, 70]; the autophagic degradative machinery can be directed to target

intracellular microbes, such as Mycobacterium tuberculosis, for destruction.

Cytoplasmic contents that are targeted for autophagic degradation are first trapped

in double-membrane vesicles, termed autophagosomes or autophagic vesicles (AVs),
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and then delivered to lysosomes for digestion [71, 72]. The production of AVs is con-

trolled by an intricate regulatory network, in which three protein kinase-containing

complexes are prominent: the heterotrimeric AMP-activated kinase (AMPK), which

senses energy (glucose) supply through interactions with adenosine derivatives (AMP

and ATP) [159, 160]; MTOR complex 1 (MTORC1), which senses amino acid sup-

ply and growth factor signaling through interactions with small GTPases localized

to lysosomal surfaces (Rag proteins and RHEB) [161, 162]; and the ULK1 complex,

which is activated by AMPK and repressed by MTORC1 [163–165]. A fourth com-

plex, which contains a lipid kinase, VPS34, also plays an important role [166, 167].

Interestingly, VPS34 and MTOR are phylogenetically related: they are both mem-

bers of the phosphoinositide 3-kinase (PI3K) family. Drugs with specificity for each

of these kinases are available, and because of the relationship between MTOR and

VPS34, drugs are also available with dual specifity for this pair of kinases [168–170].

In cancer, and other contexts, autophagy is a double-edged sword [73]. It can

protect cancer cells from stresses of the tumor environment (e.g., lack of nutrients

because of defective vasculature) or induce cell death if recycling is excessive. Thus,

there are potential benefits to be gained by using drugs to either upregulate auto-

phagy (to kill malignant cells through excessive recycling) or downregulate autophagy

(to kill cancer cells that rely on autophagy for survival) [74].

To investigate how single drugs and drug pairs might be best used for these pur-

poses, we constructed a system of nonlinear ordinary differential equations (ODE)

that captures regulatory interactions between MTORC1, ULK1, AMPK, and VPS34,

as well as the idealized pharmacokinetics of kinase inhibitors specific for MTORC1,

ULK1, AMPK, and VPS34, such as rapamycin [171], SBI-0206965 [172], dorso-

morphin [173], and SAR405 [174], respectively. We also considered an allosteric

activator of AMPK (e.g., PF-06409577[175]) and a kinase inhibitor with dual spe-

cificity for MTORC1 and VPS34 (e.g., buparlisib[176]). Although the model is min-
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imalist by design, it reproduces key behavioral features of earlier, more mechanistic-

ally detailed models [177, 178], such as oscillatory responses to intermediate levels of

nutrient or energy stress. We then applied optimization methods implemented in the

open-source PSOPT software package [112] to find locally optimal dosing schedules

that minimize the total amount of drug needed to drive the network to a desired,

non-attracting operating point (corresponding to low or high AV count/turnover)

and maintain it there. The dosing schedules are non-obvious, and synergistic drug

pairs were predicted (drug 6 plus drug 1, 2 or 3), such as the combination of a VPS34

inhibitor and a dual specificity PI3K inhibitor, which acts on both VPS34 and MT-

ORC1. This drug pair requires less total drug to achieve the same effect than either

of the individual drugs alone and is relatively fast acting, which may be important

for preventing or slowing the emergence of resistance.

The approach illustrated here differs from earlier applications of control theory

concepts in the area of formal therapy design [35–39] in that 1) the system being

controlled is a cellular regulatory network, 2) the control interventions are injections

(i.e., inputs) of (combinations of) molecularly targeted drugs, and 3) the control ob-

jective is manipulation of a cellular phenotype, namely the number of AVs per cell,

which is related to the rate of AV turnover, with minimization of total drug used

and a constraint on the maximum instantaneous drug concentration. The rationale

for minimizing drug use is to avoid offtarget effects and associated toxicities. Our

work is distinct from earlier studies of (non-biological) nonlinear network control [33,

179–181], in that our control goal is not to drive the system to an attractor (e.g.,

a stable steady state or limit cycle), but to an arbitrary point in phase space (i.e.,

the multidimensional space defined by the state variables of a system) and to then

maintain the system there indefinitely. The approach is both flexible and generaliz-

able and provides a means for computationally prioritizing drug dosing schedules for

experimental evaluation.
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6.2 Model: Model for cellular regulation of auto-

phagy and the effects of targeted drug interven-

tions

A prerequisite for formal therapy design is a mathematical model that captures the

relevant effects of drugs of interest. Given our interest in using drugs to modify

the process of (macro)autophagy, we constructed a model for regulation of the rate

of synthesis of autophagic vesicles (AVs) that accounts for the enzymatic activities

and interactions of four kinases that play critical roles in regulating autophagy, all of

which are potential drug targets. The model further considers the effects of achievable

drug interventions and idealized drug pharmacokinetics, meaning instantaneous drug

injection according to a time-dependent control function and first-order clearance.

The model is illustrated in Fig. 6.1.

The model was constructed in two steps. First, we constructed a minimalist model

for physiological regulation of autophagy consistent with key features of earlier, more

mechanistically detailed models [177, 178] (see D.1). These features include the time

scale of drug-stimulated autophagy induction and the dynamic range of regulation

characterized by Martin et al.[178] and the qualitative system behaviors characterized

by Szymańska et al.[177], including a steady, low level of autophagy at low stress

levels, oscillatory behavior at intermediate stress levels, and a steady, high level of

autophagy at high stress levels. Simulations based on the present model—generated

through numerical integration of the equations given below—and simulations based

on earlier, related models[177, 178] are compared in Fig. D.1. Simulations of AV

dynamics are compared to measured AV dynamics[177] in Fig. D.2.

The model of Fig. 6.1 is intended to provide an idealized representation of regu-

lation of AV synthesis in a single (average) cell in response to changes in the cellular
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supplies of energy and nutrients, which are treated in the model as external inputs

that modulate the serine/threonine-specific protein kinase activities of AMPK and

MTORC1, respectively. Thus, the model reflects regulation of AMPK activity by the

cellular AMP:ATP ratio, which is affected by glucose availability, for example, and

regulation of MTORC1 activity via, for example, the various amino acid-sensing reg-

ulators of Ragulator-associated heterodimeric Rag proteins, which recruit MTORC1

to lysosomes for activation in a manner that depends on their regulated guanine

nucleotide binding states. The model further accounts for regulatory interactions

among AMPK, MTORC1, a third serine/threonine-specific protein kinase ULK1,

and a class III phosphoinositide 3-kinase (PI3K) VPS34. As noted earlier, these

kinases are key regulators of autophagy, and each is a potential drug target.

In the second step of model construction, we added idealized consideration of

six distinct drug interventions, which correspond to interventions achievable through

use of available small-molecule compounds, such as rapamycin[171] (an inhibitor

of MTORC1 kinase activity), buparlisib[176] (an inhibitor of PI3K-family kinases

that has specificity for both MTORC1 and VPS34), SBI-206965[172] (an inhibitor of

ULK1 kinase activity), dorsomorphin[173] (an inhibitor of AMPK kinase activity),

PF-06409577[175] (a direct activator of AMPK kinase activity), and SAR405[174]

(an inhibitor of VPS34 kinase activity). Each drug i ∈ {1, . . . , 6} (Fig. 6.1) is taken
to be cleared via a pseudo first-order process and introduced in accordance with a

specified, time-dependent injection function ui.

The model was formulated as a coupled system of nonlinear ordinary differential
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equations (ODEs):

T ẋ1(t) = (1− x1)CNuH(w1)H(w2)− x1h12(x2)h13(x3), (6.1a)

T ẋ2(t) = (1− x2)h23(x3)H(w3)− x2h21(x1), (6.1b)

T ẋ3(t) = (1− x3)k1H(w4)− CEnx2x3H(w5), (6.1c)

T ẋ4(t) = (1− x4)h42(x2)H(w2)H(w6)− k2x4, (6.1d)

T ẋ5(t) = k3x4 − k4x5, (6.1e)

Tẇi(t) = biui(t)− δiwi(t), i = 1, . . . , 6. (6.1f)

In these equations, t is time (in min) and T is a timescale, which we specify as 1.0

min. The variable x1 represents the fraction of MTORC1 that is active, the variable

x2 represents the fraction of ULK1 that is active, the variable x3 represents the

fraction of AMPK that is active, the variable x4 represents the fraction of VPS34

that is active, and the variable x5 represents the AV count or number of AVs per

cell (on a continuum scale). Thus, xi always lies somewhere in the interval [0, 1] for

i = 1, . . . , 4. The AV count is bounded 0 ≤ x5 ≤ k3/k4 because x5(t) = 0 implies

ẋ5(t) ≥ 0 and x5(t) = k3/k4 implies ẋ5 ≤ 0 (by the previously stated bound on

x4(t)). The variables w1, . . . , w6 represent the dimensionless concentrations of drugs

1–6. Thus, wi ≥ 0 for each i. The non-dimensional parameters CEn and CNu are

condition-dependent constants that define the supplies of energy and nutrients. An

increase in energy supply is taken to positively influence the rate of deactivation of

AMPK, and an increase in nutrient supply is taken to positively influence the rate

of activation of MTORC1. The non-dimensional parameters k1 and k2 influence the

rate of activation of AMPK and the rate of deactivation of VPS34, respectively. The

non-dimensional parameter k3 is the maximal rate of VPS34-dependent synthesis of

AVs, and the non-dimensional parameter k4 is the rate constant for clearance of AVs.

Taking the rate of AV synthesis to be proportional to VPS34 activity is consistent

with the model of Martin et al.[178], as is (pseudo) first-order clearance of AVs. The

non-dimensional parameters δ1, . . . , δ6 are rate constants for clearance of drugs 1–6.
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Each hji(xi) is a non-dimensional Hill function that has the following form:

hji(xi) = rb,ji + (rm,ji − rb,ji)
x
nji
i

x
nji
i + θ

nji
ji

(6.2)

where nji (the Hill coefficient), rb,ji, rm,ji and θji are non-negative constants. The h

functions account for regulatory influences among the four kinases considered in the

model; the influences considered are the same as those considered in the model of

Szymańska et al.[177] (cf. Fig. 6.1 and Figs. 1 and 2 in Ref. 33). Each H(wi) is a

non-dimensional Hill function that has the following form:

H(wi) = rm − (rm − rb)
wni

wni + θn
(6.3)

where n (the Hill coefficient), rb, rm and θ are non-negative constants. The H func-

tions account for drug effects on kinase activities. The parameters bi (i = 1, . . . , 6)

in Eq. (6.1f) are Boolean variables introduced for convenience, for the purpose of

defining allowable drug combinations. Recall that the ui terms represent drug injec-

tion/input functions, which will be determined by solving an optimal control problem

(described in the following section).

Parameter settings are summarized in Tables D.1 and D.2. Each δ parameter

was assigned a value consistent with a known drug half-life[175, 182–186] (Table

D.2). Other parameters were assigned values that allow the model to reproduce the

qualitative signaling behaviors of the AMPK-MTORC1-ULK1 triad characterized

in the theoretical study of Szymańska et al.[177] and to reproduce the timescale of

autophagy induction and the range of regulation quantified experimentally in the

study of Martin et al.[178]. According to Szymańska et al.[177], at low levels of

energy/nutrient stress, ULK1 activity, which can be expected to correlate with auto-

phagic flux and AV count, is steady and low; at intermediate levels of stress, ULK1

activity is oscillatory; and at high levels of stress, ULK1 activity is steady and high.

As noted earlier, in Figure D.1, we compare simulations based on Eq. (6.1) with sim-

ulations based on models of Szymańska et al.[177] and Martin et al.[178], and in Fig.
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D.2, we compare simulations of AV dynamics based on Eq. (6.1) with experimental

measurements of AV dynamics reported by Martin et al.[178]. Parameter settings

are further explained in D.1. InD.1, we also elaborate on how earlier models[177,

178] guided our formulation of Eq. (6.1) and how these models differ from Eq. (6.1).

Model-predicted physiological regulation of autophagy, by energy and nutrients,

is summarized in Fig. 6.2. Figure 6.2A shows how qualitative long-time behavior

depends on the supplies of energy and nutrients, when these supplies are maintained

at constant levels and in the absence of external control inputs (ui = 0, i = 1, . . . , 6).

Figures 6.2B–E show time courses of autophagy induction or repression triggered by

different energy/nutrient changes. All together, these plots show that model predic-

tions of responses to physiological perturbations (i.e., changes in CEn and CNu) are

consistent with expectations based on the studies of Martin et al.[178] and Szymańska

et al.[177].

Dose-response curves predicted by the model for single-drug, constant-concentration

perturbations are shown in Fig. 6.3. As can be seen, with increasing dosage, drugs 1

and 5 tend to increase the number of AVs per cell, whereas the other drugs tend to

decrease the number of AVs per cell. These results are consistent with negative reg-

ulation of autophagy by MTORC1 and positive regulation of autophagy by ULK1,

AMPK, and VPS34. As is the case for some physiological conditions (Fig. 6.2), AV

count oscillates at some of the drug doses, depending on the supplies of energy and

nutrients. All together, the plots shown in Fig. 6.3 indicate that responses to single-

drug, constant-concentration perturbations are consistent with accepted regulatory

influences of MTORC1, ULK1, AMPK and VPS34 on autophagy.

As can be seen in Fig. 6.3, the ability of each drug i to influence x5 depends on

the supplies of energy and nutrients, meaning the values of CEn and CNu (cf. the

left and right panels in each row). In this figure, two energy/nutrient conditions are

considered (CEn = CNu = 0.1 and 0.6); additional conditions are considered in Figs.
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D.3 and D.4 . Taken together, these results define the condition-dependent ranges

over which x5 can be feasibly controlled by each drug i.

6.3 Problem Formulation: Therapy design as an op-

timal control problem

To design optimal therapies, we must first introduce design goals. Below, we intro-

duce a series of goals/constraints that we will require optimal therapies to satisfy.

However, let us first introduce notation useful for referring to therapies. We will refer

to the set of six available drugs, or more precisely, drug types, as D = {1, . . . , 6},
and we will refer to a therapy involving k drugs chosen from D as Tk, where

Tk ⊆ D s.t. |Tk| = k. (6.4)

Thus, for example, we will use T1 to refer to a monotherapy, and T2 to refer to a dual

therapy. There are six possible monotherapies and, in general, C6
k distinct therapies

that combine k of the six drugs. Here, we will focus on monotherapies and dual

therapies, leaving the evaluation of higher-order combination therapies for future

work. As a simplification, we will assume that drugs used together in a combination

do not interact. Thus, for example, for dual therapy with drugs 2 and 6 (Fig. 6.1), we

consider these drugs to bind/inhibit VPS34 independently (i.e., non-competitively).

Our first, and most important, therapy design goal can be described (somewhat

informally) as follows. Starting from a stationary (or recurrent) state at time t = 0,

we wish to use drug injections (i.e., drug inputs) according to a schedule defined by

u(t) = (u1(t), . . . , u6(t)) to eventually maintain, after a transient of duration t0, the

number of AVs in an average cell, x5, near (to within a tolerance ε) a specified target

level, xf5 , for a period of at least tf − t0 (tf > t0 > 0), thereby achieving sustained

control of the level of autophagic degradative flux in a cell, which is given by k4x5
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according to Eq. (6.1). In our analyses, we will consider t0 = 120 min and tf = 240

min because these times are longer than typical transients (Figs. 6.2B–E ).

A second therapy design goal of interest is minimization of the total amount of

drug used, which is motivated by a desire to avoid drug toxicity arising from dose-

dependent offtarget effects. In the optimal control literature, a problem entailing

this type of constraint is called a minimum fuel problem [110, 187]. The constraint

can be expressed mathematically as follows:

min
ui(t),
i∈Tk

J {ui} :=
∑

i∈Tk

∫ tf

0

ui(t) dt (6.5)

where ui(t) ≥ 0 for i = 1, . . . , 6. As a simplification, we are considering an objective

functional J {ui} that treats the different drugs equally, i.e., the sum in Eq. (6.5) is

unweighted. With this approach, we are assuming that the different drugs of interest

have equivalent toxicities. If drugs are known to have different toxicities, this assump-

tion can be lifted simply by introducing weights to capture the toxicity differences,

with greater weight assigned for greater toxicity. Indeed, arbitrary modifications of

the form of the objective functional J {ui} would be feasible if such modifications

are needed to capture problem-specific constraints on drug dosing.

A third design goal is to disallow the instantaneous concentration of any drug i,

wi(t), from ever rising above a threshold wmax
i . The rationale for this constraint is

again related to a desire to eliminate or minimize dose-dependent drug toxicity. In

other words, we are assuming that a drug i is tolerable so long as its concentration wi

is below a toxicity threshold wmax
i . In our analyses, we set the toxicity threshold of

a drug as a factor (> 1) times its EC50 dosage, which we define as the concentration

of the drug at which its effect on x5, negative or positive, is half maximal (see Eqs.

(6.2) and (6.3)).

We are now prepared to formulate the problem of (combination) therapy design

as a constrained, optimal control problem. The problem, for a given Tk (Eq. (6.4)),
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is to find a drug schedule u(t) that minimizes the objective functional defined in Eq.

(6.5) and that also satisfies the following constraints:

Ẋ(t) = f(X(t),u(t)), 0 ≤ t ≤ tf , (6.6a)

bi =





1, if i ∈ Tk,

0, otherwise,
(6.6b)

xf5 − ε ≤ x5(t) ≤ xf5 + ε, t0 ≤ t ≤ tf , (6.6c)

0 ≤ wi(t) ≤ wmax
i , i = 1, . . . , 6, (6.6d)

0 ≤ ui(t), i = 1, . . . , 6, (6.6e)

X(0) = [x(0),w(0)] ≡ [x0,0]. (6.6f)

Here, X(t) is defined as [x(t),w(t)], where x(t) = (x1(t), . . . , x5(t)) and w(t) =

(w1(t), . . . , w6(t)), and f(X(t),u(t)) is the vector field of Eq. (6.1). The initial con-

dition X0 = X(0) is taken to be a stationary (or recurrent) state of Eq. (6.1) where

supplies of energy and nutrients are constant (i.e., CEn and CNu are fixed) and drugs

are absent (i.e., u(t) = 0). With this formulation, it should be noted that we are

attempting to drive the system variable x5 to a specified final value xf5 (to within a

tolerance ε), but we are making no attempt to control the other system variables x1,

x2, x3, and x4. This approach is called target control [95, 138]. In all of our analyses,

we set ε = 1.

A useful measure of the amount of ‘fuel’ used to achieve drug control of autophagy

is the total dosage of drug i used up to time t during a therapy Tk, which we denote

as r∗i,k(t). This quantity is calculated using

r∗i,k (t) =

∫ t

0

u∗i (τ)dτ, (6.7)

where u∗i (t) for i ∈ Tk is the solution of the nonlinear optimal control problem defined

by Eqs. (6.5) and (6.6).
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6.4 Method

The equations (6.5) and (6.6) together form a constrained optimal control problem,

which can generally be written as Eq. (4.1). We have used PSOPT [112], an open-

source PSOC library, to perform the above PSOC discretization procedure. The

NLP in (4.8) can be solved with a number of different techniques, but here we use

an interior point algorithm [56] as implemented in the open-source software Ipopt

[113].

6.5 Result

6.5.1 Simulations

Simulations were performed by numerical integration of the model ODEs. The para-

meter settings used in calculations are provided in the Tables D.1 and D.2 in Ap-

pendix D

6.5.2 Optimal monotherapies

We will illustrate generic features of solutions to the nonlinear optimal control

problem defined by Eqs. (6.5) and (6.6) by focusing on a particular (severe) en-

ergy/nutrient stress condition (i.e., the condition where CNu = CEn = 0.1). For this

condition, the system represented by Eq. (6.1) has a near maximal, steady-state AV

count of approximately 37 per cell (i.e., x5 ≈ 37). Let us focus for the moment on

monotherapy with drug 4 (an AMPK inhibitor) to downregulate the number of AVs

to a target level of 10 per cell (i.e., xf5 = 10) over the time period between t0 = 120

min and tf = 240 min from an unperturbed steady state (i.e., dynamics with ui = 0)
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at t = 0.

We solved the optimal control problem using the approach outlined in the Meth-

ods section and described in more detail in “Pseudo-Spectral Optimal Control” in

D.2. The solution, represented by the optimal cumulative dosage of drug 4 (i.e.,

r∗4,1 (t)) (Eq. (6.7)), is presented in Fig. 6.4A. The optimal solution exhibits several

generic features of the system’s dynamics, regardless of its parameterization. First,

the computation suggests an optimal earliest time to apply the drug. In this par-

ticular example, this time is t . 60 min. The difference between the target time t0

and the earliest time to apply the drug quantitatively measures the speed of action

of the drug. Secondly, the function r∗4,1 (t) exhibits a staircase behavior, indicat-

ing that the optimal strategy of drug administration for this particular problem is

to intermittently inject a specific dosage of drug into the system at specific times.

Mathematically, this is due to the fact that the objective functional (Eq. (6.5)) is a

linear combination of the L1 norm of the injection/input rate ui’s—see Sections 5.5

and 5.6 in Kirk[110].

Figure 6.4B depicts how the drug concentration w4(t) evolves subject to the op-

timal protocol u∗4(t). We observe surges of w4(t) in response to the drug being applied

to the system in large quantities over small intervals, and slow decays in between

applications of the drug (caused by the natural decay of the drug concentration in

the absence of external drug inputs dictated by δi.) As a consequence, the optimal

solution is to inject a relatively large dose of a drug periodically, and to continuously

supply small amounts of that drug to replenish drug cleared from the system to

stably maintain autophagic flux (i.e., constant AV count and constant degradative

flux, which we take to be proportional to the AV count).

Figure 6.4C illustrates the time evolution of x5 (AV count) subject to the op-

timal drug administration protocol. As can be seen, for t ≥ 120 min, x5 is maintained

within the desired interval x5f ± ε = 10 ± 1. The time evolution of the non-target
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variables x1, x2, x3 and x4 (i.e., the activities of the regulatory kinases) are presen-

ted in Fig. 6.4D. Together, Figs. 4C and D provide a full representation of the time

evolution of the system represented by Eq. (6.1) (the target and non-target vari-

ables) under the influence of the optimal drug administration schedule. Because our

procedure to find the optimal solution to the nonlinear optimal control problem is

numerical, we have verified that the optimal control solution satisfies the necessary

conditions that it must satisfy for optimality. See “Pseudo-Spectral Optimal Control”

in D.1 for details.

Given that cancer cells may be killed by using drugs to either elevate or suppress

autophagy [74], we will now consider optimal control solutions that either upregulate

or downregulate autophagic flux by using a single drug. We will identify the drugs

which can perturb and maintain the system near the target AV count. Perhaps more

importantly, our analysis will deliver optimal protocols which include the precise

times to inject the drugs, whose dosages are also tightly controlled to minimize the

total quantities of drugs that are supplied.

Let us consider the case of intermediate energy/nutrient stress before treatment

(i.e., the condition corresponding to CNu = CEn = 0.6; see Fig. 6.2), for which

the system exhibits oscillations in the range [20, 27] without treatments. For this

scenario, our goal is to either downregulate the number of AVs to xf5 ≈ 9 (shown in

Figs. 6.4E–H ) or to upregulate the AVs to xf5 ≈ 37 (shown in Figs. 6.4I –L). We have

performed extensive numerical solutions of the monotherapy optimal control problem

with various settings of the parameters wmax
i , t0, tf and xf5 . We set the control window

in the interval between t0 = 120 min and tf = 240 min and imposed a constraint on

each drug concentration wi, requiring it not to exceed wmax = 4× EC50.

We found drug 2 to be best suited for downregulation for two reasons. First,

drug 2 is able to drive x5 nearly to zero (in contrast with the case for drug 3 or 4).

See Figs. 6.2B and 6.2H and compare with Figs. 6.2C, 6.2D, 6.2I, and 6.2J. Second,
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drug 2 (in contrast with drug 6) is able to overcome the autonomous oscillatory be-

havior in x5. In the analysis summarized in Fig. D.7, we found that drug 6 cannot

eliminate oscillatory behavior; thus, it is incapable of maintaining a low, steady AV

level. Drug 6 becomes viable if we remove the lower bound from the constraint of Eq.

(6.6c). Without the lower bound, oscillations in x5 are permitted. We choose to keep

the constraint of Eq. (6.6c) as written to avoid oscillatory solutions because, depend-

ing on period and amplitude, oscillations in x5 may allow for autophagy-addicted

cells to survive periods of relatively low autophagy by thriving during periods of

relatively high autophagy. In the other direction (i.e., drug-induced upregulation of

autophagy), it is only possible to use drug 5 to upregulate autophagy to the target

value xf5 = 37 (Fig. 6.3). Figs. 6.4E–H and 6.4I –L illustrate the optimal solutions

using drugs 2 and 5 to downregulate and upregulate autophagy, respectively.

Although the selection of a single drug to achieve a given qualitative change in

x5 is intuitive, especially given the results of Fig. 6.3, optimization of drug schedul-

ing (Fig. 6.4) delivers better solutions in the sense that the total dosage applied to

achieve the same effect (compared to constant input) is lower (minimized). Further-

more, the generic staircase-like solutions for r∗i,k illustrated in Fig. 6.4 persist for

all the parameter sets we have tested (see below), indicating that variable, tightly

controlled dosages should be injected into the system at controlled times. Given a

particular type of drug, the central result of our optimal control analysis is to provide

injection/input times and the amounts of drugs to be injected/added.

6.5.3 Optimal combination therapies

Let us now consider dual therapies (k = 2). The motivation is to identify therapies—

protocols involving lower quantities of drugs and faster responses—that are even more

efficient than optimal monotherapies. We have evaluated all possible dual therapies
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(C6
2 = 15) for each of two energy/nutrient stress conditions: CEn = CNu = 0.1

(corresponding to severe stress) and CEn = CNu = 0.6 (corresponding to moderate

stress). With an identical control objective and identical constraints wmax
i = 2.0

t0 = 120, tf = 240, xf5 = 10, and ε = 1, we found four pairs of drugs that are each

more efficient than the optimal monotherapy with either of the two drugs included

in the combination. These dual therapies are illustrated in Fig. 6.5. Additional

results from our analyses of dual therapies are presented in appendix D.4 and Figs.

D.3–D.10.

We found that when baseline autophagy is high (CEn = CNu = 0.1), the only com-

bination of drugs that can drive AV count down to the target xf5 is the combination

of drugs 2 and 6. The dynamical response of the system is shown in Figs. 6.5A–D.

For this particular combination, either drug alone cannot lower x5 to 10 without

violating one or both of the constraints wi < wmax
i (i = 2, 6). However, with use of

drugs 2 and 6 in combination, it is possible to achieve the target AV count because

the effects of the drugs are multiplicative (Eq. (6.1d)) and drug 2 directly affects

both MTORC1 (Eq. (6.1a)) and VPS34 (Eq. (6.1d)).

Our analysis predicts non-trivial synergistic activities between drugs when the

baseline level of autophagy is intermediate (on average) and exhibits oscillatory be-

havior (CEn = CNu = 0.6). The results are summarized in Figs. 6.5E–P. In this

scenario, multiple drug combinations (drugs 1 and 6, 2 and 6, and 3 and 6) are able

to downregulate and stabilize x5, whereas drug 6 alone cannot do so. Using drug 6

alone results in oscillations in x5, causing a violation of the constraint of Eq. (6.6c).

More interestingly, the optimal application of the drugs reveals a clear sequential

protocol: first apply a drug other than drug 6 (1, 2, or 3) to suppress oscillations

(see Figs. 6.5H, L and P), then apply drug 6 to drive AV count down to the desired

level. The combination of drugs 1 and 6 is peculiar in that in this case application

of drug 1 drives the system out of the oscillatory regime (Fig. 6.5O) but also up-
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regulates autophagy; subsequent application of drug 6 is effective in downregulating

autophagy.

It is important to emphasize that the two drugs acting together in any given

combination therapy are, for simplicity, modeled as non-interacting, which may or

may not be reasonable, depending on the mechanisms of actions of specific drugs of

interest. The drug synergies detected in our analyses arise from the nonlinear dynam-

ics of the regulatory network controlling autophagy. Without the formal framework

presented here for therapy design, it would arguably be difficult to identify these

synergies.

6.6 Discussion and Conclusions

Here, we have taken up the problem of designing targeted therapies to control a cellu-

lar phenotype of cancer cells, namely, their commitment to recycling of cytoplasmic

contents through the process of autophagy, as measured by cellular autophagic ves-

icle (AV) count. Autophagy generates building blocks needed for de novo protein

synthesis in support of growth (and proliferation). Modulation of autophagy, up or

down, in autophagy-addicted cancer cells has the potential to selectively kill these

cells [74].

Our approach was to first construct a mathematical model for autophagy reg-

ulation that captures the effects of key physiological stimuli—changes in the sup-

plies of energy and nutrients—and the idealized effects of six available drug types

(Eq. (6.1), Figs. 6.1–6.3) and to then pose the question of therapy design as a

constrained, optimal control problem (Eqs. (6.4)–(6.6)). Numerical solution of this

problem, through optimization of a control input accounted for in the model (i.e.,

an adjustable time-dependent drug injection/input rate), yielded monotherapy drug

schedules that require a minimum amount of drug, maintain drug concentration be-
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low a specified threshold at all times, and that bring about desired effects in the most

efficient manner possible (Fig. 6.4), in a well-defined sense. Furthermore, through

the essentially same approach, but with consideration of adjustable time-dependent

drug injection/input rates for two different drugs, we were able to predict synergistic

drug pairs (Fig. 6.5).

Optimal monotherapies were found to entail intermittent pulses of drug injec-

tion/input at irregular, non-obvious intervals and doses (Fig. 6.4). These features

of optimal drug schedules—the pulsatile nature of drug administration and the ir-

regularity of drug administration in terms of both timing and dosage—appear to be

generic and each is discussed in further detail below.

The pulsatile nature of optimal monotherapy arises from the optimal control

problem that we posed (Eqs. (6.4)–(6.6)), which can be viewed as a minimum-fuel

problem, in that our control problem calls for usage of a minimal total amount of

drug. The rationale for this control objective is that drugs typically have dose-

dependent offtarget effects, which may contribute to drug toxicity. Thus, by seek-

ing drug schedules that achieve desired endpoints while using only a minimal total

amount of drug, we seek to mitigate the possible negative consequences of offtarget

drug effects. Mathematically, our minimum-fuel objective function, Eq. (6.5), leads

to pulsatile drug administration because the Hamiltonian of the optimal control

problem is linear in the control inputs ui(t), i ∈ Tk (see “Pseudo-Spectral Optimal

Control” in D.2 for a detailed derivation). Optimal control problems which have

Hamiltonians that are linear in the control input are well-known to have singular

arcs, that is, discontinuities jumping between upper and lower bounds of the control

input (see Chapter 5 in Kirk[110] for the derivation of singular arc behavior and the

brief overview of this issue in “Pseudo-Spectral Optimal Control” in D.2). Because

we do not impose an upper bound on ui(t), the discontinuities we expect to see are

Dirac delta type functions, a pulse of infinite magnitude but infinitesimal width.
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With the use of numerical methods to find solutions of the optimal control problem,

we cannot capture the Dirac delta behavior exactly. Instead, we see finite pulses of

finite width, which, while likely suboptimal, are more physically realistic.

Although pulses of drug input are consistent with convenient drug delivery mod-

alities, such as oral administration of a drug in pill form or intravenous injection,

optimal schedules do not entail uniform drug doses, nor uniform periods of drug

administration. This irregular nature of optimal drug administration depends on

the structure of the nonlinear cellular network that controls the synthesis of AVs.

In particular, in our model, each drug specifically targets individual nodes of the

cellular network, and therefore, different drugs play dynamically distinct roles and

cannot be treated as equivalent control inputs. Thus, it may be critically import-

ant to better understand the interplay between targeted therapies and archetypical

cellular regulatory network dynamics if we are to design the best possible therapies

for populations of patients. Because network dynamics can be expected to vary

between patients, patient-specific variability in network dynamics, which we have

not considered in our analyses here, is a factor that likely affects the efficacy of in-

dividualized targeted therapy and that therefore should receive attention in future

studies. The study of Fey et al.[188] points to the feasibility of considering patient-

specific parameters in mathematical models. In this study, gene expression data

available for individual patients were used to set the abundances of gene products

in patient-specific models for a cell signaling system. Because mutations can be de-

tected in the tumors of individual patients, effects of oncogenic mutations could also

potentially be accounted for in patient-specific models. The study of Rukhlenko et

al.[157] provides an example of a study where the effects of an oncogenic mutation

were considered in a mathematical model. In the study of Fröhlich et al.[189], gene

expression and mutational profiles were both considered in cell line-specific models.

The therapy design approach presented here is flexible and allows for the evalu-
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ation of drug combinations. In our analyses, we focused on dual therapies. Somewhat

surprisingly, we found several drug pairs that together are more effective than either

drug alone (according to our model). These pairs are drug 2 and drug 6 when

CNu = CEn = 0.1 (severe energy/nutrient stress) and the combination of drug 6 with

drug 1, 2, or 3 when CNu = CEn = 0.6 (moderate energy/nutrient stress). In the

latter cases, drug 6 alone is incapable of downregulating autophagy to the desired

level, but it sensitizes the network to drugs 1–3 when one of these drugs is used in

conjunction with drug 6. According to the model (and its parameterization), the

most potent synergistic drug pair is the combination of drugs 2 and 6. With this

combination, the total amount of drug 2 used was reduced by more than 5-fold (see

the D.4 and Fig. D.5) in comparison to the case where drug 2 is used optimally

in isolation. More striking perhaps is that drug 6 when used alone is incapable of

achieving the performance objective. Interestingly, our results provide mechanistic

insight into the optimal sequence of drug delivery: therapy is optimal when drug

2 is injected about 80 minutes earlier than drug 6. That is, the best outcome was

achieved when first inhibiting MTORC1, thus halting the intrinsic oscillations of the

network dynamics, and then only inhibiting VPS34 to reduce synthesis of AVs. It

should be noted that in our evaluation of this drug pair, we have assumed that there

is no interaction between drugs 2 and 6, an idealization that may not be appropriate

for specific examples of drugs of these types.

The same optimal control approach that we have demonstrated for 2-drug com-

binations can be applied for combinations involving more than two drugs. Indeed,

our approach was presented for the general case of k drugs used in combination.

Our expectation is that effective combinations involving more than two drugs may

be more likely to exist than effective combinations involving only two drugs, be-

cause controllability would presumably increase with the availability of more drugs.

However, finding an effective combination may be more computationally expensive

because of the larger number of possible combinations, and 2-drug combinations may
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be preferable to higher-order combinations because of drug side effects.

As reported by Palmer and Sorger [190], many clinically used drug combinations

are effective for reasons other than drug synergy, which is rare. In essence, the

majority of clinically available drug combinations are, for all intents and purposes,

equivalent to monotherapy at the level of individual patients. The basis for their ef-

fectiveness at the population level is simply that tumors in different subpopulations

of patients have distinct drug sensitivities. Thus, new methods for predicting prom-

ising, non-obvious synergistic drug combinations, such as the approach reported here,

could be helpful in developing combination therapies that derive their effectiveness

from drug synergy. Synergistic drug combinations would seemingly offer significant

benefits over monotherapy, or what is effectively monotherapy, in terms of delaying

or perhaps eliminating the emergence of drug resistance. We note that our analysis

identified synergies between pairs of drugs that are predicted to manifest without

fine tuning of the doses used or the timing of drug administration. We admit that

these predictions could perhaps have been found through an ad hoc model analysis.

Nevertheless, we see value in leveraging an optimal control framework for model

analysis, even if an optimal control strategy is not sought, because with this type of

approach it is less likely that interesting behavior will be missed.

There is presently cautious optimism that effective drug combinations will be

identified through high-throughput screening experiments [191], or through learning

from data. However, the sheer number of possible drug combinations poses a barrier

to experimental discovery of efficacious drug combinations and it is not clear that

the data requirements of machine learning approaches can be met in the near term.

Thus, it is important to consider alternatives, such as the approach presented here,

which leverages available mechanistic understanding of how regulatory protein/lipid

kinases influence the synthesis of AVs, which we have consolidated in the form of a

mathematical model (Eq. (6.1)), designed to be useful for computational character-

109



Chapter 6. Prediction of Optimal Drug Schedules for Controlling Autophagy

ization of drug combinations. We note that our model was formulated specifically

for this purpose, and it was not designed to make predictions outside this limited

domain of application. Indeed, to facilitate our computational analyses, the model

was handcrafted to be as simple as possible while still reproducing key behaviors

of more mechanistically detailed models [177, 178]. This approach was helpful in

making calculations feasible. Unfortunately, to our best knowledge, there are no

proven approaches for systematically and automatically deriving a suitable surrog-

ate model for therapy design from a more detailed, mechanistic model of a cellular

regulatory network. Pursuit of such a capability seems like an important subject of

future research.

Our intent at the start of this study was to investigate how control engineering

concepts might be introduced into formal therapy design. Thus, we have only at-

tempted to demonstrate that our methodology is capable of generating interesting

(and testable) predictions of effective drug schedules and drug combinations. Devel-

opment of novel therapies will, of course, require experimental validation of candidate

combinations, which is beyond the intended scope of the present study. Thus, we

caution that our predictions of optimal drug schedules and synergistic drug combina-

tions are only intended to demonstrate methodology. The merit of this methodology

is not in reaching final conclusions but in prioritizing experimental efforts and thereby

accelerating experimental validation of targeted therapies. Because kinase inhibitors

of each type considered in our analysis are available for experimental characterization

and autophagy is a cellular phenotype that can be readily assayed, as in the study of

Martin et al.[178] or du Toit et al.[192], a logical next step would be to probe for the

predicted drug synergies in cell line experiments. It might be especially interesting to

evaluate a combination of an ULK1-specific inhibitor, such as ULK-101 [193], and a

VPS34-specific inhibitor, such as VPS34-IN1 [194]. We predict that this combination

will be synergistic, and the combination targets the two kinases considered in our

analysis that are most proximal to the cellular machinery for producing autophago-
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somes. On the computational side, to increase confidence in predictions, sensitivity

analysis techniques tailored for optimal control problems could be applied to char-

acterize the robustness of predictions [195, 196], and experimental design techniques

could be applied to aid in generating data useful for reducing parameter uncertainty

[197, 198]. Several studies strongly support the potential value of formal therapy

design [199–201], and the main contribution here is a new approach to this subject.

Two important distinguishing features of this approach are 1) the consideration of a

mathematical model for a cellular regulatory network that controls a cellular phen-

otype and 2) application of sophisticated methods from automatic control theory.
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Figure 6.1: Schematic diagram of a minimalist mathematical model for regulation
of autophagy and the effects of targeted drug interventions. The model accounts
for two physiological inputs (energy and nutrient supply) and regulatory influences,
stimulatory or inhibitory, within a network of interacting kinases. Each kinase is
taken to have a constant total abundance and to be dynamically distributed between
active and inactive forms. The active fractions of MTORC1, ULK1, AMPK, and
VPS34 are represented by x1, x2, x3 and x4, respectively. Targeted drugs, denoted
by red ovals, promote kinase inactivation or activation as indicated. Six drug types
are considered: 1) a kinase inhibitor specific for MTORC1, 2) a kinase inhibitor
specific for both MTORC1 and VPS34, 3) an ULK1 kinase inhibitor, 4) an allosteric
activator of AMPK, 5) an AMPK kinase inhibitor, and 6) a VPS34 kinase inhibitor.
The supplies of cellular energy and nutrients (CEn and CNu), together with drug
concentrations (w1, . . . , w6), determine the kinase activities of MTORC1, ULK1,
AMPK, and VPS34 and thereby the rate of synthesis of autophagic vesicles (AVs).
The control parameters are drug injection/input rates (u1, . . . , u6). Note that drug
clearance is not indicated in this diagram but is considered in the model equations.
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Figure 6.2: Predicted dependence of AV count on energy and nutrient supplies ac-
cording to the model for autophagy regulation (Eq. (6.1)). (A) Long-time behavior.
In this panel, the stationary or time-averaged value of x5(t) for constant supplies of
energy and nutrients as t → ∞ is indicated by color over the full ranges of the two
physiological inputs of the model: energy supply (CEn) and nutrient supply (CNu).
The solid black curves delimit the regions where long-time behavior of x5 is oscillatory
or not. If behavior is oscillatory, the time-averaged value of x5 is reported; otherwise,
the stationary value is reported. A bifurcation analysis indicates that long-time be-
havior is characterized by a stable fixed point, the coexistence of a stable fixed point
and a stable limit cycle, or a stable limit cycle. The region labeled ‘oscillatory’ in-
dicates the conditions for which a stable limit cycle exists; however, this diagram is
not intended to provide a full characterization of the possible qualitative behaviors
and bifurcations of Eq. (6.1). As indicated by the color bar, the (average) AV count
varies over a range of roughly 2 to 37 vesicles per cell. (B–E ) Transient behavior.
Each of these plots shows x5 as a function of time t after a coordinated change in
energy and nutrient supplies. The plot in panel B shows the predicted response to
a steep, step increase in stress level, i.e., a change in conditions from CEn = CNu = 1
to 0.2. The plot in panel C shows the predicted response to a moderate, step in-
crease in stress level, i.e., a change in conditions from CEn = CNu = 1 to 0.6. The
plot in panel D shows the predicted response to a moderate, step decrease in stress
level, i.e., a change in conditions from CEn = CNu = 0.2 to 0.6 The plot in panel E
shows the predicted response to a steep, step decrease in stress level, i.e., a change
in conditions from CEn = CNu = 0.2 to 1.
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Figure 6.3: Predicted dependence of AV count (x5) on drug dose according to Eq.
(6.1). In each panel, we show the long-time effects of monotherapy with drug
i ∈ {1, . . . , 6}; the drug considered in each panel is maintained at the constant
(dimensionless) concentration indicated on the horizontal axis. Drugs 1–6 are con-
sidered from top to bottom. Responses to drugs depend on the supplies of energy and
nutrients. The left panels (A–F ) correspond to conditions for which CNu = CEn = 0.1
(severe energy/nutrient stress), and the right panels (G–L) correspond to conditions
for which CNu = CEn = 0.6 (moderate energy/nutrient stress). The long-time beha-
vior of x5 under the influence of monotherapy can be stationary (with a stable fixed
point) or oscillatory (with a stable limit cycle). The shaded regions indicate where
there is oscillatory behavior. At a given drug dose, the top and bottom bounds of a
shaded region delimit the envelope of oscillations (i.e., the maximum and minimum
values of x5).
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Figure 6.4: Best performing monotherapies. (A–D) Panels A–D are from a numerical
experiment for which we set CNu = CEn = 0.1 and attempt to use drug 4 to downreg-
ulate the AV count. (E–H ) Panels E–H from a numerical experiment for which we
set CNu = CEn = 0.6 and attempt to use drug 2 to downregulate the AV count. (I –L)
Panels I –L are from a numerical experiment for which we set CNu = CEn = 0.6 and
attempt to use drug 5 to upregulate the AV count. The plots in the first column are
cumulative drug dosages for the monotherapies considered. The plots in the second
column are the drug concentrations. The plots in the third column show x5(t) and
the plots in the fourth, or rightmost, column show x1(t), x2(t), x3(t), and x4(t) that
we are making no attempt to control. In all simulations, the upper bound on the
allowable concentration of drug i, wmax

i , was set at 2. For panels A–H, the target
AV count was 10 (i.e., xf5 = 10). For panels I –L, the target AV count was 37 (i.e.,
xf5 = 37). The white region corresponds to the time interval [t0, tf ] when we either
upregulate or downregulate the AV count The shaded region corresponds to the time
interval [t0, tf ] when the AV count is maintained within the interval xf5 ± ε.
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Figure 6.5: Optimal dual therapies. (A–D) Panels A–D are from a numerical ex-
periment for which we set CNu = CEn = 0.1 and attempt to use a combination of
drugs 2 and 6. (E–H ) Panels E–H are from a numerical experiment in which we set
CNu = CEn = 0.6 and attempt to use a combination of drugs 2 and 6. (I –L) Panels
I –L are from a numerical experiment in which we set CNu = CEn = 0.6 and attempt
to use a combination of drugs 3 and 6. (M –P) Panels M –P are from a numerical
experiment in which we set CNu = CEn = 0.6 and attempt to use a combination of
drugs 2 and 6. The plots on the first column are cumulative drug dosages for the
dual therapies considered. The plots on the second column are drug concentrations.
The plots in the third column show x5(t) and the plots in the fourth, rightmost,
column show x1(t), x2(t), x3(t), and x4(t), which we did not attempt to control. In
all the simulations, the target value for AV count was 10 (i.e., xf5 = 10) and the
upper bound on each drug concentration wi was 2 (i.e., wmax

i = 2). The white region
corresponds to the time interval [t0, tf ] when we either upregulate or downregulate
the AV count The shaded region corresponds to the time interval [t0, tf ] when the
AV count is maintained within the interval xf5 ± ε.
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Chapter 7

Design of Attacks in Power Grid

Networks

7.1 Introduction

In chapter 5, we have implemented the optimal control strategies for complex net-

works to control blood glucose level in Type I diabetes by using insulin and glucagon.

In chapter 6, we have implemented the optimal control strategies to predict the op-

timal drug scheduling and the best therapy for controlling autophagy in a cell. In

this chapter, we will show an example how to design an attack perpetrated against

a power grid network. We are interested in both the spatial aspect, i.e., the choice

of the targets, and the particular temporal sequence, i.e., the times at which the

attacks are scheduled over a given time period. We will approach this problem using

the optimal control strategies, by considering the point of view of the attackers.

Namely, we will attempt to solve a constrained optimization problem, with the goal

of calculating the most devastating attack to a known critical infrastructure, given

a fixed amount of resources available to the attackers (e.g., only a certain number
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of attacks can be completed in the given time span). As we will see, the temporal

aspect, i.e., the particular sequence of the attacks, will play a crucial role on the

overall impact of the coordinated attack, as particular sequences of attacks are more

prone to generating cascading failures.

There is a large literature on characterizing the propagation of dynamic failures

and dynamic attacks over critical infrastructures. We focus on the literature on power

grids, but analogous studies have been performed in the context of hydraulic networks

[202–206], computer networks [207–211], and interdependent networks [212–216], to

name a few works.

Recent examples of cascading failures in power grids include the 2003 blackout in

the Northeastern United States [217], the Italian blackout of 2003 [218], the major

European blackout of 2006 [219] and the Indian blackout of 2012 [220]. In all these

cases the escalation of an initially localized event caused major disruptions at the

grid level and considerable economical losses. In 2013-2014 two malware programs

BlackEnergy2 and Havex [221] were deployed against companies of the energy sector

and in 2015-2016 a cyberattack brought down portions of the Ukrainian power grid

[222]. These very recent attacks raised the level of alertness towards the threats

posed by cyberattacks on physical infrastructure. More generally, cyberterrorism is

perceived as a concern both by the technical community [223] and by the policy

makers [224].

Based on previous observations, the timescales on which a cascade event may

occur range from seconds to hours. For example, in [225] the authors claimed that

the cascade of events that caused the 2003 blackout in the Northeastern United States

lasted 4 hrs. In [226] the authors noted that the cascade of events that caused the

Italian grid failure of 2003 developed over several minutes and the 2006 European

grid failure developed over several seconds. Data from [227] showed that in average

1.4 line failures per minute occur in the early phase of a cascade and 4 line failures
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per minute occur in the escalation phase of the cascade. This data provides evidence

that: (i) power-grid operators may or may not have time to take corrective measures

to avoid a cascading failure, based on the rate at which the cascade is progressing

and whether it is in its early phase or escalating phase; and (ii) it is actually possible

to schedule a sequence of temporally spaced actions (a coordinated attack) so as to

generate a synergistic effect on the electric grid.

Simplified models for the propagation of cascading failures on networks have been

proposed in [228–230]. More realistic models, based on the swing equation [231] for

the propagation of cascading failures in a power grid have been proposed in [232,

233]. For a comprehensive review of using complex networks to represent power

grids is presented in [20].

A very recent paper has started investigating the effects of multiple coordinated

attacks on the power grid, showing the high potential impact of such an attack [234].

References [46, 235] studied the effects of dynamic load altering attacks (DLAAs)

on power system stability, where here ‘dynamic’ means that the attack itself is a

function of time.

Several papers have considered strategies for the mitigation of attacks on net-

works. For example, in Ref. [208] it was shown that a careful rewiring of a limited

number of lines of the European power supply system and of the global Internet at

the level of service providers could lead to a substantial increase of the overall net-

work robustness. This is an example of a static mitigation strategy. More recently, a

dynamical approach has been proposed to counteract the effects of malicious attacks,

see e.g., our recent work [236]. We call this a dynamic mitigation strategy.

While there is a large literature on the effects of failures and intentional attacks

on power grids and more in general on critical infrastructure, a characterization of

the most devastating attacks in terms of both their spatial and temporal character-
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ization is lacking. By filling this gap in the literature, we plan to achieve a better

understanding of critical infrastructures and of protection schemes against possible

(optimized) threats.

Reference [237] studied mitigation of cascading failures in the interdependent

power-grid and communication networks. Reference [45] is also related to mitig-

ation of cascading failures in power grids through optimal load shedding. An al-

gorithm is proposed to compute optimal amounts of load to shed in order to stop

further propagation of line failures in both deterministic and stochastic settings of

line outages. Reference [238] formulated the cascading failure attack problem from

a game-theory perspective, where both attackers and power-system operators try to

maximize their corresponding rewards which are: maximize load shedding and min-

imize load shedding, respectively. They also prove the convergence of the game to a

Nash equilibrium.

7.2 A model for the power grid dynamics

The swing equation is a fundamental tool that has been broadly used to describe

the power grid dynamics, by focusing in particular on its dynamical synchronization

properties. The model of the power grid network is coarse-grained where every node

(also called a bus) in the system represents a rotating machine, every transmission

line represents an electrical connection (including transformers) between two nodes,

and the nodes are strongly coupled via the lines. There are two types of nodes,

generator nodes that supply power to the power grid network and non-generator

nodes that consume power from the grid.

We model N rotating machines, each corresponding to a node of a power grid

network and L transmission lines, each corresponding to an edge of the network. The
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swing equations of the power grid system are,

θ̇i = ωi, i = 1, 2, · · · , N (7.1a)

Iiω̇i = Pi − γiωi +
N∑

j=1

Kij sin(θj − θi) (7.1b)

Here θi is the mechanical rotor angle and ωi is the angular velocity (relative to the

reference frame of Ω = 2π (50 or 60 Hz) of machine i, for each i ∈ {1, 2, · · · , N}.
Also a machine i either provides power (a generator) or absorbs power (a consumer

or a non generator bus). If a machine i is generator then Pi > 0, and if a machine i

is consumers then Pi < 0. We write,

Pi =




PM
i > 0, if i is a generator node

PL
i < 0, if i is a non-generator node

(7.2)

PM
i is the mechanical power generated at generator i and incorporates two terms,

PM
i (t) = KP

i ωi +KI
i

∫ t

0

ωidτ (7.3)

where, KP
i > 0 and KI

i > 0 are the proportional and integral controller coefficients,

respectively. The proportional term is the turbine-governor controller and the integ-

ral term is the load-frequency controller [239].

In Eq. (7.1b) γi is the damping coefficient, Ii is the inertia constant andK = {Kij}
is the coupling matrix, where Kij = Kji represents the admittance between nodes i

and j. While the swing equation has been used to dynamically update the angles

θi(t) as functions of time, real-time estimates of the flows Fij on each line (i, j) with

coupling Kij at time t can be modeled as,

Fij = Kij sin(θj − θi) (7.4)
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A power grid network at its operational point is characterized by all machines

running in synchrony at the reference angular velocity ω, i.e., ωi = 0∀i ∈ {1, · · · , N}.
The fixed points of Eqs. (7.1b) are obtained by solving for the angles θ∗i in the

following equation:

Pi +
N∑

j=1

Kij sin(θ∗j − θ∗i ) = 0 (7.5)

7.3 Modeling line failures

Here we briefly describe the model proposed in [233] for the propagation of line

failures as a consequence of an initial set of line failure(s). The initial line failures

are considered as an exogenous perturbation, such as, for example, a transmission

line failing due to a lightning strike or to extreme heat during the summer. In order

to model cascading failures in power grid networks, we use the swing equations in

Eq. (7.1) together with Eq. (7.4). The actual power flow Fij along the transmission

line (i, j) of the network is compared to the actual available capacity Cij of line (i, j),

i.e., to the maximum flow that the line can tolerate. The capacity Cij is set to be a

tunable percentage of Kij. In order to prevent damage from overload, the line (i, j)

is then shutdown if the flow on it exceeds the value αKij, where α ∈ [0, 1] is a control

parameter of the model. Thus the overload condition on the line (i, j) at time t is

given by:

|Fij| > Cij = αKij (7.6)

We say that the grid is stable or in synchrony, if the network has a stable fixed

point and the flows on all lines are within the bounds of the capacity, i.e., do not
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violate the overload condition Eq.(7.6), where the flows are calculated by inserting

the fixed-point solution into Eq. (7.4). When the flow on a line exceeds its capacity,

that line fails.

7.3.1 Numerical simulation of cascading failures

In order to illustrate how the dynamical model of cascading failures occurs in a

power grid network as consequence of an initial line failure, we consider the power

grid network with N = 5 nodes and L = 7 transmission lines shown in Fig. 7.1.

We assume that the network has two generators and 3 non generator buses [233].

Nodes 2 and 5 are generators, and Nodes 1, 4 and 3 are non-generator nodes. A

schematic diagram of the network is shown in Fig. 7.1. The power generated at the

generators is equal to PG
i = 1.5s−2. The power consumed at the non generator nodes

is equal to PL
i = −1s−2. For simplicity we adopt here a modified ‘per unit system’

obtained by replacing real machine parameters with dimensionless multiples with

respect to reference values [233]. For instance, here a ‘per unit’ mechanical power

Pper unit corresponds to the real value Preal = 100MW . The controller coefficients are

set to KI
1 = 0.9133, KI

2 = 0.8121, KP
1 = KP

2 = 1.

Moreover, for simplicity we consider homogeneous coupling, Kij = Kaij for each

transmission line (i, j) with Kij = 1.63 and unweighted adjacency matrix A = {aij},
i.e., aij = aji is equal to 1 if nodes i and j are connected and is equal to zero,

otherwise. We further set γi = 0.1 and Ii = 1 for all i = 1, · · · , N . We initialize

the system from its stable state, corresponding to its working condition. To do

so, we solve Eq. (7.5) and calculate the corresponding flows at equilibrium. We

then set the threshold value α = 0.6. A failure of line (i, j) occurs every time the

absolute normalized flow |Fij(t)|/Kij on transmission line (i, j) exceeds the threshold

value 0.6. From Fig. 7.2A and 7.2B, we observe that when there is no line failure,

123



Chapter 7. Design of Attacks in Power Grid Networks

the system remains in its stable steady state and the power flow on each line also

remains constant. We now consider the effect of an exogenous perturbation. At time

t = 1 we perturb the stable steady state, by failing the line (2, 4). Because of the

capacity criterion in Eq. (7.6) as shown in Fig. 7.2B, at time t = 1.9 second, i.e.,

approximately 1 second after the initial failure, the line (2, 3) becomes overloaded

(the flow exceeds the capacity), which causes a secondary failure, leading in turn

to additional overloads on other lines and their failure in a cascading process that

eventually leads to the disconnection of the entire grid. The whole cascade of failures

induced by the initial removal of transmission line (2, 4) is shown in Figs. 7.2A and

7.2B. Not always the new line failures occur in lines adjacent to those previously

failed, i.e., the failure propagation model is nonlocal, which is in agreement with

previous models and observations [240, 241].

7.3.2 Line Health Dynamics

We modify the model of dynamically induced cascading failures, described above, to

incorporate a time-varying variable to characterize the health of a transmission line.

We propose the following dynamical equation for the time evolution of the health of

a transmission line,

l̇ij(t) =




−µlij(t){(1− lij(t))(b− lij(t))}, if b ≤ 1

−µlij(t){(b− lij(t))2 + b− 1}, if b > 1
(7.7)

Here, 0 ≤ lij(t) ≤ 1 represents the health of the transmission line {i, j} at any time

t, lij = 0 indicates the line is failed and lij = 1 indicates the line is in perfect health

and µ > 0 in Eq. (7.7) is a tunable parameters, which depends on the structure of

the power grid network and its dynamics. In Eq. (7.7), b =
|Fij(t)|
Cij

and Cij 6= 0. When

b < 1, Eq. (7.7) has 3 fixed points l∗ij = 0, b, 1 of which 0 and 1 are stable fixed points
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and b is an unstable fixed point. When b = 1, the fixed point b coincide with 1 and

Eq. (7.7) has 2 fixed points l∗ij = 0, 1 of which 0 is a stable fixed point and 1 is a

saddle point. When b > 1, the fixed point 1 and b disappear and Eq. (7.7) has only

one fixed point l∗ij = 0 which is a stable fixed point.

By putting together Eq. (7.1) and the line health dynamics Eq. (7.7), we obtain

the following set of equations,

θ̇i(t) = ωi(t) (7.8a)

Iiω̇i(t) = Pi − γiωi +
N∑

j=1

Kijlij(t) sin(θj − θi) (7.8b)

l̇ij(t) =




−µlij(t){(1− lij(t))(b− lij(t))}, if b ≤ 1

−µlij(t){(b− lij(t))2 + b− 1}, if b > 1
(7.8c)

We also introduce a smooth version of Eq. (8c), which we will use in what follows,

l̇ij(t) = −µlij(t)
[
{(1− lij(t))(b− lij(t))}

1

1 + e−k(1−b)
+ {(b− lij(t))2 + b− 1} 1

1 + e−k(b−1)

]

(7.9)

First we initialize the system so that all the transmission lines are in their healthy

state lij = 1 and set θi(0) = θ∗i , i = 1, ..., N , i.e., all the flows are at equilibrium.

We set a threshold value of α = 0.6, i.e., if the absolute normalized flow |Fij(t)|/Kij

on transmission line (i, j) exceeds 0.6, then line (i, j) fails. In Fig. 7.3A), we repeat

the calculations in Fig. 2 but incorporating the line health dynamics, Eqs. (9), for

µ = 100 and k = 400. By comparing the flow and the sequence of the line failures

between Fig. 7.2B and Fig. 7.3, we observe that the line health dynamics in Eq. (7.7)

well captures the sequence and timing of failures as well as the flow dynamics over

the lines. Also from the line health dynamics plotted in Fig. 7.3B, one can see that
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the lines quickly (but smoothly) transition from the healthy state to the failed state

every time the flow threshold condition is violated for that line.

7.4 Modeling Attack Strategies

7.4.1 Constant Perturbations in the Power Consumed at Non-

generator Buses

We first consider the effect of a constant perturbation in the power consumption at

a non-generator node. While in principle generator nodes could also be attacked,

typically generator nodes are more securely protected, which makes them harder to

attack. We focus on the 5 node network shown in Fig. 7.1. We numerically compute

the sequence of line failures when one of the non generator nodes i ∈ {1, 3, 4} is

attacked. We assume that the power consumption at node i is purportedly changed

from its nominal value equal to −1 and set to a constant value PL
i < −1. We present

the results of this analysis in table 7.1. The first column represents the node i which

is being attacked and each columns represents the value of the constant perturbation

PL
i . In each panel, we report the sequence of line failures due to different amount of

power consumption PL
i < −1. The underbracing under two or more lines indicates a

group of lines failing at approximately the same time, i.e., within a time window of

10−3 second. We see that the sequence of line failures may be different for different

amounts of power consumption. For instance, the sequences for PL
1 = −3 and

PL
1 = −5 are not the same.
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Table 7.1: Temporal pattern of line failures due to a constant power consumption
Pi.

Node i Pi = −1 Pi = −1.6 Pi = −3 Pi = −100

1 no line fails 3, 7 1, 2, 3, 7, 5 1, 2, 3︸ ︷︷ ︸, 7, 5, 4

3 no line fails 3, 7︸︷︷︸ 4, 2, 6︸︷︷︸, 3, 7︸︷︷︸ 2, 4, 6︸ ︷︷ ︸
4 no line fails 7, 3 5, 6, 7, 3, 1 5, 6, 7︸ ︷︷ ︸, 3, 1, 4

7.4.2 Most Devastating Attacks

We now consider the effects of a deliberate man-made cyber-attack perpetrated

against the power grid. An attacker may take control of a generator, consume power

from buses, or affect the transmission lines. Here we consider the case that the attack

is limited to non-generator buses in which power is consumed in order to deliberately

induce line failures in the power grid. We assume the attacker is able to affect PL
i

at one node or at a set of nodes and is interested in determining the particular func-

tion of time PL
i (t) that can be most harmful to the grid, under given constraints.

The most devastating attack (MDA) is the one that maximizes the number of line

failures over the network in a given time interval. In order to compute an MDA, we

formulate a nonlinear optimal control problem (OCP),

min
∑

ij

lij(tf ) (7.10)

subject to the following constraints,

ẋ = f(x(t),P(t)), (7.11a)

0 ≤
∫ tf

0

−PL
i (t)dt ≤ Emax

i . (7.11b)

The constraints in Eq. (7.11b) indicate that there is an upper bound on the total

energy available to the attacker.
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Here the dynamics in Eq. (7.11a) represents the dynamics in Eqs. (7.8)–(7.9). By

computing the solution to the optimal control problem, we will get insight into the

particular sequence of line failures that follow an attack. We will also be able to

produce a ranking of the buses in terms of the number of transmission lines failed,

when the bus is attacked.

7.5 Method

In general, there exists no analytic framework that is able to provide the solution

of the optimal control problems in Eqs. (7.10)-(7.11) . The Eqs. (7.10)-(7.11) can

be written as Eq. (4.1). Hence, we will recur to a popular numerical technique

called Pseudospectral Optimal Control (PSOC) [55, 111, 112]. The main concept

behind PSOC is to convert the OCP into a nonlinear problem (NLP) by descritizing

and approximating the OCP by an orthogonal set of polynomials (e.g. Legendre,

Chebyshev). We have used PSOPT [112], an open-source PSOC toolbox written in

C++, to perform the PSOC discretization and approximation procedure. The NLP

then can be solved with a number of different techniques, but here we use an interior

point algorithm [56] as implemented in the open-source C++ software Ipopt [113].

7.6 Results

To solve the optimal control problem in Eqs. (7.10)-(7.11), we now set the values

of Emax
i in Eq. (7.11b). For this numerical experiment, we consider the previous 5

nodes network. We also set t0 = 0 and tf = 6. From the constant power consumption

analysis in the previous section, we have seen that there is no line failures if a constant

amount of load PL
i = −1 is consumed from non-generator node 3. In our numerical

experiment, we consider the node 3 is being attacked. We set Emax
3 = PL

3 × tf =
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−6s−1. In Fig. 7.4, we observe that due to the optimal amount of load PL∗
3 (t)

consumed from node 3 causes the cascading line failures while the total amount of

load is −6, i.e.,
∫ tf
0
PL∗
3 (t)dt = Emax

3 . But there are no line failures when constant

amount of of load PL
3 = −1 is consumed from non-generator node 3.

In another numerical experiment, we set tf = 6 and Emax
i = −60s−1 in Eq.

(7.11b). In Table 7.2, the first column is the bus i which is under attack. The

second column presents the maximum number of line failures in the case of the most

devastating attack. On third column, we present the sequence of line failures, and

on the fourth column we place the rank of bus i in terms of its ability to fail the

maximum number of lines. Namely, we see that for our example power grid network,

bus 3 is the most vulnerable to MDA’s.

7.7 Conclusions

In chapters 5 and 6, we have used the optimal control techniques to design the

formal therapies for complex diseases. We have designed constrained optimal control

problem where our goal was to minimize the total amount of drugs to achieve the

desired goal. The solution of the optimal control problem yielded the drug schedules

that require a minimum amount of drugs, maintaining drugs concentrations below

the toxic level at all times, and that bring the final state of the target node near the

desired level. In addition, we were able to find the sequencing protocol of using the

drugs in multi-drug therapies. The same idea of the optimal control techniques can be

used to design the most devastation attack on the power grid network by considering

the point of view of attackers. In this chapter, we have presented an small example

of how a temporal aspect of load taken from a node can create a cascade failures

for a given fixed amount of load available to attacker (see Fig. 7.4). In an another

example, we have seen that it is also possible to rank the most vulnerable node in the
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power grid network (see Table 7.2). In this chapter we do not experiment further,

but we can still use the optimal control techniques to design the most devastating

coordinated attack, as particular sequences of attacks are more prone to generate the

cascading failures (similar idea of finding the best combination of drug schedules).

Table 7.2: Ranking of the nodee(buses) in terms of ability to destroy the maximum
number of transmission lines.

Bus No. of lines failures Sequence of lines failures Rank

1 6 3, 1, 7, 2, 4, 5 2
3 7 4, 3, 7︸︷︷︸, 2, 6︸︷︷︸, 1, 5︸︷︷︸ 1

4 6 7, 5, 3, 6, 4, 1 2

130



Chapter 7. Design of Attacks in Power Grid Networks

   1

   2    5

   3    4

   

P
5

g
   P

2
g

   
P

1
L

     

   

P
3

L
   

P
4

L

1

2 3

4

5

PL
1

G = {2, 5} L = {1, 3, 4}

Figure 7.1: A schematic view of a five node network with generators and load buses.
G = {2, 5} is the set of generator nodes and L = {1, 3, 4} is the set of non-generator
nodes. The power demand PL

1 at node 1 is determined by an external event.

131



Chapter 7. Design of Attacks in Power Grid Networks

1 2 3 4 5 6

0

1

2

3

4

5

6

A)

Time (sec)

N
o.

of
li
n
e
fa
il
u
re
s

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

B)

Time (sec)

A
b
so
lu
te

F
lo
w
F
ij

F12, line 1
F13, line 2
F15, line 3
F23, line 4
F34, line 6
F45, line 7

max. capacity

Figure 7.2: A) Time evolution of the number of line failures. B) Time evolution of
normalized absolute flow of the transmission lines. Each one of the seven transmission
lines has a different associated color.

132



Chapter 7. Design of Attacks in Power Grid Networks

0 2 4 6

0

0.2

0.4

0.6

A)

Time (sec)

A
b
so
lu
te

F
lo
w
F
ij

0 2 4 6

0

0.5

1

B)

Time (sec)

L
in
e
H
ea
lt
h
l i
j

l12, line 1

l13, line 2

l15, line 3

l23, line 4

l24, line 5

l34, line 6

l45, line 7

smooth approx.

Figure 7.3: A) Time evolution of the normalized absolute flows over the transmission
lines. Each curve is the flow calculated using Eq. (7.8) together with Eq. (7.7). Colors
match the colors used to uniquely label the transmission lines in Fig. 1. The black
dotted curves are the flows calculated using Eq. (7.8) together with Eq. (7.9). B)
Time evolution of the health of the transmission lines. Each curve is the health
calculated using Eq. (7.8) together with Eq. (7.7). Colors match the colors used
to uniquely label the transmission lines in Fig. 1. The black dotted curves are the
health calculated using Eq. (7.8) together with Eq. (7.9).

133



Chapter 7. Design of Attacks in Power Grid Networks

0 2 4 6

0.9

1

1.1

1.2

L
in
e
H
ea
lt
h
l i
j

PL
1 = −1

0 2 4 6

0

0.5

1

PL
1 = −1.6

0 2 4 6

0

0.5

1

PL
1 = −3

0 2 4 6

0

0.5

1

PL
1 = −100

0 2 4 6

0.9

1

1.1

1.2

L
in
e
H
ea
lt
h
l i
j

PL
3 = −1

0 2 4 6

0

0.5

1

PL
3 = −1.6

0 2 4 6

0

0.5

1

PL
3 = −3

0 2 4 6

0

0.5

1

PL
3 = −100

0 2 4 6

0.9

1

1.1

1.2

Time (sec)

L
in
e
H
ea
lt
h
l i
j

PL
4 = −1

0 2 4 6

0

0.5

1

Time (sec)

PL
4 = −1.6

0 2 4 6

0

0.5

1

Time (sec)

PL
4 = −3

0 2 4 6

0

0.5

1

Time (sec)

PL
4 = −100

l12, line 1 l13, line 2 l15, line 3 l23, line 4

l24, line 5 l34, line 6 l45, line 7

Figure 7.4: Line health time evolutions. Each row is for a different nongenerator
node being affected (i=1 top row, i = 3 middle row, and i = 4 bottom row). Each
column is for a different value of PL

i modeled as a time-constant.

134



Chapter 7. Design of Attacks in Power Grid Networks

0 2 4 6

0

1

2

A)

Time (sec)

−PL∗
3 (t)

−PL
3

0 2 4 6

0

0.5

1

B)

Time (sec)

L
in
e
H
ea
lt
h
l i
j

l12, line 1
l13, line 2
l15, line 3
l23, line 4
l24, line 5
l34, line 6
l45, line 7
no line failures

Figure 7.5: (A) The time evolution of the load PL∗
3 (solid cyan curve) consumed by

an attacker from node bus 3. The time evolution of the load PL∗
3 (solid cyan curve)

consumed by an attacker from node bus 3. The load PL
3 (red dashed line) constant in

time. (B) Time evolution of the line health conditions due to the load consumption
PL∗
3 (solid) and PL

3 (dashed).

135



Chapter 8

Conclusion

The final overarching goal of this thesis was to use the theory of dynamical systems

and controls to predict better therapies for complex diseases, such as diabetes or

cancer. Such complex diseases are governed by either a physiological process in the

human body or at the level of a cell, and key features of the physiological process

can be captured mathematically by a complex mathematical model of differential

equations. Moreover, the physiological model can respond appropriately to drugs

when these drugs are exogenously supplied.

The formalism we have adopted is that of control of complex networks, where a

biological system can be represented as a complex network, and the external drugs

are modeled as control signals to the network. In general, while controlling the

biological networks, we have set our objective to minimize the amount of drugs used

to achieve a given physiological goal. This corresponds, in the jargon of optimal

control, to reduce the control effort while controlling the process to a desired final

state. In order to reduce the control effort, in chapter 2 we have introduced an

optimal control technique, we call target control, which can reduce the control energy

(a measure of control effort) by reducing the number of the system’s state one is trying
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to affect. Translated to networks, this corresponds to reducing the required control

energy, as the number of target nodes is reduced. We provide an analytic solution

to this problem, in the case of linear networks. We show that for a fixed number

of control inputs, the energy required to control a portion of the network decreases

exponentially with the cardinality of the target set, so even controlling a significant

number of nodes requires much less energy than when every node is targeted.

Moreover, in chapter 3, we have seen how it is possible to reduce the control

energy, by appropriately defining the control objectives and the constraints. We have

seen that the control energy can be reduced further by allowing a small deviation

from the desired final condition. We call this technique balance control.

This initial work has guided us to control complex biological systems and to design

drug dosage schedules optimally for biomedical applications. While it is important

to determine the optimal dosage amount for a given drug, it is also important to

identify the best combination of drugs, as experimentally this may be very hard

(expensive) to do, especially when the number of combinations becomes very large.

We have found several potential benefits of using optimal control in this context. For

example, in chapter 5, by posing the control objective as a minimum fuel problem

while only insulin is administered, we have found the the total amount of insulin

and the time of administering are similar to the standard therapy currently used by

patients affected by diabetes, and optimized over decades of medical practice. This

seems to suggest that the optimal control techniques can provide some useful insight

in designing optimized therapies in a variety of contexts. By defining the control

objectives in the same manner, we were then able to propose an ad-hoc rule for

dual therapy when both insulin and glucagon are used in combination. The solution

of this problem yielded drug schedules that require a minimum amount of drugs,

maintaining drugs concentrations below a specific threshold (below the toxic level)

at all times, and that bring the blood glucose level near the desired levels in the
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most efficient manner. In addition, we were able to find a sequencing protocol for

the administration of the drugs. These characteristics of the solution of the optimal

control problem designed on the purpose of therapy design are not surprising. We

have seen similar behavior in chapter 6, while we have used the optimal control

techniques to modulate autophagy in a cell, either up or down. We have also seen

in chapter 6 that the optimal control techniques when used in combinatorial therapy

design, can predict the most effective drug schedules and drug combinations.

Chapter 5 considers the Glucose-Insulin-Glucagon mathematical model, which

describes how the body responds to exogenously supplied insulin and glucagon in

patients affected by Type I diabetes. While controlling this system, we have con-

sidered the blood glucose concentration (G(t)) as the only target node. We have set

a final time condition on G(t), while the final time condition on the other nodes of

the system have been left unconstrained. We have used the target control technique

together with PSOC to design an optimal dosing schedule of either insulin or insulin

and glucagon together to regulate the blood glucose while limiting the total amount

of insulin and glucagon administered. Besides, we have posed the control objectives

in two ways: 1) blood glucose regulation with the minimum fuel problem (ReMF)

and 2) blood glucose regulation with the minimum energy problem (ReME). In both

cases, the control problem calls for usage of a minimum total amount of drug while

regulating the blood glucose near the desired level. The numerical solution of the

REMF problem leads to a pulsatile type (shot-like) drug administration with the

optimal time of the shot and the numerical solution of the REME problem leads to

a drug administration that is continuous in time. The pulsatile drug administration

allows us to propose an ad-hoc dual therapy by using both insulin and glucagon.

In chapter 6, we have implemented our optimal control strategies to design drug

schedules for manipulating autophagy in a cell. We have set the number of autophagy

vesicles (AVs) as the only target of the target control technique. In the constraints of
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the problem we set a relax bound on final time AVs, which is similar in a sense to the

balance control techniques. We have posed the control objective as a minimum-fuel

problem, in that our control problem calls for usage of a minimum total amount of

drug. Numerical solution of this problem yielded monotherapy drug schedules that

require a minimum amount of drug, maintain drug concentration below a specified

threshold at all times, and bring about desired effects in the most efficient manner

possible, in a well-defined sense. Furthermore, through the essentially same approach,

but with consideration of adjustable time-dependent drug injection/input rates for

two different drugs, we were able to predict synergistic drug pairs.

Our approach is generalizable to designing monotherapy and multi-therapy drug

schedules that affect different biological networks of interest. Furthermore, this gen-

eralized approach can also be used to design optimal attacks perpetrated against

critical infrastructures, such as power grid networks. In chapter 7, we have com-

puted the most devastating attack to a power grid networks, given a fixed amount of

resources available to attackers. Moreover, we have seen how this translates into an

‘optimal’ sequence of line failures for the case of an example power grid of interest.
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Appendix A

Detailed Derivation of Target Control

Strategy

A.1 Minimum Energy Output Control

The fixed-end point minimum energy control problem is well-known in the optimal

control field, especially for a system described by linear dynamics,

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t).

(A.1)

What is less well known is the solution of the minimum energy control problem when

the final condition is only prescribed to some subset of the states. We introduce the

minimum energy target control problem for networks where the word target refers
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to those nodes with a prescribed final condition. The problem is as follows:

min
u(t)

J =
1

2

∫ tf

t0

uT (t)u(t)dt

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

x(t0) = x0, y(tf ) = yf

(A.2)

The matrix A ∈ Rn×n is the adjacency matrix that describes the topology, or inter-

connectedness, of the n nodes, or states. The matrix B ∈ Rn×m is the control input

matrix that describes how the m control inputs are distributed to the nodes. The

matrix C ∈ Rp×n is the output matrix that relates how each output is a linear

combination of the states. For the target control of complex networks formulation,

we assume that B (C) has columns (rows) that are all versors, i.e., each control

input, ui(t), i = 1, . . . ,m, is directed towards a single node and each output, yj(t),

j = 1, . . . , p, is the state of a single node (see Fig. 1A from the main manuscript for

a graphical description). The dynamical equation of an arbitrary node i is,

ẋi =
n∑

j=1

aijxj +
m∑

k=1

bikuk (A.3)

where if there exists at least one coefficient bik 6= 0 then node i is what we refer to

as an input node. We will assume that the system, (A,B,C), is output controllable

so that,

rank
(
CB|CAB| . . . |CAn−1B

)
= p (A.4)

Each output is referred to as a targeted node. The solution of the minimization

problem in Eq. (A.2) is found using Pontryagin’s minimum principle [110] and is
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provided here both as a review and to establish how the targeting aspect of our

specific solution is applied. The Hamiltonian equation introduces n costates ν(t).

H(x(t),ν(t),u(t)) =
1

2
uT (t)u(t) + νT (t)Ax(t) + νT (t)Bu(t) (A.5)

From the Hamiltonian equation, the following dynamical relations can be determined,

State Equation: ẋ(t) =
∂H
∂ν

= Ax(t) +Bu(t)

Costate Equation: ν̇(t) = −∂H
∂x

= −ATx(t)

Stationary Equation: 0 =
∂H
∂u

= u(t) +BTν.

(A.6)

The stationary equation is used to determine the optimal control input.

u∗(t) = −BTν (A.7)

The time evolution of the costates can be determined in a straightforward manner

with a final condition of the form, ν(tf ) = CT ν̂f , where ν̂f ∈ Rp as there are only p

final conditions prescribed for the network.

ν(t) = eA
T (tf−t)CT ν̂f (A.8)

With the optimal control input known, the time evolution of the states can also be

determined,

x(t) = eA(t−t0)x0 −
∫ tf

t0

eA(t−τ)BBT eA
T (tf−τ)dτCT ν̂f (A.9)
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The prescribed final condition for the targeted nodes is applied to determine the

final, constant vector ν̂f .

yf = CeA(tf−t0)x0 − CWCT ν̂f ⇒ ξ̂f = −
(
CWCT

)−1 (yf − CeA(tf−t0)x0

)
(A.10)

The symmetric, positive semi-definite matrixW =
∫ tf
t0
eA(tf−τ)BBT eA

T (tf−τ)dτ is the

controllability Gramian. If the system (A,B,C) is output controllable, then W is

positive definite. When C has p rows (versors), the matrix Wp = CWCT , is the

output controllability Gramian, and is a p× p principal submatrix of W .

A.2 Scaling of µ1

54 of the main text provide numerical evidence that the energy required for a control

action decreases exponentially as the number of target nodes decreases linearly. In

the following derivation, we find that the exponential decay of the energy is a result

of a more fundamental property of the output controllability Gramians Wp. Here we

show that for a broad class of networks and a random selection of the target nodes

the ratio of the smallest eigenvalues of two subsequent principal submatrices of the

controllability Gramian W , by which we mean the submatrices Wp and Wp−1 where

Wp−1 isWp after removing one additional row-column pair, has a near constant value

which we call ηp = min{eig(Wp−1)}/min{eig(Wp)} ≈ constant. This is true for a

typical sequence of random removals of target nodes (here by typical we mean that

each node is assigned the same probability of removal and the order of removal is ran-

dom), while deviations from this behavior are possible for specific removal strategies

(see Section S6).

In the main text we have considered the average energy scaling when the cardin-

ality of the target set decreases from j to k, j > k. Here, we consider an iterative
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process as we remove one node at a time from the target set. We say that two target

node sets Pp and Pp+1 are adjacent if Pp+1 = Pp ∪ i and i /∈ Pp.
A symmetric, positive definite matrix W ∈ Rn×n has principal submatrices

Wp ∈ Rp×p, p < n where n − p corresponding rows and columns of W have been

removed. A principal submatrix, Wp, has diagonal elements which are also diagonal

elements of the original matrix W . The eigenvalues of Wp, µ
(p)
i , i = 1, . . . , p, are

ordered such that,

0 < µ
(p)
1 ≤ µ

(p)
2 ≤ . . . ≤ µ(p)

p (A.11)

Consider the case whenWp isWp+1 with one additional row-column pair removed, or

in terms of the target sets, Pp ⊂ Pp+1 which are adjacent. From Cauchy’s interlacing

theorem, the eigenvalues of Wp thread between the eigenvalues of Wp+1,

µ
(p+1)
1 ≤ µ

(p)
1 ≤ µ

(p+1)
2 ≤ . . . ≤ µ(p+1)

p ≤ µ(p)
p ≤ µ

(p+1)
p+1 (A.12)

The smallest eigenvalue ofWp cannot be smaller than the smallest eigenvalue ofWp+1.

We perform an iterative process where at each step a row-column pair (without loss

of generality here chosen to be the first row and first column) is removed.

Wp+1 = W̄p + dWp

=


 0 0T

wp Wp


+


 wpp wT

p

0 Op




(A.13)

The matrix W̄p is a p×p principal submatrix ofWp+1 with a first row of all zeros and

a first column identical to that of Wp+1. The matrix dWp consists of all zeros except

for the first row which is identical to the first row of Wp+1. The scalar wpp is the
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leading term in Wp+1 and wp is the first column of Wp+1, after removing the entry

wpp. Note that the the set of eigenvalues of W̄p is equal to the set of eigenvalues of

Wp with one additional 0 eigenvalue.

The smallest eigenvalue of Wp+1, µ
(p+1)
1 , and the second smallest eigenvalue of W̄p,

µ
(p)
1 ( which is also the smallest eigenvalue of Wp) are used to define the vectors vp+1

and v̄p,

vTp+1Wp+1 = vTp+1µ
(p+1)
1 , W̄pv̄p = µ

(p)
1 v̄p (A.14)

Pre- and post-multiplying Eq. (A.13) by vTp+1 and v̄p, respectively, will provide a

relation between the smallest eigenvalues of Wp+1 and Wp.

vTp+1Wp+1v̄p = vTp+1W̄pv̄p + vTp+1dWpv̄Tp

µ
(p+1)
1 vTp+1v̄p = µ

(p)
1 vTp+1v̄p + vTp+1Wp+1W

−1
p+1dWpv̄p

µ
(p+1)
1 = µ

(p)
1 + µ

(p+1)
1

vTp+1W
−1
p+1dWpv̄p

vTp+1v̄p

(A.15)

The matrix product Wp+1dWp is a matrix of all zeros except for the leading term

which is one. Thus, the product vTp+1W
−1
p+1dWpv̄p = [vp+1]1[v̄p]1 where the notation

[v]1 denotes the first value of a vector. The relation between successive smallest

eigenvalues can be written explicitly,

µ
(p)
1 = µ

(p+1)
1

(
1− [vp+1]1[v̄]1

vTp+1v̄p

)
= µ

(p+1)
1 ηp (A.16)

We use the definition of the ‘worst-case’ energy, E(p)
max = µ

(p)
1 to rewrite Eq. (A.16)

in terms of energy,
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E(p+1)
max = E(p)

maxηp ⇒
E

(p+1)
max

E
(p)
max

= ηp ≥ 1 ⇒ logE(p+1)
max − logE(p)

max = log ηp ≥ 0

(A.17)

The last of Eq. (A.17) can be written in terms of any two target sets of size k and

j, k < j and Pk ⊂ Pj,

logE(j)
max − logE(k)

max =

j−1∑

i=k

log ηi (A.18)

We define η̄(k→j), which depends only on the two sets of target nodes Pk and Pj, as,

log
(
η̄j−k(k→j)

)
= (j − k) log η̄(k→j) =

j−1∑

i=k

log ηi (A.19)

In general, there are n!
j!(n−j)!

j!
k!(j−k)! = n!

k!(n−j)!(j−k)! possible choices of the sets Pk ⊂ Pj
from the n nodes in the network. In the main text, we focus on the specific case

when k = n/10 and j = n which we use to approximate η,

logE(n)
max − logE(n/10)

max = (n− n

10
) log η̄( n

10
→n) (A.20)

Note that for this specific choice of j and k, there are n!
n
10

!(n− n
10

)!
choices of end point

target sets, or in other words, values of log η̄( n
10
→n). We define η by computing the

average of log η̄( n
10
→n),

η ≡ n
〈

log η̄( n
10
→n)
〉
, (A.21)
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where 〈·〉 is the mean over all possible values. We show in the main text through

both model and real network examples that η provides an approximation for E(p)
max

such that n
10
≤ p ≤ n, so that we can rewrite Eq. (A.20) as,

〈
logE(p)

max

〉
=
〈
logE(n/10)

max

〉
+
p− n/10

n
η

=
p

n
η +

(〈
logE(n/10)

max

〉
− 1

10
η

)

〈
logE(p)

max

〉
∼ p

n
η

(A.22)

In Figs. 2, 3 and 4 of the main text, the linear model in the last of Eq. (A.22) is shown

to provide a good approximation of logE
(p)
max. In Fig. A.1, from Eqs. (A.18) and

(A.19) we set k = pmin = n/10, or 10% of the nodes in the network, and let j = pmax

increase from 30% to 90%, to show how the standard deviation of log η̄(pmin→pmax)

(that is of the logE
(pmax)
max , see Eq. (A.18)) decreases as we increase the cardinality

of the target sets. As we consider more values of ηi corresponding to larger values

of pmax, the peak of the PDF grows, meaning the variation of values of logE
(pmax)
max

decreases. As we demonstrate the variation of log η̄pmin→pmax becomes small when

pmax − pmin increases, we can rewrite Eq. (A.19) as approximately

(pmax − pmin) log η̄pmin→pmax ≈ (pmax − pmin) 〈log ηi〉 (A.23)

where i = pmin, . . . , pmax. It is seen through experiments that 〈log ηi〉 is independent
of the target set size (a generic example is shown in Fig. A.2) and can be computed

for a given network. We stress that while we have not proven ηi is independent of the

target node set cardinality i, we have provided ample numerical evidence through the

exponential scaling as seen in Figs. 2, 3, and 4 in the main text that ηi is invariant.

The network parameter η can be approximated simply as,

η ≈ n 〈ηi〉 (A.24)
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as ηi can be approximated as being constant. In Fig. A.2 we show an example of

when ηi is approximately constant and how η, the energy scaling value, can be closely

approximated by assuming ηi is constant. The decrease of the standard deviation

for each distribution is shown with respect to pmax in the inset.
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Figure A.1: Computing η for different values of pmin and pmax. From the
Methods section we see that η may be computed from one target set size to another
(which we call pmin and pmax). To ensure that we compute a value of η that describes
the entire network, we keep pmin = 10% and compute values of log η̄pmin→pmax for larger
values of pmax. We see that the distributions as pmax increases becomes ‘sharper’, i.e.,
that the standard deviation decreases, which is shown in the inset plot. After pmax

grows larger than 70%, we see that the improvement of the computed log η̄pmin→pmax

slows down so that we do not need to compute ηi for many additional points.
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Figure A.2: The ratio of maximum energies is approximately constant. For
a network, we compute each value of η iteratively as the cardinality of the target
set is reduced from n to 1. In panel A, we plot the individual values of logE

(p)
max

as p is varied and compare the trend to a line with the slope of η if each value
of ηi is assumed constant and a linear fit for the values of logE

(p)
max. We see good

agreement between the two methods. In panel B, we plot the individual values of
ηi = E

(p+1)
max /E

(p)
max. The deviation around the mean is fairly small.
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Detailed Derivation of Balance

Control Strategy

B.1 Minimum Balance Control

In our optimal balanced control problem, we attempt to minimize the following cost

function,

min
u(t)

J =
1− α

2
[
(
y(tf )− yf

)T (y(tf )− yf
)
]

+
α

2

∫ tf

t0

u(t)Tu(t)dt

(B.1)

subject to the constraints,

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t), x(t0) = x0

(B.2)

Here the final constraints are in the objective function and we call these constraints

soft constraints as we do not require them to be satisfied exactly. Note that if we set

C = In, where In is the n×n identity matrix, then y(t) = x(t). The vector yf is the
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prescribed final output state of the nodes described by the matrix C. Here α ∈ (0, 1)

is a scaling parameter by which we can penalize the two performance measures in

the cost function in (B.1) to balance the control energy. Note that in the case in

which α = 1, the cost function in Eq. (B.1) becomes the cost function associated

with the optimal output cost control problem in Eq. (2.3), where different from Eq.

(B.1), the final desired state is imposed on as a hard constraint.

The solution of the optimization problem in Eq. (B.1) is obtained using Pontry-

agin’s maximum principle [110] (See sections 5.1 and 5.2 in the book [110]). The

Hamiltonian equation introduces n costates ν(t),

H(x(t),ν(t),u(t)) =
α

2
uT (t)u(t) + νT (t)Ax(t) + νT (t)Bu(t) (B.3)

From the Hamiltonian equation, the following dynamical relations can be determined,

State Equation: ẋ(t) =
∂H
∂ν

= Ax(t) +Bu(t)

Costate Equation: ν̇(t) = −∂H
∂x

= −ATν(t)

Stationary Equation: 0 =
∂H
∂u

= αu(t) +BTν.

(B.4)

The stationary equation is used to determine the optimal control input.

u∗(t) = − 1

α
BTν (B.5)

The time evolution of the costates can be determined with a final condition of the

form, ν(tf ) = (1− α)CT ν̄, where ν̄ = y(tf )− yf ,

ν(t) = eA
T (tf−t)ν(tf ) = (1− α)eA

T (tf−t)CT ν̄ (B.6)

where ν̄ will be determined from the final output state. With the optimal control

input known, the time evolution of the states can also be determined,

x(t) = eA(t−t0)x0

− 1− α
α

∫ t

t0

eA(t−τ)BBT eA
T (tf−τ)dτCT ν̄

(B.7)
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The final state of the targeted nodes can be determined,

y(tf ) = CeA(tf−t0)x0 −
1− α
α

CWCT ν̄ (B.8)

Here W =
∫ tf
t0
eA(tf−τ)BBT eA

T (tf−τ)dτ is the controllability Gramian. When C is

defined as above, i.e., its rows are linearly independent versors, the reduced Gramian

Wp is a p-dimensional principal submatrix of W , i.e., we write Wp = CWCT . The p

dimensional vector ν̄ can be determined in a straightforward manner,

ν̄ =
α

1− α

(
α

1− αIp +Wp

)−1

×
(
CeA(tf−t0)x0 − yf

)
=

α

1− αU
−1
p β

(B.9)

where β =
(
CeA(tf−t0)x0 − yf

)
and Up =

(
α

1−αIp +Wp

)
. For 0 < α < 1, the p × p

matrix Up is always symmetric, positive definite matrix and invertible. In fact, the

matrix Wp is positive semidefinite and the eigenvalues of Up are the same as the

eigenvalues of Wp plus the positive quantity α
1−α . Moreover the eigenvectors of the

matrices Up and Wp are the same. From Eq. (B.5)-(B.9) , the optimal control input

signal when the final condition is in the objective function is equal to,

u∗(t) = −BT eA
T (tf−t)CTU−1p β (B.10)

The equation for the time evolution of the outputs is equal to,

y(t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−τ)Bu∗(τ)dτ (B.11)

B.1.1 Versor

A versor is a direction vector of unit length whose only nonzero element is 1. The

nonzero element in a versor indicates the direction of an axis in Cartesian coordinate

system. In linear algebra, the set of linearly independent versors are called the
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standard basis. For instance, versors in the direction of the x, y, and z axes of a

three three dimensional Cartesin coordinate system are,

î =




1

0

0


 , ĵ =




0

1

0


 , k̂ =




0

0

1


 (B.12)

.
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Glucose-Insulin-Glucagon Model and

Parameters for Type I Diabetes

C.1 GIG Model and Parameters

C.1.1 Overview of GIG Model with Type I Diabetics

We consider the model in [58, 59] which is a system of nonlinear differential equations

(ODEs). In all equations, t is the physical time (in min), all subscripts b denotes

basal state, and all of the parameters are given in the table C.1. The system of

nonlinear differential equations are given below:
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Glucose Subsystem:

Ġp(t) = EGP (t) +Ra(t)− Uii − E(t)− k1Gp(t) + k2Gt(t), Gp(0) = Gpb

(C.1a)

Ġt(t) = −Uid(t) + k1Gp(t)− k2Gt(t), Gt(0) = Gtb

(C.1b)

G(t) =
Gp

VG
, G(0) = Gb

(C.1c)

Here Gp (in mg/kg) is the mass of plasma glucose; Gt (in mg/kg) is the mass of

tissue glucose; G (in mg/dL) is plasma glucose concentration and Vg (in dL/kg) is

the distribution volume of glucose; EGP is the endogenous glucose production (in

mg/kg/min); Ra (in mg/kg/min) is the rate of glucose appearance in plasma; Uii (in

mg/kg/min) and Uid (in mg/kg/min) are insulin-independent and insulin-dependent

glucose utilizations, respectively. Also k1 and k2 are the parameters.

Insulin Subsystem:

İp(t) = −(m2 +m4)Ip(t) +m1Il(t) +Ria(t), Ip(0) = Ipb (C.2a)

İl(t) = −(m1 +m3)Il(t) +m2Ip(t), Il(0) = Ilb (C.2b)

I(t) =
Ip(t)

VI
, I(0) = Ib (C.2c)

Here Il (in pmol/kg) is the mass of liver insulin; Ip (in pmol/kg) is the mass of

tissue insulin; I (in pmol/L) is the plasma insulin concentration; VI (in L/kg) is the

distribution volume of insulin; Ria (in pmol/kg/min ) is the rate of appearance of

insulin in plasma; m1, m2, m3 and m4 are the parameters.
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Glucose rate of appearance:

Qsto(t) = Qsto1(t) +Qsto2(t), Gsto(0) = 0 (C.3a)

Q̇sto1(t) = −kgriQsto1(t) +Dδ(t− τD), Qsto1(0) = 0 (C.3b)

Q̇sto2(t) = −kempt(Qsto)(t)Qsto2(t) + kgriQsto1(t), Qsto2(0) = 0 (C.3c)

Q̇gut(t) = −kabsQgut(t) + kemptQsto(t)Qsto2(t), Qgut(0) = 0 (C.3d)

Ra(t) =
f.kabs.Qgut(t)

BW
, Ra(0) = 0 (C.3e)

kempt(Qsto) = kmin +
kmax − kmin

2
. (C.3f)

{tanh[α(Qsto − b.D)]− tanh[β(Qsto − c.D)] + 2} (C.3g)

Here Qsto (in mg) is the amount of glucose in the stomach, Qsto1 (in mg) is the

amount of liquid glucose in the stomach, Qsto2 (in mg) is the amount of solid glucose

in the stomach, Qgut (in mg) is the glucose mass in the intestine; D (in mg) is the

amount of ingested glucose at time τD; BW (in kg) is body weight; kempt is the rate

constant of the gastric emptying; Kgri, kabs, kmax, kmin, f , α, β are the parameters.

Endogenous glucose production:

EGP (t) = kp1 − kp2Gp(t)− kp3XL(t) + ξXH(t), EGP (0) = EGPb (C.4a)

İ ′(t) = −ki [I ′(t)− I(t)] , I ′(0) = Ib (C.4b)

ẊL(t) = −ki
[
XL(t)− I ′(t)

]
, XL(0) = Ib (C.4c)

ẊH(t) = −kHXH(t) + kH ×max [H(t)−Hb, 0] , XH(0) = 0 (C.4d)

Here XL (in ) is delayed insulin action on EGP ; XH is delayed glucagon action

on EGP ; I ′ is delayed insulin in compartment 1; kp1, kp2, kp3, ξ, ki, kH are the

parameters.
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Glucose utilization:

Uii(t) = Fcns (C.5a)

Uid(t) =
[Vm0 + Vmx.X(t)]Gt(t)

Km0 +Gt(t)
(C.5b)

Ẋ(t) = −p2UX(t) + p2U [I(t)− Ib], X(0) = 0 (C.5c)

Here Uii (in mg/kg/min) and Uid (in mg/kg/min) are insulin-independent and insulin-

dependent glucose utilization; X (in pmol/L) is insulin in interstitial fluid; Fcns, Vm0,

Km0, p2U are the parameters.

Renal excretion:

E(t) =




ke1[Gp(t)− ke2] if Gp(t) > ke2

0 if Gp(t) ≤ ke2

(C.6)

Here E(t) (in mg/kg/min) is the glucose renal exertion; ke1 is the parameter.

Glucagon kinetics and secretion:

Ḣ(t) = −nH(t) + SRH(t) +RaH(t), H(0) = Hb

(C.7a)

SRH(t) = SRs
H(t) + SRd

H(t), (C.7b)

ṠRs
H(t) = −ρ

[
SRs

H(t)−max

(
σ[Gth −G(t)]

max(I(t)− Ith, 0) + 1
+ SRb

H , 0

)]
, SRs

H(0) = nHb

(C.7c)

SRd
H(t) = δmax

(
−dG(t)

dt
, 0

)
(C.7d)

Here H (in ng/L) is the concentration of plasma glucagon; SRH (in ng/L/min) is

the glucagon secretion; RaH (in ng/L/min) is the rate of appearance of glucagon

in plasma; SRs
H (in ng/L/min) and SRd

H (in ng/L/min) is the static and dynamic

components of glucagon, respectively; n, ρ, Ith, δ are the parameters.
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Subcutaneous insulin kinetics:

Ria(t) = ka1Isc1(t) + ka2Isc2(t) (C.8a)

İsc1(t) = −(kd + ka1)Isc1(t) + IIR(t), Isc1(0) = Isc1ss (C.8b)

İsc2(t) = kd.Isc1(t)− ka2Isc2(t), Isc2(0) = Isc2ss (C.8c)

IIR(t) = IIRb +
uI(t)

BW
(C.8d)

Here Ria (in pmol/kg/min) is the rate of appearance of insulin in plasma; Isc1 (in

pmol/kg) is the amount of nonmonomeric insulin in the subcutaneous space; Isc2 is

the amount of monomeric insulin in the subcutaneous space; IIR(t) is the insulin

infusion rate where IIRb is the basal infusion rate (in pmol/kg/min) from body and

uI (in pmol/min) is the external insulin infusion rate; ka1, ka2, kd are the parameters.

As the exogenous insulin infusion rate appears in the above equation in pmol/kg/min,

we divide uI by the body weight BW in the equation. Note that here the uI is in

pmol/min. To convert the unit of insulin infusion rate uI from U/min to pmol/min,

we multiply uI by 6944.4, that is the unit conversion is 1 U/min = 6944.4 pmol/min.

Subcutaneous glucagon kinetics:

Ḣsc1(t) = −(kh1 + kh2)Hsc1(t) +GIR(t), Hsc1(0) = Hsc1ss (C.9a)

Ḣsc2(t) = kh1Hsc1(t)− kh3Hsc2(t), Hsc2(0) = Hsc2ss (C.9b)

RaH(t) = kh3Hsc2(t) (C.9c)

GIR(t) = GIRb +
uG(t)

BV
(C.9d)

Here Hsc1 (in ng/L) and Hsc2 (in ng/L) are the glucagon concentration in the subcu-

taneous space; IGR is the glucagon infusion rate where GIRb is the basal glucagon

infusion rate (in ng/L/min) from the body and uI is the external glucagon infusion

rate (in ng/min);kh1, kh2, kh3 are the parameters. As the exogenous glucagon in-

fusion rate appears in the above equation in ng/L/min, we divide uG by the body

volume BV in the equation. Note that here the uG is in ng/min. To convert the
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unit of glucagon infusion rate from mg/min to ng/min, we multiply uG by 106, that

is the unit conversion is 1 mg/min = 106 ng/min.

We write the ODEs in Eqs. (C.1)-(C.9) in the form ẋ(t) = f(x(t),u(t),ΘGb)

where x ∈ R17 and t is the physical time (in min). The variable x1 represents Gp,

the mass of glucose in plasma; the variable x2 represents Gt, the mass of glucose

in tissue; the variable x3 represents the mass of liver insulin Il; the variable x4

represents the mass of plasma insulin Ip; the variable x5 represents the amount of

delayed insulin I ′ in compartment 1; the variable x6 represents the amount of delayed

insulin XL action on EGP ; the variable x7 represents the amount of solid glucose

Qsto1 in the stomach; the variable x8 represents the amount of liquid glucose Qsto2

in the stomach; the variable x9 represents the glucose mass Qgut in the intestine; the

variable x10 represents the amount of interstitial fluid X; the variable x11 represents

the amount of static glucagon SRs
H ; the variable x12 represents the amount of plasma

glucagon H; the variable x13 represents the amount of delayed glucagon XH action

on EGP ; the variable x14 represents the amount of nonmonomeric insulin Isc1; in the

subcutaneous space; the variable x15 represents the amount of monomeric insulin Isc2

in the subcutaneous space; the variable x16 represents the amount of subcutaneous

glucagon Hsc1 in the subcutaneous space; the variable x17 represents the amount of

subcutaneous glucagon Hsc2 in the subcutaneous space. Also u(t) = [uI(t) uG(t)]T ,

where uI is the external insulin and uG is the external glucagon. We define ΘGb as

the set of parameters for which the basal glucose level is Gb.

C.1.2 Parameters

There are a total of 46 parameters in Eqs. (C.1)-(C.9). The parameters are not

given in [58]. We set all the parameters for ‘Glucose subsystem’, ‘Insulin subsystem’,

‘Glucose rate of appearance’, ‘Endogenous glucose production’, ‘Glucose utilization’,
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‘Glucose utilization’, ‘Renal excretion’, ‘Subcutaneous insulin kinetics’ from the ref-

erences [57, 115], except kp1, Vm0 and HEb. According to [115], the parameters are

chosen to satisfy the steady-state constraints in type I diabetes. The parameters kp1

and Vm0 are set so that the steady state solutions provide the basal Glucose level Gb

and EGPb = 2.4. In Type I diabetes, the endogenous glucose production is high [115],

so we choose EGPb = 2.4 mg/kg/min. We set IIRb = 0 and GIRb = 0 as the model

we consider is for Type I diabetes. The commercial version of the UVA/Pavoda sim-

ulator [242] allows computing blood glucose responses to supplied dosages of insulin

for some patients, but does not provide all of the parameters. We tune the parameter

HEb so that the blood glucose response to insulin of the patient we consider in this

paper is qualitatively similar to the blood glucose response to insulin of a patient

from the software [242] (adultaverage.mat). All of the parameters we use are listed

in the Table C.1 for reproducibility of the results. Our implementation of the model

[58] has been published in GitHub [243].

The equations for kp1 and Vm0 are given below:

kp1 = EGPb + kp2Gpb + kp3Ib (C.10a)

Vm0 =
(EGPb − Fcns)(Km0 +Gtb)

Gtb

(C.10b)
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The basal steady states are given below:

Gpb = Gb.Vg (C.11a)

Gtb =
Fcns − EGPb + k1Gpb

k2
(C.11b)

Ilb = Ipb.
m2

m1 +m3

(C.11c)

Ipb =
IIRb

m2 +m4 − m1m2

m1+m3

(C.11d)

Isc1ss =
IIRb

kd + ka1
(C.11e)

Isc2ss =
kd
ka2

Isc1ss (C.11f)

SRs
Hb = nHb (C.11g)

Hsc1ss =
GIRb

kh1 + kh2
(C.11h)

Hsc2ss =
kh1
kh3

Hsc1ss (C.11i)

Here, the basal values Gb (in mg/dL), IIRb (in pmol/kg/min) and GIRb (in

ng/L/min) are settable by the user.

C.2 Continuous Approximation of Non-differential

Function in ODEs

The optimization algorithms implemented in PSOPT require the derivatives of the

function f(x(t),u(t),ΘGb) exists. We notice that there are discontinuities in Eqs.

(C.1)-(C.9).

The smooth approximation of the Renal exertion function E(t) in Eq. (C.6) by using
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a Heaviside function is,

E(t) = ke1(Gp(t)− ke2)×H(Gp(t), ke2, k), (C.12)

where,

H(Gp(t), ke2, k) =
1

1 + e−k(Gp−ke2)
, k ∈ Z. (C.13)

Here a larger k corresponds to a sharper transition around Gp(t) = ke2.

We define a continuous approximation of the Dirac delta function δ(t − τD) in Eq.

(C.3c),

δ(t− τD) =
d

dt
H(t, τD, k), (C.14)

where H(t, τD, k) = 1
1+e−k(t−τD) , k ∈ Z. Here a larger k corresponds to a sharper

transition at t = τD.

We also define continuous approximation of the max(.) function, e.g. in Eq. (C.4d),

as

max(H(t)−Hb, 0) = (H(t)−Hb)×H(H(t), Hb, k), (C.15)

where H(H(t), Hb, k) = 1
1+e−k(H−Hb) , k ∈ Z. Here a larger k corresponds to a sharper

transition at H(t) = Hb. In all our approximation we set k = 4.
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Table C.1: Average parameters

Parameter Type I Value Unit

BW 78 [57] Kg
BV 78 [57] L
Vg 1.49 [57] dL/kg
k1 0.065 [57, 115] min−1

k2 0.079 [57, 115] min−1

VI 0.04 [57] L/kg
m1 0.379 [57] min−1

m2 0.673 [57] min−1

m4 0.269 [57] min−1

m5 0.0526 [57] min.kg/pmol
m6 0.8118 [57] dimensionless
HEb 0.112[57] dimensionless
kp1 change Eq. (C.10) mg/kg/min
kp2 0.0021 [57, 115] min−1

kp3 0.009 [57, 115] mg/kg/min per pmol/L
kp4 0.0786 [57] mg/kg/min per pmol/L
ki 0.0066 [57] min−1

kmax 0.0465 [57] min−1

kmin 0.0076 [57] min−1

kabs 0.023 [57] min−1

kgri 0.0465 [57] min−1

f 0.9 [57] dimensionless
a 0.00016 [57] mg−1
b 0.68 [57] dimensionless
c 0.00023 [57] mg−1
d 0.009 [57] dimensionless
Fcns 1 [57] mg/kg/min
Vm0 changes (Eq. (C.10) mg/kg/min
Vmx 0.034 [57] mg/kg/min per pmol/L
Km0 4661.21 mg/kg
P2u 0.084 [57] min−1

ke1 0.0007 [57] min−1

ke2 269 [57] mg/kg
kd 0.0164 [115] min−1

ka1 0.0018 [115] min−1

ka2 0.0182 [115] min−1

δ 0.682 [58] (ng/L per mg/dL)
σ 1.093 [58] min−1

n 0.15 [58] min−1

ζ 0.009 [58] (mg/kg/min per ng/L)
ρ 0.57 [58] (ng/L/min per mg/dL)
kH 0.16 [58] min−1

Ith Ib [58] (pmol/L)
Gth Gb [58] mg/dL
kh1 0.0164 [58] min−1

kh2 0.0018 [58] min−1

kh3 0.0182 [58] min−1
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Table C.2: Basal values
Basal Type I Value Unit

XH
b 0 [244] pmol/L

EGPb 2.4 [115] mg/kg/min
Hb 93 [244] ng/L
IIRb 0 [115] pmol/kg/min
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Supplementary information for

Chapter 6

D.1 Formulation of the Model

Formulation of Eq. (6.1) was guided by the models of Szymańska et al.[177] (Ref.

33 in the main text) and Martin et al.[178] (Ref. 34 in the main text) mainly as

follows. The model of Eq. (6.1) was formulated and parameterized so as to allow

the model to predict oscillatory induction of autophagy in response to intermediate

drug, energy, and nutrient stress inputs (as illustrated in Figs. 6.2 and 6.3), in

accord with the predictions of the model of Szymańska et al.[177]. Moreover, as

in both models considered by Martin et al.[178], Eq. (6.1) takes AVs to be turned

over constitutively via a pseudo first-order degredative process. Another factor that

drove model formulation and parameterization was the availability of measured AV

dynamics induced by MTORC1 inhibition[178]. Eq. (6.1) was parameterized so as

to reproduce the essential aspects of these dynamics (see below for more discussion).

Equation (6.1) differs from the earlier models of Szymańska et al.[177] and Martin
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et al.[178] mainly as follows. In the model of Szymańska et al.[177], the regulatory

influences depicted in Fig. 6.1 (e.g., mutual inhibition of MTORC1 and ULK1 and

negative feedback from ULK1 to AMPK) are not explicitly represented, as is the

case in the model of Eq. (6.1), where regulatory influences on enzymatic activities

are represented explicitly using Hill functions. Rather, in the model of Szymańska et

al.[177], regulatory influences emerge from formal representations of the biomolecular

interactions considered in the model, which are termed rules[245]. In other words,

Eq. (6.1) provides a model of regulatory influences and their effects, whereas the

model of Szymańska et al.[177] provides a model of biomolecular interactions and

their effects, which include emergent regulatory influences. The rules of the model

of Szymańska et al.[177] can be processed automatically by the BioNetGen soft-

ware package[246] to obtain a system of 173 coupled ordinary differential equations

(ODEs). These equations account for various complexes (e.g., a complex of AMPK

and ULK1 that is generated when AMPK docks to a particular site in ULK1) and

protein phosphoforms. In contrast, the model of Eq. (6.1) does not track these de-

tails. Rather, it simply tracks the activities of AMPK, MTORC1, and ULK1 (and

also the activity of VPS34, which was not considered by Szymańska et al.[177]). In

the model of Szymańska et al.[177], AMPK, MTORC1, and ULK1 each has numer-

ous states. In contrast, in the model of Eq. (6.1), these protein states are reduced to

just two for each protein: active or inactive.

Although the model of Szymańska et al.[177] provides a mechanistically detailed

representation of biomolecular interactions, it does not include a representation of

autophagic vesicle (AV) population dynamics. To include a representation of AV

population dynamics in Eq. (6.1), we started with the simple representation of AV

production and clearance used in the AV population dynamics model of Martin et

al.[178]:

dV

dt
= P ∗ − cV,
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where V is cellular AV count, P ∗ is a condition-dependent zero-order rate constant

for AV production, and c is a pseudo first-order rate constant for clearance of AVs.

In our model, we modified this equation by allowing the production rate to be time

dependent. In Eq. (6.1) the rate of AV production is a linear function of VPS34

activity, x4(t). In other words, the rate of AV production is given by k3x4(t) (vs. a

constant, P ∗).

Parameter settings are summarized in Tables D.1 and D.1. These settings are

not uniquely determined by data; they were guided by the considerations explained

below.

Parameter settings for parameters in the h and H Hill functions were determined

first, as follows. For each Hill function, we initially set rb = 0, rm = 1, θ = 0.5, and

n = 2. (We omit indices in referring to these parameters for convenience.) We then

varied parameter values (by hand tuning) to obtain qualitative behavior consistent

with that predicted by the model of Szymańska et al.[177]. The behaviors of the two

models are compared directly in Fig. D.1. In panels A and B of Fig. D.1, AV count

(x5) and ULK1 activity (x2) are shown, respectively, as a function of time. Initially,

in these plots, we consider a nutrient/energy replete condition (CEn = CNu = 1)

without rapamycin (or any other drug). A low dose of rapamycin is added at time

t = 100 min and then a high dose of rapamycin is added at time t = 200 min. As can

be seen, x5 (Fig. D.1A) and x2 (Fig. D.1B) initially have steady low values. After the

initial introduction of rapamycin, these quantities begin to oscillate. After the second

addition of rapamycin, the two quantities have steady high values. This behavior

is qualitatively the same as the behavior predicted by the model of Szymańska et

al.[177] (Fig. D.1C ). It should be noted that the study of Szymańska et al.[177] did

not establish that the AMPK-MTORC1-ULK1 network actually exhibits oscillatory

behavior; this study only showed that oscillatory behavior is a possible consequence of

known regulatory mechanisms. By requiring Eq. (6.1) to reproduce the qualitative
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nonlinear dynamics of the model of Szymańska et al.[177], we made the optimal

control problem considered here more of a challenging test of our methodology.

Next, parameter settings for the rate constants k1, k2, k3 and k4 were determined

(again through hand tuning). In the study of Martin et al.[178], AV population dy-

namics were monitored after cells in a nutrient/energy replete condition were treated

with a dose of rapamycin or AZD8055 (a catalytic MTOR inhibitor) sufficient to fully

inhibit MTORC1 activity. We selected values for the rate constants that allow the

model of Eq. (6.1) to roughly reproduce the observed dynamics induced by MTORC1

inhibition in the study of Martin et al.[178]. The behaviors predicted by Eq. (6.1)

and the model of Martin et al.[178] are directly compared in panels D and E of Fig.

D.1. The AV population dynamics model of Martin et al.[178] can be written as fol-

lows: dV/dt = (1+kδ)P −cV , where δ = 0 indicates a 0 dose of MTORC1 inhibitor,

δ = 1 indicates a saturating dose of MTORC1 inhibitor, P is the baseline rate of

AV production, and (1 + k)P is the induced rate of AV production stimulated by a

saturating dose of MTORC1 inhibitor. By varying δ from 0 to 1, we obtain the plots

shown in Fig. D.1E. Note that AV dynamics at intermediate values for δ are not os-

cillatory, as we would expect from the analysis of Szymańska et al.[177]. In contrast,

Eq. (6.1) does predict oscillatory AV dynamics at intermediate doses of MTORC1

inhibitor (Fig. D.1D). Importantly, as desired, Eq. (6.1) makes predictions that are

in qualitative agreement with the model of Martin et al.[178], in that both models

predict that AV dynamics stimulated by MTORC1 inhibitor treatment unfold on a

similar timescale and that the maximal range of regulation is similar. In Fig. D.2, we

directly compare the AV dynamics predicted by Eq. (6.1) with AV dynamics meas-

ured by Martin et al.[178]. As can be seen, Eq. (6.1) is roughly consistent with the

data.

Finally, parameter settings for the drug clearance rate constants in Eq. (6.1)

(δ1, . . . , δ6) were set in accordance with measured drug lifetimes reported in the
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literature, which have half-lives ranging from approximately 1 to 40 h. See Table

D.2 and references cited therein. With this approach, the different drugs considered

have different pharmacokinetics, arguably making the optimal control problem more

realistic.

D.2 Pseudo-Spectral Optimal Control

We present here a brief overview of the theory of pseudo-spectral optimal control

(PSOC) in the point of view of controlling of autophagy discussed in chapter 6.

General Problem

The OCP in Eqs. (6.5)–(6.6) in can be written as a general OPC,

min
u(t)

J(x(t),u(t), t) = E (x(t0),x(tf ), t0, tf ) +

∫ tf

t0

F (x(t),u(t), t) dt

s.t. ẋ(t) = f(x(t),u(t), t)

eL ≤ e(x(t0),x(tf ), t0, tf ) ≤ eU

hL ≤ h(x(t),u(t), t) ≤ hU

t ∈ [t0, tf ]

(D.1)

The objective function (or cost function) J(x,u, t) is composed of two parts, (i)

E : Rn × Rn × R × R 7→ R which is a cost associated with the endpoint behavior

of the system x(t0) and x(tf ), and (ii) F : Rn × Rm × R 7→ R which is a running

cost over the entire time interval [t0, tf ]. The system dynamics is described by the

function f : Rn × Rm × R 7→ Rn. Constraints on the endpoints (x(t0) and/or x(tf ))

are described by e : Rn×Rn×R×R 7→ Re. While we only specify initial conditions,

more complicated relations between the endpoints of the states can be specified as
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well. Finally, path constraints, such as bounds on the states or control inputs, are

described by h : Rn × Rn × R 7→ Rh.

Notation for Therapies

Let D = {1, 2, 3, 4, 5, 6} denote the possible drugs we may use (described in the main

text) and Tk ⊆ D denote the drugs chosen for our therapy such that |Tk| = k. Let

w(t) ∈ Rk denote the drug concentrations and u(t) ∈ Rk denote the drug injection

rates for only those drugs chosen to be in the therapy. For example, if we consider

the dual therapy T2 = {3, 6}, then

w(t) =


 w3(t)

w6(t)


 , u(t) =


 u3(t)

u6(t)


 (D.2)

Those drugs not chosen to be in Tk are denoted D\Tk. In the example where Tk =

{3, 6}, those drugs not used are D\Tk = {1, 2, 4, 5}. If a drug i ∈ D\T then we set

wi(t) = 0 for all time t.

The drug concentrations appear in the dynamical equations as inhibitory Hill

functions H(wi(t)).

H(wi(t)) = rm,i − (rm,i − rb,i)
wnii (t)

wnii (t) + θni
(D.3)

Note that if i /∈ Tk, then, as stated previously, wi(t) = 0, and so, by Eq. (D.3),

H(wi(t)) = 1 for all time t.

The Minimum Drug OCP

In the main text, we present a multi-phase optimal control problem, i.e., two optimal

control problems linked together by enforcing continuity at their interface. Despite

this added complexity, we can develop a set of necessary conditions for each phase
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individually and so for now we focus on the single phase problem. We will return to

the multi-phase problem in the next section that covers the discretization procedure.

Either phase of the OCP presented in the main text can be mapped to the general

formulation presented in Eq. (D.1) with the following definitions.

• The state variables x(t) =
[
x1(t) x2(t) x3(t) x4(t) x5(t) wT (t)

]T
∈

R5+k and the control input u(t) ∈ Rk so that n = 5 + k and m = k.

• The cost function J =
∫ tf
t0
ui(t)dt (see Eq. (6.5) in the main text) so that, from

Eq. (D.1), E ≡ 0 and F =
∑

i∈T ui(t).

• The system dynamics, as presented in Eq. (6.1), are rewritten here,

ẋ(t) =




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

ẋ5(t)

ẇ(t)




= f(x(t),u(t)) = f̄(x(t)) +Bu(t)

=




(1− x1)CNuH(w1)H(w2)− x1h12(x2)h13(x3)
(1− x2)h23(x3)H(w3)− x2h21(x1)
(1− x3)k1H(w4)− CEnx2x3H(w5)

(1− x4)h42(x2)H(w2)H(w6)− k2x4
k3x4 − k4x5
−∆w(t)




+




0Tk

0Tk

0Tk

0Tk

0Tk

Ik




u(t)

(D.4)

where 0k is a vector of all zeros of length k, Ik is the identity matrix of order

k, and ∆ is a diagonal matrix with the corresponding rates δi on the diagonal

if i ∈ T . For example, if T = {3, 6}, then

∆ =


 δ3 0

0 δ6


 (D.5)
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Also, note that if i /∈ T , then wi(t) ≡ 0 and H(wi(t)) = 1.

• The only endpoint constraints are set at the initial time,

e(x(t0),x(tf ), t0, tf ) =




x1(0)

x2(0)

x3(0)

x4(0)

x5(0)

w(0)




, eL = eU =




x1,0

x2,0

x3,0

x4,0

x5,0

0k




(D.6)

where xi,0 is chosen to either be the steady state value of the system in the

absence of control inputs or the time-average of the time evolution of the system

if the dynamics, in the absence of control inputs, is oscillatory. We assume there

is no drug present initially so wi(0) = 0, i ∈ D.

• Finally, the path constraints consist of upper bounds on the drug concentrations

and possibly a lower and/or upper bound on the AVs.

h(x(t),u(t), t) =




x5(t)

w(t)

u(t)


 , hL =




xL5

0k

0k


 , hU =




xU5

wmax1k

∞


 (D.7)

where, for the first phase, xL5 = 0 and xU5 = ∞ but for the second phase we

choose xL5 = xf5−ε and xU5 +ε. Also, the upper bound on the drug concentration

is chosen to be identical for all drugs in the therapy.

Solving Eq. (D.1) is not a trivial task, and typically there exists no closed form

solution. Instead one typically must turn to numerical methods, such as PSOC,

which we will discuss in the subsequent subsections in some detail. Nonetheless, one

can derive a set of necessary conditions that any solution to Eq. (D.1) must satisfy

using Pontryagin’s minimum principle [110]. Developing these types of necessary
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conditions allows us to construct a set of validation criteria with which we may test

the quality of any solution returned by our numerical methods.

A full derivation of Pontryagin’s minimum principle is beyond the scope of this

work but it is readily available in many standard texts [110]. Here, we present the

main results surrounding the Hamiltonian constructed from Eq. (D.1).

Minimizing the Hamiltonian

Define a vector of time-varying costates (or adjoint variables) as λ(t) =
[
λTx (t) λTw(t)

]T
∈

R5+k so that λx(t) ∈ R5 and λw(t) ∈ Rk. The Hamiltonian of the OCP in Eq. (D.1)

is defined as,

H(λ,x,u, t) = F (x,u, t) + λT f(x,u, t)

=
∑

i∈T
ui + λT f̄(x) + λBu

(D.8)

where λ(t) ∈ Rn are the costates (or adjoint variables). A solution to Eq. (D.1) must

also be a solution of the following minimization problem.

min
u(t)

H(λ,x,u, t)

s.t. hL ≤ h(x,u, t) ≤ hU
(D.9)

To solve Eq. (D.9), we define the associated Lagrangian,

H̄(µ,λ,x,u, t) = H(λ,x,u, t) + µTh(x,u, t)

=
∑

i∈T
ui + λT f̄(x) + λTBu + µx5x5 + µTww + µTuu

(D.10)

where µ =
[
µx5 µTw µTu

]T
∈ Rh is the copath vector with components associated

with the components of the vector of path constraints in (D.7). A solution to Eq.

(D.9), and thus to our original OCP, must satisfy,

∂H̄

∂u
= 1k +BTλ+ µu = 0 (D.11)
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where the costates evolve according to the dynamical equation,

λ̇ = −∂H̄
∂x

= −
(
∂ f̄
∂x

)T
λ+




04

µx5

µw


 (D.12)

The optimal control input ui(t), i ∈ T , must satisfy the complementarity condition

[56, 114]




ui(t) = 0 if µi(t) < 0

ui(t) ≥ 0 if µi(t) = 0

ui(t)→∞ if µi(t) > 0

(D.13)

Combining Eqs. (D.11) and (D.13), we can relate µu to the time-varying costates by

noting from the structure of B, BTλ = λw so that,

µu(t) = −1k − λw(t) (D.14)

Thus, if λwi > −1 then ui = 0, but if λwi = −1, then all we can say is that ui ≥ 0.

When λwi > −1, the optimal control is said to have a singular arc (see chapter 5 in

[110]). Despite the technical difficulties, we have arrived at our first set of validation

conditions, that is,

ui · (−λwi − 1) = 0, ∀i ∈ T (D.15)

Let us now assume that we have solved Eq. (D.9), that is,

H(t) = min
u∈U

H(λ,x,u, t) (D.16)

where U is the set of feasible control inputs, i.e., they satisfy all of the constraints

imposed by Eq. (D.1). The evolution of the Hamiltonian at the optimal solution can

be written,

dH
dt

=
∂H

∂t
(D.17)
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where, since in our OCP, H does not explicitly depend on time, we expect that

dH/dt = 0 and so H should be constant. This is the second validation condition.

While in the paper and the sections in appendix D, we display time traces of

the states and the control inputs as they are the quantities of interest to the general

reader, we are also able to access the costate and copath time traces, as well as the

time trace of the Hamiltonian. In Fig. D.11 we show a typical set of output that we

use for measuring the quality of our returned numerical solution. The sample shows

a monotherapy where T = {4}. Panel (a) shows the level of AVs, x5(t), and panel

(b) shows the drug concentration w4(t). Panel (c) contains the copath associated

with the level of AVs, µx5(t). Note that during the first phase when there is no finite

bound on x5(t) the copath µx5(t) = 0, while during second phase if µx5(t) 6= 0 then

x5(t) = xf5 ± ε. In panel (d) we plot the other copath µw4(t). The control input u4(t)

itself is shown in panel (e) along with the costate λw4(t) in panel (f). Note that the

times at which u4(t) > 0 correspond to times when λw4(t) = −1 as expected. Panel

(g) plots the time evolution of the Hamiltonian evaluated at the optimal solution.

Note that the y-axis is scaled by 10−2. We see that H ≈ const within each phase,

with a jump occurring at the interface between the two phases. As we cannot say

anything about the value of the Hamiltonian at the interface, a discontinuity at this

point in time can be expected.

D.2.1 Discretization of the OCP

As presented in the previous subsection, we have seen that the set of necessary con-

ditions which must be satisfied consist of a system of coupled nonlinear differential

equations for x(t) and λ(t) along with a set of non-trivial constraints. Searching for

an analytic solution is unlikely to be successful and so instead we turn to pseudo-

spectral optimal control (PSOC).
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In short, PSOC is a methodology by which one may discretize an OCP, approx-

imating the integrals by quadratures and the time-varying states and control inputs

with interpolating polynomials.

The key to PSOC is choosing the discretization points properly. Let {τi}, i =

0, . . . , N , denote the discretization points. Typically these are chosen as the roots of

an orthogonal polynomial such as a Legendre polynomial or a Chebyshev polynomial

of order N . For some popular choices of discretization schemes see [111]. For con-

creteness, we will assume that τ0 = −1 and τN = 1, i.e., we are using a discretization

scheme that includes the endpoints and is normalized by the mapping,

t =
tf − t0

2
τ +

tf + t0
2

(D.18)

For the discretization scheme chosen, we also compute the associated quadrature

weights. For instance, if we choose the roots of a Legendre polynomial as the dis-

cretization scheme, the associated quadrature weights can be found in the typical

way for Gauss quadrature. The time-varying states and control inputs are found by

approximating them with a Lagrange interpolating polynomial.

x(τ) ≈ x̂(τ) =
N∑

i=0

x̂iLi(τ)

u(τ) ≈ û(τ) =
N∑

i=0

ûiLi(τ)

(D.19)

The Lagrange interpolating polynomials are defined as,

Li(τ) =
N∏

j=0,j 6=i

τ − τj
τi − τj

(D.20)

Note that the Lagrange interpolating polynomials satisfy the isolation property, that

is, Li(τj) = δi,j. We can thus construct a set of algebraic equations corresponding

to the discretization points {τi}. Define Dk,i = dLi
dτ

(τk) so that the derivative of the

states at the discretization points can be approximated as,

˙̂x(τk) =
N∑

i=0

x̂iDk,i (D.21)
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With Eqs. (D.19) and (D.21), we can approximate the original system of n differential

equations as n(N + 1) algebraic equations.

N∑

i=0

Dk,ix̂i −
tf − t0

2
f(x̂k, ûk, τk) = 0n, k = 1, . . . , N

x̂N − x̂0 −
N∑

k=1

N∑

i=0

wkDk,ix̂i = 0n

(D.22)

The last set of algebraic constraints arise from the consistency condition
∫ tf
t0
ẋ(t)dt =

x(tf )−x(t0). Similarly to the consistency condition, the integral in the cost function

is approximated as,

J =

∫ tf

t0

F (x,u, t) ≈ Ĵ =
tf − t0

2

N∑

k=1

F (x̂k, ûk, τk) (D.23)

The discretized approximation of the original OCP is compiled into the following

nonlinear programming (NLP) problem.

min
ui

Ĵ =
tf − t0

2

N∑

k=1

F (x̂k, ûk, τk)

s.t.
N∑

i=0

Dk,ix̂i −
tf − t0

2
f(x̂k, ûk, τk) = 0, k = 1, . . . , N

x̂N − x̂0 −
N∑

k=1

N∑

i=0

wkDk,ix̂i = 0

eL ≤ e(x̂0, x̂N , τ0, τN) ≤ eU

hL ≤ h(x̂k, ûk, τk) ≤ hU

(D.24)

With the above results, we now present the application to the full multi-phase

optimal control problem. In general, let us assume there are p phases where p = 2

in our problem. Each phase is active within the interval t ∈ [t
(p)
0 , t

(p)
f ]. In each phase

there is a cost function J (p), a dynamical system f(p), a set of endpoint constraints

e(p), and a set of path constraints h(p). If two phases, p and q, are linked, then there
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also exists a set of linkage constraints Φ(p,q).

min
u(p)

P∑

p=1

J (p) =
P∑

p=1

∫ t
(p)
f

t
(p)
0

F (p)(x(p),u(p), t)dt

s.t. ẋ(p)(t) = f(p)(x(p),u(p), t)

hL,(p) ≤ h(p)(x(p),u(p), t) ≤ hU,(p)

eL,(p) ≤ e(p)(x(p)(t
(p)
0 ),x(p)(t

(p)
f ), t

(p)
0 , t

(p)
f ) ≤ eU,(p)

ΦL,(p,q) ≤ Φ(p,q)(x(p),x(q),u(p),u(q)) ≤ ΦU,(p,q)

(D.25)

Each phase is discretized with its own set of points, {τ (p)i } so that,

x(p)(τ) ≈ x̂(p)(τ) =
N∑

i=1

x̂(p)
i Li(τ) (D.26)

so that the full multi-phase NLP is,

min
u(p)
i

P∑

p=1

t
(p)
f − t

(p)
0

2

N∑

k=1

F (p)(x̂(p)
k , û(p)

k , τk)

s.t.
N∑

i=0

Dk,ix̂
(p)
i −

t
(p)
f − t

(p)
0

2
f(p)(x̂(p)

k , û(p)
k , τk) = 0n, p = 1, . . . , P, k = 1, . . . , N

x̂(p)
N − x̂(p)

0 −
t
(p)
f − t

(p)
0

2

N∑

k=1

N∑

i=0

wkDk,ix̂i = 0n, p = 1, . . . , P

eL,(p) ≤ e(p)(x̂(p)
0 , x̂(p)

N , t
(p)
0 , t

(p)
f ) ≤ eU,(p), p = 1, . . . , P

hL,(p) ≤ h(p)(x̂(p)
k , û(p)

k , τk) ≤ hU,(p), k = 1, . . . , N, p = 1, . . . P

ΦL,(p,q) ≤ Φ(p,q)(x̂(p)
0 , û(p)

0 , x̂(q)
N , û(q)

N ) ≤ ΦU,(p,q), p, q = 1, . . . , P

(D.27)

To perform the discretization described in this subsection, we use the open-source

C++ PSOC package PSOPT [112].

Next we show that Eq. (D.27) can be expressed in the typical NLP form [56]. Let
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z(p) contain all of the variables for phase p.

z(p) =




x̂(p)
0

...

x̂(p)
N

û(p)
0

...

û(p)
N




∈ R(n+m) (D.28)

Next, let z contain the variables for every phase,

z =




z(1)
...

z(P )


 ∈ R(N+1)(n+m) (D.29)

With some algebraic manipulation, the entire discretized multi-phase OCP can be

rewritten as an NLP in the typical form.

min
z

c(z)

s.t. g(z) = 0

d(z) ≤ 0

(D.30)

To solve the large-scale NLP in Eq. (D.30) we employ an interior-point algorithm

[56]. Specific details of the algorithm are outside the scope of this paper. We used

the open-source C++ package Ipopt [113] to solve each instance of Eq. (D.30). We

direct interested readers who would like to learn more about the technical detailed

involved when solving Eq. (D.30) to the documentation provided with Ipopt.

The optimal solution returned, z∗, is separated into its component parts; first by

splitting it into the phases z(p)∗, and second by reconstructing the discrete states and

contrlol inputs, x̂∗i and û∗i . The continuous time control inputs and states are then

reconstructed using the Lagrange interpolating polynomials in Eq. (D.19). With the

continuous time states and control inputs, x∗(t) and u∗(t), we then verify that the

necessary conditions are met to within an acceptable tolerance.
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D.3 The Response of AVs to Constant Perturbation

by Dual Therapies

Before solving the optimal control problem presented in the main text, we explore

the capabilities of the dual therapies in terms of upregulate and downregulate with

constant drug concentration as we did in Fig. 6.3 of the main manuscript. There,

we plotted the long-time response of the system to an individual time-constant drug

concentration (w) perturbation for the two sets of parameters CNu = CEn = 0.1 and

CNu = CEn = 0.6. Similarly, in Fig. D.3 and D.4, we plot the long-time system

AV response for the case of dual therapies with time-constant drug concentration

perturbations.

In Fig. D.3, we set the parameters CNu = CEn = 0.1. For these parameter values,

in the absence of any drugs (control inputs), the sole attractor of the dynamical

system corresponds to a high AV count (≈ 37). Fig. D.3 shows the long-time AV

response when the system is perturbed by different combinations of constant inputs.

Note that those subsets that contain either drug 2 or 6 are capable of driving the

AVs to zero if wmax is made large enough (pairs {2, 3}, {2, 4}, {2, 6}, {3, 6}, {4, 6},
and {1, 6}). For each pair {i, j}, we set wi = wj and all other values wk = 0, k 6= i

and k 6= j. The pair {3, 4} on the other hand is only capable of driving the AVs to

≈ 10 where any increase of wmax afterwards can produce no further results. Also,

dual therapy {1, 5} is incapable of downregulate .

In Fig. D.4, we set the parameters CNu = CEn = 0.6, for which the free evolution

of the system is periodic (see Fig. 6.2 in the main text), and show the same long-

time AV response results under constant drug concentration perturbation. For all

dual therapies shown, small drug concentrations are unable to remove the oscillations

present (denoted by the shaded regions). Similar to Fig. D.3, we see that all drug

combinations that contain either drug 2 or 6 are capable of driving the level of AVs
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to zero for wmax set large enough. Also, dual therapy {3, 4}, as before, is only able

to reduce the AVs level to ≈ 10 while the dual therapy {1, 5} instead upregulates the

AVs.

D.4 Exhaustive Analysis of Two-Drug Combinations

In this section, we present simulation results for all possible dual therapies . First,

we set both the parameters CNu = CEn = 0.1 for which the number of AVs at steady

state in the absence of control inputs is equal to ≈ 37. We attempt to downregulate

the number of AVs using pairs of drugs from the set {2, 3, 4, 6} so that there are a

total of
(
4
2

)
= 6 combinations. A pair of drugs drawn from this set is called a dual

therapy . If {i, j} is a dual therapy , then we say {i} and {j} are its component

monotherapies .

The goal is to investigate our ability to downregulate the number of AVs from

the steady state value ≈ 37 to a lower value in a specified control time interval [0, t0]

and, subsequently, to maintain the number of AVs near the target level for a second

time interval [t0, tf ], by using each different dual therapy . We say a dual therapy

is viable if it is capable of performing the goal stated. A dual therapy is deemed

efficient if;

• the dual therapy is viable while at least one of its component monotherapies

is not, and

• the total amount of drugs provided by the dual therapy is less than either of

the component monotherapies .

To compare the efficiencies of the dual therapies we define r∗i,k(t) =
∫ t
0
u∗i (τ)dτ as the

total amount of drug i administered at time t as part of a k = dual or k = mono
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and introduce the quantities ρi and τi.

0 ≤ ρi =
r∗i,dual(tf )

r∗i,mono(tf )
≤ 1, (D.31)

Note that r∗i,dual(tf ) ≤ r∗i,mono(tf ), as otherwise the solution of the dual therapy

optimal control problem would be suboptimal with respect to the case that only

drug i is used. We also define the ratio

τi =
t̄i,dual − t̄i,mono

t̄i,mono
(D.32)

where t̄i,dual is the time when drug i is activated (that is, the earliest time at which

the drug injection rate is nonzero) as a part of a dual therapy and t̄i,mono is the time

when drug i is activated as a monotherapy . Note that τi > 0 (τi < 0) indicates a

later (earlier) activation time of drug i as a part of dual therapy compared to as a

monotherapy .

For our simulations, we set the upper bound of the drug concentrations to wmax
i =

2 for each drug i, the time at which we apply the upper bound to the AVs to t0 = 120

minutes, the time at which we end the simulation to tf = 240 minutes, and we set

the initial condition x(0) to be equal to the steady state solution of the system in

the absence of control inputs with parameters CEn = CNu = 0.1. In Fig. D.5, we plot

the total drug administered ri(t) =
∫ t
0
ui(τ)dτ in the interval [0, tf ]. The plots on

the diagonal panels, labeled (ui, ui), correspond to the monotherapies and the plots

on the upper triangular panels, labeled (ui, uj), correspond to the dual therapies .

Symmetric to each upper triangular panel (ui, uj), the corresponding lower triangular

panel (uj, ui) contains the values of the ratios ρi and τi in Eqs. (D.31) and (D.32),

respectively.

We notice from Fig. 6.3A in the main text that the only monotherapies which

can downregulate the number of AVs from ≈ 37 to ≈ 10, with wi ≤ 2, is {4}.
Thus, the red crosses in panels (u2, u2), (u3, u3) and (u6, u6) in Fig. D.5 indicate that

those monotherapies cannot solve the downregulate problem. Clearly, dual therapies
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{2, 4}, {3, 4} and {4, 6} are viable as drug {4} as a monotherapy is viable. On the

other hand, the dual therapies {2, 3} and {3, 6} are not viable. The most interesting

dual therapy is {2, 6} as neither component monotherapy is viable yet as a pair

they are variable Thus by our stated goal and definitions, the dual therapy {2, 6} is
efficient according to our criteria. Also, dual therapy {3, 4} is deemed efficient as the

total consumption of drug 4 is much lower (ρ4 = 0.29) than the total consumption

of drug 4 as a monotherapy as shown in panel (u3, u4) in Fig. D.5. We also observe

the faster response of drug 4 as a part of the {3, 4} dual therapy than its response

as a monotherapy because τ4 = 0.32 > 0.

In Fig. D.6, we consider the dual therapies by combining one of the downregulate

drugs, 2, 3, 4 or 6, with one of the upregulate drugs, 1 or 5. A red cross in a panel

again represents a monotherapy or a dual therapy that is not viable. While the dual

therapies {1, 4} and {4, 5} are viable, they are not efficient as neither drugs 1 nor 5

are used (non-zero).

In Fig. D.7, we present detailed results when we set the parameters CEn = CNu =

0.6, for which the dynamics in the absence of control inputs is oscillatory. In our

numerical experiments, we attempt to downregulate the number of AVs from its

initial periodic behavior to x5(t0) ≈ 10 and to maintain the number of AVs near

that value for the time interval [t0 = 120, tf = 240]. The red cross in panel (u6, u6)

indicates the inability of drug 6 as a monotherapy to downregulate the AVs to the

desired level. However, we found this drug to be particularly beneficial when used as

a component in a dual therapy . We find that while all dual therapies are viable, the

most efficient dual therapy is {2, 6}, as the total amount of drug 2 required is reduced

by more than five folds when compared to the monotherapy {2}. A comparison with

drug 6 alone is not possible as drug 6 as a monotherapy is not viable. The dual

therapy {3, 6} is also efficient by our definition, but only slightly as the amount of

drug 3 used is hardly reduced, ρ3 = 0.96. For all other dual therapies , one of the

211



Appendix D. Supplementary information for Chapter 6

component drugs is never activated so while they may by viable, we do not consider

them efficient.

In Fig. D.9, we summarize the results when we attempt to upregulate the number

of AVs to ≈ 37 in the same control time interval [0, t0] and, subsequently, maintain

the number of AVs throughout the time interval [t0, tf ] by using dual therapy {1, 5}.
We observe that, while the dual therapy {1, 5} is viable, it is not efficient as drug 1

is never activated and so we must use the same amount of drug 5 as when it is used

as a monotherapy .

In Fig. D.10, we consider the dual therapies by combining one of the downregulate

drugs, 2, 3, 4 or 6, with one of the upregulate drugs, 1 or 5. We observe that the

dual therapies {1, 6} and {5, 6} are only efficient when CEn = CNu = 0.6. The other

dual therapies while viable are not efficient as the upregulate component (either 1

or 5) is never activated (that is, non-zero).
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Table D.1: Parameters of the model (Eq. (6.1)). See “Formulation of the Model”
in Supplementary Methods for discussion. The parameter values are dimensionless
except as indicated.

Parameter Value Parameter Value

rb,12 0 k1 1.00× 10−1

rm,12 1.00× 101 k2 3.00× 10−1

θ12 3.00× 10−1 k3 4.00× 100

n12 4.00× 100 k4 1.00× 10−1

rb,13 0 δ1 3.10× 10−4

rm,13 1.00× 101 δ2 1.93× 10−3

θ13 6.00× 10−1 δ3 5.78× 10−3

n13 6.00× 100 δ4 1.15× 10−2

rb,23 0 δ5 2.31× 10−3

rm,23 6.00× 100 δ6 1.16× 10−3

θ23 1.00× 100 rb 0
n23 4.00× 100 rm 1.00× 100

rb,21 1.00× 10−1 θ 5.00× 10−1

rm,21 6.00× 100 n 2.00× 100

θ21 6.00× 10−1 T 1.00× 100 (min)
n21 4.00× 100

rb,42 1.00× 10−1

rm,42 6.00× 100

θ42 5.00× 10−1

n42 4.00× 100
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Table D.2: Summary of measured drug half-lives used to set values for the drug
clearance rate constants δ1, . . . , δ6 in Eq. (6.1). Each half-life, t1/2,i, is the measured
half-life of a representative of drug type i. See the references cited in the table for
details about the drugs and measurements.
Drug i Half-life t1/2,i Value (h−1) Rate constant δi Value (min−1) Reference

1 t1/2,1 ∼ 37 δ1 3.10× 10−4 Sato et al.[182]
2 t1/2,2 ∼ 6 δ2 1.93× 10−3 Baselga et al.[183]
3 t1/2,3 ∼ 2 δ3 5.78× 10−3 Milkiewicz et al.[184]
4 t1/2,4 ∼ 1 δ4 1.15× 10−2 Engers et al.[185]
5 t1/2,5 ∼ 5 δ5 2.31× 10−3 Cameron et al.[175]
6 t1/2,6 ∼ 10 δ6 1.16× 10−3 Juric et al.[186]
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Figure D.1: Comparison of simulations based on Eq. (6.1) and simulations based on
models of Szymańska et al.[177] (Ref. 33 in the main text) and Martin et al.[178]
(Ref. 34 in the main text). (A) AV dynamics, x5(t), predicted by Eq. (6.1). The
value of x5 is initially steady and low; the system is perturbed by two additions of
rapamycin at time t = 100 and 200 min, as indicated. (B) Dynamics of ULK1 activ-
ity, x2(t), predicted by Eq. (6.1). The conditions considered are the same as those
in panel A. (C ) Dynamics of ULK1 activity predicted by the model of Szymańska et
al.[177]. The conditions considered here correspond qualitatively to those considered
in panels A and B. Initially, there is no rapamycin. Later, a low dose of rapamycin
is added. Still later, a high dose of rapamycin is added. Note that the models of Eq.
(6.1) and Szymańska et al.[177] have different timescales. This situation is partly a
consequence of requiring Eq. (6.1) to reproduce the AV dynamics measured by Mar-
tin et al.[178]. Szymańska et al.[177] showed that the qualitative pattern of behavior
illustrated here is a robust feature of known regulatory interactions among AMPK,
MTORC1, and ULK1 (i.e., the pattern of behavior is insensitive to parameter vari-
ations). Furthermore, it should be noted that the model of Szymańska et al.[177]
does not track AVs. Thus, there is no direct comparison to be made with the time
course shown in panel A. (D) AV dynamics predicted by Eq. (6.1). AV production
is stimulated by the addition of rapamycin at the (dimensionless) doses indicated in
the legend. (E ) AV dynamics predicted by the model of Martin et al.[178]. As in
panel D, autophagy is induced by the addition of rapamycin at different doses, as
indicated in the legend. For further discussion, see “Formulation of the Model” in
Supplementary Methods.
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Figure D.2: Comparison of simulations based on Eq. (6.1) and data generated by
Martin et al.[178] (Ref. 34 in the main text). We parameterized the model of Eq.
(6.1) to roughly reproduce autophagic vesicle (AV) population dynamics reported by
Martin et al.[178]. Our goal was not to reproduce the observed dynamics exactly but
rather to select parameters that yield induction dynamics on a comparable times-
cale and a comparable maximal range of regulation. The measured dynamics were
induced by inhibition of MTORC1 using AZD8055, a catalytic MTOR inhibitor. Dy-
namics were similar when autophagy was induced using rapamycin[178]. The curve
corresponds to a simulation based on Eq. (6.1). Each dot corresponds to the aver-
age of AV counts measured in a series of fluorescence microscopy experiments[178].
The data shown here are taken from Figure 6B in Martin et al.[178]. For further
discussion, see “Formulation of the Model” in Supplementary Methods.
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Figure D.3: The dual therapy long-time response of the system in the case of time-
constant drug concentration perturbations for the parameters CNu = CEn = 0.1.
Note that when w is small, the system is oscillatory (represented by the shaded
region in the panels). For each pair of drug, there is some value of w required to
overcome the natural oscillatory behavior of the system.
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Figure D.4: The dual therapy long-time response of the system in the case of time-
constant drug concentration perturbations for the parameters CNu = CEn = 0.6.
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Figure D.5: The parameter set CNu = CEn = 0.1. The target level of AVs is set
xf5 = 10 and the maximum drug concentration is set wmax

i = 2. The diagonal panels
represent monotherapies while off-diagonal panels represent dual therapies . Super-
diagonal panels plot the total drug administered and sub-diagonal panels show the
efficiency ratios described in the text of the dual therapies . Those diagonal panels
with a red cross correspond to those monotherapies which are not viable. The only
viable monotherapy is {4}, which is shown with a green background. The off-diagonal
panel with a red background for dual therapy {2, 4} is viable, but it is not efficient
as drug 2 is not activated. The other three viable dual therapies , {2, 6}, {3, 4}, and
{4, 6} are both viable and efficient, shown with a blue background.
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Figure D.6: The parameter set CNu = CEn = 0.1. The target level of the AVs is
set to xf5 = 10 and the maximum drug concentration is set to wmax

i = 2. Here we
consider those dual therapies which combine one downregulate drug (2, 3, 4, or 6)
with one of the upregulate drugs (1 or 5). Most of the dual therapies are not viable,
which is represented with a red cross. The two viable dual therapies , {1, 4} and
{4, 5}, are not viable and so they are shown with a red background.
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Figure D.7: The parameter set CNu = CEn = 0.6. The target level of the AVs is
set to xf5 = 10 and the maximum drug concentration is set to wmax

i = 2. The diag-
onal panels (ui, ui) (with a green background) show the total drug administered for
monotherapies . The red cross on the diagonal panel corresponding to monotherapy
{6} represents the fact {6} is not viable. The upper triangular panels (ui, uj), i < j,
show the total drugs administered for dual therapies . In the lower triangular panels
(uj, ui), i < j, we compare the dual therapies to their component monotherapies
with the efficiency parameters τ and ρ. A red background in an off-diagonal panel
represents those dual therapies which are viable but not efficient with respect to
its component monotherapies . A blue background represents those dual therapies
which are both viable and efficient.
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Figure D.8: The parameter set CNu = CEn = 0.6. The target level of the AVs is set
to xf5 = 10 and the maximum drug concentration is set to wmax

i = 2. The red crosses
on the diagonal panels represents the fact that the monotherapies {1} and {6} are
not viable. On the other hand, the dual therapy {1, 6} is both viable and efficient.
The viable dual therapies composed of two monotherapies which are not viable alone
are the type of dual therapies we find most interesting as they are not obvious when
analyzing the monotherapies alone. In the lower triangular panel we compare the
dual therapy to its component monotherapies with respect to the efficiency ratios ρ
and τ .
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Figure D.9: The parameter set CNu = CEn = 0.6. The target level of the AVs is set
to xf5 = 10 and the maximum drug concentration is set to wmax

i = 2. The diagonal
panels represent the monotherapies {1} and {5}. A red cross on the diagonal panel
for monotherapy {1} represents the fact {1} is not viable. On the other hand,
monotherapy {5} is viable (shown with a green background). The dual therapy
{1, 5} is viable (total drug administered is shown with the red background in the
upper triangular panel) but is not efficient. The inefficiency is shown in the lower
triangular panel with the efficiency ratios ρ5 = 1.
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Figure D.10: The parameter set CNu = CEn = 0.6. The target level of AVs is
set to xf5 = 10 and the maximum drug concentration is set to wmax

i = 2. Here we
consider those dual therapies compose of one downregulate drug (2, 3, 4, or 6), and
one upregulate drug (1 or 5). Those panels with a red background represent dual
therapies which are viable but not efficient while the two dual therapies {1, 6} and
{5, 6} are efficient. In fact, as seen before, neither the component monotherapy {6}
nor the upregulate drugs are viable for this parameter set, so these efficient dual
therapies are particularly interesting as they could not be found when analyzing the
monotherapies alone.
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Figure D.11: A) The optimal time evolution of the amount of AVs. B) The optimal
time evolution of the drug concentration w4(t). C) The time evolution of the path
covector µx5 associated with the upper bound applied to x5(t). D) The time evolution
of the path covector µw4 associated with the state w4(t). E) The optimal time
evolution of the drug u4(t). F) The costate λw4(t) associated with the state w4(t). G)
The time evolution of the lower Hamiltonian H. H) The relative local discretization
error at each time t.
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