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ABSTRACT 

Changes in a regional bee assemblage were investigated by repeating a 1970s study from 

the U.S. Southwest of bees visiting native sunflower (Helianthus annuus). Results 

showed declines in abundance and species richness of native bees and increases in non-

native Apis mellifera. Climate data indicate drought increased over the 40-year period, 

favoring introduced and generalist species. Experimental placement of A. mellifera in an 

area of low A. mellifera density in New Mexico reduced native bee visitation, but 

improved reproduction in H. annuus plants. Meta-analytic models comparing pollination 

effectiveness in specialist versus generalist, native versus non-native, and native 

pollinators versus introduced A. mellifera indicated no support for greater specialist 

effectiveness, but higher effectiveness of native bumble bees (Bombus spp.) compared to 

non-native pollinators, especially A. mellifera. Changes in pollinator species composition, 

particularly replacement of native pollinators by introduced A. mellifera, affect plant 

reproduction and may cascade to changes in plant community composition. 
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CHAPTER 1  

Declines in abundance and diversity of southwestern US sunflower pollinators 

resurveyed after 40 years 
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Abstract 

Recent assessments of pollinator populations have revealed declines – a serious concern 

given the ecosystem services pollinators provide. Species-level datasets for tracking long-

term changes in pollinator populations are therefore highly valuable. We investigated 

changes over the past 40 years in a regional bee assemblage by repeating a study 

conducted in the U.S. Southwest. Bees visiting sunflower (Helianthus) species were 

sampled from 1973–1977 by Hurd, LaBerge, and Linsley in Arizona, California, and 

New Mexico. We resampled the bee fauna at 11 of the original locations in 2015–2016. 

After accounting for sampling effort, we report significant declines in abundances of 

native bee species, and significant increases in introduced Apis mellifera abundance 

compared to the 1970s. Species richness decreased significantly at Arizona and New 

Mexico sites, driven mainly by declines in specialist bees, but richness at California sites 

did not differ from the 1970s. Overall, 83% of bee species collected in the 1970s were 

observed in 2015–2016. Generalist bee assemblage composition differed significantly 

from the 1970s at California sites, mostly due to changes in dominant species. Climatic 

data suggest drought conditions increased at all sites over the 40-year period, and further 

that bee population trends were not explained by chance sampling of years that were 

climatically extreme relative to decadal norms. We found significant correlations 

between six temperature/precipitation-related variables and changes in abundance in one 

or more of our bee categories (all bees, Apis mellifera, generalists, specialists). We 

conclude that sunflower bee abundance and diversity in the U.S. Southwest have 

decreased since the 1970s, and hypothesize that climate change has favored introduced 

and generalist species.  
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Introduction 

Insect extinction rates have not been comprehensively monitored at the global scale, but 

there is recent evidence of dramatic regional-level declines across a broad range of taxa 

[Hallmann et al. 2017; Powney et al. 2019]. Among orders, Hymenoptera may be 

especially vulnerable to declines and extinctions, partly for genetic reasons: Haplodiploid 

sex determination results in the production of sterile males and reduces effective 

population size [Zayed & Packer 2005]. Their role as pollinators in agriculture and 

natural ecosystems accords the Hymenoptera considerable economic and ecological 

importance [Potts et al. 2010]. Bees, the largest contributors to pollination, have 

experienced population crashes and local extirpations [NRC 2007; Steffan-Dewenter et 

al. 2005]. Their status has become a key scientific and public policy concern [Potts et al. 

2011; USDA-EPA 2015]. 

 

Extinction rates are not equally distributed across all species. A key question is whether 

specialist species, which have narrow habitat or dietary tolerances, are more vulnerable to 

declines than generalists with wider tolerances. (For convenience we use the dichotomous 

terms “specialist” and “generalist,” though their ecological manifestations are 

continuous). Evolutionary theory predicts that generalist adaptability should confer 

protection against long-term environmental variation [Richmond et al. 2005], as well as 

against frequent disturbance on shorter time scales [Kassen 2002], while theory and 

empirical evidence from multiple taxa puts specialists at greater risk of extinction. In 

vertebrates, habitat specialization has been linked with decreasing population trends and 

extirpations [Julliard et al. 2004; Powers & Jetz 2019]. A 25-year study of one butterfly 
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family (Hesperiidae) also demonstrated that habitat specialists declined in all but the 

least-degraded areas [Swengel & Swengel 2015]. There is evidence that dietary-specialist 

pollinators are more susceptible to decline than generalists for both genetic and 

ecological reasons [Packer et al. 2005; Roberts et al. 2011]. A reexamination of a 

historical dataset of plant-pollinator interactions in Illinois indicated that specialist bees 

had declined more than generalists, even though their host plants were still present 

[Burkle et al. 2013]. Pollen specialization was also positively correlated with extinction 

risk for bumble bees in the northeastern U.S. [Bartomeus et al. 2013].  

 

Other theoretical arguments and empirical evidence suggest that specialists should be 

buffered from extinction through close spatial and temporal synchronization with their 

resources and/or greater efficiency in resource collection [Javorek et al. 2002; Buechi & 

Vuilleumier 2014]. Among bees, pollen-specialist species provision their eggs with 

pollen taken from only one or a few closely related plant species, in contrast to 

generalists that utilize pollen from a variety of floral hosts. Some pollen specialists 

remain in diapause until conditions are optimal for their host plants, increasing the 

likelihood of both successful pollination and pollinator persistence [Minckley et al. 

2013]. Selection for temporal alignment of adult bee emergence with host plant flowering 

should be strongest where rainfall/flowering is least predictable, as has been observed for 

specialist bees and their host plants in arid areas [Minckley 2000]. On the plant side, 

flowers adapted for specialist pollinators receive pollen more precisely and effectively 

[Wilcock & Neiland 2002]. Because specialization allows for finer niche partitioning, a 

plant community with high specialist-pollinator diversity should have better resilience 
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and protection from extinction than a generalist-rich pollinator community [Clavel et al. 

2011]. 

 

A pattern of declines and extinctions in local, rare specialists and their replacement with 

cosmopolitan, common generalists is known as biotic homogenization [McKinney & 

Lockwood 1999]. Homogenization is facilitated through one of the most ecologically 

transformative of human activities: the global redistribution of biota. Introduced species 

are a leading cause of biodiversity loss [Crowl et al. 2008; Vitousek 1997]. In the case of 

bees, potential negative impacts of introduced species include disruption of plant 

pollination, increased pollination of exotic plants, co-introduction of pathogens that can 

affect native bees, and competition for shared resources [Goulson 2003a]. Among 

introduced species, generalists have a higher probability of successful establishment — 

but since they are often redundant contributors to functional roles (such as pollination), a 

high generalist diversity does not necessarily bolster ecosystem stability [Clavel et al. 

2011].  

 

Long-term data on bee communities are rare; few studies have employed a temporal 

approach of resampling and comparing current bee faunas to historic datasets. We are 

aware of six attempts in North America and five in Europe, with studies spanning 10–100 

years between samples. Kearns & Oliveras (2009) sampled the bee assemblage of 

Boulder, CO and found it yielded almost all (95%) of the species that had been recorded 

100 years earlier, despite major changes to the landscape. Their results were comparable 

to Marlin & LaBerge (2001), who sampled bees in Carlinville, IL in 1970 and found no 
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evidence of declines in bee species richness compared to samples from 75 years earlier, 

though again substantial land use changes had occurred. Two other studies (Banaszak 

1992, Poland; Grixti & Packer 2006, Canada) documented similar persistence in bee 

species richness and/or community composition over a 40–50 year period. More recently, 

Hallmann, et al. (2017) reported steep declines across all insect groups over the past 27 

years at sites in Germany. However, declines were measured in biomass rather than 

richness or relative abundance, which underscores the seriousness of the study findings 

but provides no insight on the status of particular taxa. Burkle et al. (2013) sampled sites 

from the Carlinville dataset in 2009–2010 and found all of the plant species, but less than 

half of the bee species observed in the 1800s. Numerous studies of bumble bee (Bombus) 

assemblages have also shown declines in species richness, abundances, and/or range 

extent compared to historical records [Bartomeus et al. 2013, U.S.; Cameron et al. 2011, 

U.S.; Colla & Packer 2008, U.S.; Dupont et al. 2011, Netherlands; Goulson 2003b, U.K.].  

 

With the exception of the Boulder, CO study, the historical studies mentioned above were 

all conducted in mesic environments. However, global bee species richness is greatest in 

arid areas [Michener 2000]. The U.S. Southwest hosts highly diverse bee communities, 

with species richness largely driven by high numbers of pollen specialists: up to 50% of 

the bee species in the Southwest region are dietary specialists [Moldenke 1976; Neff et 

al. 1977]. Given this high diversity, it is perhaps surprising that one important historic 

record of bee assemblage composition that has not heretofore been reexamined is the 

study of bees visiting sunflower (Helianthus spp.), conducted by Paul Hurd, Jr., Wallace 

LaBerge, and E. Gorton Linsley (Hurd et al. 1980; hereafter, “HLL”). From 1972–1977, 
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HLL carried out comprehensive field surveys at sites in California, Arizona, and New 

Mexico. Their primary objective was “to characterize the diurnal, seasonal, and 

geographical occurrence of the principal bees visiting Helianthus”. Survey data were 

combined with data extracted from museum specimens to achieve a secondary objective 

of determining which bees are specialists on Helianthus pollen. One advantage to 

following up on the HLL study is that sunflowers are highly attractive to bees, which are 

its principal pollinators [Free & Simpson 1964]. HLL recorded more than 400 species 

representing six of the seven families in the Anthophila (bee) clade visiting 

inflorescences for pollen, nectar or both. In addition, 30% of species observed collecting 

pollen from Helianthus are dietary specialists [Hurd et al. 1980]. Thus resampling 

sunflower visitors at HLL study locations can illuminate changes in Helianthus specialist 

bee status, as well as indicate wider changes in the regional pollinator community. 

 

In the current study, we examine changes in bee abundances and species composition in 

the Helianthus annuus bee assemblage of the southwestern U.S. from the 1970s to the 

present. We revisited 11 of the original 12 study sites (omitting one site where the 

original sampling dates were not given and thus could not be matched) and sampled bees 

using methods comparable to those of HLL. We ask, 1) Has sunflower bee species 

richness and/or abundance changed over the past 40 years? 2) Are specialist bees less 

common than in the past? 3) Are generalists more common than in the past? 4) Are 

changes in climatic variables (precipitation, temperature) correlated with changes in bee 

abundances? Based on climatic shifts and human impacts in the Southwest, especially 

agricultural intensification at sites in California, we hypothesized that species richness 
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would be lower in our study. We predicted declines in specialist bee species in particular, 

and persistence or increase among generalists.  

 

Materials and methods 

Study system & historic dataset 

Helianthus annuus  

Sunflower (Helianthus annuus Linnaeus) is a weedy, annual, self-incompatible forb that 

occurs throughout most of the United States, southern Canada, and northern Mexico. 

About 50 species of Helianthus are native to North and Central America; their historic 

range in the south-central U.S. is thought to have been greatly expanded via 

anthropogenic disturbance as well as transportation by indigenous people [Heiser et al. 

1969]. In the southwestern U.S., Helianthus annuus plants begin growing in spring and 

usually reach peak flowering by late August, with some plants still flowering in late 

October in parts of the region. Plants can reach five meters in height (but are more 

typically 0.25 – 2m) and generally occur along roads, fences and fields, growing best in 

relatively moist soils. Inflorescences are composed of hundreds of individual florets, 

which produce nectar and pollen in large quantities [Simpson and Neff 1987].  

 

From 1972–1977, HLL traveled the U.S. Southwest during the summer and early fall, 

collecting bees from sunflowers [Hurd et al. 1980]. Their collection sites were chosen to 

span the four major ecoregions of the Southwest: Chihuahuan Desert, Sonoran Desert, 

Mojave Desert, and cismontane California. Of the 412 sunflower bee species documented 

by HLL, they characterized 131 of the 284 pollen-collecting species (the remaining 128 
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species visited plants only for nectar) as either “primary” (collect pollen exclusively from 

plants in genus Helianthus) or “secondary” oligoleges (collect pollen exclusively from 

Asteraceae, mainly from Helianthus) [Hurd et al. 1980, Table 3, p. 23].  

 

Study sites  

The objective of the present study was to replicate the previous survey as closely as 

possible in terms of location, sampling date within the season, and sampling technique. 

Of 63 original survey sites, HLL selected 12 sites for detailed sampling (“primary 

surveys” [Hurd et al., Table 1, p. 5]). Sampling at these sites was conducted from mid-

July through early October (Table 1).  

Table 1. Locations and sampling dates of surveys of bees pollinating sunflower 

(Helianthus annuus, H. petiolaris) at 11 sites in the U.S. Southwest in the 1970s [Hurd, et 

al. 1980] and 2015–2016 (the present study). County names and coordinates in Table A3. 

 

 

  1970s 2015 2016 2015–2016 

state site name 

sampling 

date(s) 

sampling 

year 

total  

person-

hours* 

sampling 

dates 

sampling 

dates 

total  

person-

hours
†
 

CA Escalon Jul 22 1977 50.0 Jul 19–20 Jul 25–26 32.0 

CA Madera 1 Jul 24 1977 44.0 Jul 21–22 Jul 27–29 32.0 

CA Bishop Aug 27 1977 15.0 Aug 23–24 Aug 28–29 32.0 

NM Rodeo Sep 2–4 1973 25.0 Sep 1, 5, 7 Sep 2–3 32.0 

NM Animas Sep 4–5 1974 26.0 Sep 1–2
††

 Sep 4–5 32.0 

NM Silver City Sep 11–12 1974 9.0 Sep 11–12 Sep 14–15 32.0 

AZ Benson Sep 14 1974 11.0 Sep 8–9 Sep 11–12 32.0 

CA Indio Sep 18 1977 14.0 Sep 29–30 Sep 8–9 32.0 

CA Merced Oct 4 1975 15.0 Sep 24–25 Oct 10–11 32.0 

CA Madera 2 Oct 5 1975 42.0 Sep 22–23 Oct 12–13 32.0 

CA Corcoran Oct 6 1975 28.0 Sep 26–28 Oct 7–8 32.0 

*
†
 Total person hours = # collectors x # hours  

††
 Sampled in 2017 as the 2015 sampling date was cancelled due to rain.  

HLL refer to their detailed samples at primary sites as time counts. We conducted time 

counts of bees at 11 of the 12 HLL primary survey locations (Figure 1). Our sampling 
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included two sites in Madera, CA, which we sampled in July and October, respectively  

(vs. one Madera site sampled in July and September and another in October in the 

original HLL study). All sites were sampled within 10 days of the original sampling dates 

(Table 1). We did not sample in Double Adobe, AZ because no sampling dates were 

given in HLL.  

 
Figure 1. Map of 11 study sites in the southwest United States of bees visiting sunflower 

(Helianthus annuus, H. petiolaris) in the 1970s and 2015–2016. 

  

HLL’s sites were usually described in relation to the town center (e.g., “beyond the 

shoulder of a north-south highway 3 mi. west of the center of town”). We interpreted the 

town center as the location of the main post office, and attempted to locate sunflower 

populations in peak flowering either according to distances/directions given in HLL, or as 

near to the center of town as possible. In most cases, we were able to sample sunflower 

populations in the same county as HLL, but in three instances in 2016, the nearest 

sampling location was in a county adjacent to the original survey county (Table A4). Our 

precise sampling locations within a site differed in 2015 and 2016 for all sites other than 
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Bishop and Indio, where we found sunflowers growing in the same spot in both years.  

 

With one exception (Rodeo), HLL did not provide information on sunflower patch sizes 

at their primary sites. We sought to sample the largest patch available (minimum 20 

plants) within a 20-mi. distance of each town center. The plants tend to grow in disturbed 

areas where moisture is available, e.g., along irrigation and drainage ditches or road 

shoulders; thus, often the best and most accessible patches are in recently cultivated 

agricultural areas on the peripheries of small rural towns.  

 

Though HLL did not report plant species identity from all sites, it appears they sampled 

primarily from H. annuus other than in Silver City, NM where they found a pure stand of 

H. petiolaris Nuttall. Based on their records it seems bees do not discriminate between H. 

annuus and H. petiolaris; the same bee species were observed visiting both plant species 

in pure and mixed stands with equal frequency [Hurd et al. 1980]. We did not find H. 

petiolaris at any of our sites and sampled exclusively from H. annuus. 

 

Sampling protocol 

We sampled Helianthus-visiting bees in the manner utilized by HLL, who in turn utilized 

the sampling procedure described in their prior study of Larrea bees [Hurd and Linsley 

1975]. Bees were collected continuously from inflorescences, for half-hour periods, using 

standard aerial nets and cyanide killing jars. Specimens were transferred to cooled 

containers at the end of each sampling period and subsequently frozen until pinned.  
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No bee was taken until it actually alighted on an inflorescence. Though this method gives 

a good representation of overall visitor-species composition, HLL were of the opinion 

that it underestimates the abundance of oligolectic males, which briskly patrol flower 

patches (stopping only briefly for nectar or potential mates) and are likely undersampled 

due to their speed [Hurd et al. 1980]. No sampling was conducted in either the original or 

the current study during times of strong winds, heavily overcast periods, or rainy 

conditions. Bees sleeping on flower heads were not sampled. 

 

The number of collectors and total sampling time varied in the original study (range, 2–4 

collectors, 4.5–13 hours/day). In our surveys, sampling was conducted by a single 

collector (CLC). While HLL typically sampled a site on a single day in a given year, we 

sampled for two sequential days each year to compensate for the reduced number of 

collectors, aiming to achieve roughly the same number of person-hours per site per year. 

Sampling was conducted in two four-hour increments per day (0700–1100, 1300–1700). 

Sunflowers often grow in strips along roadsides, irrigation ditches and field margins; in 

such situations the collector began at one end of the strip and walked past all the plants in 

a circuit, netting continuously. For sunflowers growing in patches, we trampled a path 

through the patch on the day prior to sampling, attempting to pass by all plants at some 

point along the path, then followed the same continuous-circuit procedure as for strip 

formations. The sampling method was identical in both years. All sampling was 

conducted in 2015 and 2016 with the exception of Animas, where rain prevented 

sampling during 2015 and the site was instead sampled in 2016 and 2017. For ease of 

discussion we refer throughout to our sampling years as 2015–2016. Time periods were 
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logged using local time. Air temperature was taken in the shade and recorded at the 

beginning of each sampling period using a digital thermometer.  

 

Bee identifications  

We used currently accepted taxonomic nomenclature for HLL’s and our specimens, as 

published in the Integrated Taxonomic Information System (ITIS) database [retrieved 

2015–2017; http://www.itis.gov] (Table A1). Voucher specimens for 2015-2016 

collections are housed at the USDA-ARS Bee Biology & Systematics Laboratory in 

Logan, Utah and the University of New Mexico Museum of Southwest Biology in 

Albuquerque, New Mexico. 

 

Species were designated as specialist, generalist, or nectar-visitors according to HLL’s 

lists of bee taxa associated with Helianthus [Hurd et al. 1980, pp. 24–28] (Table A1). We 

characterized both “primary” and “secondary” oligoleges (as defined by HLL) as 

specialists. For the 2015-2016 samples, there were 15 unclassified species (i.e., 

specialist/generalist status unknown: three “sp.”, 12 identified species; 169 total bees), 

resulting in 1.7% of bees excluded from specialist/generalist analyses. We lumped 

cleptoparasitic species with nectar visitors. 

 

Molecular analysis 

We determined whether Apis mellifera specimens from a subset of the sites (7 of 11 sites) 

belonged to Africanized lineages. Africanized and European A. mellifera are 

morphologically similar but genetically distinct, based on nuclear and mitochondrial 
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DNA markers. Bees were tested by Dr. Allen Szalanski, Department of Entomology, 

University of Arkansas using an assay that discriminates Africanized from European A. 

mellifera using a polymerase chain reaction method on a region of the mitochondrial 

DNA cytochrome b gene. This method produces a 485 base-pair amplicon for both 

Africanized and European honey bees, and a 385 base-pair amplicon that is specific for 

Africanized honey bees [Szalanski & McKern 2007]. We tested 15–20 A. mellifera 

specimens per site from 2015; where fewer 2015 specimens were available we analyzed 

2016 specimens (Bishop) or amended with 2016 specimens to increase sample size 

(Rodeo). 

 

Climate data 

For each site (4km resolution), we downloaded monthly data from 1970-2016 (1970-

2017 for the Animas site) from the PRISM database [PRISM Climate Group 2019]. We 

used the biovars() function in the R package ‘dismo’ [Hijmans et al. 2017] to estimate 19 

climate variables from the PRISM data. We chose precipitation and temperature variables 

that are commonly used in ecological modeling and which we expected to be biologically 

meaningful for bees and their host plants, based on the “bioclim” variables BIO1–BIO19 

as defined in WorldClim [Fick & Hijmans 2017].  In addition, we calculated monthly 

values of a drought index, the Standardized Precipitation Evapotranspiration Index 

(SPEI) [Vicente-Serrano et al. 2010].  We used the SPEI package in R [Beguería et al 

2014] using the precipitation and potential evapotranspiration (calculated using the 

Thornthwaite equation) and averaged these across months to obtain yearly SPEI values.  
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Data analysis 

Standardization 

We standardized and constrained data prior to making interdecadal comparisons in four 

ways:  

1) HLL reported bee abundances from half-hour sampling periods for all except what 

they termed “miscellaneous” species, for which abundances but no exact sampling 

periods were given. Miscellaneous species were typically rare (i.e., occurred in low 

numbers), but on average comprised about 40% of species recorded per sampling day. 

For analyses, we attributed an equal portion of each miscellaneous species count to each 

sampling period; e.g., if HLL reported that 16 individuals of miscellaneous species X 

were collected over an 8-hour sampling day at a given site, we assigned 1 individual of 

species X to each half-hour sampling period in the dataset to be analyzed. We reassigned 

observations of HLL-defined miscellaneous species in our data in a similar manner (e.g., 

if we observed 16 individuals of species X in our first half-hour sampling period and 

none thereafter in an 8-hour day, we reassigned the observations as 1 individual of 

species X per half-hour sampling period). 

2) To initiate a sampling scheme that would allow inter-site comparisons and could also 

be easily repeated in future studies, we sampled all sites from 0700–1100 and 1300–

1700. In contrast, HLL’s start times and sampling duration varied according to site: 

sampling usually began at 0600 and continued for a mean of 9 hours, often with a break 

in the middle of the day, but start times varied from 0600–0730 and total effort in a day 

ranged from 4.5–13 hours. To account for interdecadal differences in sampling effort and 

time-of-day, we constrained our analyses in this paper to only the overlapping sampling 
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periods from each site. For example, HLL sampled in Bishop, CA from 0600–1300. 

Therefore, for Bishop we compared only the bees we collected from 0700–1100 to bees 

HLL collected from 0700–1100 and ignored our bees collected from 1300-1700.  

3) We corrected for the number of collectors (two to four per day in HLL; one per day in 

2015–2016). Abundances are reported in “bees per person-hour” for all sites. 

4) In the original study, collection vials and mounted specimens were labeled in 30-

minute increments, but each period actually started on the half hour (0630, 0700, etc.) 

and ended 29 minutes later when vials and labels were changed (0629, 0659). We 

followed the same procedure as HLL but ended each sampling period at 25 minutes to 

allow time to change vials and labels, since in our case a single collector sampled without 

field assistants. When records (HLL’s and ours) analyzed, we converted them to 30-

minute periods; thus, “bees per person-hour” indicates a 60-minute hour for both the 

original and current study data. 

 

Statistical procedures 

Bee abundance, diversity, and composition 

We analyzed Arizona and New Mexico sites separately from California sites, given the 

large geographic distance separating the two clusters of sites (Fig. 1) and because 

preliminary analyses indicated potentially different interdecadal patterns of change in the 

bee assemblages of the two areas. Such differences were expected a priori, given 

differences in climate patterns (the Mediterranean climate pattern in California is less 

conducive to late-summer annuals such as H. annuus than that of Arizona and New 

Mexico, where late summer rains are common), and in bee abundances and assemblage 
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composition [Hurd et al. 1980]. 

 

To assess interdecadal differences in bee abundances, we conducted ANOVAs in R, 

version 3.3.2 [R Core Team 2016] running in RStudio, version 1.0.44 [Rstudio 2015] 

with year as the predictor and bees per hour as the response variable. We followed this 

with multiple comparisons using a Benjamini-Hochberg adjustment (controls false 

discovery/incorrectly rejected null hypothesis rate at alpha=0.05) to assess differences 

between years. In some cases, data were log-transformed to meet the normal distribution 

assumption. Where transformation was ineffective, we conducted non-parametric 

Kruskal-Wallis rank-based tests of differences between means, with post-hoc Dunn’s 

tests of multiple comparisons using a Benjamini-Hochberg adjustment. In addition to 

assessing raw species richness and diversity, we also estimated the Chao1 index of 

species richness using EstimateS, version 9.1.0 [Colwell 2013]. This index accounts for 

the identities and relative abundances of species in a sample, including the probability of 

undetected species [Chao et al. 2005]. 

 

We analyzed interdecadal and interannual differences in bee assemblage composition 

using the R packages ‘vegan’ (version 2.4-2) and ‘MASS’ (version 7.3-50). We 

calculated Bray-Curtis dissimilarities of site-by-species matrices for each site-year 

combination and performed non-metric multidimensional scaling (nMDS) to visually 

assess compositional differences between assemblages. To test whether assemblages 

differed across site-years, we conducted permANOVAs of the effect of decade, followed 
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by pairwise comparisons of the effect of year using a Benjamini-Hochberg adjustment 

[Bray & Curtis 1957; Martinez Arbizu 2017; Oksanen et al. 2017; Venables 2002].  

 

Climatic representativeness of sampling years 

With one historic sample (1970s) and two modern samples (2015, 2016) for each site, a 

concern is that the sampling years might be unrepresentative of their respective decades. 

For example, a sample taken during an extremely cool or extremely warm year could 

produce unrepresentative estimates of bee abundance and composition and skew the 

inferred direction or magnitude of long-term trends. We thus evaluated the climatic 

context of the sampling years. We chose the Standardized Precipitation 

Evapotranspiration Index [SPEI; Vicente-Serrano et al. 2010] as an integrative drought 

index that is highly relevant to plant growth, and thus should be related to production of 

floral resources available to sunflower bees [Phillips et al. 2018]. Highly negative SPEI 

values indicate dry, hot years while highly positive values indicate cool, wet years. Since 

drought has increased in many parts of the southwest U.S. over the past 40 years, we also 

investigated temporal trends in SPEI at our sites, to examine whether sampling-year SPEI 

deviated from the predicted SPEI given the temporal trend. To compare conditions from 

each sampling year to that of adjacent (e.g. same-decade) years, we focused on residual 

SPEI (observed minus predicted). We first standardized SPEI values to a mean of zero 

and standard deviation of one and constructed temporal trends in SPEI for each site using 

the lm() function in R. We then extracted the residuals from each site and plotted the 

mean residuals for each modeling year for the two regions (California and Arizona/New 

Mexico).  
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Correlates of changes in bee abundance 

To investigate whether the changes we observed in native bee abundances were related to 

changes in abundance of introduced A. mellifera, we obtained the change in the number 

of bees sampled per person-hour at each site (Δbee, calculated as the difference of present 

minus past abundance, where present values were averages of 2015 and 2016 

observations). We conducted regressions with change in A. mellifera abundance (Δapis) as 

the predictor and either change in generalist (Δgeneralist) or specialist (Δspecialist) bee species 

abundances as the response. 

 

Given that introduced A. mellifera did not seem to be a driver of native bee declines (see 

Results), we also investigated whether the temporal patterns we observed in bee 

abundances were related to climatic factors. We modeled site-specific relationships 

between bee abundances and climate variables using regressions of Δbee against change in 

environment (Δenvi). For this analysis, we calculated Δbee as the difference  between the 

number of bees per person-hour at each site for four groups: all bees, A. mellifera, 

generalists other than A. mellifera, and specialists. To estimate Δenvi, we first standardized 

“bioclim” variables BIO1–BIO19 to a mean of zero and standard deviation of one and ran 

independent linear regressions of each climate variable through time (1970–2015 and 

1970–2016) for each site. Taking the averaged slopes from these regressions as a measure 

of the change in climate at each site, we ran univariate regressions of standardized values 

for the four bee abundance changes against each of the 19 environmental variables for a 
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total of 76 models. Given the large number of models, we treat this analysis as 

exploratory. 

 

Values graphed are means ± 1 standard error. Alpha = 0.05 except where adjusted for 

multiple comparisons. 

 

Results 

Overview of collections 

HLL collected 8,649 bees in the 1970s from the 11 “primary sites” we revisited in our 

study. We collected 11,143 bees total: 5,241 in 2015 and 5,902 in 2016. When 

constrained to bees collected only during overlapping sampling periods from the three 

sampling years (see Methods), 6,174 bees were collected by HLL in the 1970s, compared 

to 8,883 bees in the 2010s, with 4,147 and 4,736 bees collected by us in 2015 and 2016, 

respectively. (Note that these are absolute numbers before differences in effort, e.g., 

number of collectors, are taken into account.) 

 

HLL collected 97 species: 83 from Arizona and New Mexico sites, 29 from California 

sites, with 15 species common to both regions. We collected 81 species: 55 from Arizona 

and New Mexico, 44 from California; 18 common to both regions (Figure 2). 
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Figure 2. Venn diagrams showing numbers of bee species visiting Helianthus annuus and 

H. petiolaris at (a) four sites in Arizona and New Mexico and (b) seven sites in California 

in the 1970s (white), 2015 (dark gray) and 2016 (light gray). 

  

In several of our sampled sites, Apis mellifera likely represented Africanized strains 

(Table A2), which arrived in the south-central U.S. in the 1990s. In general, sites from 

southern New Mexico (Animas, Rodeo, Silver City) and southern and eastern California 

(Indio, Bishop) tested positive for Africanized mt-DNA, while sites from northern 

California (Merced, Madera 1) did not (Table A2). 

Other than A. mellifera, no introduced bee species appeared in HLL’s samples. We 

observed only one other introduced species (Megachile apicalis, Escalon, CA, n=6 

individuals). “Native bees” in our summaries include all except these two species. 

Patterns of change in bee abundance 

Arizona and New Mexico 

There was no interannual difference in the number of bees collected per person-hour 

(p=0.76, F2,9=0.28). The number of native bees per person-hour was significantly higher 
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in the 1970s (mean=42.21) than in 2015 (mean=14.16) and 2016 (mean=13.85, p=0.02, 

both comparisons). The number of A. mellifera per person-hour was significantly lower 

in the 1970s (mean=0.00; none were collected from any sites in AZ or NM) than in 2015 

(mean=16.52, p=0.03) and 2016 (mean=18.83, p=0.02) (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Abundances of bees visiting sunflower (Helianthus annuus, H. petiolaris) at 

four sites in Arizona and New Mexico in the 1970s. 2015, and 2016 (but Animas sampled 

in 2017 rather than 2015): total bees, native bees, Apis mellifera; pollen-specialist bees, 

pollen-generalist bees (excluding A. mellifera), nectar visitors. No A. mellifera were 

present in samples from the 1970s.  Error bars are ±1 SE. Means that do not share a letter 

are significantly different. 
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The number of specialist bees per person-hour was significantly higher in the 1970s 

(mean=30.78) compared to 2015 (mean=6.94, p=0.01) and 2016 (mean=8.97, p=0.04 

[significance leveladj=0.05]). There was no interdecadal difference in the number of 

generalists (excluding A. mellifera) (mean 1970s=8.07, 2015=6.12, 2016=4.05, p=0.24, 

F2,9=1.68). The number of nectar visitors did not differ from the 1970s (mean=3.31) in 

2015 or 2016 (2015 mean=0.27, 2016 mean=0.22, p=0.06) (Figure 3). 

 

California  

There was no interannual difference in the number of bees collected per person-hour 

(1970s mean=27.39, 2015=38.59, 2016=43.98, p=0.14, F2,18=2.20). The number of native 

bees per person-hour was significantly higher in the 1970s (mean=26.73, F2,18=8.50) than 

both 2015 (mean=14.53, p=0.004) and 2016 (mean=12.63, p=0.001). The number of Apis 

mellifera per person-hour was significantly higher in 2015 (mean=24.06, F2,18=25.91) and 

2016 (mean=31.36) than in the 1970s (mean=0.66, p<0.0001, both comparisons) (Fig. 4). 

 

The number of specialist bees per person-hour was significantly higher in the 1970s 

(mean=24.28, F2,18=8.95) compared to both 2015 (mean=10.96, p=0.003) and 2016 

(mean=9.42, p=0.001). There was no interdannual difference in the number of generalists 

(excluding A. mellifera) (mean 1970s=2.17, 2015=2.15, 2016=0.72, p=0.22, F2,18=1.64). 

The number of nectar visitors did not differ from the 1970s (mean=0.26) in either 2015 

(mean=0.62) or 2016 (mean=2.15, p=0.16, chi squared=3.69, df=2) (Fig. 4). 
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Figure 4. Abundances of bees visiting sunflower (Helianthus annuus, H. petiolaris) at 

seven sites in California in the 1970s, 2015, and 2016: total bees, native bees, Apis 

mellifera; pollen-specialist bees, pollen-generalist bees (excluding A. mellifera), nectar 

visitors. Error bars are ±1 SE. Means that do not share a letter are significantly different. 

  

Both regions 

There were no significant differences between 2015 and 2016 in any of the above 

comparisons of bee abundance. 

Patterns of change in bee species richness 

Arizona and New Mexico 

There were fewer total species in 2015 (mean=18.75, p=0.03 [significance leveladj=0.05]) 

and 2016 (mean=17.25, p=0.02) compared to the 1970s (mean=35.75). There were 
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significantly fewer specialist species in both recent years (1970s mean=15.75; 

2015=8.00, 2016=8.25, p≤0.01, both comparisons). The estimated number of species 

(Chao1 estimator) did not differ between decades (1970s mean=35.26, 2015=24.91, 

2016=20.36, p=0.17, F2,9=2.15 (Figure 5).  

(a)        (b)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Arizona and New Mexico sites. Species richness of bees visiting sunflower 

(Helianthus annuus, H. petiolaris) at four sites in Arizona and New Mexico in the 1970s, 

2015, and 2016 (but Animas sampled in 2017 rather than 2015): (a) total bee species 

richness, pollen-specialist bee species richness; (b) total estimated richness (Chao1). 

Error bars are ±1 SE. Means that do not share a letter are significantly different. 

 

California  

We found a total of 39 species in 2015 and 27 species in 2016, compared to 29 species 

from the same locations in the 1970s. This indicates an increase in regional species 

richness (total 2015–2016 richness = 44 species) compared to the past, yet there was no 

interannual difference in either the actual number of species (mean 1970s =10.71, 

2015=12.28, 2016=10.14, p=0.49, F2,18=0.74) or the estimated number of species per site 

(mean Chao1 1970s=14.89, 2015=14.38, 2016=11.63, p=0.83, F2,18=0.19). There was no 

interannual difference in the number specialist species (mean 1970s=5.00, 2015=4.43, 

2016=4.00, p=0.40, F2,18=0.94) (Figure 6). 
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Figure 6. California sites. Species richness of bees visiting sunflower (Helianthus annuus, 

H. petiolaris) at seven sites in California in the 1970s, 2015, and 2016: (a) total bee 

species richness, pollen-specialist bee species richness; (b) total estimated richness 

(Chao1). Error bars are ±1 SE. Means that do not share a letter are significantly different. 

 

Both regions 

There were no significant differences between 2015 and 2016 in any of the above 

comparisons of bee species richness. 

Patterns of change in bee assemblage composition 

Arizona and New Mexico 

There was no dissimilarity in overall assemblage composition between years (p=0.07, 

F2,9=1.76). Among generalists and nectar visitors, assemblage composition did not differ 

significantly from the 1970s in 2015 (adj. p=0.09), but was weakly dissimilar from the 

1970s in 2016 (adj. p=0.07). When A. mellifera was excluded, there was no dissimilarity 

between years in overall assemblage composition (p=0.07, F2,9=1.59), generalist and 

nectar-visitor assemblage composition (p=0.04, F2,9=1.93), or specialist assemblage 

composition (p=0.25, F2,9=1.24) (Figure 7, Table A4). 
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Figure 7. Arizona and New Mexico sites. Ordination plots (nMDS) of bee assemblage 

composition (a) with and (b) without Apis mellifera. Polygons surround four sites in 

Arizona and New Mexico sampled in the 1970s (white), 2015 (dark gray) and 2016 (light 

gray). Animas, NM was sampled in 2017 rather than 2015. Greater overlap between 

polygons indicates greater similarity in assemblage composition. Results from 

interannual comparisons are given in Table A5. All plots: k=2.  
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Figure 8. California sites. Ordination plots (nMDS) of bee assemblage composition (a) 

with and (b) without Apis mellifera. Polygons surround seven sites in California sampled 

in the 1970s (white), 2015 (dark gray) and 2016 (light gray). Greater overlap between 

polygons indicates greater similarity in assemblage composition. Results from 

interannual comparisons are given in Table A6 All plots: k=2. 

 

California 

Overall assemblage composition differed significantly from the 1970s in both 2015 (adj. 

p=0.006) and 2016 (adj. p=0.003). There was no significant difference between years 
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when A. mellifera was excluded (p=0.11, F2,18=1.43). Generalist and nectar-visitor 

assemblage composition differed from the 1970s in 2015 and 2016 (adj. p=0.003, both 

comparisons). When A. mellifera was excluded, generalist and nectar-visitor assemblages 

differed significantly from the 1970s (p=0.04, F2,18=1.58) in 2015 (adj. p=0.04) but not in 

2016 (p=0.08). There was no interannual difference in specialist assemblage composition 

(p=0.17, F2,18=1.36) (Figure 8, Table A5). 

 

Both regions 

There were no significant differences between 2015 and 2016 in any of the above 

comparisons of bee assemblage composition. 

 

Climatic representativeness of sampling years 

Drought (as measured by more negative SPEI values) has significantly increased at all of 

our sampling sites over the past 40 years (Table 2, Figure A1). Residual SPEI during 

sampling years showed different patterns in our two regions. In Arizona/New Mexico, 

average conditions during the 1970s sampling were relatively hot and dry for the decade 

(residuals near -1.0; Figure 11a). Modern sampling (both 2015 and 2016) occurred during 

relatively cool and wet conditions relative to the decade’s norm (residuals above zero; 

Figure 11a). In California, average SPEI during the 1970s sampling was near average for 

the decade (residuals near zero; Figure 11b). Modern sampling occurred during relatively 

hot and dry (2015; residuals below zero) and cool and wet (2016; residuals above zero) 

years relative to the decade’s norm (Figure 11b), bracketing the 1970s relative conditions.  
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Table 2. Significant negative relationships between year and SPEI (Standardized 

Precipitation Evapotranspiration Index) at 11 sites in the U.S. Southwest in the 1970s 

[Hurd, et al. 1980] and 2015–2016 (the present study), indicating increases in drought 

over the 1970–2016 period. Plots shown in Figure A1. 

Region Site Coefficient p-value Adjusted R
2
 

Arizona/New Mexico Animas -0.014 0.000 0.224 

 
Benson -0.016 0.000 0.281 

 
Rodeo -0.015 0.000 0.233 

 
Silver City -0.008 0.041 0.070 

California Bishop -0.015 0.000 0.271 

 
Corcoran -0.011 0.003 0.163 

 
Escalon -0.009 0.021 0.092 

 
Indio -0.017 0.000 0.330 

 
Madera 1 -0.008 0.046 0.065 

 
Madera 2 -0.009 0.026 0.086 

 
Merced -0.014 0.000 0.240 

 

 

(a) Arizona/New Mexico sites (n=4)    (b) California sites (n=7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Climatic contexts under which historic (1970s) versus modern (2015, 2016) 

bee sampling occurred. Boxplots depict the minimum, first quartile, median, third 

quartile, and maximum values of the residuals for the drought index SPEI for each region 

and time period, where residuals are calculated from the predicted SPEI shown as lines in 

Figure A1. Negative residuals indicate that conditions in the sampling year were hot and 

dry relative to those expected from adjacent years (i.e., years within the same decade); 

positive residuals indicate that conditions were relatively cool and wet.  



 31 

 

Biotic and climatic correlates of changes in bee abundance 

Sites where A. mellifera increased the most were generally those experiencing increases 

in native generalist bees (R
2
=0.45; p=0.01; Figure 9a). Changes in A. mellifera 

abundance were not significantly correlated with changes in native specialist bee 

abundance (R
2
=-0.10; p=0.81; Figure 9b). 

(a) Δgeneralist vs. Δapis  R
2
=0.45; p=0.01  (b) Δspecialist vs. Δapis  R

2
=-0.10; p=0.81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Models and model p-values of change (present minus past) in abundances of  

(a) generalist (Δgeneralist) and (b) specialist bees  (Δspecialist) visiting Helianthus annuus at 

11 sites in Arizona, New Mexico and California, with change in Apis mellifera (Δapis) as 

the predictor. 

 

Changes in several climatic variables were correlated with bee abundance changes (Fig. 

10). Sites with the strongest increases in precipitation across the 40-year study period 

showed the largest increases in bee abundances, especially generalist bees including Apis 

mellifera. Sites with the strongest warming trends showed the largest declines in bee 

abundances. The direction and magnitude of these correlations were generally similar 

across the four categories of bees we examined (all bees, Apis mellifera, native 
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generalists, and native specialists), although significance levels varied. For example, 

native specialist bees showed weak correlations with climate relative to other bee 

categories, only showing a significant (negative) correlation with changes in mean 

temperature in the driest quarter (Fig. 10). 

 

Discussion 

We found major changes in the sunflower bee assemblage of the U.S. Southwest over the 

past 40 years. Native bee abundance was significantly lower in 2015 and 2016 compared 

to the 1970s. Our results also support the expectation that specialist bees are more 

vulnerable to declines than generalists, despite their apparent resistance to changes in 

certain climatic conditions. Although we observed significant increases in introduced A. 

mellifera abundances in both regions, our data do not suggest A. mellifera increases are 

potential drivers of native bee declines, as [explain that A. mellifera abundances are + 

correl with generalist bee abundances, or more accurately, sites where Am increased the 

most also saw the biggest increases in generalists, suggesting competition was not in 

play]. Instead, climate change is implicated. Rising temperatures are associated with 

decreased abundances of all bees, and specialist bees in particular. 

 

Changes in bee abundance 

An overall pattern of declines in native, specialist bee abundances and increases in 

abundance of the introduced generalist A. mellifera was shown across both years and both 

regions of our study. We observed no statistically significant difference between 2015 

and 2016 in any of our abundance measures — in fact in some cases we observed 
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remarkable consistency between sampling years. We saw no significant declines in 

abundances of native generalist bees in either region, supporting the hypothesis that 

generalist species are more likely to persist in a context of environmental change. A study 

in Britain covering a comparable timespan (1980-2013) showed a similar trend of 

declines in overall bee species richness, but increases in crop-pollinating generalist 

species over the 33-year period [Powney et al. 2019]. The steeper declines in specialist 

compared to generalist bees shown in our and others’ studies suggests that understanding 

the factors that contribute to specialist declines, and their interaction with environmental 

changes, should be a priority for future research. Further, do specialist and generalist bees 

contribute equally to the maintenance of ecosystem services, especially under variable 

environmental conditions? At least one mathematical model of ecosystem function 

(measured as community biomass, species richness over time, resilience and resistance to 

disturbance) has showed that ecosystem function in a species-poor community of 

generalists can be equal or greater than that of a species-rich community of specialists 

[Richmond et al. 2005], but whether this sceanrio actually plays out in real ecological 

communities is an open question. 

 

Our observation of declines in bumble bee (Bombus spp.) abundances is consistent with 

other assessments [Burkle et al. 2013; Cameron et al. 2011; Colla & Packer 2008]. HLL 

encountered great numbers of Bombus pensylvanicus De Geer at some locations (e.g., 

300+ individuals in a single sampling day in Rodeo, NM), reporting that huge numbers of 

B. pensylvanicus at sites in Arizona and California made it difficult or impossible to 

sample other species. In our surveys, B. pensylvanicus was absent, or present only in low 
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numbers, at all except the highest-elevation site (Silver City, NM, 1,797m). It is possible 

that B. pensylvanicus has shifted to higher elevations/cooler temperatures, as has been 

reported for other Bombus species in connection with climate change [Biella et al. 2017, 

Ploquin et al. 2013]. Declines and range contractions in Bombus species could have 

especially severe and wide-ranging effects on pollination in natural and agricultural 

systems, owing to their very high efficiency in pollen transfer [Cameron et al. 2011]. 

 

Changes in species richness 

Bee species richness at Arizona and New Mexico sites was significantly lower in 2015 

and 2016 than the 1970s. We think this decline is unlikely to be related to human impacts 

such as development and/or fragmentation since the 1970s. The area is sparsely 

populated (e.g., Benson AZ; 2010 population=5,105 [U.S. Census 2010]), with vast 

acreages under low-impact agricultural use such as ranching. We know of no large-scale 

changes over the past 40 years that could have affected bee populations in the area. Our 

examination of climate variables indicates that although temperature increases are 

associated with reduced abundance of all bees, the relationship is strongest with specialist 

bees, particularly during the driest part of the year (mean temperature of driest quarter, 

figure 10). A possible explanation is that higher temperatures increase specialist bee 

mortality either directly (if species already living near the upper limit of their temperature 

tolerances are exposed to more frequent or intense heat) or indirectly (via effects on their 

host plants). For example, climate warming may induce earlier host plant emergence, 

which could potentially lead to phenological mismatches, since development and 

diapause in bees is regulated by a variety of environmental triggers [Sgolastra et al. 
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2010]. There is some indication that emergence from diapause is keeping pace with 

advances in host-plant flowering in certain generalist bee species [Bartomeus et al. 2011], 

but analogous studies of specialist species are needed. 

 

Figure 10. Changes (present minus past) in environmental variables (Δenvi) significantly 

associated with changes in abundances of bees visiting Helianthus annuus (Δbee) at 11 

sites in Arizona, New Mexico and California.  

“all” = all bees, “am” = Apis mellifera, “gen” = generalists other than A. mellifera, “spec” 

= specialists, temperature seasonality=annual maximum–annual minimum 

 

In California, we found an increase in regional species richness (all sites considered 

together) compared to the past, but no difference in either actual or estimated per-site 

species richness between years. We note, however, that generalist assemblage 

composition in 2015–2016 differed significantly from the 1970s at both California and 

Arizona-New Mexico sites, and that increased precipitation was strongly correlated with 

increases in generalist (but not specialist) abundance. This suggests high turnover in 

generalist bee species identity, yet overall generalist persistence. It is possible that 

interspecific competition affects species composition in generalist bees more than in 
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specialists. In addition, unlike specialist species, generalist bee emergence is not closely 

synchronized with flowering in particular host plants; thus a certain number of generalist 

species are likely to be active and able to make use of periodic floral resources at any 

given point in the season.  

 

It is important to bear in mind that bee assemblages generally vary greatly from year to 

year. For example, in a 10-year study of Eucryphia cordifolia Cav. Pollinators in Chile, 

only three out of 137 species were observed annually, with Apis mellifera dominant in 

some, but not all years [Smith-Ramírez et al. 2014]. Similarly, of 330 bee species 

recorded from bimonthly surveys in a 15-year study in New Mexico, about 300 species 

appear in <5% of samples [Karen Wright, unpublished data]. Others have reported 

similar variability in pollinator populations [Olesen et al. 2008; Williams et al. 2001]. 

Our data represent a two-year glimpse of sunflower bee status, and it is likely that some 

species were both present and undetected. But the high variability in assemblage 

composition shown in ours and others’ studies heightens the importance of developing 

coordinated regional efforts to address the causes of bee declines. In agricultural settings, 

for example, greatly reduced diversity results in insufficient pollination service, while 

high diversity helps offset natural year-to-year variation [Kremen et al. 2002]. 

 

Bee dietary specialization 

To improve the assessment of generalist vs. specialist extinction risk, we suggest that bee 

dietary specialization needs further clarification. Although HLL defined species as 

oligolectic or polylectic based on their preliminary observations, they also speculated that 
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there are “few, if any, oligolectic bees associated solely with Helianthus, though there are 

many oligoleges of Compositae that visit sunflowers for pollen and nectar, and others that 

prefer sunflower pollen, when available, to that of other composites” [Hurd et al., p. 23]. 

Recent DNA analyses of pollen from museum specimens have indicated that some 

Melissodes species defined by HLL as primary oligoleges on Helianthus (e.g., M. agilis 

Cresson, M. coreopsis Robertson) are specialists on Asteraceae, but not solely on 

Helianthus [K. Wright, unpublished data]. A clearer understanding of bee dietary 

specialization would be helpful for making targeted conservation recommendations. If 

rare species are assumed to be specialists based on only a few observations from a limited 

number of resource or habitat types, this may result in an erroneous conflation between 

specialization and decline.  

 

Increase in Apis mellifera abundance 

In the HLL survey of the 1970s, A. mellifera was either present at low levels or absent, 

including at one site where “a large stand of H. annuus in excellent bloom and producing 

an abundance of pollen and nectar attracting other species of bees was growing within 50 

yards of an apiary comprising approximately 25 [A. mellifera] colonies” [Hurd et al., p. 

124]. Their assessment is consistent with a earlier study by Cockerell [1914], who 

reported that A. mellifera do not visit sunflower unless the supply of nectar from other 

plants runs short (for example, during drought conditions). This contrasts sharply with 

our observations. Apis mellifera was among the most commonly observed species at all 

sites, including all four sites in Arizona and New Mexico, where no A. mellifera were 

observed in the 1970s. In their discussion of A. mellifera, HLL report on an additional 16 



 38 

survey sites [Hurd et al., p. 125] that we did not revisit in the current study; at these and 

their primary sites, HLL observed fewer than one A. mellifera per person-hour, compared 

to our average of  more than 20 A. mellifera per person-hour. 

 

We suggest that the increase in A. mellifera observed at California sites could be related 

to changes in agricultural practices since the 1970s. The number of acres in almond 

(Prunus dulcis) production in the state expanded from ~300,000 in 1980 to over 

1,000,000 acres in 2015 [NASS 2016]. Almond production is dependent on pollination 

by A. mellifera, and commercial beekeepers transport 2–3 million colonies to California 

annually to meet demands for pollination services [Kulhanek et al., 2017; Sumner & 

Boriss 2006]. Although most commercial bees are relocated following the end of almond 

bloom in April, this huge annual influx of commercial colonies to California may have 

helped to maintain high levels of feral A. mellifera in the region, since at least some 

colonies will abandon their hives when disturbed and become feral. An increase in A. 

mellifera abundance in crop settings has not been shown to lead to decreases in native 

bees [Kremen et al. 2002; Williams et al. 2010], but there is evidence of negative effects 

on native bee visitation to wild plants [Henry & Rodet 2018]. We believe the question 

merits further investigation. Native pollinators have been demonstrated to be important 

contributors to crop productivity and stability of pollination service even when A. 

mellifera are abundant [Garibaldi et al. 2011]. This contribution may be even more 

important for the non-agricultural plants for which native bees are best adapted as 

pollinators and upon which they depend for their own reproduction. 
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Our results for A. mellifera suggest that the species needs to be monitored more closely in 

wildland settings. Despite considerable interest among melittologists in the potential for 

competition between A. mellifera and native bees (e.g., Beard 2015; Cane & Tepedino 

2016; Geldmann & González-Varo 2018), A. mellifera is often excluded from sampling 

because it is a managed species. For example, Kearns & Oliveras (2009) reported Apis 

presence but not abundance in Boulder, CO, and Apis was purposefully not sampled in 

other historical comparisons (Bartomeus et al. 2013, Biesmeijer et al. 2006; Marlin & 

LaBerge 2001, Grixti & Packer 2006), so there is no information on possible changes in 

Apis abundance over time at these locations. Burkle et al. (2013) did not comment on A. 

mellifera specifically, but we noted that it was among a core group of generalists that 

persisted from the time of the original (1800s) Carlinville study to the present [Burkle et 

al. 2013, Supplementary Material, Fig. S9].  

 

Our results also highlight the importance for researchers of including A. mellifera when 

documenting bee assemblages. We found no association between A. mellifera increases 

and native bee declines, but given that negative effects have been indicated in other 

studies [e.g., Badano 2011; Hudewenz 2015; Sugden & Pyke 1991], we emphasize the 

importance of tracking A. mellifera abundance and distribution as part of monitoring 

overall assemblage condition. A. mellifera’s status as a managed species does not cancel 

out its potential for competitive displacement of native bees, perhaps specialists in 

particular. In a review of the ecological impacts of A. mellifera introductions, Butz-Huryn 

(1997) argued that “invoking cause and effect from honey bee presence and native bee 

absence may ignore other factors that limit native populations” (e.g., habitat loss, climate 
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change). However, we will be unable to make this distinction without documenting the 

shifting abundances of all bee species as anthropogenic impacts proceed. 

 

Inferred bee abundance trends were not driven by climatically unrepresentative  

sampling years  

Climate data from HLL’s and our sampling years (Figure 11, Figure A1) suggest that our 

inferred bee population trends are not being driven by chance sampling of climatically 

extreme years that were unrepresentative of their respective decades. For Arizona/New 

Mexico sites, sharp declines in abundance and diversity of native bees (Figures 3a and 

5a) occurred against a backdrop of poor conditions during 1970s sampling (hot and dry 

conditions relative to the 1970s decadal norm, with floral resources expected to be 

scarce) compared to good conditions during modern sampling (cool and wet conditions 

during both 2015 and 2016 relative to the 2010s decadal norm, with floral resources 

expected to be abundant). For California sites, declines in abundance of native bees 

(Figure 4a) coupled with stasis in species richness (Figure 6) were apparent regardless of 

whether the modern sampling year was hot and dry (2015) or cool and wet (2016) 

relative to the decadal norm.  

 

Biotic and climatic correlates of changes in bee abundance 

We found no evidence that introduced A. mellifera were drivers of declines in native bee 

species. Instead, it appears both A. mellifera and other generalist bees are responding 

similarly to changing environmental conditions, since sites where A. mellifera increased 

the most were generally those experiencing increases in native generalist bees as well. 
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Changes in A. mellifera abundance were not significantly correlated with changes in 

native specialist bee abundance. 

 

Of the 19 environmental variables we examined in exploratory analyses, we found 

significant correlations between six of them (four related to temperature, two to 

precipitation) and abundance changes in at least one of our four bee groups (all bees, A. 

mellifera, generalists excluding Apis, and specialists). In general, sites where temperature 

increased the most over the past 40 years showed the biggest decreases in total bee 

abundance. This suggests a potential relationship with climate change, one that warrants 

further examination and hypothesis testing. 

 

However, we note that no single environmental factor was strongly correlated with 

abundance changes in all four groups of bees. For example, temperature increase was 

associated with abundance decreases in different groups depending on time of year. 

Increases during the driest quarter were strongly correlated with decreases in specialist 

bee abundance but had no relationship with A. mellifera abundance, while increases 

during the wettest quarter were associated with a drop in total bee abundance (mainly 

driven by Apis) but the correlation with specialists was not significant. Similarly, 

increases in precipitation (especially during the coldest quarter) were strongly correlated 

with increases in A. mellifera and other generalist bees, but not specialists.  

 

Taken together, these patterns suggest the potential for differential climatic effects on the 

host plants relevant to each group (e.g., different shifts in phenology or abundance). For 
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example, increased precipitation during the coldest quarter could promote spring-

flowering species that benefit generalist bees, but not necessarily the late-summer annuals 

that would most benefit the specialist bees in our region. We interpret the absence of a 

uniform relationship with climate variables across all bee groupings as indication that 1) 

climate variables may be poor proxies for host plant availability — an index of which 

would likely be more tightly associated with changes in the bee community, and 2) 

climatic shifts may affect specialist and generalist bees differently, perhaps in relation to 

effects on their host plants but possibly in connection with other factors, such as nesting 

conditions or cues affecting diapause. We emphasize that our climate analyses are 

exploratory and that the hypotheses generated need further independent testing. 

 

Consequences for pollination services 

Impacts of changes in native bee communities on native plant reproduction are poorly 

understood. If visitation frequency in H. annuus equates with pollination effectiveness — 

a reasonable assumption given its generalist floral morphology — then A. mellifera may 

be considered the principal pollinator of H. annuus in our study areas at present. Others 

have noted the possibility that A. mellifera dominance and high visitation frequency 

could promote fitness in introduced plants [Beard 2015, Kato et al. 1999]. Some native 

plants have shown signs of adapting to introduced pollinators [Medel et al. 2018]. 

Though we observed only 16 fewer bee species than HLL, it is important to remember 

that declines can lead to functional extinctions, wherein a species is so reduced in 

numbers that it can no longer perform its former role in ecosystem processes [Carlton et 

al. 1999]. In the case of native pollinator declines, this includes the possibility of changes 
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in native plant communities resulting from changes in pollinator species composition. 

 

The site conditions we encountered suggest possible changes in floral resources 

compared to the past. HLL reported no difficulty in locating suitable patches of 

Helianthus for sampling. This was not the case in the present study. HLL sampled at 52 

locations in addition to primary sites (many sampled for multiple years), finding 

sunflowers along the edges of fields, orchards, ditch banks, fences, highway shoulders, 

on grazing land, even in vacant lots in Los Angeles, CA. This description of widespread 

occurrence contrasts markedly with our experience, where at almost all locations 

Helianthus was difficult to find in one or both years. For example, in 2016 in a thorough 

search along roadsides leading in every direction from Corcoran, CA we found only very 

small patches of sunflowers (<5 plants). The nearest viable sampling location was in 

Earlimart, 19.6 mi. south. Similarly, we found no sunflowers on the 135-mi. drive from 

Corcoran to Merced. HLL also recorded numerous sites with either H. petiolaris growing 

exclusively or in mixed stands with H. annuus. We did not observe H. petiolaris at any 

sites in either 2015 or 2016. Changes in Helianthus species composition, abundance, 

and/or range extent could be correlated with changes in bee assemblages.  

 

Conclusion 

Species richness at Arizona and New Mexico sites sharply decreased, whereas it appears 

stable at California sites. [Insert equivalent statement summarizing abundance changes].  

Our results strongly suggest a greater susceptibility to decline for specialist bee species, 

which comprise a substantial portion of the bee biodiversity of the Southwest region. 
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Although we did not observe declines in total abundance of generalist bees in either 

region, we did find significant changes in generalist species composition, which suggests 

that some generalist species may emerge as “winners” and others as “losers” in a context 

of rapid anthropogenic change. Continued declines in native bee abundance and/or 

species richness could negatively impact pollination services and threaten both wild plant 

species and agricultural food plant production. 
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CHAPTER 2  

Introduced honey bees (Apis mellifera) alter native bee visitation and seed set  

in a native plant species 
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Abstract 

Introduced species have been identified as primary drivers of global biodiversity loss. 

Destructive impacts have been brought about by a variety of taxonomic groups, including 

insects. The western honey bee (Apis mellifera) is among the world’s most commonly 

introduced insects. Perhaps because the species is a highly valued agricultural pollinator, 

its potential for negative impacts has received minimal investigation. However, A. 

mellifera’s sociality and generalist adaptability suggests the species could exert a 

considerable influence on both native bee floral visitation and native plant reproduction 

in its introduced ranges, especially if it competes with native bees or has differential 

effectiveness as a pollinator. Using replicated experimental introductions of A. mellifera 

and controls in an area of low A. mellifera density in south-central New Mexico, USA, 

we asked whether A. mellifera influences native bee visitation to and reproduction in 

native plant populations. We measured native bee visitation to arrays of potted native 

plants, as well as seed set in one native plant, the common sunflower Helianthus annuus. 

We found a marginally significant negative effect of A. mellifera introduction on native 

bee visitation frequency, but significant positive effects on both seeds per inflorescence 

and whole-plant seed set in H. annuus. Apis mellifera’s dominance in its introduced 

ranges has led some researchers to speculate that high densities of A. mellifera should 

inevitably reduce native bee abundance and perhaps also native plant fitness. Results 

from this study suggest that introduced A. mellifera may decrease visitation frequency of 

native bees to their host plants, yet positively contribute to native plant reproduction. 
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Introduction 

A primary driver of global biodiversity loss is the impact of introduced species [WWF 

2014]. In North America, many introduced insects have been identified as invasive and 

having destructive impacts [USDA 2018]. The most commonly introduced insect 

worldwide is the western honey bee (Apis mellifera), usually introduced to improve 

agricultural pollination and therefore generally regarded as beneficial [Kearns et al. 

1998]. Given the near-global success of feral A. mellifera colonies and the importance of 

pollination as a factor in plant reproduction [Hung et al. 2018; Klein et al. 2006; Traveset 

& Richardson 2006], the potential negative impacts of A. mellifera have received 

disproportionately minimal attention. But it is precisely its dominance and efficacy that 

give A. mellifera the potential to affect both pollinator and plant populations in places 

where it is introduced, and its influences warrant thorough investigation. 

 

Effects of A. mellifera on pollinators 

Prior studies on the impacts of A. mellifera on pollinators in its introduced ranges have 

revealed varying effects. Though some researchers maintain the evidence is inconclusive 

[Butz Huryn 1997; Paini 2004], there are cases of detrimental impacts of A. mellifera on 

native bees [e.g., Badano 2011; Hudewenz 2015; Sugden & Pyke 1991] leading others to 

assert that its effects are either negative [Beard 2015] or context-dependent [Aslan 2016]. 

For example, Badano (2011) reported a decrease in native bee diversity as A. mellifera 

abundance increased, and Hudewenz (2015) found decreased reproductive success in 

experimental native bee communities (caged 3 x 3-m plant arrays in the field) when A. 

mellifera was present. One reason for the lack of consensus on the ecological impact of 
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A. mellifera introduction is that, in most settings, both feral and managed A. mellifera 

colonies are widespread and control sites for comparison are hard to find. Some have 

suggested that the lack of definitive evidence primarily reflects the difficulty of carrying 

out field studies [Butz Huryn 1997; Goulson 2003]. The question has received renewed 

attention, however, in response to recent declines of both native bees and A. mellifera 

[Genersch 2010; Powney et al. 2019]. 

 

When competing for limiting resources, A. mellifera may be expected to impact native 

pollinators mainly through competitive exclusion. Active displacement at flowers is rare; 

instead, high densities of A. mellifera can be associated with decreased frequency of 

native bee floral visitation [Shavit et al. 2009] or altered foraging strategy in native bees 

[Thomson 2004]. Competitive exclusion should have the greatest impact on oligolectic 

bees whose host plants are favored by A. mellifera, since highly specialized foragers 

cannot switch to alternative plants when preferred resources are unavailable. 

 

In response to pollinator declines, concern has arisen regarding the placement of A. 

mellifera colonies in natural habitats. Researchers emphasize the importance of setting 

stocking rates for managed A. mellifera such that adequate forage is still available for 

native bees [Beard 2015; Cane & Tepedino 2016; Geldmann & González-Varo 2018]. In 

the U.S., apicultural leases are issued to provide post-crop maintenance and honey 

production in managed A. mellifera colonies, which can result in huge numbers of A. 

mellifera concentrated in a single area. Particularly in the West, U.S. wildlands host 

diverse, robust native bee communities [Michener 2000]. “Safe” densities of managed 
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bees in such environments, where wild pollinators are most abundant and which are 

important for pollinator conservation, will be different than in highly modified landscapes 

(e.g., crop monocultures). To determine what constitutes a reasonable stocking rate for A. 

mellifera in western wildlands, we need a clear understanding of how native bees and 

plants respond when A. mellifera are present, compared to when they are not. 

 

Effects of A. mellifera on plants 

The effects of A. mellifera on pollination of agricultural plants are usually (though not 

always) considered to be positive, i.e., A. mellifera generally increases crop yield and 

quality [McGregor 1976]. In contrast, the species’ impact on wild plants has received less 

attention, despite awareness that A. mellifera readily and in some cases preferentially 

forages for pollen outside of the crops they are intended to pollinate [Gonzalez-Varo & 

Vila 2017; Requier et al. 2015]. In a recent review, Mallinger et al. (2017) concluded that 

the evidence for effects of A. mellifera on native plant reproduction is approximately 

equally divided between negative and positive outcomes [Mallinger 2017]. However, 

Mallinger et al. also noted that in the majority of studies examining effects of A. mellifera 

on native plants, A. mellifera density was not experimentally manipulated. As with 

studies of effects on native bees, others have pointed out that comparative studies with 

controls lacking A. mellifera are required in order to better understand how A. mellifera 

affects native plant reproduction [Dohzono & Yokoyama 2010].  

 

Competitive exclusion of native bees by A. mellifera has greater potential to affect native 

plant populations if pollination effectiveness differs between the two bee groups. This 
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can occur even if their per-visit pollination efficiency (seed set resulting from a single 

visit [Rader et al. 2009]) is equal. Pollination effectiveness can be calculated as a 

combination of efficiency and visitation frequency (i.e., overall visits of a pollinator 

relative to seed set [Motten et al. 1981]). Unlike most native bees, which are solitary, 

sociality in A. mellifera allows colony members to share information and forage 

cooperatively, which can result in the recruitment of large numbers of A. mellifera to a 

desirable resource. Thus A. mellifera can have high effectiveness regardless of efficiency, 

owing to high visitation frequency [Osorio-Beristain et al. 1997; Westerkamp 1991]. 

 

Floral resources are more likely to be intermittently scarce (and competition more fierce) 

in arid regions, which also contain the highest native bee diversity [Michener 2000]. The 

objective of this study was to investigate whether experimental supplementation of A. 

mellifera in an arid ecosystem elicits behavioral shifts in native pollinators, which in turn 

could alter native plant reproduction. Specifically, we assessed native bee visitation and 

fitness in the common sunflower Helianthus annuus in replicated supplemented vs. 

control sites in south-central New Mexico, USA. A. mellifera pollination improves 

domesticated sunflower seed set in agricultural settings [Oz et al. 2009], but does this 

effect hold when the species is foraging among native, specialist pollinators that 

coevolved with wild H. annuus as a host plant? If not, do these effects correspond to 

changes in native bee visitation? Effects should be positive if A. mellifera is an equal or 

more effective pollinator than native bees; but negative or neutral if A. mellifera is less 

effective. We hypothesized that A. mellifera would reduce native bee visitation due to 

competitive exclusion, and that this would result in decreased fitness in H. annuus. 
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Materials and methods 

Study Sites and Experimental Design 

This study was conducted in Chihuahuan basin-and-range territory in southwest New 

Mexico, Sierra County. Bee diversity in the southwest U.S., especially the northern 

Chihuahuan Desert, is among the highest in the world [Michener 2000; Minckley & 

Ascher 2013]. Specialist species surpass generalists in diversity, biomass and abundance 

[Minckley et al. 2000; Simpson & Neff 1987]. Apis mellifera colony establishment is 

constrained by low availability of water, lack of cavity-nesting sites, and Varroa mites 

[Ken Hays, personal communication; Loper 1995; Visscher et al. 1996]. As a result, feral 

colonies in the study area are scarce. For example, in three years of bee monitoring using 

funnel traps at Bosque del Apache Wildlife Refuge north of our study area (range, 11–60 

miles from our sites), A. mellifera comprised < 0.5% of trapped specimens [Wright 

2010]. 

 

In 2017 we selected 8 pairs of study sites from two sampling areas: northern (Armendaris 

Ranch; vicinity of San Marcial, NM) and southern (Elephant Butte Lake State Park, 

Caballo Lake State Park; vicinity of Truth or Consequences, NM). Sites occurred in two 

vegetation types: upland (dominated by creosote bush with desert grasses and cacti) and 

riparian (within 1 km of the Rio Grande; predominantly salt cedar with cottonwood and 

willow). We located two pairs of sites in each vegetation type in each of the two 

sampling areas (Figure 1). 
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Figure 1. Map of 16 paired study sites (ambient=circles, Apis mellifera-supplemented= 

triangles) in the vicinity of Truth or Consequences, Sierra County, New Mexico USA. 

  

Three weeks prior to the start of the experiment (July 28, 2017), we introduced A. 

mellifera hives at one randomly selected site per pair (“supplemented”), leaving the other 

without hives as a control (“ambient”). We used professionally-reared hives (Hays Honey 

and Apple Farm, Bosque Farms, New Mexico) of approximately equal size (15,000–

25,000 bees) and initial condition. Supplemented sites received three hives each. Apis 

mellifera have been recorded foraging up to 14 km from their hives, but most foraging 

takes place within 2.5 km of the hive [Eickwort and Ginsberg 1980, Visscher & Seeley 

1982]. To minimize the likelihood that supplemented A. mellifera would visit control 

sites, we located sites within a pair a minimum of 3.2 km apart (mean = 3.8 km). 

Neighboring pairs were at least 1.4 km apart; supplemented sites at least 6.9 km apart. 
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Hives were left in place for te duration of the experiment (12 weeks) and were checked 

weekly. Supplemental feedings (sugar solution) were given during the first two weeks in 

the field prior to the start of the experiment, as well as on one other occasion during the 

study period (September 15); otherwise, experimentally introduced bees foraged from 

plants in the study area. No commercial beehives other than those we introduced were in 

the vicinity during the sampling period. 

 

Plant arrays 

In the U.S. Southwest, many oligolectic bees rely on late-blooming annual plants (mostly 

in family Asteraceae) for pollen. For example, sunflowers (genus Helianthus) are visited 

by several hundred native bee species, about half of which are Asteraceae specialists 

[Hurd et al. 1980; Cumberland et al. in prep.]. A. mellifera also visit sunflowers, 

primarily for nectar (as opposed to native bees, which collect both nectar and pollen) 

[Free 1964; Neff & Simpson 1990]. 

 

We assessed bee visitation using four plant phytometers: Helianthus annuus, Gaillardia 

pulchella, Verbesina encelioides, and Baileya multiradiata. All are annual, native 

Chihuahuan Desert forbs in family Asteraceae that bloom during the North American 

monsoon season (mid-June to late September) and are visited by medium to high 

abundances and diversity of bees and other pollinators (wasps, flies, beetles) [USDA-

NRCS 2013]. Our focal plants for reproductive-fitness measures were H. annuus and G. 

pulchella, since they are self-incompatible and thus had the potential to show strong 

responses to increased pollination via A. mellifera supplementation. Verbesina 
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encelioides and B. multiradiata are self-compatible, but were included in arrays to mimic 

the structural and phenologic variation of a diverse native plant community, with the 

intention of attracting a greater number of pollinators to maximize cross-pollination in 

our focal plants. 

 

Seeds from regionally-harvested seed stock (NM, CO, CA) were obtained from a native-

plant nursery (Plants of the Southwest, Albuquerque, New Mexico). Beginning in spring 

2017, we started seedlings bi-monthly at the University of New Mexico greenhouses and 

transplanted them to 1-gallon containers at bud stage. Placement in the field was timed to 

coincide with the earliest stages of bloom for all species.  

 

There were three rounds of plant placement (August 19–27, September 17–24, and 

October 7–16, 2017); we refer to each as a “sampling period”. Plants were randomly 

assigned to either A. mellifera-supplemented or ambient treatments. Plants were protected 

from herbivores in 1 x 1.25-m
2
 enclosures constructed of 91.44-cm high chicken wire 

mesh attached to steel rebar supports. Enclosures at supplemented sites were placed ~15 

meters from beehives. Each enclosure contained three polypropylene bus tubs (~ 50 x 40 

x 20 cm) holding 15–20 L of water apiece. We set the plants in the bus tubs and added 

water as needed to ensure adequate hydration during the two-week sampling period. 

Three to six pots of flowering individuals of each species (one plant per pot) were placed 

at each site; the number of plants of a given species was equal between members of a 

(supplemented/ambient) pair. We recorded the number of open inflorescences (total for 
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all plant species) in each enclosure at the beginning of each 20-minute pollinator 

observation period. 

 

Environmental data 

At the start of each 20-minute observation period, we recorded temperature and wind 

speed (maximum mph during the observation) with a hand-held anemometer (TACKlife 

DA02). Missing data for temperature and wind speed (6 and 10 records, respectively, of 

131 total) were replaced with interpolated values, except that a missing value for the first 

or last observation on a given day was replaced with the nearest measurement. As a proxy 

for cloud cover, we recorded the probability of precipitation for each sampling day, as 

reported by the National Weather Service for each observation date (percent chance that 

rain would occur in the Truth or Consequences Municipal Airport forecast area).  

 

Observations of pollinator visitation  

We observed visitation 130 times during the three month study (ambient n = 64; 

supplemented n = 66). We observed insect foraging activity at each site at least two times 

during each sampling period, avoiding periods when weather was not conducive for 

pollinator activity. Observation periods were 20 minutes long and were divided equally 

between mornings (0800–1300) and afternoons (1300–1800). Observation time averaged 

162.5 minutes per site for all three sampling periods combined (range, 150–180 minutes). 

 

We watched all open inflorescences at each array and recorded the total number of native 

bee and A. mellifera visits made to open inflorescences during each observation as well 
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as which plant species was visited. A visit was recorded as such only if a bee was 

observed obtaining pollen or nectar from an inflorescence. Activities such as perching 

and mate scouting were not counted as visits. We also recorded other visitors (wasps, 

flies, beetles, butterflies), and included these as covariates in initial data analysis to test 

for any influence on bee visitation, but found no significant effects.  

 

We did not collect and voucher bees from this experiment because i) bees are repeat 

visitors, and thus collection could influence both visitation patterns and fitness outcomes, 

and ii) visitation was low throughout the experiment (mean = 6.5 visits per 20-minute 

observation), allowing time for visual identification. Where possible, we identified bees 

to genus or species by sight as they visited. Visual identifications were based on CC’s 

prior experience of >300 hours collecting 87 species of bees visiting sunflowers across 

the southwestern U.S. (manuscript in preparation), as well as CC’s reference collection of 

bees from a 2016 pilot study in the same vicinity as the present study. 

 

Native plant fitness 

We intended to assess seed set and fitness in both of the self-incompatible phytometer 

species, H. annuus and G. pulchella. Due to difficulties with greenhouse propagation and 

plant mortality caused by herbivores in the field, we were unable to obtain an adequate 

sample size of G. pulchella for fitness analyses (average of 1.12 inflorescences open per 

site during sampling periods). While G. pulchella was thus excluded from fitness 

analyses, it was present in experimental arrays and may have influenced visitation to H. 

annuus similarly to V. encelioides and B. multiradiata.   
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To compare seed set of H. annuus at the inflorescence and whole-plant levels at 

supplemented vs. ambient sites, we focused on inflorescences that opened during each 

two-week sampling period. A total of 701 H. annuus inflorescences were harvested from 

the experiment, 302 from ambient and 399 from supplemented sites. Prior to placement 

in the field, open inflorescences on plants were marked with paper tags to allow them to 

be distinguished from those opening in the field. At the end of each sampling period, 

inflorescences that had opened in the field were covered with polypropylene micro-mesh 

bags to prevent cross-pollination until senescence and retain seeds. Plants were 

transported back to the greenhouse and allowed to senesce, at which point total 

inflorescence number (focal inflorescences + all others produced before and after 

placement in the field) was counted for each plant. Mature, viable seeds were then 

removed from the bagged receptacles and counted. A seed was assumed to be viable if 

the pericarp did not collapse when firm pressure was applied with a pair of forceps. Mean 

inflorescence-level seed set was calculated for the bagged inflorescences. Whole-plant 

seed set was calculated as the product of mean inflorescence-level seed set × total 

inflorescence number; with the assumption that inflorescences opening before and after 

field placement of each plant would have been pollinated at the same rate as the focal 

inflorescences. 

 

Statistical Analysis 

To assess supplementation-treatment effects on bee visitation we used count models, 

which are better at detecting effects in pollination data than a frequency/visitation rate 
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approach [Reitan & Nielsen 2016]. Visitation data of both native bees and A. mellifera 

did not meet the assumptions of normality or homogeneity of variance required for linear 

models and included a large number of zeros. We therefore modeled visitation using 

generalized count models, under the assumption of a negative binomial distribution to 

handle excess zeros in the data. We then performed model selection using the 

information-theoretic approach proposed by Anderson (2008), under which multiple 

candidate models are ranked according to how well they describe the relationship 

between a set of predictors and a response variable. The highest-ranked model (lowest 

AIC) is considered the best representation of reality, as defined by the data.  

 

Our 32 candidate models for bee visitation contained six predictor variables: total 

inflorescence count (number of open inflorescences in array; total for all four plant 

species), precipitation (% chance), site, temperature (at start of observation), time (at start 

of observation), and treatment (supplemented/ambient). We ranked models based on all 

possible combinations of our predictors for each of the two response variables (A. 

mellifera visitation; native bee visitation). Visitation in models reflects visits per 20-

minute observation period. We ranked the models according to QAIC, a modification of 

AIC developed for over-dispersed count data [Anderson 2008].  

 

To assess supplementation-treatment effects on H. annuus seed set, we used linear 

models. Seed set data were square-root transformed to satisfy the normal distribution 

requirement. We then performed model selection from 16 candidate models containing 

five predictor variables: H. annuus inflorescence count (per-plant number of H. annuus 
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inflorescences that opened during the two-week sampling period), site, month, vegetation 

type (riparian/upland), and treatment (supplemented/ambient). We ranked models based 

on all possible combinations of predictors for each of the two response variables 

(inflorescence-level seed set; whole-plant seed set). Models were ranked according to 

AICc, a correction of AIC for small sample sizes [Anderson 2008].  

  

To assess supplementation-treatment effects on native bee community composition, we 

conducted a non-metric multidimensional scaling analysis (nMDS) of a Bray-Curtis 

distance matrix, and used PermANOVA to assess the effects of treatment and site [Bray 

& Curtis 1957; Clarke & Warwick 2005]. 

  

Statistical analyses were performed in R, version 3.3.2 [R Core Team 2016] running in 

RStudio, version 1.0.44 [RStudio 2015]. Model selection was performed using the R 

package MuMIn [Barton 2015]. Non-metric multidimensional scaling and PermANOVA 

were performed with Primer 6 [Clarke & Warwick 2005]. Parameter estimates (β’s) 

reported are coefficients from the best model (lowest AICc). Values graphed are means ± 

1 standard error. 

 

Results 

Bee visitation 

Considering supplemented and ambient treatments together, we observed 103 A. 

mellifera visits to phytometer inflorescences, which were divided approximately evenly 

between morning (51%) and afternoon (49%) sampling periods. We observed 770 visits 
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from native bees to phytometer inflorescences, with the majority (61%) occurring during 

morning sampling periods. Visitation in A. mellifera ranged from 0–87 visits per hour 

and increased over time, peaking in October. Visitation in native bees ranged from 0–201 

visits per hour and peaked in September. There was no difference in visitation frequency 

for either native bees or A. mellifera at upland vs. desert sites (all p>0.30). 

 

Experimental introduction of A. mellifera hives (supplementation) increased the 

frequency of A. mellifera visits at treatment sites compared to controls (Figure 2). Only 

1% of observation periods at ambient sites included A. mellifera visitation, compared to 

15% of observation periods at supplemented sites. Native bees visited ambient and 

supplemented sites with nearly equal frequency, though the mean number of visits per 

hour was lower at supplemented (19 visits/hr.) than at ambient sites (16 visits/hr.; Figure 

2). Native bees visited more consistently than A. mellifera at all sites: we recorded native 

bee visitation in 70% of observation periods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Effect of Apis mellifera supplementation on visitation in native bees and  

Apis mellifera to potted native plants in the field, after controlling for other factors. 

Asterisks indicate treatment (ambient vs. supplemented) was included in the best model 

in each case. 

 

* 

* 
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For A. mellifera visitation, model selection identified total inflorescence count, site, 

temperature, and treatment as predictors in the lowest-AICc model (Table 1), but this 

model was not statistically superior (i.e., ΔAICc < 2) to a second model that excluded 

temperature as a predictor. There was a positive effect of treatment (supplementation) on 

A mellifera visitation. Using coefficients from the best model, the expected number of A. 

mellifera visits at supplemented sites, with other variables held constant, is 9.81 times the 

number of visits per hour at ambient sites.  

Table 1. Comparison of models explaining (a) A. mellifera visitation and (b) native bee 

visitation as a function of treatment and environmental conditions.  

(a) 

                        Model   df   logLik AICc ΔAICc wi 

treat (+) + inflor (+) +  site (-) + temp (-) 12 -59.61 143.22 0.00 0.39 

treat (+) + inflor (+) +  site (-) 11 -60.96 143.91 0.69 0.28 

treat + site 10 -62.85 145.70 2.48 0.11 
 
 
(b) 

                        Model   df   logLik AICc ΔAICc wi 

treat (-) + inflor (+) + precip (-) + temp (+) + time (-) 7 -325.02 586.54  0.00 0.42 

treat + inflor + precip + temp + time + site 14 -318.50 589.11 2.56 0.12 
  
Abbreviations: treat = treatment (Apis supplementation), inflor = inflorescences,  

temp = temperature; (+) = positive coefficient, (-) = negative coefficient 

wi = Akaike model weight (probability that the given model produces the best 

representation of the data out of all candidate models). 

 

For native bee visitation, model selection identified additional predictors: As with A. 

mellifera, the lowest-AICc model for native bee visitation included total inflorescence 

count, temperature, and treatment as predictors, but precipitation and time were also 

included while site was excluded (Table 2). All other candidate models had ΔAICc > 2. 

There was a negative effect of treatment (A. mellifera supplementation) on native bee 

visitation. Using coefficients from the best model, the expected number of native bee 

visits at supplemented sites, with other variables held constant, is 0.73 times the number 
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of visits per hour at ambient sites.  

Table 2. Comparison of models explaining (a) seeds per inflorescence and (b) whole-

plant seed set (seeds per inflorescence × number of inflorescences) in potted H. annuus in 

the field. 

(a)  

                        Model   df   logLik AICc ΔAICc wi 

treat (+) + mo (-) + veg (+) 6 -420.45 853.39  0.00 0.58 

treat (+) + H. annuus inflor (+) + mo (+) + veg (+) 7 -420.45 855.55 2.16 0.20 
 
 
(b)  

                        Model   df   logLik AICc ΔAICc wi 

treat + H. annuus inflor + mo +  vegtype 7 -603.36 1221.37 0.00 0.59 

treat + H. annuus inflor + mo 6 -605.26 1223.00 1.63 0.26 

treat + mo + vegtype 6 -606.17 1224.82 3.45 0.11 
  
Abbreviations: treat = treatment (Apis supplementation), H. annuus inflor =  number  

of H. annuus inflorescences that opened during the sampling period, mo = month,  

veg = vegetation type (riparian) 

wi = Akaike model weight (probability that the given model produces the best 

representation of the data out of all candidate models). 

 

Total inflorescence count had a positive effect on visitation in both bee groups, especially 

A. mellifera. There was no difference in total inflorescence count between treatments (p = 

0.36). As temperature increased, A. mellifera visitation decreased but native bee visitation 

increased. Native bee visitation decreased as precipitation and time of day increased; 

these factors were not important predictors of A. mellifera visitation.  

 

We recorded 11 native bee morphotypes (Table 3). Where possible, we identified visiting 

bees to genus; a large proportion (50%) of the native bees identified belonged to the 

genus Melissodes, with most others in genera Lasioglossum, Diadasia and Halictus; 1% 

were unidentified. NMDS analyses showed no significant effect of treatment (999 

permutations; p=0.16), vegetation type, site, or interactions on native bee community 

composition (Figure 3). 
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Table 3. Counts of native bee genera/morphotypes visiting inflorescences at ambient vs. 

supplemented sampling sites, August–October 2017. (Note, counts ≠ visitors. Total 

number of bees visiting sites / visits per bee is unknown). 

  

 

count (visits to inflorescences) 

Genus Species Ambient Supplemented total 

Agapostemon angelicus/melliventris 7 8 15 

Diadasia spp. 25 75 100 

Halictus ligatus/tripartitus 26 43 69 

Lasioglossum spp. 80 38 118 

Megachile spp. 6 0 6 

Melissodes spp. 238 148 386 

Svastra spp. 29 39 68 

Xylocopa spp. 1 0 1 

Unknown sp. 1 4 0 4 

Unknown sp. 2 2 0 2 

Unknown sp. 3 0 1 1 

  

418 352 770 

 

 

 
Figure 3. Ordination plot of native bee community data (k=2; stress=0.15). Polygons 

surround species (11 morphospecies; excludes Apis mellifera) observed at ambient 

(dashed lines) vs. supplemented (solid lines) sites. The large overlap indicates that native 

bee community structure at supplemented sites does not differ from ambient sites 

(p=0.16). 
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 Helianthus annuus Seed Set 

Inflorescence-level seed set 

At the inflorescence level, model selection identified treatment, month, and vegetation 

type as predictors of seed set in the lowest-AICc model (Table 2). All other candidate 

models had ΔAICc > 2. The treatment effect was positive: Using coefficients from the 

best model, inflorescences from supplemented sites averaged 0.82 more seeds per 

inflorescence than those from ambient sites (95% CI=0.08–1.57). The effect of 

supplementation was small (Cohen’s D = 0.31). Plants from the August sampling period 

produced more seeds per inflorescence than September and October plants (Figure 4). 

There was also an effect of vegetation type, with more seeds per inflorescence produced 

from plants at riparian than at upland sites. 

 

Whole-plant seed set 

At the whole-plant level, model selection identified treatment, H. annuus inflorescence 

count, month, and vegetation type as predictors of seed set in the lowest-AICc model 

(Table 2). This model was statistically indistinguishable (ΔAICc < 2) from a second 

model that excluded vegetation type as a predictor. The treatment effect was positive: 

Plants from supplemented sites had higher whole-plant seed set than at ambient sites 

(mean increase, 2.65 seeds per plant, n = 92 plants; 95% CI=0.56–4.75). The effect of 

supplementation was moderate (Cohen’s D = 0.37). Plants from the August sampling 

period had higher whole-plant seed set, as did plants from riparian sites (Figure 4). 
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Figure 4. Effects per month of Apis mellifera supplementation and other covariates on  

(a) seeds per inflorescence and (b) whole-plant seed set (seeds per inflorescence × 

number of inflorescences) in potted Helianthus annuus in the field. 

 

Discussion 

Effects of A. mellifera on native bee visitation 

We found lower native bee visitation at supplemented than at ambient sites. This is 

consistent with other research demonstrating negative effects of A. mellifera on native 

bee foraging activity [Goulson 2002; Gross 2001; Kato 1999; Osorio-Berestain 1997]. In 

some cases A. mellifera have been observed actively displacing native pollinators from 

foraging [Gross & Mackay 1998; Shavit et al. 2009]; we did not observe this in the 
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present study but we note that even passive displacement (exploitation competition) has 

been shown to reduce resource availability for native bees [Wilms & Wiekers 1997]. Our 

results conform to a general pattern of negative outcomes of A. mellifera introductions for 

native bees, as indicated in a recent systematic review [Mallinger et al. 2017]. 

 

Given the dual outcome of increased seed set in H. annuus and increased A. mellifera 

visitation at supplemented sites, our data suggest that if exploitation competition occurred 

between A. mellifera and native bees in our study system, it was more likely for H. 

annuus nectar than H. annuus pollen. Other investigations have found evidence that 

nectar competition between A. mellifera and native bees can lead to reduced reproductive 

potential in native bees; for example, pollen storage in tropical Melipona species peaked 

only during periods of bloom in Apis-preferred plants, when interspecific competition for 

nectar was at its lowest [Wilms & Wiechers 1997]. Similarly, Thomson (2004) observed 

increases in foraging trips for nectar relative to pollen by native bumble bees (Bombus 

occidentalis) in response to A. mellifera introductions, suggesting reduced nectar 

availability with A. mellifera present. A significant negative correlation between 

reproductive success in B. occidentalis and a higher ratio of nectar foraging trips 

indicated a fitness cost of nectar scarcity [Thomson 2004]. 

 

Other studies have shown no effect of A. mellifera on native pollinator resource 

collection, including cases where the native pollinators in question were pollen-specialist 

bees potentially competing with A. mellifera for access to their host plants. In a review of 

the evidence, Butz-Huryn (1997) concluded that although changes in foraging behavior 
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of some native pollinators were observed in response to A. mellifera introduction, 

detrimental impacts on native bee populations had not been conclusively demonstrated. 

In another survey of visitation in native bees and A. mellifera in Brazilian cerrado 

habitat, de Menezes Pedro & De Camargo (1991) found minimal resource overlap 

between A. mellifera and native bees, and no evidence of reduced native bee abundance 

during peaks in A. mellifera abundance. Roubik et al. (1983) also observed no change in 

native bee foraging activity resulting from A. mellifera introductions in forests of French 

Guiana, hypothesizing that the greater foraging range of A. mellifera relative to native 

bees obviated competition for resources (though a later study in lowland forest of Panama 

showed declines in resource harvest for native bees when A. mellifera also foraged 

[Roubik et al. 1986]). In our case, native bee visitation was reduced where A. mellifera 

hives were present, but was still higher than A. mellifera visitation at both site types. We 

also found no evidence that native bee community composition was affected by A. 

mellifera introductions; the same native bee species that appeared at ambient sites also 

visited supplemented sites.  

 

We note that decreased visitation of native bees to their host plants following A. mellifera 

introduction does not demonstrate that native bees are negatively affected at the 

population scale. Reduced visitation or resource harvesting indicates a potential for 

negative impacts, but as others have observed, only reduced reproductive success of 

native bees resulting from A. mellifera introduction would be conclusive [Paini 2004]. 

The logistical difficulty of obtaining quantitative measures of fitness in native bees has 

resulted in scant and conflicting empirical evidence thus far [e.g., Paini 2004; Paini & 
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Roberts 2005; Thomson 2004]. However, given that resource overlap and suppressed 

visitation in native bees following A. mellifera introduction have been demonstrated in a 

number of study systems including our own, we maintain that the subject calls for further 

examination. 

 

Effects of A. mellifera on H. annuus fitness 

Introduction of A. mellifera colonies improved seed set in H. annuus at both the 

inflorescence and whole-plant level. This result supports a hypothesis proposed by others: 

Generalist bees and nectar visitors (“secondary” pollen foragers; sensu Westerkamp 

1991) may be more effective pollinators of some plants than pollen specialists (“primary” 

foragers) because they become dusted with pollen while visiting yet may not deliberately 

collect it. In contrast, “primary” foragers visit flowers specifically for the purpose of 

taking pollen away, and specialists are more efficient at it than generalists [cf. Minckley 

et al. 1994]. This could result in more pollen being removed than deposited by a 

specialist visitor to its host plant. If A. mellifera is visiting sunflower plants primarily for 

nectar and acting as a “secondary” forager, it may ultimately be highly effective because 

pollen adhering to nectaring visitors (in the case of Apis, not packed into corbiculae) 

remains available for stigmatic deposition [Westerkamp 1991]. In addition, in our study 

A. mellifera reduced but did not eliminate native bee visitation to study plants; thus the 

potential remained for improvement of seed set via interactions between A. mellifera and 

native bees (e.g., by increasing the frequency of A. mellifera pollen transfer between 

sunflower plants and distributing pollen more evenly, as has been observed elsewhere 

[Greenleaf & Kremen 2006]). 
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Our result both contradicts our expectations and differs from impacts observed on some 

other native plant species. For example, native Cistus shrubs in Spain receiving high A. 

mellifera visitation were visited by fewer species of native pollinators and produced 

fewer seeds per fruit than shrubs with low A. mellifera visitation, while native pollinators 

were shifted toward less abundant resources [Magrach et al. 2017]. Seed set was also 

negatively correlated with A. mellifera visitation to flowers of Brazilian Clusia arrudae 

trees, despite no evidence of change in native pollinator visitation [Mendes do Carmo & 

Francesschinelli 2004]. In contrast, native bees visiting the Australian shrub Melastoma 

affine were frequently displaced from foraging by A. mellifera, which deposited less 

pollen on Melastoma stigmas compared to native bees, resulting in decreased seed set 

[Gross & Mackay 1998]. Notably, A. mellifera were observed collecting pollen from 

plants in these studies, not just nectar — in other words, acting as primary foragers. Also, 

unlike most native bees whether specialist or generalist, A. mellifera forages collectively 

and thus exerts colony-level impacts on preferred floral resources, in some cases 

removing >90% of available pollen from native plants before native bees arrive [Carneiro 

& Martins 2011; Mendes do Carmo & Francesschinelli 2004]).  

 

Other study results are consistent with ours. In observational studies of native Echium 

populations, Dupont et al. (2004) observed similar seed set and viability in plants with 

and without A. mellifera visitation. Nectar was the primary resource harvested; heavy A. 

mellifera foraging depleted the standing crop to near-zero levels [Dupont 2004]. In other 

situations, increased seed set resulting from A. mellifera pollination has been associated 



 70 

with reproductive success in weedy plants. For example on islands in the northwest 

Pacific, A. mellifera strongly depends on introduced nectariferous plants especially 

during periods when native melittophilous plants are not in bloom; introduced plant 

densities are higher (and native bee abundances lower) on islands where Apis is present 

[Kato et al. 1999]. 

 

Numerous prior studies have been conducted of A. mellifera’s effectiveness as a 

sunflower pollinator [Chambó et al. 2011; du Toit 1990; Oz 2009], with at least one study 

showing results contradicting our own [Parker 1981]. Agricultural trials can be highly 

artificial, and Apis effectiveness is often evaluated in comparison to pollination by insects 

that, like A. mellifera, did not coevolve with sunflower (e.g., Astylus atromaculatus; du 

Toit 1990). The aim of our study was to assess the effects of A. mellifera on fitness in 

non-commercial sunflower plants grown from wild-collected seed, in a context where 

both the plants and other insect visitors are native to the surrounding ecosystem. Despite 

these contextual and procedural differences, our results are consistent with the majority 

of other sunflower pollination studies: Seed set and whole-plant fitness were higher 

where A. mellifera was present (but see Parker 1981). In a separate study, we evaluated 

the effectiveness of various types of pollinators and found polylectic generalists such as 

A. mellifera are significantly more effective at pollinating H. annuus than specialists 

[Cumberland et al. in prep]. We caution, however, that H. annuus may be highly 

unrepresentative of other native plant species with regard A. mellifera pollination 

effectiveness. As a late-summer-blooming annual, H. annuus is characteristic of other 
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native plants in our study system. However, our results cannot be assumed to portray the 

typical impacts of A. mellifera introduction. 

 

Finally, there was an unexpected effect of vegetation type on seed set, likely owing to 

environmental factors. Riparian vegetation was a predictor for increased seed set. We 

noted that plants more often appeared heat- and/or wind-stressed at upland sites than at 

riparian sites, and we recorded more plant mortalities at upland sites. We also observed a 

great number of A. mellifera visiting plant containers at some upland sites for water; we 

did not observe this at riparian sites. This suggests harsher conditions at upland sites may 

have reduced sunflower pollination success. Wind speed and temperature did not differ 

significantly between upland and riparian sites (p=0.18 and 0.12, respectively), but higher 

vegetation density at riparian sites was likely associated with increased site-level relative 

humidity. Low relative humidity has been demonstrated to shorten the duration of stigma 

receptivity, reduce pollen germination, and inhibit pollen tube growth in sunflowers 

[Degrandi-Hoffman & Chambers. 2006]. Since neither native bee nor A. mellifera 

visitation differed between riparian and upland sites (all p>0.30), we attribute the effect 

of vegetation type on seed set to relative humidity or other abiotic factors. 

 

Introduced A. mellifera has been found to be the most effective pollinator of some native 

plants, e.g., Brazilian Jatropha and Californian Triteleia species [Chamberlain and 

Schlising 2008; Neves and Viana 2011), as well as introduced weeds [Goulson 2010; 

Jarvis et al. 2006]. It has particularly been implicated in the spread of introduced plants 

from its native host range, with which it potentially coevolved (e.g., yellow starthistle, 
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Centaurea solstitialis) [Barthell et al. 2001]. In the systematic review of effects of A. 

mellifera mentioned earlier, Mallinger et al. found equal proportions of positive and 

negative outcomes (36% each) of impacts of A. mellifera on native plants [Mallinger 

2017]. Our results for H. annuus add to the “positive” total, but we caution that there 

could be indirect negative effects. For example, if Apis enhances reproduction in some 

native plants, those species could expand in range and/or abundance at the expense of 

other species. The potential also exists for Apis pollination to lead to long-term changes 

in genetic structure in native plants, as observed in a Chilean population of native 

Erythranthe (Andean monkeyflower), which shows signs of adaptation to its most 

effective pollinator, the introduced bumble bee Bombus terrestris [Medel et al. 2018].  

 

Conclusion 

The ecosystem-scale effects of A. mellifera introduction have been little investigated. Our 

evidence suggests A. mellifera can increase plant seed set despite reducing native bee 

visitation. This could occur in either wildland or agricultural settings, but effects on wild 

plants may have broader consequences, since they generally coexist with a greater 

diversity of plant and animal taxa than agricultural crops, and their reproduction and 

distribution is not human-controlled. Due to its rapid growth rate and phenotypic 

plasticity, H. annuus is usually characterized as a “weedy native” [Whitney et al. 2006]. 

Thus the positive effect of A. mellifera that we observed on H. annuus can be viewed 

simply as a mutually beneficial relationship between two disturbance-tolerant generalists. 

If A. mellifera promotes reproductive success in other weedy plants (whether native or 
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introduced), this could ultimately reduce overall plant diversity and evenness [cf. Beard 

2015].  

  

Current evidence of the effects of A. mellifera introduction is inconclusive, but the 

species’ sociality, ubiquity, and safeguarded status as a domesticated pollinator increase 

its potential to influence on native bee and plant populations, which justifies continued 

investigation. Care should be taken to assess floral resources prior to issuing apicultural 

leases in wildland areas, especially where rare or endemic plants are present. Native bees 

and A. mellifera can partition resources and coexist where resources are abundant, but 

differential reproductive success of A. mellifera-pollinated wild plants could have 

ecosystem-level repercussions. 
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CHAPTER 3  

Are specialist and native pollinators more effective than generalists and non-natives?  

A meta-analysis 
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Abstract 

Recent reports of pollinator declines raise the question of how changes in pollinator 

species composition may affect reproduction in wild and agricultural plants, resulting 

from between-pollinator differences in the quality of pollination service provided. 

Dietary-specialist pollinators have stronger fidelity to their host plants than generalists, 

and may be more likely to arrive at flowers bearing conspecific pollen and be effective 

contributors to plant reproduction. Similarly, native pollinators’ shared evolutionary 

history with native plants increases the likelihood of adaptations to their hosts and could 

increase their pollination effectiveness. Neither of these ideas has previously been tested 

in a meta-analysis framework. We conducted a quantitative review of pollination 

effectiveness in specialist versus generalist and native versus non-native pollinators, 

including a separate evaluation of effectiveness in native pollinators versus non-native 

honey bees (Apis mellifera), comparing phylogenetic and non-phylogenetic meta-analytic 

models. Our analysis of 157 effect sizes (20 studies) of specialist versus generalist 

effectiveness indicated no support for greater specialist effectiveness. Our analysis of 97 

effect sizes (42 studies) of native versus non-native effectiveness suggests generalizations 

cannot be made on native effectiveness as a whole, but indicates higher effectiveness of 

native bumble bees (Bombus spp.) compared to non-native pollinators. Our analysis of 79 

effect sizes (36 studies) comparing A. mellifera to native pollinators showed lower A. 

mellifera effectiveness, again driven by high effectiveness by native Bombus spp. Our 

results indicate that anthropogenic changes in pollinator species composition, particularly 

replacement of native pollinators by introduced Apis mellifera, has measurable effects on 

plant reproduction that may cascade to changes in plant community composition. 
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Introduction 

Reports of pollinator declines have received increasing attention in both the scientific and 

popular media [Schwartz 2016; Powney et al. 2019] and have catalyzed a host of public 

awareness campaigns and pollinator conservation initiatives [EU Environment 

Commission 2018; NCSL 2018; USDA 2015]. Since declines are not equally distributed 

across pollinator taxa [Biesmeijer et al. 2006], an important subject to address is whether 

all pollinators are equally important contributors to pollination services. The question is 

usually raised in a context of human food security, since about 75% of agricultural plant 

species are animal-pollinated [Ollerton et al. 2011], and insect pollen-deposition has been 

demonstrated to improve quality and production even in some wind-pollinated crops 

[Brauman & Daily 2008]. But crop plants represent <2% of global flowering plant 

diversity [Khoshbakht & Hammer 2008], and thus only a fraction of potential plant-

pollinator interactions at the global scale. In contrast, 87% of wild flowering plants are 

insect pollinated [Ollerton et al. 2011]. An evaluation of the relative importance of 

different types or taxa of pollinators for wild plant reproduction would be useful in 

making targeted conservation recommendations, and would provide insight into the 

possible ecosystem-scale consequences of declines in highly effective pollinators, the 

implications of which have scarcely been explored [Buchmann & Nabhan 1996]. 

 

The ability of a pollinator to contribute to reproductive success in a plant is referred to as 

its pollination effectiveness. Proxies for pollination effectiveness range from the amount 

of pollen transferred by a pollinator to seed set following a pollinator visit  [Ne’eman et 

al. 2010;see discussion in Methods, below]. Research interest in comparative pollinator 



 77 

effectiveness arose out of studies of floral evolution, following on the early observations 

of Darwin (1862) that pollinators and their host plants appear to exert mutual selective 

pressure on each other, in some cases leading to tightly coevolved relationships. The 

theory of trait selection in plants by pollinators is summed up in the “most effective 

pollinator principle,” defined by Stebbins (1970): “The characteristics of a flower will be 

molded by those pollinators that visit it most frequently and effectively in the region 

where it is evolving.” In turn, pollinators that contribute the most to plant fitness are 

expected to favor the evolution of floral traits that attract and maintain the effectiveness 

of those pollinators, in a process of mutually adaptive specialization.  

 

Pollinators are usually classified as specialized or generalized according to their diet 

breadth: Specialists collect pollen from only a limited number of plant species or genera; 

generalists collect from a variety of plant genera or families [Michener 2000]. For ease of 

comparison, diet breadth is treated as dichotomous, though the reality is often a dynamic 

continuum [Cane & Sipes 2006; Fishbein & Venable 1996]. Behavioral adaptations of 

dietary specialists include floral fidelity (visiting only flowers of particular species) and 

higher-than-average foraging efficiency (more pollen collected per visit) [Minckley & 

Roulston 2006]. Some specialist bees will remain in diapause until conditions are optimal 

for flowering of their host plants, increasing the likelihood of both pollinator persistence 

and successful host plant pollination [Minckley et al. 2013]. Since their fidelity makes 

them likely to arrive at a flower bearing conspecific pollen, dietary specialists are 

hypothesized to be highly effective pollinators of their host plants, but the empirical 

evidence is mixed. Some studies have shown greater specialist than generalist pollination 
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effectiveness for particular plant species (e.g. Larsson 2005; Rymer et al. 2005), but 

others have found no difference (Tepedino 1981; Motten et al. 1981) or even the opposite 

(Maldonado et al. 2013; Moeller & Geber 2005). 

 

In contrast, the non-specific foraging behavior of generalist pollinators could make them 

less effective pollinators than specialists for any particular plant species. For example, the 

negative correlation between generalist floral visitation and seed set in urban Centaurea 

solstitialis plants suggests that generalists provide poorer-quality pollination services than 

a mixed community of specialist and generalists, presumably due to higher rates of 

heterospecific pollen deposition [Leong et al. 2014]. There is evidence that generalist 

adaptability makes them better able to persist in disturbed environments, and that 

specialist pollinators are declining more rapidly than generalists [Biesmeijer et al. 2006]. 

A shift from mixed communities to one consisting mostly of generalists (which tend to 

dominate in human-altered environments) could lead to alterations in plant communities 

and reduced overall plant and pollinator biodiversity.  

 

A corollary to the question of whether specialist pollinators are more effective than 

generalists is whether native pollinator species are superior at pollinating native plants. 

Since native pollinators share a longer coevolutionary history with their host plants than 

introduced, non-native pollinators, following Stebbins’ hypothesis they might perform 

more effectively. This question has special relevance in settings where introduced 

pollinators have become common, e.g. Apis mellifera in Australia, North America, and 

South America [Beard 2015; Goulson 2003; Roubik 1983] and Megachile sculpturalis in 
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North America [Roulston & Malfi 2012]. Non-native pollinators may also decrease 

reproductive success in native plants through competitive displacement of more effective 

native pollinators [see Madjidian et al. 2008]. For example, Apis mellifera has been 

introduced nearly worldwide but has not been found to be a significant pollinator of wild 

plant populations in most regions [Ollerton et al. 2011], which suggests their presence 

could influence native plant community composition by favoring reproduction in either 

non-native plant species (e.g. Barthell et al. 2001, Kato et al. 1999) or in native plant 

species for which they happen to be effective pollinators, or both [see Sun et al. 2013]. 

Decreases in native plant diversity could follow. As well as these community-level 

consequences, non-native pollinators could also influence the evolutionary trajectories of 

plant species for which they are highly effective [Medel et al. 2018]. 

 

Meta-analysis is a quantitative review of research aimed at clarifying whether a predictor 

has an effect on an outcome of interest, and if so, the magnitude of the effect and the 

factors influencing the effect. In ecological meta-analyses, it is also important to account 

for non-independence of effect sizes introduced by phylogenetic relationships among the 

study taxa [Chamberlain et al. 2012]. We used phylogenetic meta-analyses to quantify 

pollinator effectiveness across multiple pollinator taxa (bees, wasps, butterflies/moths, 

flies, beetles, bats, birds). We asked: i) Does dietary specialization predict pollinator 

effectiveness? i.e., are specialist pollinators more effective than generalists?, and ii) Does 

pollinator origin predict effectiveness?, i.e., are native species more effective pollinators 

of native plants than non-native species? In addition we assessed whether effectiveness is 

associated with factors such as pollinator taxonomic group (e.g. bee, fly, wasp, butterfly) 
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and flower shape. Finally, since the honey bee Apis mellifera is among the world’s most 

important crop pollinators and at the same time among the most widely introduced non-

native insect species, we separately analyzed whether pollinator origin predicts 

effectiveness on native plants in the specific case where the non-native pollinator in 

question is A. mellifera. 

 

 

Materials and methods 

Literature search 

We followed the PRISMA protocol [Moher et al. 2009] to locate and curate studies from 

the Web of Science and ScienceDirect databases for each of our analyses. We conducted 

our initial search in 2014 (January–July) and updated it in January 2019. For studies that 

addressed the influence of pollinator diet breadth on effectiveness we searched these 

terms in the topic field: “pollinat* effective* generalist OR specialist”, “pollinat* 

effective* polyle* OR oligole*”, “pollinat* efficiency generalist OR specialist”, 

“pollinat* efficiency polyle* OR oligole*”, “single visit pollinat*”, “pollinat* 

efficiency]”. We located 1,073 articles in this initial search, reviewed the abstracts and 

downloaded 268 articles for closer examination. We also evaluated a dataset of 

pollination in 417 plant species, obtained from 216 studies compiled for a meta-analysis 

of pollination syndromes [Rosas-Guerrero et al. 2014]. We screened the articles from 

both sources using the criteria described below. This resulted in 20 studies retained in our 

pollinator dietary-specialization analysis. 
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For our analysis addressing the influence of native versus non-native origin on pollinator 

effectiveness, we started with the same set of 20 studies from our dietary specialization 

analysis, excluding 11 in which all of the pollinators in the study were native (we did not 

obtain any studies where all were non-native). We then augmented this dataset by 

conducting a new database search using similar terms as in our diet breadth analysis, but 

substituting the search terms “native”/“non-native” in place of “polyle*”/“oligole*” and 

“generalist”/“specialist”. We located an additional 89 studies for closer examination, 

which we screened using the criteria for inclusion described below. This resulted in 42 

studies total for our native versus non-native analysis.  

 

Many studies involved the globally introduced Apis mellifera, therefore we also analyzed 

A. mellifera effectiveness separately. We conducted this analysis on a subset of the origin 

study set, consisting only of studies where native pollinators were compared to A. 

mellifera (36 studies). This subset comprised the majority (78/97) of comparisons 

(“pairs”) from our native versus non-native dataset. 

 

Criteria for inclusion 

Pollinator effectiveness has been evaluated using various methods, some of which are 

more precise than others at characterizing the actual contribution made by a pollinator to 

plant reproduction. The strengths and weaknesses of different measures of effectiveness 

have been investigated and debated among pollination researchers [e.g., King et al. 2013; 

Ne’eman et al. 2010; Olsen 1997; Padyšáková et al. 2013]. We only included studies that 

reported at least one of the following measures, ranked in order of decreasing precision: 
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1) seed set following a visit, 2) fruit set following a visit, 3) pollination (% of flowers 

forming pollen tubes or % of styles retracting following a visit), 4) single-visit deposition 

(amount of pollen deposited on a stigma in one pollinator visit), 5) pollen load (mean 

number of pollen grains carried or removed). If two or more effectiveness measures were 

reported in a study, we analyzed the highest-ranking measure reported. 

 

Studies were included only if they reported sample size, mean and standard deviation (or 

a measure of variance from which we could calculate standard deviation) and also 

included replication (multiple measurements on each pollinator species). We rejected 

studies with only one pollinator species observed, studies that did not provide pollination 

effectiveness measures at the level of individual pollinator species (e.g., “nocturnal” vs. 

“diurnal” pollinators, hymenoptera vs. lepidoptera, A. mellifera vs. “other visitors”, 

“control” vs. “open” pollination), studies where reproductive outcomes were not provided 

for all pollinators, and studies where all pollinators were either generalist or native. We 

obtained the parameters from each study from the text or figures; if exact values were not 

reported, we extracted values from graphs using ImageJ/Fiji 2.0.0 [Schindelin et al. 

2012]. 

 

We designated each pollinator to a taxonomic category. Since a majority of our studies 

evaluated pollination performance in honey bees (Apis mellifera) and bumble bees 

(Bombus species), these each received their own category. Other categories were beetles, 

flies, wasps, bats, birds, ants, and “other” bees (non-Apis, non-Bombus). We also 

determined a focal category for each analysis: specialists in the dietary specialization 
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analysis and native species in the origin analysis. We designated Apis mellifera as non-

focal in our native versus Apis mellifera analysis, because our pollinator phylogeny 

corresponded to species in the native (focal) group (see below). We defined a pollinator 

as native if it came from the same geographical area as the plant species in the study 

(Eurasia, North America, Australia, etc.). For crop plants, we defined the pollinator as 

native if it came from the same geographical area as the ancestral plant. There were three 

cases where the “native” pollinator was not native to the region where the test was 

conducted: A. mellifera pollinating Old World apples (Malus domestica) and almonds 

(Prunus dulcis); European Hoplitis anthocopoides pollinating European Echium vulgare; 

all tested in the United States. 

 

Statistical Analysis 

We paired each focal pollinator species in a study to each non-focal species to calculate 

effect sizes. For example, if a study reported seed set from one (focal) specialist and two 

(non-focal) generalist pollinators, we calculated two separate effect sizes: mean seed set 

for the specialist compared to mean seed set for each generalist. We accounted for this 

hierarchical data structure by including “study” as a random variable in our analyses,  

nesting “pair” within it. Effect sizes were calculated for all possible pairwise comparisons 

within a study except in two cases where data was not provided: Artz 2010 compared 

three native species to non-native 1 and one native to non-native 2; Aizen 2001 compared 

one specialist species to generalists 1–4, a second specialist to generalist 5, and a third 

specialist to generalists 5–6. 
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For all analyses, we followed the model selection methodology outlined in Nakagawa & 

Santos (2012), which uses maximum likelihood tests and Akaike Information Criteria 

scores to compare the quality of statistical models for a given data set. We constructed 

our models starting with only the random effects of study and pair (nested within study). 

We then added additional random effects individually to the base model, testing for 

improvement of model fit using likelihood ratio tests. We used the best-fitting random 

effects model to evaluate moderators (see below for description). 

 

We checked our data for outliers using the base R ‘influence’ function, and assessed 

heterogeneity and phylogenetic signal in our models by calculating I
2
, which estimates 

the amount of variance due to heterogeneity (i.e., variance in the true effect) relative to 

the total variance [Higgins & Thompson 2002]. We used an equation for computing I
2
 

that can be applied to mixed models to evaluate how much variance is unaccounted for 

by study-level moderators [Nakagawa & Santos 2012]. An I
2
 of 0% indicates that all 

variability in effect size estimates is due to sampling variance within studies and none is 

due to variation between studies. 

 

Traditional and phylogenetic meta-analyses 

To compare pollination effectiveness between the focal and nonfocal category in each 

analysis, we calculated the standardized mean difference (Hedges’ 𝑑) between members 

of each pair 𝑖 within a given study [Hedges 1981]: 

𝑑𝑖 =
X𝐹  – X𝑁 

𝑠𝑝
𝐽𝑖 



 85 

where 𝑑𝑖 is the estimate of the true effect size of focal species F compared to nonfocal 

species N, X𝐹  is the mean effectiveness (e.g., seed set) for the focal species within a 

study,  X𝑁 is the mean effectiveness for a given nonfocal species within the same study, 

and 𝑠𝑝 is the pooled standard deviation for the pair. The formula for the pooled standard 

deviation is 

𝑠𝑝 = √
(𝑛𝐹−1)𝑠𝐹

2+(𝑛𝑁−1)𝑠𝑁
2

(𝑛𝐹−1)+(𝑛𝑁−1)
 

with 𝑠𝐹 and 𝑛𝐹 denoting the standard deviation and number of observations for the focal 

species of the ith pairing, and 𝑠𝑁 and 𝑛𝑁 denoting the standard deviation and number of 

observations for the nonfocal species. The correction 𝐽 for small sample size bias in the 

ith pairing is 

𝐽𝑖 = (1 – 
3

4(𝑛𝐹 + 𝑛𝑁– 2) − 1
) 

 

Positive Hedges’ 𝑑 values indicate greater effectiveness of the focal group (specialists in 

the dietary specialization analysis, natives in the origin and Apis analyses). We obtained 

an overall Hedges’ 𝑑 (mean of 𝑑𝑖’s) for the focal category in each analysis. The overall 

effect is considered significant if the 95% confidence interval of the effect size does not 

include zero. 

 

The meta-analytic method accounts for methodological differences between studies.  

Differences in measures taken, sampling procedures or other characteristics will cause 

between-study variation (heterogeneity) among the true effect sizes, treated as random in 

our models. We conducted two meta-analyses for each of our questions based on how we 
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modeled heterogeneity. Our “traditional” model for each meta-analysis was the best-

fitting random effects model; this was our base model. For “phylogenetic” meta-analytic 

models we added the random effect of plant phylogenetic relatedness to the base model 

(see below for phylogeny construction). We also tried models including plant species as 

an additional random effect (separate from phylogenetic effect; some plant species 

appeared in more than one study) as recommended by Nakagawa and Santos (2012). 

Since we did not obtain a significant improvement to model fit from the addition of plant 

species in any of our models we do not discuss it further. Similarly, we tested 

phylogenetic relatedness of the focal pollinators (see below) in each analysis.  Each 

additional random effect was tested singly using a log-likelihood ratio test, with retention 

of only those significantly improving model fit.  

 

Moderators  

In the meta-analytic context, study-level predictor variables are referred to as moderators. 

After finding the best-fitting random effects model, we tested the effect of adding 

moderators. Testing additional moderators was planned a priori, as we expected that 

effect size could vary in association with: focal pollinator type (bee, bumble bee, wasp, 

ant, moth, fly, beetle, bat, bird); plant family; flower shape (actinomorphic, zygomorphic, 

or mixed [family Asteraceae, where an inflorescence is composed of both actinomorphic 

and zygomorphic flowers that together function as a single “flower”]), and pollination 

effectiveness measure (as described in ‘Criteria for inclusion’). We retained moderators 

unless they increased model AIC >2 units relative to the base model. We assessed the 

effect size at each level of the moderator using meta-regressions and by conducting Qm-
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tests. The null assumption is of no difference in mean effect size between levels of a 

moderator; we report only results showing significant differences for at least one level 

(p<0.05). 

 

Plant phylogeny 

We pruned the 31,383-species Qian and Jin (2016) plant phylogeny (a revised and 

corrected version of the Zanne et al. 2014 phylogeny) to include focal plant taxa. Of our 

total 42 focal plant taxa, one genus (Melocactus) was not present in the Qian and Jin 

phylogeny, so we temporarily replaced it with the contribal genus Cereus. We attempted 

to match our 42 species with those in the Qian and Jin (2016) phylogeny, either using 

their original names or names standardized to The Plant List v. 1.1 (http://www.theplant 

list.org/) using the function TPL in the R package Taxonstand [Cayuela et al. 2012]. We 

then merged the remaining unmatched taxa with the phylogeny using the function 

congeneric.merge in package pez [Pearse & Purvis 2013], which replaces the target genus 

topology with a polytomy containing the original species as well as any new 

addition(s). We then pruned the phylogeny of all taxa not on our original 42-species list, 

and finally extracted smaller phylogenies from it to match species lists for each of our 

analyses (Table 1).  
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Table 1. Number of pollinator species and effect sizes in meta-analyses of pollination 

effectiveness, organized by plant species. 

ES = total number of effect sizes calculated for a plant species in each meta-analysis. 

 

    SvG
1
 NvNN

2
 NvA

3
 

Plant family Plant species spec gen ES nat non ES nat 

Alstroemeriaceae Alstroemeria aurea       4 2 4 3 

Anacardiaceae Anacardium occidentale       1 1 1 1 

Apocynaceae Asclepias incarnata       4 1 4 4 

 

Asclepias sp.       6 1 6 6 

 

Asclepias tuberosa       1 3 3 3 

Arecaceae Neodypsis decaryi       1 1 1 1 

Asteraceae Echinacea angustifolia       1 4 4 4 

 

Helianthus annuus 6 3 18 2 1 2 2 

 

Heterotheca subaxillaris 1 8 8         

Balsaminaceae Impatiens capensis       2 1 2 2 

Bignoniaceae Campsis radicans       4 1 4 4 

 

Chilopsis linearis       3 1 3 3 

Boraginaceae Echium vulgare 1 4 4 1 3 3   

Bromeliaceae Pitcairnia angustifolia       3 1 3 3 

Cactaceae Melocactus intortus       1 2 2 1 

 

Opuntia brunneogemmia 3 6 18         

 

Opuntia viridirubra 3 4 12         

 

Pachycereus pecten-

aboriginum       1 1 1 1 

Cucurbitaceae Cucurbita moschata 2 1 2 2 1 2 2 

 

Cucurbita pepo 1 3 3 2 1 2 2 

Dipsacaceae Knautia arvensis 1   5         

Ericaceae Vaccinium angustifolium       3 2 6 3 

 

Vaccinium ashei 2 1 2 2 1 2 2 

 

Vaccinium corymbosum 1 5 5 1 1 1 1 

 

Vaccinium macrocarpon       2 2 4 2 

Euphorbiaceae Jatropha curcas       1 1 1 1 

Fabaceae Cajanus cajan 1 6 6         

 

Hedysarum scoparium       6 1 6 6 

 

Prosopis velutina 2 3 6 2 1 2 2 

Lamiaceae Satureja thymbra       4 1 4   

Loganiaceae Gelsemium sempervirens       4 1 4 4 

Malvaceae Sidalcea oregana 1 4 4         

Melastomataceae Melastoma affine       4 1 4 4 

Myrtaceae Metrosideros polymorpha       1 1 1 1 

Onagraceae Clarkia xantiana 8 5 40         

 

Oenothera cespitosa 3 6 7         

Orobanchaceae Pedicularis densispica       2 1 2 2 

Papaveraceae Corydalis ambigua       2 1 2   

Ranunculaceae Aconitum septentrionale 3 1 3         
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Table 1, continued. 

 

Rosaceae Malus domestica       1 2 2   

 

Prunus dulcis       1 1 1 1 

 

Prunus persica       1 1 1 1 

Saxifragaceae Lithophragma parviflorum 1 6 6         

Scrophulariaceae Agalinis strictifolia       1 1 1 1 

 

Penstemon penlandii 2 4 8         

Solanaceae Capsicum chinense       2 1 2 2 

 

Goetzea elegans       1 1 1 1 

 

Solanum lycopersicon       2 1 2 2 

Zygophyllaceae Kallstroemia grandiflora       1 1 1   

 
      157     97 78 

 
1
 SvG = specialist versus generalist effectiveness (n=20 studies). spec = number of 

specialist pollinator species; gen = number of generalists. 
2
 NvNN = native versus non-native effectiveness (n=42 studies). nat = number of native 

pollinator species; non = number of non-native. 
3
 NvA = native versus non-native Apis mellifera (n=36 studies). nat = number of native 

pollinator species; all non-native = 1 (Apis mellifera). 
† 

Four native: three compared to non-native 1, one compared to non-native 2. 
†† 

Three specialists: one compared to generalists 1–4, one compared to compared to 

generalist 5, one compared to compared to generalists 5 & 6. 

 

 

Focal pollinator phylogeny 

Across our datasets, we identified 104 focal pollinator species. We started with a genus-

level phylogeny of bees, obtained from Hedtke et al. 2013; this was the second of the 10 

trees given in their Electronic Supplementary Material, Additional File 3 (chosen because 

it contained the largest number of genera). Of the total 34 bee genera in our dataset, 32 

were present in the Hedtke et al. phylogeny.  Two missing genera (Chalepogenus, tribe 

Tapinotaspidini; and Chalicodoma, tribe Megachilini) were added to the tree based on 

their tribal affiliations (the first in place of genus Tapinotaspoides, the second as sister to 

genus Megachile). The tree was then pruned to these 34 genera. We added bee species to 

the tree by hand, as polytomies within each genus. The remaining non-bee focal 

pollinator species (birds, lepidoptera, flies, wasps, one beetle, and one bat) were also 
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added to the tree by hand, following phylogenetic relationships represented in the Tree of 

Life Project (http://tolweb.org/tree/, accessed March 23, 2019). Resolution within these 

groups was added based on family affiliations, plus McGuire et al. 2014 (for 

hummingbirds) and Wiegmann et al.  2011 (for flies). We then pruned the phylogeny of 

all taxa not on our original 104-species list, and finally extracted smaller phylogenies 

from it to match species lists for each of our analyses (Table 2). 

 

Diagnostics 

We checked for publication bias (underrepresentation of studies with non-significant 

outcomes) in our analyses using Egger’s regression test (p<0.10 indicates significant 

asymmetry in the dataset), analyses of model residuals, and funnel plots (Figure  7). We 

did not apply formal tests of publication bias (e.g., the “trim and fill” method) due to high 

heterogeneity in the dataset, which presents a challenge for such approaches [Peters et al. 

2007]. 

 

All phylogenetic tree editing was performed in Mesquite 3.51 [Maddison & Maddison 

2018]. Statistical analyses were performed in RStudio 1.0.44 using the package ‘metafor’ 

2.0-0 [Viechtbauer 2010]. 

 

 

  

http://tolweb.org/tree/
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Table 2. Number of effect sizes in meta-analyses of pollination effectiveness, organized 

by focal pollinator species. 

   

SvG
1
 NvNN

2
 NvA

3
 

Family Species type gen non nat 

Andrenidae Andrena anograe bee 2     

 

Andrena hattorfiana bee 5     

 

Andrena helianthi bee 3 1 1 

 

Andrena lewisorum bee 5     

 

Andrena sp. bee   2 1 

 

Perdita sp. bee 3 1 1 

 

Pseudopanurgus rugosus bee 3     

Apidae Amegilla anomala bee   1 1 

 

Amegilla sp. bee   1 1 

 

Anthophora sp. bee   1 1 

 

Apis mellifera honey bee   4   

 

Bombus affinis bumble bee   2 1 

 

Bombus ardens bumble bee   1   

 

Bombus atrocinctus bumble bee   2 2 

 

Bombus bimaculatus bumble bee   1 1 

 

Bombus consobrinus bumble bee 3     

 

Bombus dahlbomii bumble bee   2 1 

 

Bombus hypocrita bumble bee   1   

 

Bombus impatiens bumble bee   1 1 

 

Bombus patagiatus bumble bee   1 1 

 

Bombus pensylvanicus bumble bee   1 1 

 

Bombus sonorus bumble bee   2 2 

 

Bombus sp. bumble bee   5 4 

 

Bombus ternarius bumble bee   1 1 

 

Bombus vosnesenskii bumble bee 5     

 

Centris tarsata bee   1 1 

 

Ceratina sequoiae bee 5     

 

Chalepogenus caeruleus bee   1 1 

 

Diadasia angusticeps bee 5     

 

Diadasia nigrifrons bee 4     

 

Eucera helvola bee   1   

 

Eucera venusta bee 5     

 

Exomalopsis sp. bee   2 2 

 

Frieseomelitta nigra bee   1 1 

 

Habropoda laboriosa bee 6 3 3 

 

Melissodes agilis bee 3 1 1 

 

Peponapis limitaris bee 1 1 1 

 

Peponapis pruinosa bee 3 2 2 

 

Peponapis sp. bee 1 1 1 

 

Ptilothrix fructifera bee 10     

 

Svastra obliqua bee 3     

 

Trigona nigra bee   1 1 
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Table 2, continued. 

 

Xylocopa bombylans bee   1 1 

 

Xylocopa californica bee   1 1 

 

Xylocopa cf.gressitti bee   1 1 

 

Xylocopa nasalis bee   1 1 

 

Xylocopa virginica bee   3 3 

Bombyliidae Systoechus vulgaris fly   1 1 

Coerebidae Coereba flaveola bird   2 2 

Colettidae Hylaeus sp. bee   1 1 

Colletidae Cephalocolletes rugata bee 10     

 

Colletes mandibularis bee 8     

 

Colletes sp. bee 3 1 1 

Crabronidae Tachytes crassus wasp   1 1 

Halictidae Augochloropsis sp. bee   2 2 

 

Halictus sp. bee   5 4 

 

Lasioglossum lusorium bee 5     

 

Lasioglossum pullilabre bee 5     

 

Lasioglossum sp. bee   1 1 

 

Nomia sp. bee   1 1 

Hesperiidae Epargyreus clarus butterfly   1 1 

Megachilidae Chalicodoma sp. bee   1   

 

Hoplitis anthocopoides bee 4 3   

 

Lithurgus rufiventris bee 10     

 

Megachile addenda bee   2 1 

 

Megachile fortis bee 3     

 

Megachile 

gravita.pascoensis bee 5     

 

Megachile lanata bee 6     

 

Megachile parallela bee 3     

 

Megachile pugnata bee   1 1 

 

Megachile sp. bee   2 2 

 

Megachile spissula bee   1 1 

 

Osmia brevis bee 4     

 

Osmia lignaria bee   1 1 

 

Osmia ribifloris bee 1 1 1 

 

Osmia sp. bee   1   

Mellitidae Hesperapis regularis bee 5     

Meloidae Epicauta ferruginea beetle   1 1 

Nemestrinidae Trichophthalma sp. fly   1 1 

Phyllostomidae Chiroptera sp. bat   1 1 

Prodoxidae Greya politella moth 6     

Sphecidae Sphex ichneumoneus wasp   1 1 

 

Sphex pennsylvanicus wasp   1 1 

Syrpidae Syrphus vitripennis fly   1 1 

Thynnidae Myzinum carolinianum wasp   1 1 

 

Myzinum sp. wasp   2 2 
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Table 2, continued. 

Trochilidae Anthracothorax dominicus bird   2 1 

 

Anthracothorax viridis bird   1 1 

 

Archilochus colubris bird   1 1 

 

Chlorostilbon maugaeus bird   1 1 

Vespidae Pseudomasaris vespoides wasp 4     

  Ropalidia sp. wasp   1 1 

   

157 97 78 

 
1
 SvG = specialist versus generalist effectiveness (n=20 studies) 

gen = number of generalist pollinator species compared to focal specialist. 
2
 NvNN = native versus non-native effectiveness (n=42 studies) 

 non = number of non-native pollinator species compared to focal native. 
3
 NvA  = native versus non-native Apis mellifera (n=36 studies) 

 nat = number of native pollinator comparisons to Apis mellifera. 

 

 

Results 

Data sets 

Specialists versus generalists 

Our set of 20 studies provided 157 specialist versus generalist pair comparisons (Table 

1). The majority of specialist pollinators were non-Bombus bee species (n=139), followed 

by bumble bees (Bombus spp.; n=8), moths (n=6) and wasps (n=4). Most generalists were 

non-Bombus bee species (n=106); others were bumble bees (Bombus spp.; n=24), honey 

bees (Apis mellifera; n=11), flies (n=7), moths (n=5), butterflies (n=3) and 1 beetle 

(Table 2). There were 18 plant species in the study set (Table 3). The majority were 

herbaceous perennials (n=9), followed by herbaceous annuals (n=5), woody perennials 

(n=3) and 1 herbaceous biennial. Six plant species were agricultural while 12 were non-

agricultural. 
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Table 3. Study location, species name, agricultural status, and life-form of plant species 

in meta-analyses of pollination effectiveness.   

crop=agricultural species 

 

Study location Plant species crop life-form 

Norway Aconitum septentrionale   herbaceous perennial 

USA Agalinis strictifolia   herbaceous annual 

Argentina Alstroemeria aurea   herbaceous perennial 

Brazil Anacardium occidentale x woody perennial 

USA Asclepias incarnata   herbaceous perennial 

USA Asclepias tuberosa   herbaceous perennial 

USA Asclepias sp.   herbaceous perennial 

India Cajanus cajan x herbaceous perennial 

USA Campsis radicans   herbaceous perennial 

México Capsicum chinense x herbaceous perennial 

USA Chilopsis linearis   woody perennial 

USA Clarkia xantiana   herbaceous annual 

Japan Corydalis ambigua   herbaceous perennial 

México Cucurbita moschata x herbaceous annual 

USA Cucurbita pepo x herbaceous annual 

Canada Echinacea angustifolia   herbaceous perennial 

USA Echium vulgare   herbaceous biennial 

USA Gelsemium sempervirens   woody  perennial 

Puerto Rico Goetzea elegans   woody perennial 

China Hedysarum scoparium   herbaceous perennial 

USA Helianthus annuus x herbaceous annual 

USA Heterotheca subaxillaris   herbaceous annual 

USA Impatiens capensis   herbaceous annual 

México Jatropha curcas x woody perennial 

México Kallstroemia grandiflora   herbaceous annual 

Sweden Knautia arvensis   herbaceous perennial 

USA Lithophragma parviflorum   herbaceous perennial 

USA Malus domestica x woody perennial 

Australia Melastoma affine   woody perennial 

Puerto Rico Melocactus intortus   woody perennial 

USA Metrosideros polymorpha   woody perennial 

Madagascar Neodypsis decaryi   woody perennial 

USA Oenothera cespitosa   herbaceous perennial 

Brazil Opuntia brunneogemmia   herbaceous perennial 

Brazil Opuntia viridirubra   herbaceous perennial 

México Pachycereus pecten-aboriginum   woody perennial 

China Pedicularis densispica   herbaceous annual 

USA Penstemon penlandii   herbaceous perennial 
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Table 3, continued. 

 
Puerto Rico Pitcairnia angustifolia   herbaceous perennial 

USA Prosopis velutina   woody perennial 

USA Prunus dulcis x woody perennial 

China Prunus persica x woody perennial 

Israel Satureja thymbra   herbaceous perennial 

USA Sidalcea oregana   herbaceous perennial 

México Solanum lycopersicon x herbaceous perennial 

Canada Vaccinium angustifolium x woody perennial 

USA Vaccinium ashei x woody perennial 

USA Vaccinium corymbosum x woody perennial 

USA Vaccinium macrocarpon x woody perennial 

 

 

Native versus non-native 

Our set of 42 studies provided a total of 97 native versus non-native pair comparisons 

(Table 1). Most native pollinators were non-Bombus bee species (n=53) and bumble bees 

(Bombus spp.; n=20); others were wasps (n=7), birds, (n=7), honey bees (Apis mellifera; 

n=4), flies (n=3) and 1 bat, 1 beetle, 1 butterfly. Almost all non-native species were 

honey bees (Apis mellifera; (n=78); others were non-Bombus native bees (n=9), bumble 

bees (n=9), and 1 ant species (Table 2). There were 38 plant species in the study set 

(Table 3). The majority were woody perennials (n=18), followed by herbaceous 

perennials (n=12), herbaceous annuals (n=7), and 1 herbaceous biennial. There were 14 

agricultural and 24 non-agricultural plant species in the study set. 

 

Native versus introduced Apis mellifera 

Our set of 36 studies provided a total of 78 native versus Apis mellifera pair comparisons 

(Table 1). For this analysis, honey bees were the only non-native species considered 

(n=78). Native species were mostly non-Bombus native bees (n=44), followed by bumble 
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bees (Bombus spp.; n=15), wasps (n=7), birds (n=6), flies (n=3) and 1 bat, 1 beetle, 1 

butterfly (Table 2). There were 33 plant species in the study set (Table 3). The majority 

were woody perennials (n=16), followed by herbaceous perennials (n=10) and 

herbaceous annuals (n=7). There were 12 agricultural and 21 non-agricultural plant 

species in the study set.  

 

The geographic distribution of studies is given in Table 3. Not all plants were native to 

the study area in any of our analyses.  

 

Effect of dietary specialization on pollination effectiveness 

Meta-analysis 

Our base model contained only the random effects of study and pair (nested within 

study). We found no improvement to model fit of adding plant phylogeny (Δ log-

likelihood=0.30; p=0.44); or pollinator phylogeny (Δ log-likelihood=-0.33; p=0.25) to the 

base model.  

 

Using our final model, while the effect size was positive (specialist effectiveness > 

generalist) it was not significantly distinguishable from zero (p=0.18) (Figure 1). 

Heterogeneity across our dataset was high (I
2
 = 99.3%), with about a third of that 

variability due to study (I
2

s=30.6%) and the remainder due to pair nested within study 

(I
2

p=68.7). Egger’s regression results indicated the potential for publication bias 

(p=0.0001), with fewer than expected effect sizes >0 (Figure B1-a). 
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Specialist vs. Generalist
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Figure 1. Overall effect size from non-phylogenetic meta-analysis of the effect of dietary 

specialization on pollination effectiveness (n=157 effect sizes from 20 studies). Plot 

shows Hedges’ d (difference in mean effectiveness expressed in units of pooled standard 

deviation) and 95% confidence intervals. Dotted line marks Hedges’ d of zero; dot shows 

mean effect size. A positive d value means that specialists have greater pollination 

effectiveness than generalists. Horizontal bars represent 95% confidence intervals. Bars 

overlapping the dotted line indicate the effect size is not significantly different from zero.  

 

Moderator analyses 

We found two moderators that explained significant amounts of heterogeneity: plant 

family (Qm=37.10, p=0.0002) and effectiveness measure (Qm=11.12, p=0.049). Specialist 

effectiveness was higher than generalist effectiveness when pollination was the 

effectiveness measure used (effect size significantly >0; p=0.002) and for the plant family 

Cactaceae (p<0.0001) (Figure 2).  

a)   Effect of pollination effectiveness measure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.
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Figure 2, continued. 

 

b)   Effect of plant family. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Results from meta-regressions testing the effects of moderators on mean 

specialist pollinator effect size, using the traditional (non-phylogenetic) meta-analysis as 

a base model (n=20 studies). Plots show show Hedges’ d (difference in mean 

effectiveness expressed in units of pooled standard deviation) and 95% confidence 

intervals. Dotted line marks Hedges’ d of zero. Dots show mean effect size; the size of 

the dot is proportional to sample size. A positive d value means that specialists have 

greater pollination effectiveness than generalists. Horizontal bars represent 95% 

confidence intervals. Bars overlapping the dotted line indicate the effect size is not 

significantly different from zero. Sample sizes for each category are in parentheses. Note 

different scales. 

 

Effect of pollinator origin on pollination effectiveness 

Meta-analyses 

Our base model contained only the random effects of study and pair (nested within 

study). We obtained no improvement to fit of adding plant phylogeny (Δ log-

likelihood=0; p=1.00). Adding pollinator phylogeny significantly improved model fit 

compared to the base model (Δ log-likelihood=3.00; p=0.01). 
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Native vs. Non−Native
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Using our base model, the overall estimate of the effect of pollinator origin on pollination 

effectiveness was positive (native effectiveness > non-native) and significantly different 

from zero (p=0.03). Using our final (pollinator-phylogenetic) model, while the effect size 

was positive, it was not significantly distinguishable from zero (p=0.51) (Figure 3). 

Heterogeneity was very high (I
2
=99.9%), with most of that variability due to study 

(I
2

s=49.1%) and pair nested within study (I
2

p=38.8%) and a small amount due to 

phylogenetic relationships among native pollinator species (12.2%). Egger’s regression 

analysis indicated asymmetry in our dataset and the potential for publication bias 

(p<0.0001), with fewer than expected effect sizes >0 (Figure B1-b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Overall effect sizes from meta-analyses of the effect of pollinator origin (native 

vs. nonnative) on pollination effectiveness (n=97 effect sizes from 42 studies), showing 

Hedges’ d (difference in mean effectiveness expressed in units of pooled standard 

deviation) and 95% confidence intervals. Dotted line marks Hedges’ d of zero; dot shows 

mean effect size. A positive d value means that native species have greater pollination 

effectiveness than non-native species. Horizontal bars represent 95% confidence 

intervals. Bars overlapping the dotted line indicate the effect size is not significantly 

different from zero.  

Traditional M-A = non-phylogenetic meta-analysis. 

Phylogenetic M-A = phylogenetic meta-analysis using native pollinator phylogeny 
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Moderator analyses 

We found three moderators that explained marginally significant or significant amounts 

of heterogeneity: effectiveness measure (Qm=10.16, p=0.0707), flower shape (Qm=7.54, 

p=0.0565), and native pollinator type (Qm=20.62, p=0.0144). Native pollinator 

effectiveness was significantly higher than non-native pollinator effectiveness when fruit 

set was the effectiveness measure used (effect size significantly >0; p=0.02) and when 

the native pollinators were bumble bees (Bombus spp.; p<0.0001). Native pollinator 

effectiveness was significantly lower than non-native pollinator effectiveness (effect size 

significantly <0) when the flower shape was mixed (flowers in family Asteraceae; 

p=0.04)  (Figure 4).  

 

a)   Effect of pollination effectiveness measure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 
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Figure 4 (continued).  

b)   Effect of flower shape.  

 

 

 

 

 

 

 

 

 

 

 

 

 

c)   Effect of native pollinator type.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Results from meta-regressions testing the effects of moderators on mean native 

pollinator effect size, using the phylogenetic meta-analysis (with pollinator phylogeny) as 

a base model (n=97 effect sizes from 42 studies). Plots show Hedges’ d (difference in 

mean effectiveness expressed in units of pooled standard deviation) and 95% confidence 

intervals. Dotted line marks Hedges’ d of zero. Dots represent mean effect size; the size 

of the dot is proportional to sample size. A positive d value means that native species 

have greater pollination effectiveness than non-native species. Horizontal bars represent 

95% confidence intervals; bars overlapping the dotted line indicate the effect size is not 

significantly different from zero. Sample sizes for each category are in parentheses. Note 

different scales. 

mixed = actinomorphic + zygomorphic florets in the same inflorescence (Asteraceae) 
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Native vs. Apis
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Effect of pollinator origin with Apis mellifera as non-native 

Meta-analyses 

Our base model contained only the random effects of study and pair (nested within 

study). We obtained no improvement to fit of adding plant phylogeny (Δ log-

likelihood=0.09; p=0.68) or pollinator phylogeny (Δ log-likelihood=1.47; p=0.09).  

 

Using our final model, the effect size was positive (native effectiveness > Apis mellifera) 

and marginally different from zero (p=0.05) (Figure 5). Heterogeneity was very high 

(I
2
=99.9%), due to both study (I

2
s=67.8%) and pair nested within study (I

2
p=32.2%).  

Egger’s regression analysis indicated significant asymmetry (p<0.001), with fewer than 

expected effect sizes >0 (Figure B1-c). 

 

 

 

 

 

 

 

 

Figure 5. Overall effect size from meta-analysis of the effect of pollinator origin (native 

vs. nonnative) on pollination effectiveness when the non-native is Apis mellifera (n=78 

effect sizes from 36 studies). Plots show Hedges’ d (difference in mean effectiveness 

expressed in units of pooled standard deviation) and 95% confidence intervals. Dotted 

line marks Hedges’ d of zero; dot shows mean effect size. A positive d value means that 

native species have greater pollination effectiveness than Apis mellifera. Horizontal bars 

represent 95% confidence intervals. Bars overlapping the dotted line indicate the effect 

size is not significantly different from zero.  

Traditional M-A = non-phylogenetic meta-analysis. 

  

Moderator analyses 

We found four moderators that explained significant or marginally significant amounts of 

heterogeneity: native pollinator type (Qm=14.52, p=0.0691), effectiveness measure 
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Native vs. Apis
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(Qm=14.825, p<0.001), flower shape (Qm=9.99, p=0.019), and plant family (Qm=52.44, 

p=0.0002). Native pollinator effectiveness was higher than Apis mellifera effectiveness 

(effect size significantly >0) when the native pollinator type was bumble bee (Bombus 

spp.; p=0.0003), when the measure was fruit set or single visit deposition (p=0.004, 

p=0.04, respectively), when the flower shape was actinomorphic (p=0.01) (Figure 6), and 

for plant families Euphorbiaceae (p=0.0001) and Rosaceae (p<0.0001). In contrast, native 

pollinator effectiveness was significantly lower (native effectiveness < Apis mellifera) for 

plant family Asteraceae (p=0.04). (Figure B2). 

 

a) Effect of native pollinator type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  
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Native vs. Apis
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Figure 6 (continued).  

b) Effect of pollination effectiveness measure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c)   Effect of flower shape. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Results from meta-regressions testing the effects of moderators on mean native 

pollinator effect size when the non-native pollinator is Apis mellifera (n=78 effect sizes 

from 36 studies), using the traditional (non-phylogenetic) model as a base model. Plots 

show Hedges’ d (difference in mean effectiveness expressed in units of pooled standard 

deviation) and 95% confidence intervals. Dotted line marks Hedges’ d of zero. Dots 

represent mean effect size; the size of the dot is proportional to sample size. A positive d 

value means that native species have greater pollination effectiveness than Apis mellifera. 

Horizontal bars represent 95% confidence intervals; bars overlapping the dotted line 

indicate the effect size is not significantly different from zero. Sample sizes for each 

category are in parentheses. Note different scales. 

mixed = actinomorphic + zygomorphic florets in the same inflorescence (Asteraceae) 



 105 

Discussion 

The overall effect sizes were in the expected directions for all three of our analyses, but 

often did not reach statistical significance. First, a positive effect size of dietary 

specialization indicated a trend towards greater specialist effectiveness compared to 

generalists; but (perhaps because of substantial variability across studies/systems) the 

effect size in this case was not significantly different from zero. Second, for native 

compared to non-native pollinators, mean effect size indicated significantly greater native 

effectiveness in a traditional meta-analytic model; however, the effect was not significant 

after accounting for pollinator phylogeny, suggesting that pollinator effectiveness varies 

phylogenetically, with bumble bees accounting for the most effective group in our 

dataset. Lastly, we found significantly greater native pollinator effectiveness in our native 

versus Apis mellifera meta-analysis, which helps to justify continued investigations 

aimed at reconciling A. mellifera’s value as an effective crop pollinator with its 

potentially detrimental impacts as an introduced species.  

 

Effect of dietary specialization on pollination effectiveness 

We found minimal support for the hypothesis of greater specialist than generalist 

effectiveness. The outcome of our moderator analysis validates this conclusion: the effect 

size for ten out of twelve plant families in our study set were less than one unit from zero 

(Figure 2b). Specialists were more effective than generalist pollinators only for the plant 

family Cactaceae, which in our dataset represents two species in the genus Opuntia. The 

floral morphology of Opuntia favors dietary-specialist bees, which unlike generalist bees 

stimulate the movement of stamens toward the center of the flower, allowing access to 
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the nectar furrow below [Schlindwein & Wittmann 1997]. Other researchers have also 

reported greater specialist than generalist pollination effectiveness on Opuntia and other 

cactus species [McFarland et al. 1989, McIntosh 2002], so the overall effect suggested by 

our result appears to be highly influenced by a single plant genus. 

 

It is certainly possible for a specialist pollinator to be an entirely ineffective floral visitor, 

for example when collecting nectar without contacting anthers/stigma. Some dietary 

specialist bees have been documented visiting their host plants and making infrequent or 

no stigma contact [Epps et al. 2015; Moeller & Geber 2005]. In addition, the strong floral 

fidelity of specialist pollinators may diminish their effectiveness if it increases inbreeding 

and reduces genetic diversity (through higher rates of self-pollination). We also caution 

that our acceptance of the “specialist” and “generalist” classifications provided by 

authors in our study set does not adequately capture the range of pollination behaviors 

observed in the real world, where diet breadth is continuous, not categorical. The term 

“specialist” should perhaps be reserved for pollinators at the extreme narrow end of the 

dietary breadth spectrum, in which case we expect that far fewer species would qualify 

for the “specialist” designation. For example, in summarizing their results from a study in 

Greece, Petanidou et al. (2008) concluded that “no species recorded in all four years was 

truly a specialist.” This led Petanidou et al. to speculate that reported levels of 

specialization in the pollination literature are overestimates. 

 

Neff and Simpson (1990) also found no difference between specialists and generalists in 

their analysis of pollination effectiveness in bees visiting Helianthus annuus. Instead they 
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noted that pollination effectiveness in their study system corresponded with bee body 

size: large bees were more effective than small bees. Depending on the flower, small-

sized bees can often access nectar by passing between stigma and anthers, neither 

accumulating pollen nor transferring it to stigmas (thus making an “illegitimate” floral 

visit). Our results for bumble bees lend support to the idea that high pollination 

effectiveness may be related to body size, a hypothesis that has been both supported 

[Tepedino et al. 2011; Willmer & Finlayson 2014] and rejected [Zych 2007] in empirical 

studies. However, is also worth noting that bumble bee body size can vary as much as 

ten-fold within a colony as well as within a season [Alford 1975], so perhaps bumble bee 

pollination effectiveness is related to factors other than size (e.g., sonication or other 

behaviors, such as the “car park” maneuver of bumble bee floral approach). 

 

We emphasize that though the positive effect size we obtained for Cactaceae was 

calculated from 30 species-pair comparisons, all 30 come from a single study; thus the 

significant effect cannot be taken as strong evidence of greater specialist effectiveness at 

the family level. However, combined with our overall result, we do interpret this to 

indicate that while specialists are likely not more effective pollinators of all plants, they 

are likely highly effective pollinators of particular plant species or genera. 

 

Effect of pollinator origin on pollination effectiveness 

For native compared to non-native pollinators visiting native plants, mean effect size was 

positive and significant in a traditional meta-analytic model, and positive but not 

significant when the effect of pollinator phylogeny was accounted for. [Insert here the 
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summary of what the native vs. apis result was].  Given that 1) our origin study set—and 

the pollination effectiveness literature in general—is dominated by two dominant 

pollinator taxa (Bombus species and Apis mellifera); 2) we found indications of 

differential pollination effectiveness between these two taxa; and 3) the two taxa are 

closely related, we have some reservations when interpreting the phylogenetic meta-

analytic effect size. 

 

Effectiveness of introduced Apis mellifera compared to native pollinators 

Our results suggest that Apis mellifera, is perhaps not always the most effective pollinator 

of plants with which it shares no coevolutionary history. Low effectiveness of A. 

mellifera has been demonstrated in several agricultural cultivars with New World 

ancestors (e.g., pumpkin, sunflower, tomato) and is also suggested by the agricultural 

practice of “saturating” fields of New World cultivars with Apis mellifera in order to 

obtain adequate pollination [Westerkamp 1991]. 

 

Other researchers have proposed that Apis pollination effectiveness is diminished by their 

behavior of grooming pollen from their bodies, moistening it, and packing it into their 

corbiculae, thus rendering it unavailable for pollination [Park et al. 2016]. While this 

could reduce Apis pollination effectiveness in some situations (especially if the particular 

pollen species in question is highly valued for provisioning larvae), it does not suffice to 

explain their low effectiveness in comparison to Bombus species, which also possess 

corbiculae. Instead, we attribute the overall effect of more effective natives vs non-
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natives to a non-random pattern of study, with one highly effective genus attracting more 

research effort.  

 

An important caveat to our result showing superior Bombus than Apis pollination 

performance is the potential effect of abundance. Bombus may deliver more pollen grains 

per visit, but Apis may ultimately emerge as an equally or more effective pollinator if it is 

more abundant than Bombus in a given year or location [Fishbein & Venable 1996; 

Maldonado et al. 2013]. The studies in our meta-analysis are focused on effectiveness at 

the individual pollinator visit scale, and thus do not account for population-level 

differences in abundance and thus visitation. High visitation frequency despite low per-

visit efficiency (number of pollen grains deposited per visit) can ultimately result in 

higher pollinator effectiveness, including in situations where the “high-frequency/low-

efficiency” and “low-frequency/high-efficiency” pollinators are both Bombus species 

[Madjidian et al. 2008]. In addition, large interannual variation in the effectiveness of 

various pollinator species (primarily related to changes in abundance/visitation rate) 

observed by Fishbein & Venable (1996) led them to conclude that estimates of the 

effectiveness of various pollinators, even if based on precise measurements taken in a 

single season, may not represent long-term mean patterns. Indeed, bumble bee pollination 

effectiveness can even vary depending on life stage: Bombus queens (which begin 

foraging earlier in the season than worker bees) have been shown to be more efficient 

pollinators of some plants than workers [Kudo et al. 2011]. 
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Measures of pollination effectiveness 

We expected that different measures of pollination effectiveness might give different 

results because some measures more completely capture all the important aspects of 

pollination. For example, if nonnative generalists (like Apis mellifera) deliver an 

abundance of pollen (but heterospecific pollen), then we would expect to see greater 

native than non-native effectiveness when measured by fruit set, but not necessarily by 

pollen load. This is in fact what we did observe in our native versus non-native 

effectiveness analysis. 

 

We also expected that different results could arise if only because the measurements were 

taken from different pollinators and plants in each study. As with plant species, we are 

hindered from making inference by small sample size (in terms of number of studies 

representing different combinations of our moderators). For example, pollination 

emerged as an important modifier of effect size in our specialist versus generalist 

analysis. Since pollination was the measure used to measure effectiveness in family 

Cactaceae, which also emerged as significant, we take this result as evidence of 

multicollinearity rather than an indication of greater effectiveness of specialists when 

pollination is the measurement used.  

 

The single visit deposition method (SVD) was the most commonly used measure in our 

study set (41/94 studies). The technique (described in Ne’eman et al. 2010) has been the 

most extensively adopted effectiveness-assessment methodology. However, SVD gives 

the researcher a measure of potential positive effects, but provides no measure of possible 
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negative effects (e.g., pollen tube inhibition resulting from heterospecific pollen 

deposition) [Padyšáková et al. 2013]. More important, it does not measure a fitness 

outcome, instead assuming a positive correlation between pollen deposition and 

reproduction, which is not always the case [Wang et al. 2017]. Of the single-visit studies 

in our initial set, only 58% reported whether the pollen deposited had been verified as 

conspecific to the plant. If seed set measurements are not possible, we suggest that SVD 

studies at a minimum should report some measure of pollen conspecificity. We note that 

in our native versus non-native analysis, fruit set emerged as a significant indicator of 

greater native pollinator effectiveness, while SVD did not. A similar result was obtained 

in our native versus Apis mellifera moderator analysis, where, despite a much smaller 

sample size for fruit set (7) compared to SVD (42), the effect size for fruit set was nearly 

three times that of the effect size for SVD. We suggest these are indications that pollen 

deposition is not a reliable proxy for reproductive success. 

 

Conclusion 

Even after decades of research, the pollination biology of most non-crop flowering plants 

is unknown, simply due to the vast number of species available for study. Our meta-

analyses have provided information on general patterns of the performance of different 

pollinator groups, but our results require verification from a broader range of plant and 

pollinator taxa. Our literature search suggested that empirical tests of Stebbins’ “most 

effective pollinator principle” peaked in the 1960s–1970s and the subject has received 

diminished research attention since the 1990s (with a few notable exceptions). We are 

hopeful that recent reports of pollinator declines will reinvigorate research on the 
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question of pollinator effectiveness and help identify general organizing principles 

underlying differential effectiveness of pollinators across an array of study systems.  

 

Predicting the impacts of pollinator declines requires an understanding of whether 

different pollinator groups have differential effectiveness. Our meta-analyses provide 

some evidence that they do, and that strong differences may exist even between closely 

related species. The large confidence intervals we obtained for our effect size estimates 

suggest that further sampling is needed in order to resolve the question of whether 

specialist vs. generalist, and native vs. non-native pollinators are equally effective. 

Continued assessments of the importance of different pollinator types under various types 

and intensities of anthropogenic disturbance will be important to help plan for potential 

changes in pollination services that could arise in our changing environment. 
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Appendix A 

Table A1. Species identifications and dietary specialization of bees visiting sunflower 

(Helianthus annuus) at 11 sites in the U.S. Southwest in the 1970s [Hurd, et al. 1980] and 

2015–2016. Name changes reflect taxonomic updates since the 1970s. ITIS = Integrated 

Taxonomic Information System; BBSL = USDA Bee Biology and Systematics Lab; 

G, N, S = generalist, nectar feeder, specialist; unk = dietary specialization unknown  

Name (ITIS/BBSL) name changes Diet breadth (HLL) G, N, S 

Agapostemon 

angelicus/texanus BBSL: A. angelicus + A. texanus casual polylege G 

Agapostemon femoratus   casual polylege G 

Agapostemon melliventris   casual polylege G 

Agapostemon obliquus formerly A. cockerelli casual polylege G 

Agapostemon tyleri   casual polylege G 

Anthophora curta   casual polylege G 

Anthophora montana formerly A. montana + A. smithii casual polylege G 

Apis mellifera   casual polylege G 

Bombus morrisoni   regular polylege G 

Bombus pensylvanicus/sonorus BBSL: B. pensylvanicus + B. sonorus regular polylege G 

Colletes fulgidus   casual polylege G 

Exomalopsis solani   casual polylege G 

Exomalopsis solidaginis   casual polylege G 

Halictus confusus   casual polylege G 

Halictus ligatus   regular polylege G 

Halictus tripartitus   casual polylege G 

Lasioglossum kincaidii   casual polylege G 

Lasioglossum pectoraloides formerly Evylaeus pectoraloides casual polylege G 

Lasioglossum semicaeruleum formerly Dialictus pruinosiformis casual polylege G 

Megachile agustini   casual polylege G 

Megachile angelarum formerly Chalicodoma angelarum casual polylege G 

Megachile brevis   regular polylege G 

Megachile frugalis   casual polylege G 

Megachile montivaga   regular polylege G 

Megachile policaris   regular polylege G 

Megachile texana   casual polylege G 

Melissodes paroselae   casual polylege G 

Melissodes sonorensis   regular polylege G 

Melissodes tepidus formerly tepida casual polylege G 

Melissodes thelypodii   casual polylege G 

Melissodes tristis   casual polylege G 

Anthidiellum robertsoni     G? 

Anthophora californica     G? 

Calliopsis helianthi     G? 

Anthidium maculosum   nectar visitor N 

Anthidium porterae   nectar visitor N 

Anthophora urbana   nectar visitor N 

Centris atripes   nectar visitor N 

Centris caesalpiniae   nectar visitor N 

Ceratina dallatorreana   nectar visitor N 
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Table A1 (continued). 
Coelioxys apacheorum   cleptoparasite N 

Coelioxys edita   cleptoparasite N 

Coelioxys menthae   cleptoparasite N 

Coelioxys texana   cleptoparasite N 

Colletes louisae   nectar visitor N 

Colletes wootoni   nectar visitor N 

Diadasia diminuta   nectar visitor N 

Diadasia ochracea   nectar visitor N 

Dieunomia nevadensis formerly Nomia nevadensis angelesia nectar visitor N 

Lasioglossum amicum formerly Evylaeus amicus nectar visitor N 

Lasioglossum clematisellum formerly Dialictus clematisellus nectar visitor N 

Lasioglossum microlepoides formerly Dialictus microlepoides nectar visitor N 

Lasioglossum semibrunneum formerly Dialictus oleosus nectar visitor N 

Megachile occidentalis formerly Chalicodoma occidentalis nectar visitor N 

Megachile sidalceae   nectar visitor N 

Melissodes verbesinarum   nectar visitor N 

Nomada formula     N 

Nomada sp.   cleptoparasite N 

Paranomada velutina   cleptoparasite N 

Peponapis pruinosa   nectar visitor N 

Sphecodes sp.   cleptoparasite N 

Svastra sabinensis   nectar visitor N 

Svastra sila   nectar visitor N 

Tetraloniella eriocarpi formerly Xenoglossodes eriocarpi nectar visitor N 

Tetraloniella sp. Formerly Xenoglossodes nectar visitor N 

Triepeolus concavus   cleptoparasite N 

Triepeolus helianthi formerly T. helianthi + T. lineatulus cleptoparasite N 

Triepeolus norae   cleptoparasite N 

Triepeolus robustus   cleptoparasite N 

Triepeolus sp.   cleptoparasite N 

Triepeolus subalpinus formerly T. lestes cleptoparasite N 

Triepeolus trichopygus   cleptoparasite N 

Xeromelecta californica   cleptoparasite N 

Xeromelecta interrupta   cleptoparasite N 

Xylocopa californica formerly californica arizonensis nectar visitor N 

Xylocopa varipuncta     N? 

Andrena accepta   primary oligolege S 

Andrena helianthi   primary oligolege S 

Andrena pecosana   secondary oligolege S 

Colletes rufocinctus   secondary oligolege S 

Diadasia enavata   primary oligolege S 

Dieunomia heteropoda formerly Nomia primary oligolege S 

Dieunomia micheneri formerly Nomia primary oligolege S 

Dieunomia triangulifera   primary oligolege S 

Dufourea marginata   primary oligolege S 

Megachile aff. parallela   primary oligolege? S 

Megachile inimica/inimica sayi BBSL: inimica + inimica sayi secondary oligolege S 
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Table A1 (continued). 
Megachile manifesta   secondary oligolege S 

Megachile parallela   primary oligolege S 

Melissodes agilis   primary oligolege S 

Melissodes appressus formerly appressa secondary oligolege S 

Melissodes brevipyga   secondary oligolege S 

Melissodes compositus formerly composita secondary oligolege S 

Melissodes confusus formerly confusa secondary oligolege S 

Melissodes coreopsis   primary oligolege S 

Melissodes humilior   secondary oligolege S 

Melissodes limbus   secondary oligolege S 

Melissodes lupinus formerly lupina secondary oligolege S 

Melissodes lustrus formerly lustra secondary oligolege S 

Melissodes menuachus   secondary oligolege S 

Melissodes montanus formerly montana secondary oligolege S 

Melissodes perlusus formerly perlusa primary oligolege S 

Melissodes robustior   primary oligolege S 

Melissodes subagilis   secondary oligolege S 

Melissodes submenuachus formerly submenuacha secondary oligolege S 

Paranthidium jugatorium   secondary oligolege S 

Perdita lingualis   primary oligolege S 

Perdita verbesinae   secondary oligolege S 

Pseudopanurgus aethiops   primary oligolege S 

Pseudopanurgus helianthi formerly Pterosarus helianthi primary oligolege S 

Svastra helianthelli   primary oligolege S 

Svastra machaerantherae   primary oligolege S 

Svastra obliqua   primary oligolege S 

Svastra petulca formerly petulca suffusa secondary oligolege S 

Svastra texana formerly texana eluta secondary oligolege S 

Syntrichalonia exquisita   secondary oligolege S 

Trachusa cordaticeps formerly Heteranthidium cordaticeps primary oligolege S 

Trachusa occidentalis   primary oligolege S 

Anthophorula sp.     unk 

Dialictus sp.     unk 

Lasioglossum sp.     unk 

Megachile apicalis     unk 

Megachile comata     unk 

Megachile lippiae     unk 

Megachile onobrychidis     unk 

Megachile perihirta     unk 

Megachile prosopidis     unk 

Megachile rossi     unk 

Melissodes communis     unk 

Melissodes comptoides     unk 

Melissodes sphaeralceae     unk 

Protandrena illustris     unk 

Tetraloniella perconcinna     unk 
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Table A2. Results of mtDNA analysis of Apis mellifera to determine whether specimens 

belonged to Africanized lineages [Alan Szalanski, personal communication].  

Africanized = Africanized A. mellifera mtDNA, European = European A. mellifera 

mtDNA, PCR failure = amplification unsuccessful 
 
Year/State Site mtDNA type   

2015   Africanized European PCR failure 

total Apis 

analyzed 

NM Animas 12 0 8 20 

 

Silver City 5 0 15 20 

CA Indio 12 2 1 15 

 

Madera 1 0 11 8 19 

 

Merced 0 13 6 19 

 

    

  

  

2015+2016           

NM Rodeo 7 0 8 15 

 

    

  

  

2016           

CA Bishop 2 5 13 20 
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Table A3. Coordinates of surveys of bees pollinating sunflower (Helianthus annuus, H. petiolaris) at 11 sites in the U.S. 

Southwest in the 1970s [Hurd, et al. 1980] and during 2015–2016 (the present study). 

 

state HLL site name 

HLL 

county 

2015 

county 

Latitude-

Longitude 

2016 

county 

Latitude-

Longitude 

CA Escalon San Joaquin San Joaquin 37.786, -120.992 San Joaquin 37.798, -120.999 

CA Madera (site 1, Jul.) Madera Madera 37.020, -120.121 Madera 37.048, -120.111 

CA Bishop Inyo Inyo 37.361, -118.361 Inyo 37.361, -118.361 

NM Rodeo Hidalgo Hidalgo 31.819, -109.043 Cochise (AZ)
1
 31.490, -109.341 

NM Animas Hidalgo Hidalgo 31.964, -108.815
†
 Hidalgo 31.524, -108.978 

NM Silver City Grant Grant 32.762, -108.303 Grant 32.787, -108.274 

AZ Benson Cochise Cochise 31.905, -110.230 Cochise 31.906, -110.251 

CA Indio Riverside Riverside 33.670, -116.233 Riverside 33.670, -116.233 

CA Merced Merced Merced 37.357, -120.637 Stanislaus
2
 37.467, -120.827 

CA Madera (site 2, Sep.) Madera Madera 36.926, -120.056 Madera 37.040, -120.214 

CA Corcoran Kings Kings 36.083, -119.577 Tulare
3
 35.872, -119.391 

 
†
 Sampled in 2017 (2015 sampling cancelled due to rain). 

1.
 22 mi S. of Rodeo, NM. 

2.
 23 mi N. of Merced, CA. 

3.
 20 mi S. of Corcoran, CA. 
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Table A4. PermANOVA tests and pairwise comparisons of nMDS ordinations of differences in community composition for 

bees pollinating sunflower (Helianthus annuus, H. petiolaris) at four sites in Arizona/New Mexico in the 1970s and 2015–

2016 (except Animas, NM, sampled in 2016–2017). 

  
PermANOVA Pairwise comparisons 

Region     Df F.model R2 Pr(>F) pair F.model R2 unadjusted p adjusted p   

Arizona & All, with Apis mellifera Decade 2 1.759 0.281 0.074 1970s - 2015  1.873  0.238 0.078 0.117   

New Mexico   Residuals 9 
 

0.719 
 

1970s - 2016  2.735  0.313 0.059 0.117 
 

 
  Total 11 

   
2015 - 2016  0.664  0.100 0.561 0.561 

 

 
Generalists and nectar visitors, Decade 2 2.028 0.311 0.047 1970s - 2015  1.834  0.234 0.063 0.095   

 
with Apis mellifera Residuals 9 

 
0.689 

 
1970s - 2016  3.348  0.358 0.025 0.075 

 

 
  Total 11 

   
2015 - 2016  0.880  0.128 0.398 0.398 

 

 
All, without Apis mellifera Decade 2 1.586 0.261 0.069 1970s - 2015  1.598  0.210 0.100 0.179   

 
  Residuals 9 

 
0.739 

 
1970s - 2016  1.871  0.238 0.119 0.179 

 

 
  Total 11 

   
2015 - 2016  1.275  0.175 0.210 0.210 

 

 
Generalists and nectar visitors, Decade 2 1.929 0.300 0.044 1970s - 2015  1.365  0.185 0.253 0.253   

 
without Apis mellifera Residuals 9 

 
0.700 

 
1970s - 2016  2.391  0.285 0.085 0.249 

 

 
  Total 11 

   
2015 - 2016  2.053  0.255 0.166 0.249 

 

 
Specialists Decade 2 1.245 0.217 0.253 1970s - 2015  1.889  0.239 0.086 0.258   

 
  Residuals 9 

 
0.783 

 
1970s - 2016  1.259  0.173 0.256 0.384 

 

 
  Total 11 

   
2015 - 2016  0.667  0.100 0.764 0.764 
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Table A5. PermANOVA tests and pairwise comparisons of nMDS ordinations of differences in community composition for 

bees pollinating sunflower (Helianthus annuus, H. petiolaris) at seven sites in California in the 1970s and 2015–2016. 

  
PermANOVA Pairwise comparisons  

Region     Df F.model R2 Pr(>F) pair F.model R2 unadjusted p adjusted p   

California All, with Apis mellifera Decade 2 4.273 0.322 0.003 1970s - 2015  5.042  0.296 0.004 0.006 * 

 
  Residuals 18 

 
0.678 

 
1970s - 2016  6.591  0.355 0.001 0.003 * 

 
  Total 20 

   
2015 - 2016  0.623  0.049 0.653 0.653 

 

 
Generalists and nectar visitors, Decade 2 7.703 0.461 0.001 1970s - 2015  8.892  0.426 0.001 0.003 * 

 
with Apis mellifera Residuals 18 

 
0.539 

 
1970s - 2016  13.912  0.537 0.002 0.003 * 

 
  Total 20 

   
2015 - 2016  0.434  0.035 0.746 0.746 

 

 
All, without Apis mellifera Decade 2 1.433 0.137 0.114 1970s - 2015  2.084  0.148 0.027 0.081   

 
  Residuals 18 

 
0.863 

 
1970s - 2016  1.462  0.109 0.142 0.213 

 

 
  Total 20 

   
2015 - 2016  0.820  0.064 0.631 0.631 

 

 
Generalists and nectar visitors, Decade 2 1.581 0.149 0.045 1970s - 2015  1.975  0.141 0.045 0.117   

 
without Apis mellifera Residuals 18 

 
0.851 

 
1970s - 2016  1.697  0.124 0.078 0.117 

 

 
  Total 20 

   
2015 - 2016  1.084  0.083 0.398 0.398 

 

 
Specialists Decade 2 1.360 0.131 0.169 1970s - 2015  2.200  0.155 0.038 0.114   

 
  Residuals 18 

 
0.869 

 
1970s - 2016  1.316  0.099 0.245 0.368 

 

 
  Total 20 

   
2015 - 2016  0.651  0.051 0.748 0.748 
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Figure A1. Trends in the SPEI drought index across time at each sampling site. Negative 

values of SPEI indicate relatively hot, dry years; positive values indicate relatively cool, 

wet years. Years in which bee assemblages were sampled are indicated with large points; 

unsampled years are shown with small points. Correlation coefficients and statistical 

significances shown in Table 2.    

(a) Arizona/New Mexico sites  (b) California sites 
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Appendix B 

 

(a) Specialist versus generalist (n=20 studies; plot excludes three points with large SE). 

 
(b) Native versus non-native (n=42 studies; plot excludes two points with large SE). 
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Figure B1, continued. 

(c) Native versus Apis mellifera (n=36 studies; plot excludes two points with large SE). 

 
Figure B1. Diagnostic (funnel) plots of studies used in meta-analyses of pollination 

effectiveness. (a) Specialist versus generalist (n=20 studies; plot excludes three points 

with large SE); (b) Native versus non-native (n=42 studies; plot excludes two points with 

large SE); (c) Native versus Apis mellifera (n=36 studies; plot excludes two points with 

large SE). 
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Native vs. Apis

−100 −50 0 50 100 150 200

Hedges' d
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Figure B2. Effect sizes from meta-regression testing the effects of plant family on mean native pollinator effectiveness when 

the non-native pollinator is Apis mellifera, using the non-phylogenetic model as a base model and showing Hedges’ d and 95% 

confidence intervals. Dotted line marks Hedges’ d of zero; dots mark mean effect size; the size of the dot is proportional to 

sample size. A positive d value indicates that native species have greater pollination effectiveness than Apis mellifera. 

Horizontal bars represent 95% confidence intervals; bars overlapping the dotted line indicate the effect size is not significantly 

different from zero. Sample sizes for each category are in parentheses. 
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