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A RANDOM WALK IN A RANDOM ENVIRONMENT

Edwin Andrew Sanchez, Ph.D.
Department of Mathematics and Statistics

The University of New Mexico, 1978

In this dissertation we consider a model of a random walk, {Zn}’
1
(D

on where the distribution of [Zn] is dependent on a stochastic
process {Yn] and is given by gy(z) where Y , =y . Conditions on
the envirommental process {Yn} are given for which transience or recur-
rence of the random walk {zn} can be determined. The probability of

absorption and mean time problems are solved when {Yn] is a finite

Markov chain and {Zn] is a classical random walk on the integer lattice.
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CHAPTER I
INTRODUC TION
The theory of Random Walks has been the subject of numerous

articles and books, beginning with Levy's Theorie de 1'addition des

variables aleatoires (1937) and continuing through Spitzer's Principles

of Random Walk. 1In all of these works it is assumed that as the process

evolves the transition probabilities are fixed and that, for each reali-
zation of the process, these transition probabilities are identical.
Then Solomon in Random Walks in a Random Environment (1975), allowed

the random walk, at the beginning of each realization, to choose accord-
ing to some stochastic process, the transition probabilities that would
govern the evolution of the random walk for that particular realization.
Once again, though, his model required that the transition probabilities
remain fixed for that realization of the process.

In this paper we will formulate a model for a Random Walk in a
Random Envircnment (RWRE) in which the transition probabilities are cho-
sen randomly at each step in time, as the walk evolves. This model fol-
lows in the vein of the many recent papers in the areas of random evolu-
tions and random environments, such as the work done by Griego and Hersh
( 8] on Random Evolutions, W. Smith and Wilkinson [ 16] on Branching
Processes in Random Environments (BPRE), Athreya and Karlin[ 1] on
BPRE's, W. Smith [ 15] on BPRE's and Torrez [20] on Birth and Death Pro-

cess in a Random Environment (BDRE). We will first formulate our model

R R R AT R R







for RWRE's, then we will show how it is similar to the above models, and
how Solomon's model differs from all the other models for random evolu-
tions.

The model we will study is then as follows: The RWRE will be a two
component stochastic sequence (Yn,Zn) where the {Yn] component will
be the environmental or control process and the [Zn] component will be
the random walk. It should be noted that, although {Zn], as we will
define it, will not be a random walk in the classical sense, we will
still refer to it as a random walk. We will then, as in the case of
classical random walks, be interested in answering the following ques-
tions about the random walk [Zn]: Is it recurrent or transient; Can we
solve the probability of absorption problem, and the problem of the
expected duration of the walk, and if so, what are the forms of the
solutions?

To answer these questions we will first have to specify the struc-
ture of the control process {Yn} and then specify how the random walk
[Zn} evolves given that we are in a particular environment y . The
contrel process [Yn] will be defined on ((,F). In its most general
setting {Yn} will be a stationary ergodic process. To be able to
derive more succinct results concerning the [Zn] process, we will fur-
ther restrict the stochastic nature of [Yn}, requiring that it be a
positive ¢-recurrent Markov chain, or as in the case of chapter three,
that it be a finite recurrent Markov chain.

The manner in which the evolution of the random walk {z 1 is
controlled by the environmental process (Y ! is as follows: To each

state y € (I we associate with it the transition probabilities gy(B),







(k)

where gy is a probability distribution on R , the space on which

{Zn1 evolves, and

gY(B) = P(zfﬂ'l =hR zl (YO’ZO)’(Yl’zl)"”’(Yn’Zn) - (Y,Z))

for every y €Q, z € R(k), and n'*>0,1,2..:. and (1)

X g (z)dz =1 % y€en.
k) 7

So by the above we see that within a particular environment the
transition probabilities are homogeneous. In the special case that

(1)

{Zn} is on R and is allowed to only move to neighboring integer

valued states, we have that

p = B2 g 1[(Yo,zo).(Yl.zl),---,(Yﬂ,zn) = (y,k)) 3

qy = P(zﬂ‘l"l s k - ll (YO’ZO)’(Y].’ZI)’.."(Yn,zn) e (Y:k))

p. + 9y =1 ¥ y €1 and y for any y € Q0 .

Y # 0
Iy

Note that in this model, if {Yn1 is Markovian, then (Yn,zn) is a
Markov chain. Even in this case, however, the Z component is not

Markovian in general.

The above model differs from that of Torrez, in that in his model
the process [zn} was a Birth and Death Chain. We will consider gener-
alized random walks, as in (1) above, which generalize the Birth and
Death assumptions, but in all over models the law of evolution of the
Z component will be spatially homogeneous. Smith & Wilkinson and

Athreya & Karlin considered the case where {Zn} was a Branching Process.







Smith and Wilkinson then made [Yn? an i.i.d. sequence [16] and
later assumed fYnl was a Markov Chain [ 177, whereas Athreya and
Karlin only required that [Yn] be a stationary ergodic process [ 1].
In their work on BPRE's the control of (Y} on {Zn} can be expressed
in terms of probability generating functions and the analysis then
depends on special properties of generating functions. While we will
deal with the same types of questions, we will require different tech-
niques, especially those based on spatial homogenity combined with re-
newal theory.

Solomon's model differs from the above models in one major aspect;
all of the above models é;n be described by a bivariate process (Yn,zn)
where {Yn} is a non-trivial sequence of random variables, whereas in
Solomon's model the process [Yn] is such that Yn "Xy 12230500

Solomon then allows Y to determine a random perturbation of the homo-

1

geneous enviromment of a classical random walk, so the probability of a

step to the right from state n becomes P in the yth environment.

n,y
Thus these environments are not spatially homogeneous in general. The
resulting Z process does not fit into our context of RWRE's nor into
Torrez's BDRE's. However, it is because of the similarities between our
model and the models of Smith and Wilkinson, Athreya and Karlin, and
Torrez, that we will refer to our model as a Random Walk in a Random
Enviromment, despite the fact that Solomon used this terminology to
describe his model, which differs as discussed above from the previous
works in Random Environments.

In this-chapteéﬁpe will discuss the problem of recurrence and

transience of {zn] given that {Yn} satisfies certain conditions.







In the case where {Yn} is a stationary ergodic sequence, we say that

{zn} is recurrent if, for every neighborhood of the origin Ac Rk and

(k)

for every z € RY’, we have that Pz(zn € Ai.o.) =1, and that it is

transient if, for every bounded A = R(k) and for every 2z € R(k), we
have that Pz(zn € Ai.o.) = 0, where Pz is the probability measure
generated by starting the Z process at 2z , and having Y evolve
according to its stationary ergodic law.

In the case where [Yn} is a ¢o-recurrent Markov Chain, we will
say that {Zn} is recurrent if, for every neighborhood of the origin

(k) (k)

AcCR and for every 2z € R and for every y € (), we have that

P (Zn € Ai.o.) =1 and that it is transient if, for every bounded

Ys2
(k) k)

Ac R and for every z € R( and for every y € (1,

P (zn € Ai.o.) =0 . Where Py " is the probability measure genera-

Ys2Z
ted by letting the (Y,Z) process start at (y,z). It should be noted

that, when [Yn} is a positive m-recurrent Markov Chain with invariant
probability distribution 1, we have that Pﬁ z(Zn € Ai.o.) = 1 where
?
A 1is as above if and only if Py z(zn €Ai.o.) =1 for every y € Q
3
and that P (Z €Ai.o.) =0 if and only if P (z €A i.0.)=0
e AR Y2 0
for every y € 0 . In the classical case a random walk is always either
transient or recurrent; in our model {Zn} may be neither. The example

below will illustrate the difficulty in determining recurrence properties

for the RWRE [Zn}-

Example 1. Let {Zn] be a symmetric simple random walk on the integers

and let {Yn} be a symmetric simple random walk on the two dimensional

integer lattice. Both of the above are recurrent random walks. Then let







{z_ } be independent of {Y }: in this case the control process in

fact has no effect on the random walk. Then (Yn’zn) is a symmetric
three dimensional random walk and, therefore, it is not recurrent. Thus
recurrence of {Zn} cannot be identified with recurrence of the chain
(Yn,zn) even when {Yn} is Markovian. 1In chapter two we will develop
conditions on the control process under which the recurrence or tran-
sience of {Zn] can be determined.

In chapter three we will concern ourselves with the question of the
probability of absorption and the mean time to absorption when {Yn] is
a Markov Chain on an irreducible, finite state space. We will solve the
problem when we have both a left and a right barrier. In the case where
[Yn] only has two states and we only have a left barrier, we will com-
pare the probability of absorption for the RWRE to the classical random
walk where p = p,m + P,M,, and m = ("1’n§) is the invariant starting
distribution for Y .

In chapter four we will consider certain examples and examine the
behavior of the solutions toc the absorption problem when we make small

perturbations in the control process or in the transition probabilities.







CHAPTER II

RECURRENCE AND TRANSIENCE

In this chapter we will give conditions on the control process {Yn}
under which we can state conditions which will determine recurrence and
transience for the random walk process {z_ }. In some cases it will be
possible to show the dichotomy that ({Z } is either transient or recur-
rent. When {Yn} is a Markov Chain (Q,F) will denote the state space
of {Yn} and as before we will let m denote its stationary distribu-
tion. (Throughout this chapter [Yn] will be such that , the invari-
ant measure, does exist and is finite, hence Pﬂ exists.) When [Yn}
is ergodic, we let 1t dencte the distribution of Y0 ‘

We will first show that, when [Yn} is a stationary ergodic pro-
cess, {Zn} is defined on IR and satisfies certain integrability con-
ditions, then EEZI] # 0 implies that {Zn1 is transient and Z_ conm-
verges to sgn[E(Zl)] * ® a.s. Pﬂ. In the second section we will show
that, when {Yn1 is a positive ¢-recurrent Markov Chain which has a

C-set, {z ] is defined on R and its evolution again satisfies certain

integrability conditions, we then have

Ly ] %0 een {Z1 4is recurrent

2) Ele:l # 0 <=> {Zn1 is transient

and then Z_ = sgnEE(Zl)] g T







Section 2.1.

In this section [Yn} is a stationary ergodic sequence on (Q,F,P)
with shift operator T . From the discussion on p#ge 5 in Chapter 1, it
follows that W, ™ 2y * Z. is a stationary sequence of random varia-
bles. By proposition 6.32 (Brieman), if C is an invariant event for
{Wn], then C is also a tail event. We then consider the following
measurable function of {Yn]: PG:][YH]). For a fixed sequence [Ynlo
the W 's are an independent sequence.

We then know by the Kolmogorov Zero-One Law that
PRIfT} I~ 0 or 1. (1)

Note that for some sequence {Yn]1 we could have that PG:]{YH]I)
equals 0 while for another sequence [Ynl2 we may have that
P(C[[Yn}z) equals 1 . So while P(C[[Yn}) may only assume one of two
values, it is not clear that it is necessarily a constant function. We
would like to show that in fact PG:]{Ynl) is a constant function, but
we will first prove that it is an invariant function of [Yni.

To accomplish this we will use proposition 6.5 (Brieman) to extend
{Y ,W 1 to be a double-ended stationary sequence. We will then have

that for @ = f(Yo,gtl,th,!ta,...) and C € f(WO,Etl,HtZ, +3,...)

where C 1is invariant, that

I *C ad TR*B . (2)

By the definition of conditional probability we know that PGZPB)

is a random variable which satisfies:







9
P(AC) = j‘ P(C|®)P ¥+ A E€®.
A
By the stationarity of {Yn} we have that
| Pcl@)e = | TPEc|®)ar
A TA
and
P(AC) = P(TA N T8) -
If we then let
A" = TA
we have that
BP(A' NIo)e I TPC|@)dP + A' € T® .
Al
Hence by Radon-Nikodyn we have that
TP(C|®) = P(IC|TB) a.s. P . (3)

So from (2) and (3) we get that
TP(C|®) = P(IC|TB) = P(C|®)

Which implies that PG:][Yn}) is an invariant function of {Yn}, hence
it is a.s. constant.

Since P(C|{Y } 1is an a.s. constant function of {Y_1, that would
imply that

PE[{¥ ,}) = PC) a.s. P

and in fact P(C) = 0 or 1 . Then using definition 6.30 (Brieman) we

know, since every invariant set C has probability zero or one, that

{Wn} must be ergodic. The above argument, together with the ergodic
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theorem, proves the following theorem.

Theorem 2.1. If ({Y } is a stationary ergodic process and if [Zn} is

defined on IR, then wn - zn+1 = 2n is a stationary ergodic process and,
if E(Wl) exists, then _Z_ng_, E[W]_] a.s.

According to the model specified in Chapter one, we have, given that
we are at a point Y1 = y 1in the control process, that the distribution

of w, is given by a distribution function gy(z) . Hence

(o]
fvy] = | [x &) @)z may)
l ==
We will refer to the next two conditions as conditions * and through-
out the rest of the Chapter we will assume that conditions * are satis-

fied, unless specified otherwise.
= -]

1)  fiy) = jx gy(z)dz exists for m-a.e. y

* o - - |
2) 5 f(y) w(dy) exists .

The above two conditions insure that E[wl] does exist. We will use

the notation E[wl] = vf . We then have the following corollary

Corollary 2.2. If the conditions of Theorem 2.1 are in effect and if

condition * also holds and if in addition =f # 0, then {Zn] is
transient and Z_ = sgn(rmf) ° o a.s.
It should be noted at this point that as in the case of clas-

sical random walks we have shown that wf # 0 implies transience.

Then the question that arises is, if wf = 0 , does that imply Zn
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is recurrent? In the situation we have above the answer is not known.

From the corollary it is clear that if we have recurrence then mf = 0 .

Section 2.2.

In this section we will give conditions on the control process which
will insure that we do get a dichotomy for recurrence and transience.
To do this we will need to treat the two cases separately. Since condi-
tions for transience will follow immediately from the previous section,
we will deal with it first. Then we will look at the conditions for
recurrence in two parts. First when [Ynl has a positive atom, and
second, assuming only that {Yn} has a C-set, using a result of
Nummelin [ 12].

The first result for transience is an immediate consequence of

Theorem 2.1 and is given below.

Theorem 2.3. 1f {Yn} is a positive -recurrent Markov Chain on an

arbitrary state space with stationary initial distribution m . If
gy(z) satisfies conditions * then {wn} is a stationary ergodic pro-
cess and %?** mt a.s. Pu for every initial distribution |, on the
Y chain.

Proof. The ¢-recurrence of {Yn} implies that (I is indecomposable.
The positive ¢-recurrence implies that m exists and is finite and
unique. Then by Theorem 7.16 (Brieman) we know that {Yn} started with

the distribution m is a stationary ergodic process. Hence Theorem 2.1

then gives us the above result for Pﬂ. The result for P follows
1
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from Proposition 4.3 and Theorem 5.1 of Orey [13]. This result immedi-

ately gives us the following corollary.

Corollary 2.4. 1If [Yn] is a positive ¢p-recurrent Markov Chgin on an
arbitrary state space and if gy(z) satisfies conditions * and if
nf = Etwl] # 0 then z 1is transient and By (sgn mf) « ® a.s. PIJ-
for every initial distribution |, on the Y chain.

We will now consider the problem: Under what conditions does
E[Wi] = 0 imply that Zn is recurrent. To do this we will first
assume that [Yn} has a positive atom. Then we will look at the pro-
cess ZT where T, 1s the nfh return time to the atom of the control
process.n

Recall that for A to be a positive atom of [Yn}, it requires
that mw(A) > 0 and P(yo,x) = P(yl,x) for every yo and y, elements
of A . Note that in the discrete case a point with positive mass is an
atom. We will now prove the preliminary results concerning recurrence.
First we will consider the following.

Define (8 to be the nfP return time to a positive atom A .
If {Y 1 1is a positive o-recurrent Markov Chain, we know that

Er,] <= . We then prove the following lemma.

Lemma 2.4. If [Yn} is a positive ¢-recurrent Markov Chain with a
positive atom A and h: (0 =« IR with h being m-integrable then
A

n(A)E"._'Vlj = wh where Vl = h(Yk) 1
k=1
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Proof. From the proof of Theorem 2.3 we know that {Yn] is a station-
ary ergodic sequence, hence [h(Yn)} is an ergodic sequence, and

-
n

= 3 h(Y )= nmh a.s. P . (4)

k=1 “

Since T = ® and T <« a.s. P , (4) implies
n n =

T
1
3 k§l (Yk)-rrh a.s. P_ (5)
and
1 Tl
—-Zh(Y)-O 8.8, P . (6)
el
n k=1

Putting (5) and (6) together we see that

T
L 2: h(Yk) wopl  aaBa . B s
o jowe i ™
Ty
I1f we then set
Tick1
v, 2 h (¥, )
Tk+1

we see that the Vk's are an i.i.d. sequence of random variables. Then

by the strong law of large numbers

1 n
= Z‘v -E(v) a.s. P
23

=
and
T
e K] as. P
with
Ezg- '13__].'_
' 14 m(A)
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So we have that
"
-1
il En n n-1 1 -
— h(Y ) = . . : E V4 =
T k=71+1 k T n n-1 =1 k
Hence T
1 n .
e 2 h(Yk) = m(A)EH V1] . (7)
n k??i+l

Equations (6) and (7) then give us the desired result
m(A) E[v,] = mh
So we then have the following lemma.

Lemma 2.5. If {Y } is as in Lemma 2.4 and if gy(z) satisfies con-

ditions * and if E[Wl] = 0, then E{ZT R S

) 1
Proof. Let h(y) = £(y) = j z g (z)dz , hence vh =mnf = HW,] =0
) 4 iy 1
(where f 1is the function defined by * ), and T 3 h(Yk) ;
k=1
Now
5
Mz 1L w)
i | k=1 K
i

=g 2 E{w]Y 1]
£ T ey

n
- Pikgllh(Yk)] = HvV,]

but s

B oy ™ n(A)

=0

- E[lej=0.

We then prove the following theorem.
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Theorem 2.6. If ({Y } is a positive m-recurrent Markov Chain with a
positive atom A and if {zn] is defined on IR and gy(z) satisfies

conditions * and if E[(W;] =0 then Z 1is recurrent.

Proof. Let 7 be the time of the ntR® return to A » the positive
atom. Then by Lemma 2.5 we get that !{ZT ] =0 . We then define
1

B mE -2

k k-1

which is a sequence of independent identically distributed random vari-

ables. Note that

£X,]= E{sz - sz_l] =05

If we then apply Theorem 3.38 (Brieman), we have that

n
g w7 <2 )= 2 X,
Thn k=1 Tk Tk-1 k=1

is recurrent. This implies that {Zn} is recurrent, i.e. if

Hz2 €@ f.0.1= 1
‘n
then

P';zn €e® 1.0.7=1 .

Now if {Y } does not have a positive atom then {Xkl as defined
in the proof is not an i.i.d. sequence of random variables. So we can-
not apply Theorem 3.38 (Brieman). We will then use Nummelin's method
to extend the original process to a new one which does contain a posi-
tive atom, and then use the proof as above.

Take {Yn} to be a positive g-recurrent Markov Chain, which has a

C-set where we define a C-set as in Orey [137.







i
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Definition. Relative to the g-finite measure ¢ on ((0,F) a set
C €F 1is called a C-set if ¢@(C) > 0 and there exists a positive

integer k such that

inf Pk(x.y) >0
fx.y) €0 XL

k
where p (x,y) is the k-step transition probability density, which is

the Radon-Nikodym derivative of the ¢=-absolutely continuous part of
k
P (x,°) .

We will assume for now that k equals 1 . Then uging Nummelin's
method we form a new chain [YB*I on QX {0,1} which has a positive
atom and such that the marginal of [Yn*} on () is the chain {Yn} ‘
(cf. Theorem 2.3 of Newmelin [127) We define the random walk associated

with (y,i) € Q x {0,1} by
P*I:Zn_l_l"’ B+Z' (YO*’ZO),(Y]_*,Z].),.."(Yn*’zn) 7 (y’i’Z)] - gY(B)

(k) (k)

, and Bc RY’, where gy (z) was given by
0

for every y €0, z € R

the original process and satisfied

gyo(B) - H:zn+1= B'l‘z, (YO’ZO)’(Yl’zl)’”"(Yn’Zn) " (yOsz)j .

Thus the 2Z component of the RWRE EYn*’Zn] has the same distribution
as the 2Z component of [Yn,zn].

If m* is the invariant probability for {Yn*], then by proposi-
tion 2.2 of Nummelin we have that the ( marginal of % is the invari-
ant probability m for {Yn]. Furthermore

Eﬂ*[wl*] » Eﬂ_[Wl] :

We then have the following lemma.
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Lemma 2.7. If [Yn} is a positive recurrent Markov Chain with a C-set
such that k = 1 and Z is defined on IR and gy(z) satisfies con-

ditions * and if E[le = 0, then Z 1is recurrent.

Proof. Since we have a C-set with k = 1 we know that {Y *} 1is a
positive ¢-recurrent Markov Chain with an atom and EIWi*] =0 and

W =W* so Z = Z * , Hence by Theorem 2.6 we get that 2Z * is
n n n n n

recurrent which immediately implies that Zn is recurrent.
Now suppose that in the above k 1is strictly greater than 1 .

We then use Lemma 1.5, ii) in Nummelin, to form {Y a positive

nk]

w-recurrent Markov Chain. So we have the following theorem.

Theorem 2.8. If f{Y } 1is a positive g-recurrent Markov Chain with a

(1)

C-set and if {Z } is defined on R and gy(z) satisfies conditions

* with EfW;] =0 then {2} is recurrent.

Proof. Let ko be the value of k in the definition of C-set. We

then look at [YO,Y «+«+}, a positive wm-recurrent Markov

’Y ’Y >
ko 2k0 3k0 ,
Chain with a C-set with k = 1 . We then know that Wl’ the one-atep

~ 0
transition probability for the new random walk is given by W, = W

1 i
k=1
kg Ky
% g1 = Bf k:;lwkj = kZ'l EfW] =0

So [Ynk } meets the conditions of Lemma 2.7, hence we get that Z
0

is recurrent. This implies that zn is recurrent.

nko
So for a positive wm-recurrent Markov Chain which has a C-set and
for which gy(z) satisfies conditions * , we then have the following

dichotomy in force:
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1) EW,1=0 @ Zz 1is recurrent,

2) Efwlj 0 & Z, is transient and then Z = sgn(mf) -« =

.8, ¥ .
-

We now consider the case where {Zn} is defined on the two-

(@)

dimensional integer lattice, We know from Gihman and Skorohod's

The Theory of Stochastic Process I, that if {Xn] is a classical random
(2)

walk on I , and if EIXI:] =0 and E[[le2]<m then {Xn} is

recurrent.

Theorem 2.9. If (Y } is a positive (-recurrent Markov Chain with a
positive atom and if {Z } is defined on the two-dimensional integer

lattice and gy(z) meets the equivalent conditions to conditions *

(2)

when Z takes its values in R, and if E{le = 0 and E{[Wllzj

2 2
- E[Wl(l) i E[Wi(Z) ] < =« where Wl(i), i= 1,2, are the components

of the W1 vector, and if one of the two conditions below is met:

i) Eﬂfflj < @ (equivalently Eﬂ [712] < =) and there is a bounded
A
B in 1(2) such that gy(B) = 1 for every y 1in the comple-

ment of A, where uN is the invariant distribution on A for
the process {Y }. (i.e. the process restricted to A)
"n
or

@ |~

ii) there exists r,s> 1 with %‘* = 1 and there exists a

function h on {1,2,3,...,} to (0,®) such that

2 o ;
a) & Z fk[zr gﬁl)(k)c:m .

i=] k=~
o g |
b < o, and
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c) Erh( ) 1<cn.
Then Zn is recurrent.

Proof. It is easily seen that for this situation, Lemma 2.5 can be
extended. So we have E[wlj = 0 implies that Etz?lj = 0 . Then if
we look at (Yn’wn) which is a e¢-recurrent Markov Chain, we see that
since there is no feedback in the model that the marginal on its sta-
tionary initial distribution, mn(y,w), of Y must be 7 . So that the

initial distribution of Y is s, hence the marginal of W must be

g - We will then use the notation

(1) i
= has
gﬂ 9
4
(m)
and, note that (A, R(Z)) is a positive atom of (Y ,W ). If we then

define h(Y W ) = W, we have that ﬁ[[h[ 1= E{]Wi[ 1= E{W (1) ]

2
+ EEW’(z) ] and that ﬂh = 0 . Then we note that for i = 1,2,

2

g j lw (i)‘ m(dy,dw) < | | lw (1) rrr(dy,dw)

oYy : N J J2 AT

0-A R QR
» 2r @ .
=] v (i)[ g (@) = T |k%F g Do

2 : » k=~ "
R

So by Theorem 4.2, Cogburn [ds], applied to each component of Wy, we

have the E_ Z I ] - E_ [l Z: W”ZJ < o if either condition i) or
A A k=1
ii) holds.

Therefore, if we again let X = ZT - 2 , we get that [Xk} is
k Tk-1







20

(2)

an i.i.d. sequence of integer-valued random vectors defined on I
with E{le = 0 and E[[X1{2]‘< @ . So by theorem 3, page 124 of

n
Gihman and Skorohod [ 6 ] we have that ZT =g = 2 Xk is a recur-

n
n gt §
rent random walk, hence Zn is recurrent.
It should be noted that if E[W;] # 0, then one of the two com-
ponents has expectation not equal to zero, and by Theorem 2.6, that

component would be transient, hence Zn would be transient. Using the

techniques of Theorem 2.8 we get the following corollary to Theorem 2.9.

Corollary 2.10. If {Yn} is a positive (-recurrent Markov Chain with

a C-set and if {z } 1is as in Theorem 2.9 and all other conditions of

Theorem 2.9 are met, then Zn is recurrent.
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CHAPTER III

PROBABILITY OF ABSORPTION AND MEAN TIME TO ABSORPTION

Section 3.1.

In this chapter we will consider bichains (Yn,Zn) such that the
control process {Yn} is a finite recurrent Markov Chain and such
that Z given Y 1is a random walk with its transition probabilities
defined by:

= = B [ =
p P(Z[ﬁ'l k l‘(YO’ZO)’ (Ylszl)j"‘s(Yn,zn) (isk))

(1)
qi e P(Zrﬂ'l = k - ll(Yo’zo)’ (Yl’zl)"“’(Yn’zn) - (iak))

for all integer values k . We will assume throughout this chapter that
Pi # 0 and 94 0 forany 1™ 1.2....,n @and

P, # pJ for i # jJ and P, s qy = 1 for all {=1,2,...,n.

We will be interested in solving the absorption problem, given
that we have an absorbing barrier at (Y,z) = (-,0), and that the
bichain is started at (y,z) with 2z > 0 . The methods used will also
allow that we have a right barrier at (-+,a), in this situation (Y,Z)
will be started at (y,z) where 0< z < a . In both of these cases
we will consider the problem of the expected duration of the walk, when
the probability of absorption is equal to 1 .

We will let the transition matrix of the control process [Yn} be

denoted by
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T M2 i 1
s 3 T92 n
B = ; (3)
Tl ﬂhn
b= e
where as usual
Mg ®BQ X ) - Vs

Then since [Yn1 is a finite recurrent Markov Chain, it has an invari-
ant probability distribution = , which we will denote by a 1lxn vector,
(- e (nl,ﬂz,...,nn). We can think of ™ as the proportion of time that

[Yn} in the long run will spend in stake k . Hence if we let
F1

3“ pz g P = e 3 then p can be viewed as the average proba-

bility of taking a step to the right.

rrom the results of Chapter 2 we know that, for the one barrier
case, the probability of absorption is less than one if and only if
P> %’(i.e. if the process is recurrent or drifts to the left, then the
probability of absorption is one). So, when we only have a barrier at
(+,0), we will assume P> %' but, unless specified otherwise, we will
assume 0 < P <« 1 for the two barrier problems.

We now want to consider the probability of absorption at the barrier
(*,0), given we are at some point (i,k) where O <k < a . We will

set
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£(i,k) = P(absorption | (Yg525) = (1,k)). (5)

Then since the probability of absorption from (i,k) is equal to the
sum of the products of the probability of going to state (j,4) in
one step, times the probability of being absorbed from (j,4), we have
that for every 1 ™ 1,2:35-«50n and k= 1,2,3;,+«+.;38~1 that

n n
£(1,k) = P, j§l mg £QLkFD + g j§l My £Gak-1) (6)

We will now solve by a constructive process. Since there is no
feedback in the system, it is reasonable to attempt a separation of
variables and, if one looks at the solution to this problem for the
classical random walk, it is known that f£f(k) = a rk is the solution.

Hence we will attempt a solution of the form
g k
£li.k) = C{1) v . (7)

Then plugging the above into (6) we get

n

GOL) e = oy T B TR g D w03 25
i =p 1] Loat 3
i kgl (8)
or
C(1) rk = (p, £ % q. rk l) PRGNS G
i i ij
J
If we then divide both sides by rk- we get
CH)r=(p, r°+ q) T 63y » L= 12 n (9)
i q “ T S PR

J

If we then let

2
= - = ~
Yia P b2 qi 3 i 1,2,-. s I1

and
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D' (g,

{"'ii S SR e
where
1] nXn

Yy 5 =0 for 1% ]

and

c(1)
c(2)

g = :
C(n)

Then we can write (9) in matrix notation as

I'BC = re (10)
or in equivalent form

(I[B - rI)c=20.
So values of r and c¢ , which satisfy the above, exist if and only if
det(fB - rI) = 0 . (11)
It should be remembered that [ is a function of r , hence we are not

merely looking for eigenvectors and eigenvalues of [B . Since r = 0

is a trivial solution of (6), we will assume r # 0 . We will then let

" ) IR K RS

r
So
—§ m, .~ Y, T R N T i
131 1712 1 -°In
YoM LT e S Y2™on
A= f _ : (11)
Yhnhl YnﬂhZ Ynﬁnn-r,
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It is easy to see that the det Ar is a polynomial in r of degree

2n . Now the coefficient of r2rl is then

n
a, = (mp,) det B
2n i=1 i
and the constant term
n
a ™ (mw q,) det B .
0 j=1 &

So if det B # 0, then we see that a, # 0 and ag # 0 . Hence
det Ar is a polynomial of degree 2n , which does not have r = 0 as

r . Then for each

a root. We will denote the solutions by rl,rz,..., 2n

r!, L * 1,2,+«4052n 5 we ¢an £ind
c, (1)
CL - C&FZ) .
Ct(n)

We then note that, since all the coefficients of the polynomial,

det Ar, are real, the roots will appear in conjugate pairs. If £y and

r2 are conjugate roots, it is easily seen that Cl - C2 . We next
observe that Re(c(i)rk) and Im(c(i)rk) are independent solutions for
£(i,k). The fact that they are solutions is trivial and we will show

below that they are independent. If we assume that they are linearly

dependent, then there is a real &« such that
k k
Re(e(i)r™) = &« Im(c(idr ) (12)

holds for all values of i and k . Hence it must hold for k = 0 .

So we get

Re(c(i)) = a Im(c(i)) . (13)
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If we then expand (12), we get
k k . k k
Re(c(i))Re(r) - Im(c(i))Im(r ) = o Re(c(i))Im(r ) + o Im(c(i))Re(r )
From (13) weé know that
k . k
Re(c(i))Re(r’) = a Im(c(i))Re(r ),
so we have that
~In(c (1)) Im(e™) = o Im(c(1))In(c™)

or az = =1 . So there is no real « which will satisfy (12). Hence

for any conjugate pair of roots r., and r, we have four solutions,

1 2
Re(ec, (i)r k) Im(c, (i)r k) Re(c,(i)r k) and Im(c,(i)r k). If we then
1 g R 1 352 2 2 2 2
assume Imr1 < 0 and Imrz > 0, we will then use the two following inde-
pendent solutions: Re(cl(i)rlk) and Im(cz(i)rzk).
We will then use the following sets of indices to distinguish the

three distinct types of roots and solutions they generate:

E = {L[rL real root}
Fos [L[rL complex and Imr% > 0}

G = {L’ré complex and Imr, < 0} .

4
It should be noted that E, F, and G are mutually disjoint and their

union is {1,2,3,...,2n}. We can then prove the following theorem.

Theorem 3.1. If det BF¥ 0 and the 2n roots of det A are distinct
then the values of T, and the eigenvectors C, associated with them
give us 2n linearly independent solutions and hence the general solu-

tion to the probability of absorption problem is
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£x(i,k) = 2 CL(i.)r: Y 2 Im(c{'(i)r

k)"‘ 2 Re(c{'(i)rxk) .
LEE LEF i

bt e

Proof. From Section 1.1 of Hildebrand [ 9 ] we know that if we have

2n linearly independent solutions for f(i,k) then the general solu-
tion is a linear combination of these 2n solutions. Hence £*(i,k)
which is a linear combination of these 2n independent solutions must
then be the general solution. Note that since c&(i) is the component
of an eigenvector then any multiple, a&cé(i), is also the component of

an eigenvector 3,Cy > hence we shall let ) absorb the constant.

We will now consider the following example which shows that the

2n roots need not all be distinct. Let

06 04
B =
44 06
-y .2
then the invariant distribution = (.5,.5). If we let p =
.8

then H; = .5 and equation 6 then yields

2

(.22% + 8)¢.6) = ¢ (.36% ¥ .8Y(.4)

] 2

(.8r 2

+ .2)C.4) (.8 + .2)(.§) = =

We then wish to evaluate det A and find values of r such that
r

det Ar = 0 . If we add the second column to the first we get

22+ .8 - ¢ .08r2 + .32
det A =
: o

.Sr2 * 2 = .&8r2 ¥ A2 = x
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(r. = 1)(2r ~ 8) 8r2 + 32
e 155
1002 2
(r - 1)(8r - 2) 48r° + 12 - 100r
adding the second row to the first we get
10r - 10 561'2 - 100r + 44
- X=1
2 2
100 8r - 2 48r~ + 12 - 100r
9 10 56r - 44
= AETi)
2
190 8r - 2 482 - 100r + 12

So we see that r = 1 1is a double root of det A= 0 . Hence we now
know that the 2n roots need not be distinct. If they had been dis-
tinct then Theorem 3.1 would have been in effect, but since they are
not, we know from the proof of Theorem 3.1 that some other solutions
are needed.

In the case of classical random walks we know that, when p = g =‘%
we get £(k) = ak, also to be a solution. This then suggests that, if
r is a double root to det Ar, then we try the solution f£f(i,k)
=Tk c(i)rk . But an attempt to plug this into (6) leads to problems.

We need to modify the above attempt, but first we will consider the fol-

lowing result concerning a double root.

Theorem 3.2. If we have a double root rO and if the rank of Ar is

0
n - 2 then there exist two linearly independent eigenvectors ¢ both

of which satisfy ['BC = oS - Furthermore the general solution is
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k

£(1,k) = T C,()r,“ +Z ImC,(1)r, ) + T ReC,(i)r,")
4E€E - LEF 1 €G

where E, F, and G are as before and 4 runs through the 2n 1linearly

independent solutions generated by the pairs {Ci,ri] where r. is a

root of det Ar = Q0 and C runs through all eigenvectors of [B for

i

each r.
i

Proof. From elementary matrix theory we know that two linearly indepen-
dent eigenvectors exist when the rank of Aro is n - 2 . Their inde-
pendence assures us of two linearly independent solutions for £(i,k)
associated with Th the double root.

So double roots will cause a problem iff rank(fB - rI) =n - 1 .

We will then assume for the rest of this section that rank Ar o ¢ o i Uy

If r is a known solution for (l1) we try the solution

£(1,k) = [k C(1) + a(i)] £ (14)
n
rk C(1) + a(i)Jc" = p, T m [ (k1)) * e
=1 b
'g‘ r : y1.K1
*q & w, [ (R-1)C(]) * «())]r (15)
e

- A G W% (PR R R 0N

dividing through by rk - and collecting terms we get
' e 2
k C(A)r + a(l)r = k(p,r2 + ¢, ) T m . ) + (p.v2-q) Zm., C(J)
i i 3 ij i i 3 ij

+ (Pir2+qi) o ™y @) (16)
j
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If we let k=0 in (16) we get

g(i)r = (pirz-qi) Z:ﬁij c(j) + (pir2+qi) Z:ni

(i)
3 g H

£17)

- (O R (15 TS TR

If we then subtract (17) from (16) we get

2 ;
k C(1)r = k(p,r+q,) Z:“ij c(j)

J (18)

= Cﬂﬂr=(PJ%qJ§:m.Cﬁ)
i i ij
j
Since r 1is a root of det Ar = 0 then we know that there exists C

which satisfies (18). Hence to show that (l4) is a solution we only

need to show that there are an's which satisfy (17).

We will let
a(l)
«(2)
o M y
a(n)
and
e - - r2 8 1.2 n
y 3 Vii q_{ pl 343 3
" (Vij)an where ~
=0
Yy § for 1% 4

To simplify notation we will use C, and «, to denote C(i) and

«(i) respectively. We can then rewrite (17) as follows.

Z - =y, Tn v i
i j nijaj air Vs j ijCj i

which we can then rewrite in matrix notation as

(’B - rI)a = I'Bec .
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So we need to show that FBC is in the range of [B - rI . To do
this we will consider the corollary to Theorem 1.3 in Moore's Elements

of Linear Algebra and Matrix Theory, which tells us that the system

Ara = ['BC 1is solvable if and only if the ranks of Ar and its augmen-
ted matrix are equal. Since it is assumed that rank Ar equals n - 1,
we need to show that the rank of its augmented matrix, which is given

below, is also n - 1

pes - ~ o 1
1 Y1™12 Rt Y1Mn Yl‘? ity
Y221 0 ¥2™2n Yy §:“bjcj
[Ag s fac] #3 j : (19)
L'Ynﬂnl Ya™n2 % Ya"an™* Vo ? 11.2_jcj .

We then consider )\ the non-zero left eigenvector of [B, which we

know exists. We can assume without loss of generality that the first

component of A does not equal zero, 11 2 0. Then in (19), if we

take Xi times the if® row and add it o X times the first row,

1
we will have a new matrix which has the same rank as the augmented

matrix. But since A 1is the left eigenvector the new vector

A[Ar: I:'BC] is

[o 0 0 TNy Do (20)

£k i1°3 ]'
J
Since the rank of the augmented matrix is at least as large as the rank

of the original matrix, we only need show that the rank of the augmented

matrix is not n . So from (20) we only need to show that
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Zﬂi\/i L

Lol
L ; 1373

Now if hici =0 i, we have the following lemma.

Lemma 3.3. If the rank Ar = n -1, and kici ) AP R DR

then the rank of the augmented matrix is n - 1

Proof. From the above discussion we know that we only need to show that

B = % TRe =
",xiyizw”cj A [Bc =0
i ;|
: - ¢ -1
but since T exjists and K = r[" ¢
s ~ -1 Y Y3
= MBC =t AT ¢c=roA, —C,=r2mnC, — ,
31 Pl % § o

but Aici = I g e REBC = 0, hence from (20) we have that the

rank of the augmented matrix is n - 1

We will now assume that there is a value i, for which A, Ci % 0,

‘0 "o
and we will assume without loss of generality that io =1l . We will
then multiply the jth column of Ar by Cj and add it to the first

th

column times C1 for j=1,2,...,n . Then we will multiply the i
row of the resulting matrix by ki and add it to the first row times kl
for i = 1,2,...,n . The resulting matrix Rr then has rank n - 1 .

Hence







CATEC - Aer  [A(TB-rD)], .
E(FB'II)Cjz YoMyo™F
P ;
r
[(r‘B-rI)c]n Y002
L

(where

ol
0

[s]i is the ith component of the vector g2].
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B

anin
(21)

: o (W 1

n an

Note that for

each term in the first row and in the first column is equal to

O . Since rank Rr = n -1 then letting ﬁr be the submatrix ob-

0

tained from Rr by deleting the first row and column, we have

Y2M92™ %0 YaTa3
Y3M32 ¥a™g "0
rank ﬁ = rank
r
0
Yn"n2 Ya a3 spbif
hence det ﬁr # 0. If we let
0
ey By
P = (pij)an where B o
ij
and
Gi; Y4
o= (qi')an where
J q. ; = O
1]

we can then prove the following lemma.

-
Yzﬁén
Y3ﬂ3n

= 1) (22)
Yhﬂnn-rod

T e
e

R T RS
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Lemma 3.4. If ro is a double root and if rank Rr = n-1 and if
0

A and c , the eigenvectors associated with rys satisfy 1, # 0 and

1 # 0 then rank ﬁr = n-=-1 and A[Bc - Acr which equals

0
APBc e Acr + AQBc 1is a perfect square and its double root is

- = [AQBc
¥ APBc

Proof. From above we know that det ﬁro 7 0 and that Rro is an

(n=1) X (n-1) matrix, hence its rank must be n - 1 . Next we wish

to consider é&'det Rr . The derivative of the determinant of the matrix
Rr is the sum of the determinants of n matrices, each the same as Rr
except that in the first, the elements of the first row have been re-
placed by their derivatives with respect tc r , in the second the ele-
ments of the second row have been replaced by their derivatives with
respect to r , etc. Hence

n
35 det R_ i§1 det R

Where Rﬁi) is the same as Rr except that the elements of the ith

row have been replaced by their derivatives. Note that for i> 1 ,

det Rii) can be evaluated by expanding by the first row. But the
Cdet Rﬁi)]r=r = 0 because each element of the first row equals zero

0
for r = ro . Hence

Fg- det R ] = det R(l) o .
dr 32 o r =t
0 0
To evaluate [det Rﬁl)]r = . we will expand by the first column.

0
Then for every i greater than 1 ,
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[vg Zmey - c rlr::'ro
J
Hence
(1)] B ~
[dEt Rr r=r0 dr (E Z 7 J'lel j %ciﬁir r=r0 \_det Rr r=r0:|°

Hence we have that

4 - L % 2
[dr det Rr] [dr@z ﬁijvilicj & cikir)] 5
r=r0 i] j e
Next note that det Rr is an Znth degree polynomial with a double root

at ro we know that

det Rr A ro)zg(r)

= ﬁ% det R_ = 2(r - ro(g(r) . (= ro)zg'(r)

“*(}L-det R } =0 .
dr ;
r'ro

But then, since [det ﬁr]ra # 0 , we then have that

o
I: (Zz-rr Yi cj-Ecikir)} .0,
i i ey,
This together with the fact that
(2w le. = e 1) = 0
Ly ey ixir,ro
imply that
2w, .-chr, (23)
i i3t 7
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is a perfect square and since
2
F=22P¥ q (24)
we can write (23) as
ABc - ric = APBc r? - Aer + AQBc , (25)

hence
r = AQBc
APBc :
We are now in the position to show that the conclusion of Lemma 3.3

holds even when lici 20 wi,

Lemma 3.5. If T, is a double root of det Ar s with )X and ¢ as
its corresponding eigenvectors, where rank Ar = n -1 and there is

0

a value i, for which A € # 0 , then the rank of the augmented

0 1o
matrix, (19), is n - 1.

Proof. Without loss of generality we can assume iy = 1 . Then as in

the proof of Lemma 3.3 we only need to show that XFBc =0 .

A'Bc = A {Q - rzP)Bc = AQBc - rzlPBc (26)

but from Lemma 3.4 we know that

- [AOBec 2 _ ACBe
3 APBc g APBc

so (26) becomes

AQBc - %%%E « APBc ® AQBc = AQBec = 0 ,

hence the rank of the augmented matrix is n - 1 .
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Lemma 3.6. If T is a double root of det Ar » where rank Ar = n~-1,
0

then the system Ar o™ FBc is solvable.
0

Proof. From Lemmas 3.3 and 3.5, we know that the rank of the augmented
matrix is n - 1, hence from the corollary to Theorem 1.3 in Moore's
text, we know that the above system is solvable. We then have the

following theorem.

Theorem 3.7. If det B# O and r, 1is a double root of det A_, where

rank Ar = n - 1, then the general solution to the probability of absorp-
0

tion problem is

k k k
£(i,k) = (cn()k + @ )rn +2 ¢, (L)r,"  +2 Im(c, (i)r. ™)
o 170 e vt o A

; k
+;Eg Re(qﬁ(l)ré o

where E, F, and G are as defined before Theorem 3.1 .

It should be noted that when P = % , =1 1is a double root.
Theorem 3.8. If P ='% then ry = 1 1is a double root and rank Ar= n-1.

Proof, 1If s = 1 1is a root trivially, associated with it are A = m

1
gnd o= J. ( .
1

Hence
APBc ® Pl =

N fi—

and

and

A ® nl = 1
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sO

nPBJ r2 - nJr + nQBJ = % r2 « p P % = % (r-l)2 i

Hence, it is a perfect square. So r - 1 1is a double root.
For a root, r, of multiplicity 4 > 2 , if such a root exists,
it is conjectured that if rank Ar = n -1 then the following are solu-

tions to the probability of absorption problem:
: - k
fl(l,k) = c(i)r .
) k
£,(1,k) = (c(k + a@)r

£, (1,00 = G2 + (i + a()) £,

L]

£,(1,k) = (EL-L?l - 1¢ 9 INEY. o TR wi)rk .

Section 3.2.

In this section we will restrict our attention to the case where
the control process only has two states. We will then study the behav~
ior of det Ar as a function of r and attempt to make some state-
ments about the values of r for which det Ar = 0. We will assume
throughout this section that det B # O . The reason for this restric-
tion is, that for a two-state control process, det B = 0 implies that

the chain {Y } consists of i.i.d. random variables and that {z 1 is

an ordinary random walk in the average environment.
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From equation 11, section 3.1, we see that det A_ = det[[B - rI]

or in this case

T . 2
(x“py + qpdmyy - ¢ (x"pyay)m,
det A =
i

(rzp + q,)m (rzp + a)m.. = 1
5 = 997%9q 9 ~ 9249

2 2
- - -

s B e (x"py + qp)m,

2 2
A s ok + -

2 W R (x7p, ¥ qy)my, -

We then note that

2 2 2
-+ - = - - - = - - -
r'p, qq ~TT TP 1 Py - T pi(r 1) (r-1)

= p;, 1) (x-1) - (x-1) = (x-L(p;r - q)
so (27) above becomes
p.r - (rzp + q,.)m
T ] LS
(x=1)
P.T = (rzp aade 0 L SRS
2 12 2 37729

From this and from Section 3.1 we see that r = 1 is a solution. To

locate the other zeros we will evaluate

2
- -
o ol (xpy + qy)m,

det Ar - (28)

2
X 4 A
PoT = qy (x%py * aplmy, -
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9 9
for the following set of values; [-1,0,—l- 2 1,4 1.

] 3
P, P, p
For r = =1, (28) becomes
By * 4y T2 i 12
-p. = - +
By S Pe L ! R
(29)
= . -1+ = - -1+ 1 - - +
Mo 2 ¥ Eem, - 1L -m, Yl i e 0,
Hence fdet A ] < 0.
For=-1
For r =0 (28) becomes
~gy 91™12
= - + "
¢ Uedol "My * Typd
9 93M92
e q1Q2E'TT22 + 1 - ﬂll] - qlq2:]‘ I 711 < 22: . (30)

If we then note that

LAV ko= iy
det B = = MMy - (1 - ﬂll)(l - ﬂéz)
L=m, m,
= - + + - = + -
MiMg =~ L7 Myt omyy - mymy = myy Maa = 4

We can rewrite (30) as

[det Ar?r=0 = =-(det B)qlq2 . (31)
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q
Next for r = ;l (28) becomes
1
0 9’
Py 1 Ot
9 q,2 q
—_— 1 -
Py * 2. " Y =3 Py T Q) MWy " 3
1 Py 1

. 9 q12+
p p2 p1 99 p1 9 "12

e 2
L 7(P1dy = Pyay)(qy~ + qyppIm, ’
1

then we note that p, g, = P,q; = Py(1 = p,) - P, = ) ® By - PP,

1 . . 2 48 g iy ha
Pp = PpPy " Py = pp and q) * q4P) " qp * q;(1 = qy) = q; * qq
r q12 = q, » SO we have that
det A i
(det A ] 4y 2 (py = PImy, - (32)
Bl p1
P1
95
For r = —= , (28) becomes
Py
q q :
[ 2 2
- - - +
Py P, 9 p Pyl T Mg
Py
2
0 . 92
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1 2
= — - + -
o 2 (Pyay = Ppap) | (a,” * a,p))m,, %]
2

which by arguments similar to the above we get

[det A J - = L = 1] . (33)
ol 2 >"22
r=—4 P,
2

£y 591 M2
Py = 9 Ty = 1
"G 22
iy
Multiplying the above by — =1 we get
1 o 1
; s g Talag Ty
QGT : i
Py = 9 M2
. T2 s
1
= L == (p - Q. - 1)
4 P, = q m, -1 1 "
2 % 22
So [det A ] o "L'(P = qliea. = L) U (34)
=1 ﬂl q 22

We will assume without loss of generality that Py > P, throughout this
section. Then from (28) we observe that the leading coefficient of the

3rd degree polynomial det Kr is

- = = - = .
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We will then summarize the above results in the following table.

Table 3.1
det g
r
1 g 1
P> 2 P 2 Eoig 2
det B0 det B<O det B0 det B<O det B0 det B<0
rd - - + 3 + R +
r= -1 - - - - - -
=0 - * - P - +
9
r = — - - - - kS =
P
r = ] - - 0 0 P 4
q2
) - - - - - -
Py
rT @ = - e - + -

q
The reason for putting 1 before 2 in the above is because for

1 1 42 2 1
P== and P<«<=, 1l <= and in some cases for P> = this is also
2 2 p2 2

true. From the above we can then see that there are always three real
and distinct roots for det Kr =0

We will now consider the one barrier problem, say a barrier at
(+,0) with (Yn’zn) started at (i,3) where 2z > 0, which requires
P> 1 to be nontrivial. From the above table we see that there are

2

two non-zero roots, rl and r2 such that r1 < r2

are less than 1 . If we let r* = max(frl!,lrzl), then for large val-

and their magnitudes

ues of k , £(i,k) will behave like c*(i) r*k . Hence since
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k
£lk) = c(ﬁ) is the probability of absorption for the average environ-

ment, a natural point of interest is the relationship of r* to ? b

Now consider the boundary conditions for the one barrier problem:
£({1,0) = 1 "and lim f(i,k) =0 for i=1,2 . We then note that
£(1,kF]l) < f(i,k)k ?or every k> 0 . The fact that this inequality
must hold is shown below. If we assume that f(i,k+l) = f(i,k) for
some k=a and i1 =1, and if we then set up a barrier at (-,a) .

We have that £(l,arl) = £(1,a) = 1 and £(2,2) must also be 1 since

it is on the boundary. We then have that

2 2
= + 2 <
£(1,at1) = p, X my £U,at2) qig 1y £Gsa)
=1 =1
_ 2
But £(l,atl) = £(1,a) = £(2,a) = 1, hence 1= p, anij £(j,at2)
2 =1
+ q. 2 m ,(1) which implies that 1=1p 2 =, £(j,at2) + q, . So
& ij ij=l ij i

2
2 U f(j,ar2) must equal 1 . Then since £(j,k) € 1 for all j

=1 1

and k , £(},ar2) = 1 for § ™= 1,2 . Then since £(1,a+1l)

= £(1,a+t2) = 1, we can show as above that f(i,a*3) =1 for 1= 1,2 .

Hence f£f(i,k) = 1 for all (i,k) . But then limit £(i,k) # 0, so
ke

f(i,k*1l) < f(i,k) for all i and k . Hence r* must be positive and

must then be equal to L, *

So from Table 1 we know that to compare r* and ﬁ » we only need

to determine sgn(det 4g) . We will first take (27) and multiply by

™ s

) P

=1 to get

1 1

Y

0 1
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2
- + - + §
pr =g M (rppytapdm, * my (7P rqydmy, - myr

- 2, + "
Prr=q, (€%p) + qylmy, - 1

Plugging r = ? into the above and observing that the (1,1) compo-

nent is zero, the above becomes

2 2

P,q P,q Psq
2 1 2 q
( P qz)(;1"12( 2 ql) TaTas ( 2 qz) "2 p

P
(35)

2 2 2 2
- + + + - g
- 33-(§2p pZQ)[%l“l2(plq NPT mymap (Bya” * qpP) ﬁqu}
P
We then note that

- = = - - = - - - = - )
q4,P = P,q (1 pz)p p2(1 p) *p P,P-P,*P,P = P-P,

and that
G n1v12'+ Ty o0
hence
m,qP = wlwlz(p-pz) * ﬂéﬂzz(p-Pz)
and that

2 2 2 2 2 .3 2 2
+ = - + (1- = n . - +p“- = p = i
P;q Tq P pi(l 2ptp ) + (1 pi)p P, ZPPi P, P +p -p,P P, pri P

So (35) becomes

1 240 -

p3(p pz)[”lnlz(Pl prl p -ptp ) néﬂzz(Pz ZPPZ?p ptp )J- (36)
Then note that

2
Py - 2ppi * 20 = p= pi(l-2p) = p{l=2p) = (Pi'P)(l'ZP)

so (36) becomes







P

We then note that

P{=P = Py = mP; = MP, = m,(P;-P,)
and

P,"P = P, = mP) = mPy = m(P,-Py) -
So (37) becomes

l -
Lp-p,) (1-20)m;m, [, (0, -P,) * 7,y (B,P)]

1
PB(P—pz)(l'ZP)ﬂlﬂﬁ(pz-pl)(-”12+“22)

1
3(9‘?2)(1'29)1'1'11?2(132 pl) det B .

Then we know that

P =P, 0O, 1 ~-2p< 0, and P, = P} < 0.

—%r-(p-pz)(l-Zp)[ﬂlﬂlz(pl-p) + nznéz(pz-p)} :

46

(37)

(38)

So the sign of (38) is the same as sign det B , hence from Table 3.1

we know that

-§>r if det B < O

-g'-cr if det B> 0

and

i
o

=y 4if det B
P 2

So we have the following theorem.
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Theorem 3.9. If [Yn} is a two-state recurrent Markov Chain such that
P> l‘, then there are four distinct real values of r for the proba-
bility of absorption problem, -1 < r,<r, < 1 = r, and ]ral » 1.
Moreover, r2 > ’rll, so that in the one barrier problem the solution
is of the form f£f(i,k) = cl(i)rlk ;- cz(i)rzk and for large k is

asymptotically £(i,k) ~ cz(i)r , and

2

r>§ if det B> 0 ,

r. =% if det B=0 ,

2P
g
r2<p if det B< O .

Section 3.3.

In this section we will discuss the problem of the expected dura-
tion of the walk given that the probability of absorption is 1 . 1In the
case where we have two barriers, and we start the walk between the two
barriers, the assumption that Py # 1 and 9, # 1 for any i , assures
us that the probability of absorption is 1 . In the case where we only
have a barrier on the left at (-,0), if »p <-§ then the probability of
absorption is 1 .

We will first consider the case where p # %’. This will give solu-
tions for both the one and two barrier problems. Then for the two bar=-
rier problem, we will need to consider the case where p = 3 , separately.

2

The difference equation which we need to solve it then as follows:

D(i,k) = p, Z ﬂijD(J,Hl) gy Zni D(j,k=-1) + 1 (39)

; i
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Note that the difference equation associated with the probability of
absorption problem is the homogeneous form of the above equation.
Since we have already solved the homogeneous problem, we only need to
find a particular solution to (39). Then the generalized solution to
(39) is the particular solution plus the general solution to the homo-
geneous equation.

As in the previous section we will solve by a constructive method.

We will try the solution
D(i,k) = cik T Wi
Plugging into (39) we get

+ = r - Z, - +
ok + w, piZnijwj(Hl)wj] qy & ™ slo, (k l)"‘wj] 1

j ]
(40)
N s L ) + (p. = + B +
ok + w, k%’ﬂijnj (p, qi)z‘nijcj My v 1
A 3 3
If we let k = 0, then we get

el /S + 2 gnt I

L (Pi qi) 2 Moy e My (41)

] N

And subtracting (41) from (40) we see that

ok = k Lj") M0y
or
G T

Then the stochastic nature of B , immediately yields o4 =& 4 for

every 1 , where o 1is a non-zero constant. Hence (41) becomes
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= - +v -
Wy g(Pi qi) g'ﬁijwj 1
- = g + 3

= ?ﬁijwj w, = olqy p,) + 1
LA 1
1f we let w= '32 gnd, J ™ %
w 1

n
= Bw - w = c(Qq-P)J+J . (42)

If we multiply through by m , the invariant probability distribution,
we get

mw - m =gn(Q - P)I+nl , (43)
but

m=mn and n(a - P) =q-p

so (43) becomes

0% glgsp)*. 1

and if p # % , which we will assume holds unless specified otherwise,

then g = B 7 0, Hence ¢ = 5 3 S « Then from elementary matrix

theory, we know that there is a vector w , which satisfies

|
P - q

(B -~ I)w = (g~ P)J +J (44)

if and only if |
LP = q

satisfy this condition, hence there is an w to satisfy (44). So we

(g - B)J + J] =0, But o was picked so as to

have the following theorem.
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Theorem 3.10. If p # % , then a particular solution for (20), the

expected duration of the walk is D(i,k) = . E - + W where the wi's
satisf
¥ . q;°P; 2(p-p, )
L = + T eem——
Mgty =% T Tgep ! 1-2p,

The general solution is

D(i,k) = ¥ W, + (i, E)

qg =P
where f£(i,k) 1is the general solution to the homogeneous cos, which
was given in Section 3.1. Note that the form of f(i,k) depends on
the nature of the roots of det Ar .
We now wish to consider the special case where p = i . From

Theorem 3.8 we know that ro = 1 1is a double root. We will now show

that when p = % s then a particular solution to (39) is

2

D(i,k) = ok + 20p.k + B, . (45)

Plugging into (39) we get

2

ok + 200,k + 3, = Py Z:nij[c(k+1)2 " Zqu(k+l) + 31]

. 3

ag Dy foGe1)? + 200 Q1) + 8,14 1 (46)

2
- + - + + - + + )
Since true for all k , letting k = 0 we get
=5+ - - 1,
B; ot 20(p; - q,) ?ﬂij“ij ?ﬂijsj 1 47)

Similarly we have that
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J
or
= - +
=3 Zﬂij”‘j-“i=qi-Pi W £ ™ L2590
or in matrix notation
(B - I)u™ (Q - PN (49)

but note then that this is merely equation (19) in Section 3.1 . (i.e.,
[=I,Bc=J and (Q-P2)=T7) .
So we know that there is a | which satisfies the above. There-

fore, if we can show that there are values for the 8. 's, which satisfy

i
(47), then we will have shown that (45) is a particular solution to the

expected duration of the walk.

We will then rewrite (47) as

?ni,jsj > Ei o 20‘(qi = pi) = (0' + 1)’ i - 1!2""!n (50)

or in matrix notation
(B- D)= 20(q=~B)By -~ o+ 123 . (51)
Again we only need show that
M20(Q - P)By - @+ 1)J] =0
this is equivalent to

2om(Q - P)By - (c*+ 1) =0

which is equivalent to
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-1 if 2m(Q-P)By = O

o 4 . (52)
1
| 2 (q-P)By-1

if 2m(Q=P)By # O

Then, since m, Q, P, B, and |, are known to us, we can define ¢
to assure that values of Bi's exist to satisfy (47). So we have

the following theorem.

Theorem 3.11. If = % » then a particular solution to the mean time

to absorption problem for the two barrier problem is

D(L,K) = ok® + 2ou.k + 8,

where g , ™ and Bi are as above.
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CHAPTER IV

NUMERICAL EXAMPLES

In this chapter we will consider numerical examples of RWRE's .
First we will consider four examples in which 3 and T will remain
fixed but B will vary. We will calculate the probability of absorp-
tion for the two barrier problem in all four examples and compare them
to one another as well as to the probability of absorption for the clas-
sical random walk where p = m - -[; .

The second set of examples will be where 3 and B remain fixed

but we look at the two barrier problem for two different sets of barriers:

{¢:+,0), (+,15)} and {(-,0), (-,25)} .

In these examples p will equal % , and we will solve the probability
of absorption problem as well as the expected duration of the walk for
both sets of barriers. We will compare these results to the classical
case.

The third example will be of a three state control process in which
we get complex roots. For this example we will solve the one barrier
probability of absorption problem.

The next example will be of a five state control process in which
we will solve the two barrier probability of absorption problem.

The last example will be of a RWRE in which the random walk is a

generalized random walk and can take one or two steps to the left or
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= P(zq = 2[(Y,2) = (1,0))

Py T = R(Z ., =1 ,Z2) = (1,0))

q; P(Z 4, = -1 (¥ ,2) = (1,0))

W = pz,, = -2l ,2)= 1,00,

i . -
where pz( ), pl(l), ql(l), and q,

Wy @)y

(1) are all greater than zero for

(o)

5 =3 for L= .3

i= 1,2 , and P, + Py 1

Before proceeding with the examples a few comments need to be made
about the method used to obtain the roots ) and their corresponding
vectors Cy - One method that could be used is to treat det Ar as a
function of r and then to use Horner's method or a combination of
Newton's method with a bisection method to track down the zeros. Another
method would be to expand det Ar into a polynomial of degree 2n and
then solve by a Newton Raphson bisection method. It should be noted that
due to the magnitude of the coefficients that an attempt to track down
the zeros by use of Newton's method alone will not always converge.

A much more convenient method is to note that we can rewrite

2
(’'B ~-~1I)c=0 as r PBc - rIc + QBe = 0 and then we can write a com-

panion matrix for the above in the form

-1 PB c -QB 0 c
r - ' (53)
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We then observe that if B-1 exists, (fie. det B # 0) then,

-1 pg]" !
exists and we can rewrite the above as
I 0 ‘
25 1t T g
r\ -QB (o]
r =
re S .
TR 0 | L. 0 id

Then we will solve the above by using Matlab, a computer package

developed by Cleve Moler. If B is singular then there are other

numerical methods which can be used bo solve (53). Since all the
examples in this chapter are such that det B # 0 , we have used
Matlab to find the solutions to (53).

In the first four examples 3 and ™ will be fixed as below,

& 1 1
P = [eSsek] S [E ; Eﬂ -
Hence 63 = .65 = p . We will then solve the probability of absorption

problem for the following transition matrices.

=

B1 -
o1
+49

B3 v
51

The following table

four examples.

o1 +51
BZ
.9 49
«S51 .1
and B4 =
49 9

then gives the values of

49

.51

r for each of the
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Table 4.1
Roots
Example Ey Ty Tq i
1 .096004 0608 .8020821583 1 2.16441378
2 .0033939113 .5423998672 1 90.53753955
3 - .0034638897 .5345963563 1 -90.00335469
4 -.2384528295 4263696772 1 -1.63930574

It is of interest to note that the stationary solution is f”’-538461539.

In fact, if det B= 0 then we would have r1 =0 smd T ™ g 3

2
Tables 4.2, 4.3, 4.4, and 4.5 then give the solutions for the
probability of absorption problem when we have barriers at (-,0) and
(v, 15)
It should be noted for example one, that since det B1‘§> 0,
f (k) the solution for the classical random walk should be smaller than
£(l,k) and £(2,k) for sufficiently large k . In Table 4.2 we see
that this is true for k> 3 . For BZ’ which is very close to zero,
we see in Table 4.3 that £f(l,k) < f(k) <« £(2,k) as would be expected.
In Table 4.4 for B

3

< f(k) < £(2,k). But for example four, since Det Ba<<0, we have that

f(k) is larger than £f(1l,k) and £(2,k) for k> 2 .

s which again is close to zero, we see that £f(1l,k)
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In the next set of examples we will let

LR B
7 7 7
: -
R and .
1 6 4
L 7 i . 7.3
We then have that the roots are r, = % » T, = TR r3 =1, and
r4 - E . We must then find a solution to
(B =~1)a" (o= P)Bc
0
It is easy to show that ¢ = will satisfy the above. Then
c, (1)

using Matlab we solve the probability of absorption problem and mean
time to absorption problem with barrierg at (*,0) and (+,15). These
results are given in Table 4.6. Tables 4.7 and 4.8 contain the results
for barriers at (+,0) and (+,25) . In Tables 4.6 and 4.8 it should
be noted that since det B » 0O the mean to absorption is greater for

the classical random walk than for the RWRE.
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Table 4.7
k £(1,k) f(2,k) £(k)
0 1 1 1
1 . 96943 . 94566 .96
2 . 93343 . 90015 .92
3 .89526 .85817 .88
- .85622 .81761 .84
5 .81683 .77761 .80
6 .77730 .73784 .76
7 .73771 .69815 .72
8 .69810 .65851 .68
9 .65849 .61887 .64
10 .61887 57925 .60
11 .57924 .53962 .56
12 .53962 .50000 52
13 .50000 46038 48
14 -46038 42076 b4
15 42075 .38113 .40
16 .38113 .34151 .36
17 .34149 .30190 .32
18 .30185 .26229 .28
19 .26216 .22270 .24
20 .22239 . 18317 .20
21 .18239 - 14378 .16
22 . 14183 .10474 12
23 .09985 .06657 .08
24 .05434 .03057 .04
25 0 0 0
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Iable 4.8
k D(1,k) D(2,k) D(k)
0 0 0 0
1 17.56 29.30 24
2 36.30 Sl 12 46
3 54.52 70.31 66
4 71.43 86.28 84
5 86.72 100.10 100
6 100.28 111.99 114
7 112.06 122.00 126
8 122.03 130.18 136
9 130.19 136.54 144
10 136.54 141.08 150
11 141.08 143.80 154
12 143.80 144.71 156
13 144.71 143.80 156
14 143.80 141.08 154
15 141,08 136.54 150
16 136.54 130.19 144
17 130.18 122.03 136
18 122.00 112.06 126
19 111.99 100.28 114
20 100.10 86.72 100
21 86.28 71.43 84
22 70.31 54 .52 66
23 51.72 36.30 46
24 29.30 17.50 24
25 0 0 0
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In the next example we let

5] 2 ST i
bl
). M .6 | V3 and P = 3
| .4 5 bt or s

The roots are then

B + =
ry . 1425 »12381 r4 e T
£, = =-1625 = J1238C r = -4.3431 + 2.1148i
r3 = ,8018 , r6 = «4.3431 - 2.11481% .

We then solve the one barrier probability of absorption problem and find

that the solutions are:

£(1,k) = Re(.0588 rlk) + Im(.0269 rzk) + .9731 er i
_ K 0. R g
£(2,k) = Re((-.0498 - .07224)r,") + Im((-.023 - .0331)r,") + 1.095 r,
K . ! K
£(3,k) = Re((-.025 + .0451)r ) + Im((-.012 + .0205i)r, ) + .96 r,° .

Numerical results are given in Table 4.9. It should be noted from the

table that for k> 8, f(k) is greater than f(i,k), i = 1,2,3 .
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Table 4.9

k £(1,k) £(2,k) £(3,k) £ (k)

0 1 1 1 1

1 .7837 .8813 .7698 .8112

2 .6237 .7065 .6218 .6580

3 .5201 .5640 4984 .5338

4 4022 .4528 .3995 4330

5 .3225 .3629 .3204 .3512

6 .2586 .2910 .2569 .2849

7 .2074 .2333 .2060 .2311

8 .1663 .1871 .1652 .1875

9 .1333 .1500 .1324 .1521

10 .1069 .1203 .1062 .1234

11 .0857 .0965 .0852 .1001

12 . 0687 .0773 . 0683 .0812

13 .0551 .0620 . 0549 .0658

14 . 0442 . 0497 0439 .0534

15 .0354 .0399 .0352 .0433
20 L0117 .0132 L0117 .0152
25 .0039 . 0044 .0039 .0053
30 .0013 .0015 .0013 .0019
35 4.28x107%  4.81x107%  4.25x10°%  6.59x107%
40 1.42%x 1074 1.59 x10™° 1.41 x10” 2.32 x10™%
45 4.70 x10™° 5.29 x107° 4.67% 10 8.13% 10°°
50 1.56 x 10" 1.75 x10°° 1.55 % 10™° 2.86% 1077
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In the next example we let

T4 .2 .1 . 2] g
.2 .6 o1 .05 .05 .8
B =|.1 1 .5 .2 A fasg T e
.1 05 R gzt 45 A
2 7 .2 .45 ] (3 | ;

The roots are then

rl = ,02383 , r6 5 A

r, = .11066 , r, = 2.65647 ,
T, = .14418 , rg = 3.9035 ,
r4 = ,20900 , T, = 7.3083. .,
re = .74335 , Yo" 14.4784 .

It should be noted, that five of the roots have magnitude less than 1 ,

as would be required if we wanted to solve the one barrier problem.

Table 4.10 then gives the numerical results for the two barrier problem

with barriers at (+*,0) and (-,15) .
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Table &.10

K £(1,k) £(2,k) £(3,k) £(4,k) £(5,k) £ (k)
0 1 1 1 1 1 1

1 .5158 .5171 .7118 .8284 .8689 .6659
2 .3695 .3448 .5141 .6287 6548 4432
3 .2710 2484 .3767 4671 4862 2947
4 .1988 .1814 .2768 3449 .3593 .1957
5 1452 .1321 .2031 .2539 .2646 .1297
6 .1053 .0956 . 1484 .1861 1941 0857
7 .0757 . 0685 .1077 .1358 1417 . 0564
8 ,0537 . 0484 .0775 .0984 .1027 .0368
9 .0374 .0334 ,0550 0705 .0738 .0238
10 .0252 .0223 .0383 . 0499 .0523 .0151
11 .0161 .0140 . 0259 0345 .0363 .0093
12 .0094 .0080 .0165 .0230 .0243 0054
13 . 0044 .0037 .0095 0142 .0154 .0029
1 | 7.95% 107  .oen .0040 .0072 .0082 .0011
15 0 0 0 0 0 0

random environment.

The last numerical example is of a generalized random walk in a

.8

If we then use the notation,

We will let
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25 O T4 A 25 0] A

QZ »

we find that the values of r and ¢ which will solve the difference
equation associated with the probability of absorption problem must

also satisfy the following:

r&P Be + r3P

2
9 1 Be = rlc rQch Qch 0 .

We can then form a companion matrix for the above and solve as before.

We then find that

£, = w1966 , i

r, B L = =3,005 ,
r, = «1910 , = 4.301 ,

T, = 7280 , = =5:515 .

To solve the two barrier problem, we must

are then:

are then:

£(2,21), = 0, £(1,22) = 0, and £(2,22) = @ .

in eight unknowns.

('so)s ('sl): ('321): and (+,22).

set up four barriers.

These

The boundary conditions

£C1,0)°% 1, £42,00 = 1, £(1,1) = 1, £2,0) = 1, £41,21) = O,

Sc we have eight equations

The numerical results are given in Table 4.11.







Table 4.11
k £(1,k) £(2,k)
0 1 1
1 1 1
2 .6371 .7775
3 4741 .5755
4 .3413 4204
5 .2485 .3060
A .1804 .2224
7 .1309 .1616
8 .0949 1172
9 .0687 . 0849

10 . 0496 L0614

11 .0357 . 0442

12 .0256 .0318

13 .0182 .0228

14 .0128 .0162

15 .0089 .0113
16 .0061 .0078

17 . 0040 .0053
18 .0025 . 0034

19 .0014 .0021

20 .0007 .0011

21 0 0

22 0 0
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