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Abstract Abstract 
Lower-limb intersegmental coordination is a complex component of human walking. Aging may result in 
impairments of motor control and coordination contributing to the decline in mobility inducing loss of 
autonomy. Investigating intersegmental coordination could therefore provide insights into age-related 
changes in neuromuscular control of gait. However, it is unknown whether the age-related declines in gait 
performance relates to intersegmental coordination. The aim of this study was to evaluate the impact of 
aging on the coordination of lower limb kinematics and kinetics during walking at a conformable speed. 
We then assessed the body kinematics and kinetics from gait analyses of 84 volunteers from 25 to 85 
years old when walking was performed at their self-selected speeds. Principal Component Analysis (PCA) 
was used to assess lower-limb intersegmental coordination and to evaluate the planar covariation of the 
Shank-Thigh and Foot-Shank segments. Ankle and knee stiffness were also estimated. Age-related 
effects on planar covariation parameters was evaluated using multiple linear regressions (i.e., without a 
priori age group determination) adjusted to normalized self-selected gait velocity. Colinearity between 
parameters was assessed using a variation inflation factor (VIF) and those with a VIF < 5 were entered in 
the analysis. Normalized gait velocity significantly decreased with aging (r = −0.24; P = 0.028). Planar 
covariation of inter-segmental coordination was consistent across age (99.3 ± 0.24% of explained 
variance of PCA). Significant relationships were found between age and intersegmental foot-shank 
coordination, range of motion of the ankle, maximal power of the knee, and the ankle. Lower-limb 
coordination was modified with age, particularly the coordination between foot, and shank. Such 
modifications may influence the ankle motion and thus, ankle power. This observation may explain the 
decrease in the ankle plantar flexor strength mainly reported in the literature. We therefore hypothesize 
that this modification of coordination constitutes a neuromuscular adaptation of gait control 
accompanying a loss of ankle strength and amplitude by increasing the knee power in order to maintain 
gait efficiency. We propose that foot-shank coordination might represent a valid outcome measure to 
estimate the efficacy of rehabilitative strategies and to evaluate their efficiency in restoring lower-limb 
synergies during walking. 
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Lower-limb intersegmental coordination is a complex component of human walking.

Aging may result in impairments of motor control and coordination contributing to the

decline in mobility inducing loss of autonomy. Investigating intersegmental coordination

could therefore provide insights into age-related changes in neuromuscular control of

gait. However, it is unknown whether the age-related declines in gait performance

relates to intersegmental coordination. The aim of this study was to evaluate the

impact of aging on the coordination of lower limb kinematics and kinetics during

walking at a conformable speed. We then assessed the body kinematics and kinetics

from gait analyses of 84 volunteers from 25 to 85 years old when walking was

performed at their self-selected speeds. Principal Component Analysis (PCA) was used

to assess lower-limb intersegmental coordination and to evaluate the planar covariation

of the Shank-Thigh and Foot-Shank segments. Ankle and knee stiffness were also

estimated. Age-related effects on planar covariation parameters was evaluated using

multiple linear regressions (i.e., without a priori age group determination) adjusted to

normalized self-selected gait velocity. Colinearity between parameters was assessed

using a variation inflation factor (VIF) and those with a VIF < 5 were entered in

the analysis. Normalized gait velocity significantly decreased with aging (r = −0.24;

P = 0.028). Planar covariation of inter-segmental coordination was consistent across

age (99.3 ± 0.24% of explained variance of PCA). Significant relationships were

found between age and intersegmental foot-shank coordination, range of motion

of the ankle, maximal power of the knee, and the ankle. Lower-limb coordination

was modified with age, particularly the coordination between foot, and shank. Such

modifications may influence the ankle motion and thus, ankle power. This observation

may explain the decrease in the ankle plantar flexor strength mainly reported in the

literature. We therefore hypothesize that this modification of coordination constitutes

a neuromuscular adaptation of gait control accompanying a loss of ankle strength

and amplitude by increasing the knee power in order to maintain gait efficiency.
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We propose that foot-shank coordination might represent a valid outcome measure to

estimate the efficacy of rehabilitative strategies and to evaluate their efficiency in restoring

lower-limb synergies during walking.

Keywords: gait analysis, aging, panar covariation, biomechanics, locomotor control

INTRODUCTION

Human walking is a common task with efficient motor
control. Synergic muscle activation for the control of limb
movements requires the integration of inputs from the central
nervous system and feedback from proprioceptive sensors in
the muscles, tendons, and limbs. In healthy persons, the
neural command ensures a rhythmic, stable gait with a highly
consistent intersegmental coordination, and overall walking
patterns. This coordination, corresponding to the process of
mastering redundant degrees of freedom of the body into a
controllable system, allows the efficiency of gait by maintaining
dynamic equilibrium, and the lowest energetic cost during
gait (Bernstein, 1967; Lacquaniti et al., 1999). The movement
coordination during gait might therefore reflect neuro-muscular
synergies. While an inability to modulate the intersegmental
coordination may induce gait deviations, it might also provide
insights into the organization and adaptation of gait patterns with
pathology or aging (Winter et al., 1990).

Declining mobility and gait performance is one of the major
functional hallmarks of aging (Boyer et al., 2017). Age-related
differences in gait performance include a decrease in gait speed, a
reduction in step length, and/or an increased cadence (Mcgibbon
and Krebs, 2001; Lewis and Ferris, 2008). These changes are
associated with impaired balance control, a reduction of muscle
strength, and mass as well as an increase of the energy cost
of walking (Sepic et al., 1986; Winter et al., 1990; Judge et al.,
1996; Kerrigan et al., 2000, 2001; Pavol et al., 2002; Cofré et al.,
2011; Frimenko et al., 2015). As a result, the coordination was
impaired with aging and linked to a history of falls in the
past year (Hutin et al., 2011; Chiu and Chou, 2012; Ghanavati
et al., 2014; James et al., 2017; Hafer and Boyer, 2018 Hutin
et al., 2011; Ghanavati et al., 2014. However, these studies
used standard frequency-decomposition methods to evaluate
the intersegmental coordination during walking (i.e., continuous
relative phase and coding vector). While these methods are well
documented, they do not provide a complete overview of the gait
processing of the lower limb intersegmental coordination due to
their analysis of singular parameters. Indeed, it is known that
during humanwalking, the lower-limb coordination is controlled
through a coupling of all the segments (thigh, shank, and foot)
in order to simplify the spatiotemporal control of locomotion
and equilibrium (Borghese et al., 1996; Lacquaniti et al., 2002).
The elevation angles of these segments are consequently related.
When lower-limb segment rotations (temporal changes in the
elevation angles) are plotted one vs. each others, they covary
along a plane and constitute a loop [i.e., covariation plane,
(Ivanenko et al., 2008; Lacquaniti et al., 2012a)]. Principal
component analysis (PCA) was used to analyse that plane and
when applied produced three components. In normal walking,

the first and the second components define the robustness of
the planarity of the loop whereas the third component defines
its orientation. In this context, the properties of the covariation
plane provide insights about how the central nervous system
controls the limbs during walking and therefore might reflect the
adaptation of the neural and neuromuscular systems with aging.
In particular, the work of Lacquaniti and others (for a details see
Ivanenko et al., 2006; Lacquaniti et al., 2012b) postulated that
planar covariation may provide a link between neuromuscular
control and mechanics of gait by matching the control of lower
limb muscle patterns to those of the body’s center of mass
(Bleyenheuft and Detrembleur, 2012). Consequently, this study
aimed to evaluate the impact of aging on the coordination of
lower limb kinematics and kinetics during walking at comfortable
speed using the planar covariation of elevation angles. We
hypothesized that the planar covariation of elevation angles
should be modified throughout the lifespan in order to adapt
the locomotor pattern to the constraints of aging. To this end,
we assessed effects of walking speed and age on the pattern and
variability of lower limb intersegmental coordination in a cohort
of healthy subjects from 25 to 85 years old.

MATERIALS AND METHODS

Participants
Eighty-four volunteers (51 women and 33 men) from 28 to 85
years old were recruited from a previous asymptomatic cohort
(clinical trial registration: NCT02042586) to participate in this
prospective study. All showed no symptomatic musculoskeletal,
neurological, or cardiovascular disease. Exclusion criteria were
significant pain, ankle, hip or foot disorders, chronic back
pain, Alzheimer’s disease, Parkinson’s disease, motor neuron
disorders, non-stabilized diabetes mellitus, cardiac or respiratory
insufficiency, and any inability to understand the procedures. The
study protocol was approved by the local ethics committee (CPP
Est I, Dijon, France). The study was conducted in compliance
with the principles of Good Clinical Practice and the Declaration
of Helsinki, and all patients gave their informed consent.

Task and Procedure
Participants were asked to walk 10 times barefoot while following
a straight-line path, 10 meters in length traced on the floor.
After each walking trial, they were asked to return to the
starting point. They were instructed to adopt a natural and
comfortable gait speed, as if they walked “along the street.”
Lower body kinematics (i.e., movements of pelvis, hips, knees,
and ankles sagittal, frontal, and transverse plane) during walking
were measured using an 8 optoelectronic camera motion capture
system (Vicon MX, Vicon R©, Oxford, UK) sampling at 100Hz.
The marker set used, the Plug-in-Gait marker set (Davis et al.,
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FIGURE 1 | (A) Representation of the 3D recording of locomotion with the marker set, with the extracted markers trajectories (Top), and the recorded ground reaction

forces (Bottom). (B) Details of the joint rotation, joint range of motion, and covariation plane. (C) Details of joint power and moment for computing stiffness.

1991), was composed of 16 reflective markers positioned on
specific anatomical landmarks on the lower limb (see Laroche
et al., 2014 for placement on a representative participant).

Data Analysis
Marker trajectories were recorded by the optoelectronic camera
allowing to reconstruct embedded coordinate systems associated
to each rigid body segment (pelvis, femur, tibia, and foot)
defining then a complete 3-dimensional model of the lower limb.
To access kinetics data (i.e., joint moment and power), ground
reaction forces were also recorded with two force platforms
(AMTI R©, USA) sampled at 1,000Hz (Figure 1A).

Marker trajectories were interpolated with Woltring
polynomial and then filtered with a low pass zero phase
shift Butterworth filter with a respective cut off frequency of
10Hz. Similarly, ground reaction forces were filtered with a low

pass zero phase shift Butterworth filter with a respective cut
off frequency of 50Hz (van den Bogert and de Koning, 1996).
Displacements of the center of mass (CoM), joint kinematics
and kinetics were calculated with the Nexus software (Vicon R©,
Oxford, UK) using inverse dynamic on the Plug-in-Gait model.
The gait events were detected using a method proposed by Zeni
et al. (2008) and expressed by gait cycle. Briefly, this method
defines the heel-strike and the toe-off as the instant where the
foot, respectively, begins to move backward and forward in the
pelvis frame.

We chose the most representative variables of the gait
kinematics, kinetics, and stiffness that could associated with
neuromuscular adaptation during gait (Lacquaniti et al., 2012b;
Herssens et al., 2018). We first computed amplitude of
displacements of CoM in the vertical plane (AmpCoM). We
then extracted the gait speed (v), step width, step length, and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 July 2019 | Volume 7 | Article 173

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Gueugnon et al. Age-Related Lower-Limb Coordination

computed the Froude number Fr = v²/g.L with g as the
acceleration due to gravity and L, the subject’s leg length. This
parameter allows normalizing the velocity across participants
(Saibene and Minetti, 2003). We also computed variablility of
the step length and step width (Herssens et al., 2018). From the
joint kinematics, we computed the range of motion (ROMHip,
ROMKnee, and ROMAnkle) during walking, defined as the sum of
the peak flexion and extension, or peak dorsal and plantar flexion
(Figure 1B). From the joint kinetics, we extracted the maximal
positive power during gait for each joint (PHip, PKnee, and PAnkle)
and computed the associated joint moments normalized by the
subject’s body weight (Mjoint) (Figure 1C).We then estimated the
stiffness of the knee and ankle joints (KKnee and KAnkle) using the
torsional spring model (Farley and Morgenroth, 1999; Kuitunen
et al., 2002). The stiffness (Nm.kg−1.deg−1) was calculated as
a change in the joint moment divided by the change in joint
angular displacement in the middle of the ground contact phase
(Hobara et al., 2013; Figure 1C).

The spatio-temporal structure of the lower limb
intersegmental coordination was evaluated using a principal
component analysis. Three segments per lower limb were taken
into account: the feet (defined as the virtual lines joining the
marker located in the second metatarsal head and the marker

TABLE 1 | Population characteristics.

Mean± SD

Age (years) 60.7± 15.2

Weight (kg) 68.5± 13.3

Height (cm) 164.6± 9

Gait speed (m.s−1) 1.09± 0.16

Fr 0.14± 0.02

Step Width (m) 0.075± 0.02

SD Step Width (m) 0.018± 0.01

Step length (m) 0.59± 0.06

SD Step length (m) 0.021± 0.01

AmpCoM (cm) 2.82± 0.52

ROMHip (◦) 40.2± 4.56

ROMKnee (◦) 55.6± 4.52

ROMAnkle (◦) 26.1± 4.93

PHip (W) 1.13± 0.37

PKnee (W) 0.49± 0.21

PAnkle (W) 2.95± 0.67

KKnee (Nm.kg−1.deg−1) 0.07± 0.07

KAnkle (Nm.kg−1.deg−1) 0.06± 0.03

VarCovPlane (%) 99.3± 0.24

µ1 0.44± 0.04

µ3 -0.16± 0.03

Fr, Froude number corresponding to a normalized self-selected gait speed; AmpCoM ,

amplitude of displacements of the center of mass in the vertical plane; ROMHip, range

of motion of the hip in the sagittal plane; ROMKnee, range of motion of the knee in the

sagittal plane; ROMAnkle, range of motion of the ankle in the sagittal plane; PHip, maximal

positive hip power; PKnee, maximal positive knee power; PAnkle, maximal positive knee

power; KKnee, knee stiffness; KAnkle, ankle stiffness; VarCovPlane, explained variance of

the covariation plane; µ1, shank-thigh coordination; µ3, foot-shank coordination; SD,

Standard Deviation.

located in the lateral malleolus), the shanks (defined as the
virtual lines joining the marker located in the lateral malleolus
and the marker located in the lateral femoral condyle), and
the thighs (defined as the virtual lines joining the marker
located in the lateral femoral condyle and the marker located
in antero-superior iliac spine). Such analyses were computed
randomly for one lower limb independently by means of the
covariance matrix of the angular variation of foot, shank, and
thigh segments as described previously (Borghese et al., 1996;
Bianchi et al., 1998; Lacquaniti et al., 2002; Ornetti et al., 2011).
The first two principal eigenvectors, accounting for almost
99% of data variance, correspond to the “covariation plane”
(VarCovPlane). The temporal coupling between the elevation
angles of the shank and the thigh segments (µ1) is illustrated
with the first eigenvector and its projection on the thigh axis.
The temporal coupling between the elevation angles of foot
and shank segments were given by the third eigenvector (µ3)
normal to the plane. All these parameters were obtained for each
gait cycle allowing to obtain two values per subject (mean and
standard deviation).

Statistical Analysis
Data analysis was performed with Stata statistical software
(version 15.1, Statacorp, College station TX, USA). We first
applied univariate correlation between age and either normalized
gait speed or planar covariation indices (µ1, µ3). We applied
stepwise regression analysis to identify the most relevant
variables associated with age. Entry criterion of the three
stepwise procedures was set at 0.20 and stay criterion at 0.10.
The procedure stopped when no more variables satisfied the
previous criteria. In order to validate the model, the colinearity
between variables and the residuals homogeneity were checked,
respectively, by the calculation of the Variance Inflation Factor
(VIF) and the read of residuals vs. predicted values graphic.
A VIF value higher than 5 enabled us to admit colinearity
between variables (Kutner et al., 2004), those variables were then
removed from themodel, if necessary. Data from the gait analysis
were entered as follows into the multivariate stepwise linear
regression model:

- Kinematics variables (AmpCoM, ROMHip, ROMKnee,
ROMAnkle, VarCovPlane, µ1, µ3, step width, Froude Number)

- Kinetics variables (PHip, PKnee, and PAnkle)

TABLE 2 | Multivariate linear regression model between kinematics and kinetics

variable and age.

Variables β z p Partial R2 95% CI VIF

ROMAnkle −1.55 −3.98 <0.001 0.22 −2.3; −0.8 2.18

PKnee 16.0 2.10 0.04 0.05 1.1; 31 1.37

PAnkle −11.7 −4.13 <0.001 0.14 −17.3; −6.2 1.56

VarCovPlane −23.7 −3.09 0.002 0.09 −38.8; −8.7 1.84

µ3 −135.5 −2.65 0.008 0.05 −235.7; −35.4 1.11

ROMAnkle, range of motion of the ankle in the sagittal plane; PKnee, maximal positive knee

power; PAnkle, maximal positive knee power; µ3, foot-shank coordination; 95%CI, 95%

confidence interval; VIF, variance inflation factor.
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- Stiffness variables (KKnee and KAnkle)
- Gait instability parameters (Standard deviation of step length

and step width).

Statistical significance was defined as P < 0.05. The parameter
estimates, 95% confident interval and partial R-square are given
and compared to Cohen’s suggestions (Cohen, 1992).

RESULTS

The characteristics of participants are summarized in Table 1.
We performed univariate correlations between normalized

self-selected gait speed (Fr) and age and planar covariation
(VarCovPlane) and age. A negative significant weak correlation (r=
−0.24; P = 0.028) was found between normalized gait speed and
age of the participants. Furthermore, we performed a multiple
stepwise linear regression analysis between age and parameters
computed from gait analysis (see methods for details). The
regression model provided a moderate explanation of the

variance (F= 6.20; adjustedR²= 0.49; p< 0.001) and revealed no
significant relationship between age and normalized gait speed (p
= 0.11). However, significant relationships were found between
age and range of motion of the ankle, maximal power of the
knee, and the ankle (Table 2; Figure 2), percentage of planar
covariation and the intersegmental foot-shank coordination
(Table 2; Figure 3).

DISCUSSION

The present study aimed to assess the impact of non-pathological
aging on the coordination of lower limb kinematics and
kinetics during walking at conformable speed using the planar
covariation of elevation angles. We showed the adaptation
of planar covariation of lower-limb segments throughout the
lifespan and the related kinematics and kinetics during walking.

Our results are first consistent with previous studies that
showed a significant effect of aging on gait performance (Boyer

FIGURE 2 | (A) Mean (solid lines) and standard deviation (dotted lines) waveforms of sagittal ankle joint excursions for people of 25–49 (light gray)/50–64 (medium

gray)/65–85 (dark gray) years old. (B) Mean waveforms of knee power for people of 25–49 (light gray)/50–64 (medium gray)/65–85 (dark gray) years old. (C) Mean

waveforms of sagittal ankle power for people of 25–49 (light gray)/50–64 (medium gray)/65–85 (dark gray) years old. Relationships between age and ankle range of

motion (D), knee maximal power (E), ankle maximal power (F). Partial R² and p-Value are provided. We choose to represent 3 classes of age in order to highlight

change due to age.
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FIGURE 3 | (A) Representation of the mean planar covariation of the lower-limb segments for people of 25–49 (light gray)/50–64 (medium gray)/65–85 (dark gray)

years old. (B) Relationship between the orientation (index) of the covariation plane and the age for people of 25–49 (light gray)/50–64 (medium gray)/65–85 (dark gray)

years old. (C) Relationship between the variance of the covariance plane and the age for people of 25–49 (light gray)/50–64 (medium gray)/65–85 (dark gray) years

old. Partial R2 is provided. We choose to represent 3 classes of age in order to highlight change due to age.

et al., 2017), especially walking speed. a significant relationship
between aging and normalized gait speed was found which
would attest to a decline in speed with age. Interestingly, this
relationship was not evident in the multivariate model indicating
that confounding variables may have been present. Indeed,
while aging is associated with a reduction in gait speed, it has
been previously detailed that it also produces a broad range
of physiological and biomechanical changes on the walking
apparatus, from the loss of muscular strength and mass, to a
reduction in joint range of motion (Pavol et al., 2002; Delmonico
et al., 2009; Billot et al., 2010; Cattagni et al., 2014). In our study,
we corroborate and extend these results by showing that these
changes occur specifically at the level of the knee/shank and
ankle/foot during walking. Moreover, stiffness at both ankles and
knees seems have no influence on joint motion in our results
and are in line to those reported by others with no evolution
of joint stiffness with age (Ochala et al., 2004; Collins et al.,
2018). In the same vein, variability of step length, and step
width previously reported as gait instability surrogates did not
reach significance in our model. One possible explanation is that

the confortable walking velocity might have optimized balance
during gait. Further study implementing more complex balance
constraints need to explore the contribution of these parameters
in the aging process.

Outcomes extracted from lower-limb coordination, ankle
motion, and plantar-flexors muscles seem to be a key target
for both scientist and therapist. More precisely, ankle power,
ankle sagittal kinematic, and shank-foot coordination seem to
be reduced with aging whereas knee power seems to increase.
Such modifications may reveal a potential adaptive mechanism
occurring throughout the lifespan. Consequently, we believe
that the planar covariation method provides basic insights
into how the central nervous system controls limbs during
walking by taking into account the global coordination of the
thigh, shank, and foot segments. One can expect that lower-
limb coordination has been modified with aging in order to
compensate for the weakness progressively shown with aging
and especially after the 6th decade of life. Such modifications of
lower-limb coordination have been previously reported when the
locomotor apparatus is impaired (Laroche et al., 2007; Ornetti
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et al., 2011; Leurs et al., 2012). However, a previous study
(Bleyenheuft and Detrembleur, 2012) failed to observe lower-
limb coordination difference with aging. It could be explained
by the weak statistical power and the absence of the shank-
foot coordination, that seems to be modulated with aging.
Thus, the planar covariation method seems to highlight the
adaptation of the decline in the neuromuscular systemwith aging
(Lacquaniti et al., 2012b). It could be argued therefore, that lower-
limb coordination may act as a compensatory mechanism for
physiological, and biomechanical changes in order to optimize
the locomotor control and the dynamical balance (Ivanenko
et al., 2006). Recently, Song and Geyer (2018) proposed a
computer simulation to investigate the physiological causes
of altered gait with aging, They found potential evidence
that muscle-activation changes dominantly contribute to the
reduced walking speed. In others words, the alteration of ankle
power with aging could be one of the primary symptoms of
the physiological decline due to aging. Further work should
investigate muscular activation along lifespan in order to
corroborate this hypothesis. A particular attention has to be done
on prevention programs specifically designed to enhance the
strength and coordination of lower-limb muscles and determine
its potential effect of ankle power, lower-limb synergies, and
gait speed.

This study does however, have several limitations. First,
the power of the multiple regression was limited by the
number of volunteers. However, the advantage inherent in
this limitation is that only very strong relationships could be
demonstrated. Despite the linear relationship between age and
walking parameters, this study did not provide longitudinal data
of volunteers. However, in the majority of studies, only groups
are compared. We provide in this study data from young adults
to aging people that may highlights changes during the whole
lifetime. Second, the absence of the maximal strength of the
volunteers to quantify the functional capacity and possibly the
related gait performance should be noted.

In conclusion, this study showed age-related effects on
gait performance. In particular, the modification of shank-foot

coordination could constitutes a neuromuscular adaptation
of the changes (biomechanical, physiological, etc.) occurred
with aging. Furthermore, our results might have implications
for clinical research and practice. Indeed, these four specific
parameters could be relevant outcomes to measure efficacy
of rehabilitative strategies and to evaluate their efficiency for
restoring lower-limb synergies during walking. Consequently,
it may be interesting to focus gait rehabilitation on the
improvement of ankle amplitude and power as well as foot-shank
coordination with healthy and pathological elderly people.
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