
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part B 

Faculty of Engineering and Information 
Sciences 

2019 

Modelling of the Silicon-On-Insulator microdosimeter response Modelling of the Silicon-On-Insulator microdosimeter response 

within the International Space Station for astronauts' radiation within the International Space Station for astronauts' radiation 

protection protection 

Stefania Peracchi 
University of Wollongong, sp009@uowmail.edu.au 

James Vohradsky 
University of Wollongong, jev720@uowmail.edu.au 

Susanna Guatelli 
University of Wollongong, susanna@uow.edu.au 

David Bolst 
University of Wollongong, dbolst@uow.edu.au 

Linh T. Tran 
University of Wollongong, tltran@uow.edu.au 

See next page for additional authors 

Follow this and additional works at: https://ro.uow.edu.au/eispapers1 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Peracchi, Stefania; Vohradsky, James; Guatelli, Susanna; Bolst, David; Tran, Linh T.; Prokopovich, Dale A.; 
and Rosenfeld, Anatoly B., "Modelling of the Silicon-On-Insulator microdosimeter response within the 
International Space Station for astronauts' radiation protection" (2019). Faculty of Engineering and 
Information Sciences - Papers: Part B. 3236. 
https://ro.uow.edu.au/eispapers1/3236 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F3236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F3236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F3236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/3236?utm_source=ro.uow.edu.au%2Feispapers1%2F3236&utm_medium=PDF&utm_campaign=PDFCoverPages


Modelling of the Silicon-On-Insulator microdosimeter response within the Modelling of the Silicon-On-Insulator microdosimeter response within the 
International Space Station for astronauts' radiation protection International Space Station for astronauts' radiation protection 

Abstract Abstract 
Astronauts are exposed to high-energy cosmic radiation which may have harmful health effects. At the 
altitude of the International Space Station (ISS), the main radiation sources are Galactic Cosmic Rays 
(GCRs), Solar Particle Events (SPEs) and trapped protons of the Van Allen Belts. The radiation field mainly 
consists of protons, helium nuclei and heavy ions with energies up to hundreds of GeV/n. A powerful 
approach to determine the effect of space radiation on astronauts is microdosimetry. The Centre for 
Medical Radiation Physics is active in the development of Silicon-On-Insulator (SOI) microdosimeters, as 
an alternative to Tissue Equivalent Proportional Counters (TEPCs) for radiation protection purposes. SOI 
microdosimeters are portable and do not require a high-voltage power supply. They consist of a matrix of 
silicon Sensitive Volumes (SV), which mimic the dimensions of biological cells. In this study, we 
investigated for the first time the response of the 3D "Mushroom" microdosimeter, a type of SOI 
microdosimeter in the Columbus module of the ISS. Tissue-equivalent microdosimetric spectra of GCRs, 
SPEs, and trapped protons were obtained to estimate the dose equivalent delivered to the astronauts. 
Results demonstrate a non-negligible production of secondary particles due to the propagation of space 
radiation through the wall of the Columbus and the microdosimeter. A number of heavy ions were 
detected with high lineal energies, these events pose a significant hazard in terms of radiation protection. 
Moreover, the dose evaluation shows a good agreement with experimental data found in the literature, 
confirming the suitability of our Geant4 model and the feasibility of using the SOI microdosimeter for ISS 
astronauts' personal dosimetry. 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Peracchi, S., Vohradsky, J., Guatelli, S., Bolst, D., Tran, L. T., Prokopovich, D. A. & Rosenfeld, A. B. (2019). 
Modelling of the Silicon-On-Insulator microdosimeter response within the International Space Station for 
astronauts' radiation protection. Radiation Measurements, 128 106182-1-106182-7. 

Authors Authors 
Stefania Peracchi, James Vohradsky, Susanna Guatelli, David Bolst, Linh T. Tran, Dale A. Prokopovich, and 
Anatoly B. Rosenfeld 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/3236 

https://ro.uow.edu.au/eispapers1/3236


Modelling of the Silicon-On-Insulator microdosimeter response within 

the International Space Station for astronauts’ radiation protection 
 

 

S. Peracchi1,*, J. Vohradsky1, S. Guatelli1, D. Bolst1, L. T. Tran1, D. A. Prokopovich2 and A. B. Rosenfeld1. 
1Center for Medical Radiation Physics, University of Wollongong, Wollongong NSW Australia 

2Australia’s Nuclear Science and Technology Organization, Lucas Heights NSW Australia 
*Corresponding author: email sp009@uowmail.edu.au 

ABSTRACT 

Astronauts are exposed to high-energy cosmic radiation which may have harmful health effects. At the 

altitude of the International Space Station (ISS), the main radiation sources are Galactic Cosmic Rays 

(GCRs), Solar Particle Events (SPEs) and trapped protons of the Van Allen Belts. The radiation field 

mainly consists of protons, helium nuclei and heavy ions with energies up to hundreds of GeV/n. A 

powerful approach to determine the effect of space radiation on astronauts is microdosimetry. The 

Centre for Medical Radiation Physics is active in the development of Silicon-On-Insulator (SOI) 

microdosimeters, as an alternative to Tissue Equivalent Proportional Counters (TEPCs) for radiation 

protection purposes. SOI microdosimeters are portable and do not require a high-voltage power supply. 

They consist of a matrix of silicon Sensitive Volumes (SV), which mimic the dimensions of biological 

cells. 

In this study, we investigated for the first time the response of the 3D “Mushroom” microdosimeter, a 

type of SOI microdosimeter in the Columbus module of the ISS. Tissue-equivalent microdosimetric 

spectra of GCRs, SPEs, and trapped protons were obtained to estimate the dose equivalent delivered to 

the astronauts. Results demonstrate a non-negligible production of secondary particles due to the 

propagation of space radiation through the wall of the Columbus and the microdosimeter. A number of 

heavy ions were detected with high lineal energies, these events pose a significant hazard in terms of 

radiation protection. 

Moreover, the dose evaluation shows a good agreement with experimental data found in the literature, 

confirming the suitability of our Geant4 model and the feasibility of using the SOI microdosimeter for 

ISS astronauts’ personal dosimetry. 
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I. INTRODUCTION 

Astronauts are exposed to high energy cosmic radiation, which may have harmful health effects. At the 

altitude of the International Space Station (ISS), there are three main radiation sources. Galactic Cosmic 

Rays (GCRs) are a constant component of the radiation field made up of approximately 87% protons, 

12% helium nuclei and 1% heavy ions (e.g. C, O, Si, Fe) with a wide energy range, up to hundreds of 

GeV/n. Solar Particle Events (SPEs) mainly consist of protons emitted by the Sun during periods of 

intense activity, with energies up to hundreds of MeV [1]. Because of the Earth magnetic field, protons 

and electrons are trapped in the Van Allen Belts.  

Recent research predicts that the cosmic rays exposure during long space missions outside the Earth’s 

magnetosphere, as to Mars, can double the cancer risk [2]. It is therefore paramount to characterize 

cosmic radiation and its effects on astronauts’ health. A powerful approach to determine the effect of 

space radiation in astronauts is microdosimetry [3]. Tissue Equivalent Proportional Counters (TEPCs) 

are currently the standard for experimental microdosimetry. TEPCs have a large spherical volume 

suitable for low particles fluxes and filled with tissue-equivalent gas. Nevertheless, TEPCs have 

relatively large dimensions which reduce the spatial resolution and introduce wall effects. In addition, 

the system complexity requires a high voltage supply [4]. 

The Centre for Medical Radiation Physics (CMRP), University of Wollongong, is active in the 

development of Silicon-On-Insulator (SOI) microdosimeters, as an alternative to TEPCs, for radiation 

protection purposes [5-8]. With respect to conventional TEPCs, the proposed SOI microdosimeters are 

portable and do not require a high voltage power supply. SOI microdosimeters consists of a matrix of 

silicon Sensitive Volumes (SV), which mimick a cell distribution [5, 9, 10].  



The new 3D Sensitive Volume (SV) microdosimeter called “Mushroom” is investigated in this work 

[11], with the intent to characterize, for the first time, its response in the radiation environment typical 

of the ISS. Here we report the results emerging from the characterization of the radiation environment 

inside and outside the Columbus module of the ISS, and the microdosimetric response of the “3D 

Mushroom”, by means of Monte Carlo simulations. 

II. MATERIALS AND METHODS 

The study was performed by means of Geant4-based simulations [11]. In order to reduce the execution 

times involved with the project, the simulation study consisted of two parts. The first one (described in 

section A) intended to characterize the radiation environment inside the Columbus ISS module. The 

second one (described in section B) modelled the response of a Mushroom device when exposed to the 

radiation environment calculated by the first study.  

A. Characterization of the space radiation field at the ISS altitude 

The first goal of this study was the accurate characterization of the radiation environment inside the 

ISS, in the Low Earth Orbit. The SPENVIS online software tool [12] was adopted to obtain the cosmic 

radiation spectra of the four main radiation sources outside the ISS. A mission of two days was 

considered with an orbit at 408 km apogee and 401 km perigee, with ISS’s inclination of 51.6°. The 

following models were selected to describe the radiation field surrounding the ISS: 

 

- the NASA AP8/AE8 models for trapped protons and electrons, with an energy range up to 400 

MeV and 7 MeV, respectively; 

- the CREME96 model for GCRs protons and helium nuclei with a maximum kinetic energy of 

100GeV/n; the energy spectra are for a solar minimum, corresponding to the worst case scenario 

for the GCRs; 

- the JPL-91 model for SPE protons with kinetic energy up to 500 MeV. 
 

It is well known that the region of the South Atlantic Anomaly presents an anisotropy regarding the 

trapped particles flux. Several approaches can be adopted due to the existence of several models used 

to mimic the radiation environments of trapped particles. We decided to use the AP8/AE8 model as it 

is the NASA de facto standard for mission planning. It is one of the models considering an isotropic 

flux together with the PSB97 and the CRRESPRO models. An advance extension of the AP8/AE8 

model, based on the Badhwar & Konradi 1990 model called UP [13], allows taking into account the 

anisotropy. Nevertheless, the study performed by (T. Ersmark et al., 2007) investigating the difference 

in using the above-cited different models, shows that dose rates due to incident anisotropic trapped 

particles are lower, or equal to those of omnidirectional models and the AP8/AE8 model is the more 

favourably comparable to experimental data between all isotropic models [11]. 

We adopted models for solar minimum conditions, which represent the worst case scenario: the solar 

cycle lasts 11 years and is characterized by phases of maximum and minimum intensity. It is well known 

that the GCR flux is anti-correlated to the solar activity [14]. 

In the Geant4 simulation, the radiation field was modeled by means of the General Particle Source 

(GPS), as emerging from a sphere S1 with radius R1= 1 km, towards the ISS.  The European laboratory 

Columbus was modelled in the simulation at the center of S1 (see Figure 1a-b). The direction of the 

incident radiation was modeled with a cosine distribution. This configuration of generation of primary 

particles is appropriate to model the isotropic radiation field typical of outer space when the radius of 

S1 is significantly larger than the size of the ISS like in our simulation study [11].  In order to reduce 

the execution times of the simulation, particles were modeled emerging from a cone with a half-aperture 

angle θ𝑚𝑎𝑥, which is the maximum angle that subtends the entire Columbus (see the grey area in Figure 

1a-b).  

The Columbus module was modeled as a cylinder with sizes 5 m in diameter and 8 m in height, set in 

the center of the S1. Based on specifications of the real Columbus’ structure and materials [15], the 

walls of the cylinder were modeled as a multilayer of different materials (e.g. Aluminum, Kevlar and 

Nextel) and thicknesses (Figure 1c).  



Geant4 10.4 was used and the following Physics constructors were adopted to model all physics 

interactions: G4EmStandardPhysics_option3, G4HadronPhysicsQGSP_BIC_HP 

G4HadronElasticPhysicsHP, G4EmExtraPhysics, G4StoppingPhysics, G4IonBinaryCascadePhysics, 

G4RadioactiveDecayPhysics, and G4DecayPhysics. 

The kinetic energy spectra of all primary and secondary particles produced within the multilayer were 

retrieved as output of the simulation when reaching the inner habitat of the Columbus, as shown in 

Figure 1. Due to simulating a cone source with a half-aperture angle of θ𝑚𝑎𝑥, to obtain the real 

counts 𝐶𝑟  of the particles reaching the inner habitat of the Columbus, the simulation results 𝐶𝑠were 

scaled based on the formula [16]:  

 

Cr= Cs* 
Nr

Ns
,              (1) 

 

where 𝑁𝑠 is the number of simulated events. 𝑁𝑟 is the number of real events expected, calculated by the 

formula: 

Nr= ϕ * 4 π2 * R1
2 * sin

2
θmax ,     (2) 

 

where 𝜙 is the total energy integrated flux of incident particles simulated by SPENVIS in outer space. 

 

 

Figure 1. Model of the Geant4 simulation set-up, with the space radiation components (GCR, SPE, and trapped radiation) generated from 

random points on the sphere S1 (dashed line). The radiation is incident on the ISS/Columbus module, represented by the orange shape (frontal 

view of the cylinder ((a) frontal view of the cylinder and (b) lateral view of the same). (c) Geant4 model of the Columbus multilayer: the red 

line represents the surface where the output radiation flux is retrieved [14]. 

B. Characterization of the response of the 3D Mushroom microdosimeter 

The energy spectra of particles recorded after the Columbus wall in the simulation study described in 

section A were then used to model the radiation field inside the Columbus. The particles were generated 

as emerging from a sphere S2 with radius R2 equal to the radius of the innermost cylinder volume 

(astronauts’ habitat) of the Columbus. They were generated with an isotropic distribution inside the 

Columbus by means of a cosine distribution of the direction. The microdosimeter is set in the center of 

the sphere S2, which corresponds also to the center of the Columbus. We adopted the same biasing 

method of the angular distribution (analogously to the first part of the study), to increase the number of 

particles interacting with the microdosimeter. 

Figure 2 shows the Geant4 model of the simulated 3D mushroom detector. The design of the 3D 

Mushroom is characterized by an array of 2500 cylindrical SVs where each consists of an n+ core 

electrode surrounded by a ring p+ electrode. The SV has dimensions of 30µm in diameter and 10µm in 

height. They are embedded in PolyMethylMethAcryl (PMMA) and placed on a 0.85 µm thick SiO2 

deposited above 300 µm support wafer. [17-19]. 

We considered the microdosimeter surrounded by a PMMA sphere of 10 mm radius. 

 



 

Figure 2. From the left: the 3D “Mushroom” microdosimeter design; the Geant4 SVs array; the zoomed view of a SV. 

The output of the simulation is the frequency of the energy deposition 𝐸 of each single event occurring 

in the silicon SVs of the microdosimeter. The lineal energy 𝑦 was then calculated with the following 

formula: 

 

y = 
E

〈l〉
 ,                                            (3) 

 

where 〈𝑙〉 is the mean chord length of the SV calculated by the Cauchy’s formula in isotropic fields 

 

                                                                      〈l〉 = 
4V

S
 ,                     (4) 

 

where V and S are the volume and the total area of the SV, respectively. 

  

To obtain the tissue equivalent dose, DTE from the Mushroom, the silicon microdosimetric response in 

terms of lineal energy spectrum yd(y) [3] was converted to tissue equivalent  as follows: 

 

DTE = DSi * 0.58 ,      (5)   

 

where the Absorbed Dose in silicon DSi is multiplied by the Tissue Equivalent factor 0.58 obtained from 

tissue equivalency studies for mixed fields [20, 21].  

Finally, the Dose Equivalent 𝐻 is calculated with the following formula: 

 

H = DTE * Q
mean

 ,     (6) 

 

where 𝑄𝑚𝑒𝑎𝑛 is the mean value of the Quality Factor derived based on the convolution of the d(y) with 

distribution 𝑄(𝑦) defined by the ICRU Report 40 [22]. 

 

Q
mean

=  ∫ 𝑄(𝑦)𝑑(𝑦)𝑑𝑦
∞

0
        (7) 

 

Q(y)= 
a1

y
 e(-a2*y2-a3*y3)                 (8) 

 

with coefficients a1 =  5510 keV/µm, a2  =  5 ∙ 10−5 µm2/keV2, and a3  =  2 ∙ 10−7 µm3/keV3. 
 

In the Report 40, the liaison group of ICRP and ICRU recommends to increase the quality factors for 

densely ionizing radiations, such as neutrons, but also to assign quality factors less than unity to sparsely 

ionizing radiations, such as X rays or fast electrons. Despite newer definitions of the quality factor as a 

function of LET, our choice of adopting the definition of Q in function of y was due to the fact that the 

SOI microdosimeter can directly measure the lineal energy y for each single event occurring in the SV. 

Compared to the ICRP-60 definition of Q(LET) approximated to 1 for LET<10 keV/µm [23], SOI 

microdosimters allow lineal energy measurements as low as 0.15 keV/μm [24] leading to a direct 

measurement of Q(y)<1 at low y, according to Equation 8. This experimental threshold was adopted in 

the simulation. 

The interest was in evaluating the daily dose delivered to astronauts in order to compare it to the dose 

rate measured during experimental campaigns on the ISS reported in the literature. 



For each radiation source (GCR, SPE and trapped radiation), 2∙109 primary particles (𝑁𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑) were 

simulated. Integrating the initial differential flux 𝜙𝑖 inside the Columbus over all energies 𝐸𝑖, we could 

estimate 𝑁1𝑑𝑎𝑦, the real number of incident particles entering the Columbus in 24 hours, as follow: 

 

N1day= (∑ ϕ
i
 * Ei All energies ) * SColumbus * 2π * 86400 ,                  (7) 

 

where the total integrated flux was multiplied by the surface of the Columbus module 𝑆𝐶𝑜𝑙𝑢𝑚𝑏𝑢𝑠, 86400 

seconds in a day and 2π, assuming that only half of the Columbus module of the ISS is facing the 

incoming cosmic field from outer space, because the other half is facing the Earth. 

The dose simulated was normalized per incident particles and then scaled for the number of particles 

expected in 1 day:   

 

Dose1day = Dosesimulated * 
N1day

Nsimulated
 .      (8) 

III. RESULTS 

A. Characterization of the radiation environment outside and   inside the Columbus module of ISS 

The energy spectra of the radiation environment outside the Columbus, modeled with SPENVIS, are 

shown in Figure 3 (green lines), with their corresponding spectra modeled inside the Columbus with 

Geant4 (solid lines). As expected, incident GCR protons and helium nuclei with energy above 10 GeV/n 

are not stopped by the multilayer wall and they reach the inside of the spacecraft where astronauts live 

and work. Particles with energy above 1 GeV/u are slowed down during the propagation through the 

multilayer, with a reduction of one order of magnitude to the differential flux, while protons below 5 

MeV are fully absorbed. It can be observed that the space radiation produces high fluxes of neutrons 

from spallation reactions and a non-negligible flux of nuclear products with energy of hundreds of 

MeV/n. Similar results were obtained for SPE protons. After the Columbus’ wall, the majority of 

trapped protons have energies above 100 MeV, accompanied by a significant production of secondary 

low energy neutrons. Because of their low energy (up to 7 MeV), all trapped electrons are stopped 

during the propagation through the Columbus’ wall. The figures also show that the main secondary 

particles’ components are protons, helium nuclei and neutrons. In addition, minor contributions from 

other secondary particles, like gamma rays, electrons and nuclear fragments produced during the 

propagation through the wall, were modeled and included in the radiation environment incident on the 

microdosimeter. 



 

Figure 3. Simulated spectra inside the ISS behind the multilayer wall for main sources: a) GCR protons, b) GCR alpha, c) SPE 

protons and d) Trapped protons. The green lines represent the radiation spectra outside the ISS obtained from SPENVIS and 

used as input to the simulation. The solid lines are particles inside the ISS: the blue lines represent helium nuclei, the black 

lines are protons and the red lines are secondary neutrons. 

B. Response of the 3D Mushroom microdosimeter 

We simulated the response of one 3D Mushroom microdosimeter: this decision was made in order to 

be able to evaluate which is the number of microdosimeters to have an acceptable counts statistics 

during a 1day mission in space. 

The MCA spectra in Figure 4 show the frequency of energy deposition events for the 7 most abundant 

particle species recorded by the microdosimeter. From the zoom of the spectra up to 6 MeV we can 

definitely identify an abundance of particles depositing energy up to 3 MeV. The total number of counts 

per day detected is in a range of 105÷107, with the exception of protons that are above 108 counts/day. 

However, we found that helium nuclei mainly produced by protons deposit energy up to 6.4 MeV and 
12C ions up to 7.3MeV. Several other heavier ions as 13C, 14N, 22Na, 24Mg, 26Al, 27Si, with a lower rate 

around 102÷103 counts/day, contributed to relevant energy depositions in the SVs of the microdosimeter 

up to 13.3 MeV. 

Finally, considering the small area of the SOI microdosimeter, we can say that the statistics obtained 

from our simulation was good to represent the particles scenario encountered inside the ISS. Surely, the 

microdosimeter will be tested in facilities providing such particles and energies, to evaluate the noise 

contribution due to the electronics. 



 

Figure 4. Zoom up to 6 MeV of simulated energy spectra with 1024 channels, representing counts recorded in a 1day mission 

by the microdosimeter. Four sources were distinguished: a) GCR protons, b) GCR helium nuclei, c) SPE protons, d) Trapped 

protons. 

Figure 5 shows the simulated tissue equivalent microdosimetric spectra obtained with the “3D 

Mushroom” microdosimeter irradiated with the simulated radiation field inside the Columbus module. 

The simulations consisted of 2∙109 primary particles for each radiation source (GCR, SPE and trapped 

protons). The areas of the microdosimetric spectra are normalized to 1. As expected, both the radiation 

incident on the ISS (GCR, SPE and trapped protons) and the secondary particles affect the response of 

the microdosimeter. Protons are mainly responsible for the response corresponding to lineal energies 

spanning from 0.1 keV/µm to tens of keV/µm. Secondary particles such as electrons, gamma rays, 

pions, muons are predominant at low lineal energies up to a few keV/µm. It is interesting to see the 

dose contribution from secondaries produced by GCR protons. A significant peak of secondary helium 

nuclei around 100 keV/µm originated by GCR protons, accompanied by a few relevant 12C, 16O and 
28Si ions with lineal energy up to 25 keV/µm with a few exceptions up to 158 keV/µm (Figure 5a).  

In Figure 5b, microdosimetric spectra from the GCR alpha source show the peak of primary helium 

nuclei that traverse the Columbus’ wall, slowing down in energy due to the interaction and production 

of secondaries. Again, the production of heavy ions such as 12C, 16O and 28Si, dominates in the range of 

lineal energies up to 50 keV/µm with a few ions reaching lineal energy up to 890 keV/µm. 

Because of their similar energy range (see Figure 5c-d), SPE and trapped protons induce a similar 

response in the microdosimeter. In both cases, the proton peak is covering the range of lineal energies 

0.1 ÷ 10 keV/ µm. Secondary heavy ions as 12C, 16O, 28Si contribute to the microdosimeter response 

from low lineal energies up to ~ 150 keV/µm (Figure 5c-d). 



 

 
Figure 5. Simulated tissue equivalent microdosimetric spectra as a response of the 3D Mushroom with main radiation sources: 

a) GCR protons, b) GCR helium nuclei, c) SPE protons, d) Trapped protons. Secondary particles as electrons, pions, muons 

were detected at low lineal energies. However, their spectra have not been shown in this figure not to overload the graph. 

 

Table 1 shows the values of Absorbed Dose in Tissue Equivalent DTE, mean Quality Factor Qmean and 

the corresponding Dose Equivalent H calculated for 1-day mission as explained above. 

Observing the microdosimetric spectra in Figure 5c-d for SPE and trapped protons sources, the Q value 

is lower than 1 because of the predominant contribution to the dose coming from protons with lineal 

energies below 1 keV/ µm.  On the contrary, for GCR sources the Q value is higher due to low LET 

protons of high energy that produce target fragments with higher LETs. 

Results in terms of dose agree with experimental measurements performed at the ISS’s altitude by (L. 

Sihver and T. Berger et al., 2017) and (T. Dachev et al., 2017) [25, 26].  The highest contribution in 

terms of dose is due to the trapped protons’ source because of the proximity of the inner Van Allen Belt 

to the ISS’s orbit. Moreover, the real-time ISS’s orbit calculated by SPENVIS has a quick pass closer 

to the South Atlantic Anomaly, a region in South America where the inner belt is closer to the Earth’s 

surface, and to the ISS’s orbit too, because of the magnetic axis offset of our planet. The 550 µGy/day 

of dose deriving from the trapped protons source matches with 567 µGy/day measured by (T. Dachev 

et al., 2017). The 327 µSv/day  of total absorbed dose from GCRs obtained from our simulation respects 

the value of dose 360 µSv/day for maximum GCRs intensity [26]. Finally, we have not recorded intense 

SPE events during the day modelled with SPENVIS thus the dose of 42 µGy/day is in the range of doses 

recorded by (T. Dachev et al., 2017). 

According to the choice of adopting a quality factor definition in term of y stated in the ICRU-40, it is 

clearly justified the result of Qmean <1 for SPE and trapped protons considered as sparsely ionizing 

radiation sources. Moreover, for completeness and for a direct comaprison to Q value measured by (T. 

Dachev et al., 2017), a calculation of Q(LET) based on ICRP-60 has been done with the knowledge of 



the microdosimetric spectra. Assuming that y is equal to the LET, we obtained a value of Qmean  equal 

to 1.31 and 1.30 for SPE and trapped protons respectively, which is in agreement with the literature 

showing a value of Q equal to 1.3 for both sources [26]. This evidence confirms that currently used SOI 

microdosimeters are capable to measure accurately the quantity y and its distribution in a mixed 

radiation environment as the one really encountered at the ISS altitude. Nevertheless, depeding on the 

adopted definition of Q, results can be different for sparsely ionizing radiation. Newer definitions of the 

quality factor do not invalidate the one stated in ICRU-40, used in this paper. Additionally, (A. M. 

Kellerer and K. Hahn, 1988) suggested that the option between LET as the reference parameter and the 

microdosimetric variable, y, may not necessitate an exclusive choice [27]. 

 

Table 1. Dose in Tissue Equivalent (DTE) and Dose Equivalent (H) resulting from the simulation of the microdosimeter 

embedded in a sphere of 10mm radius of PMMA. 

Source 2π 
Number of particles 

(1day) 
Qmean 

DTE    

 (µGy/day) 

H        

 (µSv/day) 

GCR protons 1.83 ∙ 1011 1.41 190 267 

GCR alpha 2.43 ∙ 1010 1.52 39 60 

SPE protons 2.21 ∙ 1010 0.73 42 31 

Trapped protons 2.34 ∙ 1011 0.69 550 378 

IV. CONCLUSIONS 

Microdosimetric spectra of GCRs, SPEs, and trapped protons show an evident contribution from 

protons at low energies, followed by other secondary particles as electrons, gamma rays, helium nuclei, 

muons. Although the abundance of heavy ions is smaller than protons’ one, heavy ions as C, O, Si, Fe 

make large contributions to dose, especially because of their high lineal energy. 

The absorbed dose and dose equivalent were calculated for a daily mission in space. The good 

agreement found with data in the literature demonstrates that our Geant4 model is adequate for 

simulating the radiation environment at the ISS altitude.  In order to better quantify the accuracy of 

Geant4 and our simulation application for astronauts’ radiation protection, we are currently validating 

Geant4 with respect to experimental measurements performed with CMRP microdosimeters at facilities 

which provide radiation field and heavy ions typically encountered in space, including the CERF facility 

of CERN (Switzerland) and the HIMAC (Japan). 

Moreover, the 3D Mushroom SOI microdosimeter gave an interesting response. Considering the 

simulation of a 1day mission the counts statistic shows a minimum value of 102 counts/channel for each 

source, at predominant energies. Additionally, the total number of counts spans from 103 counts for less 

frequent particles to 108 for protons, each day. This number of counts shows that in principle Mushroom 

microdosimeters can be used for space radiation protection. Further experiments will test the 

performance of the microdosimeter to confirm the feasibility against the noise due to the electronics.  

In summary, the favourable agreement between the simulated performance of the microdosimeter in the 

ISS radiation environment against the literature makes the SOI microdosimeter an advantageous 

candidate to substitute the standard TEPC for dose monitoring in space thanks also to its small 

dimensions and portability, low voltage supply needed and accuracy in characterizing the field. 

It should be noted that for high energy proton field which is part of the spectrum of GCR protons field, 

the current size of SV SOI microdosimeter will provide smaller yD in comparison with 1um sphere SV 

of TEPC adopted in Q(y) dependence. The future work will be devoted to development of SOI 

microdosimeter with 1 um SV and reducing the threshold of the measured energy deposited in this SV 

at the room temperature. 
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