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Abstract: We propose a label enhanced and patch based deep learning phase retrieval approach
which can achieve fast and accurate phase retrieval using only several fringe patterns as training
dataset. To the best of our knowledge, it is the first time that the advantages of the label
enhancement and patch strategy for deep learning based phase retrieval are demonstrated in fringe
projection. In the proposed method, the enhanced labeled data in training dataset is designed
to learn the mapping between the input fringe pattern and the output enhanced fringe part of
the deep neural network (DNN). Moreover, the training data is cropped into small overlapped
patches to expand the training samples for the DNN. The performance of the proposed approach is
verified by experimental projection fringe patterns with applications in dynamic fringe projection
3D measurement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fringe projection as a non-contact and whole field three dimensional (3D) shape measurement
technology with high speed, high resolution, and low cost has been widely employed in diverse
fields with biomedical applications, industrial and scientific applications, kinematics applications,
and biometric identification applications [1–3]. The principle of this method is to measure the
deformation of projected fringe pattern demodulated by the height of tested object. The height
information is related to the phase in the deformed fringe pattern, and the phase is recovered
by phase retrieval operator. Phase retrieval is a key and difficult problem in fringe projection
measurement technique [1,4]. The phase retrieval methods are mainly divided into two categories:
the methods from single frame fringe pattern and the phase shift methods. The phase shift
methods usually require multiple fringe patterns at different moment [5,6]. In the measurement
of objects in fast motion or in a temporally unstable environment, it is difficult or costly to take
several projection fringe patterns in an extremely short period of time. Compared with the latter,
the former only requires one fringe pattern in single shot, which makes it less interfered by the
external environment and is more suitable for 3D measurement of dynamic objects [5–7].
However, phase retrieval from single frame fringe pattern is a challenging problem in fringe

projection 3D measurement especially for objects with edges or abrupt changes in depth, which
attracts wide attention. Numerous methods have been proposed, such as the well-known
Fourier Transform method (FT), Windowed Fourier Transform method (WFT), the Wavelet
Transform method (WT), Shearlet Transform method (ST), and the more effective methods such
as Empirical Mode Decomposition (EMD) method and more recently proposed variational image
decomposition(VID) and variational mode decomposition (VMD) methods [8–15]. Although
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extensive research efforts have been made for phase retrieval, it is hard to implement an accurate
and fast retrieval phase method for the tradeoff between the accuracy and computational efficiency
in traditional phase retrieval methods. For instance, FT method is simple but could not work well
for object with edges. The more effective phase methods such as VID and VMD cause a great
computation amount.

In recently, the discriminant learning such as deep learning has demonstrated to be successful
in many areas ranging from computer vision such as image recognition, image denoising, and
image super-resolution to optical imaging such as digital microscopy and digital holography
[16–19]. Inspired by the success in those areas, Feng and Zuo et. al. recently introduced the
deep learning method into fringe pattern analysis and they proposed the deep neural network
(DNN) to conduct phase retrieval from single frame fringe pattern [20,21]. The process of phase
retrieval is learned from the input data and the output labeled data in the training dataset by DNN.
Their work demonstrates that the deep-learning-based technique can provide high accuracy phase
retrieval results with rapid time. Owing to the ability of deep learning to learn the mapping
between the input data and output labeled data, one can introduce the DNN to the problems such
as phase unwrapping and 3D mapping in fringe projection 3D measurement [22–24].
As a data driven fashion, the performance of deep learning-based phase retrieval is subject

to the training data both in quality and quantity. Abundant yet accurate labeled data in real
fringe projection is important but difficult in acquisition. Hence, the use of fewer samples is
desirable for the deep learning-based phase retrieval method provided the learning and prediction
performance is unchanged. In addition, the fringe patterns which evidently contain noise will
decrease the accuracy of phase retrieval results. By now, the two issues are not addressed in
existing deep learning-based phase retrieval method for fringe projection 3D measurement. In
this paper, we developed a new phase retrieval method based on the recently proposed DnCNN
model to tackle the noise problems in phase retrieval and training samples problems [25]. In
the proposed method, we use the fringe pattern and the enhanced fringe part as the input data
and output labeled data in the train dataset of DNN to learn their mapping to implement the
data driven phase retrieval. Since the labeled data is enhanced, our proposed is expected to deal
with the noisy fringe pattern without pre-processing or post-processing. Moreover, the proposed
method needs fewer samples as we can expand the samples by cropping the original samples into
more overlapped small patches. The phase retrieval by the proposed method was performed, and
the performance of the method was verified by experimental results. The contributions of our
work are as follows:

(1) We proposed to use the denoised and enhanced fringe part as the labeled data in the training
stage. In this way, the proposed DNN network can learn the denoised and enhanced
fringe part from a noisy fringe pattern, therefore it can simultaneously achieve the fringe
part extraction and enhancing, which does not require the filtering pre-processing or
post-processing in phase retrieval. For the simulated data, output labeled data is known
in advance. However, for the real fringe pattern, the labeled data is not exactly known.
Therefore, we use the phase shift and Shearlet transform filtering method to produce the
enhanced labeled data. The applicability and advantages of the label enhancement were
demonstrated in fringe projection.

(2) We proposed the patch strategy to expand the training dataset by cropping the input fringe
pattern and output labeled data into overlapped small patches. In this way, the samples
were expected to be expanded to deal with the problems existed in traditional DNN that
the training dataset is difficult to acquire. Meanwhile, the small patches will decrease the
size of network computation, leading to sensible reductions in running time and memory
requirements. It is noted that although the patch strategy has been employed in image
super-resolution and denoising, etc., it is firstly introduced in the field of phase retrieval for
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fringe projection 3Dmeasurement. The advantages of the patch strategy were demonstrated
by real fringe patterns.

2. The proposed method

In fringe projection 3Dmeasurement, the intensity distribution of a fringe pattern can be expressed
as

I(x, y) = a(x, y) + b(x, y) cos(φ(x, y) + 2πf0x) + noise, (1)

where a(x, y) is the background, b(x, y) and φ(x, y) are the modulation intensity and the optical
phase, f0 is carrier frequency, and noise denotes the noise in I(x, y). Phase retrieval can be
implemented by extracting the fringe part b(x, y) cos(φ(x, y) + 2πf0x) apart from the background
a(x, y) and noise part [13]. However, due to the discontinuous edge of objects and noise effect, the
fringe part and other parts are not well separated. The deep learning method has been proposed
to separate the fringe part from the other parts by learning the mapping between the input fringe
pattern and the output fringe part with DNN. As noted, previous works on phase retrieval using
deep learning tool do not deal with separation fringe part from noise. The noise effect in the
labeled data has never been paid attention. Also, in order to effectively train the DNN, scores of
fringe pattern with labeled data should be prepared [20]. In this paper, we propose to extract the
fringe part apart from background part as well as noise part with less samples in a new manner
using deep learning as follows.

2.1. The design of DNN for phase retrieval

The proposed phase retrieval method is based on the extraction of the fringe part from fringe
pattern by using a DNN to learn the process of fringe part extraction. There are two steps for the
DNN to implement fringe part extraction: the training step and the testing step. In the training
step the DNN was trained to learn the mapping between the input data (fringe pattern) and the
output labeled data (fringe part), and in the testing step the trained DNN predicts the output
fringe part given the input fringe pattern. Figure 1 shows the diagram of the fringe part extraction,
where DnCNN model is used in our study for that DnCNN utilizes residual learning and batch
normalization which can benefit from each other, and their integration is effective in speeding up
the training and boosting the denoising performance [25]. As shown in Fig. 1, in order to make
the network acquire the features of the image more efficiently, the input fringe pattern and output
labeled fringe part with pixels 512×512 are divided into overlapped patches of 40×40 pixels size
by using a fixed-size window. The input patches and output label patches are used to train the
DNN to learn the mapping between the fringe pattern and the output fringe part. Once the DNN
is trained, it is used to predict fringe part from tested fringe pattern.

Fig. 1. The diagram of the fringe part extraction.
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The DNN model shown in Fig. 1 contains convolutional layers (Conv), BN(Batch Normaliza-
tion) and RELU. DnCNN applies a residual learning formulation to learn a mapping function, and
it uses batch normalization to accelerate the training procedure while improving the denoising
results. Based on Eq. (1), the input fringe pattern for DNN can be rewritten as p = f + r, where f
and r are the fringe part and the rest of the fringe pattern p, respectively. r contains background
part and noise part, which is denoted as generalized residual apart from fringe pattern p in this
paper. Our goal is to use the DNN with residual learning to separate f and r [25]. The residual
learning method is used to train the network to generate a nonlinear map of R(p) = r, so that
the residual part r = R(p) and the fringe part f can be extracted. The loss function of DNN is as
follows

loss(θ) =
1
2N

N∑
i=1
| |R(pi; θ) − (pi − fi)| |2F, (2)

which represents the mean square error between the expected residual (p − f ) and the network
predicted residual R(pi; θ). θ represents the weight and bias in the network, which changes with
the back propagation of DNN, {(yi, fi)}Ni=1 is the N pairs of fringe pattern and the corresponding
fringe part. After the training of DNN, the predicted fringe part f can be obtained. With the
derived fringe part f (x, y) = f , the wrapped phase distribution with carrier is calculated by Hilbert
transform and arc tangent operator on the fringe part as follows:

φ(x, y) + ϕc(x, y) = arctan
(
Im{H(f (x, y))}
Re{H(f (x, y))}

)
, (3)

where H denotes Hilbert transform, Re{} and Im{} respectively denote real and imaginary parts,
and ϕc(x, y) is the carrier which should be removed to produce a pure phase. In this paper, the
unwrapped phases were obtained by quality guided phase unwrapping algorithm [14]. To obtain
the pure unwrapped phases without the carrier term, the carrier was removed from the unwrapped
phases using Fourier carrier removal method. To sum up, Fig. 2 shows the diagram of the deep
learning based method for phase retrieval, which is composed by the above mentioned DNN
training and prediction, wrapped phase retrieval, phase unwrapping and carrier removal.

Fig. 2. The diagram of the proposed deep learning phase retrieval.

2.2. The label enhancement and patch strategy

The simulated fringe pattern is generated according to Eq. (1). Gaussian random noise is added
with variance of 0.2 in the simulation. Figure 3 shows the simulated training dataset with labeled
data. For the simulated data, the labeled data is known. However, for the experimental data, the
labeled data is not exactly known. To obtain the ground-truth data as the output labeled data in
real fringe projection, we exploit the four steps phase shifting method to produce the labeled data
[5,14]. The labeled data L = (I(x, y, 0) − I(x, y, π))/2 is obtained from four steps phase shifting
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fringe patterns where I(x, y, 0) and I(x, y, π) are the phase shift fringe patterns with phase shift 0
and π respectively in four steps phase shift method:

I(x, y, 0) = a(x, y) + b(x, y) cos(φ(x, y) + 2πf0x + 0) + noise,

I(x, y, π/2) = a(x, y) + b(x, y) cos(φ(x, y) + 2πf0x + π/2) + noise,

I(x, y, π) = a(x, y) + b(x, y) cos(φ(x, y) + 2πf0x + π) + noise,

I(x, y, 3π/2) = a(x, y) + b(x, y) cos(φ(x, y) + 2πf0x + 3π/2) + noise.

(4)

In real 3D measurement, the fringe pattern captured by the CCD or CMOS camera is corrupted
by noise, which causes the 3D reconstruction result with errors. In order to eliminate these
errors, some denoising algorithms are usually used to perform denoising in fringe pattern
preprocessing or post processing. In this paper, we propose to train the DNN using the fringe
pattern captured from real scenario by CMOS camera and the corresponding denoise fringe part
(label enhancement), so that the trained network can learn the mapping between the input fringe
pattern and the enhanced fringe part, and consequently can predict the enhanced fringe part of
the given fringe pattern, which avoids the denoising steps. The Shearlet transform method with
soft threshold shrinkage is employed in order to effectively denoise the labeled fringe part L
while preserve the details [26].

Fig. 3. Simulated training dataset.

Figure 4 shows the experimentally obtained training dataset. In Fig. 4, we give training dataset
of two strategies, all of which use the same fringe pattern, but using the noise fringe part and the
denoise fringe part as the labeled data respectively. As seen from enlarged local areas of the
magnified wood doll and human face images that the denoise fringe part is clearer in detail than
the noisy fringe part.
Overlapping patches are densely cropped from the input fringe patterns. These patches are

then used to train the DNN during training stage. In the training stage, the original fringe pattern
is cropped into small overlapped patches as the training data. These small patches are input to
the learned DNN to produce the output fringe part. In the testing stage, the input fringe pattern
is cropped into small overlapped patches as the training data, and then these small patches are
predicted by DNN, and lastly the overlapping reconstructed patches (fringe parts patches) are
aggregated to produce the final output (fringe part with the same size as the input fringe pattern).
In addition to this fashion in the testing stage, the input fringe pattern can be directly tested
through the DNN without data cropping for the ability of the fully convolutional network which
can receive the input data with arbitrary size. In this paper, the patches are set as 40×40 pixels
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Fig. 4. Experimentally obtained training dataset.

and overlapped with 10 pixels at each direction and the input fringe pattern without cropping is
adopted in the testing stage for its simplicity in implementation.

3. Results and discussion

In this section, DNN based on DnCNN network is implemented using Python language and the
framework of Pytorch (0.4.1 version) on a PC with Intel(R) Core (TM) i5-7500H CPU (3.40
GHz), 16 GB of RAM, and the GeForce GTX1080 (NVIDIA). The DNN model shown in Fig. 1
contains 17 convolutional layers. The kernel size of the 1st to 16th layers in the network is 3×3×64,
and the kernel size of the last layer is 3×3×1, the convolution stride is 1, and zero-padding is used
to control spatial size of the output data to make the input data and output data with the same
size. From the 2nd layer to the 16th layer, we use the batch normalization to speed up the network
training and improve the training precision with numerical stability constant eps of 0.0001 and
momentum of 0.95. The Adam optimization algorithm is used to train the neural network with a
learning rate 0.001. In the above DNN model, the ReLU activation function is used to better fit
the nonlinear mapping at the output of the convolutional layer. It takes about 17 hours to train the
simulated dataset up to 1000 epochs and takes about 12 hours to train the experimental dataset
up to 1000 epochs.
Simulated and experimental experiments were conducted in this work. In the simulation, the

fringe pattern with 512×512 pixels as the input data of DNN are simulated as shown in Figs. 3
and 5 where Gaussian random noise with variance of 0.2 added in the fringe patterns [14]. Since
DnCNN is usually tailored to a specific noise level, therefore the training and testing dataset
with the same noise level is used in this study. In the real experiment, the fringe patterns were
captured by CMOS camera of 8-bit pixel depth and of resolution 512×512 pixels from the tested
object, on which the projector (DLP LightCrafter 4500) projects the fringe pattern.
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Fig. 5. Simulated fringe pattern(a-1), true fringe part (a-2) and true phase (a-3).

3.1. Patched based strategy validation

To valid the effectiveness of the proposed patch strategy, the DNN with patch strategy (DNN1)
was compared with the DNN without patch strategy (DNN2). The DNN1 and DNN2 algorithms
for phase retrieval are the same except the training dataset, which are implemented as shown in
Fig. 2. Figures 5(a-1)–5(a-3) respectively show the simulated fringe pattern, true fringe part and
true phase. Figure 6 shows extracted fringe parts by DNN1 and DNN2. In Fig. 6, the training
dataset with and without patch strategy is trained using network size with the same parameters.
As to the training dataset with patch strategy, although the number of training samples is only
8 frame, the number of overlapped small patches (with patch size 40×40 pixels) is as large as
45824. That means 45824 patches were obtained from the original fringe patterns.

Fig. 6. Fringe parts from simulated fringe pattern by DNN with patch strategy (DNN1)
and without patch strategy (DNN2). (a-1) and (a-2):Extracted fringe parts by DNN1 and
DNN2;(b-1) and (b-2): The error of fringe parts corresponding to Figs. 6(a-1) and 6(a-2).
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Figures 6(a-1) and 6(a-2) respectively show the extracted fringe parts by DNN1 and DNN2
approaches with their error shown in Figs. 6(b-1) and 6(b-2), respectively. Similarly, Figs. 7(a-1)
and 7(a-2) respectively show the unwrapped phase by the two methods with their phase error
respectively shown in Figs. 7(b-1) and 7(b-2). The MSE of the fringe parts are 1.95×10−3 and
8.32×10−3 by DNN1 and DNN2, as well as the MSE of unwrapped phase are 2.77×10−2 and
5.32×10−2 respectively. Compared with DNN2, DNN1 extracts fringe parts with smaller error
and thus preserves more details of the edge of phase as shown Figs. 7(b-1), 7(b-2) and 7(c).
The proposed patch strategy for phase retrieval was validated by real fringe patterns in fringe
projection. Figure 8 shows the extracted fringe parts and phase results from one real fringe
pattern by DNN1 and DNN2. The results from four steps phase shift method were used for
reference. As seen in Fig. 8 that the results by DNN2 shares more artifacts in fringe parts and
phase results compared with DNN1. There are some ripples in the phase results for both DNN1
and DNN2 approaches because low quality of fringe pattern of the measured object subjected
to inhomogeneous reflection. To sum up, the proposed method with patch strategy can extract
fringe parts with a better performance.

Fig. 7. Phase results from simulated fringe pattern by DNN with patch strategy (DNN1)
and without patch strategy (DNN2). (a-1) and (a-2):Phase results extracted by DNN1 and
DNN2; (b-1) and (b-2):Phase error of Figs. 7(a-1) and 7(a-2);(c) The plots of Figs. 7(a-1)
and 7(a-2) in the 255th column.
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Fig. 8. Fringe parts and phase results from real fringe pattern by DNN with patch strategy
(DNN1) and without patch strategy (DNN2). (a-1): Real fringe pattern; (a-2) and (a-
3):Extracted fringe parts by DNN1 and DNN2, respectively; (b-1),(b-2) and (b-3): Phase
results extracted by the four steps phase shift method, DNN1 and DNN2, respectively.

3.2. Label enhancement validation

Figures 9(a) and 9(b) respectively show the experimental fringe patterns of human face and hand,
both of which are not used in the training dataset. Figure 10 shows the results of fringe patterns
using two different network training strategies. In detail, Figs. 10(a-1) and 10(a-2) are extracted
fringe parts from Fig. 9(a) by DNNwithout label enhancement and with label enhancement, while
Figs. 10(b-1) and 10(b-2) respectively show the extracted fringe parts from Fig. 9(b) by the two
approaches. The corresponding phase results are shown in Figs. 11(a-1) and 11(a-2) for Fig. 9(a)
and in Figs. 11(b-1) and 11(b-2) for Fig. 9(b), respectively. The 255th column of Figs. 11(a-1) and
11(a-2) and the 200th column of Figs. 11(b-1) and 11(b-2) are plotted in Figs. 11(c-1) and 11(c-2),
respectively. As seen DNN realizes the automatic extraction of the fringe parts by learning the
mapping between the input fringe pattern and output fringe part. From the comparison we can
see that Figs. 11(a-1) and 11(b-1) are with more noise than Figs. 11(a-2) and 11(b-2) respectively,
indicating DNN with label enhancement exhibits fringe part enhancement automatically. It can
also be seen from Figs. 11(c-1) and 11(c-2) that the prediction results of the network using label
enhancement are smoother than that without label enhancement. Overall, the above results show
that enhanced fringe part can be extracted from the noisy fringe pattern, and the accuracy of the
phase extraction result is improved by learning the mapping between the noisy fringe pattern and
the denoised and enhanced fringe part.

3.3. Comparisons with other methods and application in dynamic object measurement

In order to further show the performance of the proposed phase retrieval method, we compare
the proposed method with the FT method and the four steps phase shift method by using two
real experimental fringe patterns. Figures 12(a) and 12(b) respectively show the captured fringe
patterns for human face and a plastic box. Figure 13 shows the processed results for Fig. 12 where
the unwrapped phase for four steps phase shift method, FT and the proposed method are shown. In
detail, Figs. 13(a-1)–13(a-3) respectively show the phase retrieval results for Fig. 12(a) with four
steps phase shift method, FT and the proposed method, while Figs. 13(b-1)–13(b-3) respectively
show the unwrapped phase results for Fig. 12(b) with the three methods. Figures 13(c-1) and
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Fig. 9. Real fringe patterns in fringe projection 3D measurement. (a): Fringe pattern of
human face. (b): Fringe pattern of human hand.

Fig. 10. Fringe part extraction of DNN without label enhancement (DNN) and with
label enhancement (DNN_Enhance). (a-1): Extracted fringe part from Fig. 9(a) by
DNN without label enhancement;(a-2):Extracted fringe part from Fig. 9(a) by DNN with
label enhancement; (b-1): Extracted fringe part from Fig. 9(b) by DNN without label
enhancement;(b-2):Extracted fringe part from Fig. 9(b) by DNN with label enhancement.

13(c-2) give the plots of the unwrapped phase data at 255th row for Fig. 12(a) and the plots
at 255th column for Fig. 12(b), respectively. The plots in Figs. 13(c-1) and 13(c-2) show that
phase results by the proposed method are closer to the phase shift method compared with that
obtained by FT method. As shown in the inset of Fig. 13(c-2) the proposed method preserves
more details of phase especially for the object with abrupt changes such as the edges of the plastic
box. We can conclude from Fig. 13 that proposed method produces phase closer to the phase
shift method compared with FT method and it has better visual quality of 3D human face. As to
the computation time, the FT method, although simple in implementation, needs 0.49s to achieve
the fringe part extraction, while our proposed method only requires 0.05s provided the model is
loaded, which is about ten times faster than FT method.
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Fig. 11. Phase retrieval of DNN without label enhancement (DNN) and with label
enhancement (DNN_Enhance). (a-1): Extracted phase from Fig. 9(a) by DNN without label
enhancement;(a-2):Extracted phase from Fig. 9(a) by DNN with label enhancement; (b-1):
Extracted phase from Fig. 9(b) by DNN without label enhancement;(b-2):Extracted phase
from Fig. 9(b) by DNN with label enhancement; (c-1): Plot of phase from Figs. 11(a-1)
and 11(a-2) in 255th column; (c-2): Plot of phase from Figs. 11(b-1) and 11(b-2) in 200th

column.

Fig. 12. Real fringe pattern in projection fringe 3D measurement. (a): Fringe pattern of
human face; (b): Fringe pattern of plastic box.
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Fig. 13. Phase results by phase shift, FT and DNN methods. (a-1):Phase shift method for
Fig. 12(a); (a-2):FT for Fig. 12(a); (a-3):Proposed DNN method for Fig. 12(a); (b-1):Phase
shift method for Fig. 12(b); (b-2):FT for Fig. 12(b); (b-3):Proposed DNN method for
Fig. 12(b); (c-1): The plots of 255 row of Figs. 13(a-1), 13(a-2) and 13(a-3); (c-2): The
plots of 255th column of Figs. 13(b-1), 13(b-2) and 13(b-3).

To further investigate the performance of the proposed method in dynamic fringe projection
3D measurement, the experimental fringe patterns are captured by CMOS camera with frame
rate of 100Hz under the scenario of hand motion and tested. The phase of the set of fringe
patterns is retrieved by the proposed method and FT method, respectively. The trained network
is the same to that used for Fig. 13. Figure 14 shows the experimental fringe patterns of hand
under motion with 6 different time. Figure 15 shows the reconstructed phase from fringe patterns
at 6 different times by using the proposed method and FT method respectively. As seen, the
proposed method preserves more details of the phase results than FT method, and the results
by the proposed method are reasonable than that by FT method such as in the fingers of hand.
As to the computation efficiency, once the model is loaded in one time, it can predict a set of
images without repeated loading time, thus it achieves the fringe part extraction with 0.05s per
fringe pattern with size of 512×512 pixels. In contrast, the tradition methods such as FT method
require repeat computation for each of the image set. Therefore, the proposed method is more
suitable for dynamic phase retrieval for dynamic fringe projection 3D measurement.
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Fig. 14. The experimental fringe pattern of hand under motion with 6 different time.

Fig. 15. Phase results of hand under motion at 6 different times by FT method and DNN
method.
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4. Conclusion

Phase retrieval from single frame fringe pattern remains one of the most challenging open
problems in fringe projection 3D measurement. In this paper, the label enhanced and patch
based deep learning phase retrieval approach is proposed to achieve a good performance both in
accuracy and computation efficiency by learning the mapping between the input fringe pattern
and output desirable fringe part with DNN. Different from previous work, this method can
effectively denoise and enhance the fringe part to improve the accuracy of phase extraction results
for objects with edges. In the proposed method, the real fringe pattern and the corresponding
denoise fringe part are as the input data and output labeled data of the DNN, so that the trained
network can predict an enhanced fringe part of the given fringe pattern. More importantly, we
firstly demonstrate that the advantages of patch strategy that cropping the original fringe pattern
into more overlapped patches can expand the samples. Experimental results demonstrate that the
proposed DNN with patch strategy can extract fringe part with the training dataset with a few
fringe patterns. Compared with FT method, The effectiveness of the proposed method is verified
by experimentally obtained fringe pattern in the scenarios of human face, hand in motion and
the results shown that the proposed method can effectively preserve the edges of 3D object in
phase retrieval with a fast and accurate result. This works may benefit for other phase retrieval
problems such as in digital holography where labeled data is difficult to obtain. In addition, since
our work attributes a manner of phase retrieval in terms of training data, which can be extended
to other DNNs such as U-Net and ResNet for improving phase retrieval results.
Since our method learns the mapping from the input fringe pattern and output labeled fringe

part under experiments, one can improve the performance of proposed method by considering
removing nonlinear error in the labeled data in future work. One can also improve the performance
by denoising the labeled data with a more effective filtering method to deal the cases where the
speckle noise with high noise level existed in fringe pattern or objects with abrupt changes and
tiny details.
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