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Equilibrium states on higher-rank Toeplitz non-commutative solenoids

Abstract

We consider a family of higher-dimensional non-commutative tori, which are twisted analogues of the
algebras of continuous functions on ordinary tori and their Toeplitz extensions. Just as solenoids are
inverse limits of tori, our Toeplitz non-commutative solenoids are direct limits of the Toeplitz extensions
of non-commutative tori. We consider natural dynamics on these Toeplitz algebras, and we compute the
equilibrium states for these dynamics. We find a large simplex of equilibrium states at each positive
inverse temperature, parametrized by the probability measures on an (ordinary) solenoid.

Disciplines
Engineering | Science and Technology Studies

Publication Details

Afsar, Z., An Huef, A., Raeburn, |. & Sims, A. (2019). Equilibrium states on higher-rank Toeplitz non-
commutative solenoids. Ergodic Theory and Dynamical Systems, Online First 1-32.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/3206


https://ro.uow.edu.au/eispapers1/3206

EQUILIBRIUM STATES ON HIGHER-RANK TOEPLITZ
NONCOMMUTATIVE SOLENOIDS

ZAHRA AFSAR, ASTRID AN HUEF, TAIN RAEBURN, AND AIDAN SIMS

ABSTRACT. We consider a family of higher-dimensional noncommutative tori,
which are twisted analogues of the algebras of continuous functions on ordinary
tori, and their Toeplitz extensions. Just as solenoids are inverse limits of tori, our
Toeplitz noncommutative solenoids are direct limits of the Toeplitz extensions of
noncommutative tori. We consider natural dynamics on these Toeplitz algebras,
and compute the equilibrium states for these dynamics. We find a large simplex
of equilibrium states at each positive inverse temperature, parametrised by the
probability measures on an (ordinary) solenoid.

1. INTRODUCTION

Classical solenoids are inverse limits of tori. There are noncommutative ana-
logues of tori, which are the twisted group algebras C*(Z", o) of the abelian group
Z". For n = 2, these are the rotation algebras Ay generated by two unitaries U, V
satisfying the commutation relation UV = e*®VU. When 6 is irrational, these
are simple C*-algebras, and have been extensively studied (see, for example, [10,
Chapter VI]). For # = 0, we recover the commutative algebra C(T?), and hence
the Ay are also known as “noncommutative tori.” In [24], Latrémoliere and Packer
studied a family of noncommutative solenoids that are direct limits of noncom-
mutative tori. (The connection is that the commutative algebra of continuous
functions on a solenoid is the direct limit of the algebras of continuous functions
on the approximating tori.)

Following surprising results about phase transitions for the KMS states of the
Toeplitz algebras of the ax + b-semigroup of the natural numbers [21, 19], many
authors have studied the KMS structure of Toeplitz extensions in other settings.
Typically, these Toeplitz extensions exhibit more interesting KMS structure. This
recent work has covered Toeplitz algebras of directed graphs and their higher-
rank analogues [15, 16, 7, 13, 8] (after earlier work in [11]), Toeplitz algebras
arising in number theory [9], the Nica-Toeplitz extensions of Cuntz-Pimsner al-
gebras [19, 17, 18, 1, 4], and Toeplitz algebras associated to self-similar actions
22, 23]. In [6], Brownlowe, Hawkins and Sims described Toeplitz extensions of
the noncommutative solenoids from [24], and considered a natural dynamics on
this extension. They showed that for each inverse temperature 8 > 0, the KMSg
states are parametrised by the probability measures on a commutative solenoid
which is the inverse limit of 1-dimensional tori [6, Theorem 6.6].
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Here we consider a family of higher-rank noncommutative solenoids and their
Toeplitz extensions. As for the algebras of higher-rank graphs [16], there is an
obvious gauge action of a torus T? on these algebras, but to get a dynamics one
has to choose an embedding of R in the torus. We fix r € [0,00)?, giving an
embedding t +— € of R in T¢ and compose with the gauge action to get a
dynamics o”.

The building blocks in [6] are Toeplitz noncommutative tori in which one gen-
erator U is unitary, the other V is an isometry, the relation is still given by
UV = VU, and the dynamics fixes U. Here we fix d,k € N. Our blocks
By are Toeplitz noncommutative tori generated by a unitary representation U of
7% and a Nica-covariant isometric representation V of N*, and the commutation
relation is given by U, V, = e*™ 0V U, for a fixed k x d matrix  with entries
in [0,00). Then the dynamics o is given by a vector r € (0,00)*; it fixes the
unitaries U,,, and multiplies V), by e’

We begin by describing the direct system of Toeplitz noncommutative tori whose
limit is the Toeplitz noncommutative solenoid of the title. Everything is defined in
terms of presentations of the blocks: building the connecting maps is in particular
quite complicated, and requires us to be careful with the notation, which we try
to keep consistent throughout the paper. We then discuss the dynamics, which
is again defined using actions on the individual blocks. Then, remarkably, we
have a presentation of the direct limit which allows us to state our main result as
Theorem 2.7. This gives a satisfyingly explicit description of the KMSg states in
terms of measures on a commutative solenoid of the form lim T¢. This concrete
description is new even in the case k = d = 1 studied in [6].

The first step in the proof of our theorem is an analysis of the KMS states of
a building block By, which we do in §3. The description in Proposition 3.7 looks
rather like the descriptions of KMS states on graph algebras in [15, Theorem 3.1]
and [16, Theorem 6.1], and on algebras associated to local homeomorphisms in
[2, Theorem 5.1]: we find a subinvariance relation which identifies the measures
on the torus associated to KMS states, and then describe the solutions of that
relation in terms of a concrete simplex of measures.

In the next section (§4), we show how the subinvariance relations for the build-
ing blocks combine to give one continuously parametrised subinvariance relation
for the direct limit (Theorem 4.1). We then describe the solutions to this new
subinvariance relation in Theorem 5.1, which is the key technical result in the
paper. This solution is very concrete, involving a formula which is reminiscent
of a multi-variable Laplace transform, and is much more direct than the ad hoc
approach used in [6].

In the last section, we give a concrete description of the isomorphism pu +— 1,
of the simplex P(lim T¢) of probability measures on the solenoid onto the sim-
plex of KMSjs states on the Toeplitz noncommutative torus. Then by evaluating
these KMS states on generators, we arrive at the explicit values described in The-
orem 2.7.

2. TOEPLITZ NONCOMMUTATIVE SOLENOIDS

We define a Toeplitz noncommutative solenoid as the direct limit of a sequence
of blocks, which we call Toeplitz noncommutative tori. So we begin by looking at
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these blocks. In the course of this section we will introduce notation which will
be used throughout the paper.

First we fix positive integers d and k. We write AT for the transpose of a
matrix A. We view elements of R* as column vectors, and write the inner product
of n, p € R* in matrix notation as p’n. We use similar conventions for R%.

The pair (ZF,N¥) is a quasi-lattice ordered group in the sense of Nica [25].
Indeed, for every p,q € N*, the element p V ¢ defined pointwise by

(pVq); =max{p;,q;} forl1<j<k

is a least upper bound for p and ¢, so it is lattice-ordered. An isometric represen-
tation V : N¥ — B(H) is Nica-covariant if it satisfies

VoV VaVy = VivaVivg
or equivalently [20, (1.4)] if
Vp*vq = V(qu)—pV(*

pVq)—q

for all p,q € N,

for all p, ¢ € N,

For 6 € M. 4([0,00)), we consider the universal C*-algebra By generated by a

unitary representation U of Z? and a Nica-covariant isometric representation V' of
N¥ such that

(2.1) UnVp = ezmpTen%Un for p,q € N¥ and n € Z¢.
We then have also
(2.2) Unvp* — (V;?U_n)* — (6_2mpT9(_n)U_an)* _ 6_2mpT9nV;Un.

Direct calculation shows that for p, q,7’, ¢ € N¥ and n,n’ € Z¢, we have
VU VeV U Vi = VU Vigur) Vi) Un Vi

e2mil(avr' —a) T on+(qvp' :tJ)TGW’){/;DJr (avp')—aUn+n' Vg 4 (qup)—pts

and we deduce that
By = span{ VU,V : n € Z% and p, q € N*}.

We call By a Toeplitz noncommutative torus.

Now we move on to noncommutative solenoids. First we need some more con-
ventions. We write S¢ for the compact quotient space R?/Z?, and view functions
f € O(S?) as Z4-periodic continuous functions f : RY — C. We write M (S)
for the set of positive measures on S? and view measures p € M (S?) as positive
functionals f — fol fdpon C(SY). Then ||p|| := u(S?) is the norm of the corre-
sponding functional, and P(S?) := {u € M(S?) : ||u|| = 1} is the set of probability
measures.

We consider three sequences of matrices {6,,} C My 4(]0,00)), {Dm} C M(N),
and {E,,} C My(N) such that: each D,, is diagonal with entries larger than 1;
each FE,, has det F,,, > 1; and

(2.3) D01 By =6, form>1.
We choose a sequence {r"} = {(r")} of vectors in (0, 00)* satisfying
(2.4) "t =D ™ form > 1

Notice that both sequences are determined by the first terms 6, € M 4(]0, 00))
and 7! € [0, 00)*.
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Example 2.1. We fix N > 2, andset d =k =1, D,, = E,, = N for m > 2,
0, € (0,00) and 6,, = N~20"=Dg, Taking the equivalence classes of the 6,, in
S = R/Z yields an example of the set-up of [6] except that we are insisting that
0, = N20,,,1 as real numbers, not just as elements of S. This has the consequence
that 6,, — 0 as m — oo, which need not happen in the situation of [6]; but see
Remark 2.2 below.

Remark 2.2. Our hypothesis that D,,0,,.1FE,, = 6,, exactly, and not just modulo
7%, seems to be crucial in our arguments. Specifically, to assemble the sequences
of KMS states that we will construct on the approximating subalgebras B,, into a
KMS state on B, we will need to show that the associated probability measures
Vpm (see Proposition 3.7(a)) intertwine through the maps induced by the ET. We do
this in Lemma 6.2, and we indicate there the step in the first displayed calculation
where it is critical that D,,0,,11F,, = 0,, exactly. This prompted us to review
carefully the arguments of [6] and we believe that those arguments also require
that N26,,,1 = 0,, exactly. Specifically, the calculation at the end of the proof of
[6, Theorem 6.9] implicitly treats 6; as an element of R (there are many solutions
to Nfy = 6; in S). Similarly the formulas in [6, Section 8] that involve setting
r; = B/(N?6;) only make sense if 6; is an element of R. In particular, in the final
displayed calculation in the proof of [6, Lemma 8.1], it is critical that N?6;,1 = 6;
exactly.

For each m there is a Toeplitz noncommutative torus B,, := By, with generators
Um.n and V,,,, such that: U : n+— U,,, is a unitary representation of Z8V ip—
Vinp is a Nica-covariant isometric representation of N*, and the pair U, V satisfy
the commutation relation (2.1) for the matrix 6,,.

Next we use the matrices D,, and F,, to build homomorphisms from B,, to

Byt

Proposition 2.3. Suppose that m s a positive integer. Then there is a homo-
morphism T, @ By — By such that mp(Upnn) = Uns1,gn and 7 (Vin,) =
Vm+1,Dmp-

Proof. We define U : Z¢ — B, by U, = Upi15,m and V : NF — B,
by V, = Vit1.p,.p- Then since D, and FE,, have entries in N, U is a unitary
representation of Z¢ and V is an isometric representation of N

We claim that V is Nica-covariant. To see this, we take p,q € N*. Then Nica
covariance of p — V11, implies that

* * * *
(2.5) VoV VoV = Vins1,00pVins1,0,p Vit 1,Dina Vi1, D1g

= m+17(Dmp)\/(DmQ)V;L-i‘l,(Dmp)\/(qu)'

Now recall that D, is diagonal', with diagonal entries d,, ;, say. Then for 1 < j <
k we have

((Dwp) V (Ding)); = max{(Dyp);, (Dinq);} = max{du.;pj, dm.;¢;}

IThis is crucial here. For example, consider

o~ 1)

Then De; = ey, Deg = e1 + €3, €1 V eg = €1 + ea, and D(ey V ea) = 2e1 + e5 is not the same as
(Del) vV (Deg) =e1 + ea.
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= dyn g max{p;, ¢;} = din; (P V ),
= (Dn(pVq));-
Thus
Vit 1(Dup)V(Dig) = Vint1.0mova) = Vava,
and (2.5) says that V is Nica covariant.

We next claim that U and V satisfy the commutation relation (2.1). We take
n € Z4 and p € N¥, and compute using the commutation relation in B,,;:

Un‘/p - Um—&-l,Eman—f—l,Dmp

27ri(Dmp)T9m1 Emnv

=e€ m+1,DmpUm+1,Emn

27ipT (D Omy Em)n
= 2" (Dmbmy Em) mA1,DmpUm+1,Enn

— 2" 0mn Y [ using (2.3).
Now the universal property of B,, gives the desired homomorphism 7,,. U

Remark 2.4. Although we don’t think we use this anywhere, the homomor-
phisms 7, are in fact injective. One way to see this is to use the Nica covariance
of n — V., to get a homomorphism 7y, : T(N¥) — Bym, and interpret (2.1)
as saying that (my, ,U,,) is a covariant representation of a dynamical system
(T (NF), Z%, ™) in the algebra Bgm. Then Bgm has the universal property which
characterises the crossed product T(N¥) x,m Z? and we can deduce from the
equivariant uniqueness theorem for the crossed product (for example, [26, Corol-
lary 4.3]) that the representation

T D Em “= TVp410Dm A (Um+1 e) Em)
of TF(NF) xtym Z% in T*(NF) Xt ms1 Z% is faithful.

We now define our higher-rank Toeplitz noncommutative solenoid to be the
direct limit
(2.6) B, = lig(Bm,wm).

meN

We write 7, « for the canonical homomorphism of B,, into B,. To ease notation
we also write U, ,, for the image 7, o (Up,,n) in Boo.

Now we use the vectors ™ € (0,00)* from our set-up to define the dynamics
we propose to study.

Proposition 2.5. There is a dynamics o : R — Aut By, such that
(2.7) t(VinpUnn Vi o) = €00V U Vi .

)Trm

Proof. Since U, and V) : p — e“”TTmem satisfy the same relations in B,, as U,,
and V,,, there is a dynamics o’ : R — Aut B,, such that
" (Vi pUmaVing) = €O Vo y U Vi -

)TTm

. m—+1 .

We claim that 7, oay™ = aj ~ om,. To see this, we compute on generators.
First, for n € Z* we have

Tm+1 Tm+1

Qy (ﬂ-m(Um,n)) =y (Um+1,Emn) = Um+1,Emn
= T (Unpn) = Wm(agm(Um,n)).
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Second, for p € N¥, and using the relation (2.4) at the crucial step to pass from
r™ 1 to r™, we have

& (T (Ving)) = @™ (Vig1.0yp) = €PmP b

= eitpTDmeHWm(vm,p) = eitpTTmﬂ—m(vm,P)

= Wm(afn(vm,p))'
Now the universal property of the direct limit implies that for each t € R, there
is an automorphism oy of B, such that a; 0y, 00 = Tmeooal . The formula (2.7)
(which implicitly involves the homomorphisms 7, «,) implies that t — a; is a
strongly continuous action of R on B. U

Our goal is to describe the KMS states of the dynamical system (B, ). But
first we pause to establish some conventions about probability measures on inverse
limits.

Remark 2.6. All measures in this paper are positive Borel measures. We view
probability measures on a compact space X as states on the C*-algebra C(X) of
continuous functions. We write P(X) for the set of probability measures on X.

When {hm c Xpy1 — X m e N } is an inverse system of compact spaces
with each h,, surjective, the inverse limit l'gl(Xm,hm) is also a compact space.
We write h, o for the canonical map of X := Um(X,,, h,,) onto X,,, so that
we have hy,, o0 = Iy © Appt1.00 for all m € N The maps hy, o induce maps Ay, cox
on measures: if u is a probability measure on Xo, then f, 1= Apyoox(pt) is the
measure on X, such that

| tdim= [ (Fohma)dn tor e,

Conversely, because each h,, is surjective, for any sequence of probability measures
{tm € P(X,,) : m € N} such that p,, = hppu(fmy1) for all m there is a probability
measure p € P(Xy) such that ji,, = Ry, cox(pt) for all m (see [5, Lemma 6.1], for
example). Thus the simplices P(l&n Xn) and @P(Xm) are canonically isomor-
phic.

To state our main result, we need to observe that, because the entries in the
E,, are integers, multiplication by EZ on R? maps Z? into Z? and hence induces a
homomorphism ET of S = R?/Z? onto itself. We show that the KMS states are
parametrised by the probability measures on the inverse limit T&H(Sd, EL), which
is an ordinary solenoid. We write Eg;oo for the projection of @(Sd, ET) on the
mth copy of S¢, so that we have

El =E'oET

miloo for m €N
The main theorem of this paper is the following; we prove it at the end of the

paper.

Theorem 2.7. Suppose that u € P(l'&l(Sd,Eﬁ)) and B > 0. Let {pm} be the

corresponding sequence of probability measures on S*. For m € N and n € N¢, we
define the moment M,, (1) to be the number

Monlp) = [ () = [ RO (o)
5¢ ljm(S%, BF)
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Then there is a KMSg state 1, on (Bs,a) such that

k
m Brir
2.8 Vo, U V) = —BpTr || J M, ().
(2.8) Vu(VinpUmnVing) = Op g€ j:1ﬂrgn_2ﬂi(9%n)j (1)

The map p — 1, is an affine homeomorphism ofP( @(Sd, Eﬁ)) onto the simplex
KMSs(Bw, ) of KMSp states.

Remark 2.8. As a reality check, we take p = ¢ = 0 and n = 0. Then V,, ,Up, V5, ,
is the identity 15, = 1p_, and our formula collapses to ¥, (1) = 1.

Remark 2.9. It is interesting to set d = k = 1 and compare the formula (2.8)
with the formula (6.4) in Theorem 6.9 of [6], which on the face of it looks different.
The point is that the integral on the right-hand side of [6, (6.4)] is with respect
to the subinvariant measure associated to the probability measure p, which in our
notation would be v, . There is no specific description for this measure in [6]:
they get an isomorphism of the simplex P(lgl S) onto the simplex of subinvariant
measures by specifying it on the extreme points (see [6, Lemma 8.2]). We reconcile
the two approaches in Remark 5.4.

3. EQUILIBRIUM STATES ON A TOEPLITZ NONCOMMUTATIVE TORUS

In this section, we fix 6 € M, 4([0,00)), and investigate the KMS states on the
Toeplitz noncommutative torus By.

For n € 74, we write g, for the character on S? given by g,(z) = €™ and
L C(S?) — C*(Z%) C By for the isomorphism such that c(g,) = U,. Then we
have

By = span{V;jL(f)Vq* feC(SY,p,q € Nk}.
For y € R? we define R, : 8" — S? by R,(x) = x +y. Later, we will also write R}

for the automorphism of C(S?) given by Ry f = fo Ry, and Ry, for the dual map
on measures defined by

/dey* /R* )dp = /foR dp.

The assignment y — R; is a strongly continuous action R of R? on C(S%), and
each Ry, is norm-preserving.

Lemma 3.1. For f € C(S%) and p € N* we have
(3.1) Vorf) = o(f o Rogr,)V, and  VSu(f) = o(f o Rrp) V).

Proof. Since C(S%) = span{g, : z — ¥ : n € Z%), it suffices to check (3.1)
for f = g,. Let n € Z%. Then (2.1) gives
va L(gn) — ‘/pUn — e—27ripT0nUn‘/;) — 6—27ripT9nL<gn)V;7.
Since
—2mipTon

—2mipTon 2mizTn
gn(x) =¢ 2mip” On o2 = gn(z — HTp) = (gn 0 R_g7p) (),

the first equality follows. The second follows from a similar computation us-
ing (2.2). O

e
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Remark 3.2. The minus sign in the first identity in (3.1) is crucial. As a reality
check, notice that the signs in the two formulas have to be different, because
V'V, = 1 means the +67p have to cancel. As a corollary, note that VuV,y, which is
a proper projection, commutes with the ¢(f). (To see that V,V* # 1, we can use
the specific representation of By constructed in the proof of Proposition 3.7(b).)

We now fix r € (0,00)*. The universal property of By gives a dynamics a” :
R — Aut By such that

(3.2) a;(U,) =U, and «af(V,) = eitpT’”V;j forn € Z% p e N* t € R.
Then o (V,U, V") = e@=9""V, U, V¥, and hence
{(V,U.V; :n € Z% p,qe N}
is a set of a"-analytic elements spanning an a’-invariant dense subset of By.
To describe the KMSg states of (Bp,a), it was tempting to apply [3, Theo-
rem 6.1] to the Toeplitz algebra of the commuting homeomorphisms h; : z +— x+6;
associated to the rows ¢; of . That result is in several ways more general than

we need, but has an unfortunate hypothesis of rational independence on the set
{r;} which we prefer to avoid.

Proposition 3.3. Suppose that 8 > 0 and ¢ is a KMSp state of (B, a”). Then
¢ is a KMSp state of (Bp, ") if and only if

(3.3) S(VuUn V) = 8,p0e™ ' "0(Uy,)  forn € Z¢ and p,q € N*.

To prove Proposition 3.3 we need two lemmas. The arguments are based on the
proofs of Lemmas 5.2 and 5.3 in [16].

Lemma 3.4. Suppose that 3 > 0 and ¢ is a KMSy state of (Bp,a"). If p,q € N¥
satisfy p'r = q'r, then

(a) p(V,ULVy) = ¢(VUn V) for n € Z%; and
(b) [&(Vo e(HVP) < &(V, e f)Vy) for positive f € C(S7).
Proof. For (a), since V, is an isometry, we have
s(VU.V,) = o(VUL(Vy V)V ) = o((VULV) ) (VV))),
and since pTr = ¢*'r the KMS condition gives
S(V,Ua V) = e P00 g (VU (VULVE)) = o(V,UL V).

For (b), we take a positive function f in C(S?). By linearity and continuity,
part (a) implies that ¢(V,c(f)V,") = é(V,e(f)V,). Using the Cauchy—Schwarz
inequality at the second step, we calculate:

[0Vl AWVP = [o((Vo l VD Va (v F)))
< o(Vp o)V )0 (Vg e()VY)
= ¢(Vp o (N)V;)*.

Since both sides are the squares of non-negative numbers, we can take square
roots, and we retrieve (b). O

2
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Lemma 3.5. Suppose that B > 0 and ¢ is a KMSs state of (Bp, ). Suppose that
p,q € NF satisfy p'r = ¢*'r and that f € C(S?). Write P := (pV q) —p. Then
(3.4) o(Vo t(HVy) = ¢(Vorp t(f © Rigrp)Vyup)  for alll € N.

If p# q, then ¢(V,, (f)Vy) = 0.

Proof. We prove (3.4) by induction on [. The base case [ = 0 is trivial. Now
suppose that (3.4) holds for [ > 0. The inductive hypothesis gives

d(Vpt(£)V)) = ¢(Vpir t(f © Rigrp)V,\1p)
= ¢( prip t(f o RZGTP)VéZrlquHP ;HP)-

Since the dynamics o” fixes the element Vi1pV,';p, the KMS condition implies
that

d(Vor(FI)V) = d(Varar Vi 1p Vo L(f © Rigrp)Vy'y1p)
and Nica covariance gives
o(Vo (V)
- ¢( Vs Vig+ip)yvp+ip)) - (q+lP)V(?q+zp)v(p+zp))—(p+zp) (fo Rpr)Vqup).

For ¢ € N*¥ we have (p+c¢)V (¢+¢) = (pV q) + c. Thus

d(Vo t(H)V) = d(VarirVipva)-aVipvg)—p 1(f © Rigrp) V1)
= &(Vipvay 11 Vi o f © Rigrp)Viip)

= (Vipvgy+ip t(f

= (Vorarnyr LS © Rusnorp)Vyyainyp)

because (pV q)+ 1P = p+ (I+1)P. This completes the inductive step, and hence
the proof of (3.4).

Now suppose that p # ¢. Then at least one of P and (pV ¢q) — ¢ is nonzero. We
argue the case where P # 0, and the other case follows by taking adjoints. For
[ € N we have

19(Vp l’(f)‘/q* | = |¢(Vp+1P u(fo RZGTP)V:;*«HP)‘
< ¢( rip L(f o Rpr)V;:rlp) by Lemma 3.4(b)
= e 2D (Vb Voipt(f © Rigrp))
— —5(p+lP)Tr¢< (fo RwTP))

< e POHP £ o,

o Rigrp © Rgrp)V, 111yp) by Lemma 3.1

Since P > 0 and r € (0,00)*, we have (p + IP)Tr — oo as | — oo, and hence
e PPHIPTr|| £l o — 0 as 1 — oo. Thus ¢(Vj,¢(f)V;") = 0. O

Proof of Proposition 3.3. First suppose that ¢ is a KMSg state for (By,a”). For
n € Z¢ and p, q € N¥, two applications of the KMS condition give

(3.5) (VU Vi) = e P T o(U, Vi V,) = e P00 g(V,U, V).
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It follows immediately that if (p —q)"r # 0, then ¢(V,U,V;*) = 0. If (p—q)"r =0
but p # g, then Lemma 3.5 gives ¢(V,U,V,) = 0. This combined with the first
equality in (3.5) gives

SV U V) = 8p0e P T (U V, V) = 8,00 (U

because V), is an isometry. This is the desired formula (3.3).

Now suppose that ¢ is a state satisfying (3.3). Since the V,U, V" are analytic
elements spanning a dense o’ -invariant subspace of By, it suffices to fix p,q,b,c €
N¥ and n,n’ € Z%, and show that

(36) ¢<‘/10Un‘/q*‘/bUn/‘/c*) - 6_B(p_Q)TT¢(%Un"/;*%Un‘/;).

Let P := (¢Vb) —band Q := (¢Vb) —q Then P,Q € NF are the unique
elements such that P A Q =0 and P+ b = ) + ¢, and Nica covariance says that
ViV = VpVp. Now we calculate, using first the identities (2.1) and (2.2), and
then (at the last step) the assumption (3.3):

(VU VoVoUn ViE) = d(VUn Vo ViU Vi)
= Q0 (1 (VU VU V)
= @G (Vg pUnir Vi)

— Ty 27i(QT on+PTon’

(3.7) = 00 4p.Pice BlQ+p) T 2mi(Q7 On+ P76 )¢(Un+n')-

Similarly, let M := (¢ V p) —p and N := (cV p) —c. Then M, N € N¥ are the
unique elements such that M AN =0 and M +p = N + ¢, and the right-hand
side of (3.6) is

6_6(p_q)Tr¢(%Un’VNVJ\ZUn‘/;()
= e’ﬁ(p’q)TTeQm(NTH"UrMTen)<Z5(Vb+NUn+n/tiM)

(3.8) _ 5N+b,M+q€_B(p_Q+b+N)TT€2m(NT9n,+MTgn)¢(Un+n/)-

To see that (3.7) is equal to (3.8), we first show that the two Kronecker deltas
have the same value. For this, observe that by definition of M, N, P, (), we have

(P+0)+ (N +¢)=(Q+q)+(M+p),

and consequently (N +b) — (M +q) = (Q +p) — (P +c¢). Thus dg4ppic = 1if
and only if dn4prr+q = 1. So it now suffices to prove that (3.7) equals (3.8) when
Q+p=P+cand N+b=M +q.

We first claim that M = () and N = P. By assumption, we have M +q = N +b,
and we have P+ b = () 4+ g by definition of P, (). Subtracting these equations, we
obtain M — @ = N — P, and rearranging gives M — N = () — P. Since PAQ =0
and M AN = 0, we deduce that Q@ = (Q — P)V0= (M — N)V 0= M, and then
P = N too, as claimed.

We now have
e27ri(QTo9n+PT9n’) _ 62m’(MT0n+NT6n’)
- )

and so it remains to check that

e Blo—a+o+N)Tr _ —B(p+Q)Tr
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For this, we apply N = P, from above, at the second equality and b+ P = ¢+ @,
by definition of @), P, at the third to get

=)+ O0+N)=p+(b+N-q)=p+(b+P—q)
=p+@+Q@—q =p+Q,
which gives the result. Thus ¢ is a KMSg state. U
Lemma 3.6. Write 0; for the jth row of 6. Then the series

(3.9) > e Ryr,

pENFK
converges in the operator norm of B(C(S%)) to an inverse for Hle(id —e P RQJ_T*).

Proof. We first need to understand the sum (3.9), which we want to calculate as
an iterated sum. So we interpret (3.9) as a B(C/(S?))-valued integral over N¥ with
respect to counting measure o (for which all functions on N¥ are measurable).
Since each Ryr, is norm-preserving, we have

k
o S | Cd

j=1
By Tonelli’s theorem, we have
[os] 9] k
Z ”e_/BpTTRGTp* = Z T Z <H€_ﬁpjrj>
peNF ’ Pr=0 p1=0 j=1
00 [e%9) k IS
= Z - Z <H€—ﬁpj7”j) ( Z e—ﬁp17‘1>
pr=0 p2=0 j=2 p1=0
o] 9] k
- Z - Z <H6—5Pj7”j)(1 o e—ﬁn)—l
Pr=0 p2=0 j=2

Repeating this £ — 1 more times gives
k

2 Ml By = IO 7

pENk :

Thus the function p — e’ﬁpT"Re_Tp* is integrable with respect to o, and Fubini’s
J

theorem for functions with values in a Banach space (for example, [12, Theo-
rem 11.16.3]) implies that

—ﬁpTT - - i —Bp;T;
S e Ry =33 ([ Byor.)

pENFK pr=0 p1=0 j=1

:]ﬁl<§: (¢ Ryr,) )

;=0
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Writing the infinite sum as a limit of partial sums shows that

(3.10) Y (e R )" (id—e P Ryr,) = id.

p;=0
To simplify the product
k o0 k
(TL(3 ) ) (I 0= 8r.)
j=1 p;=0 J=1

we write the left-hand product from j = k to 7 = 1, and the right-hand one from
j =1to j=k. Now k applications of (3.10) show that the product telescopes to
the identity id of B(C(S?)). O

The next proposition is an analogue of [16, Theorem 6.1] and [3, Theorem 6.1].

Proposition 3.7. Fiz € (0,00).
(a) Suppose that ¢ is a KMSs state for (Bg,a"), and let v € P(S%) be the
measure such that

Su()= [ fav forfeC()

Suppose that F' C N¥ is a finite set such that p # q € F implies p A q = 0.
Then the measure v satisfies the subinvariance relation

(3.11) [T (id—e """ Ryr,..) (v) > 0.

peEF

(b) Define ys := 3 cnn e PP and suppose that k is a positive measure on S%
with total mass ygl. Write 0; for the jth row of 6. Then

k
V=1, = H (id —e_ﬁ’”jjo*)fl(/i)
j=1

is a subinvariant probability measure, and there is a KMSsz state ¢, of
(Bg, ") such that

(3.12) oo (Vo t(f)V)) = pyqe_ﬁpTT fdv forp,qe N and f € C(S%).
Sd
(¢) The map k — ¢y, is an affine isomorphism of the simplex
Y, = {positive measures k : ||| = ygl}
onto the simplex of KMSy states of (By,a”).
Proof. (a) We take a positive function f € C(S?), and compute

(3.13) /S Fa(TT e Ror,)w)) = /S o (TTta—e" Ryn,)) dv

peF

_ /Sd ;(_msl (TLe ™) (7o I] Rony ) v

peS peS
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We write ps := > _sp, and observe that [] ¢ e PP = e=PP5T and [les Borp =
RngS. Thus
(3.13) = / > (—1)le=PP5T(f o Ryr,, ) dv
8% scr
_ ¢< S (—1)$le P (f o R(;TPS)V;;VPS> since V2 Vi, = 1
SCF
— ¢< Z(—1)|5|‘/psb(f o RngS)Vp*S> by the KMS condition
SCF

= o( DIV by (3.).

SCF

Because the set F' has the property that p A ¢ = 0 for p # ¢ € F, Nica covariance
gives V2V Vo Vr = Vi Vi gV, for p # q € F. Thus for each S C F, we

pVg p+q
have V, Vo = [[,cs VoV, and
D (D) =T = Vv
SCF peF

The latter product is a projection, and it is fixed by the action . Hence another
application of the KMS condition gives

/Sd fd< H(id —e_ﬂpTTReTp*)<l/)> — ¢( H<1 _ Vpr*)L(f)>

=o((TTa-%¥)) )
=o( [Ta-vvun I -vv)).

This last term is positive because the argument of ¢ is a positive element of By,
and this proves (a).
(b) We have

[ (id=e"Ry.)(v) =k >0,
j=1
so v is subinvariant. By Lemma 3.6 we have

(3.14) /Sd ldy = /Sd 1 d( 3 e_ﬁpTRng*(/{)>

peENE
= Z 6’6PTT/ 1OR9Tpd/€
pENFK §¢
_ 4,7
= e k| = ysllsll = 1,
pENFK

and hence v is a probability measure.

We will build a KMSg state using a representation of By on ¢*(N*) @ L*(S?, k).
Recall that we write g, for the trigonometric polynomial g,(z) = e?miw’n  Then
the formula W, f := g,f defines a unitary representation W of Z? on L?*(S%, k).
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Write {8, : p € N¥} for the orthonormal basis of point masses for (2(N¥), and let
D,, be the bounded operator such that D,d, := ¢>™' %5, Then D is a unitary
representation of Z¢ on (2(N¥), and hence D ® W is a unitary representation of
Z% on (?(N*) @ L*(S%, k).

Let T be the usual Toeplitz representation of N¥ by isometries on £2(N¥). Then
we have

(T ®1)(Dn @ Wi ) (4 ® f) = 62qu9n(5p+q ®@ W, f),

and

(D ® Wo)(T, @ 1)(6, ® f) = 0T 00 (5, 0 @ W, f)

= ™" @ 1)(D, @ W,).
Hence the universal property of By gives a representation
7 : By — B(F*(N*) ® L*(S% k))
such that 7(U,) = (D, ® W,,) and n(V,,) =T, ® 1.
Since ZpeNk e PP ig convergent, there is a positive linear functional ¢, : By —

C such that
du(a) =Y e (n(a)(0,®1) | 5, ®1).
peENFK
Then (3.14) implies that ¢, (1) = 1, and ¢, is a state. To see that ¢, is a KMSg
state, we take p,q € N¥, n € Z%, and calculate:

(3.15) b0 (Vip(gn) V') = ¢, (VoULV)
=Y e (D@ W) (T;0, 1) | 6, @ 1)
beNk
— Z e—BbTr (627ri(b—q)T9n5b_q ® gn | 6b—p ® 1)
b>pVq
e 5]),(] Z e—ﬂbTre%ri(b—p)Ten <gn | 1)
b>p
— Ty 2mibTon
:5@(1(26 B(btp)Tr 2mibT )/Sdg"d'i'
beNk

In particular,

316 le) = ol = (e e ) [ g

beNk 54
Thus
* — TT‘
¢z/(‘/pUnV:1 ) = Opgq€ op ¢V(Un)7
and ¢, is a KMSg state by Proposition 3.3.
From (3.15), we have

5 Un — —,BbTr/ 27ri(a:+bT9)Tnd
¢ (U) Z e Sde k()

beNk

- Z e_BbTr/ gn © Rory dr
Sd

beNk
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/ gad( Y e Ry (),

beNk
which by Lemma 3.6 is fsd gn dv. Thus

OVt V;) = B "0, (000)) = " [ g0

Since C(S%) = span{g, : n € Z4}, (3.12) follows from (3.16) and the linearity and
continuity of ¢,.

(c) We first observe that both maps k — v, and v — ¢, are affine, and hence
so is the composition. To see that the composition is surjective, we take a KMSg
state ¢, restrict it to the range of ¢ to get a measure v, and take

k
K= H (id —e”B’”ﬂjo*)(z/).
j=1
Then the formula (3.3) implies that ¢ and ¢,, agree on the elements V,i(f)V",
and hence by linearity and continuity on all of By. Thus ¢ = ¢,,.. The procedure
which sends ¢ to x is weak™ continuous and inverts x — ¢, . Thus it is a con-
tinuous bijection of one compact Hausdorff space onto another, and is therefore a
homeomorphism. Thus so is the inverse kK — ¢,, . U

4. THE SUBINVARIANCE RELATION FOR THE DIRECT LIMIT

We now return to the set-up in which the dynamics a on the direct limit B is
given by a sequence {r™}.

Suppose that ¢ is a KMSg state of (Bs, @) and v, are the measures on S? that
implement the restrictions of ¢ o 7, « to C(S?) C B,,. Since the embeddings 7,,
are all unital, so are the m,, . Thus for each m, the restriction ¢ o 7, o is a
KMS; state of (B,,, ™), and hence is given by a probability measure v, which
satisfies the subinvariance relations for § = 6,, in (3.11) parametrised by subsets
F of {1,...,k}. But here, since ¢ 0 T 00 = ¢ O Tntico © Tinmtr for I € N, the
measure v, satisfies a sequence of subinvariance relations parametrised by [ as
well as F'. Our first main result says that these can be combined into one master
subinvariance relation with real parameters s € [0, 00)*.

We now describe our continuously parametrised subinvariance relation. For
k =1 this follows from [6, Definition 6.7 and Theorem 6.9].

Theorem 4.1. Suppose that ¢ is a KMSs state on (B, ) and m € N. We write
Lm for the inclusion of C(S?) in B,,, and then

tm(C(S%)) = span{U,,,, : n € N}.

Let v,, be the probability measure on S such that
(11) 60 Tmoclin(F) = [ i for f & CE.
Sd

Write 0, ; for the jth row of the matriz 0,,. Then for every s € [0,00)*, we have

k
(4.2) [T (d=e "R, gr ) (vm) > 0.

j=1
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We prove Theorem 4.1 at the end of this section. We first need two preliminary
results.
The homomorphism 7,, : By, — Byr1 maps 6,,(C(S?)) into ty,1(C(S?)). When
we view ¢, (C(S?)) as span{U,, .}, the homomorphism 7, is characterised by
71—m((]m,n) = Um+17Emn;

when we view 1,,(C(S%)) as {t,,(f) : f € C(S%)}, 7, is induced by the covering
map EL : S* — S¢ and hence we have 7, (4 (f)) = tmyi1(f o ET). In particular,
Tm|csa) is (EL)*: f+ fo EL. The corresponding map on measures is given by
ET .

fana(v) = [ faEL W) = [ (foED v
Sd Sd Sd

Lemma 4.2. Suppose that ¢ is a KMSg state on (By, ). For m € N, let vy, be
the probability measure on S% satisfying (4.1). Then for every finite subset F of
N¥ such that p A q =0 for all p # q € F, we have

[T (id —e 2P Ry o Y () > 0.

peF

Proof. We apply Proposition 3.7(a) to the state ¢ o my41.00 Of (Bpi1, o/mﬂ). We
deduce that

(4.3) [T (id—=e""" Ryr ) (vmia) = 0.

peF

To convert this to a statement about v,,, we want to apply EZL_ to the left-hand
side. We first observe that

(4.4) By o Ryr (1) = Eqpw — Ep 0,0
=ELx— 07D 'p  using (2.3)
- RG’ZLD’;llp o} E,Z;(I‘)

Since EL _ preserves positivity and h +— h, is covariant with respect to composition,
(4.3) implies that

0 < Bn (T (=" Ryr ) (i)

peF

B <H (id _6_5pTrm+1R6£Dr}1p*)> 0 B (Viny1)  using (4.4)

pEF
= H (id— e (Dm)7hT Ryr p-1 p*)(ym) using (2.4)
peF
= H (id —e PtPm n'p)" R%Dr_mlp*) (Vi) O
peF

For a positive integer [, we can apply the argument of Lemma 4.2 to the em-
bedding 7, 41 of By, in B,,4;. This amounts to replacing the matrix D,, with
Do+t = Dpyi—1Dmyi—2 -+ - D1 Dy, B, with a similarly defined E,, 40, Ot
with 6,4, and »™*! with 7™+, We obtain:
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Corollary 4.3. Suppose that ¢ is a KMSs state on (Beo, ), and vy, is the prob-
ability measure satisfying (4.1). Then for every positive integer | and for every
finite subset F' of N* such that p A q =0 for all p # q € F, we have

[T (id—e 2Pl Ry s Y () > 0.

peF

Proof of Theorem 4.1. For each | > 0 and p € N¥, we can apply Corollary 4.3 to
the finite subset F, := {pje; : 1 < j < k} of N*. This gives us the subinvariance
relation

k
. — -1 iej T pm
(4.5) 1_[1 (id —e 7 Pmmscs) Ryp p mejej*)(’/m) > 0.
J:
Each factor in the left-hand side L of (4.5) has the form id —e *R,.. Since
(e Rys) (€t Rype) = e TR, 14, the product (id —e*R,.)(id —e *R,,.) of two
such terms collapses to

id _e_sRv* — e_tRw* + 6_(s+t)R(v+w)*-
Thus we can expand

L—id+ Z (—=1)Cle=FPnimppe) ™ R (Um),

m 'rrL,*rn-‘,—lpG»<
0£Gc{1,...,k}

where pg 1= )i pjej-

For each fixed f € C(S?) and v € P(S?), the function s — [ Rs(f)dv on R*
is continuous, being the composition of the norm-continuous map s — R,(f) and
the bounded functional given by integration against v. We now consider a positive
function f in C(S%): we write f € C(S%),. For s € [0,00)* and G C {1,...,k},
we write sg = D 8j¢j. Then

ga S /fd(eﬁsgrmRegsg*)(Vm)

is continuous, and so is the linear combination

GC{1,....k}

The subinvariance relation (4.5) says that L(s) > 0 for all s of the form D,, ,,+1p
for { > 0 and p € N*.

Since each of the matrices D,, is diagonal with entries d,, ;, say, at least 2, we
have

Dm m—i—lpJeJ - (H dm—l—nj)pjej

Since d,, ; > 2 for all n and 7, the rational numbers of the form (Hf1 d! n J) Dj
are dense in [0,00). Thus the vectors s for which L(s) > 0 form a dense subset
of [0,00)*, and the continuity of L implies that L(s) > 0 for all s € [0,00)F. A
measure v which has [ fdv > 0 for all f € C(S?); is a positive measure, and this
is what we had to prove. U
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5. THE SOLUTION OF THE SUBINVARIANCE RELATION

We now describe the solutions to the subinvariance relation (4.2). We observe
that the formula on the right of (5.1) below is the Laplace transform of a periodic
function, and as such is given by an integral over a finite rectangle. This obser-
vation motivated our calculations, but in the end we found it easier to work with
the trigonometric polynomials z — e,

Theorem 5.1. Let 0 € My, 4(S?), 8 € (0,00) and r = (r;) € (0,00). Denote the
Jth row of 0 by 6;.
(a) For each p € M(S?), there is a nonnegative measure v, € M(S?) such that

(5.1) / fdv, = / e~ Bt flz 4+ 0"w)du(z)dw  for f € C(S?),
sd [0,00)* sd

and v, has total mass ||| H?Zl(ﬁrj)_l. The measure v = v, satisfies the
subinvariance relation
k
(5.2) (id —efﬁsj’"fstng*)(u) >0 fors€[0,00)F.

1

J

(b) For each v satisfying the subinvariance relation (5.2), there is a measure
t, € M(S?) such that

fd(IT= (id —e P55 R gr,)) (v)

for f € C(S?), and p, has total mass ||v|| H?Zl(ﬁrj).

(¢) The map p > v, is an affine homeomorphism of M(S?) onto the simplex of
measures satisfying the subinvariance relation (5.2), and the inverse takes
vV to .

(5.3) fdu, = lim --- lim
Sd

sp—0t 51201 Sg -+ 81 Jsd

Remark 5.2. When we apply Theorem 5.1, the measure p comes from a KMS
state, and hence is a probability measure. The corresponding solutions of the
subinvariance relation (5.2) are the elements of the simplex

k _
gy = {’f € M(Sd) : “(Sd) = Hj:1(ﬁrj) 1}-
This is the analogue for our situation of the simplex Y3 appearing in [3, Theo-
rem 6.1]: because the local homeomorphisms h; :  — = + 6; of S¢ are homeomor-
phisms, the function fs of [3] is the constant function z Hle(ﬁrj), which we
denote by fg, (see Proposition 4.3 in [3]).

Remark 5.3. A measure v that satisfies the subinvariance relation (5.2) also
satisfies the analogous relation involving [, ,(id —e P83 R, gr,) for any subset
Y5

J of {1,...,k}. To see this, observe that for any vector y € [0,00)%, R, is an
isometric positivity-preserving linear operator on C(S?). Hence so are R, and
e 5" R,,. Since the numbers —fr; are negative, the series > efﬁsjrj”RZ*
converges in norm in the Banach space of bounded linear operators on M (S?) to
an inverse for id —e #%" R .. Hence applying this inverse allows us to remove
factors from the subinvariance relation without losing positivity.
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Remark 5.4 (Reality check). We reassure ourselves that the description of subin-
variant measures in Theorem 5.1 is consistent with the description in [6, Theo-
rem 7.1]. There d = k = 1, and they describe the simplex of subinvariant proba-
bility measures by specifying the extreme points of the simplex.

We recall that the matrices D, € M;(N) = N and E,, € M;(N) are all the
same integer N > 2, and the sequence 6, then satisfies N20,,,, = 0,,. In terms
of our generators, the dynamics o : R — Aut B, in [6] is given by

Qi (Vm,p Um,n Vrz,q) = eit(p_q)N_m Vm,’PUm,nVTZ,q

(see [6, Proposition 6.3]), which is our o with ™ = N~™. We are interested
in KMSg states, so the subinvariant probability measures for (B,,, ) are those in
the set denoted Q7 , for r = SN0, = Br™mf. ! (see [6, Notation 6.8]%).

sub
Since the calculation in [6] is about extreme points, we start with a point mass

oy € P(l&l S). Then (EL).d, is the point mass j,, = d,, , where y,, is obtained
by realising y as a sequence {y,,} satisfying Nym,11 = ¥n. Then the measure v,
in Theorem 5.1(a) is given by

00 1
/fduﬂm = / e_Bme/ f(x 4 Onw) dpm () dw
0 0
= / e P F (Y + Opw) dw.
0
For f(z) = e*™"* we get
/fdyum _ eZﬂinym/ efﬁwr”TeZﬂ'inGmw dw,
0
and a change of variables gives
/fdyum — e?ﬂ'inym/ 67,80;11111”7”627@711)(9;1 dv
0
. o0 ma—1 .
_ 627rznym9;1/ 6—(67‘ Om )v62mnv dv.

0

Now we recognise the integral as the Laplace transform of the periodic function
x +— 2™ and hence

(5.4) / fdv,, = 2™yl

In the notation of [6], we set  := Sr™0 1 and rewrite (5.4) as

1

1
— mg—1 )
— / e (Br™0m, )v627rmv dv.
1 — e Prom 0

1
. _ r -~ .
/fdy,um — 627rmym6 le/ e rv€27rzm) dv
0

1—e"
1
— ﬂle/O e2m’m} d(Rym)*<mr>(U)

This shows that the measure v, is a multiple of the measure (R, ).(m,) ap-
pearing in [6, Theorem 7.1]. We are off by the scalar 37! N™ because that theorem

2The displayed equation there is meant to say this, as opposed to r = SN ~™6,,, which is the
way we first read it.
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is about the simplex of subinvariant probability measures, and the measures v, in
Theorem 5.1 have total mass (fr™)~! = g7IN™.

For the proof of Theorem 5.1(a), we need the following lemma, which is known to
probabilists as the inclusion-exclusion principle. We couldn’t find a good reference
for this measure-theoretic version, but fortunately it is relatively easy to prove by
induction on the number & of subsets.

Lemma 5.5. Suppose that X is a finite measure on a space X and {S; : 1 < j <k}
is a finite collection of measurable subsets of X. For each subset G of {1,...,k
we set Sg = (\;cq Sj- Then

MUz S) = - (D9A(S0).

PAGC{1,....k}

)

Proof of Theorem 5.1(a). We first claim that there is a positive functional I on
C(S?) such that I(f) is given by the right-hand side of (5.1). Indeed, the estimate

| / e [l 6Tw) du) du| < / ¢ BT / 1 loodia()deo,
[0700)]‘6 S [(LOO)k Sd

shows that the right-hand side of (5.1) determines a bounded function I : C(S%) —
C. This function I is linear because the integral is linear, and f > 0 implies
I(f) > 0 because all the integrands in (5.1) are non-negative. Thus there is a
finite nonnegative measure v, satisfying (5.1). The norm of the integral is given
by the total mass of the measure v,, which is

- wT’f’
/gdldl/“:/[ )ke Pt )| dw.
0,00

To compute the exact value of the integral, observe that

k
o BT _ B wiry H o Pw;Ts

Jj=1

Thus

k ko oo k
vl = ||MH/ [[e?midw=|ul H/ e~ imidw; = |l [ (8ry) "
[0,00)% 521 j=1"0 j=1

This proves the assertions in the first sentence of part (a).
For the subinvariance relation, we fix f € C(S%),, and aim to prove that

/Sd fd<ﬁ (id —@—BSjrszjgj*)(yu)> > 0.

Jj=1

As in the proof of Theorem 4.1, we write

k
(id—e PRy g.) =id+ Y (=1)%e 6 Ryr, .
=1 D£GC{1<j<k}

J



KMS STATES 21

with sg == > . sje;. For j < k we define S; = {v € [0,00) : v; > s;}, and
Sc = \jeq Sj- Then

(5.5) 5 fd(e_ﬁngRgTSG*)(Vu) = / e~ Psar (f o RQTSG) dv,

Sd

= / e PTre e [ f(a+ 0w + 0T sq) du(x) dw
[0,00) Sd

:/ e @+ 6Tv) du(z) dv.
Sa Sd
Since f is fixed, we can define a measure m on [0, 00)* by
/ gdm = g()e " | fx + 6Tv) du(x) do.
[0,00)% [0,00)F Sd
Now (5.5) says that

TP Ryr ) (v) = m(Se).

Thus

/dfd(f[(id—e-ﬁwsjaj*)w):m<[o,oo>'f>+ S (-1)m(Sa).

S j=1 PDAGC{1<j<k}

By the inclusion-exclusion principle, this is

m([0,00)") = m(Uj_, 8;) = m(ITj_,[0, ;) > 0. O

We now move towards a proof of part (b), and for that the first problem is
to prove that the iterated limit in (5.3) exists. We will work with [ satisfying
1 <[ <k, and show by induction on [ that the iterated limit

lim --- lim
51 —07T s1—0t
exists. We will be doing some calculus, so we often assume that our test functions
f belong to the dense subalgebra C°°(S?) of C(S?) consisting of smooth functions
all of whose derivatives are also periodic.

We begin by establishing that, even after dividing by the numbers which are

going to 0, the norms of the measures remain uniformly bounded.

Lemma 5.6. Suppose that v is a finite positive measure on S satisfying the
subinvariance relation (5.2). Then for each s € (0,00)¥,

Ag 1=

E?r

ld _B_BSjrj RSJ-GJT*) (V)

3k5k LR

18 a positive measure with total mass

k

(5.6) Il < (TIEm) 1wl

J=1
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Proof. The subinvariance relation implies that the measure is positive. For the
estimate on the total mass of \s, we deal with the variables s; separately. So for
1 <1<k, we set
k
o =[] (id =" ™R, or,) (),
j=l

which by Remark 5.3 are all positive measures. We have

/Sdm(

=

(id —e*ﬁsﬂszjg;;*) (V)) = / 1doy

J=1 s

d

:/S 1d((id—e_Bstsle{*)(@))

/10 1d —e 'BSlTIR519T)d02

d

/ e Bsim1 dag
d
k

1 _ e 1 — e Bs1m
67— va(T] (i -7 R, ) ) :/Sde—d"2'

S
sd =1 1

22}

22}

So for all s; > 0,

The integrand here is

_ ,—Bsir1 _
1 «Zl _ f(0) 31f<81> for f(s1) == e77"

Hence for each fixed s; > 0, the mean value theorem implies that there exists
c € (0, s1) such that
1 — g Bs1m
(O = —(=Bre ),

S1

which is a positive number less than 5ry. Thus (5.7) is at most fry||oz]|.
Now we repeat this argument, first to see that
1
1d(id— €_ﬁS2T2R329T )(o3)
Sd

has mass at most @7’2H03H. After k — 2 more steps, we arrive at the estimate (5.6).
U

Lemma 5.7. Suppose that 1 < j < k and that A € M(S?) satisfies
(id —e_ﬁs’"szejT*)()\) >0 foralls>0.

Then for all f € C>(S%), we have

(5.8)  lim (% fd(id—e—ﬂsra‘RsejT*)(A)) = Br, /S fax- /S B7(V)dx

s—0t sd
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Proof. Let g : S x R — C be the function g(z,s) = e 7" f(x 4 s0]). The term
on the left of (5.8) can be rewritten as

l/gd (f(x) — e P f(x + SHJ-T)) d\(x) = 1/Sd(g(x, 0) — g(z,s)) d\(x).

S S

So we want to show that the function G defined by G(s) := [, g(z,s)d\(x) is
differentiable at 0 with —G’(0) equal to the right-hand side of (5.8).
We compute

ag —Bsr; —Bsr;
%(x,s) = —fBrje’ if(z+s0]) +e B 0TV f(x + s67).

The Cauchy-Schwarz inequality for the inner product 67 (Vf) = (6;|Vf) then
gives

0
(5.9) |2 (w,9)| < Brillfllc + 1671211V f  + 567 o

The right-hand side is uniformly bounded on S%, and hence there is an integrable
function on S¢ that dominates the right-hand side for all s € [0, 1], say. Thus we
can differentiate under the integral sign, using Theorem 2.27 of [14], for example.
We deduce that G is differentiable on [0, 1] with derivative

G'(s) = /Sd (= Brie ™ f(z+s0]) + e 7907V f(x + s0])) dA(x).

Taking s = 0 gives the negative of the right-hand side of (5.8), as required. U

Our next step is the inductive argument, which is quite a complicated one. As

a point of notation, for each tuple I = {iy,... 4, } with entries in {1,2,... k},
and for f € C°(S?), we write |I| := m and D;f for the partial derivative
8m
Dyf: /

. E)xil (‘3@»2 ce 8xim '

Lemma 5.8. Suppose that v is a positive measure on S satisfying the subinvari-
ance relation (5.2). Let 1 <[ < k.

(a) The iterated limit

I; e d l' id — —Bsjr;

szl—>n()1+ S1E>I(}+ S;+ 81 /gd f (HJZI(I € stgf*))(y)
exists for all f € C(S?).

(b) Write

S=U {1, R
Then there are real scalars {K} : I € ¥} such that K, = Hézl(ﬁrj),

and: for every f € C(S%) and for every measure v on S¢ satisfying the
subinvariance relation (5.2), the limit in (a) is

(5.10) /S ( 3 K}le) dv.

ey
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Proof. We prove by induction on [ that the limit in (a) exists for every f € C>(S%),
and that there exist the scalars K. Then, since we know from Lemma 5.6 that
the measures A\, are norm-bounded by (H?Zl(ﬁrj)) ||| and C°°(S?) is norm dense
in C(S?), we get convergence in (a) also for f € C(S9).

When [ = 1, the index set X; consists of the empty set () and the one-point sets
{j}. Lemma 5.7 implies that Kj = fry and K{;, = 6 e; = 0.

We fix [ between 1 and k£ — 1, and suppose as our inductive hypothesis that for
every measure A such that
(5.11) (id —e’ﬁsj”szjgjr*)()\) >0 forall s € [0,00),

l
=1

J

we have such scalars { K!} parametrised by I € ¥;. We now have to start with a
measure x that satisfies

1+1

(5.12) H (id —e’ﬁstng*)(f@') >0 forall s € [0,00)",
j=1

and find suitable scalars K }H.

We define
A= (id—e PR, e ) (K).
Remark 5.3 reassures us that A is another positive measure, and (5.12) implies
that it satisfies (5.11). The induction hypothesis gives

I+1

L(sjy1) == lim --- lim ;/Sdfd(n(id—eﬁSﬂ"fstng*))(ﬁ)

s1—0t s1—=0t Sj41 81 1
J:

:;L(/Sd<ZK}D1f>d>\).

Ieyy

Lemma 5.7 implies that

i L(sia) = Brin / d ( Y KD, f) X — / d elTHv( S KD, f) d\

8¢ N resy, S Iex,
l .. ODif
:BTlJrl/ <ZK1DIf> d)‘_/ <ZZK19”U8—) dA().
84 % rexy, 8 ey, i=1 i

To finish off the inductive step, we set Ké)“ = Bri1 Ky, and for I' = (I,4)1141) we
set

K Kifur1yi,, if [I| =1
! Brigi Ky — Kibi,,, i [ <l

This completes the inductive step, and hence the proof. O

Proof of Theorem 5.1(b). Lemma 5.8 shows that the limit exists for all f € C(S?),
and for f € C*(S?) gives us a formula for the limit. The limit is linear in f, posi-
tive when f is, and is bounded by ||f||oo(]_[§:1(5rj)) |lv||. Thus it is given by a fi-
nite positive measure p,. Since the total mass of the measure is integration against
the constant function 1, and since 1 is smooth, the total mass is given by (5.10).
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But since all derivatives of 1 are zero, the only nonzero terms are the ones on
which I = (). Now the formula for K implies that ||, || = (H?Zl(ﬁrj)) lv||. O

We now work towards the proof of Theorem 5.1(c). To prove that N : p+— v,
is a bijection of the measures arising from KMSg states onto the subinvariant
measures, we prove that N is one-to-one and that M : v — p,, satisfies NoM (v) =
v for all subinvariant measures v. We then have No(MoN)(u) = (NoM)oN(u) =
N(p), and injectivity of N implies (M o N)(u) = p. Thus Theorem 5.1(c) follows
from the following proposition.

Proposition 5.9. Suppose that v is a measure on S satisfying the subinvariance
relation (5.2) and with total mass H?Zl(ﬁrj)_l. Then v =v,,.

Suppose that v is a subinvariant measure and f € C*°(S%). We need to show
that the functional defined by integrating against v,,, which is defined in parts
(a) and (b) of the theorem as

(5.13)

1
*/BU)TT 3 T . 7/8%‘”
/[0700)1@6 slir(r)%r Spe+81 Jsa f($+9 w)d<H (ld —e stejT*)>(1/)<x)dw’

Jj=1

is in fact implemented by v. We will do this by peeling off the iterated limit one
variable at a time. For this, the next lemma is crucial.

Lemma 5.10. Consider a positive measure A on S, b € (0,00) and v € S¢. For
f e C™(S%), we have

/ T e i / Fly + t0) d((id — ¥ Rou)\) () dt
0 Sd

s—0+ 8

= lim Ooibt v id —e b
) / — [ fo+ ) d((id =Ry )0 dr

s—0+

Proof. For s > 0, we have

é\/S'i f(y+tv)d(<ld —e*bsRsv*))\)Q/) = 1/;(1 (f(y_ktU)_eibsf(y‘i‘t’U—l—S’U)) d>\<y>

S

We write this last integrand as
K(y,s,t)=s"(fly+tv) —e ™ fly+tv+ sv))
= sfl(f(y +to) —e P f(y+tv) Fe M f(y Ftv) —e S fly +tu+ sv))

_ 1—ebs e,bsf(y—l—tv)—f(y—i—tv—l—sv)
s

fly + tv) +

We estimate the first summand using the mean value theorem on e %, and the
second summand using the same theorem on f, to find

Ky, 5,0)] < bllflloo + 0" (V).

Thus we have
o—bt

— | K(y,s:1) dA(y)‘ < e (bl flloo + 10" (VF)llso) 1A

S sd
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Now the result follows from the dominated convergence theorem for Lebesgue
measure on [0,00) (modulo the trick of observing that it suffices to work with
sequences s, — 0+ — see the proof of [14, Theorem 2.27]). O

Proof of Proposition 5.9. As in the proof of Theorem 5.1(b), Lemma 5.8 implies
that there is a positive measure  on S? such that for g € C°*°(S%), we have

k

1
dn= 1 d( id—e PR ) .
/gdg n=_ lm o /Sdg H(1 e sjejT*) (v)

7777 =2

Since the operators id —e =P R, gr. commute with each other,
J

(5.14) /Sdgd(id—e‘ﬂ“”Raem(n)

k
= lim ! / g d( (id —eBsimi ste.T*)> (v).
Sd = ’

sy S2—0T S+ * - S N

J

Now we need some complicated notation to implement the peeling process. First
of all, we fix f € C*(S?%). In an attempt to avoid an overdose of subscripts, we

write s = (s1,8), w = (wy,®) and r = (r1,7). We also write 6 for the k —1 x d
matrix obtained from 6 by deleting the first row: thus 7 has block form (87 97).
With the new notation, (5.13) becomes

1 A
x lim — [ f(z+0"d+w6])d(id —e_B”wlelng*) (n)(z)dw; d.

s1—=0t 81 Jsd
Now we can apply Lemma 5.10 to the inside integrals, which gives
(5.15)

oo
_geTi p. L _
fdv,, = e P lim — e~ Priw
sd [0,00)k—1 s1—=01t 81 Jg

x| fl@+0"w+wib])d(id —e P Ry gr,) (n) (x)dwy did.

Sd
We now consider the function g on (0, co) defined by
1 [ N
g(s1) = — / e [ fle+ 0T + wi6] ) d(id —e_B”wlRSlng*) (n)(x)dw;.
S1 0 sd

We aim to prove that g(s1) — [, f(z + 6Tw)dn(z) as s; — 0F. To this end, we
compute:

Y ~
g(s1) = —/ e‘ﬂ”““/ [z 4 0"0 + w6 dn(z)dw;
81 0 Sd
1 [ ~
- eﬁ’”l(wﬁsl)/ fz+6"0 + (w1 + 51)07) dn(z)dw, .
1.Jo sd

Changing the variable in the second integral to get an integral over [s1,00) gives

1 [ R
g(s1) = —/ e e / [z + 6" + w6 ) dn(z)dw.
0 s

51
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Now we have

g(s1)= | flx+0"b)dn(x)

Sd
I )
_ —57“1101 f( + 6) w + wlg )dn( )dw1 — f(x + gTw) d77(95)
sd

/ / *57"1101][' (2 + 070 + w 07) — f(z + éTﬁ))) dn(x)dw;.
Sd

Since y — e #Y"7 f(z + 67w + 6Ty) is uniformly continuous, there exists  such
that

0<w < 8= e f(a+ 070 +wif]) — flz+0Tw)| < T
U

So for 0 < s; < § we have

st [ e+ Farinto| < 5 [ [ g antorin =

Sd

Thus g(s1) = [qu f(z + 67w) dn(z), as we wanted.
Putting the formula for lim,, o+ g(s1) in (5.15) gives

fdv,, = / e P fx + 0T dn(x) dib,
Sd [0,00)k 1 Sd

which is the right-hand side of (5.13) with one lim, ,o+ and one fooo removed.
Repeating the argument k — 1 times gives

| gan. = [ .

as required. O

As described before Proposition 5.9, this completes the proof of Theorem 5.1.

6. A PARAMETRISATION OF THE EQUILIBRIUM STATES

We are now ready to describe the KMS states of our system. At the end of the
section, we will use the following theorem to prove our main result.

Theorem 6.1. Consider our standard set-up, and suppose that g > 0.
(a) Suppose that j € P(@(Sd, ET)). Define measures i, € P(S?) by pim =
ET (1) and take v,,, to be the subinvariant measure on S obtained by

m,00%*

applymg Theorem 5.1 to the measure pi,. Then there is a KMSg state 1,
of (Boo, @) such that

k
* —BpTrm m mizTn
61 OulVngUnaVin) = e TLr7) [ 7 i (@)
j=1

(b) The map p — 1, is an affine homeomorphism of P(@(Sd,Eg)) onto
KMS5(Bu, o).
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To prove the theorem, we first build some maps between the spaces of subin-
variant measures. We will make use of Theorem 5.1, but the measures described
there are not all normalised. To ensure we are dealing with probability measures,
we introduce the numbers

k k
Cn 1= H(ﬁr}”) = 5’“( Hr}”) and d,, ;= det D,,.
j=1 j=1
Because D, is diagonal, Equation 2.4 shows that the two sets of numbers are
related by d,,Cni1 = -

In particular, the functions fg,m from Remark 5.2 have constant value c,,, and
s0 fapmi1 = dtfg,m. Thus with Xg, from Proposition 3.7(c), we can define
Opm @ Dgymtl — Lgm by

on(v) = dy By, (v).
Lemma 6.2. Suppose that pu € P(@(Sd, EL)), and define i, = EL (1) for

m > 1. Then the measures v, given by Theorem 5.1 satisfy op(Vy,., 1) = V-
Proof. We take f € C(S?), and compute using (5.1):

\éd f do-m(ylllm+l) = d;ll <d f o EZ; dl/um+1

[ e (o B ok 6] w) dia (o) du
[0,00)% Sd

—d, / e F(ET 4 BT w) djtgea () du
[0,00)k Sd

— 4, / eI [ (BT 4 68D, w) i () o,
[0,00)* Sd

where at the last step we used® both (2.4) and (2.3). Now substituting v = D, 'w
in the outside integral gives

(6.2) fdon(Vu,,.) = / e P (BT 2+ 0T 0) dptgs (2) do.
sd [0,00)* sd

We write s := 1 v and consider the translation automorphism 7, of C'((S?) defined
by 7s(f)(x) = f(x + s). Then the inside integral on the right of (6.2) is

F(ED + 070) dpta (2) = / () © BB

= [ 70 AR )

= [ fle+00) dun(a).

sd
Putting this back into the double integral in (6.2) gives the right-hand side of (5.1)
for the measure p,,, and we deduce from (5.1) that

fdon (v, .\) = / fdv,, forall feC(S%,
Sd

sd

Sd

3This also uses that D01 E = 6, on the nail, i.e. as opposed to modulo Z. Otherwise the
difference would appear in the last formula multiplied by the real variable w.
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as required. Il
Proof of Theorem 6.1(a). Since the maps
T i Qd d
B I&HS —S
are surjective, each ji, is a probability measure on S?. Thus we deduce from
Theorem 5.1 that v, := (H?Zl(ﬁr;-”))uum is a probability measure satisfying the
subinvariance relation (5.2). Thus Proposition 3.7(b) gives a KMS state t,, of
(B, ™) such that ¢, (Upn) = Ja 2™y, (z). We now need to check that
Ymt1 © T = Uy, S0 that we can deduce from [6, Proposition 3.1] that the 1,
combine to give a KMSj state of (B, @).

Since we are viewing measures as functionals on C'(S%), the map EL, on M (S?)
is induced by the continuous function EL : 2 + ELx on S?. Then for f € C(S%)

63 [ 50 L) dna0) = [ 500 0B, )0
For the functions g, € C(S%) given by g,(z) = ™% (s0 that tp(gn) = Upmn €
B,), we have

2mi(ELx)Tn _  2mizT Emn

gn o Ep () =e =e = 9B, ().
Substituting this on the left-hand side of (6.3) gives
(6.0 [ 95.@ dvnss(a) = [ g0(0)dER ().

S S
Using again d,, = det D,, and ¢, = H?Zl(ﬁ'r’jm) and the relation d,,¢,41 = Cm,
Lemma 6.2 gives
E’Z;* (Vimg1) = Om(dmViny1) = dmcm+1am<yum+1>
= dmCm+1Vu,, = CmVpu,, = V.

Using (6.4) at the third step, and (6.5) at the fourth step, we now calculate:

Dot (T Unm)) = st Uit o) = /S G v

(6.5)

= /Sd dn dE;‘CL*<Vm+1) = /Sd dn dvy, = wm(Um,n>

Thus the states 1, give an element (1),,) of the inverse limit Jim KMSgs(By,, ™),

and surjectivity of the isomorphism in [6, Proposition 3.1] gives a KMSs state v,
of (Beo, @) such that ¢, = 1, 0 Ty, 00 for m > 1. O

Remark 6.3. We observe that the KMSs state of Theorem 6.1(a) is given on
B =span{V,, yUpm.nVing } by

* _ T,rm
¢u(vm,pUm,an,q) = Opq€ o /Sd In d<VErTn,oo*(u)>'

Proof of Theorem 6.1(b). We first prove that every KMSs state has the form ¢,,.
So suppose that ¢ is a KMSg state of (Bw, ). Then for each m > 1, ¢pomy, o0 is a
KMSg state of (B,,,a”"), and hence there are probability measures v, such that

G0 Tmoo(f) = [ fdv, forall fecC(S?
Sd
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and ET (Vpy1) = Uy, for all m > 1. Theorem 4.1 implies that each v, satisfies

the corresponding subinvariance relation. More specifically, we write PS$*®(S%) for

the set of probability measures satisfying (4.2), and then we have v, € P3®P(S9).

Once more using d,,, = det D,,, and ¢,,, = H?Zl(ﬁr}”), the construction of The-

orem 5.1(a) gives a function yu + ¢y, from P(S?) to the simplex PiP(S9).
Lemma 6.2 gives commutative diagrams
T

me*

Hm P(Sd) P(Sd) Hm41

T

CnVim Pa(SY) e——"—— Pay(SY)  Gmt1Vugns

and Theorem 5.1 implies that the vertical arrows are bijections, with inverse given
by v — pu,. A simple set-theoretic argument then implies that we also have
commutative diagrams

T

mx*

Ct thv,,  P(SY) P(s?) Coi 1 P

P

m o PRP(SY) — Pah(8Y) Vi1

Thus the sequence (u,,) := (¢! 1, ) belongs to the inverse limit Jim (P(S%),EL,),
and hence is given by a probability measure u € P ( @(Sd, EWTI)) We want to show
that ¢ = 1,. Since both are states, it suffices to check that they agree on ele-
ments Vi, ,UpnV, - Since ¢ is a KMSp state and the measure v, implements ¢

on C(S) = span{U,,.,}, we have

qb(vm,pUm,an’q) — p7q6_ﬁpT7«m/ 627rian de(ZL’)
sd

Since v = v, for all v and p,,, = cpftm, We have v, = c,,v,,,, and
* _ —ppTrm 2mizTn
¢(Vm7pUm7an,q) = Opq€ Cm . € dvy,, (7).
S

This is precisely the formula for ¥, (Vi pUmnVis ) in (6.1). Thus ¢ = 1),

Since each v, is a state, it follows from the formula (6.1) that p — 1, is
affine and weak™® continuous from M (S?) = C(S%)* to the state space of B.,. The
formula (6.1) also implies that p — 1, is injective, and since we have just shown
that it is surjective, we deduce that it is a homeomorphism of the compact space
P(@(Sd, ET)) onto the simplex of KMSg states of (Ba, @). O

Proof of Theorem 2.7. According to (6.1) in Theorem 6.1, we have to compute

/ eQﬂ'ixTn dl/,um (.Z'),
[0,00)%



KMS STATES 31

which by Theorem 5.1 is
(66) /[;) . e—ﬁwTrm /Sd e27ri(x+977;1w)Tn dum(x)dw

— / 6—/3wTrm eQﬂinHmn / eQTrixTn dum(w)dw
[0,00)* Sd

_ / e—BwTrm €2mwT6man,n(,u) dw.
[0,00)

We can rewrite the integrand as

e—ﬁwTrme%rinGmn _ 62;6 w; (=Br*+2mi(Omn); H wj(— Brm+27rz(0mn)])
j=1

When we view f[o o) dw as an iterated integral, we find that

k o9
(6.6) = H (/ i (B2 A () dwj>.
j=1 70

Since 8 > 0 and each r7" > 0, we have

‘e —Brit+2mi(Omn);) ‘ =P 50 as w; — 00.
Thus
w; (=Br*+2mi(O0mn);) oo 1
an - - an )
H —pBry + 27i(0,,n) ; (1) 0 31_[1 Brit — 27mi(0,n) ; (1)
and the result follows from (6.1). O
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