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Variance and volatility swaps under a two-factor

stochastic volatility model with regime switching

Xin-Jiang He ∗ Song-Ping Zhu †

Abstract

In this paper, the pricing problem of variance and volatility swaps is discussed un-

der a two-factor stochastic volatility model. This model can be treated as a two-factor

Heston model with one factor following the CIR process and another characterized by

a Markov chain, with the motivation originating from the popularity of the Heston

model and the strong evidence of the existence of regime switching in real markets.

Based on the derived forward characteristic function of the underlying price, analyt-

ical pricing formulae for variance and volatility swaps are presented, and numerical

experiments are also conducted to compare swap prices calculated through our for-

mulae and those obtained under the Heston model to show whether the introduction

of the regime switching factor would lead to any significant difference.
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1 Introduction

Volatility derivatives are becoming increasingly popular due to the fact that volatility is

often used as a measure of risk, and there are large demands for managing financial risk

caused by the high trading volumes of different kinds of financial derivatives. In particular,

variance and volatility swaps, whose pay-off is dependent on the future realized variance

and volatility respectively, are two of the most popular volatility derivative contracts,

and thus considerable research effort is devoted to the area of accurately pricing the two

contracts.

In fact, there are mainly two approaches in determining the price of variance and

volatility swaps, depending on the sampling method of the realized variance or volatility.

Specifically, the first is based on the assumption of continuous sampling, which has already

attracted a number of researchers. Within this category, various stochastic volatility mod-

els have been adopted (Grünbichler & Longstaff 1996, Howison et al. 2004, Javaheri et al.

2004, Swishchuk 2004, Salvi & Swishchuk 2014). Swishchuk (2006) went even further to

consider the effect of the delayed response observed in real markets in the pricing of vari-

ance and volatility swaps. Moreover, jumps, as another common feature shown by different

underlying asset prices, have already been incorporated in the pricing dynamics (Habtem-

icael & Sengupta 2016a, Habtemicael & SenGupta 2016b, Issaka & SenGupta 2017), while

some general model independent results were also presented by Carr & Lee (2007, 2008).

Unfortunately, the realized variance or volatility is actually discretely sampled in real mar-

kets, which implies that there would always exist biases or even large errors if we use the

continuous sampled results as approximation, and thus it is much more important to take

into consideration the pricing problem of discretely-sampled variance and volatility swaps.

Recently, a few studies on discretely sampled variance and volatility swaps have been

conducted so that the pricing results can be directly applied in reality. By adopting the di-

mension reduction techniques, Zhu & Lian (2011) derived a closed-form pricing formula for
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variance swaps under the Heston stochastic volatility model for the first time. In addition,

the analytical solution for volatility swap prices under the Heston model (Heston 1993) has

also been found in Zhu & Lian (2015). One may argue that there is no need to work on

this area since the Heston model is very popular in real markets and analytical formulae

for the two contracts have already been derived under this particular model. However, it

needs to be noted that the Heston model is not perfect either, and there also exists some

model flaws (Byelkina & Levin 2010), which implies that the Heston model alone is not

enough and other models may be more suitable for certain markets. More importantly, the

Heston model does not incorporate the mechanics of regime switching, which sometimes

is at odds with empirical evidence strongly demonstrating the existence of regime switch-

ing in the underlying price (Eraker 2004, Hamilton 1990). This prompts the research in

developing Markov-modulated models. A typical example is that variance and volatility

swaps are analytically priced under the Heston model with the mean-reversion level of the

stochastic volatility being assumed to be regime switching (Elliott & Lian 2013). More-

over, He & Zhu (2016) went even further by empirically comparing the performance of the

Heston model and their newly proposed regime switching Heston model in option pricing,

and results demonstrated that the incorporation of regime switching into the stochastic

volatility model can indeed provide better fit to market data in certain cases. Recently,

local regime-switching models have also been introduced (Elliott et al. 2015) and some

relevant issues were discussed in He & Zhu (2017, 2018).

In this paper, we adopt a two-factor stochastic volatility model, with one factor modeled

by the CIR process, the same as that in the Heston model, and another being controlled

by a Markov chain. It should be pointed out here that in the following we shall focus

on discussing the two-state regime-switching model for illustration purpose, and the ex-

tension to arbitrary but finite number of states should be in principle very similar to the

results presented here. In the literature, two-factor stochastic volatility models with regime

switching have already been considered by some authors. For instance,the pricing problem

3



of European options under the same model in considered in Kun (2014), while Siu et al.

(2008) adopted a two-factor model with one following a log-normal diffusion process and

another characterized by a Markov chain to price currency options. In the following, we

first derive a closed-form formula for the forward characteristic function of the underlying

price, based on which the analytical formulae for variance and volatility swap prices are

presented. Numerical experiments are subsequently carried out to study the influence of

introducing the new regime switching factor into the Heston stochastic volatility model.

The rest of the paper is organized as follows. In Section 2, we will firstly introduce

the two-factor stochastic volatility model, and then analytically solutions for variance and

volatility swap prices are presented with the inverse Fourier transform. In Section 3,

numerical examples are presented, followed by some concluding remarks given in the last

section.

2 Closed-form solution

In this section, a two-factor stochastic volatility model will be firstly introduced with one

factor following the CIR process, which is the same as the Heston model, and another

being controlled by a Markov chain. The motivation for using such a model is a lot of

empirical evidence demonstrating that the dynamics of the underlying price are better

captured with the regime switching mechanics (Eraker 2004, Hamilton 1990). Then, an

analytical solution for the forward characteristic function of the underlying price will be

presented, based on which the closed-form pricing formulae for variance and volatility

swaps are straightforwardly derived.

2.1 The two-factor stochastic volatility model

Given the fact that the adopted two-factor stochastic volatility model can be viewed as a

two-factor Heston model, and the Heston model is a well-known stochastic volatility model
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and widely used even in today’s financial markets, we would like introduce the well-known

model in the first place, the dynamics of which are specified as

dSt

St

= rdt+
√
vtdW

1
t ,

dvt = k(θ − vt)dt+ σ
√
vtdW

2
t , (2.1)

where {St}t≥0 and {vt}t≥0 represent the underlying price and the volatility respectively.

{W 1
t }t≥0 and {W 2

t }t≥0 are the two standard Brownian motions with correlation ρ. k and

θ denote the mean reverting speed and the long-term mean respectively, while σ is the

volatility of volatility.

Having presented the Heston model, we are now ready to introduce the one we adopt,

which is

dSt

St

= rdt+
√
vtdW

1
t + αXtdBt,

dvt = k(θ − vt)dt+ σ
√
vtdW

2
t , (2.2)

with {Bt}t≥0 being another standard Brownian motion independent of the other two stan-

dard Brownian motions {W 1
t }t≥0 and {W 2

t }t≥0. The two-state Markov chain {Xt}t≥0 is

independent of the three Brownian motions defined as

Xt =

 (1, 0)′, when the economy is believed to be in state 1,

(0, 1)′, when the economy is believed to be in state 2,

with the dash denoting transposition. The transition between the two states follows a

Poisson process as

P (tij > t) = e−λijt, i, j = 1, 2, i ̸= j, (2.3)

where λij is the transition rate from state i to j, and tij is the time spent in state i before

transferring to state j. αXt can be determined through αXt = ⟨ᾱ, Xt⟩ with ᾱ = (α1, α2)
′
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and ⟨·, ·⟩ being the inner product of two vectors.

It should be pointed out here that when α1 = α2 = 0, our two-factor model will

degenerate to the Heston model, which implies that our model is more general than the

Heston model with an enlarged parameter space. This allows the stochastic nature of the

underlying volatility being not only described by the CIR process, but also controlled by

the regime switching mechanics, which are also a common feature observed in real markets

(Eraker 2004, Hamilton 1990).

2.2 Valuation of variance and volatility swaps

To determine the price of variance and volatility swaps, we should firstly figure out how

“price” is defined. As known to us all that variance and volatility swaps are two kinds

of forward contracts, the price to be derived is actually the delivery price specified in the

contracts, instead of being the value of the contracts. In fact, the pay-off function of

variance and volatility swaps also depends on the future realized variance and volatility

respectively, and the long position of variance or volatility swaps pays the delivery price at

expiry in exchange of the floating amount of the realized variance or volatility within the

time period of the contract.

If we take a careful look into the variance and volatility swaps, it is not difficult to find

that the values of the two contracts can be respectively expressed as

Vvar = (RVvar −Kvar)L, Vvol = (RVvol −Kvol)L, (2.4)

with L being the notional amount. RVvar and RVvol denote the annualized realized variance

and volatility respectively, and Kvar and Kvol are the corresponding delivery price of a

variance and volatility swap contract that need to be determined, respectively. If we take

into consideration the fact that the value of a forward contract should equal to zero when
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it is initialized in order to be fair to both parties, we can certainly obtain

Kvar = E[RVvar], Kvol = E[RVvol], (2.5)

which shows that the definition of the realized variance and volatility really matters when

we try to price variance and volatility swaps. In the existing literature, one of the most

widely adopted definitions for the realized variance and volatility (Elliott & Lian 2013,

Howison et al. 2004, Zhu & Lian 2011) are respectively

RVvar =
c2

T

N∑
i=1

(
Sti − Sti−1

Sti−1

)2,

RVvol = c

√
π

2NT

N∑
i=1

|
Sti − Sti−1

Sti−1

|, (2.6)

where T is the expiry time, and the time period [0, T ] is uniformly discretized into N small

periods [ti−1, ti] for i = 1, 2, .., N . The constant c = 100 is the conversion factor between the

actual strike price and the market quoted strike price (with % sign) of a variance/volatility

swap1. Therefore, the calculation of swap prices is reduced to the evaluation of the 2N

expectations, i.e. E[(
Sti−Sti−1

Sti−1
)2] and E[|Sti−Sti−1

Sti−1
|], the expression of which clearly shows

that once the forward characteristic function of the underlying price is analytically worked

out, these expectations as well as the target swap prices can be straightforwardly derived.

To be more specific, the forward characteristic function is defined as

m(ϕ; t, T, y0, v0, X0) = E[ejϕyT |y0, v0, X0]. (2.7)

where yT = ln(ST ) − ln(St). Due to the existence of the Markov chain, it is very difficult

to directly calculate the value of m(ϕ; t, T, y0, v0, X0), and thus we alternatively try to find

the solution of the conditional forward characteristic function first, which is conditional

1It should be noted in passing that this conversion factor is mistakenly not shown in Equation (9) of
Zhu & Lian (2012), just as it has appeared in all the rest of the equations prior to Equation (9).
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upon all the information of the Markov chain during the lifetime of the swap contract being

known at the current time, i.e.,

m(ϕ; t, T, y0, v0|XT ) = E[ejϕyT |y0, v0, XT ]. (2.8)

The solution of this conditional characteristic function can be obtained since αXt only

needs to be treated as a time-dependent function αt, the results of which are presented in

the following proposition.

Proposition 2.1. Let the underlying price St and the volatility vt follow the dynamics

specified in Equation (2.2), the conditional forward characteristic function m(ϕ; t, T, v0|XT )

can be derived as

m(ϕ; t, T, v0|XT ) = eC̃(ϕ;τ,t)+D̄(ϕ;τ,t)v0e
∫ T
t ⟨− 1

2
(jϕ+ϕ2)ᾱ2,Xs⟩ds, (2.9)

where

D̄(ϕ; τ, t) =
2k

σ2

1

1− [1− 2k
σ2D(ϕ;τ)

]ekt
,

C̃(ϕ; τ, t) = C̄(ϕ; τ, t) + rjϕτ +
kθ

σ2
{[d− (jϕρσ − k)]τ − 2 ln[

1− gedτ

1− g
]},

C̄(ϕ; τ, τs) =
2kθ

σ2
{kτs − ln[1− (1− 2k

σ2D
)ekτs ] + ln(

2k

σ2D
)},

D(ϕ; τ) =
d− (ρσjϕ− k)

σ2

1− edτ

1− gedτ
,

d =
√
(ρσjϕ− k)2 + σ2(jϕ+ ϕ2), g =

(ρσjϕ− k)− d

(ρσjϕ− k) + d
,

(2.10)

with τ = T − t, j =
√
−1, Xt ∈ {(1, 0)′, (0, 1)′}, and ⟨·, ·⟩ denotes the inner product of two

vectors. Note: it turns out that y0 is not a parameter in the expression of m(ϕ; t, T, v0|XT ),

and it is thus omitted.

Proof. According to the tower rule of the expectation, the conditional forward character-
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istic function can be calculated as

m(ϕ; t, T, y0, v0|XT ) = E[ejϕyT |y0, v0, XT ],

= E[E(ejϕyT |yt, vt, XT )|y0, v0, XT ], (2.11)

which implies that the inner expectation must be worked out before we can obtain the final

solution. If we assume

h(ϕ; s, T, ys, vs|XT ) = E(ejϕyT |ys, vs, XT ), t ≤ s ≤ T, (2.12)

we can find the governing PDE with the Feynman-Kac theorem as



∂h

∂s
+

1

2
(v + α2

s)
∂2h

∂y2
+

1

2
σ2v

∂2h

∂v2
+ ρσv

∂2h

∂v∂y

+ [r − 1

2
(v + α2

s)]
∂h

∂y
+ k(θ − v)

∂h

∂v
= 0,

h(ϕ; s, T, ys, vs|XT )|s=T = ejϕyT .

(2.13)

Considering the results in Heston (1993), we let τ = T − s and assume that the solution

of h take the form of

h(ϕ; s, T, ys, vs|XT ) = eC(ϕ,τ)+D(ϕ,τ)vs+jϕys , (2.14)

which is substituted into PDE (2.13) to yield the following two ODEs (ordinary differential

equations)
∂D

∂τ
=

1

2
σ2D2 + (ρσϕj − k)D − 1

2
(jϕ+ ϕ2),

∂C

∂τ
= kθD + rjϕ− 1

2
(jϕ+ ϕ2)α2

s.
(2.15)

The ODE for D(ϕ, τ) is a Riccati equation, which can be solved with the techniques

presented in Heston (1993). Once we have obtained the analytical solution of D(ϕ, τ),

C(ϕ, τ) could be easily figured out by simply integrating on the both sides of the governing
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ODE, the result of which can be specified as

C(ϕ, τ) = jrϕτ+
kθ

σ2
{[d−(jϕρσ−k)]τ−2 ln[

1− gedτ

1− g
]}−

∫ T

s

⟨−1

2
(jϕ+ϕ2)ᾱ2, Xz⟩dz. (2.16)

Therefore, by setting s = t, we can obtain the solution of the inner expectation

h(ϕ; t, T, vt|XT ) = eC(ϕ,τ)+D(ϕ,τ)vt . (2.17)

The disappearance of yt results from the fact that yt = 0.

Clearly, the left work in deriving the conditional forward characteristic function is to

work out the outer expectation shown in Equation (2.11), which is now

m(ϕ; t, T, v0|XT ) = eC(ϕ,τ)E[eD(ϕ,τ)vt|v0, XT ]. (2.18)

The above equation has demonstrated that the only difficulty in reaching our objective is

the expectation with respect the volatility process itself. If we denote

f(ϕ; t, T, s, vs|XT ) = E[eD(ϕ,τ)vt|vs, XT ], (2.19)

then for any s ∈ [0, t], f(ϕ; t, T, s, vs|XT ) should satisfy the following PDE


∂f

∂s
+

1

2
σ2v

∂2f

∂v2
+ k(θ − v)

∂f

∂v
= 0,

f(ϕ; t, T, vs|XT )|s=t = eD(ϕ,τ)vt .
(2.20)

Similar to the solution procedure illustrated above, we also assume that the solution to

PDE (2.20) can be expressed as

f(ϕ; t, T, s, vs|XT ) = eC̄(ϕ;τ,τs)+D̄(ϕ;τ,τs)vs , (2.21)
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which can lead to
∂D̄

∂τs
=

1

2
σ2D̄2 − kD̄,

∂C̄

∂τs
= kθD̄,

(2.22)

with the substitution of the solution into PDE (2.20). Here, τs = t − s, and the initial

conditions are

D̄(ϕ; τ, 0) = D(ϕ, τ), C̄(ϕ; τ, 0) = 0. (2.23)

Both of the two ODEs can be easily solved after some algebraic computation. Therefore,

with s being set to zero, we can finally reach our desired result

m(ϕ; t, T, v0|XT ) = eC(ϕ,τ)f(ϕ; t, T, 0, v0|XT ) = eC(ϕ,τ)+C̄(ϕ;τ,t)+D̄(ϕ;τ,t)v0 . (2.24)

This has completed the proof.

With the conditional forward characteristic function of the underlying price, it is not dif-

ficult to find that the forward characteristic function is the expectation of m(ϕ; t, T, v0|XT ),

which can be calculated as

m(ϕ; t, T, v0, X0) = E[ejϕyT |y0, v0, X0] = E[m(ϕ; t, T, v0|XT )|X0]. (2.25)

The expectation in Equation (2.25) is actually with respect to the Markov chain, which

can further yield the following result

m(ϕ; t, T, v0, X0) = eC̃(ϕ;τ,t)+D̄(ϕ;τ,t)v0E[e
∫ T
t ⟨G(s),Xs⟩ds|X0], (2.26)

by substituting Equation (2.9) into (2.25). Here, G(s) = −1
2
(jϕ+ϕ2)ᾱ2. According to the

results in Elliott & Lian (2013), if A is used to denote the transition rate matrix of the
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Markov chain Xt, we can obtain

E[e
∫ T
t ⟨G(s),Xs⟩ds|Xt] = ⟨eMXt, I⟩, (2.27)

with I = (1, 1)′, and the matrix M defined as

M =

∫ T

t

A′ + diag[G(s)]ds, (2.28)

which in our case can be further derived as

M =

 −1
2
(jϕ+ ϕ2)α2

1τ − λ12τ λ21τ

λ12τ −1
2
(jϕ+ ϕ2)α2

2τ − λ21τ

 . (2.29)

Thus, from the tower rule of the expectation, we have

E[e
∫ T
t ⟨G(s),Xs⟩ds|X0] = E{E[e

∫ T
t ⟨G(s),Xs⟩ds|Xt]|X0} = E[⟨eMXt, I⟩|X0]. (2.30)

On the other hand, if pij(t), i = 1, 2, j = 1, 2 are used to denote the transition probability

from state i to state j within the time period [0, t], they can be expressed as

p11(t) =
λ21

λ12 + λ21

+
λ12

λ12 + λ21

e−(λ12+λ21)t,

p22(t) =
λ12

λ12 + λ21

+
λ21

λ12 + λ21

e−(λ12+λ21)t, (2.31)

with p12(t) = 1 − p11(t) and p21(t) = 1 − p22(t). With P representing the transition

probability matrix

P =

 p11(t) p12(t)

p21(t) p22(t)

 , (2.32)
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the unknown expectation in Equation (2.26) can be derived as

E[e
∫ T
t ⟨G(s),Xs⟩ds|X0] = ⟨Pb,X0⟩. (2.33)

Here, the vector b is defined as

b =

 ⟨eMX1, I⟩

⟨eMX2, I⟩

 , (2.34)

with X1 = (1, 0)′ and X2 = (0, 1)′. Therefore, the forward characteristic function is finally

obtained as

m(ϕ; t, T, v0, X0) = eC̃(ϕ;τ,t)+D̄(ϕ;τ,t)v0⟨Pb,X0⟩. (2.35)

With the forward characteristic function being worked out, the derivation of the prices of

variance and volatility swaps becomes quite straightforward, and the results are presented

in the following proposition, with Re[·] being used to denote taking the real part of the

argument.

Proposition 2.2. If the delivery price of a variance swap, Kvar, and that of a volatility

swap, Kvol, are defined in Equation (2.5), they can be respectively formulated as

Kvar =
1002

T

N∑
i=1

[m(−2j; ti−1, ti, v0, X0)− 2m(−j; ti−1, ti, v0, X0) + 1], (2.36)

and

Kvol = 100

√
2

πNT

∫ +∞

0

N∑
i=1

Re[
m(ϕ− j; ti−1, ti, v0, X0)−m(ϕ; ti−1, ti, v0, X0)

jϕ
]dϕ. (2.37)
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Proof. The delivery price for a variance swap can be calculated as

Kvar =
1002

T

N∑
i=1

E[(
Sti − Sti−1

Sti−1

)2] =
1002

T

N∑
i=1

E[e2yti − 2eyti + 1]

=
1002

T

N∑
i=1

[m(−2j; ti−1, ti, v0, X0)− 2m(−j; ti−1, ti, v0, X0) + 1], (2.38)

the last step of which is obtained from the definition of the forward characteristic function.

The derivation of the volatility swap price is a bit more complicated, the first step of which

is to evaluate the expected value of the realized volatility

E[|
Sti − Sti−1

Sti−1

|] =

∫ +∞

0

(eyti − 1)p(yti)dyti +

∫ 0

−∞
(1− eyti )p(yti)dyti

= −
∫ +∞

0

p(yti)dyti +

∫ 0

−∞
p(yti)dyti

+

∫ +∞

0

eytip(yti)dyti −
∫ 0

−∞
eytip(yti)dyti , (2.39)

where p(yti) is the forward density function of yti . According to the relationship between

the distribution function and characteristic function, it is not difficult for us to obtain

∫ +∞

0

p(yti)dyti =
1

2
+

1

π

∫ +∞

0

Re[
m(ϕ; ti−1, ti, v0, X0)

jϕ
]dϕ. (2.40)

It should also be noticed that
eytip(yti)

m(−j; ti−1, ti, v0, X0)
is a density function of a random

variable since ∫ +∞

−∞
eytip(yti)dyti = m(−j; ti−1, ti, v0, X0). (2.41)

As a result, we can derive the characteristic function of this particular random variable,

which is actually the Fourier transform of the density function, i.e.,

m̄(ϕ; ti−1, ti, v0, X0) =
m(ϕ− j; ti−1, ti, v0, X0)

m(−j; ti−1, ti, v0, X0)
. (2.42)
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From this, one can again make use of the relationship between the distribution function

and characteristic function to calculate the following integral

∫ +∞

0

eytip(yti)

m(−j; ti−1, ti, v0, X0)
dyti =

1

2
+

1

π

∫ +∞

0

Re[
m(ϕ− j; ti−1, ti, v0, X0)

jϕ ·m(−j; ti−1, ti, v0, X0)
]dϕ. (2.43)

Therefore, the following expectation can be obtained

E[|
Sti − Sti−1

Sti−1

|] = 2

π

∫ +∞

0

Re[
m(ϕ− j; ti−1, ti, v0, X0)−m(ϕ; ti−1, ti, v0, X0)

jϕ
]dϕ, (2.44)

and the delivery price of a volatility swap can be expressed as

Kvol = 100

√
π

2NT

N∑
i=1

E[|
Sti − Sti−1

Sti−1

|]

= 100

√
2

πNT

∫ +∞

0

N∑
i=1

Re[
m(ϕ− j; ti−1, ti, v0, X0)−m(ϕ; ti−1, ti, v0, X0)

jϕ
]dϕ. (2.45)

With the completion of the above proof, the closed-form pricing formulae for variance

and volatility swaps have been successfully derived under the two-factor stochastic volatility

model. The numerical behavior of the two newly derived formulae will be studied in the

next section through the designed numerical experiments, with an emphasis being placed

on the comparison between the variance and volatility swap prices calculated with our

formula and those under the Heston model. This is motivated by the fact that the Heston

model is a widely adopted one in practice and the adopted model is a combination of the

Heston model and the regime switching Black-Scholes model. Such kind of comparison can

demonstrate the influence of introducing the regime switching mechanics.
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3 Numerical experiments and examples

In this section, numerical experiments are carried out to study the influence of introducing

the regime switching factor into the Heston model, which would be conducted through

the comparison of the variance and volatility swap prices calculated through our formulae

with those obtained under the Heston model with the formula for variance swap prices

in Zhu & Lian (2011) and the formula for volatility swap prices in Zhu & Lian (2015).

In the following, unless otherwise state, the values of the parameters used are listed as

follows. The risk-free interest rate r and the volatility of volatility σ are set to be 0.05

and 0.1 respectively. The mean reverting speed k and the long-term mean θ are chosen

to be 10 and 0.05 respectively, and the correlation ρ between the underlying price and

stochastic volatility is -0.5. In addition, the initial stochastic volatility level v0 is 0.03, and

the sampling frequency N , which is measured by the number of times per year, is 4. The

two transition rate, i.e., λ12 and λ21, are assumed to be equal to each other, both taking

the value of 10, while the values for the regime switching volatility, α1 (state 1) and α2

(state 2), are set to be 0.01 and 0.1, respectively.

Before we study the property of the newly derived formulae, their accuracy should be

verified in advance to ensure there are no algebraic errors. In order to demonstrate the

correctness of our formula, we will compare the variance swap prices calculated through

our formula and those obtained with the Monte Carlo simulation. To improve the effi-

ciency of the Monte Carlo simulation, we adopt a semi-Monte-Carlo simulation (Liu et al.

2006) that in one simulation, we first generate a Markov chain so that the αXt becomes

a time-dependent parameter, and then calculate the conditional characteristic function

(2.9), followed by the calculation of the variance swap price for one simulation by simply

substituting the conditional characteristic function into the variance swap price formula

(2.36). Finally, we can obtain the Monte Carlo price through repeating the above process

and taking the mean of the obtained prices. Variance swap prices corresponding to state

1 calculated through our formula and those from the semi-Monte Carlo simulation are
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Figure 1: The conparison of variance swap prices from our formula and the Monte Carlo
simulation.

presented in Figure 1. It is clear that they are very close to each other with the point-wise

relative difference being less than 0.01%, which can certainly demonstrate the accuracy of

our formula. Furthermore, prices under both models decrease sharply when the sampling

frequency starts to increase from a small value, while the prices remain almost unchanged

if we further increase the sampling frequency when it is already very large.

As stated before, the adopted model will degenerate to the Heston model if the constant

volatility in each state of the Markov chain equals to zero. Thus, what we will check

first is this particular degeneration, which can also partially verify the validity of our

formulae. In order to achieve this goal, a scale parameter z varying within the range [0, 1]

is introduced so that it is a factor of the constant volatility of each state, i.e., λ1 = 0.01 ∗ z

and λ2 = 0.1 ∗ z. In this case, variance and volatility prices under both models with

respect to this scale parameter are presented in Figure 2. As expected, when the values of

the volatility controlled by the Markov chain for both states equal to 0, the two variance
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(a) Variance swap prices.
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(b) Volatility swap prices.

Figure 2: Delivery prices with or without regime switching with respect to the scale pa-
rameter.
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swap prices corresponding to different states no longer differ from each other, and they

both equal to the prices under the Heston model, as shown in Figure 2(a). What’s more,

variance swap prices of both states under our model are monotonic increasing functions of

the regime switching volatility, with prices in state 1 being lower than those in state 2, while

they are both larger than prices under the Heston model. This is actually reasonable since

the higher the volatility (risk), the larger the derivative price will be. A similar pattern can

be observed for volatility swap prices in Figure 2(b), where the volatility swap prices also

increase when the level of the regime switching volatility is enlarged. The only difference

in the two sub-figures is that the magnitude of the delivery price for the volatility swap is

approximately the square root of that for the variance swap, which can be explained by

the fact that the realized variance is about the square of the realized volatility.

Depicted in Figure 3 is the comparison of our variance and volatility swap prices with

those under the Heston model in terms of different values of the time to expiry. It is clear

that prices under both models are increasing functions of the time to expiry when other

parameters are kept unchanged, with our prices being always higher than those under the

Heston model. Moreover, the increasing speed for state1 and state 2 under our two-factor

stochastic volatility model is slightly higher and lower than that in the Heston model,

respectively, and the two state prices under our model are quite close to each other when

the time to expiry is very large.

Figure 4 displays different delivery prices of variance and volatility swaps against the

volatility of state 1, α1. A similar phenomenon, which has already been shown in Figure 2,

can also be observed here that variance and volatility swap prices are monotonic increasing

functions of the volatility level for both states. Moreover, prices of state 2 are larger

than those of State 1 when the volatility of state 1 is smaller than that of state 2, while an

apposite phenomenon can be observed when the value of the volatility in state 1 is enlarged

to be higher than that in state 2. It should also be remarked that the prices corresponding

both states will equal to each other when the volatility of state 1 equals to that of state 2,
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(a) Different variance swap prices with respect to time to expiry.
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(b) Different volatility swap prices with respect to time to expiry.

Figure 3: Delivery prices with or without regime switching with respect to time to expiry.
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Figure 4: The effect of α1 on the delivery prices of variance and volatility swaps.
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which can be understood by considering the fact that there are no actual regime switching

in this case.

What is shown in Figure 5 is the change of delivery prices of variance and volatility

swaps with respect to the transition rates. Obviously, prices in state 1 are always lower

than those in state 2, no matter the value of the transition rates is. This can be mainly

explained that the probability of the Markov chain transiting from state 1 to state 2 within

a fixed period equals to that transiting from state 2 to state 1, as a result of assuming that

the transition rates for both states equal to each other, and thus a large volatility level

of the initial state tend to yield high prices. Furthermore, both of variance and volatility

swap prices are monotonic increasing and decreasing functions of transition rates in state 1

and those in state 2, respectively, which implies that the gap between prices of both states

are narrowed down when we increase the transition rates. This is because the probability

of the chain transiting from state 1 to state 2 increases with transition rates, and in this

case the volatility starting in state 1 (low volatility) has more chance to transfer to state

2 (high volatility), leading to a higher price for state 1. In contrast, the volatility starting

in state 2 (high volatility) has more chance to transfer to state 1 (low volatility), resulting

in a lower price when increasing transition rates.

It should be remarked that the calibration of derivative pricing models involving regime

switching with real market data is not an easy task, as there are two state prices in

our model and we are usually not sure which state the underlying asset belongs to in

practice. Fortunately, He & Zhu (2017) recently proposed a new closed system, in which

they assumed that the probability of the underlying price being in each state, instead of

the current state, should be known and be regarded as a model parameter. As a result, the

model price can be uniquely determined as the weighted average of all state prices. Given

that our model also has the same regime switching features, the same approach should

be applicable, and thus the unique delivery price of a variance/volatility swap under our

model can be determined in a very similar way.
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Figure 5: The effect of the transition rates on the delivery prices of variance and volatility
swaps.
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4 Conclusion

In this paper, analytical pricing formulae for variance and volatility swaps have been derived

when the underlying price follows a two-factor Heston stochastic volatility model, with one

factor still being modeled by the CIR model while another being controlled by a Markov

chain. Numerical experiments have also been carried out to compare the delivery prices of

the two swaps resulting from the current two-factor model and the original Heston model,

and the results have shown that the introduction of the regime switching factor into the

Heston model can make a significant difference, as far as variance and volatility swap prices

are concerned.
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