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3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass:
Architecture Engineering with Additive Manufacturing and
CellularAssessments in a Coculture of Bone Marrow Stem Cells and
Endothelial Cells

Abstract
The local delivery of Cu2+ from copper-doped bioactive glass (Cu-BaG) was combined with 3D printing of
polycaprolactone (PCL) scaffolds for its potent angiogenic effect in bone tissue engineering. PCL and Cu-
BaG were, respectively, dissolved and dispersed in acetone to formulate a moderately homogeneous ink. The
PCL/Cu-BaG scaffolds were fabricated via direct ink writing into a cold ethanol bath. The architecture of the
printed scaffolds, including strut diameter, strut spacing, and porosity, were investigated and characterized.
The PCL/Cu-BaG scaffolds showed a Cu-BaG content-dependent mechanical property, as the compressive
Young's modulus ranged from 7 to 13 MPa at an apparent porosity of 60%. The ion dissolution behavior in
simulated body fluid was evaluated, and the hydroxyapatite-like precipitation on the strut surface was
confirmed. Furthermore, the cytocompatibility of the PCL/Cu-BaG scaffolds was assessed in human bone
marrow stem cell (hBMSC) culture, and a dose-dependent cytotoxicity of Cu2+ was observed. Here, the
PCL/BaG scaffold induced the higher expression of late osteogenic genes OSTEOCALCIN and DLX5 in
comparison to the PCL scaffold. The doping of Cu2+ in BaG elicited higher expression of the early osteogenic
marker gene RUNX2a but decreased the expression of late osteogenic marker genes OSTEOCALCIN and
DLX5 in comparison to the PCL/BaG scaffold, demonstrating the suppressing effect of Cu2+ on osteogenic
differentiation of hBMSCs. In a coculture of hBMSCs and human umbilical vein endothelial cells, both the
PCL/BaG and PCL/Cu-BaG scaffolds stimulated the formation of a denser tubule network, compared to the
PCL scaffold. Meanwhile, only slightly higher gene expression of vWF was observed with the PCL/Cu-BaG
scaffold than with the PCL/BaG scaffold, indicating the potent angiogenic effect of the released Cu2+.
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ABSTRACT: The local delivery of Cu2+ from copper-doped bioactive
glass (Cu-BaG) was combined with 3D printing of polycaprolactone
(PCL) scaffolds for its potent angiogenic effect in bone tissue
engineering. PCL and Cu-BaG were, respectively, dissolved and
dispersed in acetone to formulate a moderately homogeneous ink. The
PCL/Cu-BaG scaffolds were fabricated via direct ink writing into a cold
ethanol bath. The architecture of the printed scaffolds, including strut
diameter, strut spacing, and porosity, were investigated and charac-
terized. The PCL/Cu-BaG scaffolds showed a Cu-BaG content-
dependent mechanical property, as the compressive Young’s modulus
ranged from 7 to 13 MPa at an apparent porosity of 60%. The ion
dissolution behavior in simulated body fluid was evaluated, and the
hydroxyapatite-like precipitation on the strut surface was confirmed.
Furthermore, the cytocompatibility of the PCL/Cu-BaG scaffolds was assessed in human bone marrow stem cell (hBMSC) culture, and a
dose-dependent cytotoxicity of Cu2+ was observed. Here, the PCL/BaG scaffold induced the higher expression of late osteogenic genes
OSTEOCALCIN and DLX5 in comparison to the PCL scaffold. The doping of Cu2+ in BaG elicited higher expression of the early osteogenic
marker gene RUNX2a but decreased the expression of late osteogenic marker genes OSTEOCALCIN and DLX5 in comparison to the PCL/
BaG scaffold, demonstrating the suppressing effect of Cu2+ on osteogenic differentiation of hBMSCs. In a coculture of hBMSCs and human
umbilical vein endothelial cells, both the PCL/BaG and PCL/Cu-BaG scaffolds stimulated the formation of a denser tubule network,
compared to the PCL scaffold. Meanwhile, only slightly higher gene expression of vWF was observed with the PCL/Cu-BaG scaffold than
with the PCL/BaG scaffold, indicating the potent angiogenic effect of the released Cu2+.

KEYWORDS: 3D printing, tissue engineering scaffold, angiogenesis, polycaprolactone, copper-doped bioactive glass, gradient porosity,
coculture of mesenchymal stem cells and endothelial cells

■ INTRODUCTION

Synthetic bone grafts that resemble the architecture and
composition of the bone extracellular matrix are always sought
by biomaterial scientists and surgeons to overcome the
limitations of bone autografts and allografts in the treatments
of large bone defects in patients.1−3 The application of tissue
engineering (TE) scaffolds has emerged as a strategic approach
for bone reconstitution, as it combines the engineered

biomaterial structure, soluble/mechanical factors (e.g., release
of stimulating bio(macro)molecules/ions), and regenerative
cells to provide a structural and physiological support to the
spatial tissue growth.4,5
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As the first man-made biomaterial capable of forming
chemical bonding to bone,6 bioactive glasses (BaGs) have
been extensively explored during the past several decades in
bone TE because of their osteostimulative capability to guide
and stimulate the bone growth.7−9 However, successful
neovascularization (the sprouting of blood vessels) in the
bone TE constructs remains challenging.10,11 Several well-
established compositions of silicate BaGs, such as 45S5 and
S53P4, are capable of inducing angiogenic differentiation of
mesenchymal stem cells (MSCs).12,13 This is attributed to their
ionic dissolution products of soluble Ca, Si, and P that can
upregulate the genes related to angiogenesis, such as those
encoding vascular endothelial growth factor (VEGF) and basic
fibroblast growth factor (bFGF).13,14 Moreover, the essential
participation of Cu2+ in angiogenesis has been acknowledged:
Cu2+ in a proper dosage has a clear proangiogenic function by
activating a group of proangiogenic growth factors, including
VEGF and platelet-derived growth factor (PDGF), therefore
promoting endothelial cell proliferation and tubule forma-
tion.15−17 At present, the local delivery of Cu2+ from the Cu-
doped BaG to induce angiogenesis has been investigated in
various forms, e.g., porous scaffold of Cu-doped mesoporous
BaG,18 composite hydrogel containing Cu-doped mesoporous
BaG,19 functional coating of Cu-doped BaG nanoparticles and
electrospun nanofibers of Cu-doped BaG.20−22 Strategically, the
incorporation of Cu-doped BaG in bone TE scaffolds may offer a
straightforward approach to address the neovascularization
challenge in bone tissue regeneration.
The critical aspects to be taken into consideration when

designing a bone TE scaffold are the selection of suitable
biomaterials to support cell adhesion and proliferation as well as
the definitive structural parameters of the scaffold to mimic the
native bone tissue. Polycaprolactone (PCL), a bioresorbable
polymer extensively used in various biomedical applications,
offers excellent material properties and cytocompatibility.23 The
extrusion-based 3D printing (3DP) techniques offer a high-level
control of the scaffold architecture, including pore size,
distribution, and interconnectivity.24 Previously, the TE
scaffolds for bone regeneration manufactured by the 3DP
using PCL or its composites with inorganic minerals such as the
microparticles of tricalcium phosphate,25 hydroxyapatite, and
calcium polyphosphate have been studied.26,27 Conventionally,
the melted PCL is used as the carrier phase for the mineral
microparticles, and the printed constructs keep the shape fidelity
through fast cooling after being extruded through the nozzle in
3DP.
In the current study, a solvent-based approach was proposed

to prepare the well-dispersed BaG microparticles of Cu-doped
S53P4 (S53P4−Cu1) in PCL solution (in acetone) as a
homogeneous ink fed in the direct ink writing (DIW), and the
printed struts solidified rapidly in the cold ethanol due to the
solubility change of PCL, thus facilitating the fabrication of the
PCL/Cu-BaG composite scaffolds. This method offers a facile
printing as no heating is needed and also extends the possibility
to incorporate other bioactive molecules, such as growth factors,
within the scaffold during the printing process. Then, the ion
dissolution behavior and bioactivity (in terms of supporting the
hydroxyapatite precipitation) of the composite scaffolds were
evaluated in simulated body fluid (SBF). Furthermore, the
cytocompatibility of the composite scaffolds as well as the
impact of the ion release on the early osteogenic differentiation
of human bone marrow stem cells (hBMSCs) were evaluated in
vitro. Finally, we studied whether the Cu2+ released from the 3D

scaffolds could promote the angiogenesis in a coculture of
hBMSCs and human umbilical vein endothelial cells (HU-
VECs). The observations are indicative for utilizing the Cu-
doped BaG aiming at enhancing the vascularization in TE
scaffolds.

■ MATERIALS AND EXPERIMENTAL
Glass Melting of BaGs (S53P4 and S53P4−Cu1) and

Preparation of BaG Microparticles. Two BaGs, S53P4 (53%
SiO2−4%P2O5−20%CaO−23%Na2O wt %) and S53P4−Cu1 (53%
SiO2−4%P2O5−19%CaO−23%Na2O−1%CuO wt %), were prepared
using the melt-quenching method. The batches consisted of analytical
grade reagents Na2CO3, CaCO3, CaHPO4·2H2O, Cu(NO3)2·2.5H2O
(all purchased from Sigma-Aldrich), and Belgian glass quality quartz
sand (0.32 mm, Varnia Oy). The batches were melted in a Pt crucible at
1360 °C for 3 h, cast, annealed, crushed, and remelted to ensure the
homogeneity. The annealed glass block was crushed and gradually
fractionated with a set of woven wire mesh sieves with #mm from 500
μm down to 45 μm (laboratory test sieves, Retsch GmbH) to give
several powdered fractions. The finest powder fraction, which could
pass through the #mm = 45 μm sieve, was further milled for 10 min
using a benchtop planetary ball mill (MinMill, Philips) to obtain the
fine particles of BaG for the DIW ink formulation.

Scaffolds Fabrication via DIW. A 30 g portion of PCL (Mw =
80 000, Aldrich) was dissolved in 100 mL of acetone overnight in a 50
°C water bath to obtain a viscous solution, which was then used as the
carrier phase for the BaG particles in the ink formulation. The BaG
particles were homogeneously dispersed into the viscose PCL solution
using a planetary centrifugal mixer (ARE-250, Thinky Corporation) at a
rotation speed of 2000 rpm. The compositional ratio between the PCL
and BaG was adjusted to 4:1, 2:1, or 1:1, according to the content of
PCL and BaG in wt %.

The scaffold fabrication via DIW was carried out using an adapted
Korean Institute for Machinery andMaterials (KIMM) Bioplotter. The
KIMM Bioplotter software was used to produce a G-code tooling path
for printing. Square block models (x = 10 mm, y = 10 mm, and z = 1, 2,
or 4 mm) were designed with the Bioplotter software, and the strut
spacing (SS) was defined as either 400 or 800 μm between the center of
the struts. For the scaffolds with a gradient porosity, the SS was
decreased from the center to the edge of the scaffold, from 800 to 200
μm. The viscous ink as formulated was loaded into a fluid dispensing
system (Optimum by Nordson EFD), with the syringe barrel installed
onto the KIMM printer and connected to an air pressure regulator. A
precision tip made of stainless steel (25GA, Nordson EFD) was used as
the dispensing nozzle. The scaffolds were printed layer-by-layer through
extruding the ink into a cold ethanol bath. The feed rate was kept
constant at 2 mm s−1, and the extrusion pressure was then manually
adjusted in the range 1.5−3.0 bar according to the viscosity of the ink
for an optimal printing process. The scaffolds were then soaked in
absolute ethanol for 24 h, and the ethanol was replaced every 8 h to
complete the phase exchange of PCL from acetone to ethanol. Finally,
the scaffolds were collected and dried in air before further character-
izations.

Scaffold Imaging with Optical Microscopy, Scanning
ElectronMicroscopy (SEM), andMicro Computed Tomography
(μ-CT). The microscopic features of scaffolds were observed by using a
LEICA M205A optical microscope. The reported strut diameter and
strut spacing were assessed in triplicate (n = 3). The morphological
features of the scaffold strut were characterized by using SEM. To assess
the macroporosity, μ-CT was used to analyze the inner structure of the
scaffolds. The imaging was performed with an Xradia MicroXCT-400
(Zeiss, Pleasanton, CA) device: 1600 projections were taken with a
pixel size of 19.70 μm. The source voltage was set to 80 kV, and the
source current was 125 μA. To achieve the desired image quality, a 3 s
exposure time was used. The device manufacturer’s XMReconstructor
software was used to reconstruct the 3D volumes. Image segmentation
was done with Avizo software (Thermo Fisher Scientific, Waltham,
MA) using manual thresholding. Approximately 8.2 × 8.2 × 2.4 mm
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volumes were selected, and the porosity, strut size, and pore size of the
3D scaffolds were calculated with the BoneJ plugin in the Fiji program.
Thermogravimetric (TG) Analysis. TG analysis of the scaffolds

was performed using a differential thermal analysis instrument (Netzsch
STA 449F1) in the gas flow of synthetic air at a speed of 100 mLmin−1.
The temperature ramped up to 850 °C at an elevating rate of 10 °C
min−1. The BaG wt % of the scaffold was determined as relative to the
residue content in the TG analysis.
Mechanical Tests. The compressive response of the printed

scaffolds was measured with a Shimadzu EZ-L Universal Mechanical
Tester. Scaffolds were compressed at 1 mm min−1 and a maximum
loading of 500 N was applied. When calculating the strength, the
dimensions along the x, y, and z-axes measured with a digital caliper
were used. Strain was registered as a function of stress for an applied and
increasing force and the measurements were conducted in triplicate to
elaborate the compressive modulus based on the stress vs strain curves.
Ion Release Study of PCL/Cu-BaG Scaffolds in SBF. The SBF

was prepared according to the protocol of Kokubo, and the exact
composition is presented in the Supporting Information S1.28 The 3D
scaffolds were immersed in 10 mL of SBF in airtight polyethylene
containers that were placed in an incubating orbital shaker held at 37 °C
and agitated at 100 rpm. The samples were incubated for a total period
of 30 days and sampled at intervals of 6 h, 24 h, 3 days (3 d), 7 d, 14 d, 22
d, and 30 d. At each time point, 0.5 mL of the immersion solution was
sampled, and 0.5 mL of fresh SBF was additionally replenished for a
continued immersion. The ionic concentrations of Ca, P, Si, and Cu
ions in the sampled solution were analyzed with an inductively coupled
plasma optical emission spectrometer (ICP-OES) (Optima 5300 DV,
PerkinElmer, Shelton, CT). For the ICP-OES measurements, the
sampled aliquots were diluted 10 times with deionized H2O. At the end
of the immersion test, the scaffolds were carefully collected, washed
extensively with ethanol, and dried in the air. The surface morphology
and elemental analysis of the scaffolds were characterized with an SEM-
EDXA instrument (EDXA, LEOGemini 1530 with a Thermo Scientific
UltraDry Silicon Drift Detector, X-ray detector by Thermo Scientific).
Isolation and Characterization of hBMSCs and HUVECs. The

hBMSCs were isolated from a bone marrow aspirate sample obtained
from a surgical procedure at the Department of Orthopedics and
Traumatology, Tampere University Hospital, with the patient’s
consent. The hBMSCs used in the study were harvested from a female
donor of 80 years of age. The study was conducted in accordance with
the Ethics Committee of the Pirkanmaa Hospital District, Tampere
(R15174). hBMSCs were isolated using centrifugation through a Ficoll
gradient. First, the bone marrow aspirate was suspended in Dulbecco's
phosphate buffered saline (DPBS), and the solution was pushed
through a 100 μm cell strainer. The bone marrow aspirate solution was
centrifuged, and the fat layer was removed. Thereafter, the bone
marrow aspirate solution was pipetted carefully on top of a Ficoll
gradient (Histopaque-1077; 1.077 g mL−1; Sigma-Aldrich; St. Louis,
MO). A 2.6 mL portion of Ficoll (Histopaque; Sigma-Aldrich) per 1
mL of bone marrow aspirate sample was used. The bone marrow
aspirate solution was centrifuged for 20 min at 800g, and the
mononucleated hBMSCs were harvested from an interphase between
the Ficoll and plasma phases. The cells were washed twice with 5 mL of
MEM Alpha medium (Thermo Fisher Scientific, Waltham, MA) per 1
mL of collected interphase, and the suspension was centrifuged for 15
min at 400g. The cell pellet was suspended in basic medium (BM)
consisting of MEM Alpha medium (Thermo Fisher Scientific), 5%
human serum (HS; BioWest, Nuaille,́ France), and 1% antibiotics (100
U mL−1 penicillin; 100 U mL−1 streptomycin; Lonza, Basel,
Switzerland) with 5 ng mL−1 human FGF-2 (Miltenyi Biotec; Bergisch
Gladbach, Germany). Isolated hBMSCs were expanded in BM at 37 °C
in 5% CO2, and medium was changed twice per week. Cells were
detached with TrypLE Select (Thermo Fisher Scientific). The
experiments were carried out at passage 3.
HUVECs were extracted from the umbilical cord acquired from

scheduled Cesarean section at the Department of Obstetrics and
Gynecology, Tampere University Hospital, with the donor’s consent
according to Hamilton et al.29 The study was conducted in accordance
with the Ethics Committee of the Pirkanmaa Hospital District,

Tampere (R13019). Briefly, the cord was separated from the placenta;
the umbilical vein was cannulated with a 20G needle, and the needle
was secured by clamping the cord over the needle with a clamp. The
vein was perfused with PBS to wash out blood, and then, the opposing
end of the umbilical vein was clamped. Subsequently, the vein was
infused with collagenase II (Sigma). The umbilical cord was incubated
in a water bath at 37 °C for 15 min. After incubation, the collagenase
solution containing HUVECs was flushed from the cord into a 50 mL
polypropylene tube. The cells were centrifuged at 1200 rpm for 6 min
and resuspended in EGM-2 BulletKit (Lonza) medium supplemented
with 2%HS and seeded into 25 cm3

flasks. The HUVECs were cultured
at 37 °C in 5%CO2, and the mediumwas changed twice per week. Cells
were detached with TrypLE Select (Thermo Fisher Scientific). The
experiments were carried out at passage 3.

To verify the mesenchymal origin of the hBMSCs and the
endothelial phenotype of HUVECs, surface marker expression was
characterized by flow cytometry (FACSAria; BD Biosciences,
Erembodegem, Belgium) as described previously, as documented in
Supporting Information S2.30

Cell Seeding and Culture on Scaffolds. In the cell culture study,
the PCL scaffolds were used as a control to the composite scaffolds; the
scaffolds PCL/S53P4 were also included as a Cu-free control to the
scaffolds of PCL/S53P4−Cu1. All the tested scaffolds (10 mm × 10
mm × 1 mm) were sterilized by incubating the scaffolds 2 × 10 min in
70% ethanol, and then, the scaffolds were left to dry for 2 h in a biosafety
cabinet. Thereafter, the scaffolds were incubated in BM for 48 h prior to
cell seeding.

All scaffolds’ ability to support hBMSC viability, proliferation, and
early osteogenic differentiation was evaluated in hBMSC culture.
hBMSCs were seeded, 50 000 per scaffold, in a 50 μL OM (BM with
200 μM ascorbic acid 2-phosphate (Sigma-Aldrich), 10 mM β-
glycerophosphate (Sigma-Aldrich), and 5 nM dexamethasone (Sigma-
Aldrich)) drop on to the scaffolds. Cells were allowed to attach for 3 h
before adding 2 mL of OM per well. The medium was changed to a
fresh one twice per week during the experiment.

The scaffolds’ ability to support vascularization was assessed in the
coculture experiment with hBMSCs and HUVECs. Only PCL, PCL/
S53P4 = 4:1, and PCL/S53P4−Cu1 = 4:1 scaffolds were used in the
coculture experiment due to the observed cytotoxicity of higher
S53P4−Cu1 content with the other compositional ratios. The
originally printed scaffolds (10 mm × 10 mm × 1 mm and d = 400
μm) were cut into four quarters for further use. hBMSCs were seeded,
20 000 per scaffold, and cultured for 6 d before seeding an equal amount
of HUVECs. After seeding the HUVECs, the medium was changed to
EGM-2 (Lonza, Basel, Switzerland). hBMSCs alone were used as a
control group and cultured in OM throughout the experiment.

Cell Viability and Proliferation. Cell viability was evaluated
qualitatively by staining the hBMSCs with fluorescent live/dead-
staining probes (Thermo Fisher Scientific) after 1 d and 14 d of culture.
The samples were incubated for 45 min at room temperature in a
mixture of 0.5 μM calcein-AM and 0.25 μM ethidium homodimer-1.
Images of viable cells (green fluorescence) and dead cells (red
fluorescence) were taken using an Olympus IX51 phase contrast
microscope with fluorescence optics and Olympus DP30BW camera
(Olympus, Tokyo, Japan).

Cell viability was quantitatively analyzed by a lactate dehydrogenase
(LDH) activity assay (Abcam, Cambridge, UK). The LDH reduces
NAD to NADH, which then interacts with a specific probe to produce a
color. Themedium samples were collected at everymedium change and
stored at −20 °C until analysis. The analysis was conducted according
to the manufacturer’s protocol. After 30 min of incubation at room
temperature, the absorbance, i.e., the intensity of the color, was
determined at 450 nm with a microplate reader (Victor 1420Multilabel
Counter; Wallac; Turku, Finland).

Cell number was determined quantitatively after 7 d and 14 d of
hBMSC culture by analyzing the total amount of DNA by a CyQUANT
cell proliferation assay kit (Thermo Fisher Scientific) as reported
previously.31 CyQUANT GR dye emits fluorescence when bound to
nucleic acids. Samples were analyzed after two freeze−thaw cycles, and
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fluorescence was measured at 480/520 nm with a microplate reader
(Victor 1420, Wallac).
Cu2+ Concentration in Culture Medium of hBMSCs. In the

culture of hBMSCs, the medium samples were collected from 3 parallel
wells at 2 d, 6 d, and 13 d while the medium was changed and pooled as
one sample per time point. The concentration of Cu2+ in the sample was
analyzed by the ICP-OES analysis using the same protocol as described
in the earlier Ion Release Study of PCL/Cu-BaG Scaffolds in SBF
section.
Alkaline Phosphatase Activity. Alkaline phosphatase (ALP)

activity was determined after 7 d and 14 d of hBMSC culture as
described previously.31 The ALP activity was determined from the same
cell lysates as the total DNA content. Absorbance was measured at 405
nm (Victor 1420, Wallac).
Quantitative Real-Time PCR. The relative expression of

endothelial marker genes PECAM and vWF was evaluated with
quantitative real-time reverse transcription polymerase chain reaction
(qRT-PCR) at 6 d (hBMSCs only), 11 d, and 20 d (hBMSCs only and
hBMSCs+HUVECs coculture) time points as previously described.32

The relative expression of osteogenic genes RUNX2a, OSTEOCAL-
CIN, and DLX5 was analyzed with qRT-PCR at 11 d and 20 d time
points (hBMSCs only and hBMSCs+HUVECs coculture). The data
was normalized to the expression of a housekeeping gene RPLP0
(human acidic ribosomal phosphoprotein P0), and the calculations
were conducted using a previously described mathematical model.33

For vWF and PECAM, the QuantiTect primer assays were used
(Qiagen, Hilden, Germany). The primer sequences and accession
numbers for RPLP0 and osteogenic genes RUNX2a, OSTERIX, and
DLX5 are listed in Table 1. The qRT-PCR mixture contained cDNA,
primers, and SYBR Green PCRMaster Mix (Applied Biosystems). The
reactions were carried out with an ABIPRISM 7300 sequence detection
system, and the results were analyzed with AbiPrism 7300 sequence
detection system software (Applied Biosystems).
Immunocytochemical Staining. The expression of endothelial

marker proteins vWF and CD31 (the product of the PECAM gene) was
characterized with immunocytochemical staining after 13 d and 20 d of
culture (hBMSCs only and hBMSCs+HUVECs coculture). The
protocol was conducted as previously described.32 The following
primary antibodies were used: CD31 monoclonal mouse antihuman
antibody (dilution 1:20, Dako, Agilent, Santa Clara, CA) and rabbit
polyclonal anti-vWF antibody (dilution 1:100, Abcam). The primary
antibodies were incubated overnight at +4 °C. The secondary
antibodies goat antimouse Alexa Fluor 488 (for CD31 staining;
dilution 1:200; Thermo Fisher Scientific) and goat antirabbit Alexa
Fluor 568 (for vWF staining; dilution 1:500; Thermo Fisher Scientific)
were incubated for 1 h at room temperature. The images were acquired
with an Olympus IX51 phase contrast microscope with fluorescence
optics and Olympus DP30BW camera.
Statistical Testing. Statistical testing was conducted with SPSS

version 23 (IBM, Armonk, NY) using a nonparametric test due to small
sample size. The effects of the scaffolds on cell viability, cell amount,
ALP activity, and gene expression were compared using the Kruskal−
Wallis test with Mann−Whitney U post hoc test and Bonferroni
correction. The results were considered significant when p < 0.05. The
cell culture experiments were repeated with 1 donor line with 3 or 4
parallel samples (n = 3 or n = 4). However, most likely due to the small

sample size, no significant differences between the test groups were
detected.

■ RESULTS

Scaffolds Fabrication via DIW and Morphological
Features. In this work, we used a viscous solution of PCL
dissolved in acetone as the carrier phase to disperse the BaG
microparticles to formulate a homogeneous ink. Up to 50% of
BaGs calculated as the dry weight in PCL/BaG could be mixed
into the ink with the aid of orbital mixing. In DIW, the printing
nozzle was immersed in a cold ethanol bath, and the printed
struts solidified as extruded due to the solubility change of PCL
in acetone (soluble) and in ethanol (insoluble).
Figure 1 presents the optical and morphological images of the

PCL/S53P4−Cu1 scaffolds with various compositional ratios at

4:1, 2:1, or 1:1 (wt %). Overall, the well-defined layouts of the
struts were obtained in all the scaffolds, as seen in the first two
columns. After the solvent exchange and drying, the printed
scaffolds shrank compared to the designed model, more in the z-
axis than the x- and y-axes (Table 2). The gravitational force was

Table 1. Primer Sequences and Accession Numbers of Genes Analyzed by qRT-PCR

name 5′-sequences-3′ product size (bp) accession number

hRPLP0 Frw AATCTCCAGGGGCACCATT 70 NM_001002
Rev CGCTGGCTCCCACTTTGT 70 NM_001002

hOSTEOCALCIN Frw AGCAAAGGTGCAGCCTTTGT 63 NM_000711
Rev GCGCCTGGGTCTCTTCACT 63 NM_000711

hRUNX2a Frw CTTCATTCGCCTCACAAACAAC 62 NM_001024630.3
Rev TCCTCCTGGAGAAAGTTTGCA 62 NM_001024630.3

hDLX5 Frw ACCATCCGTCTCAGGAATCG 75 NM_005221.5
Rev CCCCCGTAGGGCTGTAGTAGT 75 NM_005221.5

Figure 1. Optical images (column i) and SEM images of the scaffolds
(column i and column ii) of PCL (d = 400 μm) (row a), PCL:S53P4−
Cu1 = 4:1 (d = 400 μm) (row b), PCL:S53P4−Cu1 = 2:1 (d = 400 μm)
(row c), and PCL:S53P4−Cu1 = 1:1 (d = 400 μm) (row d). Scale bars:
2 mm (i), 200 μm (ii), 2 μm (iii).
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assumed to cause the higher compaction along the z-axis during
the solidification. Also, the content of S53P4−Cu1 in the
composite affected the shrinkage rate. As seen from Table 2, less
shrinkage occurred in the composite containing more BaG
microparticles since the shrinkage is mainly caused by the
condensation of PCL polymer after the removal of organic
solvent. The shrinkage decreased from 13% to 14% for the PCL
scaffold to 4% for the composite scaffold of PCL/S53P4−Cu1 =
1:1 on x- and y-axes while for the z-axis the difference in the
shrinkage was from 20% compared to 12%. The strut diameter
and strut spacing were confined within the range 200−230 μm
and 300−340 μm, respectively, after the shrinkage upon
solidification. As the content of S53P4−Cu1 in the composites
increased, the composites showed a coarser surface morphology
as revealed by the SEM images (Figure 1). The increased surface
roughness in the composites containing more S53P4−Cu1
microparticles was probably due to the presence of more BaG
microparticles that protruded the PCL matrix to a larger extent.
In the scaffolds of PCL/S53P4−Cu1 = 2:1 and 1:1, small
cavities and even microcracks were seen on the surface,
indicating a disruption to the continuous phase of PCL in the
struts.
TG analysis confirmed the compositional ratio of S53P4−

Cu1 in the composite scaffolds, as displayed in Supporting
Information S3 as well as listed in Table 2. The residual content
was highly consistent with the inorganic content of BaG in the
ink dispersion. Also, the cross-section image of the PCL/
S53P4−Cu1 = 2:1 scaffold revealed a moderately homogeneous
distribution of BaG microparticles through the PCL matrix (as
seen in the SEM image in Supporting Information S3). This
indicates that the dispersion of BaG microparticles in viscous
PCL solution was rather homogeneous, which consequently
facilitated theDIW fabrication of the scaffolds with good textural
integrity and high resolution.
Compressive Response of the 3D Scaffolds of PCL and

PCL/S53P4−Cu1. In a compressive mode, the mechanical
responses of the PCL and PCL/S53P4−Cu1 scaffolds were
analyzed. The stress−strain response curves for the scaffolds of
PCL and PCL/S53P4−Cu1 = 4:1 and 2:1 with the SS = 400 μm
are displayed in Figure 2a. The observed stress−strain response
of the scaffolds is typical for the highly porous PCL-based
scaffolds reported elsewhere.26,34,35 Their stress−strain curves
are characterized by three different regions: a linear region at
lower strain values, suggesting an initial rigid mechanical
response, associated with elastic behavior of the scaffolds; a
region with lower stiffness; and lastly, a region where a rise of
stress with increasing strain is recorded, which is related to

densification of the porous structure. Compared with the PCL
scaffold, all the composite scaffolds exhibited reinforced
mechanical properties as the strains were yielded at higher
stress values. The compressive Young’s moduli E of the scaffolds
calculated from the slope of the stress−strain curves are
displayed in Figure 2b with respect to the compositional ratio
between the PCL and S53P4−Cu1. The PCL scaffold showed
an E value of 5.9MPa and a yield stress σy (at 0.2% strain) of 0.64
MPa. Among the compositional ratios at 4:1, 2:1, and 1:1 for
PCL/S53P4−Cu1, the scaffold of PCL/S53P4−Cu1 = 2:1
exhibited the highest E value of 12.5 MPa and yield stress σy (at

Table 2. Structural Parameters of 3D Printed Scaffolds of PCL/S53P4−Cu1

scaffold

dimension
(mm × mm × mm)

mean ± SEM axial shrinkage (%)
strut diameter

(μm) mean ± SEM
spacing between struts
(μm) mean ± SEM

BaG content in composite
as revealed by TGa

PCL 8.65 (±0.03)
× 8.72 (±0.02)
× 3.20 (±0.03)

13−14% on x- and y-axes;
∼20% on z-axis

229 (±16) 297 (±9)

PCL:S53P4−Cu1 = 4:1 8.86 (±0.07)
× 8.88 (±0.05)
× 3.28 (±0.06)

∼11% on x and y-axes;
∼18% on z-axis

207 (±8) 339 (±6) 20.2%

PCL:S53P4−Cu1 = 2:1 9.20 (±0.03)
× 9.21 (±0.03)
× 3.41 (±0.14)

∼8% on x and y-axes;
∼15% on z-axis

232 (±20) 323 (±12) 32.0%

PCL:S53P4−Cu1 = 1:1 9.58 (±0.01)
× 9.61 (±0.01)
× 3.49 (±0.01)

∼4% on x and y-axes;
∼12% on z-axis

231 (±3) 337 (±4) 57.4%

aDetermined from the weight loss in the TG analysis curves as shown in Supporting Information S3.

Figure 2. (a) Stress−strain curves for the 3D scaffolds. (b)
Compressive Young’s modulus vs the compositional ratio of PCL/
S53P4−Cu1 in the scaffold. Error bar: SEM.
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0.2% strain) of 1.54 MPa, more than 2 times higher than the
PCL scaffold of similar porosity. As revealed by the μ-CT
measurements, all the scaffolds printed with SS = 400 μm gave a
volume fraction of approximately 0.39 as well as an apparent
porosity of 60%. The scaffold of PCL/S53P4−Cu1 = 4:1
demonstrated a similar compressive modulus to the PCL
scaffold with an E value of 6.29 MPa, while the scaffold of PCL/
S53P4−Cu1 = 1:1 demonstrated an E value of 7.19 MPa, which
is lower than that of the scaffold of PCL/S53P4−Cu1 = 2:1. The
reduction in mechanical properties of the scaffold of PCL/
S53P4−Cu1 = 1:1 can be attributed to the formation of BaG
agglomerates, which may result in a heterogeneous dispersion of
the inorganic fillers in the PCL matrix, as observed in the SEM
images (Figure 1d,iii).
Porosity Control on the Printed Scaffold in DIW. As

revealed by the μ-CT measurements, the scaffolds printed with

SS = 400 μm gave a volume fraction of about 0.393 as well as an
apparent porosity of 60.64%. To demonstrate the precision
control of the DIW process over the scaffold porosity with the
developed ink system, the scaffolds with the SS = 800 μm
(shown in Figure 3A) or with a dense outward gradient porosity
(shown in Figure 3B) were, respectively, printed using the ink of
the compositional ratio at PCL/S53P4−Cu1 = 2:1. It showed
that, after solidification, the scaffolds with SS = 800 μm had the
same strut diameters of 232 μm as the scaffolds with SS = 400
μm, but the SS remained around 610 μm. The μ-CT
measurements gave a volume fraction of 0.274 with an apparent
porosity of 72.53%. In the design of dense outward gradient
porosity, the strut spacing was set with a linear change from edge
to center on both x- and y-axes. As displayed in Figure 3B, this
resulted in an almost linear change of the SS value from 165 to
663 μm in the scaffold after shrinkage.

Figure 3. (A) Optical images of the scaffold of PCL/S53P4−Cu1 = 2:1 with strut spacing at d = 800 μm. (B) Optical images of the scaffold of PCL/
S53P4−Cu1 = 2:1 with a dense outward gradient porosity. (C) μ-CT images of the scaffolds with different porosity parameter. (D) Young’s modulus
with respect to various porosity in scaffolds of PCL and PCL/S53P4−Cu1 = 2:1.
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For the scaffolds with different porosity parameters, the μ-CT
image on the left in Figure 3C demonstrates the 3D spatial space
inside the printed scaffolds, and the image on the right presents
the 2D distribution of struts in the scaffolds. In general, the 3D
reconstruction of the scaffolds displayed as the “replicates” in

accordance to the CAD designs, indicating good controllability
of the developed DIW process. The pore architecture
parameters in these scaffolds are summarized with respect to
the varied porosity in Table 3. The Young’s moduli of these
scaffolds were also compared with respect to the porosity in

Table 3. Pore Architecture Parameters in the Printed Scaffold of PCL/S53P4−Cu1 = 2:1

scaffold
PCL:S53P4−Cu1 = 2:1

strut diameter (μm)
mean ± SEM

spacing between struts (μm)
mean ± SEM

volume fraction measured by
μ-CT

porosity measured by
μ-CT (%)

d = 400 μm 232 (±20) 323 (±12) 0.393 60.64
d = 800 μm 232 (±20) 610 0.274 72.53
gradient porosity 232 (±20) gradient change 0.261 73.92

Figure 4. (A) SEM image of the strut surface in the scaffold of PCL/S53P4−Cu1 = 4:1 after 30 days of immersion in SBF in various resolutions. (B)
SEM image of the strut surface in scaffold PCL/S53P4−Cu1 = 2:1 after 30 days of immersion in SBF in various resolutions. (C) SEM image of the strut
surface in scaffold of PCL/S53P4−Cu1 = 1:1 after 30 days of immersion in SBF in various resolutions. (D) SEM image of the strut surface in scaffold of
PCL/S53P4−Cu1 = 2:1 at various immersion time points. (E) EDXA performed on the precipitates on the strut surface in scaffold of PCL/S53P4−
Cu1 = 2:1 after 30 days of immersion in SBF.
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Figure 3D. Compared with the scaffold with SS = 400 μm, the
compressive modulus decreased for both the scaffold with SS =
800 μm and the one with a gradient porosity, as the porosity in
both types of scaffolds increased to ∼73%. An increase of the
total porous volume from 10% to 20% may result in a factor of 4
decrease in the mechanical strength.36

Ion Dissolution Profiles and Bioactivity of PCL/Cu-BaG
Scaffolds in SBF in Vitro. The bioactivity and ion dissolution
behaviors of the scaffolds of PCL/S53P4−Cu1 (SS = 400 μm) at
various compositional ratios were evaluated in SBF for a total
duration of 30 d. Figure 4A−C, respectively, displays the strut
surface morphology in the scaffolds of PCL/S53P4−Cu1 = 4:1,
2:1, and 1:1 after static immersion in SBF for 30 d. In the scaffold
of PCL/S53P4−Cu1 = 4:1, only small aggregates of calcium
phosphate phase (CaP) decorated on the strut surface (Figure
4A), whereas heavy precipitation of CaP formed layers covered
the strut surface in the scaffolds of both PCL/S53P4−Cu1 = 2:1
and PCL/S53P4−Cu1 = 1:1 (Figure 4B,C). The CaP
precipitate demonstrated a characteristic cauliflower-like
morphology consisting of numerous nanoflakes and gave a
Ca/P = 1.56 as measured by the EDXA (Figure 4E), which was
close to the Ca/P ratio of 1.67 in natural bone minerals,
hydroxyapatite. Figure 4D reveals the morphological change of
the strut surface in the scaffold of PCL/S53P4−Cu1 = 2:1 at
various time points during the SBF immersion. Notable
precipitation of the CaP phase on the strut surface was only
observed after 7 d of immersion.
By analyzing the ion concentrations in SBF at various time

points, the ion dissolution profiles of the scaffolds were acquired.
Figure 5 displays the ion dissolution profiles for PCL/S53P4−

Cu1 scaffolds with compositional ratios at 4:1, 2:1, and 1:1, all
with dimensions of 10 mm (x) × 10 mm (y) × 2 mm (z) and SS
= 400 μm defined in DIW. With respect to the dissolution of Si,
in all three types of scaffolds a burst release was initially detected
within 3 d of immersion, which was most likely associated with
the initial dissolution of Cu-BaG particles exposed on the most
outer surface. After 3 d, the Cu-BaG dissolution slowed down
when the ion diffusion from the inner of the particles might have
been hindered by the formed silica-rich layer. Overall, a rather
low amount of Si was detected for the scaffold of PCL/S53P4−
Cu1 = 4:1 due to the low content of S53P4−Cu1. For the
scaffold of PCL/S53P4−Cu1 = 2:1, a continuous release of Si at
an almost constant rate was detected for the rest of the
immersion period, whereas the Si released from the scaffold of
PCL/S53P4−Cu1 = 1:1 reached a saturation level at ∼60 mg
L−1 in SBF after 7 d of immersion. With respect to the
dissolution of Cu, in general the release trend was similar to that
of Si. A higher concentration of Cu2+ was observed in SBF from
the scaffold of PCL/S53P4−Cu1 = 1:1 due to the highest burst
release in the initial dissolution. The ion concentration profiles
of Ca and P in SBF are reflected both by the ion dissolution from
the scaffold and by the precipitation of CaP phase on the strut
surface. For the scaffold of PCL/S53P4−Cu1 = 4:1, apparent
precipitation of CaP was only seen after 14 d of immersion due
to the low concentration of Ca2+ accumulated in SBF, as
indicated by the steep ramp in P concentration. For the scaffolds
of PCL/S53P4−Cu1 = 2:1 and PCL/S53P4−Cu1 = 1:1, the
CaP precipitation was readily indicated after 1 d of immersion by
the steep ramp of P concentration in SBF as shown in Figure 5.

Figure 5. Ion concentration profiles of Ca, P, Si, and Cu ions in SBF with static immersion of PCL/S43P4-Cu1 scaffolds at various compositional
ratios.
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hBMSC Culture on the Scaffolds. To determine the
viability of hBMSCs on the scaffolds, a qualitative live/dead
staining as well as a quantitative LDH activity assay were
conducted. As made evident in Figure 6A, the cells were viable
on all the materials after 14 d of culture, and the number of dead
cells was negligible. Increasing the content of S53P4 in the
composite seemed to induce hBMSC proliferation more in
comparison to the PCL control. However, apart from the
scaffold of PCL/S53P4−Cu1 = 4:1, the high content of S53P4−
Cu1 had a clear negative effect on the cell amount.
Cells release LDH enzyme to the culture medium upon cell

death associated membrane rupture, making LDH a good
quantitative indicator of cell viability. Figure 6B shows the LDH
activity levels of the culture medium after 2 d, 6 d, 9 d, and 13 d
of culture. Since the medium was changed at each of these time
points, the LDH activity values are not cumulative. In general,
the LDH activities remained at a relatively low and constant level
with all the scaffolds until 9 d, indicating low cytotoxicity of the

studied scaffolds. At 13 d the values increased slightly, which is
likely due to the high cell density at this point, as observed in the
live/dead staining (Figure 6A). Unexpectedly, the amount of
Cu2+ released from the scaffolds of PCL/S53P4−Cu1 = 2:1 and
PCL/S53P4−Cu1 = 1:1 did not induce elevated LDH levels in
the culture medium, as expected based on the live/dead staining.
Still, cell amount in the S53P4−Cu1-containing scaffolds was
clearly less than that in the other samples, thus possibly
explaining this observation.
The cell proliferation was quantitatively evaluated at time

points of 7 d and 14 d as shown in Figure 6C. The integration of
S53P4 in the composite showed an increasing effect on the
hBMSC proliferation at both time points and with all the studied
BaG contents. Regarding the role of Cu2+ released from S53P4−
Cu1, the cell proliferation assay was in line with the live/dead
staining, indicating the inhibitory effect of the increased
concentration of Cu2+ on the growth of hBMSCs. Still, despite
the very low cell amount on the scaffold of PCL/S53P4−Cu1 =

Figure 6. Results concerning viability and proliferation of hBMSCs in scaffolds. (A) Representative images of live/dead staining at the 14 d time point.
Live cells are stained green and dead cells red. Scale bars: 500 μm. (B) LDH activity results at 2 d, 6 d, 9 d, and 13 d time points (n = 3, mean + SD). (C)
Total DNA amount in samples at 7 d and 14 d time points, indicating hBMSC proliferation (n = 4, mean + SD). (D) ICP-OES analysis results on Cu2+

concentration in culture medium at 0 d, 2 d, 6 d, and 13 d time points (n = 1).
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4:1 at 7 d, the cell amount at 14 d was comparable to that in the
scaffold of PCL/S53P4 = 4:1. The Cu2+ concentration in the
culture medium at time points of 0 d, 2 d, 6 d, and 13 d was
further analyzed by ICP-OES, which are presented in Figure 6D
with respect to the compositional ratio. During the preincuba-
tion in BM for 48 h (0 d at cell seeding), the concentration of
Cu2+ in the culture medium, respectively, reached 35, 70, and
117 μΜ released from the scaffolds of PCL/S53P4−Cu1 = 4:1,
2:1, and 1:1. As seen in Figure 6C, the proliferation of hBMSCs
on the scaffold of PCL/S53P4−Cu1 = 4:1 was first inhibited at
the early time point of 7 d. When the concentration of Cu2+

decreased to 20 μΜ after the culture medium was changed
several times, and the dissolution rate of Cu slowed down after
the initial burst, the hBMSCs were able to retain their
proliferative capacity at the later time point of 14 d, which was
comparable to that on the scaffold of PCL/S53P4 = 4:1.
However, at both time points of 7 d and 14 d, the proliferation of
hBMSCs was restricted on the scaffolds of PCL/S53P4−Cu1 =
2:1 and PCL/S53P4−Cu1 = 1:1 due to the high concentration
of Cu2+ in the culture media at these time points. Apparently, the
concentration of Cu2+ is critical for retaining the proliferative
capacity of hBMSCs.
To evaluate the early osteogenic commitment of hBMSCs on

the scaffolds, ALP activity was quantitatively determined after 7
d and 14 d of culture. As seen in Figure 7, the ALP activity

increased on all the materials from 7 d to 14 d, indicating that all
the scaffolds supported the early osteogenic differentiation. On
one hand, the ALP activity decreased with increasing the BaG
content (both for S53P4 and S53P4−Cu1), and the highest
values were detected on the PCL control. On the other hand, a
higher ALP activity was observed in the scaffold of PCL/
S53P4−Cu1 = 4:1 in contrast to the scaffold of PCL/S53P4 =
4:1.
hBMSCs and hBMSCs+HUVECs Coculture on the

Scaffolds. The ability of the PCL/BaG and PCL/Cu-BaG
scaffolds to support the vascularization in both hBMSC culture
and hBMSC+HUVEC coculture was analyzed by immunocy-
tochemical staining of the endothelial proteins CD31 and vWF
after 13 d and 20 d of culture. Moreover, the expression of these
two markers was also evaluated in gene level with the qRT-PCR
after 6 d, 11 d, and 20 d of culture. Due to the observed
inhibitory effect of the scaffold of PCL/S53P4−Cu1 = 2:1 and
PCL/S53P4−Cu1 = 1:1, only the scaffold of PCL/S53P4−Cu1
= 4:1 was chosen for the coculture experiments, along with the
PCL scaffold as a control to the composite scaffold and the

PCL/S53P4 = 4:1 scaffold as a Cu-free composite control. As
seen in Figure 8A,B, elevated production of CD31 protein was

observed on all the scaffolds in the coculture. Importantly,
extensive tubule formation was clearly visible. On the PCL
scaffold, the tubular structures were thick but relatively sparse,
whereas a denser network of thinner tubules was formed on the
S53P4-containing scaffolds. However, the scaffold of PCL/
S53P4−Cu1 = 4:1 did not stimulate tubule formation to a higher
extent when compared with the Cu-free scaffold of PCL/S53P4
= 4:1. Notably, S53P4 in the composite scaffolds also stimulated
the CD31 production in the hBMSC culture without HUVECs,
although no tubular structures were detected. On the gene level,
PECAM was notably upregulated in the coculture when
compared with the hBMSC culture, but no clear differences
among the material groups could be detected (Figure 8C). Still,
in the coculture model, the expression increased from 11 d to 20
d in all the groups.

Figure 7. Alkaline phosphatase activity results of hBMSCs in scaffolds
at 7 d and 14 d time points. Results are normalized to cell amount (n =
4, mean + SD).

Figure 8. Immunocytochemical staining of endothelial marker protein
CD31 (stained green) in hBMSCs and hBMSCs+HUVECs cultured in
scaffolds at (A) 13 d and (B) 20 d time points. Nuclei are stained blue;
scale bars: 500 μm. (C) Gene expression results of endothelial marker
gene PECAM in hBMSC and hBMSC+HUVEC cultures at 6 d, 13 d,
and 20 d time points. Results are expressed relative to hBMSCs cultured
for 6 days on PCL scaffold (n = 3, mean + SD).
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The production of vWF was in line with the immunological
staining of CD31 asmade evident in Figure 9. Tubular structures

were evident in the coculture on the scaffold of PCL and the
scaffold of PCL/S53P4 = 4:1 at 13 d (Figure 9A), and their
amount had clearly increased at 20 d especially on the scaffold of
PCL/S53P4 = 4:1 (Figure 9B). Still, the Cu2+ released from the
scaffold of PCL/S53P4−Cu1 = 4:1 did not stimulate the vWF
production or the tubular structure formation. There was a low
level of vWF production also in the culture of hBMSC alone, but
no tubular structures were observed. The relative vWF gene
expression followed a highly similar pattern as PECAM; elevated
expression levels were observed in the coculture, but the
differences among the material groups were minimal (Figure
9C). In the coculture, the vWF gene expression increased from
11 d to 20 d, and at both time points the expression level was
slightly higher in the scaffold of PCL:S53P4−Cu1 = 4:1 when
compared with the other groups.

The effect of PCL, PCL/S53P4 = 4:1, and PCL/S53P4−Cu1
= 4:1 scaffolds on osteogenic differentiation in both hBMSC
culture and hBMSC+HUVEC coculture was analyzed by qRT-
PCR of osteogenic marker genes RUNX2a, OSTEOCALCIN,
and DLX5 after 11 d and 20 d of culture. The early osteogenic
marker geneRUNX2a expression was elevated in hBMSCswhen
cultured in the scaffolds of PCL and PCL/S53P4−Cu1 = 4:1 in
comparison to the scaffold of PCL/S53P4 = 4:1 at both time
points (Figure 10A). In contrast, in hBMSC+HUVEC culture
the scaffold of PCL/S53P4 = 4:1 promoted RUNX2a expression
more at both time points in comparison to the other two
scaffolds. The scaffold of PCL/S53P4−Cu1 = 4:1 seemed to
have a decreasing effect on both OSTEOCALCIN and DLX5
expression, whereas the scaffold of PCL/S53P4 = 4:1 elevated
their expression at both time points and both culture setups
(Figure 10B,C). Altogether, the expression of the osteogenic
genes was more pronounced in hBMSC culture in contrast to
the coculture setup.

■ DISCUSSION
Tuning the Architecture Parameters and Balancing

the Mechanical Strength of PCL/BaG Scaffolds. The
architecture parameters in scaffolds, including pore size and
distribution, pore interconnectivity, and void volume, are
important aspects to consider in designing TE scaffolds.36

Optimal porosity in a scaffold allows the migration and
proliferation of seeded cells, as well as the formation of a
vascular network. A high porosity, greater than 80%, is desirable
to enhance the osteogenesis.36 An interconnected architecture
of macropores has a decisive effect for the ingrowth of new bone,
especially in long-term tissue interface maintenance. A pore size
greater than 300 μm is of importance for the osteogenesis to
occur as well as for the development of the vascularization
network through the TE construct.37,38 Furthermore, the TE
scaffolds shall incorporate a similar structural complexity as the
native tissues, which typically have a gradient porous structure.39

The gradient porosity enables specific cell migration during
tissue regeneration. The gradient porosity is also required for the
treatment of articular cartilage defects in osteochondral TE.37,40

In this work, we have successfully fabricated 3D printed
scaffolds with different pore sizes and porosities, as well as a
gradient porous structure (Figure 3). In the early osteogenic
differentiation culture of hBMSCs, the scaffolds of PCL/S53P4
= 2:1 and PCL/S53P4−Cu1 = 2:1 with different porosity
parameters (SS = 400 μm, SS = 800 μm, and gradient porosity as
in Figure 3B) were evaluated in terms of cell viability and
proliferative capability. However, no significant differences were
observed among the tested groups as shown in Supporting
Information S4. As indicated by this set of data, the pore size
ranging from 167 to 667 μm supports the proliferation of
hBMSCs well.
TE scaffolds should have matching mechanical performance

to ensure their mechanical integrity during the surgical
implantations and to replenish the bone functions during the
healing process. The modulus of the human cancellous bones
varies in the range 10−1000 MPa with respect to the apparent
density of the bone.41 In this work, we have fabricated scaffolds
with 60% apparent porosity, and the highest compressive
modulus of 12.5 MPa was measured for the scaffolds of PCL/
S53P4−Cu1 = 2:1 with SS = 400 μm. This has determined that
the composite scaffolds fabricated by this method are
appropriate for the non-load-bearing sites in bone TE.
Nevertheless, changing porosity and pore size also resulted in

Figure 9. Immunocytochemical staining of endothelial marker protein
vWF (stained red) in hBMSCs and hBMSCs+HUVECs cultured in
scaffolds at (A) 13 d and (B) 20 d time points. Nuclei are stained blue;
scale bars: 500 μm. (C) Gene expression results of endothelial marker
gene vWF in hBMSC and hBMSC+HUVEC cultures at 6 d, 13 d, and
20 d time points. Results are expressed relative to hBMSCs cultured for
6 days on PCL scaffold (n = 3, mean + SD)
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changes in the mechanical properties, as it changes the density
and the structural integrity of the scaffolds (as seen in Figure
3C). However, to achieve modulus in a much higher range, an
alternative fabrication strategy and/or reinforcing component
need to be considered to enhance the mechanical properties in
future studies.
Effect of Cu2+ Released from BaG on hBMSCs and

HUVECs. The surface reactions occurring on BaG involve ionic
dissolution of critical concentrations of soluble Si, Ca, P, and Na
ions. These ions give rise to both intracellular and extracellular
responses in cells at the interface of the glass. The key
phenomenon is the controlled release rates of ionic dissolution
products, especially the critical concentrations of soluble Si and
Ca ions. For example, 15−30 ppm of soluble Si and 60−90 ppm
of soluble Ca ions are needed for osteoconduction or
osteostimulation.42 In the PCL/BaG composite, the primary
role of BaG is to release the biologically active ions at the
concentrations and rates needed for supporting cell proliferation
and differentiation. As discussed in the Results section, the ion
concentrations measured in SBF within 30 days were mainly
from the dissolution of Cu-BaG microparticles exposed on the
most outer strut surface since the degradation of PCL under
physiological conditions is rather slow due to the low hydrolytic
reactivity of PCL itself (expected to last for years).43 Above all,
the release of inorganic ions from these PCL/S53P4−Cu1
scaffolds can sustain over an extended period.
The physiologically relevant effects of Cu2+ as therapeutic

ions, such as the antimicrobial properties, have been previously
examined by applying the composite of PCL/Cu-BaG nano-
particles as an anticorrosive surface coating onto magnesium
implants, as reported by Yang et al.20 Comparatively, doping of
Cu into S53P4 was strategically set to release the Cu2+ locally for
its therapeutic effect on promoting the angiogenesis in the
present study. However, the specific mechanisms of Cu2+

affecting the cellular interactions in hBMSCs and HUVECs
are complex as indicated by our results. The ion dissolution

products of S53P4 are not expected to greatly impact the
proliferation of hBMSCs, as suggested in previous studies.22,44

Regarding the proliferation and differentiation of hBMSCs, the
surface wettability is also a key parameter for consideration.
Feasibly, the hydrophilic BaG particulates alter the surface
hydrophilicity in the composite struts in contrast to the
hydrophobic PCL struts. The hydrophilic properties of
biomaterials as bone substitutes are important for the induction
of early cell attachment and growth.45 Regarding the role of Cu2+

released from the S53P4−Cu1, the cell proliferation results were
in line with the live/dead staining results, indicating that a high
concentration of Cu2+ has an inhibitory effect on the hBMSC
proliferation. The generation of reactive oxygen species is one of
the main mechanisms by which the Cu2+ elicits cytotoxicity in
cell monolayers in vitro. As recently investigated by Weng et
al.,22 a dose- and exposure-duration-dependent cytotoxicity of
Cu2+ released from the nanofibers of Cu-BaG was also
confirmed for the proliferation of multiple TE-related cell
lines, including HUVECs, adipose-tissue-derived stem cells
(ADSCs), as well as hBMSCs. In line with our previous results, a
high concentration of Cu2+ released from the mesoporous Cu-
doped BaG microparticles embedded in a nanocellulose
hydrogel was cytotoxic for 3T3 fibroblasts.19 Furthermore, Wu
et al. compared mesoporous Cu-BaG scaffolds and their extracts
containing varying amount of Cu2+ and concluded that a high
concentration of Cu2+ significantly reduced the hBMSC
proliferation.18 In our study, the highest Cu2+ concentration in
the culture medium varied from 50 μM (the scaffold of
PCL:S53P4−Cu1 = 4:1) to 140 μM (the scaffold of
PCL:S53P4−Cu1 = 1:1), and these levels are still less than
the 100 mg mL−1 being equivalent to the 157 μM level, at which
Wu et al. concluded that the Cu2+ inhibited the hBMSC
growth.18 According to the proliferation analysis, the hBMSCs
retained their proliferative capacity when the concentration of
Cu2+ was maintained under 20 μΜ. In a previous study, the Cu2+

concentration at 50 μΜ diminished the proliferate rate of

Figure 10.Gene expression results of osteogenic marker genes (A) RUNX2a, (B)OSTEOCALCIN, and (C)DLX5 in hBMSC and hBMSC+HUVEC
cultures at 13 d and 20 d time points. Results are expressed relative to hBMSCs cultured for 11 days on the PCL scaffold (n = 3, mean + SD).
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hBMSCs.46 In the present study, the cell culture was carried out
in a static model while the culture medium was only changed on
fixed intervals. Under such conditions, the Cu2+ released from
the scaffold has accumulated between medium changes.
Depending on the content of S53P4−Cu1 in the composite,
the accumulated Cu2+ showed a dose-dependent cytotoxicity on
the proliferation of hBMSCs. Obviously, the concentration of
Cu2+ is critical for retaining the proliferative capacity of
hBMSCs.
All the scaffolds supported the ALP activity of hBMSCs,

although the increase in the BaG or Cu-BaG content had a
decreasing effect on the ALP activity. Previously, it was shown
that the ALP activity of hBMSCs slightly increased as the Cu2+

concentration rose, however, the difference was not signifi-
cant.18 Also, the addition of Cu in BaG did not have a significant
effect on the ALP activity of hBMSCs cultured in the Cu-doped
45S5 BaG scaffolds.47 The high level of ALP activity may not be
as important in the osteogenic differentiation as the fact that
there is a clear level of ALP activity in samples, ensuring the
presence of Pi and decreasing the concentration of pyrophos-
phate, to allow mineralization.32 The osteogenic differentiation
of hBMSCs was also analyzed by qRT-PCR in hBMSC culture
and hBMSC+HUVEC coculture setups with the scaffolds of
PCL, PCL:S53P4 = 4:1, and PCL:S53P4−Cu1 = 4:1.
Interestingly, in the hBMSC culture setup the Cu-containing
scaffold induced the expression of early osteogenic marker gene
RUNX2a notably in contrast to the scaffold of PCL:S53P4 = 4:1.
RUNX2 expression is essential in the early differentiation of
MSCs into osteoblastic lineage.48 However, in order for the
differentiation to proceed, the expression of RUNX2 needs to
decline, as high expression of RUNX2 has been shown to inhibit
osteoblast maturation keeping the cells in a premature stage.48

Therefore, the high expression of RUNX2a as late as at 20 d
combined with the low expression of late osteogenic marker
genes OSTEOCALCIN and DLX5 in the scaffold of
PCL:S53P4−Cu1 = 4:1 is not optimal for osteogenic differ-
entiation. Osteocalcin is only expressed in the late phase of
osteogenic differentiation, andDLX5 is an important activator of
several osteogenic genes during maturation and mineralization
phases.49,50 The gene expression of OSTEOCALCIN and DLX5
was higher in the scaffold of PCL:S53P4 = 4:1 in comparison to
the scaffold of PCL:S53P4−Cu1 = 4:1 at both time points
indicating the negative effect of Cu2+ on osteogenic differ-
entiation of hBMSCs. In line with this, Li et al. demonstrated
that Cu2+ ions inhibited the osteogenesis of rat BMSCs in vitro.51

Furthermore, they showed that Cu2+ ions inhibited collagen
formation and accumulation of collagen type I while inducing
vascular formation in vivo. In contrast to OM supplemented
hBMSC cultures, the cocultures were supplemented with EGM-
2, which explains the lower expression of osteogenic genes in the
coculture. Also, the expression of the osteogenic genes seemed
to go down from 11 d to 20 d in the coculture setup.
According to the immunocytochemical staining of CD31 and

vWF, both scaffolds of PCL:S53P4 = 4:1 and PCL:S53P4−Cu1
= 4:1 induced the secretion of these endothelial proteins and
supported the formation of a denser tubular network in both
hBMSC and hBMSC+HUVEC cultures in contrast to the PCL
scaffold. Similarly, 45S5 BaG has been shown to support the
formation of a tubular network in fibroblast and endothelial cell
cultures.14 Also, the S53P4 dissolution products have previously
been reported to increase the VEGF secretion of human
fibroblasts.47 The secretion of both CD31 and vWFwas stronger
in the coculture setup in comparison to the hBMSC culture. In

line with this, the Cu-doped 45S5 BaG scaffolds have been
demonstrated to stimulate the secretion of VEGF and the
formation of tubular networks in a coculture of hBMSCs with
human dermal microvascular endothelial cells.47 Interestingly,
they also noticed that the Cu2+ alone did not increase the
secretion of VEGF in these endothelial cells, but the presence of
hBMSCs was also needed.47 As expected, the gene expression of
endothelial genes PECAM and vWF was notably higher in the
coculture setup in comparison to the hBMSC culture with all the
scaffolds (PCL, PCL:S53P4 = 4:1, and PCL:S53P4−Cu = 4:1).
As several previous studies have suggested that the Cu2+ ions
have an inductive effect on vascularization, we would have
expected to see a more pronounced difference between the
scaffolds of PCL:S53P4 = 4:1 and PCL:S53P4−Cu1 =
4:1.18,19,47 However, only the gene expression of vWF in the
coculture setup was slightly higher in the Cu-containing scaffold
of PCL:S53P4−Cu1 = 4:1 in contrast to the scaffold of
PCL:S53P4 = 4:1. These conflicting results may be related to the
different experimental design on the Cu-mediated angiogenic or
cytotoxic effect, such as the BaG composition, used cell type, or
medium supplements. However, we may speculate whether the
S53P4 BaG itself promotes angiogenesis, and the addition of
Cu2+ that was released from the scaffold of PCL:S53P4−Cu1 =
4:1 does not suffice to produce observable differences in tubular
network formation. A similar finding was also reported in an in
vivo evaluation of the angiogenetic effect of the Cu-doped 45S5
scaffolds in the AV loop model: a tendency toward an increased
vascularization in the Cu-doped BaG group compared to the
plain BaG group was observed in μ-CT and histological
evaluations, but no statistical difference in vascularization
could be measured between both groups.52 Altogether, the
PCL:S53P4 = 4:1 and PCL:S53P4−Cu1 = 4:1 scaffolds
supported the vascularization and tubular formation in the
coculture setup; however, the angiogenic effect of Cu2+ was not
notable in contrast to the PCL/BaG composite. The key point to
consider for future experimental design is to optimize the Cu2+

release and prevent the accumulation of Cu2+ in the culture
medium, for instance, by using a dynamic culture system that
would also simulate the in vivo environments better.

■ CONCLUSIONS
Using a viscous solution of PCL in acetone as the carrier phase
for BaG microparticles to achieve a homogeneous ink in
combination with the solidification of PCL in ethanol has
enabled the DIW fabrication of the PCL/BaG composite
scaffolds. Because of the excellent homogeneity of the DIW ink
as prepared, the mechanical properties of the composite
scaffolds were enhanced, compared to the PCL scaffold. The
DIW technique allows a precise control of the scaffold
architecture with high resolutions. The reinforced scaffolds of
PCL/S53P4−Cu1 at various compositional ratios and with a
strut diameter around 230 μm as well as an apparent porosity of
60% showed a compressive Young’s modulus in the range 7−13
MPa. This indicates that the scaffolds would be appropriate to be
used for non-load-bearing sites in bone TE. The bioactivity of
S53P4−Cu1 in the composite scaffolds was confirmed by the
CaP precipitation in SBF in vitro. The PCL/S53P4−Cu1
scaffolds as fabricated were able to provide a sustained release of
biologically relevant inorganic ions over an extended period.
The high content of S53P4−Cu1 in the scaffolds of PCL/
S53P4−Cu1 = 2:1 and PCL/S53P4−Cu1 = 1:1 inhibited the
proliferation of hBMSCs. However, in the scaffold of PCL/
S53P4−Cu1 = 4:1, the hBMSCs retained their proliferative
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capacity at a delayed culture time. Furthermore, the rising BaG
and Cu content in the composite had a decreasing effect on ALP
activity in hBMSCs. The PCL:S53P4 = 4:1 scaffold supported
the osteogenic differentiation of hBMSCs whereas the addition
of Cu suppressed the osteogenic effect of the composite. The
scaffolds of PCL:S53P4 = 4:1 and PCL:S53P4−Cu1 = 4:1
supported the vascularization and tubule formation in the
hBMSC+HUVEC coculture setup. Unexpectedly, the Cu2+

released from the scaffold of PCL:S53P4−Cu1 = 4:1 did not
have an apparent effect on the tubule formation in comparison
to the scaffold of PCL:S53P4 = 4:1.
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