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ABSTRACT 

On-farm and modeling research were used to better understand the impact of soil, plant and 

climate factors on soybean [Glycine max (L.) Merr.] yield. We analyzed yield gaps and solar 

radiation and water capture efficiencies in full season and double-cropping systems. First, to 

perform accurate model simulations, we needed a quick and yet accurate method to estimate 

soil texture of hundreds of samples. We accomplished that by refining a laser diffraction 

protocol that matched the results of standard sedimentation techniques. Second, to identify 

variables related to soybean yield variation, we studied 22 site-years over the 2016 and 2017 

growing seasons in two regions of Pennsylvania. Solar radiation and water capture, both 

controlled by planting date, were the main predictors of soybean yield in these regions. The 

physical and biological soil metrics measured in the comprehensive Cornell Assessment of Soil 

Health did not correlate to soybean yields. However, the ratio of soil respiration to soil organic 

matter positively did so. Saturated hydraulic conductivity (Ksat) and root depth correlated with 

both soybean yield and each other. Third, to assess yield gaps and to estimate how efficiently 

solar radiation and water were used in local environments, we calculated realized and potential 

indicators of resource capture in two locations in Pennsylvania and two in Southern Brazil using 

the simulation model Cycles. The measured yield gap varied from 5 to 48% suggesting great 

potential to increase soybean yields with the available solar radiation and water resources 

through improved management tactics in 3 of the 4 regions studied. In Pennsylvania, 

agricultural intensification is limited to double-cropping due to low temperatures that limit 

available solar radiation, while in some regions in Brazil it is possible to produce a third crop in a 

year. Finally, we organized an international tour in 2018 with 14 participants including 
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producers and extension personnel from Pennsylvania to study sustainable soybean production 

systems in Brazil, and to encourage others we described the main organizational steps and the 

lessons we learned while planning and executing this tour. 
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Chapter 1. Introduction and Objectives 

1.1. Introduction 

Brazil and USA currently produce about 65% of the world’s soybean supply, with roughly 

similar annual production in each country. Every year, producers from both nations report a 

wide range of soybean yields, from 2 to 6 Mg ha-1, even when using similar management 

tactics. Within fields, there can also be substantial variation in soil and topographic attributes 

that generate a range of conditions in typical production fields. Understanding the factors that 

drive these yield variations in soybeans can help producers to determine cost-effective 

strategies to improve crop productivity and profitability. 

Soybean crop producers have done a good job of increasing yield by managing weeds, 

insects, diseases and growing improved soybean varieties, but understanding and managing the 

soil variation is still challenging. Top yields appear to be associated with a combination of good 

crop management tactics and creating ideal soil physical properties or soil health. The effects of 

soil physics on plant growth have been studied for years (Russel, 1912; Masle & Passioura, 

1987; Sadras et al., 2005), but causal relationships with yield are hard to establish and even 

more difficult to relate to management. The ability of the plants to explore subsoil resources 

appears to be a central point when looking at yield variations though, and there is evidence 

that the plant mechanisms that drive root-soil interactions could be related to soil hydraulic 

properties (White & Kirkkegaard, 2010). 

Laboratories are now offering soil testing packages to evaluate chemical, physical and 

biological indicators of soil health. However, these tests are often too costly for the producer 

and translating soil health test results into management recommendations remains challenging. 
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Even though there is a clear need for critical soil health thresholds to guide management 

recommendations that influence crop yields as pointed out by Cassman (1999), at the present 

time many soil health studies continue to be mainly descriptive rather than focusing on crop 

yield responses to specific indicators. Therefore, farmer-focused research is still necessary to 

identify the most suitable soil health indicators, and ultimately to explain how they relate to 

crop yields. In Pennsylvania, producers have been unwittingly running long term experiments in 

their farms with varied combinations of manure, cover crops and no-tillage they have 

generated a range of soil conditions that is experimentally difficult to accomplish in the short 

term, but offers a wonderful opportunity to test the relationship among soil variables and 

productivity in commercially managed fields. 

The required sustainable crop production requires not only increases of single crop 

yields but also a more efficient management of land and water resources, which directly 

translates to land productivity increases (Sakschewski et al., 2014). A path towards improving 

natural resource use is to intensify cropping systems by increasing the number of crops 

produced in the same area per year. In combined systems, crop management decisions must be 

taken more broadly and certainly not considering only individual crops. For instance, although 

the soybean yield potential following a winter crop might be reduced by late planting 

(Beuerlein, 1988), the combined production and profit can be larger than that of soybean alone, 

making this practice economically competitive, and environmentally friendly. The first logical 

step towards increasing crop and land productivity may be to assess how close the current 

yields are to the yield potential and the efficiency of available solar radiation and water use in 

local environments. 
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Predictions of soybean performance under different management systems and 

environmental conditions using crop growth models have been done in other regions (Keating 

et al., 2003; Jones et al., 2003; Pedersen et al., 2004; Setiyono et al., 2010), but no work was 

found addressing this subject in the Mid-Atlantic region of the United States. An accurate 

model supported by reliable soil and long-term weather data can be a great tool to explore the 

effects of different cropping systems and management in agricultural production (Meinke et al., 

2001, Meki et al., 2013). Additionally, modeling can help to understand discrepancies in yield 

results or year-specific results associated with weather in a cohesive context. 

Understanding the soybean yield limiting factors and the production potential of local 

environments can be done more effectively by involving the producers and agronomists in the 

process. One opportunity we found valuable was to organize a field tour to discuss 

management tactics and understand different production scenarios with Penn State clientele in 

commercial farms of distinct regions of Brazil (South-cold and Cerrado-tropics). Most producers 

from Pennsylvania rarely grasp opportunities to visit and talk to peers facing distinct production 

scenarios, especially abroad. Using the group of producers and agronomists already involved in 

our on-farm research as targeted participants, we planned an international tour in February of 

2018. We chose Brazil because Brazilian producers have not only been overcoming the lack of 

agricultural government subsidies and local infrastructure by increasing production efficiency 

but have also increased land use efficiency and plant diversification by progressively adopting 

integrated crop and livestock systems over the past decade. We believe that the interaction 

with producers, farm cooperatives and research institutes from Brazil is beneficial to both 

Pennsylvania’s agriculture and livestock production. 
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1.2. Objectives 

The central goal of this research was to study soybean yield limiting factors and yield 

gaps using field research and crop modelling. The core idea was to expand the current 

knowledge in sustainable soybean production and to discuss land productivity in the U.S. and 

Brazil. Since particle size is a critical input for accurate crop model simulations, we also needed 

a rapid method to analyze hundreds of soil samples from several fields of Pennsylvania as an 

alternative to the laborious and time-consuming traditional sedimentation techniques. After we 

validated the cropping systems model Cycles, we aimed to assess soybeans’ water and solar 

radiation capture and yield gaps in single and double-cropping systems. To accomplish these 

objectives, we collected field data in four locations, two in Pennsylvania and two southern 

Brazil, and calculated realized and potential indicators of resource capture. The research 

projects had a close connection with the production and extension sectors from the beginning, 

and we took advantage of the on-farm research component and used educational tools to 

accomplish our objectives. Finally, an international tour was organized to discuss successful 

production systems among researchers, agronomists, and producers visiting Brazilian farms, 

cooperatives, and research centers. Specifically, the objectives of this dissertation were: 

• Refine a laser diffraction protocol for particle size analysis that is compatible with 

standard soil texture determination methods (Chapter 2); 

• Identify the main soil, plant and climate factors related to soybean yield in Pennsylvania 

(Chapter 3); 
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• Quantify soybean yield gaps in the Mid-Atlantic U.S. and Southern Brazil, and estimate 

solar radiation and water capture efficiencies in full season and double-cropping 

soybean systems (Chapter 4); 

• Organize an international tour to study sustainable high-yielding soybean production 

systems in Brazil, and encourage others by describing the main organizational steps and 

the lessons learned with this initiative (Chapter 5); 

1.3. Chapter Outlines 

Chapter 2 describes a laser diffraction methodology for particle size analysis of soils that 

matches the results of traditional hydrometer and pipette methods. This new technique can 

allow us to reliably analyze hundreds of soil samples in a couple of weeks, when the traditional 

alternative could take months. 

Chapter 3 identifies the main soybean yield limiting factors in Centre and Lebanon 

counties of Pennsylvania. Using 22 site-years, the effect of soil, plant and climate factors on 

soybean yield were studied. Knowing soybean yield indicators can help producers to target 

cost-effective managing strategies in the region. 

Chapter 4 estimates the soybean yield gaps in two regions of the U.S. and Brazil and 

assesses the potential for agricultural intensification by analyzing full season and double-

cropping systems’ resource capture efficiencies using the cropping systems simulation model 

Cycles. These biophysical yield estimations can demonstrate if yield gaps are related to water 

stresses or other manageable factors that need to be investigated in the field. Analyzing the 

potential use of water and solar radiation can allow us to demonstrate the potential for double- 

or even triple-cropping in these regions. 
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Chapter 5 reports the main organizational steps and the lessons we learned with the 

international tour we organized to Brazil. This publication can encourage other professionals to 

organize more international tours like ours and therefore collect similar positive impacts with 

their clientele. 
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Chapter 2. Making Soil Particle Size Analysis by Laser Diffraction Compatible 

with Standard Soil Texture Determination Methods 

Core Ideas 

• Laser diffraction particle size analysis can produce results compatible with standard 

pipette and hydrometer methods. 

• A key step is to wet-sieve the sand fraction after suspending the soil sample in the 

dispersant solution. 

• The proposed protocol is faster, uses smaller samples, and provides more detail than 

standard sedimentation methods. 

Abstract 

The standard sieving, pipette and hydrometer methods for soil particle size analysis (PSA) have 

three main drawbacks: procedures are tedious, time-consuming, and the results are protocol-

dependent. Laser diffraction PSA delivers rapid results using standardized procedures, but so 

far it has been difficult to reconcile results with those from standard sedimentation methods. 

The objective of this study was to develop a protocol that would permit direct usage of laser 

diffraction PSA and render results compatible with current methods. The protocol was 

developed using 54 standard soil samples from different textural classes. Regression of the 

laser diffraction PSA against the hydrometer/pipette method yielded coefficients of 

determination of 0.92/0.9, 0.92/0.94 and 0.99/0.99, and root mean square errors of 0.04/0.05, 

0.07/0.06 and 0.05/0.03 for clay, silt and sand, respectively. These statistics are comparable to 

those obtained by regressing results of the hydrometer against the sieve and pipette methods. 
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A key factor in securing accurate and precise results was limiting the particle size range of the 

samples by wet sieving the sand fraction. This created representative samples and stable soil 

dispersed suspensions, allowing accurate estimations of particle size distribution for clay and 

silt fractions without empirical transformations. Results obtained with the proposed protocol 

matched those of standard sedimentation analyses for a wide range of soils, encouraging 

further adoption of laser diffraction for soil PSA. 

2.1. Introduction 

The particle size distribution of the soil mineral fraction modulates physical, chemical, 

and biological properties, including soils’ hydraulic properties, pore size distribution, shrink and 

swell capacity, and erodibility and sedimentation properties, with implications for 

agroecological, mechanical, hydrological, geological, and engineering applications (Gee and Or, 

2002; Hillel and Hatfield, 2005; Blake and Steinhardt, 2008; Merkus, 2009; Bieganowski et al., 

2018). Hence, multiple bodies have developed particle size classification systems to catalog the 

effects of particle size distribution on such properties, and on the properties and the functions 

of particulate media, including the International Organization for Standardization (ISO), the 

ASTM International standards, as well as the soil texture classification by the U. S. Department 

of Agriculture Natural Resources Conservation Service (USDA-NRCS) and the International Soil 

Science Society ISSS, now International Union of Soil Science – IUSS (Gee and Or, 2002; Blake 

and Steinhardt, 2008; FAO, 2014; USDA, 2017; Moeys et al., 2018). 

The most common methods for soil particles size analysis (PSA) are the sieving, pipette 

and hydrometer methods (Gee and Or, 2002). The pipette and hydrometer methods are based 
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on gravitational sedimentation principles and, in combination with sieving, constitute the 

foundation of soil texture classification standards around the world (Loveland and Whalley, 

2000; Blake and Steinhardt, 2008). These methods have three main drawbacks: results are 

protocol-dependent, and procedures are both tedious and time-consuming. Significant errors 

arise from variations in chemical dispersant concentration, sample size, type of cylinder used, 

temperature fluctuations, sieving time, variation of time intervals used to record hydrometer or 

pipette measurements, and fundamental differences in the methods’ assumptions of particle 

shape (Allen, 1997; Gee and Or, 2002; Eshel et al., 2004; Syvitski et al., 2007; Merkus, 2009). 

These errors are particularly pronounced at the extremes of the particle size spectrum; 

sedimentation methods do not reliably measure particles larger than 50 μm because these 

particles settle rapidly; and these methods also tend to overestimate clay content due to 

particle-fluid interactions that interfere with the sedimentation process (Chung and Hogg, 1985; 

Allen, 1997; Matthews, 2007; Merkus, 2009). 

Over the past 30 years, improvements in technology, particularly in computational 

capacity and sensor accuracy, have opened the possibility of laser diffraction for particle size 

analysis (Agrawal and Pottsmith, 2000; Di Stefano et al., 2010; Bieganowski et al., 2018). This 

has translated into an increased number of articles related to laser diffraction PSA in the soil 

science literature, summarized in the recent review by Bieganowski et al. (2018). Laser 

diffraction PSA has many advantages, including the use of standardized procedures to deliver 

rapid results, with more precise differentiation into a high number of size intervals. More 

detailed soil particle size information will enable advances in the understanding of fundamental 

hydraulic, hydrologic, structural and biological soil processes, including development of more 
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accurate pedotransfer functions for soil hydraulic properties (Schaap et al., 1998), and new 

insights into biological processes regulating organo-mineral associations (Oliveira et al., 2018). 

In addition, soil particle size distribution determines the soil surface area available to interact 

with organic matter and soil microorganisms (Borkovec et al., 1993; Hassink and Whitmore, 

1997) controlling physical and biological processes that occur at or below the pore scale. 

However, soils can be composed of a broad mixture of minerals and particle sizes, which 

results in the following challenges for laser diffraction PSA. Firstly, it is difficult to obtain a 

representative proportion of the coarser particles from the original sample due to particle size 

segregation in dry samples, and rapid sedimentation of large particles in liquid dispersed 

samples. Secondly, once a sample is obtained, it is difficult to disperse all the particles in the 

sample into a stable suspension to interact with the laser source. Thirdly, it has not been 

possible to match results from laser diffraction with standard soil texture determination 

methods without prior calibration based on the texture classification, organic matter and 

carbonate content, or the development of dataset specific conversion equations (Taubner et 

al., 2009; Di Stefano et al., 2010; Lamorski et al., 2014; Mako et al., 2017). 

A critical step in making laser diffraction and the sieving, hydrometer and pipette 

methods comparable is identifying equivalent Stokes’ and light scatter diameters for clay and 

silt fractions. Sedimentation, sieving, and laser diffraction PSA measure different particle 

properties. When sedimentation methods are used, the nominal particle size diameter 

measured is the Stokes’ diameter, i.e. “the diameter of a sphere having the same settling rate 

as the particle under conditions of Stokes’ law” (Merkus, 2009). The Stokes’ diameter is 

different from the nominal sieve diameter, i.e. “the diameter of particles that just pass through 
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the apertures of a sieving medium” measured by sieving, and the nominal light scatter 

diameter, i.e. “the diameter of a spherical particle with the same optical properties that 

produces the distinctive light scattering pattern” measured by laser diffraction (Merkus, 2009). 

The equivalent Stokes’, sieve, and light scatter diameters for a homogeneous material vary 

depending on the density, shape, and optical parameters of the particles composing the 

material. Therefore, the nominal particle size distribution varies depending on the method 

used, as stated in the International Standard for Particle Size Analysis - Laser Diffraction 

Methods ISO:13320 (International Organization for Standardization, 2009). 

The soil texture classification from the USDA-NRCS uses 2 μm as the nominal equivalent 

Stokes’ diameter to differentiate between the clay and silt fractions when using standard 

sedimentation methods. Estimates for the equivalent light scatter diameter have varied 

between 6 μm (Miller and Schaetzl, 2012), 8 μm (Konert and Vandenberghe, 1997), and 9 μm 

(Fisher et al., 2017). Makó et al. (2017) detected a small variation in this threshold, ranging 

from 6.6 to 5.8 μm in soils with and without organic matter. Arriaga et al. (2006) used the 

USDA-NRCS 2 μm threshold and modified the refractive index and absorption index to match 

pipette method analysis results. However, Eshel and Levy (2007) warned against this approach, 

arguing that the refractive index that produced the best results (1.42) was below the ranges of 

accepted values for soil minerals (1.54 for quartz and 1.49 for calcite), and would produce 

distorted particle size distributions. 

After an analysis of 41 soils samples from California, Eshel et al. (2004) stated that 

relationships between particle size distribution obtained with laser diffraction and standard 

sedimentation methods varied across textural classes and no consistent relationship could be 
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formulated. Other studies have shown relationships between particle size data obtained with 

laser diffraction and sedimentation methods for different regions, but correlations differed 

between datasets, and high deviations from the 1:1 regression line were observed in the 

smallest size class (Konert and Vandenberghe, 1997; Buurman et al., 2001). Taubner et al. 

(2009) used sieving to exclude coarse particles from the suspension, improving the collection of 

homogeneous aliquots, but concluded that laser diffraction analysis could not be used for 

texture classification of soils without regression-transformed size fractions and validation using 

a sedimentation method. Miller and Schaetzl (2012) showed that 11.5% of their 1,485 soil 

samples changed textural class when the laser diffraction analyses were repeated, attributing 

the changes to subsampling errors. They concluded that the putative precision of laser-

generated particle size data decreased with coarser particles due to misrepresentation of the 

complete population of particles in the sample and the effect of large particles on the sand 

percentage volume. Hence, reducing the particle size range of the sample could increase 

precision by reducing measurement variability. 

Even though there are international standards associated with both laser diffraction and 

standard sedimentation methods, difficulties in making the results of both methods compatible 

has hindered the adoption of laser diffraction PSA method by the soil science community (Di 

Stefano et al., 2010; Lamorski et al., 2014; Bieganowski et al., 2018). Therefore, the objective of 

this study was to develop a laser diffraction protocol without the need for empirical 

transformations for soil PSA that produced results comparable to those obtained by standard 

USDA-NRCS sedimentation methods (Blake and Steinhardt, 2008; USDA, 2017). The protocol 

developed is based on two key methodological improvements: separation of the sand fraction 
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through wet sieving after dispersion of the soil sample and before laser diffraction analysis, as 

suggested by Taubner et al. (2009), and the use of a laser diffraction instrument that overcame 

accuracy limitations of the instrument used by Taubner et al. in 2009. 

2.2 Materials and Methods 

2.2.1. Selection of Soil Samples 

Standard soil samples from the North American Proficiency Testing (NAPT) Program, 

which operates under the Soil Science Society of America (SSSA) assisting inter-laboratory 

evaluation of analytical data, and the Agriculture Laboratory Proficiency (ALP) Program 

managed by Collaborative Testing Services Inc, were used to compare laser diffraction PSA 

results with soil texture results obtained with the sieve/pipette and the hydrometer methods as 

described by Gee and Bauder (1986). Both programs used the Soil, Plant, and Water Reference 

Methods for the Western Region (Gavlak et al., 2013), the Recommended Soil Testing 

Procedures for the Northeastern United States (NECC-1312, 2011), the Recommended 

Chemical Soil Tests Procedures for the North Central Region (NCERA-13, 2015), and the Soil Test 

Methods from the Southeastern United States (Sikora and Moore, 2014). NAPT quarterly soil 

analysis reports from 1998 to 2017, comprising 400 soil samples analyzed by 115 analytical 

testing laboratories (NAPT, 2018) and ALP quarterly soil analysis reports from 2013 to 2017, 

comprising 70 soil samples analyzed by 104 analytical testing laboratories (ALP, 2018), were 

digitized and assembled into a database using R statistical software (R Core Team, 2018). The 

reports provided a robust statistical summary of soil test results that included the median and 

the median absolute deviation (MAD) for each of the 470 soil samples. The median for clay, silt, 
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and sand were used to assign each sample to a textural class of the USDA-NRCS textural 

classification using the ‘Soiltexture’ Package in R (Moeys et al., 2018). A total of 54 of these soils 

standards, comprising six to eight soil samples from each USDA-NRCS textural class in the 

database, were requested to the Penn State Ag Analytical laboratory soil standards repository 

for laser diffraction PSA. The properties of these samples are presented in Figure 2.1 and Table 

2.1. 
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Figure. 2.1. Textural composition of soil samples according the USDA-NRCS texture triangle. The 

white triangles pointing up represent the soil texture classification corresponding to the median 

Clay, Silt and Sand content reported for each sample in the quarterly NAPT report; the blue 

triangles pointing down represent the soil texture classification corresponding to the median 

Clay, Silt and Sand content reported for each sample in the quarterly ALP report. The red 

squares surrounding triangles identify the samples selected for this study. 
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Table 2.1: Information about the standard soil samples used in the laser PSA; sample identification, soil classification, and median 
values for clay, sand, total organic carbon (TOC) and carbonate (CaCO3) as stated in the NAPT and ALP quarterly reports used in this 
study. The number of analytical laboratories analyzing the sample resulting in the reported median is reported under the “n” column 
heading. 

Sample Location Soil classification 

   Sieve/Pipette Method Hydrometer Method 
TOC CaCO3 

Sand Silt Clay 
n 

Sand Silt Clay 
n 

----------%---------- ----------%---------- -----%----- 

2011-116 Antigo, WI Coarse-loamy over sandy or sandy-
skeletal, mixed, superactive, frigid Haplic 
Glossudalfs 

37.0 54.2 8.7 4 38.2 50.6 11.6 30 1.1 0.1 

2011-117 Umatilla, OR Coarse-loamy, mixed, superactive, mesic 
Xeric Haplocalcids 

82.9 12.9 5.6 4 76.5 17.5 6.1 30 0.5 0.4 

2011-118 Fresno, CA Coarse-loamy, mixed, superactive, mesic 
Ustic Haplocalcid 

78.3 17.5 4.2 4 73.5 22.0 5.0 30 0.9 0.4 

2011-119 Sturgeon Bay, WI Coarse-loamy, mixed, superactive, frigid 
Typic Haplorthods 

54.7 33.1 11.8 4 56 33.7 10.0 30 2.8 1.3 

2011-120 San Juan, UT Clayey, mixed, active, thermic, shallow 
Abruptic Durixeralfs 

50.1 30.7 16.2 4 43.9 38.4 17.0 30 0.9 5 

2012-101 San Luis Obispo, CA Fine-loamy, mixed, superactive, thermic 
Calcic Haploxerolls 

12.5 37.3 50.2 5 17.0 30.0 51.4 43 3.1 12.1 

2012-102 Monmouth, NJ Fine-loamy, mixed, active, mesic Typic 
Hapludults 

65.9 21.9 12 5 64.8 21.0 14.0 43 0.7 0.5 

2012-103 Riley, KS Coarse-silty, mixed, superactive, nonacid, 
mesic Typic Udifluvents 

72.0 20.1 7.7 5 62.5 29.6 8.0 43 0.6 1.7 

2012-106 Fresno, CA Coarse-loamy, mixed, superactive, 
thermic Fluvaquentic Haploxerolls 

87.2 10.3 2.5 5 83.9 12.0 4.0 38 0.5 0.3 

2012-108 Door, WI Fine, mixed, active, mesic Typic 
Hapludalfs 

49.3 34.2 16.7 5 50.4 30.2 19.7 38 2.5 1.1 

2012-109 Farmington, UT Fine-loamy, mixed, superactive, mesic 
Cumulic Haploxerolls 

44.1 35.9 18.7 5 43.0 34.9 21.7 38 2.8 3.4 

2012-110 San Patricio, TX Fine-loamy, mixed, superactive, 
hyperthermic Typic Argiustolls 

67.5 10 21.2 5 66.8 11.7 21.2 38 0.5 0.4 



 
 

17 

Sample Location Soil classification 

   Sieve/Pipette Method Hydrometer Method 
TOC CaCO3 

Sand Silt Clay 
n 

Sand Silt Clay 
n 

----------%---------- ----------%---------- -----%----- 

2012-112 Grand, UT Fine-loamy, mixed, superactive, 
calcareous, mesic Typic Torrifluvents 

42.7 34.9 22.6 5 42.1 31.2 26.4 40 1.5 9.1 

2012-113 Grand Forks, ND Fine-loamy, mixed, superactive, frigid 
Calcic Hapludolls 

33.8 39.1 27.9 5 38.8 32.0 30.0 40 2.7 0.6 

2012-114 Kent, DE Fine-loamy, siliceous, semiactive, mesic 
Typic Hapludults 

88.3 8.03 3.7 5 87.2 8.0 4.75 40 0.6 0.3 

2012-115 Baxer, TX Clayey-skeletal, smectitic, thermic Lithic 
Haplustolls 

96.7 1.6 2.03 5 95.7 2.8 2.2 40 0.6 0.3 

2012-116 Caldwell, KY Fine-silty, mixed, active, mesic Oxyaquic 
Fragiudalfs 

15.0 69.8 15.2 2 17.5 64.5 18.3 36 1.1 0.7 

2012-117 Linn, OR Fine-silty, mixed, superactive, mesic 
Cumulic Ultic Haploxerolls 

73.8 18.0 8.3 2 72.1 18.0 10.1 36 0.4 0.7 

2012-118 Arlington, WI Fine-silty, mixed, superactive, mesic Typic 
Argiudolls 

8.2 72.0 19.8 2 13.1 63.8 22.7 36 2 0.8 

2012-119 Waushara, WI Mixed, mesic Typic Udipsamments 89.2 7.3 3.4 2 88.7 6.4 4.62 36 0.4 0.5 

2013-102 San Luis Obispo, CA Fine, smectitic, thermic Vertic 
Haploxerolls 

17.9 33.0 52.6 5 16.0 31.5 52.0 40 2.8 11.3 

2013-105 Wilacy, TX Fine-loamy, mixed, superactive, 
hyperthermic Udic Argiustolls 

55.1 18.3 26.0 5 54.9 19.6 25.8 40 0.6 4.2 

2013-109 San Luis Obispo, CA Fine-loamy, mixed, superactive, thermic 
Calcic Haploxerolls 

18.9 31.8 49.3 4 16.4 29.3 53.7 34 2.6 18.5 

2013-111 Bailey, TX Fine-loamy, mixed, superactive, thermic 
Aridic Paleustalfs 

89.8 5.6 5.6 4 85.0 8.4 6.6 39 0.9 0.5 

2013-114 San Luis Obispo, CA Fine, smectitic, thermic Aridic 
Haploxererts 

21.9 32.0 49.4 4 26.6 22.5 50.0 39 1.8 2 

2013-119 Allegheny, PA Fine-loamy, mixed, semiactive, mesic 
Typic Hapludults 

57.0 34.2 14.1 4 50.3 35.0 14.0 37 1.2 0.8 

2014-103 Cache Junction, UT Fine, mixed, superactive, mesic Typic 
Natrixerolls 

4.0 56.8 35.2 3 12.9 51.3 35.6 36 1.4 5.3 

2014-111 Larimer, CO Fine-loamy, mixed, superactive, mesic 
Aridic Argiustolls 

36.0 30.9 30.7 5 36.0 28.4 36.2 37 1.3 6.6 
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Sample Location Soil classification 

   Sieve/Pipette Method Hydrometer Method 
TOC CaCO3 

Sand Silt Clay 
n 

Sand Silt Clay 
n 

----------%---------- ----------%---------- -----%----- 

2014-119 Riley, KS Fine, smectitic, mesic Pachic Argiustolls 14.7 57.1 31.8 3 20.8 48.5 30 39 1.8 0.5 

2015-101 Linn, MO Fine, smectitic, mesic Aquertic Argiudolls 2.3 64.2 32.1 1 14.3 55.7 29.7 41 2.1 0.6 

2015-103 San Luis Obispo, CA Fine-loamy, mixed, superactive, thermic 
Calcic Pachic Haploxerolls 

6.1 57.4 31.6 1 18.0 31.0 50.4 41 2.6 9.7 

2015-108 Linn, MO Fine, smectitic, mesic Aquertic Argiudolls 6.7 66.5 26.9 3 15.0 56.0 29.9 39 2.1 0.5 

2015-109 Felton, DE Fine-loamy, siliceous, semiactive, mesic 
Typic Hapludults 

89.0 7.45 3.6 3 88.0 7.3 4.8 39 0.6 0.3 

2015-113 San Patricio, TX Fine-loamy, mixed, superactive, 
hyperthermic Typic Argiustolls 

66.7 11.5 21.6 5 67.2 11.2 21.8 36 0.5 0.4 

2015-115 Linn, MO Fine-silty, mixed, semiactive, thermic 
Typic Paleudults 

9.0 63.5 32.6 5 11.1 57.5 29.0 36 2.1 0.5 

2015-118 Linn, MO Loamy, kaolinitic, thermic Arenic 
Kandiudults 

3.3 64.4 31.3 4 11.9 57.3 30.2 36 2.1 0.5 

2016-111 Sao Luis Obispo, CA Fine-loamy, mixed, superactive, thermic 
Calcic Haploxerolls 

13.0 32.8 54.1 6 16.0 30.3 52.5 34 2.7 17.2 

2016-114 Cache, UT Fine-silty, mixed, superactive, mesic 
Calcic Pachic Argixerolls 

22.8 45.4 28.4 6 29.4 44.0 28.7 34 3 1.3 

2017-101 Centre, PA Fine, mixed, semiactive, mesic Typic 
Hapludalfs 

91.8 2.0 3.76 7 16.3 58.0 24.0 35 1.7 0.8 

2017-102 Grand Forks, ND Sandy, mixed, frigid Oxyaquic Hapludolls 82.0 7.0 11.0 7 82.5 9.2 8.01 35 1.8 0.7 

2017-103 Penobscot, ME Sandy, isotic, frigid Typic Haplorthods 40.9 27.0 36.0 7 63.9 27.0 9.0 35 2.5 0.6 

2017-104 Gallatin, MT Loamy-skeletal over sandy or sandy-
skeletal, mixed, superactive, frigid Typic 
Argiustolls 

19.3 48.0 40.0 7 40.2 41.6 17.5 35 3.7 2.8 

2017-105 Grand, UT Mixed, mesic Typic Torripsamments 53.0 29.2 17.8 7 92 3.9 5.0 35 0.4 0.6 

2017-107 Grand Forks, ND Sandy, mixed, frigid Oxyaquic Hapludolls 10.0 64.0 26.0 3 82.6 9.0 9.0 35 1.9 0.6 

2017-108 Larimer, CO Fine-loamy, mixed, superactive, mesic 
Aridic Argiustolls 

62.2 28.0 10.2 3 35.8 28.7 35 35 1.3 5.5 

2017-109 Cache, UT Fine-silty, mixed, superactive, mesic Typic 
Calcixerolls 

83.0 7.2 10.0 3 17.3 49.6 34.0 35 2.5 5.8 
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Sample Location Soil classification 

   Sieve/Pipette Method Hydrometer Method 
TOC CaCO3 

Sand Silt Clay 
n 

Sand Silt Clay 
n 

----------%---------- ----------%---------- -----%----- 

2017-111 Cache, UT Loamy-skeletal, micaceous Ustic 
Dystrocryepts 

53.0 29.2 17.8 5 52.2 31.2 17.8 38 2.5 2.7 

2017-112 Minnehaha, SD Fine-silty, mixed, superactive, mesic Udic 
Haplustolls 

10.0 64.0 26.0 5 15.5 61.1 24.5 38 2.9 1 

2017-113 Caroll, NH Coarse-loamy, mixed, active, frigid Aquic 
Dystrudepts 

62.2 28.0 10.2 5 63 27.5 9.55 38 4.7 0.5 

2017-114 Grand Forks, ND Sandy, mixed, frigid Oxyaquic Hapludolls 83.0 7.2 10.0 5 82.1 9.0 8.0 38 1.7 0.6 

2017-115 Cumberland, IL Fine, smectitic, mesic Mollic Albaqualfs 15.8 68.0 16.0 5 22.0 63.3 15.0 38 1.3 0.4 

SRS-1508 Pinal County, AZ Fine-loamy, mixed, superactive, 
calcareous, 
hyperthermic Typic Torrifluvents 

- - - 0 49.6 17.8 31.1 26 1.7 1.8 

SRS-1604 Sonoma County, CA Fine, mixed, semiactive, mesic Typic 
Haploxerults 

- - - 0 50.0 18.5 31.3 30 2.2 0.2 

SRS-1709 Sonoma, CA Loamy, mixed, superactive, thermic Lithic 
Haploxerepts 

- - - 0 33.0 22.0 45.0 28 5.4 0.6 

Source: North American Proficiency Testing Program (NAPT, 2018), Agriculture Laboratory Proficiency (ALP) Program (ALP, 2018), 
University of California Davis California soil resource Lab SoilWeb (O’Geen, Walkinshaw, and D. Beaudette; 2017). 
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2.2.2. Sample Preparation and Sieving 

A representative, well-mixed and dry 5-g soil material (< 2 mm) sample was collected 

from each of the 54 selected standard materials according to the best fundamental sampling 

error calculation proposed by Rawle (2015). The 5-g material sample was placed in a 470-mL 

container with 100 mL of a 5% sodium hexametaphosphate solution, vigorously mixed, and left 

to soak overnight to disperse the soil particles. The following day, distilled water was added to 

make up 300 mL of solution, after which samples were mixed for 5 minutes in a Triple-Spindle 

Drink Mixer HMD400 (Hamilton Beach Brands Inc.) to obtain a stable soil particle suspension 

sample (Polakowski et al., 2015). After mixing, the soil solution was sieved through a 53-μm 

mesh to separate sand-sized particles and to determine the sand fraction (fsa, kg kg-1). The 

sieve-removed particles were oven-dried at 105 °C for 24 h, and fsa calculated as the ratio of the 

mass of the 53-μm sieved dried particles (Msa, kg) and the total dried soil sample mass (MT, kg). 

2.2.3. Laser Diffraction PSA 

Laser diffraction PSA used the Malvern Mastersizer 3000 laser diffractometer equipped 

with a He-Ne red light at 632.8 nm wavelength and a LED blue light at 470 nm wavelength, a 

600 mL Hydro LV dispersion unit, and 101 size bins covering particle sizes from 0.01 µm to 

3,500 µm (Malvern Panalytical Inc.). This is in contrast with the Analysette 22 (Fritsch GmbH) 

instrument used by Taubner et al. in 2009, which was equipped with a 638 nm laser source and 

measurement range of 0.290 to 295 µm distributed into 62 bins. 

A subsample of the suspension of the fractions passing the 53 μm mesh sieve was taken 

with a wide mouth transfer pipette and added to the wet dispersion unit of the Mastersizer 
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3000. Enough suspension was added to increase the obscuration level to approximately 10%. A 

maximum stirring speed of 3500 rpm and 100% sonication power were applied for the duration 

of each measurement event (approximately 2 minutes). Some samples were replicated three 

times to test the reproducibility and consistency of the subsample grabbing method. From the 

dispersion unit, the sample was circulated in the measurement cell where the interaction of 

particles and light occurred. Sample replication showed very low variability (coefficient of 

variation ranged from 0.6 to 5.8% when sonication was applied) and therefore, only one 

reading per sample was taken for the selected NAPT and ALP sample analyses. Sample analyses 

used the Mie scattering general purpose model for quartz material with non-spherical shape 

mode, a particle refractive index of 1.543, a particle absorption index of 0.01, and a water 

refractive index of 1.33. After each measurement, the Hydro LV cell was washed with distilled 

water twice before a new sample was added, and the analyses were always performed with 

degassed water. Background scattering by the solution was measured periodically after every 

25 samples to verify the cleanliness of the measurement cell. The laser diffraction analyses 

were carried out at the Materials Characterization Laboratory (MCL) of Penn State, which 

performs nominal particle size calibration with Duke Standards TM Polymer Microspheres NIST 

traceable diameter 8.9 µm (+/- 0.5 µm) on a monthly basis or on demand. 

Clay and silt contents, as a mass fraction of the sample, were obtained by subtracting 

the amount of sand from each sample (MT - Msa), multiplying the remaining mass of the sample 

by the volume fraction of clay or silt obtained from laser diffraction analysis, and then dividing 

by the total mass of sample (Equations 2.1 and 2.2): 
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where fcl is the mass fraction of clay in the sample, fcl-LD is the percent cumulative volume of 

particles less than a clay-silt cutoff of 6 μm (discussed below), fsi is the mass fraction of silt in 

the sample and fsi-LD is the percent cumulative volume of particles greater than the clay-silt 

cutoff. This approach assumes spherical particles and equal particle density to partition the 

clay-silt mass into clay and silt fractions, the same assumptions used in sedimentation methods. 

2.2.4. Comparing Methods 

The clay-silt cutoff was selected through an optimization routine developed in Microsoft 

Excel to minimize the difference between the standard sample clay and silt fractions obtained 

using the proposed laser diffraction PSA protocol, and the median clay and silt fractions 

reported by the NAPT and the ALP programs (Table 2.1). The optimization routine searched for 

the clay-silt particle size threshold over a similar range to the 2 - 9 μm threshold range reported 

in the literature and discussed above (USDA-NRCS, 2017; Arriaga et al., 2006; Miller and 

Schaetzl, 2012; Makó et al., 2017; Konert and Vandenberghe, 1997; Fisher et al., 2017), using 

the bin sizes of 1.88, 2.13, 2.42, 2.75, 3.12, 3.55, 4.03, 4.58, 5.21, 5.92, 6.72, 7.64 and 8.68 μm 

reported by the Mastersizer 3000. 

To check the stability of the clay-silt cutoff, a 3-Fold Cross-Validation (James et al., 2013) 

was conducted by randomly splitting the dataset in three groups, calculating the clay content 

with two thirds of the data, and validating the results against the remaining third of the data. 
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The cross validation was performed three times - using the three different two thirds of the 54-

observation dataset as training models, and the other three respective one thirds of the dataset 

as validation (Table 2.2). 

Sand, silt and clay fraction results obtained using the laser diffraction protocol were 

compared with NAPT and ALP sieve/pipette, and hydrometer reported medians using linear 

regression analysis. The 1:1 regression line provides a visual assessment of the magnitude of 

the errors, and the coefficient of the determination, the slope and the intercept provide 

quantitative measures of the bias between PSA methods. 

2.3. Results 

The clay-silt particle size cutoff that yielded the best agreement between the laser 

diffraction PSA and the NAPT and ALP reported results was the 5.92 μm Mastersizer 3000 size 

bin (Tables 2.2 and 2.3). As expected, the standard USDA-NRCS 2 μm clay-silt cutoff produced 

inferior results, which agrees well with prior reports (Miller and Schaetzl, 2012; Makó et al., 

2017). Using 6-μm as the clay-silt threshold produced robust results in the 3-fold cross 

validation and good agreement with the NAPT and ALP reported data, with values of the 

regression intercept and slope close to the 1:1 line, high coefficient of determination (R2) and 

low root mean square error (RMSE, Table 2.2). Furthermore, the magnitude of the RMSE 

between laser diffraction PSA results and the reported NAPT and ALP data ranged between 

0.04 and 0.07, which is very close to the magnitude of the regression RMSE between pipette 

and hydrometer methods, 0.03 to 0.06 (Table 2.3, Figure 2.2). Analysis of the regression 
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residuals indicated no significant correlation with total organic carbon or carbonate content, 

which agrees with prior reports by Fisher et al. (2017). 

Table 2.2. 3-Fold cross validation statistics for clay content determined by randomly dividing the 
dataset in thirds. Two thirds of the dataset were used in the clay-silt cut-off optimization 
routine and the remaining third was used for validation. 

Statistic Training 
Set 1 

Validation 
Set 1  

Training 
Set 2 

Validation 
Set 2  

Training 
Set 3 

Validation 
Set 3  

Intercept -0.01 -0.01 -0.001 -0.004 -0.006 -0.002 
Slope 1.01 0.93 0.98 1.14 0.97 0.94 
RMSE, g g-1 0.05 0.02 0.04 0.06 0.04 0.04 
R2 0.89 0.99 0.95 0.89 0.92 0.92 
n 36 18 36 18 36 18 

Threshold, μm 6  7  6  
 

Table 2.3. Comparison of the coefficient of determination and root mean square error for the 
fraction of clay and silt using the standard clay-silt cutoff of 2 μm and the previously 
recommended 6 and 9 μm. 

Cutoff, 
μm 

Methods 
Clay Silt 

R2 RMSE R2 RMSE 

2 Hydrometer vs Pipette 0.96 0.03 0.93 0.06 
2 Laser diffraction vs Hydrometer 0.75 0.18 0.86 0.22 

2 Laser diffraction vs Pipette 0.82 0.17 0.91 0.19 

6 Laser diffraction vs Hydrometer 0.92 0.04 0.92 0.07 

6 Laser diffraction vs Pipette 0.90 0.05 0.94 0.06 

9 Laser diffraction vs Hydrometer 0.90 0.07 0.93 0.05 

9 Laser diffraction vs Pipette 0.88 0.08 0.91 0.07 
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Figure 2.2. Regression analysis comparing the proposed laser diffraction protocol and the 
reported NAPT and ALP sieve/pipette and hydrometer for the 54 standard samples selected. 

This study used a refractive index of 1.54 (corresponding to quartz) and an absorption 

index of 0.01. However, the Mastersizer 3000 allows recalculation of results using different 

scattering parameters, and we also recalculated our results using the refractive index values of 

1.52 and absorption index of 0.1 proposed by Bieganowski et al. (2018). The major difference 

was a shift in the clay-silt cutoff from the 5.92 µm to the adjacent 5.21 µm bin. This was a very 
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small change with minor impact on the texture classification corresponding to the standard 

sedimentation results reported by NAPT and ALP. 

2.4. Discussion 

Eshel and Levy’s 2007 statement that ‘there is no room to match particle size 

distribution data obtained by the LD [laser diffraction] to those obtained by the pipette’ refers 

to the difficulties in obtaining laser diffraction PSA results for soils with different particle sizes, 

densities, shapes, and optical material properties that are consistent with sedimentation 

methods. The laser diffraction protocol presented in this work overcomes some of these 

limitations and is able to obtain results comparable with standard soil texture determination 

methods from a broad geographic area of the United States, representative of most soil 

textural classes, and varying substantially in soil taxonomic classification, total organic carbon 

and carbonate content. Implementing the idea first proposed by Taubner et al. (2009) of 

limiting the particle size range to obtain consistent representative soil particle suspensions, in 

combination with technological improvements on laser diffraction instrumentation, allowed 

consistent estimations of particle size distribution for clay and silt fractions. The protocol 

presented is robust with regards to variation in laser diffraction analytical parameters such as 

the refractive index and the absorption index. Varying the refractive index within reasonable 

bounds produced small changes in the particle analysis. Similarly, varying the clay-silt size cutoff 

from 2 to 9 μm produce PSA results that remained close to those reported by NAPT and ALP 

(Table 3.3). 
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With consistent soil laser diffraction PSA results, the issue of equating laser diffraction 

and sedimentation results is transformed into an empirical problem with various practical 

solutions, as has been demonstrated by Fernlund et al. (2007) for sieving and image analysis 

methods, and by Garboczi et al. (2017) for laser diffraction, sieving, and a combination of X-ray 

Computer Tomography and spherical harmonic analysis. The solution chosen in this work was 

based on three steps: 1) separation of the sand fraction via sieving, as in the sieve/pipette 

method; 2) choice of a nominal particle laser diffraction diameter that optimized the matching 

of clay and silt fractions between the two methods; and 3) use of the results of the laser 

diffraction PSA to describe the nominal particle size distribution- that is, the relative proportion 

of nominal light scatter particle diameter distribution within the clay and silt fractions. 

As indicated by Eshel et al. (2004) and Merkus (2009), one of the advantages of laser 

diffraction is the rich information of particle size distribution (Figure 2.3). While textural classes 

provide a useful indication of the particle size distribution, it is well known that soils that have 

similar fractions of clay, silt, and sand may have contrasting particle size distributions. This is 

shown in Figure 2.3, where one of the samples has a particle size distribution with a large 

fraction in the finer portion of the clay range. An important additional advantage of laser 

diffraction over sedimentation methods is the speed of the analysis and reduction of the error 

introduced by the time of reading and the operator reading the hydrometer level (Allen, 1997; 

Syvitski et al., 2007). With the described set up, the Mastersizer apparatus throughput was 15 

samples per hour, which allowed analysis of 400 soil samples in 2 weeks. It would have taken 

more than two months to do the same analyses using the current lab setup for the hydrometer 

technique with 11 Bouyoucos cylinders. In addition, by wet sieving the sand from the soil 
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particle suspension, segregation and sedimentation errors are minimized, facilitating the 

collection of a representative suspension sample as suggested by Taubner et al. in 2009. 

Figure 2.3. Particle size distribution determined by laser diffraction of samples 2013-114, 2015-
103, and SRS-1709, with the same clay texture, but very different particle size distributions (See 
Table 1 for detailed sample description). 

Eshel and Levy (2007) advocated for building a direct link between laser diffraction PSA 

results soil properties, as is currently used for sedimentation-based methods, bypassing the 

need for calibrating results of these methods. The work presented in this study supports that 

approach. However, there has been minimal progress towards building a direct link between 

laser diffraction PSA and soil properties since 2007, and it seems that an intermediate matching 

step is necessary to progress towards that goal. 



 
 

29 

The laser diffraction protocol presented in this research produced soil PSA results that 

match standard sedimentation methods within their expected error. Laser diffraction soil PSA is 

information rich, fast, and robust. Furthermore, the current average texture analysis operating 

cost of US$ 22 ± 11 (based on informal surveys of 10 US soil laboratories) could be reduced 

significantly once the initial investment in the laser diffraction equipment is discounted. 

Additionally, while the potential of laser diffraction and particle imaging methods will continue 

to expand with advances in sensor technology and machine learning techniques for data mining 

(Merkus, 2009), there is little room for further technical advancement using standard 

sedimentation methods. Instead of developing functions to convert laser diffraction analysis 

results to sedimentation equivalent data (Makó et al., 2017), pedotransfer functions could be 

developed de novo using laser diffraction PSA results. 

2.5. Conclusions 

The laser diffraction protocol for soil PSA proposed in this work uses a small soil sample, 

is more robust, simpler, and faster than the current sedimentation methods, and significantly 

expands the quality of the data collected from soil texture analysis into a detailed particle size 

distribution. Limiting the particle size range of the samples by wet sieving the sand fraction 

overcame the difficulties inherent in obtaining representative samples and stable soil dispersed 

suspensions, allowing accurate estimation of clay and silt fractions. The assumptions that form 

the basis of sedimentation methods were used to develop a protocol that matches results from 

laser diffraction and standard sedimentation methods for a wide range of soils. Rather than 

defaulting to standard sedimentation methods, results obtained with the protocol presented 

here encourage further adoption of laser diffraction methods in PSA. 
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Chapter 3. Soybean Yield in Relation to Environmental and Soil Properties 

CORE IDEAS 

• Solar radiation and precipitation over the growing season were associated with planting 

date and were the main drivers of soybean yield. 

• The soil respiration to soil organic carbon ratio correlated positively with soybean yield. 

• In-situ measured saturated hydraulic conductivity was positively correlated to soybean 

yield and can be a promising indicator of soil condition. 

SUMMARY 

Our goal was to identify soil, plant and climate attributes that are most closely related to 

soybean [Glycine max (L.) Merr.] yield variation in Pennsylvania. We studied 22 site-years over 

the 2016 and 2017 growing seasons in two regions. The average yields were 3.4 (ranging from 

1.4 to 5) Mg ha-1 in 2016 and 5.5 (ranging from 3.5 to 7.4) Mg ha-1 in 2017. Solar radiation 

capture and water capture, both controlled by planting date, were the main predictors of 

soybean yield. Principal component analysis and Random Forest analysis revealed that the soil 

predictors of soybean yield were the content of zinc, copper, phosphorus, sulfur, potassium, as 

well as A horizon and total soil depth. The yield response to nutrients is likely a surrogate for a 

more complex response to animal manure additions. The physical and biological soil metrics in 

the comprehensive Cornell Assessment of Soil Health (CASH) did not correlate to soybean yields 

individually; however, the ratio of soil respiration to soil organic matter positively did so. 

Saturated hydraulic conductivity (Ksat) and root depth correlated with both soybean yield and 

each other. Thus, while planting date sets the maximum achievable yield, only soils having the 
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most water and nutrient availability (manured soils with high Ksat) expressed yields exceeding 7 

Mg/ha. The Ksat appears to be a valuable indicator of soil condition. 

3.1. Introduction 

Average soybean [Glycine max (L.) Merr.] yield has increased steadily in the United 

States. Each year, the average yield for a region reflects a wide range of within field and among 

fields yield variation. These yields are obtained frequently in seemingly uniform fields that are 

managed similarly. In Pennsylvania, producers report yields ranging from 3 to 6 Mg ha-1 (Voight, 

2016). In some fields, exceptional yields above 7 Mg ha-1 are obtained and documented in yield 

contests (Frankenfield, 2017). Understanding the causes of the yield variation as well as the 

factors that contribute to high yields can help charting pathways for increased productivity, 

profitability and environmental care. 

Identifying the drivers of yield variation can be challenging due to management x 

environment interactions. Frequently, soil water holding capacity explains year-to-year crop 

yield variation (Williams et al., 2016). Nonetheless, Rattalino Edreira et al. (2017) indicated that 

planting date was the most consistent soybean yield predictor when considering different 

regions and years. The negative response of soybean yield to delaying planting dates is well 

understood (Mooers, 1908; Egli and Cornelius, 2009). In summary, soybean yield decreases due 

to the hastening in development caused by shorter daylengths and warmer temperatures in the 

summer, which leads to lower availability and capture of solar radiation for photosynthesis. 

Therefore, earlier planting can set a higher yield potential, and a key for realizing it is increasing 

our knowledge of local soil environments. 
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The relationship between nutrient levels and yield vary depending on other conditions. 

For example, Sawchik and Mallarino (2008) found that soybean yield in Iowa was positively 

correlated to soluble soil P and K, while Cox et al. (2003) in Mississippi did not, suggesting that 

in the latter case factors other than P and K limited yield. In an environment known for low soil 

P availability such as in Brazil, Santi et al. (2012) used Principal Component Analysis (PCA) to 

evaluate the effect of 63 chemical and physical variables on soybean yield and suggested that K 

content and soil infiltration rates were, respectively, the greatest chemical and physical 

soybean yield limiting factors. Certainly, soil-plant-climate interactions differ regionally, 

resulting in yields being most responsive to different soil variables depending on the location. 

The soil quality concept, originally conceived as a measure of the soil’s ability to yield 

crops (Mausel, 1971), has been extended to include the broader ecosystems services concept 

(Doran and Parkin, 1994) and referred to as soil health (Karlen et al., 1997). Laboratories are 

now offering soil testing packages that aim at evaluating comprehensively soil chemical, 

physical and biological properties. Among these soil testing packages is the Cornell Analysis of 

Soil Health (CASH, Moebius-Clune et al., 2016). Bunemann et al. (2018) showed in their review 

paper about soil quality that most studies have not tested or reported how soil biological and 

physical indicators relate to crop yield. For example, Karlen et al. (2017) summarized results 

from the on-farm Soil Health Partnership (65 farms), but without including crop yield. When 

researchers report the response to yield, it can be subdued or applicable to a narrow slice of 

the sampling space. Nunes et al. (2018) found some CASH indicators that were positively 

influenced by no-till management and plant diversification strategies which related to crop 
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yield, but the yield response was noticeable in loamy sand and silt loam soils but not in clay 

loam soil. 

Our goal was to explore the relationship between soybean yield, climate and soil 

properties in two regions of Pennsylvania. The southeastern region (deep soils, low elevation) is 

broadly representative of soil-climate clusters in Ohio, Indiana, Illinois and part of Iowa and 

Missouri, while the central region (variable soil depths, higher elevation) is representative of 

more northern latitudes in the Midwest (Rattalino Edreira et al., 2018; Kukal and Irmak, 2018). 

Our specific objective was to distill soil and climate attributes closely related to soybean yield 

while accounting for interactions with management. To fulfill this objective, we did an 

observational study of 22 site-years where, in addition to soybean yield, we collected 

descriptive attributes of soil profiles and measured a suite of environmental, physical, chemical 

and biological indicators in individual sampling units per field. Observational studies are an 

alternative to controlled experiments when the conditions of interest are not in place in 

experiments across regions (Seddaiu et al., 2013; Ernst et al., 2016). 

3.2 Materials and Methods 

We collected field data in two regions of Pennsylvania (Region 1, Lancaster and Lebanon 

counties, and Region 2, Centre county) during the 2016 and 2017 growing seasons. In 2016, we 

included double-cropped soybean systems with a wide range of planting dates, with 

experiments conducted in both research station fields and commercial farm fields. In 2017, we 

targeted top yielding farms in each region. Within each farm, we sampled pairs of commercial 

fields with similar soil, planting date, soybean variety and corn as preceding crop, but a 
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divergent record of soybean yields. Overall, we worked with 8 fields in 2016 and 14 fields in 

2017 from 10 producers, totaling 22 site-years (Table 3.1). Fields were labeled first with the 

region digit, followed by the yield ranking (e.g. 1.1 is the field from Region 1 with the highest 

soybean yield). Region 1 is a high crop yielding environment of Pennsylvania, and some of the 

commercial fields studied have consistently ranked among the top three in the Pennsylvania 

Soybean Yield Contest and the Five Acre Corn Club. 

The 2016 research station experiments were conducted at the Southeast Agricultural 

Research and Extension Center in Landisville – Region 1, and at the Russell E. Larson Agricultural 

Research Farm at Rock Springs – Region 2. In 2017, all fields were on commercial farms. To 

facilitate sampling, commercial farm fields were located within a 20 km radius from each 

research station in both Regions. The distance between the two research stations is 

approximately 200 km. Of the 22 site-years, 18 used no-till for at least 5 years, and 4 used 

conventional tillage. All fields in Region 1, and 2 fields in Region 2, received manure. All soils are 

well drained and considered prime farmland. The most common parent material was limestone 

and siltstone. The soils were Hagerstown silt loam, fine, mixed, semiactive, mesic Typic 

Hapludalfs, or similar (Duffield silt loam, fine-loamy, mixed, active, mesic Ultic Hapludalfs; 

Hublesburg silt loam, clayey, illitic, mesic Typic Hapludults; Clarksburg silt loam, fine-loamy, 

mixed, superactive, mesic Oxyaquic Fragiudalfs; Morrison sandy loam, fine-loamy, mixed, active 

Ultic Hapludalfs; and Murrill fine-loamy, mixed, semiactive, mesic Typic Hapludults). The 

sampled areas had gentle slopes (0 to 3%). Average sand (clay) content varied from 4% (8%) to 

77% (75%) in the whole soil profile, and from 12% (8%) to 77% (49%) in the A horizon. 
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Table 3.1. Elevation, soil type, parent material, previous crop, tillage, relative maturity group 
(MG) and row spacing of the studied fields from Region 1 and Region 2 in 2016 and 2017.  

Year Field Elevation Soil Type 
Previous 

Crop 
Tillage MG 

Row 
Spacing 

  m     cm 

2017 1.1 139 Duffield Silt Loam Corn Yes 3.6 38 

2017 1.2 139 Duffield Silt Loam Corn No 3.6 38 

2017 1.3 109 Hagerstown Silt Loam Corn No 3.5 38 

2017 1.4 109 Clarksburg Silt Loam Corn No 3.8 38 

2017 1.5 139 Duffield Silt Loam Corn Yes 3.6 38 

2017 1.6 109 Hagerstown Silt Loam Corn No 3.5 38 

2017 2.1 400 Murrill Channery Silt Loam Corn No 3.1 76 

2017 2.2 344 Morrison Sandy Loam Corn No 3.1 76 

2017 2.3 316 Hagerstown Silt Loam Corn No 3.5 38 

2016 1.7 125 Hagerstown Silt Loam Corn Yes 3.6 38 

2016 1.8 139 Duffield Silt Loam Wheat No 3.6 19 

2017 1.9 109 Hagerstown Silt Loam Corn No 3.4 38 

2017 2.4 344 Morrison Sandy Loam Corn No 3.1 76 

2017 2.5 334 Hublersburg Silt Loam Corn No 3.6 76 

2017 2.6 334 Hagerstown Silt Loam Corn No 3.6 76 

2016 2.7 334 Hagerstown Silt Loam Corn No 3.5 76 

2017 2.8 316 Hagerstown Silt Loam Corn No 3.5 38 

2016 1.10 109 Duffield Silt Loam  Wheat No 3.6 38 

2016 2.9 329 Hagerstown Silt Loam Barley No 3.6 38 

2016 2.10 329 Hagerstown Silt Loam Sorghum No 3.6 38 

2016 1.11 125 Hagerstown Silt Loam Wheat No 3.6 38 

2016 1.12 125 Hagerstown Silt Loam Wheat No 3.6 38 

2016 2.11 329 Hagerstown Silt Loam Barley No 3.6 38 

 

3.2.1. Plant Measurements 

At the two Penn State research stations in 2016, plot size was 1.9 m (five rows) x 4.5 m 

in length. Three 1-m long sampling units were flagged after soybean establishment in each of 

the three adjacent mid-rows of every plot. All measurements were done in each 1-m sampling 

unit of every plot, totaling 3 m per plot (1.1 m2). Soybean population was measured at V2 and 

R8, and phenology was recorded from VE to R8 following Fehr and Caviness (1977). Plant height 
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and lodging were recorded prior to harvest at R8 stage. Grain was harvested using an 

experimental Wintersteiger AG combine. Moisture and test weight were measured using a 

Dickey-john GAC 2100 grain moisture tester, and grain yield was corrected to 13% moisture. 

At all the other locations in both years, five subsamples were collected per commercial 

field after soybean establishment and the locations were fixed using flags and a global 

positioning system to assure that the plant and the soil measurements were conducted over 

the same individual land unit (1-2 m2). From a location (mid-point) that was initially randomly 

selected on areas with adequate plant stands and anticipated soil type, we flagged four 

additional sampling units at fixed distances (7, 19, 37, and 56 m) and radially away from the 

mid-point. In each of the five sampling units, two 1-m lengths in adjacent rows were flagged 

and measurements taken in a similar fashion to the procedures used on the research farms’ 

plots. Soybean population was counted at V2 and R8, and dates at which plants reached VE, R1 

and R8 stages were recorded. Height, lodging and aboveground biomass were measured at the 

R8 stage prior to harvest. Soybean aboveground biomass was dried at 50°C until constant 

weight, and yield was estimated by threshing the dried aboveground biomass sampled at R8 

using a plot combine in stationary mode and weighing the grain mass. 

3.2.2. Soil Measurements 

Soil cores were taken from the center of each sampling unit using a tractor-mounted 

hydraulic soil coring system (Giddings Inc.) that allowed obtaining up to 1.2 m long x 42 mm in 

diameter soil cores inside plastic liners. Given that there were shallow stones with diameters > 

42 mm, when shallow rocks impeded deep sampling, we tried two additional coring attempts 
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per sampling unit and retained the longest core. Soil samples were collected immediately after 

soybean harvest. The intact soil cores were laid out for observation in the laboratory. In 2016, 

the soil layers were separated by horizon, unless the horizon thickness exceeded 30 cm. In that 

case, the horizon was split in half for subsampling purposes related to chemical analysis. In 

2017, the thicknesses sampled were fixed: 0-6 cm, 6-15 cm, 15-30 cm, 30-60 cm, 60-90 cm, and 

90-120 cm. Depth of A horizon, maximum root depth and core length (a proxy for soil depth) 

were recorded. All samples were air-dried and sieved (2-mm mesh) for soil testing, soil organic 

matter (SOM) analysis, and particle size analysis. Sub-samples from each soil layer were oven-

dried at 105° C for 24 h for gravimetric water content and bulk density (BD) determinations. In 

2017, an undisturbed sample was also collected in every sampling unit using a stainless-steel 

cylinder of 7.5-cm diameter and 6-cm height to estimate soil water holding capacity. 

Clay and silt content were measured in each soil layer using the laser diffraction method 

(Faé et al., 2019), and sand was estimated using the sieve method (Gee and Or, 2002) following 

the USDA classification system (USDA, 2017). Other soil tests were done at the Penn State 

Agricultural Analytical Services laboratory. Soil pH was determined in 1:1 water extracts (Eckert 

and Sims, 2011), extractable nutrients (P, K, Ca, and Mg) were determined using the Mehlich-3 

(ICP) extractant (Wolf and Beegle, 2011), cation exchange capacity (CEC) was determined by 

summation (Ross and Ketterings, 2011), SOM by loss on ignition (Schulte and Hoskins, 2011), 

and total sorbed Zn and Cu using the EPA Method 3050B/3051 + 6010 (USEPA, 1986). Nutrient 

mass content (kg ha-1) per sampling unit was calculated by multiplying bulk densities by the 

sampled soil layer depth and the elemental concentrations. 
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Saturated hydraulic conductivity was measured with an automated field dual-head 

infiltrometer (SATURO, METER Group Inc., formerly Decagon Devices Inc.). This instrument 

provides Ksat using the two-ponding head approach (Reynolds and Elrick, 1990) and 

simplifications described in Nimmo et al. (2009). The infiltrometer ring has a diameter of 14.4 

cm with an insertion depth of 5 cm. A control unit regulates the pressure heads and measures 

infiltration rates over complete pressure cycles, determining field Ksat over different soil 

moisture conditions. It allows infiltration measurements from 0.0038 to 115 cm h-1 with a 

resolution of 0.0038 cm h-1 and accuracy of ± 5%. Measurements were done across sites within 

a one-month period in June of 2017. Extreme care was taken to avoid the formation of soil 

cracks while inserting the ring in the soil. When the infiltration flux showed significant 

fluctuations after the saturation stage, we discarded the measurement and repeated the 

procedure. Approximately 30% of the measurements were repeated at least once for this 

reason. 

Water content at saturation, field capacity (-33 kPa) and permanent wilting point (-1500 

kPa) were measured on undisturbed soil cores of 7.5 cm diameter and 6 cm depth per sampling 

unit using the soil moisture PM compressor FSM Jenny Pressure Plate pressure plate extractor 

(Dane and Hopmans, 2002; Burt, 2004). Samples were dried at 105˚C for 24 h and BD was 

calculated to convert the data to volumetric water content. Rock content was estimated in the 

0-6 and 6-15 cm soil layers by collecting, washing and drying the sample sieved at 2 mm (water 

displacement method). 
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In 2017, we sent 15-cm topsoil samples for CASH testing to the Cornell Soil Lab Testing, 

following procedures determined by their guidelines (Moebius-Clune et al., 2016). For this test, 

composite samples were derived by proportionally combining well mixed soil samples (0-6 cm 

and 6-15 cm samples) for the five sampling units in each field. Soil samples at field soil water 

content were kept in a cold room at 4˚C until all samples were collected prior to shipping. The 

full CASH assessment includes particle size analysis, physical analyses (available water capacity, 

aggregate stability), biological analyses (SOM, ACE soil protein index, soil respiration, active 

carbon), and chemical analyses (pH, P, K, Mg, Fe, Mn, Zn). The following methods were used by 

the CASH test: Soil particle size analysis was done by the sedimentation method developed by 

Kettler et al. (2001). Wet aggregate stability was determined using a rainfall simulator and a set 

of sieves shaken on a mechanical shaker (Moebius et al., 2007). Available water capacity was 

gravimetrically assessed calculating the difference between water content at -10 and -1500 kPa 

using ceramic pressure plates in air pressure chambers (Reynolds and Topp, 2008). Soil organic 

matter content was determined by mass loss on ignition in a furnace at 500 ˚C for 2 hours 

(Broadbent, 1965). Soil respiration was measured using the incubation method (Zibilske, 1994). 

Autoclaved-Citrate Extractable (ACE) protein content was determined using sodium citrate to 

extract the soil and a standard curve for soil protein concentration after centrifugation and 

autoclaving steps (Wright and Upadhyaya, 1996). The ratios of soil respiration and active 

carbon to SOM were calculated to consider indicators of SOM quality in our analysis. Soil pH 

was measured in a suspension of 2 parts of water to 1 part of soil. Soil nutrients were extracted 

using a modified Morgan extractant (ammonium acetate plus acetic acid solution buffered at 
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pH 4.8) and the filtrate was analyzed in an inductively coupled plasma emission spectrometer 

(ICP, SPECTRO Analytical Inc.). 

The CASH has a scoring system based on sigmoid functions to interpret the 

measurements. The functions convert individual indicators to ratings ranging between 0 and 

100. The functions are in some cases specific for coarse, medium and fine textured soils. The 

rating is based on scoring curves developed with their database for each indicator by estimating 

the cumulative normal distribution of samples from the CASH database. Later, a CASH overall 

quality score is calculated as the unweighted average of all individual scores. The CASH 

considers non-limiting level of AWC for coarse and medium plus fine textural classes of 0.13 

and 0.16 g g-1, respectively; aggregate stability for coarse, medium and fine textural classes of 

400, 310 and 350 g kg-1, respectively; ACE for coarse, medium and fine textural classes of 7.4, 

6.5 and 5.9 mg g-1, respectively; soil respiration for coarse + medium + fine textural classes 0.60 

mg CO2 g-1; and active carbon for coarse, medium and fine textural classes 450, 500 and 575 mg 

kg-1. The test could also cover surface and subsurface hardness if penetrometer readings are 

submitted with the samples. However, we did not use the penetrometer due to variable soil 

moisture at the time of sampling and presence of rocks in some fields. 

3.2.3. Climate Measurements 

In the absence of water stress, plant growth is driven primarily by the amount of 

photosynthetically active solar radiation intercepted by the canopy over a wide optimum 

temperature range. To account for the effect of temperature and the same time evaluate the 

effect planting date, we calculated a new variable, the cumulative solar radiation corrected 
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with a temperature function (SfT). This new variable was obtained by multiplying daily solar 

radiation times a temperature function fT (Equation 1) 

�� = ��	����	�	���	��
����	����	�	���	����

	 (1) 

 = 	 	���	��������	���
	            (2) 

 

where Tn = 0˚C, Top = 25˚C and Tx = 45˚C. If temperature (T, ˚C) is lower than the minimum 

temperature (Tn) or higher than the maximum temperature (Tx), then fT = 0. The fT not only 

sets the daily temperature limits, but also fine tunes for solar radiation availability by adjusting 

for a general optimum temperature (Top) for growth and development. 

Weather data were obtained from the NASA Land Data Assimilation Systems (NLDAS) 

reanalysis database at the closest grid point to each field. To characterize the weather behavior 

of Region 1 and Region 2 in 2016 and 2017 we used the calculated Standardized Precipitation 

Evapotranspiration Index (SPEI) described by Vicente-Serrano et al. (2010). The SPEI considers 

the difference between precipitation and potential evapotranspiration representing a multi-

scalar index of drought. The reference evapotranspiration was calculated using the Penman-

Monteith equation based on FAO56 (Allen et al, 2006), and the R code provided by the authors 

to calculate a monthly SPEI for the 2016 and 2017 seasons. 

The warmer climate of Region 1 inherently allows producers to plant earlier than in 

Region 2. Due to the distinct temperature regimes and growing season onset date in these two 

regions, we re-scaled all planting dates in each region by creating a new variable called planting 
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date offset (PDO) calculated as difference between the actual planting date per field and the 

first possible planting date based on temperature. The first possible planting date was defined 

as the day of the year when the 15-day central moving average temperature was greater than 

13.5˚C, using a 38-year weather dataset representative of each region. On average, the first 

possible planting date considering the 38-year weather analysis was 1 May for Region 1 and 10 

May for Region 2. 

3.2.4. Statistical Analysis 

Parametric and non-parametric regressions were used to identify the best models to 

predict soybean yield for each group of variables. For parametric analyses, we used SAS v. 9.4 

(SAS Institute Inc.). In simple and multiple regression analyses, the SAS REG, RSQUARE, and 

STEPWISE procedures were used to generate candidate models. PROC GLM was used to test 

interactions. The criteria used to select the best agronomically sound model were the 

coefficient of determination (R2), p-value, error variance, Mallow’s Cp statistic, and PRESS 

statistic generated for each candidate model. PROC NLIN was used to estimate the parameters 

of linear-plateau functions. 

Principal component analysis (PCA) with PROC FACTOR was used to deal with correlated 

predictor variables. Factor loadings close to or greater than 0.7 were used to interpret what 

each statistically significant factor represents. The principal components or factors were 

regressed against soybean yield using PROC GLMSELECT to identify factors significantly related 

to soybean yield. PROC REG was used to estimate the percentage soybean yield variability 

explained by the significant factors. 
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For non-parametric regression we used Random Forest (Breiman, 2001) from the R 

statistical software v. 3.5.1 (R Development Core Team, 2018). Random Forest is a diagnostic 

machine learning technique. For this relatively small data set, Random Forest allows exploring 

responses that do not fit simple linear or quadratic responses (Hoffman et al. 2017), which are 

diagnosed using partial dependence plots. The method is an aggregate of classification and 

regression trees which are created by an iterative partitioning of the data (Breiman et al., 

1983). Analysis with the R Random Forest package starts with the full dataset in a single root 

node which then is recursively sliced into two nodes by the single predictor variable that 

explains the greatest variation in the response variable, and this slicing process continues until 

nodes cannot be sliced anymore or hold 1 % of total data (Breiman et al., 1984).  In Random 

Forest, only a randomly selected subset of the predictor variables is used in each slice following 

the idea of bagging and resulting in independent trees (Breiman, 2001). 

3.3. Results 

3.3.1. Soybean Performance 

In 2016, soybean yields ranged from 1.4 to 5.0 Mg ha-1, mostly due to the variation in 

planting dates (Table 3.2). In 2017 and in contrast with 2016, precipitation was timely in most 

fields and yields were higher, from 3.5 to 7.4 Mg ha-1. The highest yields occurred in Region 1. 

The average yields in Region 1 and Region 2 were 6.5 and 4.0 Mg ha-1, respectively. In 2016, 

planting dates varied from 18 May to 13 July. In 2017, planting dates for Region 1 and Region 2 

were on average 27 April (from 17 April to 4 May) and 20 May (from 13 to 27 May), 

respectively. Soybean RM groups varied from 3.1 to 3.8, with 80% of fields using RM group > 
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3.5. No yield response to soybean RM or population density was detected. Except for one field 

with low plant establishment in Region 2 in 2016, all other fields had adequate plant density. 

3.3.2. Environment and Planting Date 

The SPEI graphs indicate the monthly onset (negative) and end (positive) of drought 

events. In Region 1, the SPEI fell below zero in July and again in September of 2016 (Figure 3.1). 

In Region 2, the SPEI indicated that the drought started in March of 2016, reaching the 

historical low twice before it became positive in August. The latest planted plots (mid-July) in 

Region 2 were frost-killed on 11 October 2016 during grain filling. In 2017, fields from Region 1 

benefited from timely precipitation throughout the entire season, while in Region 2 there was a 

drought during late summer, affecting the grain filling phase. 

  

Figure 3.1. Standardized Precipitation Evapotranspiration Index (SPEI) of Region 1 and Region 2 
for 2016 and 2017 weather data. Dashed lines are the minimum and maximum SPEI over a 38-
year weather period, and the x-axis represent the months of the year. 

The growing season cumulative precipitation and SfT were positively correlated with 

soybean yield (R2 of 0.57 and 0.67, respectively; P<0.0001, Table 3.4). Both SfT and precipitation 
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were associated with PDO (R2 of 0.90 and 0.75, respectively). The warmer climate of Region 1 

inherently allowed producers to plant earlier than in Region 2. Therefore, to assess planting 

date as a management strategy we used PDO in all analyses. The PDO explained 56% of the 

combined soybean yield variation. 

Table 3.2. Average yield, planting date, onset planting date offset (PDO), SfT, precipitation (PP) 
and soybean population. The same weather data was used in fields located in the same NLDAS 
grid cell. 

Region Yield Planting 
Date 

Planting 
Date Offset 

SfT PP† Population 

 Mg ha-1   MJ m-2 mm pl m-2 

1.1 7.4 5/4/17 3 3088 645 33 

1.2 7.1 5/4/17 3 3088 645 25 

1.3 7.0 4/17/17 -14 3398 681 47 

1.4 6.8 5/1/17 0 3176 661 36 

1.5 6.3 5/1/17 0 3280 685 37 

1.6 6.0 4/17/17 -14 3398 681 29 

2.1 5.2 5/13/17 3 2939 605 32 

2.2 5.0 5/20/16 10 2975 536 36 

2.3 4.8 5/27/17 17 2545 515 29 

1.7 4.7 5/26/16 26 2947 513 38 

1.8 4.6 7/4/16 65 1975 400 45 

1.9 4.5 5/1/17 0 3176 661 31 

2.4 4.5 5/14/17 4 2935 605 23 

2.5 4.4 5/24/17 14 2576 516 27 

2.6 3.9 5/23/17 13 2595 516 21 

2.7 3.6 6/10/16 31 2360 379 36 

2.8 3.5 5/27/17 17 2545 515 30 

1.10‡ 3.5 6/30/16 61 2081 450 . 

2.9 3.5 7/1/16 52 1896 310 47 

2.10 3.4 5/18/16 8 2822 408 16 

1.11 2.7 7/12/16 73 1801 357 48 

1.12 2.5 6/27/16 58 2172 405 42 
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†Cumulative, from one month prior to planting until October 1st for full season, and October 15th for 
double-cropping plantings.  

‡Final plant populacon was not recorded. 

All top yielding fields had higher SfT availability and therefore a higher yield potential 

(Figure 3.2). The regression model for PDO showed that soybean yields were reduced linearly 

by approximately 45 and 42 kg ha-1 per day of planting delay on average for Region 1 and 

Region 2, respectively (P < 0.0001). The yield variation explained by PDO was 72% in Region 1 

and 63% in Region 2. There were no interactions between SfT or PDO with region and the slopes 

were similar between the two regions. The intercepts of the two regressions, 6.2 Mg ha-1 in 

Region 1 and 4.8 Mg ha-1 in Region 2, reveal a yield gap of 1.4 Mg ha-1 between these Regions, 

owing to the earlier absolute planting date in Region 1 afforded by a warmer climate. 
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Figure 3.2. Simple linear regression of planting date offset and cumulative solar radiation 
corrected by temperature (SfT in the text) with soybean yield (P < 0.0001) from all site-years 
studied in 2016 and 2017 in Regions 1 (triangle) and 2 (circle). 

The number of days to physiological maturity and thus cumulative solar radiation from 

VE to R8 were strongly affected by planting date (both R2s were higher than 0.95), which 

controlled the positive linear yield response to SfT (R2 = 0.68, Figure 3.2). 

3.3.3. Soil and Environmental Factors 

Overall, we collected data from 110 profiles and more than 600 soil layers (Table 3.3). 

Soil depth varied from 42 to 123 cm. Although soil depth was a statistically significant yield 

predictor (P = 0.02), it only explained about 5% of the total soybean yield variation. Thickness of 

the A horizon varied from 17 to 30 cm, except in one field that registered an uncommon 

thickness of 50 cm. Bulk density and SOM were predictably influenced by texture; for instance, 

the field with the highest sand content had the highest BD (1.7 Mg m-3) and the lowest SOM 

content in individual soil layers (6 g kg-1). Nutrient concentrations were mostly at or above 

optimum levels for phosphorous (P), potassium (K), magnesium (Mg), calcium (Ca) in the A 

horizon as defined by the PSU Ag Analytical Lab with only a few exceptions. In general, pH was 

close to neutral within the entire soil profile. Nutrients with low soil mobility such as P, Zn and 
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Cu presented the expected stratification of no-till managed fields. Although no symptom of 

nutrient deficiency was visually detected, the two research stations at Landisville and Rock 

Springs had on average the lowest soil nutrient concentrations. 

Table 3.3. Depth of A horizon (Depth A), total soil depth (Depth), profile weighted averages of 
bulk density (BD), pH, soil organic matter (SOM), cation exchange capacity (CEC), and nutrient 
stocks of phosphorous (P), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), copper (Cu), 
and sulfur (S) for the total soil depth. 

Field Depth A Depth BD 

pH 

SOM CEC P K Mg Ca Zn Cu S 

 cm cm 
Mg 

m-3 

g kg-1 
meq 

100g-1 

kg ha-1 

1.1 26 115 1.57 7.1 14 10.6 264 1638 5505 27344 25 39 221 

1.2 24 108 1.45 6.9 19 9.1 432 3031 3080 19837 27 32 431 

1.3 30 111 1.59 7.1 15 7.6 274 2100 3311 19635 41 27 223 

1.4 50 107 1.50 6.9 20 8.4 492 4650 2795 14990 33 26 360 

1.5 26 89 1.58 6.9 16 8.6 667 1757 2226 15971 42 26 167 

1.6 28 104 1.55 6.9 17 9.8 152 1859 3076 23533 31 30 222 

2.1 28 96 1.72 6.3 6 5.7 371 1328 1901 9110 18 29 419 

2.2 21 94 1.46 6.2 16 8.0 446 1637 1794 11825 20 19 310 

2.3 30 98 1.50 6.1 21 10.4 161 1095 1883 16974 15 14 986 

1.7 22 72 1.37 6.6 17 8.7 122 864 1892 11268 11 12 197 

1.8 30 117 1.32 7.0 16 8.3 136 1193 2959 16853 20 21 255 

1.9 26 100 1.55 6.8 16 9.1 111 1325 2091 20927 16 16 370 

2.4 17 102 1.68 5.4 9 6.3 342 2472 1246 6623 23 21 1595 

2.5 27 97 1.53 6.5 14 8.8 463 2064 2417 15460 26 17 720 

2.6 20 103 1.54 6.5 15 10.7 241 1403 2779 21210 15 22 468 

2.7 24 98 1.41 6.5 15 6.9 188 1148 2137 16235 14 22 370 

2.8 24 89 1.53 5.5 16 9.7 200 1202 1636 10982 10 15 927 

1.10 26 114 1.36 6.9 17 8.4 196 1913 2989 17934 22 17 290 

2.9 28 86 1.32 7.2 15 10.2 120 972 2702 16020 7 12 145 

2.10 26 75 1.46 6.6 12 10.5 77 898 2620 13072 11 10 136 

1.11 21 118 1.38 6.7 16 8.8 101 1111 2888 20567 5 20 339 

1.12 21 114 1.22 7.4 17 10.6 98 928 2611 18587 4 16 225 

2.11 24 76 1.45 7.1 15 10.4 92 999 2409 15577 4 10 128 
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In addition to the main climatic yield drivers (SfT and precipitation), the best soil 

predictors of yield were nutrient stocks of Zn (R2 = 53), Cu (R2 = 51) and P (R2 = 42, Table 3.4).  

Table 3.4. Random Forest analysis of the best possible environmental and soil models using 
field averages of variables described in Tables 3.2 and 3.3 (n = 22). 

Variable 
Model 

1 2 3 4 5 6 7 8 9 

SfT  X X  X     

Precipitation  X  X X     

Zn  X    X   X 

Cu  X     X  X 

P  X      X X 

All variables X         

Mtry† 4 2 1 1 1 1 1 1 1 

R2 (%) 62 79 62 57 61 53 51 42 73 

† Number of variables tried at each split. 

Since there were many soil variables correlated to each other in this study, we used PCA 

to simplify the dataset. Five components (or factors) explained 86% of the overall variation in 

the dataset. Of these 5 factors, 3 were significantly related to soybean yield (Table 3.5). Factor 1 

represented SfT, precipitation, BD, P, Zn and Cu (P < 0.001), factor 3 represented depth of soil 

profile (P = 0.02), and factor 4 represented depth of A horizon and K (P = 0.004). Based on 

standardized coefficients, factor 1 had approximately 4 times more impact on soybean yield 

response than factors 3 and 4. Combined, factors 1, 3 and 4 explained approximately 84% of 

the soybean yield variation (Table 3.5). Factors 2 and 5 were not significantly correlated with 

soybean yield. 
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Table 3.5. Principal component analysis of field average data from tables 3.2 and 3.3 showing 
the significance of each factor, and the factor loadings (correlation coefficients) of each soil 
predictor within factor (n = 22). P-values represent the significance of each factor regressed 
against soybean yield. 

 Factors 

1 2 3 4 5 

P-value < 0.001 NS 0.02 0.004 NS 

Variables Factor Loadings 

SfT 0.91 -0.06 0.07 0.15 0.01 

Precipitation 0.93 -0.09 0.13 0.16 0.04 

Depth of A horizon 0.21 0.24 -0.02 0.77 0.009 

Soil depth 0.05 -0.007 0.96 0.16 -0.03 

BD 0.81 -0.28 -0.09 -0.22 -0.24 

pH -0.16 0.88 0.21 0.18 0.16 

SOM -0.15 0.02 0.10 0.63 0.67 

CEC -0.22 0.25 -0.06 -0.12 0.86 

P 0.65 -0.08 -0.04 0.40 -0.32 

K 0.48 -0.10 0.24 0.72 -0.13 

Mg 0.18 0.64 0.58 -0.06 0.27 

Ca 0.12 0.51 0.59 -0.08 0.56 

Zn 0.80 0.11 0.17 0.39 -0.12 

Cu 0.69 0.23 0.59 0.02 -0.15 

S 0.13 -0.94 0.09 -0.05 -0.08 

 

In addition, we analyzed the data focusing on the nutrient concentration in the 0 - 15 cm 

soil top layer (Tables 3.6 and 3.7), a layer most commonly and easily sampled. Most fields had 

adequate levels of pH and nutrient content, considering critical levels of pH, Mg, P and K of 6.5, 

60, 30 and 100 mg kg-1, respectively. Both research farms and one field from Region 1 had P 

and K content below the critical level. Region 2 had one field with low pH and Mg content and 

another with K content below the critical level. Soil pH was below 6 in the top 15-cm soil layer 

only in 4 fields. The PCA for this soil layer did not differ from that of the entire soil profile. 
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Table 3.6. Minimum, average and maximum clay, silt, sand, BD, SOM, pH, CEC and 
concentration of soil nutrients determined with Mehlich-3 extractant in the 15-cm of topsoil of 
all sampling units in both years (n=110). 

Variable Unit Minimum Mean Maximum Standard Deviation 

BD Mg m-3 0.9 1.4 1.6 0.1 

Clay 

g kg-1 

90 210 370 70 

Silt 150 480 620 100 

Sand 100 310 760 140 

SOM 10 24 39 6 

pH  4.3 6.4 7.6 0.7 

CEC meq 100 g-1 2 10 17 3 

P 

mg kg-1 

5 68 392 63 

K 39 181 640 135 

Mg 29 158 521 78 

Ca 561 1243 3061 442 

Zn 0 5 36 4 

Cu 1 3 11 2 

S 2 11 21 4 

 

Random Forest analysis showed that models combining Zn, Cu, S and P within the top 

15-cm soil layer explained from 50 to 65% of the total yield variability, and the most important 

individual yield soil predictor was Zn (R2 = 0.47, Table 3.7). The climate variables SfT (R2 = 0.85) 

and precipitation (R2 = 0.82) were still more important predictors of soybean yield than any soil 

variable. 
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Table 3.7. Random Forest analysis showing the best possible soil models using the 0 – 15 cm soil layer dataset (n = 110). Mtry is the 
number of variables randomly tried to do each split. 

Variables Models 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

SfT X X                   X 

Precipitation X  X                  X 

Zn X   X X X X X X X X X X  X  X    X 

Cu X   X X X X X X X X X X X  X   X  X 

S X   X X X X X X X X X  X X   X   X 

P X   X X X X X X X X     X    X X 

pH X   X X X X X X X            

Mg X   X X X X X X             

K X   X X X X X              

BD X   X X X X               

SOM X   X X X                

Ca X   X X                 

CEC X   X                  

Mtry 4 1 1 4 3 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 2 

R2 (%) 81 85 82 69 70 70 70 71 71 69 65 65 64 62 52 50 47 30 29 24 82 
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Random Forest variable importance plots from analysis presented in Tables 3.4 and 3.7 

showed a similar importance pattern, with SfT explaining the most soybean yield variability and 

P the least (Figure 3.3). The S signal was not captured when analyzing the entire soil profile 

(Panel A, Figure 3.3). 

 
Figure 3.3. Variable importance plots from Random Forest regression analysis presented in 
Table 3.4 (A, R2 = 0.79) and Table 3.7 (B, R2 = 0.82). Number of trees: 500. Number of variables 
tried in each split: 2. 

Analyzing individual data from the 65 sampling units collected in 2017, we found that 

SOM was positively related to gravimetric soil water content at - 0.3 bar (y = 0.04x + 0.11, R2 = 

0.41) and - 15 bar (y = 0.03x + 0.02, R2 = 0.61), but no effect was found in AWC (R2=0.02). There 

is evidence that the amount of water a soil can hold between field capacity and permanent 

wilting point is a good crop yield predictor (Yang et al., 2014; Williams et al., 2016), but we did 

not find a strong relationship between AWC and soybean yield. Available water capacity was 
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significantly related to soybean yield (P = 0.01, 65 observations) and it explained 9.5% of the 

soybean yield variation in 2017. 

3.3.4. Cornell Assessment of Soil Health 

We used the CASH test to determine how each field would rank relative to soil heath. In 

this study, 10 out of 13 fields analyzed were rated excellent (rating between 60 and 80), which 

interpret as soil having no limitation to express the yield or soil without soil physical, biological 

or chemical limitations. (Table 3.8). We did not find any relationship of soybean yield with the 

CASH score nor with individual indicators, possibly because most fields were in the optimum 

fertility range (Figure 3.4). 

Table 3.8. Field averages of the Cornell overall quality score, available water capacity (AWC), 
aggregate stability, ACE protein index, soil respiration, active carbon, and textural class. 

Region 
Cornell 

Score 
AWC 

Aggregate 

Stability 

ACE 

Protein 

Soil 

Respiration 

Active 

Carbon 

Textural Class 

 % g g-1 g kg-1 mg g-1 mg mg kg-1  

1 59 0.33 58 4.1 0.5 440 Silt Loam 

1 65 0.32 114 6.1 0.6 586 Silt Loam 

1 71 0.26 242 5.3 0.6 443 Silt Loam 

1 71 0.30 141 5.3 0.6 471 Silt Loam 

1 62 0.28 236 4.9 0.5 517 Silt Loam 

1 77 0.33 327 6.8 0.5 517 Silt Loam 

2 55 0.15 272 4.5 0.3 312 Sandy Loam 

2 71 0.23 308 6.2 0.6 462 Silty Clay Loam 

1 66 0.23 343 5.1 0.4 451 Silty Clay Loam 

2 72 0.20 334 6.5 0.5 445 Sandy Loam 

2 79 0.32 262 8.7 0.6 718 Silt Loam 

2 63 0.30 174 4.1 0.4 401 Silt Loam 

2 53 0.21 162 5.0 0.4 408 Silt Loam 
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  The ratio of soil respiration to SOM was the only calculated variable with a relationship 

with yield, albeit with a different slope and intercept depending on the region (Figure 3.4). 

Available water capacity (R2 = 0.41, P = 0.02) and soil respiration (R2 = 0.46, P = 0.01) were both 

positively related to active carbon. In addition, AWC was related to soil respiration (R2 = 0.32, P 

= 0.04). 

 

Figure 3.4. Simple linear regression of soybean yield against the CASH variables measured in 
2017 in Region 1 (triangles) and Region 2 (circles). 
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Even though soybean yield showed no response to aggregate stability, it was rated low 

in some of the highest yielding fields that we studied. For instance, CASH scored aggregate 

stability 17 out of 100 in a field from Region 1, suggesting potential constraints to aeration, 

water infiltration, rooting, crusting, sealing, erosion, and runoff. However, this field attained the 

fourth largest yield (6.8 Mg ha-1), had the third highest Ksat (807 cm d-1), and had the fifth 

longest rooting depth (85 cm) of all fields studied. 

3.3.5. Saturated Hydraulic Conductivity and Root Depth 

Root depth and Ksat were positively correlated (P = 0.001, R2 = 0.71) and exhibited great 

measurement variability, ranging from 30 to 114 cm and 31 to 2143 cm d-1, respectively (Table 

3.9). 

Table 3.9. Minimum, mean, maximum and standard deviation of measured Ksat (Ksat SATURO) 
and root depth of 14 fields evaluated in 2017, and the calculated Ksat using Saxton and Rawls 
(2006) model (Ksat S&R). 

Region 
Ksat S&R  Ksat SATURO Root Depth 

 Min Mean Max SD Min Mean Max SD 

 -------------------------- cm d-1 -------------------------- --------------- cm d-1 -------------

1 19 196 366 533 162 90 95 114 11 

1 29 419 888 1909 285 60 92 110 23 

1 23 574 928 1173 238 90 108 115 10 

1 17 272 807 2143 568 60 85 90 14 

1† . . . . . 46 87 109 26 

1 20 98 196 239 77 60 80 101 19 

2 119 71 337 571 111 60 78 90 16 

2 23 125 306 672 304 60 80 114 23 

1 19 570 703 948 224 60 90 110 21 
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2 55 110 442 907 168 30 72 90 27 

2† . . . . . 60 75 90 17 

2† . . . . . 30 79 113 35 

2 26 90 193 380 60 50 75 90 19 

2‡ 40 31 75 119 55 . . . . 

† Ksat not measured. ‡ Root depth was not estimated. 

Simple regression analysis of root depth showed a good positive quadratic response to 

soybean yield (P = 0.002, R2 = 0.60), whereas Ksat explained 47% of the yield variability. Both 

variables presented a curvilinear pattern, similarly to nutrient response curves, where the yield 

increases until a critical point after which it plateaus. The critical Ksat in this dataset was 236 cm 

d-1, and the linear-plateau equation explained 47% of the yield variation with a maximum 

soybean yield of 6 Mg ha-1 (Figure 3.5). 

 

Figure 3.5. Regression of soybean yield against Ksat (P < 0.01) and root depth (P < 0.002). 

Although, as expected, clay and sand were statistically significant predictors of soil gravimetric 

water content at - 30 kPa (R2 = 0.46 and 0.51, respectively; P < 0.001, n = 65) and - 1500 kPa (R2 

= 0.64 and 0.58, respectively; P < 0.001, n = 65), soil texture did not influence Ksat in our study. 
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The best measured soil predictor of Ksat was Ca concentration (R2 = 0.34, P = 0.059). The fields 

with the highest Ksat frequently showed earthworm activity, whereas the fields with the lowest 

Ksat were compacted or surface-crusted soils. Our measured Ksats were on average 13-fold 

greater than that calculated with Saxton and Rawls (2006) pedotransfer functions. 

3.4. Discussion 

While as expected planting date was the main control of soybean yield (Carter and 

Hartwig, 1963), there was substantial yield variability at a given planting date. Most yield 

responses to planting date in the U.S. vary at rates between 0.09 and 1.7% per day of planting 

delay (Beuerlein, 1988; Egli and Cornelius, 2009; Salmerón et al., 2016). In this study, the yield 

loss rate was 0.6% per day, or 0.2 g MJ-1 when expressed per unit of temperature corrected 

solar radiation (SFT) over the growing season; however, yield can vary by ± 1 Mg ha-1 for a given 

level of growing season SFT (Fig. 2). 

Soil depth is normally a yield limiting factor in dry years in Pennsylvania, and it is also 

known to be responsible for large yield variations (Sadras and Calviño, 2001). However, in our 

study, the response to soil depth and AWC was probably subdued because the pattern of 

precipitation did not allow an expression of soil-depth and water-storage effect: late planting 

dates in 2016 and timely precipitation events in 2017. 

In Pennsylvania, deficiencies of Cu or Zn in soybean are rare and therefore yield 

response curves for these micronutrients were not established. Normal ranges of Zn and Cu 

content in Pennsylvania determined using Mehlich-3 extractant are 1.1 to 9.4 and 1.2 to 5.5 mg 

kg-1 (Beagle et al., 2014). The positive relationship between yield and these two micronutrients 
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is likely not a response to nutrient supply but an artifact of a history of manure applications. 

Several studies demonstrated that both Zn and Cu accumulate in soils that are manured yearly 

(McBride and Spiers, 2001; Mantovi et al., 2003; Brock et al., 2006; Benke et al., 2008; 

Berenguer et al., 2008; Sheppard and Sanipelli, 2012). We calculated the mass of Zn and Cu 

addition using the median concentration of Zn and Cu of 1,100 to 2,600 dairy, swine and 

poultry manure sample analyses provided by the Penn State Ag Analytical laboratory, the 

average reported manure application rates, and the mass of nutrient extracted by the grain 

harvest using the soybean grain Cu and Zn content described by Reddy et al., 1989. Based on 

these figures, each application of dairy, swine and poultry manure adds 0.6, 1 and 3 kg ha-1 of 

Zn and 0.16, 0.21 and 0.54 kg ha-1 of Cu, respectively. Soybean removal of Zn and Cu for a 5 Mg 

ha-1 grain yield is 0.3 and 0.1 kg ha-1, respectively. McBride and Spiers (2001) estimated an 

annual application of 0.9 and 0.35 kg ha-1 of Zn and Cu to New York farmlands for a median 

dairy manure composition and application rate. These results indicate that manure application 

can result in an accumulation of Zn and Cu in soils cultivated with soybeans. Frequent manure 

applications can affect physical, chemical and biological properties of soils and ultimately yield. 

For example, Bandyopadhyay et al. (2010) found lower soil bulk density and penetration 

resistance, and greater hydraulic conductivity, size of aggregates, SOM, root length, and 

soybean yield after four years of manure application; and Hati et al. (2007) showed 

improvements in AWC and crop yields after 28 years of manure application. While excessive 

manure applications can lead to toxic levels and environmental concerns (Petersen et al., 2007), 

a study in the northeastern U.S. found that current Cu and Zn levels in agricultural soils were 

not toxic (Brock et al., 2006). 
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The role of SOM in agricultural sustainability is recognized, but SOM is not always 

related to crop productivity (Sojka and Upchurch, 1999). The stock of SOM alone may not be a 

good indicator of soil condition, but it has been proposed that stratification ratios of soil 

organic carbon and nitrogen pools (e.g., particulate organic carbon, microbial biomass and 

potential carbon and nitrogen mineralization) could be indicators of soil quality, impacts of soil 

management and crop productivity (Franzluebbers, 2002; Hurisso et al., 2016). The potential 

nutrient mineralization can be estimated indirectly via quantification of microbial activity by soil 

respiration (Haney et al., 2008), and there is evidence that the soil respiration rate is 

determined more by the amount of substrate available rather than by the size of the microbial 

biomass (Wang et al. 2003). The significant yield response to the ratio of soil respiration to SOM 

indicates that rather than the absolute individual SOM or soil respiration rate, a potential soil 

indicator of relevance to crop yield is the relative biological activity of the soil. Since the ratio of 

microbial activity to SOM benefits plant growth through mineralization of nutrients (Gupta and 

Germida, 2015), it can be considered an indicator of SOM quality. In our study, however, the 

intercept of the response to yield was dependent on the region. Generalizing this indicator can 

be challenging. 

One of the simplest indicators of soil condition in agricultural fields is crop yield 

(Bünemann et al., 2018); it is perhaps the only single indicator that combines chemical, physical 

and biological aspects. The weakness of crop yield as an indicator is that different plant species 

have different sensitivity to soil properties and that the yield potential varies with local 

agroclimatic conditions. But even accounting for agroclimatic conditions, the many abiotic and 

biotic environmental interacting factors that determine yield makes it challenging to isolate the 
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relationships among CASH variables and crop yield, which could lead to seemingly contradictory 

reports of the relationship between CASH metrics and crop yields (Svoray et al., 2015; Roper et 

al., 2017; van Es and Karlen 2019). These results, rather than diminishing the importance of 

CASH tests, underscore that it needs to be interpreted within a broader context of factors that 

influence crop yield. Soil health is not an intensive property like temperature or water potential 

that can be measured with standards and related to thermodynamic properties, but a holistic 

assessment of the soil condition in a given context. 

Even though we did not find any relationship between soybean yield and soil physical 

variables measured with the CASH methodology, soil physical properties can be the ultimate 

driver that limits nutrient and water capture via its control on water infiltration, water storage, 

and root exploration of the soil volume. Field-measured Ksat values can be indicators in the true 

sense of the word, collecting multiple properties in one variable. The theoretical predictions of 

Ksat using Saxton and Rawls (2006) pedotransfer function suggest Ksat differences from a sandy 

to a clayey soil of approximately 190-fold. However, our Ksat data did not show any relationship 

with soil particle size and the measurements were much higher than the Ksat predictions using 

Saxton and Rawls (2006). Clothier and Smettem (1990) also did not find a relationship between 

particle size and Ksat and suggested that Ksat was dominated by biogenic macroporosity, which is 

not detected in laboratory measurements that capture mainly the matrix-dominated water 

flow. Field measurement of Ksat does capture this macroporosity. The Ksat measurements were 

high when compared with the Ksat estimated from the Saxton and Rawls (2006) pedotransfer 

function, but our readings were similar to other field-measured Ksat (Moore et al., 1986; Blanco-

Canqui et al., 2017; Gonzales et al., 2018). Infiltration rate was also related to wheat yield (Ernst 
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et al., 2018). Clearly, these results suggest that macropore flow was a main component of the 

field Ksat variability, and both an indicator and cause of soil condition and soybean yield. 

Roots normally grow through cracks, holes, or between soil aggregates following the 

path of least resistance in the soil to root elongation (Russell, 1977; Stirzaker et al., 1996), and 

increase in diameter when physically obstructed (Bengough and Mullins, 1990). It is hard to 

establish a cause and effect relationship between Ksat and root depth in our field observational 

study. Yet, infiltration measurements have been recommended as an indirect method to 

quantify macroporosity (Edwards et al., 1993) which in turn can facilitate root growth. The 

warmer climate from Region 1 not only allowed roots to grow for a longer period compared to 

Region 2, but also to maximize yields in double-cropping systems. 

Region 1 is naturally a high crop yielding environment of Pennsylvania with longer 

growing seasons, deeper soils with good water holding capacity and high biogenic activity 

promoted by yearly animal manure applications that facilitate nutrient mineralization potential 

and deeper root growth. The high solar radiation availability of Region 1 maximizes the soybean 

yield potential while the exceptional biophysical soil properties allow for the expression of top 

soybean yields. 

3.5. Conclusions 

In this study, cumulative solar radiation over the growing season and available 

precipitation were the main drivers of soybean yield. Our data confirmed that planting date is 

the main management practice to control soybean yield potential in Pennsylvania, but only soils 

with certain properties enable realizing this potential. Our results showed that current CASH 
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metrics did not relate to soybean yield, and that defining soil indicators of soil “health” can be 

challenging. However, in-situ measurements of Ksat more better related to soybean yields than 

any laboratory test. While the soybean yield responses to field Ksat can vary with the production 

environment, our results suggest that Ksat can be a valuable indicator of soil productivity. 
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Chapter 4. A Comparative Analysis of Soybean Yield Potential in the Mid-

Atlantic United States and Southern Brazil 

CORE IDEAS 

• The simulation model Cycles allowed quantifying soybean yield gaps and agricultural 

intensification potential in four distinct regions. 

• Soybean yield gaps due to water and management in the mid-Atlantic U.S. and southern 

Brazil exist and can be remediated. 

• It is possible to improve solar radiation and water capture efficiencies by double-

cropping in all regions and by producing a third crop per year in Brazil.  

• Double-cropping soybean yields were greater than full season yields in Brazil. 

ABSTRACT 

The first step towards increasing sustainable soybean production may be to assess how close 

the current yields are to the yield potential and how efficient we are using the available solar 

radiation and water. Field data were collected in four regions, two in Pennsylvania and two in 

Southern Brazil. The simulation model Cycles was used to quantify the biophysical soybean 

yield potential and indicators of resource capture were calculated. The potential and water-

limited soybean yields averaged for the four environments studied and from 2008 to 2017 were 

5.8 and 4.8 Mg ha-1 (dry weight). The total measured yield gap varied from 5 to 48% within 

regions. There is great potential to increase soybean yields with the available solar radiation 

and water resources through improved management tactics in the 3 of the 4 regions studied. 

Water capture efficiency, or the cumulative soybean transpiration divided by the available soil 
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water over the growing season, of full season soybean systems varied from 47 to 67%. Even 

though soybean yields were limited by water availability due to a non-uniform distribution of 

precipitation during the growing season in some regions, there was enough water for a second 

crop per year in all regions. In full season soybean systems, 50 to 74% of the solar radiation 

available was used compared to 77 and 87% with double-cropping systems in Brazil and the 

U.S., respectively. In Pennsylvania, agriculture intensification is limited to double-cropping due 

to low temperatures that limit the usage of available solar radiation, while in some regions in 

Brazil it is possible to produce a third crop per year. 

4.1 Introduction 

Soybean [Glycine max (L.) Merr.] is one of the most important crop commodities in the 

U.S. and Brazil, and both countries together produce around two-thirds of the world supply. 

Technological improvements in soybean production that reduce yield losses from nutrient 

limitations, weeds, diseases and pests have resulted in impressive improvements in yields 

during the past decades (Specht et al., 1999; Cooper, 2003). As these management limitations 

have been addressed, biophysical constraints to soybean production have become more 

limiting, making it valuable to understand solar radiation and water limitations to yield in local 

environments. 

The yield potential, or the yield of a non-stressed crop, is determined by the available 

environmental resources and the ability of the plant to capture and convert them to biomass 

(Monteith, 1981). Soybean yields in both Brazil and the U.S. vary under similar management 

regimes, with some fields producing exceptional grain yields (> 6 Mg ha-1) and others moderate 

to low yields. Understanding the environmental conditions that limit these yields underpins our 
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ability to continue expanding productivity barriers and to realize the yield potential determined 

by locally dominant yield drivers (de Wit, 1965; Fischer et al., 2014). 

A benefit of assessing the biophysical yield potential and natural resource limitations to 

plant growth is the ability to estimate yield gaps in various production systems. Yield gap is 

defined as the difference between average and the local potential yield (Lobell et al., 2009). 

Yield gaps often arise due to management defects that can be addressed. In the tropics, there is 

evidence that yield gaps are more related to poor soil fertility and severe weeds, diseases and 

insect pressure than in temperate regions (Affholder et al., 2013; Tay et al., 2013; Godoy et al., 

2016). The term water-limited yield has been proposed to refer to the yield producers can 

reach under rainfed conditions by managing stresses such as nutrients, weeds, pests and 

diseases (Lobell et al., 2009). Water-limited yields will always be lower than potential yields, 

and the yield gap determined by water is a measure of the water stress of that particular 

environment. Finding current yield gaps locally is imperative to identify management strategies 

to either reduce water stress or improve pest or nutrient management. 

Another benefit of the characterization of the biophysical resource use is to estimate 

the potential for sustainable agricultural intensification of local cropping systems. This could 

include double or triple cropping if enough resources are available. Double-cropping can 

increase land productivity by improving resource use compared to full season systems (Caviglia 

et al., 2010; Andrade et al., 2015). In temperate regions that can accommodate a winter grain 

crop and a summer crop, one of the most prevalent double-cropping systems is wheat (Triticum 

aestivum L.) or barley (Hordeum vulgare L.) followed by soybean. In these systems, the soybean 

planting date is determined by the maturity and harvest of the winter cereal. In northern 
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latitudes, this planting date often falls outside the optimum time window to maximize soybean 

yields (Beuerlein, 1988). However, the combined production and profit of double cropping 

system can be larger than that of wheat or soybean alone (Burton et al., 1996; Kelley, 2003; 

Kyei-Boahen and Zhang, 2006), and yields are more stable than single crops (Andrade and 

Satorre, 2015). The task of assessing the cascade of effects associated with increases in 

agricultural output can be simplified and accomplished with efficiency by using agricultural 

systems simulation models. 

Simulation models are the best tool available to estimate crop yield potential based on 

biophysical data, and therefore assess yield gaps and possible yield limiting factors (Van 

Ittersum et al., 2013). Crop models allow the evaluation of crop performance under different 

environments and can assess how efficient different production systems use local resources 

(Van Opstal et al. 2011; Grassini et al., 2015; Zanon et al., 2016; Rattalino Edreira et al., 2018). 

Multiple year field studies to verify crop management and weather interactions can be costly. 

An accurate model supported with reliable soil and long-term weather data can be an effective 

tool to explore soil-climate-management interactions, determine tradeoffs of management 

strategies, and assess the soybean yield response to planting dates in different environments 

rapidly (Whisler et al., 1986; Boote et al., 1996; Meinke et al., 2001; Mercau et al., 2007).  

Models can also be useful in assessing the potential impacts of climate change over the long 

term (Prasad et al., 2018). 

The objective of this research is threefold: first, to evaluate the biophysical potential for 

soybean production in two contrasting regions of the world, the mid-Atlantic United States and 

subtropical southern Brazil; second, to estimate yield gaps in these distinct environments; and 
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third, to estimate the potential for double or triple cropping in these environments based on 

solar radiation and water availability. 

4.2. Materials and Methods 

To accomplish the project objectives, there were three phases to this research.  First, 

the predictive accuracy of the simulation model Cycles was tested across all the U.S. and 

Brazilian environments for soil water content and yield. These environments included multiple 

planting dates and years at each of the two research stations in Brazil. In the U.S., eleven site-

years of data were used for each of the two regions, consisting of different locations and 

planting dates. Secondly, the biophysical yield potential for each of the four environments using 

representative fields, management and planting dates were calculated and yield gaps due to 

water stress and management were estimated. In the third phase, the potential of double and 

triple cropping production systems was evaluated using the representative field environments 

with the Cycles model by assessing potential resource capture efficiencies. 

4.2.1. Field Data 

Soil, weather and crop data were collected from 39 field studies at or near four research 

stations, two in Pennsylvania at the Penn State Russell E. Larson Agricultural Research Farm at 

Rock Springs (US1) and the Penn State Southeast Agricultural Research and Extension Center in 

Landisville (SEAREC) (US2), and two in Brazil, at the Brazilian Agricultural Research Corporation 

(Embrapa Wheat) in Passo Fundo, in the state of Rio Grande do Sul (BR1), and at the Agrária 

Foundation for Agricultural Research (FAPA) in Guarapuava, in the state of Paraná (BR2, Table 

4.1). 
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Table 4.1. Location, soil and climate of the four regions studied. 

Region Latitude Longitude Elevation Climate† Soil 

   m   

BR1 28˚15’ S 52˚24’ W 650 Cfa Rhodic Hapludox (Clayey Oxisol) or Distroferric 
Red Latosol according to the Brazilian system 
soil classification (Santos et al. 2006) 

BR2 25˚33’ S 51˚29’ W 1100 Cfb Hapludox (Clayey Oxisol) or Brown Latosol 
according to the Brazilian system soil 
classification (Santos et al. 2006) 

US1 40˚51’ N 77˚50’ W 330 Dfb Hagerstown silt loam, fine, mixed, semiactive, 
mesic Typic Hapludalfs; Hublesburg silt loam, 
clayey, illitic, mesic Typic Hapludults; Morrison 
sandy loam, fine-loamy, mixed, active Ultic 
Hapludalfs; and Murrill fine-loamy, mixed, 
semiactive, mesic Typic Hapludults 

US2 40˚16’ N 77˚31’ W 110 Cwa Hagerstown silt loam, fine, mixed, semiactive, 
mesic Typic Hapludalfs; Duffield silt loam, fine-
loamy, mixed, active, mesic Ultic Hapludalfs; 
Clarksburg silt loam, fine-loamy, mixed, 
superactive, mesic Oxyaquic Fragiudalfs 

† Köppen-Geiger climate classification system 

According to the Köppen-Geiger climate classification system, the US1 and US2 regions 

have a temperate climate classified as humid continental (Dfb) and mild temperate (Cwa), 

respectively, and BR1 and BR2 have a subtropical climate classified as humid subtropical (Cfa) 

and highland humid subtropical (Cfb), respectively. 

In Pennsylvania, data were collected from 9 fields in 2016 and 13 in 2017 from 10 

producers, totaling 22 site-years equally balanced between regions US1 and US2. All fields were 

commercially managed by producers, except in 2016 at Rock Springs and at the SEAREC, where 

data were collected from research plots. Commercial fields were located within a 20 km radius 

from each research farm in both regions. The distance between regions US1 and US2 is 

approximately 200 km. 
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In Brazil, data were collected from replicated research trials conducted from 2012 to 

2015. These included different soybean varieties and planting dates for 3 years in each region. 

The field studies were conducted from 2012 to 2014 at BR1 and from 2013 to 2015 at BR2. The 

distance between regions BR1 and BR2 is approximately 500 km. Data from the same soybean 

variety, BMX Apolo RR, was selected for the model simulations in Brazil. 

Emergence, flowering and physiological maturity dates were recorded following Fehr 

and Caviness (1977). Five sampling units were selected per commercial field after soybean 

establishment and the plant and soil measurements were conducted over the same individual 

sampling unit (1-2 m2) where all plant measurements were done in three 1-m row sections of 

plants from the 3 middle soybean rows. Soybean aboveground biomass was dried at 50  ̊C until 

constant weight, and yield was estimated by threshing the dried aboveground biomass sampled 

at R8 and weighing the grain mass. Harvest index at R8 was calculated in the U.S. regions using 

the dried aboveground biomass and grain mass. In all research plots, soybean grain was 

harvested using a research scale Wintersteiger combine by cutting the middle 3 soybean rows. 

Soil cores were taken from the center of each sampling unit using a tractor-mounted 

hydraulic soil coring system (Giddings Inc.) that allowed obtaining up to 1.2 m long x 42 mm in 

diameter soil cores inside plastic liners. Soil samples were collected immediately after soybean 

harvest. The intact soil cores were laid out for observation in the laboratory and multiple soil 

layers were separated in each soil sample. All samples were air-dried and sieved (2-mm mesh) 

for soil organic matter (SOM), and particle size analyses. Sub-samples from each soil layer were 

oven-dried at 105°C for 24 h for gravimetric water content and bulk density determinations. In 

2017, at regions US1 and US2, root depth was visually estimated using these soil cores, and an 
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undisturbed sample was collected in every sampling unit using a stainless-steel cylinder of 7.5-

cm diameter and 6-cm height to estimate water content at field capacity and permanent wilting 

point of the top 6 cm soil layer. 

In the U.S., clay content was measured in each soil layer using the laser diffraction 

method (Chapter 2; Faé et al., 2019). In Brazil, clay was determined by the hydrometer method 

(Gee and Or, 2002). In both regions, the USDA classification system was followed (USDA, 2017). 

Sand was estimated using the sieve method (Gee and Or, 2002). Soil organic matter content 

was analyzed by loss on ignition (Schulte and Hoskins, 2011). In the U.S. and in 2017, saturated 

hydraulic conductivity was measured with an automated field dual-head infiltrometer (SATURO, 

METER Group Inc.), and water content at field capacity (fc, -33 kPa) and permanent wilting 

point (pwp, -1500 kPa) were measured using the soil moisture PM compressor FSM Jenny 

Pressure Plate pressure plate extractor (Dane and Hopmans, 2002; Burt, 2004). 

Weekly soil water content measurements were taken from planting to maturity at 

SEAREC using a capacitance probe (Diviner 2000, Sentek Pty Ltd, Stepney, Australia) that 

reported data at 10-cm soil depth intervals. The Diviner access tubes were inserted in the same 

soil profile where the samples were taken with the Giddings probe to measure particle size and 

SOM. Since a reliable calibration equation for the Diviner was not found for the research site, 

the fc and pwp water content of each soil layer were calculated with the Saxton and Rawls 

(2006) pedotransfer function and used to scale the field scaled frequency measurements in 

between these boundaries (Equation 1) as follows: 

Θ = Θ"#" + �Θ%& − Θ"#"�	(	 )
�*	*��
*�	*�

+
,

,       (1) 
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where Θ is soil water content, R is the raw measured scaled frequency reading, Rn is the 

minimum scaled frequency reading in the layer, Rx is the maximum scaled frequency reading in 

that layer. The Rn and Rx considered the readings from the entire growing season. This approach 

was only appropriate because 2016 was a dry year that allowed the soil to dry until the Θpwp. 

The power of 5 accounts for the non-linear change in the signal with soil moisture and was 

selected to match observed and modeled soil moisture patterns. The goal with this approach 

was to compare the measured and simulated soil moisture fluctuations to investigate if Cycles 

can capture the seasonal soil moisture variability. Measurements were performed once a week 

in one plot in each of the 5 replications in two soybean planting dates (June 26 and July 12). 

4.2.2. The Cycles Model 

Cycles is a multi-crop, multi-year, process-based model with daily time step simulations 

of crop production and the water, carbon and nitrogen cycles. The model is an evolution of C-

FARM (Kemanian et al., 2010) and is closely related to CropSyst (Stöckle et al., 2003). The 

hydrology is simulated with an adaptive sub-daily time step. The algorithms of heat and water 

transport were adapted from Campbell (1985). The reference evapotranspiration is calculated 

using the Penman-Monteith equation described in FAO56 (Allen et al, 2006). Daily plant growth 

is based either on the radiation capture (light limited) and or on the realized transpiration 

(water limited), whichever is less, an approach that is a surrogate for a coupled transpiration 

and photosynthesis model (Kremer et al., 2008). In Cycles, the stomatal conductance is 

determined by temperature and the leaf water potential. Crop development is calculated using 

thermal time, and grain yield is calculated using the biomass accrued and the harvest index 

(Kemanian et al., 2007). The minimum inputs to the model are: latitude, daily weather 
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(minimum and maximum temperature, precipitation, solar radiation, minimum and maximum 

relative humidity, and wind speed), soil description (layer thickness, clay, sand and organic 

matter content), cropping sequence, and management information. 

The model can simulate the effects of management on biogeochemical processes of 

agronomic practices such as tillage, irrigation, organic and inorganic nutrient applications, 

annual and perennial crops, grain and forage harvest, polycultures, relay cropping and grazing. 

Cycles allows unlimited crop species to be specified by the user, because growth is represented 

with a general framework of resource capture and resource use efficiency. 

4.2.3. Cycles Simulations 

The Cycles model was used to simulate water content and crop production in the study 

using biophysical and crop management inputs from each environment. First, the observed 

yields from 17 Brazilian and 22 U.S. environments were compared to the simulated yields. 

Second, the biophysical yield potential, water-limited and reported soybean yield were 

calculated in two representative environments each in Brazil and the U.S. From this, yield gaps 

due to water and management were estimated. Third, the potential for cropping systems 

intensification was assessed in each of these 4 representative environments based on estimates 

of potential available water and solar radiation. 

Air temperature, relative humidity, precipitation, wind speed and solar radiation were 

obtained from the NASA Land Data Assimilation Systems (NLDAS) reanalysis database at the 

closest grid point from each field. Soybean phenology dates (VE, R1 and R8) and maximum root 

depth (only in 2017 in the U.S.) were used to adjust parameters in the crop input files for root 
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depth, and thermal time to emergence, flowering and physiological maturity. Saturated 

hydraulic conductivity and available water capacity were used to parameterize the soil input 

files in the U.S. regions in 2017. Soybean planting dates varied from 17 April to 13 July in the 

U.S., and from 10 October to 8 December in Brazil. All management operations were entered in 

the model to emulate actual field management. Relative maturity (RM) groups varied from 3.1 

to 3.9 in the U.S.; in Brazil, a 5.5 group was used in both regions. 

Cycles was used to simulate water content at SEAREC in 2016 at two planting dates to 

compare modeled water content with that measured with the Diviner. In all the other 39 

environments Cycles was only used to predict soybean yields. The goodness of fit of Cycles was 

evaluated with regression analysis between observed and simulated data. The 1:1 reference 

line, p-value, coefficient of determination (R2), intercept, and slope were used to assess model 

performance against the observed data. 

In 2016, the soybean harvest index (HI) in regions US1 and US2 was measured, and this 

data was used to compare the final simulated HI and the observed HI. Cycles uses the pre- and 

post-anthesis phases growth to estimate HI (Kemanian et al., 2007); the default HI asymptote is 

0.40 for soybean. In Cycles, the HI approaches an asymptote as the post anthesis phase growth 

increases. Because the simulated HI was underpredicted (0.36), the HI asymptote was manually 

changed until a final HI closer to the average observed value (0.42) was reached. Thus, the 

asymptote, originally set to 0.40, was increased to 0.49 to match the maximum yields (i.e. those 

likely representing the yield potential). 



 
 

75 

To compare the biophysical yield potential and the yield gap of the representative U.S. 

and Brazilian environments, one field per region that represented the average yield and 

environment was selected to perform the simulations. In each of these environments, the input 

files were based on data measured in the field. The minimum soil input dataset necessary to 

perform a simulation in Cycles was used to compare the four regions (Table 4.2). 

Table 4.2. Clay, sand and SOM content in each soil layer of the four regions studied. 

Location Layer Thicknes Clay Sand SOM 

  m g kg-1 

      

US1 1 0.06 203 320 44 

 2 0.09 238 279 29 

 3 0.15 270 250 17 

 4 0.30 315 221 10 

 5 0.26 424 145 8 

 6 0.16 411 178 6 

      

US2 1 0.06 317 153 39 

 2 0.09 353 131 25 

 3 0.15 348 129 21 

 4 0.20 345 140 20 

 5 0.10 345 140 20 

 6 0.30 365 129 16 

 7 0.17 396 133 17.5 

      

BR1 1 0.025 440 310 39 

 2 0.025 440 310 39 

 3 0.05 530 283 30 

 4 0.10 530 275 30 

 5 0.20 590 245 27 

 6 0.30 750 170 24 

 7 0.30 740 135 16 
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BR2 1 0.025 400 270 51 

 2 0.025 400 270 51 

 3 0.05 400 270 51 

 4 0.10 590 140 41 

 5 0.20 670 100 32 

 6 0.20 740 70 25 

 7 0.20 630 170 24 

 8 0.20 670 140 17 

 9 0.20 700 110 10 

 

For each simulation, commonly used planting dates were selected in each region (Table 

4.3). Soybean RMs were 3.6 and 5.5 in the U.S. and Brazil, respectively. Since the goal was 

neither to validate nor to calibrate the wheat simulations, general wheat parameters that 

matched the expected flowering and maturity dates in each region were used. 

Table 4.3. Planting, maturity dates and thermal times (TT) of full season and double cropping 
soybeans in each region of the U.S. and Brazil. 

Crop / Region Planting Date Maturity Date TT TT 

Soybean Full Season   VE-R1 ˚C d-1 R1-R8 ˚C d-1 

US1 05/22/2017 10/03/2017 702 1690 

US2 05/01/2017 10/04/2017 840 1976 

BR1 11/08/2012 03/24/2013 839 1853 

BR2 11/12/2012 04/02/2013 904 1833 

Wheat Double-Crop     

US1 10/14/2016 06/20/2017 1410 2040 

US2 10/14/2016 06/09/2017 1410 2040 

BR1 06/06/2011 10/24/2012 1061 1691 

BR2 06/06/2011 10/25/2012 1061 1691 

Soybean Double-Crop     

US1 07/13/2017 11/07/2017 600 1327 

US2 07/06/2017 10/16/2017 562 1429 

BR1 11/18/2012 03/28/2013 741 1754 

BR2 12/03/2012 04/18/2013 798 1763 
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To calculate the soybean yield potential (no water stress), the soil was automatically 

irrigated when the plant available water fell below 90% of the water hold between field 

capacity and permanent wilting point. 

4.2.4. Biophysical Quantification 

The soybean yield gap was estimated using data from 2013 in Brazil and 2017 in the U.S. 

Yield potential and water-limited (rainfed) yield were quantified using Cycles and observed 

yields were averaged for each region. Cycles allowed the estimation of total yield gap (Ygt), yield 

gap due to water (Ygw) and yield gap due to other abiotic and biotic factors (Ygx). The relative 

yield gap due to water (RYgw) is the percent difference between the potential and water-limited 

yields, whereas the relative yield gap due to other abiotic and biotic factors (RYgx) is the percent 

difference between water-limited and observed yields. The cumulative evaporation, runoff, 

drainage, infiltration and transpiration from planting to physiological maturity, and plant 

available water (PAW) at planting and residual water at maturity were estimated with Cycles. 

Water capture efficiency was calculated by dividing the cumulative transpiration by the amount 

of water available from planting to maturity in the top rootable 0.9 m soil layer (PAW plus the 

difference between infiltration and residual water).  

To assess the potential of cropping systems intensification, full season soybean and 

double-cropping wheat and soybean yields were simulated from 2008 to 2017 in each region. 

Means and standard deviations were used to compare the cropping systems and regions. The 
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percent of potential solar radiation captured in each cropping system was calculated by dividing 

the cumulative solar radiation available from planting to maturity in each system by the total 

available solar radiation in one year. 

The cumulative daily solar radiation (St) over the growing season in each location was 

normalized or corrected using both a temperature (T, °C) function (fT) and a vapor pressure 

deficit (D, kPa) function (fD) (Kemanian et al., 2004). The temperature correction was done by 

multiplying St times fT: 

 �� = �- − -.�/ 	(	�-� − -�
�-01 − -.�

/ 	(	�-� − -01�
 

(2) 

 
 =	 	�-. − -01�

�-01 − -��
 

(3) 

 

where Tn = 0, Top = 25 and Tx = 45 ˚C and q = (Equation 3). If temperature (T, ˚C) is lower than the 

minimum temperature (Tn) or higher than the maximum temperature (Tx), then fT = 0. The 

radiation term was further adjusted by dryness of the atmosphere by dividing by the square 

root of D if D >1 kPa (Equation 4): 

 23� =
23 	(	��
√5

 
(4) 

Total biomass synthesis is better quantified in terms of primary substrate production 

because the energy composition of soybean and wheat grain differ. Therefore, to compare the 

total production of full season and double-cropping systems in one calendar year, the primary 

sugar or glucose requirement was quantified. The amount of glucose produced in each 
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environment and production system was calculated as a measure of potential energy produced 

from grain as described by McDermitt and Loomis (1981). We used the following conversions: 1 

kg of glucose generates 0.7 kg of wheat grain and 0.45 kg of soybean grain. These figures are 

not constant and depend on the source of nitrogen, protein, carbohydrate and lipid content of 

the grain, but the figures selected reasonably normalize biomass sources of contrasting 

composition.  

4.3. Results 

4.3.1. Cycles model performance 

Cycles matched the sensor daily Θ variation pattern down to 60 cm in both planting 

dates throughout the entire growing season well (Figure 4.1). The soil surface layer Θ is 

apparently overestimated by Cycles but it is likely that this error reflects difficulties getting a 

correct reading from the device close to the soil surface, as the air layer above the soil may 

interfere with the signal. The standard error of the measurements increased with depth, likely 

reflecting more heterogenous soils conditions and root exploration in the subsoil (prismatic 

peds, rock fragments). The water drawdown as well as recharge-events were also well 

simulated by the model. 
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June 26  July 12 

Figure 4.1. Measured (Diviner) and simulated (Cycles model) soil water content from soybean 
planting to harvest at the SEAREC research station in Pennsylvania for the planting dates of 
26 June and 12 July. Error bars indicate the standard deviations of five replications. 
 

Soybean yield predictions agreed well with the observed yields using the model default 

parameters for soybean (Figure 4.2). However, the model slightly underpredicted the highest 

yields and overpredicted the lowest yields, and overall underestimated the HI (0.36 vs 0.42). 

This change improved the slope of the simulated vs observed yield regression in the U.S. (from 

0.69 to 0.91) and slightly so in Brazil (from 0.9 to 1.08). 
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Figure 4.2. Simulated and observed soybean 

yields in the U.S (panel A, regions US1 and US2) 

from 2016 and 2017 and Brazil (panel B, regions 

BR1 and BR2) from 2012 to 2015 before and 

after changing the HI asymptote from 0.40 to 

0.49. 
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The simulated and observed soybean yields also agreed well within individual regions in 

the U.S. and Brazil (Table 4.4). The R2s, slopes and intercepts varied from 0.66 to 0.90, 0.66 to 

1.28, and -0.1 to 2.8, respectively. 

Table 4.4. Regression models of observed x simulated soybean yield in each region of the U.S. 
and Brazil. 

Region n Slope Intercept R2 P 

US1 10 1.04 0.5 0.66 0.004 

US2 12 0.86 1.4 0.90 <0.0001 

BR1 8 1.28 -0.1 0.71 0.009 

BR2 9 0.66 2.8 0.73 0.003 

 

The most critical parametrization to correctly predict yields was to adjust thermal time 

for flowering and physiological maturity in every location, maturity group and planting date. 

Thermal times from planting to emergence, flowering and maturity were calculated based on 

measured phenology data in each location and adjusted based on Cycles crop outputs. 

4.3.2. Biophysical yield potential and yield gap  

The four regions varied considerably in terms of solar radiation, precipitation and 

temperature during the growing season. The southern Brazil regions receive more solar 

radiation, precipitation and have greater cumulative degree days than those in Pennsylvania 

(Table 4.5). Region US2 is warmer and receives more precipitation and solar radiation than 

Region US1, and Region BR2 is colder and receives more precipitation and solar radiation than 

Region BR1. 
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Table 4.5. Average cumulative precipitation, cumulative temperature and daily available solar 
radiation data at each of the 4 regions studied. Weather data was averaged from 2008 to 2017.   

Month 
Precipitation Cumulative Degree Days Solar Radiation 

mm ˚C above 0 MJ m-2 day-1 

US1 US2 BR1 BR2 US1 US2 BR1 BR2 US1 US2 BR1 BR2 

January 60 71 159 199 29 44 713 649 7 7 22 22 

February 59 73 153 202 41 58 659 598 9 10 20 20 

March 78 85 45 173 142 179 663 620 14 14 18 19 

April 82 90 155 149 320 354 580 554 18 19 15 16 

May 113 118 150 137 488 529 488 472 20 21 11 12 

June 105 114 168 237 603 651 396 398 21 23 10 11 

July 103 120 175 179 700 758 422 424 22 24 11 13 

August 97 111 166 126 667 721 481 468 21 21 13 16 

September 98 134 182 151 562 610 497 496 16 16 15 18 

October 99 116 235 211 378 415 581 562 11 12 18 19 

November 55 57 147 148 178 208 635 584 8 8 22 22 

December 83 94 153 237 74 105 705 644 6 6 22 21 

Total 1032 1182 1990 2150 4183 4631 6820 6469 5279 5561 6017 6366 

 

The four environments selected for this study had soybean yield potentials based on the 

Cycles simulation ranging from 4.9 to 6.2 Mg ha-1 in 2013 in Brazil and 2017 in the U.S. (Table 

4.6). Region US2 had a relatively stress-free soybean season in 2017, and it achieved 95% of its 

biophysical yield potential. Regions US1, BR2 and BR1 were 13/22, 23/11 and 6/42% limited by 

water/other factors, respectively. These other factors represent yield gaps due to management. 

Region US1 was affected by water stresses during the grain filling phase according to Cycles. 

Region BR1 was mostly limited by other factors such as nutrients, weeds, pests and diseases 

rather than water stresses according to the simulations. 

Region BR2 had a high precipitation from planting to maturity (830 mm), but with a non-

uniform distribution during the growing season. Low precipitation early in the season caused 
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water stress and limited soybean growth during the first 77 days after emergence in region BR2, 

which resulted in a maximum solar radiation interception of 83% according to our simulations. 

Later in the season though, heavy rain events caused runoff and drainage losses that added up 

to 386 mm (Table 4.6). 

Table 4.6. Soybean yields and water metrics in Brazil in 2013 and in the U.S. in 2017.  

Variable BR1 BR2 US1 US2 

Soybean Yield (Mg ha-1 @ 0%)     
Potential  5.0 6.1 5.6 6.2 

Water-limited  4.7 4.6 4.9 6.2 
Observed  2.7 4.1 3.8 5.9 

RYgw (%) 6 23 13 1 

RYgx (%) 42 11 22 4 
RYgt (%) 48 34 35 5 

Water (mm)†     
Evaporation from PD to R8 133 158 133 151 
Runoff from PD to R8 87 187 3 15 

Drainage from PD to R8 95 199 68 56 

Plant available water at PD 404 392 294 329 
Cumulative infiltration from PD 
to R8 551 645 402 525 

Residual water at R8  410 387 190 252 
Cumulative transpiration  323 304 310 406 

Water capture efficiency (%) 59 47 61 67 

† 90 cm root zone soil profile. 
 

Water capture efficiencies varied from 47 to 67% (Table 4.6). Region US2 had the 

highest water capture efficiency probably due to the timely precipitation events. The relatively 

low water capture efficiency of Region BR2 was related to large precipitation events. For 

instance, Cycles estimated runoff and drainage volumes at Region BR2 of 187 mm (145 mm in 

39 days with daily runoffs reaching of 47 mm day-1) and 199 mm from planting to maturity, 

respectively. 
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4.3.3. Potential for Agricultural Intensification 

Comparing the soybean yield gap using Cycles over a period of 10 years, the loss due to 

water is higher in full season soybean than in double-cropping systems (Table 4.7). Average 

soybean yields can be increased 17 and 12% with water management in the 4 regions studied in 

full season and double-cropping systems, respectively. The U.S. regions had lower potential 

soybean yield in double-cropping systems. However, in Brazil, potential and water-limited 

double-cropping yields were similar to full season soybean yields. In the U.S., soybean yields 

were significantly lower in later plantings after wheat harvest. Region BR2 had higher soybean 

yields than Region BR1, and Region US2 had higher soybean yield than US1 due to greater solar 

radiation loads and precipitation volumes. The standard deviations of water-limited soybean 

yields were larger in full season (0.7 Mg ha-1 in average of the four regions) than in double 

cropping systems (0.4 Mg ha-1 in average of the four regions). The standard deviations of the 

soybean yield potential were the same (0.2 Mg ha-1) for all regions in both systems. These 

smaller differences in standard deviations under irrigated conditions show that water resources 

are the main source of season yield variability in these regions. 

Table 4.7. Average wheat, soybean and glucose yield, and cumulative solar radiation indicators 
from 2008 to 2017 in full season (FS) and double-cropping (DC) wheat-soybean systems in the 
U.S. and Brazil. 

Variable BR1 BR2 US1 US2 

Yield Mg ha-1 @ 0%     
Soybean FS_Potential  5.7 ± 0.2 5.9 ± 0.2 5.5 ± 0.3 6.1 ± 0.2 

Soybean FS_Water-limited  4.6 ± 0.7 5.0 ± 0.6 4.4 ± 0.7 5.1 ± 0.7 

Wheat DC_Potential  5.9 6.7 7.7 7.2 

Wheat DC_Water-limited 5.4 4.6 7.6 7.2 

Soybean DC_Potential  5.5 ± 0.2 5.7 ± 0.2 3.3 ± 0.2 3.6 ± 0.2 

Soybean DC_Water-limited 4.7 ± 0.4 5.1 ± 0.5 2.8 ± 0.4 3.2 ± 0.4 

% of yield gap due to water_FS 20 15 20 16 
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% of yield gap due to water_DC 14 11 14 11 

Variable BR1 BR2 US1 US2 

Simulated Glucose Yield Mg ha-1 @ 0%     

FS_Soybean 10.2 11.2 9.8 11.4 

DC_Wheat + Soybean 18.3 17.8 17.1 17.5 

Variable BR1 BR2 US1 US2 

Solar Radiation (MJ m-2yr-1)     
Total in one year 6017 6366 5279 5560 

Corrected for Temperature in one year 5591 5863 3673 4018 

Corrected for Temperature and VPD in one year 5084 5441 3546 3747 

FS_Total from PD to R8 2903 2958 2747 3278 

FS_Corrected for Temperature from PD to R8 2862 2887 2623 3129 

FS_Corrected for Temperature and VPD from PD to R8 2526 2671 2505 2867 

(Full Season) % of Potential Radiation Capture 50 49 71 77 

DC_Total from PD to R8 4599 4933 4993 4947 

DC_Corrected for Temperature from PD to R8 4279 4552 3312 3411 

DC_Corrected for Temperature and VPD from PD to R8  3899 4235 3198 3176 

 (Double-Cropping) % of Potential Radiation Capture 77 78 90 85 

     

     

 After correcting the available solar radiation in one year for temperature and water, the 

average potential use of solar radiation available for agricultural production in full season 

soybean systems were 50% and 74% in Brazil and the U.S., respectively (Table 4.7). In double-

cropping systems, the potential use of available solar radiation increased in average to 77 and 

87% in Brazil and the U.S., respectively, while increasing potential production of glucose in the 

same area per year from 54 to 79% depending on the region studied (Table 4.7). 

4.4. Discussion 

4.4.1. Multiple Environments Cycles Simulations 

The excellent agreement between daily simulated and observed soil water content 

variations over the entire soybean growing season demonstrated Cycles’ ability to correctly 

predict water movement within the soil-plant-atmosphere continuum. The Cycles Θ 
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overestimation in the top layers could be due to errors in field measurements of Θ near the soil 

surface and to some observed daily inconsistencies in the weather data from NLDAS. Eitzinger 

et al. (2004) also found an overestimation pattern of soil water depletion in shallow layers and 

greater difference between observed and simulated values in deeper layers. Inconsistencies in 

root distribution within the soil profile could be a factor influencing the greater variability in the 

deeper measurements of soil water content. Finally, the water balance predictions were only 

evaluated in a silt loam soil of Pennsylvania, and it is possible these results can vary for other 

soil textures or environments. 

One improvement of modern soybean varieties that guided higher yields over time was 

the greater partitioning of biomass into seed. Koester et al. (2014) analyzed 24 soybean 

varieties released from 1923 to 2007 and found a range of HI from 0.3 to 0.55 with the newest 

varieties approaching 0.60. The HI varies within varieties and environments, but the Cycles HI 

adjustment situated the soybean HI closer to recent measured values. Additionally, the better 

agreement with the 1:1 line between observed and simulated soybean yields after calibrating 

HI improved the ability of the model to predict potential yields and to assess plant interactions 

with soil and weather. 

Cycles uses a pedotransfer function to calculate soil hydraulic properties that was 

developed for temperate soils (Saxton and Rawls, 2006). So, possibly part of the weaker 

predictions in Brazil compared to the U.S. simulations could be improved with a pedotransfer 

function developed for the highly weathered soils of Brazil (Tomasella et al., 2000; Hodnett and 

Tomasella, 2002). 
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4.4.2. Biophysical Yield Potential and Yield Gaps 

Strategies to reduce the gap between potential and water-limited yields can be 

expensive or only achievable in the long-term. In the short term, irrigation systems can be a 

viable option in some locations, and crop models can assist to quantify the return of this 

investment. Another potential alternative is improving the soil conditions to store more water 

and to allow deeper and better distributed rooting systems in the soil profile with time (Taylor, 

1983; Cairns et al., 2011; Sakschewski et al., 2014). For instance, Faé et al. (Chapter 4) found 

that greater saturated hydraulic conductivity in Pennsylvania soils was related to deeper 

rooting systems and higher soybean yields. 

Alternatively, the difference between the observed and water-limited yields indicated a 

gap that can be reduced by managing other factors such as nutrient deficiencies, weeds, 

diseases and pests (Affholder et al., 2013). Rattalino Edreira et al. (2018) found non-water 

stresses were the main causes of wheat and corn yield reductions in about half of the 26 

countries they studied. Similar to the significant yield gap found in region BR1, Sentelhas et al. 

(2015) suggested that the southern region of Brazil had yield gaps due to water deficit and crop 

management greater than 2 Mg ha-1. Based on Cycles simulations, regions BR1 and US1 could 

have increased yields by 42 and 22% in the years studied with adjustments in soil and crop 

management. 

Some of the yield gap due to other factors could be related to water stresses not 

captured by the model because of variations in actual soybean root depths (root depth was not 

measured in Brazil and the 100 cm default was used). The available soil data from Region BR1 
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showed that the 40-cm soil layer had some restrictions to root growth (75% clay, pH 5.0 and 

54% Aluminum saturation) that possibly limited the root depth to a maximum of 40 cm. Forcing 

Cycles’ maximum root depth to 40 cm in Region BR1 reduced the water-limited yield by 16% 

from the reported result. This could help explain part of the 42% yield gap caused by other 

factors in this region. In addition, Nunes (2018) showed that some crop fields from region BR1 

can have an impermeable soil layer ranging from 7 to 20 cm depth with high resistance to root 

growth and low soil fertility, which could have further limited root depth and consequently 

reduced yields. A detailed description of soybean yield response to soil, plant and climate from 

Region US1 and Region US2 can be found in Fae et al. (Chapter 3). However, explaining the 22% 

yield gap in Region US1 due to management is quite challenging. Traditional soil tests and the 

Cornell Assessment of Soil Health did not indicate the possible causal effects to this yield gap. 

One factor that could be limiting soybean yields in Region US1 is the frequent use of planters 

with row spacings of 76 cm in the region to reduce planting time. Wider row spacings 

associated with unfavorable environmental conditions can delay canopy closure and limit solar 

radiation interception which ultimately can impact yields (Andrade et al., 2019; Van Roekel et 

al., 2015). On the other hand, Region US2 has the lowest manageable yield gap and an average 

root depth of 85 cm. Fae et al. (Chapter 3) showed that soils from region US2 have a physical 

profile that allows deep roots and therefore stable high yields. 

The highest water capture efficiency in this study was found in the field with the lowest 

yield gap due to water, and vice versa. However, the region (BR2) with the lowest water 

capture efficiency had the greatest cumulative infiltration from all regions. This distinct pattern 

occurred mainly due to a non-uniform precipitation distribution that caused water stresses 
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earlier in the growing season, and excessive precipitation events during seed filling stages that 

caused losses through runoff and drainage. Besides the waste of a photosynthetic resource, the 

water that is not used for crop production can be directly involved in environmental pollution 

or soil erosion (Gregory et al., 1992; Nosetto et al. 2012). All regions studied can increase the 

effective use of the water available, that is improving soil water capture for transpiration (Blum, 

2009). Enhanced management practices can help to increase soil water holding capacity to 

improve water use in seasons facing droughts or non-uniform precipitation distributions in the 

long-term, but strategies to increase infiltration and reduce losses through runoff and 

evaporation should not be ignored in the short-term. 

A single crop per year did not use all the water available in the four regions studied. 

Intensifying and diversifying cropping systems with multiple crops per year can increase 

resource capture and therefore land productivity (Trenbath, 1986; Hook and Gascho, 1988; 

Fukai, 1993). The inclusion of crops such as wheat or corn in the system can also help to 

improve the efficient resource use because they have more efficient photosynthetic 

metabolism (Caviglia and Andrade, 2010; Van Opstal et al., 2011). 

4.4.3. Potential for Cropping Systems Intensification 

The solar radiation availability varies per year and region, but probably the easiest route 

to improve this resource capture is through a cropping systems approach. Double-cropping 

soybeans after wheat harvest is a widely adopted system around the world probably because 

the combined system increases land productivity, yields are more stable, net-returns are 

potentially greater, and aids environmental benefits compared to single crops (Burton et al., 
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1996; Kyei-Boahen and Zhang, 2006;  Calviño and Monzon, 2009; Fischer et al., 2014; Andrade 

et al., 2015). In this study, the amount of energy (measured as glucose) produced per unit of 

solar radiation available and per calendar year was 66% greater in double cropping than full 

season systems. 

In general, crop models predict higher yields in longer growing seasons driven by earlier 

plantings that will be associated with higher accumulation of solar radiation capture (Adam et 

al., 2011). However, actual yield responses to planting date are prone to other stresses that can 

determine different results in fields where management is not optimum. For instance, both 

regions in Brazil are susceptible to significant yield declines due to soybean rust, and planting 

date is also a factor that influences this disease management (Godoy, et al. 2016). Similar to the 

greater measured double-cropping soybean yield followed by wheat in comparison to the 

earlier planted soybean after a cover crop [black oat (Avena strigosa Schreb.)] found by Pires et 

al. (2016), the results of this study also indicated that double-cropping systems in southern 

Brazil do not have the yield penalty due to later planting such as in the U.S. regions. Pires et al. 

(2016) attributed this positive yield response in double-cropping systems to genotype x 

weather interactions. Here, similarly, the greater soybean yield after wheat found in 

comparison to full season system in Brazil was due to lower water stresses in later planting 

dates. 

Even with the estimated increase in resource capture with double-cropping systems, in 

some regions such as BR1 there is still water and solar radiation available for an extra cover 

crop growth per year that could add profits with ecosystems services or as a forage crop for 

animal production (Fae et al., 2009; Schipanski et al., 2014). To test this theory, Cycles was used 
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to predict cover crop biomass production (using corn parameters) in the fallow window 

between soybean harvest and wheat sowing given in the double-cropping setup of Region BR1. 

In those conditions, and delaying wheat sowing to 1 July, the simulated aboveground biomass 

production was 4 Mg ha-1 (DM) and the root biomass growth was 1.4 Mg ha-1 (DM) of cover 

crop planted on 1 April and killed 1 July. In this scenario, wheat harvest is pushed back to mid-

October and soybean planting would not change from the previous setup. 

Cycles simulations demonstrated that the U.S. regions studied cannot exploit every year 

around 29% of the total available solar radiation for photosynthesis due to low temperatures, 

whereas the Brazilian regions only lose around 7.5% of this photosynthetic resource due to 

temperature. In addition to the direct solar radiation losses due to temperature, droughts 

reduce the crop photosynthetic capacity and cause further inefficiencies in solar radiation use 

(Zou and Kahnt, 1988). Occasionally, even in well-watered conditions, daily imbalances in 

evaporation and water supply can cause water stresses too (Hanson and Hitz, 1982). Using the 

D approach (Stöckle and Kiniry, 1990; Kemanian et al., 2004) to further correct Stc, additional 

losses in solar radiation availability due to water stresses are in average around 5 and 8% per 

year in Pennsylvania and Southern Brazil, respectively. Among the many negative agricultural 

impacts of global warming, Region US1 and Region US2 may be benefited by an expansion of 

the growing season (Prasad et al., 2018). In this study, the estimated available solar radiation 

increase for each degree-day increase in Pennsylvania was 0.76 MJ m-2 yr-1. 

Considering all the benefits of double-cropping wheat-soybean systems, in theory it 

would be logical to see greater use of this production system in the regions studied, but in 

practice its adoption in these regions is quite low. According to CONAB (2019), in Southern 
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Brazil, more specifically in the states of Rio Grande do Sul (Region BR1) and Paraná (Region 

BR2), from a total area of 19.5 M ha-1 planted with cash crops in the summer of 2018/19, only 

25% was cultivated with grain crops during the winter. The total area of wheat and soybean 

were 1.7 and 11.9 million hectares in the same year, respectively. In Pennsylvania, only 11% of 

the planted soybean area was double cropped in 2018 (USDA-NASS, 2019). The reasons for this 

low adoption in the regions studied are various, but mainly it is due to grain prices that are 

driven by both macroeconomic decisions and abiotic and biotic factors that limit grain quality. 

Researchers are working to overcome the factors that reduce wheat grain quality but opposing 

macroeconomic decisions may remain. Producers have other alternatives rather than the 

traditional wheat-soybean system to sustainably intensify cropping systems in the U.S. and 

Brazil though. One promising alternative of agricultural intensification and an excellent strategy 

to improve solar radiation and water capture throughout the growing season is to integrate 

crop and livestock in the same crop area (Sulc and Franzluebbers, 2014; de Moraes et al., 2019). 

4.5. Conclusions 

The accurate soybean yield predictions of Cycles allowed quantifying yield gaps and the 

biophysical potential for agriculture intensification in four distinct regions. The yield gaps found 

in this study show that there is potential to increase soybean yields with the available solar 

radiation and water resources through improved management tactics. Total yield gaps ranged 

from 5 to 46% in the regions and years studied. However, attaining this potential is contingent 

first on recognizing the main non-water stresses in each region. Definitive yield gap causes may 

not be known, but these estimations are valid to show the need for more field research to 

better understand yield limiting factors. Increases in crop productivity are necessary to meet 
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the current global food demand, but the better exploitation of available resources is also 

critical. The U.S. regions almost use all the available solar radiation in full season systems (74%), 

but it is still possible to extend the growing season by 13% with successful double cropping 

systems. In Southern Brazil, the potential capture of solar radiation increases from 50 to 77% 

from full season to double cropping systems, and it is still possible to yield a decent cover crop 

production in the planting window between the soybean and the wheat growing season. The 

promotion of more diverse cropping systems appears to be the best solution to increase crop 

production in the same land per year, but there are management strategies to consider in order 

to be successful. 
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Chapter 5. Designing and Implementing an International Extension Tour 

ABSTRACT 

International extension experiences can provide valuable outcomes to clientele. However, 

expectations can be high due to the cost and the length of the activity. Consequently, careful 

planning is necessary to maximize the benefits to participants and the potential impacts of the 

tour. Here, we describe the main organizational steps and the lessons we learned planning and 

executing a comprehensive tour program to Brazil. 

5.1. Introduction 

International tours can provide significant lifelong impacts to extension clientele 

(Andrews et al., 2001). They can offer insights into alternative approaches and technologies, 

develop linkages with foreign collaborators, and provide cultural development. Treadwell et al. 

(2013) reported that extension participants improved their abilities in dealing with comparable 

technological issues after participating in a tour to Nicaragua. International field tours are also a 

great extension tool to exchange information with progressive growers (Hawkins & Southard, 

2001). Considering this, we organized an international tour to study sustainable soybean 

production systems in Brazil. A group of 14 participants including growers and extension 

personnel from Pennsylvania traveled to Brazil from February 22nd to March 2nd of 2018. 

We chose Brazil because the country has been overcoming the lack of agricultural 

subsidies and poor infrastructure by increasing soybean production efficiency. Brazilian 

producers have also progressively adopted greater integrated crop and livestock systems over 

the past decade as a sustainable method of intensifying agricultural production on the same 
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land base. Also, we used the local experience of an employee from the Brazilian Agricultural 

Research Corporation (Embrapa) who is pursuing PhD at Penn State. 

We prospected potential participants during extension meetings with the Pennsylvania 

Soybean Network by discussing production similarities between the two countries. As we 

became aware during these meetings, soybean growers from Pennsylvania rarely take 

advantage of international opportunities to talk to peers facing different production scenarios. 

The Pennsylvania Soybean Board supported this trip and promoted the idea among leading 

growers as a great opportunity to enlighten their members about our biggest international 

competitor in soybean production. 

We included visits to the biggest soybean production region of Brazil in the Cerrado 

region, and to the most southern part of Brazil where topography and farm size are similar to 

Pennsylvania. The tour was planned for late February because it was the beginning of harvest in 

the Cerrado and two months before planting season in Pennsylvania. Most expenses were paid 

by the participants. However, we obtained financial support from the Pennsylvania Soybean 

Board checkoff program to evaluate trade and production economics, develop a blog, and share 

our experiences at post-tour conferences and farm press interviews. 

Because of the significant expense and high participant expectations of an international 

tour, careful planning was necessary to maximize the benefit to participants and the potential 

impacts. Therefore, the objective of this publication is to share our main tour planning steps, 

the lessons we learned organizing the trip, and to encourage extension educators and 

specialists to develop successful international extension tours. 
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5.2. Tour Planning and Implementation 

We initiated our planning approximately one year prior to the tour by meeting with 

Penn State international program staff and other extension educators who had led 

international tours. This guided key planning and implementation steps for the tour (Figure 

5.1). 

 
Figure 5.1. Critical steps in developing a successful international tour. 

 

Pre-tour

• Develop a prescreening survey instrument to identify participant's profiles, 
goals, and expectations 

• Screen candidates on the basis of the survey responses

• Contract a reputable tour operator to assist with logistics and to manage 
funding sources

• Contact reliable local sources (such as Embrapa) to identify places to visit in 
each region

• Establish the tour itinerary and cost

• Send guidelines to participants for the visa process, medical requirements, 
safety instructions, and other tips after the first payment

• Organize the international group flight with an experienced travel agent

• Review the objectives and daily itinerary

• Contact each host to establish the main take-home messages and to avoid 
overlapping

• Organize a conference call with participants a week prior to departure to 
communicate final messages, review itinerary and answer questions

Tour

• Plan daily morning orientation, and evening debriefing sessions

• Create a blog to describe daily activities, and share media 

• Carry out a final debriefing session, and a tour retrospective evaluation to 
assess participant knowledge change

After-tour

• Share media files, and additional literature linked to the daily presentations  

• Develop and disseminate press releases describing key tour observations and 
conclusions
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5.3. Participant Outcomes and Lessons Learned 

The results of our evaluation showed that the twelve participants increased their 

knowledge in each of our key planned educational objectives (Mean = 96%, Table 5.1). 

Participants also rated the value, logistics, timing and food of the trip as high (Mean = 94%). 

This indicated the tour was successful in meeting our objectives. The success of the tour was 

likely due to the pre-trip planning and our focus on the educational objectives during the trip. 

Table 5.1. Average tour retrospective evaluation scores from 0 (not satisfied) to 5 (completely 

satisfied). 

Topic Scorea SD 

Educational Objectives   
Improving your knowledge of Brazilian culture and customs 5.0 0.6 
Knowledge of the economics of soybean production 4.8 0.6 
Understanding Brazilian cropping systems in different regions 4.9 0.6 
Understanding the role of cooperatives for producers in Brazil 4.8 0.5 
Understanding soybean quality issues in Brazil 4.7 0.7 
Understanding some of the key insect and disease issues in Brazil 4.8 0.5 
Understanding how Brazil is trying to improve sustainability of soybean 
production 

4.9 0.5 

Mean Education  4.8 0.1 

Logistical Issues   
Food 5.2 0.4 
Organization and logistics of the trip 4.6 0.7 
Ratio of educational time to leisure time 4.0 1.3 
Timing of the trip 4.7 0.7 
Value of the trip considering cost, overall knowledge and usefulness 4.9 0.8 

Mean Logistical 4.7 0.4 

Overall Mean 4.8 0.3 
a Some topics were rated 6 by two participants.   

 

Each day we conducted a morning review of activities and an evening debriefing that 

were critical to retain a consistent and accurate message in the group. The final debriefing 

session was important to review take-home messages and to share different points of view 



 
 

99 

among the participants. At this session, we surveyed the group about the key learning 

objectives, and carried out an open discussion on topics such as sustainability, economics, 

technological compatibility, take-home messages, and others. 

The tour company was important for managing participant payments, in-country 

logistics, liability issues, tour guide, and interpreter. This allowed us to focus on our educational 

objectives. Defining the expectations before the trip with each participant was important to 

optimize the daily visits. Certainly, having a group with shared interests made the whole 

educational process easier. 

The daily blogging was a stimulating tool to expand the outreach benefits to the local 

community in Pennsylvania. During the tour, the blog had more than 4,000 visitors among 

growers, extension educators, participants’ family members, media personnel, and others. 

Articles developed from our post trip interviews resulted in excellent tour visibility both in 

Brazil and U.S. (Cotrijal, 2018; Embrapa, 2018; Lancaster Farming, 2018; Pennsylvania State 

University, 2018). We provided resources to participants following the tour to assist them in 

developing presentations for their peer groups, which included local farm organizations, 

industry colleagues, and extension and academic audiences. The presentations were well 

received. 

Adult learning can be challenging during full day activities, especially when the message 

is being translated through an interpreter. Even though most participants appreciated the 

technical agenda, three participants felt it was excessively intense, and that it affected the 

learning process (Table 5.1). Depending on the group profile, increasing leisure time may be 

advised. 



 
 

100 

We documented other positive impacts that happened after the tour, such as various 

social media connections between industry participants and their peers in Brazil, PA extension 

specialists and Brazilian growers, and potential Brazilian graduate students and Penn State 

professors. After the trip, one participant was inspired to host a tour at his farm for a group of 

Brazilian growers he met while in Brazil. It also inspired new research ideas such as testing new 

inoculant technologies and evaluating the timing of interseeding cover crops. Finally, it fostered 

stronger social and professional relationships among the tour participants. 

5.4. Recommendations 

International extension tours can be successful and there is potential for increasing this 

type of program. To be successful and maximize impact, extension educators planning an 

international tour should consider the planning and implementation steps described in this 

publication. Often, international students or scholars can also contribute to create an effective 

tour. Developing relationships with commodity groups can help to defray some expenses and 

greatly increase the impacts of the tour. 
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Chapter 6. Summary and Conclusions 

This PhD program developed from 2015 to 2019 was mostly successful by reaching the 

established research goals and interesting positive outcomes emerged from it. We first refined 

a laser diffraction method that will benefit many researchers by performing particle size 

analysis faster and more uniformly in comparison to the cumbersome sedimentation methods. 

Then, we showed that the individual CASH metrics did not correlate to soybean yield, but Ksat 

on the other hand arouse as a promising indicator of soil condition that is correlated with root 

depth and yield. We also demonstrated that Cycles can predict soil water content and soybean 

yield accurately. Then, we estimated soybean yield gaps that can be reduced with enhanced soil 

management tactics and showed that Pennsylvania has potential to increase production with 

double-cropping systems, while southern Brazil has sufficient water and solar radiation for a 

third cover crop production in between the soybean harvest and wheat sowing time. Finally, 

the 10 days that we spent in Brazil visiting topnotch farms and interacting with progressive 

producers yielded several positive outcomes for the group, such as increasing agronomic 

knowledge in soybean production, networking with international peers, new ideas for research, 

and others. Throughout the entire PhD period, we established several connections with 

producers and extension personnel in Pennsylvania, and we were invited to share research 

results in numerous talks, field days and diagnostic clinics during these four years. We believe 

that the soil and plant sampling methodology of Chapter 3 was also creative and can be used by 

others in future on-farm research projects. Lastly, it is likely that a memorandum of 

understanding will be signed to formalize the collaboration between Penn State and Embrapa 

to continue the crop modelling research started in this PhD. 
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In chapter 2, we developed a laser diffraction protocol for soil PSA that uses a small soil 

sample, is more robust, simpler, and faster than the current sedimentation methods, and 

significantly expands the quality of the data collected from soil texture analysis into a detailed 

particle size distribution. The assumptions that form the basis of sedimentation methods were 

used to develop a protocol that matches results from laser diffraction and standard 

sedimentation methods for a wide range of soils. Rather than defaulting to standard 

sedimentation methods, results obtained with the protocol presented here encourage further 

adoption of laser diffraction methods in PSA. 

In chapter 3, we showed that cumulative solar radiation over the growing season and 

available precipitation were the main drivers of soybean yield. Our data confirmed that planting 

date is the main management practice to control soybean yield potential in Pennsylvania, but 

only soils with certain properties enable realizing this potential. Our results showed that 

current individual CASH metrics did not relate to soybean yield, and that defining soil indicators 

of soil “health” can be challenging. However, in-situ Ksat measurements were more predictive of 

soybean yields than the laboratory tests. While the soybean yield responses to field Ksat can 

vary with the production environment, our results suggest that Ksat can be a valuable indicator 

of soil condition and productivity. However, increasing soil macropore flow can increase the risk 

of subsurface water contamination with nutrients and pesticides (Bouma, 1991). On the other 

hand, increasing infiltration can reduce the risk of runoff of soil, nutrients and other 

contaminants to surface water sources. Further research is still needed to assess sustainable 

outcomes of higher Ksat from a producer and environment perspective. 



 
 

103 

In chapter 4, we estimated soybean yield gaps that suggests that there is potential to 

increase soybean yields with the available solar radiation and water resources through 

improved management tactics. Total yield gaps ranged from 5 to 46% in the regions and years 

studied. However, attaining this potential is contingent first on recognizing the main non-water 

stresses in each region. The U.S. regions almost use all the available solar radiation in full 

season systems (74%), but it is still possible to extend the growing season by 13% with 

successful double cropping systems. In Southern Brazil, the potential capture of solar radiation 

increases from 50 to 77% from full season to double cropping systems, and it is still possible to 

produce a viable cover crop in the planting window between the soybean and the wheat 

growing season. Converting from full season to double cropping systems in the environments 

studied can allow in average a potential increase in glucose production of 67% in the same area 

per year. 

In chapter 5, we showed that international extension tours can be successful and there 

is potential for increasing this type of program. To be successful and maximize impact, 

extension educators planning an international tour should consider the planning and 

implementation steps described in this publication. Often, international students or scholars 

can also contribute to create an effective tour. Developing relationships with commodity 

groups can help to defray some expenses and greatly increase the impacts of the tour. 

There is need for future research in some topics that need more clarification or that 

were not covered here. For instance, there is need for more research to refine the 

understanding of Ksat as a soil condition metric. More data should be collected in different fields 

to refine the yield response curve to Ksat. Also, there are a few modelling opportunities that we 
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would like to work on once I return to Embrapa: Cycles validation in predicting wheat yield in 

Brazil; explore the temperature effect in soybean yields and the potential adaptation of 

cropping systems in different scenarios of climate change; and predict the production response 

of commercial monocultures and diverse cropping systems (crop-livestock integrated systems) 

using long-term and projected weather files. 
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