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ABSTRACT The false spider mite Brevipalpus yothersi infests a broad host plant
range and has become one of the most economically important species within the
genus Brevipalpus. This phytophagous mite inflicts damage by both feeding on
plants and transmitting plant viruses. Here, we report the first draft genome se-
quence of the false spider mite, which is also the first plant virus mite vector to be
sequenced. The �72 Mb genome (sequenced at 42� coverage) encodes �16,000
predicted protein-coding genes.

Brevipalpus yothersi Baker (Tenuipalpidae), previously misidentified as Brevipalpus
phoenicis (Geijskes), was recently resurrected, redescribed, and placed in the B.

phoenicis sensu stricto group (1). The false spider mite B. yothersi is a vector of several
plant viruses, some of which cause diseases in economically important crops, such as
citrus and passion fruit (2). More than 40 plant species have been reported as natural
hosts of Brevipalpus-transmitted viruses (BTVs) (3). Despite the intense use of pesticides
and acaricides (4), even low population densities of the false spider mites are sufficient
to infest citrus orchards and spread diseases such as citrus leprosis (CL) in Brazil (5) and
potentially in the United States and the European Union (6). Most tropical and sub-
tropical regions in the world have resident Brevipalpus mites (1), and these pose a major
threat to crops affected by the transmitted viruses.

Although information on the economic impact of false spider mites in agriculture is
limited, it was estimated that almost 10% of the total world acaricide market value is
spent on the control of Brevipalpus spp. (7). Brevipalpus phoenicis sensu lato species,
which include B. yothersi (1), reproduce by thelytoky parthenogenesis, controlled by a
symbiotic relationship with Cardinium bacteria. As a result of the reproductive manip-
ulation, B. yothersi populations almost exclusively consist of haploid females (n � 2
chromosomes) (8).

For sequencing, a B. yothersi population was identified by molecular and morpho-
logical traits, as described in Navia et al. (9) and Beard et al. (1), respectively. An
isofemale line was reared on sweet orange [Citrus sinensis (L.) Osbeck] fruits. For DNA
extraction, 8,000 male mites, lacking Cardinium, were collected, flash frozen, and
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ground with tungsten beads in batches of 2,000 mites. Batches were homogenized, and
total DNA was extracted with a DNeasy blood and tissue kit (Qiagen). The DNA samples
were pooled and sequenced on a Roche 454 GS FLX� system with one kit for
unidirectional sequencing and one for the mate-pair library preparation protocol
(spacing, 3 to 8 kb; reads, 700 to 1,000 bp). Additional sequencing of paired-end
libraries was prepared with the Gel-Free protocol (Nextera) and performed with an
Illumina MiSeq next-generation sequencer (MiSeq run, Nextera kit, 2 � 250 bp reads, 10
to 15 Gb data; see Table 1).

Raw sequencing reads were quality trimmed, and all ends were removed with a
quality Phred score below 20. The MiSeq read pairs were joined into pseudoreads and
assembled with the 454 reads with an overlap-layout approach (Newbler 2.9.1). The
resulting contigs were further scaffolded with the mate-pair reads (SSpace 2.0) (10), and
resulting gaps were locally filled through an iterative process (GapFiller 1.10) (11). The
obtained genome sequence was assembled into 3,467 contigs scaffolded into 849
larger genomic segments (N50, 632 kb; 71.18 Mb; GC, 36.8%) and was annotated with
both EuGene (12) and AUGUSTUS (13). We predicted 15,929 protein-coding genes, with
an average coding DNA sequence (CDS) length of 1,266 bp. The core eukaryotic
protein-coding gene presence was assessed with BUSCO (14) (v3.0, 303 reference
genes), with 86.5% complete orthologs present (83.2% single copy, 3.3% duplicates,
2.3% fragments, and 34 genes missing). BLASTP hits against the reference genome of
the spider mite Tetranychus urticae identified 11,721 homologous genes. A search with
the InterProScan tool could assign known motifs and gene ontology (GO) terms, for,
respectively, 10,171 and 7,831 genes.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/
ENA/GenBank as BioProject number PRJNA490612 under the accession number
QZCP00000000. The version described in this paper is the first version.
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