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Abstract

Mathematical models are often created to analyze the complicated behavior of many

physical systems. One such system is that of the interaction between cancer cells, the im-

mune system, and various treatments such as chemotherapy, radiation, and immunotherapy.

Using models that depict these relationships gives researchers insight on the dynamics of this

complicated system and possibly ideas for improved treatment schedules.

The model presented here gives the relationship of cancer cells in different phases of de-

velopment, along with immune cells and cycle-specific chemotherapy treatment. This model

includes a constant delay term in the mitotic phase, where cells divide, which leads to more

complicated analyses. Optimal control theory is used to minimize the cost of the chemother-

apy and the number of cancer cells. Numerical methods, such as a forward-backward sweep

method and adjusted methods to evaluate delays, are used to show qualitative treatment

options.
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Chapter 1

Introduction

Cancer is a term used to describe over 100 diseases in which cells are changed in negative

ways. These cells typically develop in three major phases: the mitotic (dividing) phase,

the quiescent (resting) phase, and the interphase (cell growth). The body’s natural defense

against these cells are the white blood cells, or lymphocytes. However, when the cancer cells

overpower the lymphocytes, it is common for the cells to be treated with chemotherapy. Liu

et al. [19] consider this system of interactions between the cancer cells, lymphocytes, and

chemotherapy extensively.

Using chemotherapy as a treatment option presents a serious drawback. While this treat-

ment will kill the cancer cells, it will also kill the lymphocytes and presents a toxicity concern

to the patient. This complexity brings about varying strategies of treatment. Immunotherapy

is one such treatment, which could increase the patient’s success with combating cancer by

boosting the immune system while other treatments are applied. Research from Barsoumian

et al. [1] investigate stimulating immune system cells at checkpoints before cancer cells are

detected to combat cancer before it becomes malignant. Kirschner and Panetta [17] inves-

tigated a treatment combining chemo- and immunotherapies, but found that their specific

treatment is better suited as a monotherapy or with other immune components.
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Mathematical approaches are often sought out to preface clinical trials, as different sce-

narios can be considered without consequence. This allows for a more accurate approach to

treatments and a better quality of life for patients [21]. Several mathematical researchers

have taken on this project in different ways. Optimal control theory is often applied to can-

cer treament by creating a means of quantifying the most desired, or “best,” behavior of

the tumor and immune system dynamics. In the case of cancer treatment, “best” usually

means minimizing the number of cancer cells while minimizing the toxicity and damage done

to the body caused by chemotherapy. Fister and Donnelly [10] extended the Kirschner and

Panetta work using optimal control theory to define and analyze a “best” solution concept.

de Pillis et al. [7] analyzed optimal control strategies with traditional nonlinear controls in the

objective functionals for the case of chemo-immunotherapeutic treatments. Works by Kim

et al. [16], Swan and Vincent [24], and Murray [22] are examples of successfully applying

this concept as well. In this thesis, we analyze two situations of “best,” which are given by

the objective functionals. The first minimizes cancer cell count and the cost associated with

chemotherapy throughout the entire process, while the second seeks to minimize the cost of

the chemotherapy throughout, as well as the cancer cell count at the final time.

Other researchers utilize delays to model the interaction between the tumor cells and the

immune system. The recent work by Cui and Xu [5] studies delay terms in the phase shift

from the mitotic phase to the production of the daughter cells in models that investigate

nonnecrotic and necrotic tumors. The aforementioned study by Liu et al. [19] delves deeply

into a cycle-specific model, and considers the presence of a delay between the interphase and

mitotic phase. Their work shows that the delay greatly influences the cancer as a whole

when considering treatment. Delays in differential equations present a unique challenge to

analysis, as shown in [2]. Challenges become more difficult to accommodate when the delay

is time– or state–dependent. The case for Liu et al. [19] considers a constant delay. Here, we

investigate the nondimensionalized model from [19], attempting to find an optimal treatment
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schedule while incorporating the importance of the delay.

Collins et al. [3] provides the existence and uniqueness of a solution for the delay dif-

ferential equation system and the existence of an optimal control. From there, this paper

seeks to approximate solutions for a treatment schedule, differing from [19] in that we seek

to incorporate both the delay and the optimal control.

The arrangement of this thesis begins with a description of the model being used in

Chapter 2, with Chapter 3 giving context to the objective functionals and the characterization

of an optimal control. Numerical methods, such as Runge-Kutta and forward-backward sweep

methods, are located in Chapter 4. A discussion of results is provided in Chapter 5, which

presents different cases of a “best” situation and a scheduled treatment approach to better

model real life. We conclude with Chapter 6, summarizing results and exploring possibilities

for future work.
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Chapter 2

The Model

Several models in the literature analyze the effects of chemotherapy on patients. Most fo-

cus on minimizing both the amount of chemotherapy administrated and the final size of

the tumor. Some researchers model different aspects of the immune system, while oth-

ers investigate an immunotherapeutic approach [17]. Newer models propose a combined

immuno–chemotherapy treatment, or focus on the different cell phases, as in [25] and [19].

Optimal control theory is often applied to cancer therapy models. The works of Swan

and Vincent [24] and Murray [22] use optimal control theory to minimize the toxicty of

chemotherapy. Other research by de Pillis et al. [7] and Fister and Donnelly [10] utilize

optimal control theory to find an effective treatment schedule.

2.1 The Model

This model considers the effect of including different phase shifts of the tumor cells. There are

three phases of the cell cycle: the mitotic phase where cells divide, the quiescent phase where

cells rest, and the interphase when cells prepare for mitosis. Liu et al. [19] developed the

relationships between the cells in the three phases, the immune system, and the cycle-specific
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drug. Table 2.1 gives a description of each variable.

Variable Variable Description

x number of cancer cells in interphase phase

y number of cancer cells in the mitotic phase

z number of cancer cells in the quiescent phase

I number of lymphocytes

u biomass of chemotherapy drug in mg

Table 2.1: Description of Variables

2.1.1 Existence and Uniqueness

Existence and uniqueness of a solution for this delay differential equation system was es-

tablished using results from Driver [9] and can be found in Collins et al. [3]. The control

term, v(t), represents the inclusion of chemotherapy as a drug administration, placing it

appropriately in the differential equation that quantifies the amount of drug in the system.

2.1.2 The Equations

The system of differential equations is given by:
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dx

dt
= sα3z(t)− α1x(t)− (σ1 + k1I(t))x(t) (2.1.1)

dy

dt
= α1x(t− τ)− (α2 + σ2 + k2I(t)y(t)− k4(1− e−k5u(t))y(t) (2.1.2)

dz

dt
= 2s−1α2y(t)− (α3 + σ3 + k3I(t))z(t) (2.1.3)

dI

dt
= k +

(
ρI(t)(x+ y + sz)n

a+ (x+ y + sz)n

)
− (σ4 + c1x(t) + c2y(t) + c3z(t))I(t)

− k6(1− e−k7u(t))I(t) (2.1.4)

du

dt
= −γu(t) + v(t) (2.1.5)

where the initial conditions are

x(t) = φ(t), t ∈ [−τ, 0], y(0) = y0, z(0) = z0, I(0) = I0, u(0) = u0.

Here, all constants are positive and the interphase is the only phase with a delay present.

We note that Liu et al. [19] present two versions of this model, one of which is nondimension-

alized. For this thesis, we analyze the nondimensionalized model. Note that the nondimen-

sionalization process introduces a parameter s, which represents the number of inital cancer

cells in the resting phase per number of initial cells in the interphase, as shown above. Table

2.2 provides a brief description of the parameters, while Table 2.3 gives the allowable range

and specific values used for the parameters taken from Liu et al. [19].
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2.1.3 Equation Descriptions

In general, positive terms indicate a contribution of cells to a population and negative

terms indicate a decrease in the number of cells from a population. Each state equation

includes growth and natural death terms, and certain parameters exist to represent how the

chemotherapy is killing cells in the system.

The Tumor Equations

The αi terms, for i = 1, 2, 3, are transition terms from one tumor phase to another, while

the σi terms, for i = 1, 2, 3, are natural death terms for their respective phases. The destruc-

tion caused by drugs to the mitotic cancer cell population is given by (1− e−k5u(t)), as seen

in [8]. The chemotherapy in use is cycle-specific, so the mitotic phase is the only one affected

directly.

The Lymphocyte Equation

The nonlinear growth term,
ρI(t)(x+ y + sz)n

a+ (x+ y + sz)n
, was chosen by Villasana and Radun-

skaya [25] to represent the immune cell dynamics. They chose a Michaelis–Menten term to

represent the stimulation of the immune cells by the presence of cancer cells, but also to

indicate that the immune cells may reach a saturation point. This form reflects that this

term should be zero in the case of no cancer cells, but approaches the horizontal asymptote

as the lymphocytes reach a saturation level. The destruction of the lymphocyte populations

caused by the chemotherapy drug is given by the term (1− e−k7u(t)), [8].

Chemotherapy Drug Equation

The first term, −γu, represents the natural decay of the drug in the bloodstream. The

addition of the control term v(t) will represent a direct application of the drug. The ex-
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ponential kill terms due to the detrimental effects of chemotherapy are incorporated into

the mitotic phase equation, as the chemotherapy is cycle–specific, and into immune system

equation, as the chemotherapy drug destroys both tumor and healthy cells indiscriminately.

Parameter Description

α1 rate at which cells move into mitosis

α2 rate at which cells move into the resting phase

α3 rate at which cells leave resting and enter cell cycle

ci for i = 1, 2, 3 binding losses with immune cells

σi for i = 1, 2, 3, 4 natural death proportions for x, y, z, and I

ρ proportional growth of I due to interaction with cancer cells

n fractional exponent of growth from stimulus of cancer cells

a rate at which I reaches saturation without stimulus

k growth rate of I with no cancer cells

ki for i = 1, 2, 3 rate at which I destroys cells in different phases

k4, k6 proportion of removal of y and I

k5, k7 proportion of drugs in removal of y and I

γ natural decay rate of chemotherapy

τ time of cells in interphase (delay variable)

Table 2.2: Parameter Descriptions
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Parameter Allowable Range [19] Value Used

α1 0− 1/day 1

α2 0− 1/day 0.6

α3 0− 1/day 0.9

c1 0.01× 10−6 − 1× 10−6/cell day 0.2× 10−6

c2 0.01× 10−6 − 1× 10−6/cell day 0.8× 10−6

c3 0.01× 10−6 − 1× 10−6/cell day 0.108× 10−6

σ1 0− 1/day 0.11

σ2 0− 1/day 0.28

σ3 0− 1/day 0.1× 10−4

σ4 0− 1/day 0.3

ρ 0.2/day 0.2

a 0.5× (0.1× 106 cells)3 0.5× (0.1× 106)3

k 0.15× 106 cell/day 0.15× 106

k1 0.1× 10−8 − 1× 10−8 /cell day 0.1× 10−7

k2 0.1× 10−8 − 1× 10−8 /cell day 0.4× 10−8

k3 0.1× 10−8 − 1× 10−8 /cell day 0.1× 10−8

k4 0− 1/day 0.25

k5 0.01× 10−2 − 1× 10−2 /mg 1× 10−2

k6 0− 1/day 0.3× 10−1

k7 0.01× 10−2 − 1× 10−2 /mg 0.5× 10−2

γ 0.1× 10−2 − 1× 10−2 /day 0.3× 10−2

Table 2.3: Parameter Ranges and Values
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Chapter 3

Optimal Control

Optimal control theory evolved from an older branch of mathematics called calculus of vari-

ations. Different problems in this field, such as the brachistochrone and the Bolza problems,

eventually developed the techniques that we call optimal control theory today. A typical

problem starts with a system of differential equations modeling a physical process. We then

wish to find a control belonging to some admissible control set that causes the system to

follow an ideal pattern. We quantify “ideal” by the objective functional, and seek to find the

control that minimizes or maximizes said objective functional.

In this chapter, we extend Pontryagin’s Minimum Principle as taken from Kamien and

Schwartz [14] to analyze the optimal control problem with an incorporated delay. We consider

two objective functionals to quantify a “best” scenario, implementing a quadratic control to

make the analysis more straightforward. A future analysis might include examining a linear

control, but for the purposes of this study we limit ourselves to the quadratic case. We then

define the respective Hamiltonians to obtain a characterization of the control. From the

Hamiltonians, a system of initial state equations coupled with the adjoint equations result

to be used in the numerical approximations to update the control.
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3.1 Objective Functionals

We seek to minimize both objective functionals. The first is given by

J1(v) =

∫ tf

0

[ ε
2
v2(t) + x(t) + y(t) + sz(t)

]
dt (3.1.1)

over the set V = {t ∈ [0, tf ]|0 ≤ v(t) ≤ 1}, where x, y, and z are the cancer cells in their

respective cycles and ε is a weight parameter that allows us to emphasize the cost of the

chemotherapy drug to the system. Here, we wish to minimize the cost of the chemotherapy

and the cell counts throughout the entire time frame.

We also wish to minimize a second objective functional

J2(v) =

∫ tf

0

ε

2
v2(t)dt+ [x(tf ) + y(tf ) + sz(tf )] (3.1.2)

over the same set V with the same weight factor ε. Here, we minimize the cost associated

with the drug throughout, but only minimize the cancer cells x, y, and z at the final time.

3.1.1 Existence

Existence of an optimal control in the case of the second objective functional (3.1.2) is given

in [3], using a theorem from Das and Sharma [6]. Existence for the first objective functional

(3.1.1) is shown by a similar argument.

3.1.2 Characterization of the Optimal Control

With the existence of an optimal control, we may obtain the analytic representation of the

control for the objective functionals. In a standard optimal control setting, the form of

the adjoint equations and the transversailty conditions follows from Pontryagin’s Minimum

Principle [14]. However, the presence of the delay necessitates modifications to this standard
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approach. An analysis presented in [14] shows that the presence of the delay adds terms

to the necessary conditions obtained in the nondelay case. We note that since the deviated

argument does not appear in the control, the necessary conditions for optimality reduce to

those in the standard case. The adjoint equations, on the other hand, will include additional

terms as the deviated argument does appear in the state equations. We note that the analysis

presented in Kamien and Schwartz [14] covers only the case of constant delay. More general

cases are covered in [15], [13], [12], [4], [11].

The first step is to form the Hamiltonian, which relates the integrand of the objective

functional to the state equations using adjoint variables λi, i = 1, ..., 5. Since the control

is bounded we construct the Lagrangian, which combines the Hamiltonian and the optimal

control with penalty multipliers. Taking partial derivatives of the Lagrangian with respect

to each of the state variables will lead us to the representation of the optimal control. We

emphasize that the partial derivative with respect to the terms involving the state variable,

x, will have two forms, as the presence of the delay adds terms to the necessary conditions

that would vanish in the case of no delay [14].

Theorem 3.1.1 (Characterization of the Optimal Control for Objective Functional 3.1.1).

Given an optimal control, v∗(t), and solutions to the corresponding state system, there exist
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adjoint variables λi for i = 1, 2, ..., 5 satisfying the following:

−∂L
∂x
− ∂L
∂x(t− τ)

∣∣∣
t+τ

= λ
′
1 = −1 + λ1(α1 + σ1) + λ1k1I − λ4

(
ρaIn(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
+ λ4c1I − λ2α2|t+τ ,

for 0 ≤ t < tf − τ

− ∂L
∂xt

= λ
′
1 = −1 + λ1(α1 + σ1) + λ1k1I − λ4

(
ρaIn(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
+ λ4c1I,

for tf − τ ≤ t ≤ tf .

For the last four adjoints, the interval for t is [0, tf ], and we have

−∂L
∂y

= λ
′
2 = −1 + λ1(α1 + σ1) + λ2k2I + λ2k2I + λ2k4(1− e−k5u(t))

+ λ2(α2 + σ2)− λ3(2s−1α2)− λ4
((

ρaIn(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
− c2I

)
−∂L
∂z

= λ
′
3 = −s− λ1sα3 + λ3(α3 + σ3 + I(t)k3)

− λ4

(
ρaI(t)nas(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
+ λ4c3I(t)

−∂L
∂I

= λ
′
4 = λ1k1x+ λ2k2y + λ3k3z

− λ4

(
ρ(x+ y + sz)n

a+ (x+ y + sz)n
+ σ4 + c1x+ c2y + c3z + k6(1− e−k7u)

)
−∂L
∂u

= λ
′
5 = λ2k4k5e

−k5u(t)y + λ4k6k7e
−k7u(t)I + λ5γ



3.1. Objective Functionals 14

where λi(tf ) = 0 for i = 1, 2, ..., 5. Furthermore, v∗(t) can be represented by

v∗(t) = min

(
max

(
0,
−λ5(t)
ε

)
, 1

)
.

Proof. We begin by forming the Lagrangian. Since 0 ≤ v(t) ≤ 1, the controls are bounded;

thus, the Lagrangian takes the following form:

L = H1 −W1(t)v(t)−W2(t)(1− v(t))

where H1 is the Hamiltonian given by

H1 = x(t) + y(t) + sz(t) +
ε

2
v2(t)

+ λ1[−(α1 + σ1)x(t) + sα3z(t)− k1x(t)I(t)]

+ λ2[α1x(t− τ)− (α2 + σ2)y(t)− k2y(t)I(t)− k4(1− e−k5u(t))y(t)]

+ λ3[2s
−1α2y(t)− (α3 + σ3)z(t)− k3z(t)I(t)]

+ λ4[k +
ρI(t)(x+ y + sz)n

(a+ (x+ y + sz)n)
− (σ4 + c1x(t) + c2y(t) + c3z(t))I(t)− k6(1− e−k7u(t))I(t)]

+ λ5[−γu(t) + v(t)]

and Wi(t) ≥ 0, for i = 1, 2, are penalty multipliers such that

W1(t)v(t) = 0

W2(t)(1− v(t)) = 0

 at v∗(t). (3.1.3)

Here, the penalty terms are subtracted from the Hamiltonian, as we are solving a mini-

mization problem. To find the representation for v∗(t), we analyze the necessary condition



3.1. Objective Functionals 15

for optimality. From Kamien and Schwartz [14], we see that the optimality conditions are

∂L
∂v(t)

+
∂L

∂v(t− τ)
= 0, for 0 ≤ t < tf − τ

∂L
∂v(t)

= 0, for tf − τ ≤ t ≤ tf .

However, since the delay does not appear as an argument in the control, the above

conditions reduce to
∂L
∂v(t)

= 0 (for t0 ≤ t ≤ tf ). We then have

∂L
∂v

=
∂H

∂v
−W1 +W2 = 0

⇒ εv + λ5 −W1 +W2 = 0.

To determine an explicit expression for v, consider three cases:

1. Suppose 0 < v(t) < 1. Then W1 = W2 = 0, so

v =
−λ5
ε
.

2. Suppose v(t) = 1. Then W1 = 0, so

v +
W2

ε
=
−λ5
ε
≥ 1.

3. Suppose v(t) = 0. Then W2 = 0, so

v − W1

ε
=
−λ5
ε
≤ 0.
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Combining these cases gives the characterization for the optimal control v∗(t) as

v∗(t) = min

(
max

(
0,
−λ5(t)
ε

)
, 1

)
. (3.1.4)

In a similar manner, we obtain the analytic representation for the control for the second

objective functional.

Theorem 3.1.2 (Characterization of the Optimal Control for Objective Functional 3.1.2).

Given an optimal control, v(t), and solutions to the corresponding state system, there exist

adjoint variables λi for i = 1, 2, ..., 5 satisfying the following:

−∂L
∂x
− ∂L
∂x(t− τ)

∣∣∣
t+τ

= λ
′
1 = λ1(α1 + σ1) + λ1k1I − λ4

(
ρaIn(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
+ λ4c1I − λ2α2|t+τ ,

for 0 ≤ t < tf − τ

− ∂L
∂xt

= λ
′
1 = λ1(α1 + σ1) + λ1k1I − λ4

(
ρaIn(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
+ λ4c1I,

for tf − τ ≤ t ≤ tf

For the last four adjoints, the interval for t is [0, tf ], and we have
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−∂L
∂y

= λ
′
2 = λ1(α1 + σ1) + λ2k2I + λ2k2I + λ2k4(1− e−k5u(t))

+ λ2(α2 + σ2)− λ3(2s−1α2)− λ4
((

ρaIn(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
− c2I

)
−∂L
∂z

= λ
′
3 = s− λ1sα3 + λ3(α3 + σ3 + I(t)k3)

− λ4

(
ρaI(t)nas(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
+ λ4c3I(t)

−∂L
∂I

= λ
′
4 = λ1k1x+ λ2k2y + λ3k3z

− λ4

(
ρ(x+ y + sz)n

a+ (x+ y + sz)n
+ σ4 + c1x+ c2y + c3z + k6(1− e−k7u)

)
−∂L
∂u

= λ
′
5 = λ2k4k5e

−k5u(t)y + λ4k6k7e
−k7u(t)I + λ5γ
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where λi(tf ) = 1 for i = 1, 2, λ3(tf ) = s, and λi(tf ) = 0 for i = 4, 5. Again, v∗(t) can be

represented by

v∗(t) = min

(
max

(
0,
−λ5(t)
ε

)
, 1

)
. (3.1.5)

Proof. We note that the transversality conditions take a different form due to the presence of

the salvage terms in the objective functional. The form of these conditions is taken from [14].

As before, we begin by forming the Lagrangian. Since 0 ≤ v(t) ≤ 1, the controls are bounded;

thus, the Lagrangian takes the following form:

L = H2 −W1(t)v(t)−W2(t)(1− v(t))

where H2 is the Hamiltonian given by

H2 =
ε

2
v2(t)

+ λ1[−(α1 + σ1)x(t) + sα3z(t)− k1x(t)I(t)]

+ λ2[α1x(t− τ)− (α2 + σ2)y(t)− k2y(t)I(t)− k4(1− e−k5u(t))y(t)]

+ λ3[2s
−1α2y(t)− (α3 + σ3)z(t)− k3z(t)I(t)]

+ λ4[k +
ρI(t)(x+ y + sz)n

(a+ (x+ y + sz)n)
− (σ4 + c1x(t) + c2y(t) + c3z(t))I(t)− k6(1− e−k7u(t))I(t)]

+ λ5[−γu(t) + v(t)]

and Wi(t) ≥ 0, for i = 1, 2, are penalty multipliers such that

W1(t)v(t) = 0

W2(t)(1− v(t)) = 0

 at v∗(t) (3.1.6)

Again, the penalty terms are subtracted from the Hamiltonian, as we are solving a min-
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imization problem. To find the representation for v∗(t), we analyze the necessary condition

for optimality. From Kamien and Schwartz [14], we see that the optimality conditions are

∂L
∂v(t)

+
∂L

∂v(t− τ)
= 0, for 0 ≤ t < tf − τ

∂L
∂v(t)

= 0, for tf − τ ≤ t ≤ tf .

However, since the delay does not appear as an argument in the control, the above

conditions reduce to
∂L
∂v(t)

= 0 (for t0 ≤ t ≤ tf ). We then have

∂L
∂v

=
∂H

∂v
−W1 +W2 = 0

⇒ εv + λ5 −W1 +W2 = 0.

To determine an explicit expression for v, consider three cases:

1. Suppose 0 < v(t) < 1. Then W1 = W2 = 0, so

v =
−λ5
ε
.

2. Suppose v(t) = 1. Then W1 = 0, so

v +
W2

ε
=
−λ5
ε
≥ 1.

3. Suppose v(t) = 0. Then W2 = 0, so

v − W1

ε
=
−λ5
ε
≤ 0.



3.1. Objective Functionals 20

Combining these cases gives the characterization for the optimal control v∗(t) as

v∗(t) = min

(
max

(
0,
−λ5(t)
ε

)
, 1

)
. (3.1.7)

By comparing (3.1.4) and (3.1.5), we see that our representations for the quadratic con-

trols are the same for these cases regardless of the choice of objective functionals (3.1.1) and

(3.1.2). Future work could include the investigation of a linear control term.
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Chapter 4

Numerical Methods

In a typical delay differential equation (DDE) setting, MATLAB offers a built-in solver called

dde23 [23]. This would accommodate the delay nicely, considering our case of a constant

delay. However, the implementation of the control in the model makes dde23 incredibly

difficult to edit for our purposes. We therefore construct our own solver, which incorporates

a modified Runge-Kutta method, and utilize the forward-backward sweep method provided

by Lenhart and Workman [18] to update the control and obtain analytical representations of

the system.

4.1 Forward–Backward Sweep Method

We take our approach for numerical solutions from Lenhart and Workman [18], using RK4 as

the initial value problem solver. We solve the state system forward in time using the initial

conditions, then the adjoint system backward in time using the transversality conditions.

Each iteration of the sweeps updates the control and checks convergence. There are several

stopping criteria for this method, including observing the averages of previous and current

iterations. However, we choose to stop the sweeps when the difference between the values
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of the control before and after the sweep are negligable. If this were the case, the control is

stored using its analytical representation. Otherwise, the process repeats.

4.2 The Delay

The delay in the model represents the lag between shifting from the interphase to the division

phase for the cancer cells and is an important distinction from the model presented by

Villasana and Radunskaya [25]. Liu et al. [19] argue that the quiescent phase is the most

important compartment for cancer treatment, as studies have shown that these cells can avoid

the chemotherapy. Thus, inclusion of this delay presents an insightful aspect for treatment.

Due to this presence, accommodations must be made for the analysis.

Several cases for the delay could have been chosen, but our case incorporates a constant

delay, τ . A standard implementation of RK4 does not account for the delay, leading to an

adjusted time mesh for the analysis. Here, this means that the deviated argument (t − τ)

found in Equation (2.1.2) will store the information from the appropriate lagged time step,

and that this lag will have the same size throughout the process. A visual representation of

the difficulty posed by the presence of the delay is shown in Figure 4.2.1. Storing previous

information only holds when the lag has passed a threshold where the lag (t− τ) would hit

t1 going forward, or (tf − τ) would hit (tf−1) going backward. Before this threshold, we have

an initial function that extends behind the inital time, [2]. In our case, this initial function

has a constant value equal to the initial condition for x(t) in the forward sweep, and zero or

one for the backward sweep, with respect to the appropriate adjoint system.

These initial functions can cause points of discontinuity when solving the system, as the

right-hand derivative may not equal the left-hand derivative at t0 or tf . Discontinuities such

as these can not only cause issues with the first derivative, but can propogate throughout

future integration intervals [2]. Due to this, these possible points of discontinuity must be
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Figure 4.2.1: Thresholds for delays

included in our time mesh to accommodate the numerical methods. Since our initial functions

are mathematically “nice,” we do not encounter issues of irregularity, which could cause a

loss of uniqueness [2].

In the case of our constant delay, the Runge-Kutta method takes the form

η(tn + θhn+1) = yn + hn+1

∑s
i=1 bi(θ)f(tin+1, Y

i
n+1, η(tin+1 − τ)), 0 ≤ θ ≤ 1, (4.2.1)

Y i
n+1 = yn + hn+1

∑s
j=1 aijf(tjn+1, Y

j
n+1, η(tjn+1 − τ)), i = 1, 2, ..., s (4.2.2)

where, for hn+1 ≤ τ , η(tjn+1− τ) is known for any j. Thus, we get the following theorem from

Bellen and Zennaro [2].

Theorem 4.2.1 (Global Order of Delay Differential Equation Method [2]). Consider the
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Delay Differential Equation (DDE) with a constant delay

 y′(t) = f(t, y(t), y(t− τ)), t0 ≤ t ≤ tf ,

y(t) = φ(t), t ≤ t0,
(4.2.3)

where f(t, y, x) is Cp–continuous in [t0, tf ] × Rd × Rd and the initial function φ(t) is Cp–

continuous. Moreover, assume that the mesh ∆ = {t0, t1, ..., tn, ..., tN = tf} includes the

discontinuity points ξi = iτ , i = 1, ..., p, lying in [t0, tf ] and that the underlying continuous

Runge-Kutta (CRK) method has discrete order p and uniform order q. Then the DDE method

for (4.2.1), (4.2.2) has discrete global order and uniform global order q′ = min{p, q+ 1}; that

is

max
1≤n≤N

||y(tn)− yn|| = O(hq
′
)

and

max
t0≤t≤tf

||y(t)− η(t)|| = O(hq
′
),

where h = max1≤n≤Nhn.

Since the algorithm proceeds with constant stepsize h = τ/m for some integer m ≥ 1,

the deviated arguments take the values

tjn+1 − τ = tjn+1−m = tn−m + cjh, j = 1, ..., s.

Also, since the CRK method is natural, η(tjn+1) = Y j
n+1 and η(tjn+1− τ) = Y j

n+1−m. Thus,

we get the simplified method

yn+1 = yn + h
∑s

i=1 bif(tin+1, Y
i
n+1, Y

i
n+1−m) (4.2.4)
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Y i
n+1 = yn + h

∑s
j=1 aijf(tjn+1, Y

j
n+1, Y

j
n+1−m), i = 1, 2, ..., s. (4.2.5)

This theorem outlines the method we implement for our specific delay case. The con-

tinuous RK method uses interpolants to connect discrete values of the solution. In other

words, the RK method makes distinct approximations for each time step, and then inter-

polates between approximations to get a continuous RK solution. Additionally, since RK4

is a one–step solver, we get the natural continuous extension automatically, as defined in

Appendix A. With these methods in place, we may analyze our model, using the modified

RK4 as the appropriate solver.
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Chapter 5

Results

Each simulation uses the initial conditions x(0) = y(0) = 0.1 × 106 cells, z(0) = 0.2 × 106

cells, I(0) = 2× 106 cells, and u(0) = 8. We first replicate the results in Liu et al. [19], then

analyze the cases of continuous treatment and two scheduled treatment approaches. The

function trapz in MATLAB is used to obtain the area under the curve for the amount of

treatment administered to compare treatment applications.

Previous Results

Our first goal was to replicate the work done by Liu et al. [19]. This verified that the

implementation created here was consistent with the one used in [19]. Figure 5.0.1 shows the

growth of the tumor with and without initial drug, but does not include the implementation

of the control. We see that our method successfully duplicates the results of Liu et al. [19],

which shows a significant decrease in the number of cancer cells in the treatment schedule

that consists only of an initial dose of the chemotherapy drug.

New Results

We then incorporated the control to determine how it affected the model. Figure 5.0.2
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Figure 5.0.1: Replication of Liu et al. [19] results

shows the results with respect to the first objective functional. We see that the cancer

follows an exponential growth pattern in the case of no drug. With the inital dosage of

chemotherapy, but still no control, the cancer cells are reduced, as we saw from [19], but we

see greater reduction of cells in the case with both the initial drug and the optimal control.

The lymphocytes, shown in Figure 5.0.3, exhibit a bit of growth when more cancer cells

die in the case of initial dose with the control, as the parameters treat the cancer cells as a

larger threat to the lymphocytes than the chemotherapy. The optimal treatment schedule is

shown in Figure 5.0.4, following an almost on/off pattern starting with no drug. Analyses

performed on the second objective functional provided results that were very similar in nature.
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Figure 5.0.2: Total Number of Cancer Cells for Continuous Treatment

Schedule One: Four Days of Treatment

Next, we examine a more realistic approach to chemotherapy treatment. In this case, a

patient would receive a scheduled drug administration of 4 days of treatment, 26 days of rest,

receive another 4 days of treatment, and rest the last 26 days, shown by Figure 5.0.8. This

schedule gives the body time to rest between treatments, but doesn’t allow the cancer cells

as much time to recover. The two cases considered here were the cases of initial dosage only

and including the optimal control with respect to the first objective functional.

Figure 5.0.5 shows that with the control, the cancer cells drop at the second treatment
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Figure 5.0.3: Total Number of Lymphocytes for Continuous Treatment

iteration, and never fully recover when compared to the initial dose only. The cancer cells

end at 2.5×106 number of cells in the control case and 2.9×106 in the initial dose only case.

Thus, their final cell count decreases by 16.6 percent in the case of control over the case of

initial dose only. In Figure 5.0.6, the lymphocytes pick up slightly after the first round of

treatment is over, and again after the second treatment. We see a fluctuation in the middle

where the lymphocytes start to die off more as more cancer cells grow, but then recover after

the second treatment is administered for a higher final cell count than in the case of the inital

drug only.

The amount of drug in the system over 60 days is given by Figure 5.0.7. In the case
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Figure 5.0.4: Continuous Treatment Schedule

of initial drug only, we administer the allotted dosage at the start time, and the amount

of chemotherapy drug in the system steadily decreases over time. With the control, we

never exceed the amount of drug given by the initial dose only case. At the final time,

the inital dose case has an AUC (area under the curve) of 493.3 mg, while the control case

has a AUC of 293.5 mg. Thus, there is a decrease of 33.2 percent in the total amount of

chemotherapy in the system given by the optimal control case over the amount given by only

the initial dosage. This treatment schedule produced lower cancer cell counts, higher final

lymphocyte counts, and less total drug in the system than in the case of initial dosage only.

This supports the hypothesis that incorporating an optimal control to the model will mini-
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mize the cost associated with chemotherapy while also minimizing the number of cancer cells.

Figure 5.0.5: Total Number of Cancer Cells for Treatment Schedule One

Schedule Two: Two Days of Treatment

We also consider the case of two days of treatment and thirteen days of rest, repeated

four times, with respect to the first objective functional. This treatment schedule is more

plausible than the first, as this allows patients to leave the hospital during the sixty days.

However, we do not see improved results when compared to Schedule One. Figure 5.0.9 shows

that there are decreases in the number of cancer cells when the drug is administered, but

they recover too quickly before the next iteration of treatment. The final cancer cell count
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Figure 5.0.6: Total Number of Lymphocytes for Treatment Schedule One

actually increases by 20.9 percent in the two day schedule over the initial dose case.

Figure 5.0.10 shows that this treatment schedule does not help the lymphocyte population

when compared to the initial dose case. This is due to the increased number of cancer cells

that survived. The overall amount of chemotherapy in the system, as shown in Figure 5.0.12,

is 56.5 percent less than the initial dose only, with an AUC of 191.2 mg. However, this

amount of treatment does not show improved results for cancer cell count over Schedule

One. These results imply that two days of treatment is not enough to harm the cancer

cells to the point where they never fully recover. The four day treatment seems to be the

experiment that provided the most beneficial outcome in terms of minimizing cancer cell
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Figure 5.0.7: Amount of Drug in the System for Treatment Schedule One

count and the negative effects of chemotherapy.
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Figure 5.0.8: Drug Administration for Treatment Schedule One
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Figure 5.0.9: Total Number of Cancer Cells for Treatment Schedule Two
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Figure 5.0.10: Total Number of Lymphocytes for Treatment Schedule Two
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Figure 5.0.11: Amount of Drug in the System for Treatment Schedule Two
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Figure 5.0.12: Drug Administration for Treatment Schedule Two



39

Chapter 6

Discussion

This thesis shows the numerical analysis of the delay differential equation system given by

Liu et al. [19] with the addition of an optimal control. Existence of such a system and control

is established from Collins et al. [3]. Analysis techniques included modifying Pontryagin’s

Minimum Principle [14] for the representation of an optimal control, a forward-backward

sweep method utilizing RK4 as the solver, taken from Lenhart and Workman [18], and

adjusted analyses to incorporate the delay given by Bellen and Zennaro [2].

The numerical simulations indicated that the particular treatments outlined here with

the specified parameters did not kill the cancer cells entirely. However, we do see that the

implementation of the control significantly reduced the number of cells in the system in the

continuous and four–day treatments while also administering less chemotherapy drug in each

case. However, in the case of two–day treatment, the cancer cells were able to rebound,

which had worsened effects for the lymphocytes. Overall, the continuous treatment approach

provided the best results in terms of minimizing cancer cell count throughout the time frame

and at the final times. We note, too, that the experiments for the second objective functional

were very similar to each respective experiment here. Thus, investigating this model with a

delay and a control was insightful for future work.
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Other implementations or delay cases could improve the results we see here. Including

more delays in the cancer system would better model how the cancer behaves, which could

provide more realistic results. The delay could also be a function of the drug, as there exists

a lag between when the drug is administered and when the drug attacks the tumor cells [19].

Other components of the immune system could be incorporated, instead of only one factor.

The immune system as a whole is very complicated and this model does not encompass that

complexity. One interesting direction for future work could involve using optimal control

theory to minimize the time of treatment instead of the drug administration, resulting in a

different objective functional. Instead of optimizing the amount of drug administered, we

could consider optimizing the amount of time when the drug is administered. Investigation

of a control term in the immune system, or control terms in both the immune system and

applied drug, could also provide interesting results.
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Appendix A

Definitions

In this section, we give a precise statement of the definition of a natural continuous extension

of a Runge–Kutta method.

Definition A.0.1 (Natural Continuous Extension [2]). We say that the interpolant η(t) in

η(tn + θhn+1) = yn + hn+1

v∑
i=1

bi(θ)g(tin+1, Y
i
n+1), 0 ≤ θ ≤ 1

of order (and degree) q is a natural continuous extension (NCE) of the RK method

Y i
n+1 = yn + hn+1

v∑
j=1

aijg(tin+1, Y
i
n+1), i = 1, ..., v, yn+1 = yn + hn+1

v∑
i=1

big(tin+1, Y
i
n+1)

of order p if the polynomials bi(θ), i = 1, ..., v, are such that η(t) satisfies the additional

asymptotic orthogonality condition

∣∣∣∣∣∣ ∫ tn+1

tn

G(t)[z′n+1(t)− η′(t)]dt
∣∣∣∣∣∣ = O(hp+1

n+1)

for every sufficiently smooth matrix–valued function G, uniformly with respect to
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n = 1, ..., N − 1, where zn+1(t) is the solution to the local problem

 z′n+1(t) = g(t, zn+1(t)), tn ≤ t ≤ tn+1,

zn+1(tn) = y∗n.

We note that for any one–step collocation method, the collocation polynomial is an NCE

of degree q = v.
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Appendix B

Theorems

In this section, we give a more precise statement of Pontryagin’s Maximum (Minimum)

Principle.

Theorem B.0.1 (Pontryagin’s Minimum Principle [14]). Let u(t) = [u1(t), . . . , um(t)] be

a piecewise continuous control vector and x(t) = [x1(t), . . . , xn(t)] be an associated contin-

uous and piecewise differentiable state vector defined on the fixed time interval [t0, t1] that

minimizes ∫ t1

t0

f(t,x(t),u(t))dt

subject to the differential equations

xi(t) = gi(t,x(t),u(t)), i = 1, . . . , n,

initial conditions

xi(t0) = xi0, i = 1, . . . , n (xi0 fixed),
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terminal conditions

xi(t1) = xi1, i = 1, . . . , p,

xi(t1) ≥ xit, i = p+ 1, . . . , q (xi1, i = 1, . . . , q fixed),

xi(t1) free, i = q + 1, . . . , n,

and control variable restriction

Xu(t) ∈ U, U a given set in Rm.

We assume that f, g, ∂f/∂xj, and ∂gi/∂xj are continuous functions of all their arguments, for

all i = 1, . . . , n and j = 1, . . . , n. Then there exists a constant λ0 and continuous functions

λ(t) = (λ1(t), . . . , λn(t)), where for all t0 ≤ t ≤ t1 we have (λ0, λ(t)) 6= (0, 0) such that for

every t0 ≤ t ≤ t1

H(t,x∗(t),u(t), λ(t)) ≤ H(t,x∗(t),u∗(t), λ(t)),

where the Hamiltonian function H is defined by

H(t,x,u, λ) = λ0f(t,x,u) +
n∑
i=1

λigi(t,x,u).

Except at points of discontinuity of u∗(t),

λ′(t) = −∂H(t,x∗(t),u∗(t), λ(t))/∂xi, i = 1, . . . , n.
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Finally, the following transversality conditions are satisfied:

λi(t1) no conditions, i = 1, . . . , p,

λi(t1) ≥ 0 (= 0 if x∗i (t1) > xi1)) i = p+ 1, . . . , q,

λi(t1) = 0, i = q + 1, . . . , n.

In addition, the modifications to (B.0.1) generated by the terminal inequalities are given

in Kamien and Schwartz [14], p. 160:

If K(xq(t1), . . . , xn(t1)) ≥ 0 is required, then the transversality conditions

λi(t1) = p ∂K/∂x1, i = q, . . . , n,

p ≤ 0,

pK = 0

are necessary.
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