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ABSTRACT 

Soil organic carbon (SOC) storage in depositional zones has been a growing topic of 

interest in recent years as these areas may be sinks of SOC. However, SOC dynamics 

greater than 1 m in depth in river valley bottom soils are not well understood. This study 

examines the soil organic carbon along three alluvial landscape positions in the forested, 

humid-subtropical setting of the Clarks River in the western Kentucky portion of the 

Mississippi River basin. These soil and depositional profiles range in age from ~8,000 

years ago to modern, 21 cal yr. BP, (BP = AD 2010). The mean surface soil SOC stocks 

(kg/m2) decrease from Floodplains (2.62 ± 0.3), Terraces (2.31 ± 0.21) to Bars (1.32 ± 

0.24); whereas, the mean stocks of buried layers (buried soils and lithologic 

discontinuities) decrease from Terraces (4.13 ± 0.24), Bars (3.07 ± 0.54) to Floodplains 

(2.68 ± 0.24). Total SOC estimates in the buried layers make up over half of the SOC 

inventory for all landforms. The isotopic composition of SOC (δ13C) at all sites is 

consistent with C3 vegetation. The depth profiles show that δ13C becomes less negative 

with depth, likely due to a combination of the Suess effect and microbial decomposition. 

A classification and regression tree analysis shows that soil horizon, pH, landscape 

position, and magnetic susceptibility are significant predictors of mean SOC content. 

Notably, the tree shows that alkaline pH (>7.9) is an important predictor in higher mean 

SOC. These alkaline soil pH values are found in buried calcareous soils with pedogenic 

carbonate in the Clarks River Terraces, where acidified samples were found to have 

higher mean SOC. A 14C age from SIC shows that this carbonate may have formed under
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drier conditions of the mid-Holocene hypsithermal. This age association suggests that the 

legacy of buried soils in valley bottoms plays a role in deep SOC storage today. This 

study showed that buried soils and sediments contain the majority of the SOC in the 

Clarks River, while landform position and a calcareous paleosol played an important role 

in the storage of that SOC.
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INTRODUCTION 

 Soil contains the largest reservoir of active terrestrial carbon (C) (Luo et al., 2017; 

Leifeld and Kögel-Knabner, 2005; Schimel et al., 1994). This reservoir is relates to 

climate as C exchanges continuously between the soil, atmosphere and biosphere (Berhe 

et al., 2007). The dominant processes affecting C in the soil are local redistribution and 

storage on a landscape scale (Kirkels et al., 2014; Liu et al., 2003; Smith et al., 2001). 

Thus, when constructing global climate models, understanding long term soil-biosphere-

atmosphere interactions and the associated transport and storage of C throughout the soil 

are key. Despite this importance, uncertainty remains regarding the roles that human-

induced soil erosion, topography and deposition play in the biogeochemical cycling of 

terrestrial C. 

 

1.1. Effects of erosion on soil organic carbon 

 Topography on Earth’s surface and the ensuing erosion partly controls the 

redistribution of sediments and C (Berhe et al., 2008). The topsoil (A horizons) is rich in 

soil organic carbon (SOC), where this SOC is transferred and redeposited within the 

downstream valley bottom (Doetterl et al., 2016; Van Oost et al., 2007; Stallard, 1998). 

At any individual locality, erosion removes C from soils, whereas deposition of eroded 

sediments delivers C in colluvial and fluvial systems (Hoffmann et al., 2009). 

 Stable, mineral-associated SOC can only be relocated in large quantities through 

soil erosion. Previous work has shown that 70-90 % of eroded topsoil material is 
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deposited downhill of the source or in adjacent watersheds (Doetterl et al., 2016; Stallard, 

1998) and between 53 % and 95 % of eroded SOC remains within the catchment (Kirkels 

et al., 2014; Van Oost et al., 2007). The decomposition of this SOC after transport varies 

depending on its fate after deposition (Berhe et al., 2007; Starr et al., 2000). Assuming 

new vegetation grows on eroded surfaces in the uplands, much of the C that is 

redeposited downslope is actively replaced, causing the watershed to act as a net C sink 

(Doetterl et al., 2016; Van Oost et al., 2012; Berhe et al., 2008; Van Oost et al., 2007). 

 

1.2. Effects of deposition on soil organic carbon 

 Soil burial in river valley bottoms is an important but understudied process that 

contributes to the delivery and persistence of SOC stocks at depth. The process of soil 

burial results in C storage at great depths, as buried soils have been observed up to four 

meters in depth, or greater in some cases (Blazejewski et al., 2009; Chaopricha and 

Marín-Spiotta, 2014). This process of burial transfers SOC from an active pool to a 

passive storage pool where rates of SOC turnover are significantly lower after burial 

(D’elia et al., 2017; Kirkels et al., 2014; Van Oost et al., 2005). Estimates suggest the 

burial of sediments transfers 10 Gt/yr. and human burial transfers 0.6 – 1.6 Gt/yr. of 

active SOC to the passive storage pool (Kirkels et al., 2014; Stallard, 1998). Despite 

recent efforts, these deeper SOC stocks (>30 cm) are typically underestimated 

(Chaopricha and Marín-Spiotta, 2014; Nadeu et al., 2012). 

 Large quantities of SOC are stored over long time periods in buried valley-bottom 

environments with a slow turnover time (Doetterl et al., 2016; VandenBygaart et al., 

2015; Wang et al., 2015a, 2015b; Hemelryck et al., 2010; Polyakov and Lal, 2004a, 
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2004b). With increasing deposition and depth of burial, soil conditions at depth can slow 

decomposition and reduce C mineralization. Reduced temperature and moisture 

variability, increased moisture and reduced O2 levels, combined with physical protection 

through aggregate formation, all act to stabilize deeper C in depositional settings (D’elia 

et al., 2017; Kirkels et al., 2014; Berhe et al., 2007, 2005; Van Oost et al., 2005; Liu et 

al., 2003; McCarty and Ritchie, 2002; Smith et al., 2001; Stallard, 1998). 

 

1.3. Effects of landscape position on SOC dynamics in valley bottoms 

 Deposition and storage of SOC takes place at various geomorphic positions 

including colluvial, alluvial, lacustrine, and riverine settings. (Kirkels et al., 2014; Harden 

et al., 1999; Stallard, 1998). This deposition effects the distribution of C in Floodplains 

and riparian zones (Chaopricha and Marín-Spiotta, 2014; Kirkels et al., 2014; 

Blazejewski et al., 2009). A total organic carbon (TOC) study from the Rhine River 

valley shows that sedimentary facies (changes in texture and sedimentary structures) and 

associated depositional environments had a significant effect on the soil TOC content 

(Hoffmann et al., 2009). Net OC accumulation rates in Rhine basin Floodplains exceed 

hillslopes over the past ~7500 years, and these two landscapes together exceed storage 

estimates of lakes and reservoirs in Central Europe (Hoffmann et al., 2013), further 

emphasizing the effects of landform position on SOC dynamics. Despite the findings that 

alluvial landforms in a river valley could have potentially large effects on storage and 

cycling of SOC, there are few studies on the effects of alluvial landform position on SOC 

stocks.  
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This study examines the effects that alluvial landscape position has on the stock 

and isotopic composition of SOC in a humid-subtropical setting, along the Clarks River, 

Kentucky USA. Specifically, we test the hypothesis that C is stored in similar amounts 

across active alluvial landscape positions and in soils buried within these landforms. To 

test this hypothesis, we measured C stocks along different alluvial river valley landscape 

positions associated with different landforms within the Clarks River valley. Other 

physicochemical properties, such as texture, pH, and magnetic susceptibility, were 

measured to help determine how landscape position effects C stock variability.



 
 

METHODS 

2.1. Site Selection  

 The soil depositional profile sites are selected along the valley bottom of 

the Clarks River, located in western KY, U.S.A., to examine how different 

alluvial landforms and the presence of buried soils affected the storage of SOC. 

Landforms are identified using a combination of LiDAR digital elevation models 

(DEMs), soils, aerial photography and land cover data (Fig. 1) to develop a basic 

geomorphic map based on differences in soil series and elevation above the 

channel. 

Three cross-valley transects, referred herein as MZ, TZ and DC, are 

chosen using the geomorphic map and field reconnaissance, where each transect 

consisted of three alluvial landscape positions: Bar (MZb, TZb, DCb), Floodplain 

(MZf, TZf, DCf) and Terrace (MZt, TZt, DCt). An additional Terrace site (CRt) is 

selected due to complications in site access at one terrace site towards the end of 

the field campaign. Transects are selected to replicate factors such as soil series 

type, proximity to Clarks River, amount and type of vegetation, and elevation.  

Each alluvial landform type has surfaces in a defined range of elevations 

above the river channel, where this range of elevations is herein termed landform 
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relief (Fig. 2). Bars are defined as having low landform relief (<1 m) and located 

adjacent to or within the main channel. The Bar sites vary in the degree of 

vegetation and often consist of bedded silt, sand or gravel (Fig. 3). Soils on Bars 

are mapped as Cascilla Series (Fluventic Dystrudepts), described as well-drained, 

permeable soils weathering silty alluvium on floodplains (Soil Survey Staff et al., 

2001) Floodplains are defined as having moderate landform relief (1-3 m) and 

located adjacent to the channel. The Floodplain sites have low-sloping surfaces 

that periodically flooded. Soils associated with Floodplains are also mapped as 

Cascilla Series. The occurrence of Cascilla Series along both bar and floodplain 

landforms is likely due to limitations in soil-mapping resolution and the fact that 

alluvial bars are not an ideal target for soil mapping.  

Terraces are defined as having high landform relief (4-5 m) and located 

further from the main channel. The Terrace sites also have low-sloping surfaces 

and are flooded only during major flood events. The flood of 2011 suggests the 

water level was 2 m above terrace floor, based on a road sign marking the water 

level. Soils along Terrace landforms are mapped as Natalbany Series (Vertic 

Epiaqualfs), described as poorly drained and slowly permeable soils weathering 

clayey deposits along floodplains or terraces (Soil Survey Staff et al., 2013b). All 

alluvial landform sites in this study are situated in a bottomland hardwood, forest 

ecosystem. 
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2.2. Soil Sampling and Description 

The soil and sediment at each site are sampled at 10-cm intervals until 

refusal or to a maximum potential depth of ~4 m using a bulk density coring 

device (Soil Survey Staff, 2009). Refusal at Bar and Floodplain sites is shallower 

due to the depth of the water table. At depths of approximately 4 m, bulk density 

core samples at the sites are no longer recoverable due to limitations of the 

sampling equipment.  

Soil horizons are identified and described from auger tailings in the field 

and refined using laboratory results listed in section 2.3. Horizons are described 

using standard descriptive techniques (Schoeneberger, 2012). Buried soils are 

identified based on the occurrence of distinct genetic horizons that experienced 

pedogenesis and subsequently buried by new sediment. Lithologic discontinuities 

(LDs) are also identified separately from buried soils. The identification of LDs 

follows the definition in Ahr et al. (2016) as abrupt changes in geologic layering 

not associated with pedogenesis. These changes are often the result of differing 

parent materials brought on by changes in depositional environment. An LD may 

also be associated with the occurrence of a buried soil. This study combines the 

observations of both buried soils and LDs, and they are together referred to herein 

as buried layers. The modern, or surface, soils are then separated from buried 

layers based on the depth to the first buried soil or LD and are discussed 

separately from the buried layers.  



8 
 

Radiocarbon ages are used to estimate landform age. Charcoal and 

carbonate samples are collected at all sites for 14C analysis. Samples are analyzed 

using a NEC Pelletron 500 kV accelerator mass spectrometer at a commercial lab 

(Direct AMS). Modern (post-bomb) radiocarbon ages are modeled using 

CALIBomb (Stuiver and Reimer, 1993) and pre-bomb ages are calibrated using 

CALIB 7.1 (Reimer et al., 2013).  

 

2.3. Laboratory measurements  

2.3.1. Soil and sediment characterization 

 The physical, chemical and mineralogical characteristics of soil and 

sediment are measured to determine what factors effected the SOC content among 

the three alluvial landforms. These characteristics are then analyzed with depth in 

both surface soil and buried layers for the <2mm size fraction. Soil texture and 

bulk density are important determinants of water retention and C storage potential 

of a soil (Bullinger-Weber et al., 2014; Jobbágy and Jackson, 2000). Texture is 

determined using a modified micro-pipette method (Soil Survey Staff, 2014a). 

The results are reported in concentrations of clay, silt and sand. Oven-dry bulk 

density (ρd) is measured using the core method (Soil Survey Staff, 2009). 

While texture is a proxy for SOM retention, soil pH is more related to 

SOM stabilization and protection (Rasmussen et al., 2018). Soil pH is measured 

using 1:1 soil:H2O and 1:2 soil:CaCl2  (Soil Survey Staff, 2014a; Miller and 
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Kissel, 2010). Electrical conductivity (EC) is measured by direct saturated paste 

(Soil Survey Staff, 2014b). The magnetic susceptibility of soil is a measure of the 

concentration and grain size of magnetic minerals in a sample and is a proxy for 

soil development, notably redox(Maxbauer et al., 2017; Grimley et al., 2004; Fine 

et al., 1995). Room-temperature mass-dependent susceptibility (Χ) is measured at 

two frequencies on dry soil and sediment using a Bartington MS2B magnetic 

susceptibility meter. Low-frequency (Χ lf, 450 Hz) and high-frequency (Χhf, 4.5 

kHz) susceptibilities are used to calculate frequency-dependent susceptibility 

(Χfd), which is a measure of the concentration of superparamagnetic (SP) particles 

in the soil (Dearing, 1994). The Χfd is calculated as: 

 𝑋𝑋𝑓𝑓𝑓𝑓 = 𝑋𝑋𝑙𝑙𝑙𝑙−𝑋𝑋ℎ𝑙𝑙
𝑋𝑋𝑙𝑙𝑙𝑙

∗  R100 Eq. 1. 

 

2.3.2. C measurements and calculations  

 The SOC is measured on a subset of acidified samples (n=64) using dry 

combustion on a CHNS-O Costech Elemental Analyzer. The SOM is measured on 

all samples using the loss on ignition (LOI) method (Soil Survey Staff, 1996). 

Oven-dried samples are analyzed for total combustion of organic matter at 650° C 

for 6 hours.  

Adapting the methods of Andrews et al.(2011), the more extensive LOI 

data set and the SOC data set, and clay content are used to derive a correction 

factor to convert SOM to SOC. The correction factor is developed using a 
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pedotransfer function similar to that of Hoogsteen et al. (2015) because LOI can 

result in the dihydroxylation of clay, i.e., structural water loss, and the 

overestimation of SOM/SOC content. A regression model is used to model SOC 

(wt. %) using LOI and clay (wt. %) as predictors (Appendix 13).  

SOC stocks are calculated for each horizon using the following equation: 

 𝑺𝑺𝑺𝑺𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝑺𝑺𝑺𝑺𝑪𝑪
𝟏𝟏𝟏𝟏𝟏𝟏

 × 𝛒𝛒𝒅𝒅 × 𝒛𝒛  , Eq. 2 

 

where SOCstock is in kg/m2, SOC is in wt %, ρd is in kg/m3 and z is the soil horizon 

thickness in meters. If there is more than one sample per horizon, then the mean 

SOC for that horizon is reported. The SOC stocks discussed here are minimum 

estimates for both the surface and buried soils. While the surface soils were 

sampled in their entirety, the depth of the surface soils and the distinction between 

surface and buried is complex. During soil sampling and description, overprinting 

from overlying horizons was noted, and as a result, underlying buried soil 

horizons likely experienced some translocation of C into these buried layers. The 

determination of the lower boundaries of the surface soils is based on the first 

occurrence of buried horizons. In regards to the buried layers, no sites are 

sampled to bedrock and so buried layers likely have more, deeper SOC. 

 The isotopic composition of soil organic carbon (δ13Csoc) is measured on a 

subset of samples (n=64) to provide insight into the source of the SOC and effects 

of decomposition. Samples are ground in a mortar and pestle and treated with 1N 
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HCl to remove any inorganic carbon (calcite). The samples are then triple-rinsed 

in deionized water and then the SOC is combusted in a CHNS-O Costech 

elemental analyzer. The resulting CO2 is analyzed by continuous flow using a 

Finnigan Thermo-Electron gas-source mass spectrometer (standard error, ± 

0.01‰). The values are reported here in ‰, with reference to the Pee Dee 

Belemnite standard (VPDB), using the equation: 

 𝛿𝛿13𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠(‰) =  

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎢
⎡�

𝐶𝐶13
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐶𝐶12
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�

�
𝐶𝐶13
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝐶𝐶12
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

�
�

⎦
⎥
⎥
⎥
⎤
− 1

⎭
⎪
⎬

⎪
⎫

∗ 1000 Eq. 3. 

 

2.3.3. Statistical Analysis 

 The chemical, physical, and mineralogical properties along with the SOC 

content of the alluvial landforms are compared by surface and buried soils by 

alluvial landform using Analysis of Variance (ANOVA) with a post-hoc Tukey’s 

Honest Significant Difference test (Tukey HSD) (R Core Team, 2017). Rejection 

of the null hypotheses (means are the same for all groups) using ANOVA and 

Tukey HSD is set to the 95 % confidence level (α = 0.05). The associations 

between alluvial landscape position, SOC and other soil properties are explored 

further using a classification and regression tree which uses a recursive 

partitioning procedure (Prasad et al., 2006). 
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Classification and regression trees (CART) are developed in R using the 

rpart package (Therneau et al., 2018). The regression tree is created to rank the 

soil properties and landform position in importance of predicting SOC by 

determining the best predictor with respect to the response variable and dividing 

the observations (Prasad et al., 2006; Scull et al., 2005). This division reduces the 

variance in the response variable and is repeated until the observations are 

exhausted. Predictors used to estimate SOC are landform position, horizon 

designations, layer descriptions (surface v buried), sample thickness, ρd, pH (1:1 

H2O), EC, Χlf, and Χfd. Because an SOC correction factor is applied using LOI 

and clay content (see 2.3.2.), LOI and grain size (sand, silt, clay) are excluded 

from CART analysis to prevent autocorrelation between SOC and the predictors.  

Prediction error is estimated by randomly dividing the total dataset 

(n=185) into a 70/30 split: 70 % training sample set and 30 % testing sample set. 

The regression tree is built using the training set and then ‘pruned’ by selecting 

the number of splits produced by the regression tree associated with a minimized 

cross-validated error estimate (Prasad et al., 2006; Scull et al., 2005). The testing 

set is then passed through the pruned tree to calculate root mean square prediction 

error (RMSPE) as a measure of the accuracy of the model in predicting mean 

SOC: 

�∑ �𝑦𝑦𝑦𝑖𝑖−𝑦𝑦𝑖𝑖�
𝑛𝑛
𝑖𝑖

2

𝑛𝑛
 Eq. 4 
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where ŷ is the SOC value predicted by the model, y is the known SOC value, i is a 

given observation, and n is the number of observations in the testing set. 

 



 
 

RESULTS 

3.1. Geomorphology and geochronology 

The Bar, Floodplain and Terrace landforms along the Clarks River vary in 

elevation, age and soil properties (Fig. 6, Table 1). Surface elevation and landform relief 

increase from Bars to Floodplains and then to Terraces. Increasing elevation and relief 

coincide with increasing thickness of the underlying soil and sediment assemblage. The 

Bar sites: MZb, TZb and DCb, have surface elevations between 98 and 99 m above sea 

level (asl). The sample depths range from 0.3 to 1.5 m below the surface, where the water 

table or refusal was reached (Fig. 2). The Floodplain sites: MZf, TZf and DCf, have 

surface elevations ranging from 98 to 100 m asl. The sample depths range from 2 to 2.8 

m below the surface, where coring reached refusal. The Terrace sites: MZt, TZt, DCt and 

CRt, have a narrow range of surface elevations at ~103 m asl. The sample depths for 

Terrace sites, MZt and TZt, are 4 m below the surface, where ground water or refusal 

made further soil/sediment extraction difficult. The sample depths of the DCt and CRt 

sites are 1.5 m and 2 m below the surface, respectively, due to logistical constraints.  

 Median radiocarbon ages from the three alluvial landforms vary in age from 8,036 

to 21 cal. yr. BP, where cal. yr. BP is calendar years before present; present = AD 2010 

(Table 1). Woody debris (Fig. 4) from MZb at 1.3 m in depth is 21 yr. BP, modeled using 

bomb-pulse dating (Stuiver and Reimer, 1993). 
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Charcoal from 2.5 m below the surface along a Floodplain (MZf) yields a modeled age of 

666 cal. yr. BP. Pedogenic carbonate from 3 m below the surface (100 m asl) along a 

Terrace (MZt) yields the oldest modeled age of 8,036 cal. yr. BP. A charcoal sample from 

0.6 m below the surface in a Terrace (TZt) yields a modeled age of 447 cal. yr. BP. All 

calibrated ages are lower in elevation and younger than a late Pleistocene near-shore 

strandline deposit (108 m asl) that marks the water-surface elevation of pro-glacial lake 

Paducah, which occupied the Clarks River valley 21,080 ± 400 radiocarbon yr. BP 

(Olive, 1966). This radiocarbon age has a modeled median age of 25,385 cal. yr. BP 

(Reimer et al., 2013). 

 

3.2. Physical, chemical and mineral characterization 

3.2.1. Bars 

Surface soil and sediment profiles on Bars are shallow, <0.60 m deep, and range 

from no soil development on the TZb to gleyed topsoil (Ag) and subsoil (Bg) 

development at the MZb and DCb sites (Fig. 5). The MZb and DCb soils coarsen upwards 

and have a silty clay loam texture. The TZb sediment has sandy clay loam texture. The 

mean (± standard error of the mean) ρd for Bar soil and sediment is 0.94 ± 0.06 g/cm3. 

Bar soil pH values are strongly acidic, 5.5 ± 0.1, whereas the sediment pH values at TZb 

were moderately acidic, 5.9 ± 0.2. All Bar soil and sediment are non-saline, with EC 

values <0.5 mS/cm. The magnetic properties of Bar soil and sediment show little 

variability with depth and have a mean Xlf and Xfd of 1.97 ± 0.17 x 10-7 kg/m3 and 8.1 ± 

0.34 %, respectively (Fig. 6). 
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 Buried layers in the Bars include two buried soils in the MZb and geologic 

layering in the DCb site (Fig. 5). The TZb does not contain any buried layers. The 

uppermost buried soil in the MZb is 0.98 m thick and likely overprints the underlying 

buried soil. These buried soils are gleyed like the overlying surface soil. The 2Cg2 

horizon in the DCb is 0.20 m thick, underlying a lithologic discontinuity (LD) at 0.34 m, 

and is identified by an increase in color value and chroma, and grain size. Like the Bar 

surface soil, the mean texture of the buried layers is silty clay loam and coarsens upward. 

The mean ρd of the buried layers are 1.08 ± 0.04 g/cm3, within error of the mean surface 

soil bulk density. The pH and EC of the buried layers is nearly identical to those of the 

surface soil, 5.4 ± 0.1 and 0.20 ± 0.04 mS/cm. Like the magnetic properties of the surface 

soil, buried layers show little variability. However, the buried layers are enhanced, with a 

mean Xlf and Xfd of 2.94 ± 0.14 x 10-7 kg/m3 and 9.2 ± 0.26 %, respectively.  

 

3.2.2. Floodplains 

 Surface soil on Floodplains are shallow (< 0.55 m deep) and have weak subsoil 

development (Bw) at all sites (Fig. 5). Floodplain surface soils are silty clay loam, 

whereas the DCf soil has a silty clay texture and all Floodplain soil coarsens upward. The 

mean dry ρd for the Floodplain soil and sediment are 1.05 ± 0.03 g/cm3. Floodplain soil 

pH values are extremely acidic, 4.4 ± 0.1. All Floodplain soil and sediment are non-

saline, with EC values <0.5 mS/cm. The magnetic properties of the Floodplain soil and 

sediment show an increase with depth and have a mean Xlf and Xfd of 3.33 ± 0.26x10-7 

kg/m3 and 9.1 ± 0.26 %, respectively.  
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Buried layers in the Floodplains include two buried soils in the MZf, 1.0 and 1.24 

m thick, two buried soils in the TZf, 0.98 cm and 0.63 m thick, and three sediment layers 

each with one buried soil in the DCf, 0.98, 1.02, and 0.30 m thick (Fig. 5). These buried 

soils are weakly developed and gleyed like the overlying surface soil. The mean texture 

of the buried layers is silty clay loam and fine upwards. The mean ρd of the buried layers 

is 1.24 ± 0.01 g/cm3. The pH of the buried layers is nearly identical to those of the 

surface soil, 4.2 ± 0.11. The mean EC of the buried layers are non-saline, decreasing with 

depth to a mean of 0.14 ± 0.01 mS/cm. Unlike the surface soil, buried layers show a 

depletion of magnetic minerals with depth, with a mean Xlf and Xfd of 2.19 ± 0.20 x 10-7 

kg/m3 and 7.1 ± 0.45 %, respectively.  

 

3.2.3. Terraces 

Surface soils forming on Terraces are shallow, <0.70 m depth, and are well 

developed (O, A, AB, EB, and Btg horizons) (Fig. 5). Terrace surface soil have silty clay 

texture and coarsen upward. The mean ρd for the Terrace soil and sediment was 1.20 ± 

0.03 g/cm3. Terrace surface soil pH is strongly acidic, 4.0 ± 0.10 and non-saline, with EC 

values <0.5 mS/cm. The surface soil magnetic properties show little variability with 

depth and are lower than the Bar and Floodplain surface soil and sediment. The mean 

Terrace Xlf and Xfd is 1.26 ± 0.09 x 10-7 kg/m3 and 4.0 ± 0.3 %, respectively.  

 Buried layers at Terrace sites include two buried soils in the MZt that are 1.09 m 

and 0.97 m thick and a geologic layer at the base of the profile that is 0.09 m thick (Fig. 

5). The TZt has four buried soils that are 1.01, 1.16, 0.46, and 0.82 m thick. The 
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lowermost three of these buried soils occur within a LD. The third buried soil is a buried 

ACk horizon between two Ck horizons. The DCt site contains one identified buried layer 

0.61 m thick but likely contained more, due to incomplete sampling. CRt contains one 

buried soil 0.84 m thick underlying a LD at 1.0 m below the surface. The mean texture of 

the buried layers is silty clay and they coarsen upward. The mean ρd of the buried layers 

is 1.33 ± 0.01 g/cm3, slightly denser than Terrace surface soil. The mean pH of the buried 

layers, 6.7 ± 0.2, is less acidic than the Terrace surface soil and becomes alkaline with 

increasing depth and the presence of soil carbonate. Terrace buried layers are non-saline, 

with a mean EC of 0.90 ± 0.05 mS/cm, but higher than the Terrace surface soil. The 

buried layers have a mean Xlf and Xfd of 1.54 ± 0.07 x 10-7 kg/m3 and 1.6 ± 0.17 %, 

respectively. The magnetic properties of the buried layers show an enhancement of Xlf 

and Xfd associated with two buried soils at similar depths (0.70 and 2.75 m below surface) 

in vertical succession at both MZt and TZt.  

 

3.3. Soil organic matter characterization 

3.3.1. Bars 

Bar vegetation varies from forest with grass understory (MZb) to sparse 

vegetation on gravel Bars (TZb and DCb) (Fig.3). The surface soil and sediment SOM 

vary as well. The MZb site has the highest mean SOM, 6.11 ± 0.81 %, while the TZb and 

DCb sites have similar mean surface SOM, 3.83 ± 0.76 % and 3.87 ± 0.15 %, 

respectively. The surface SOM decrease with depth in all but the DCb site. The overall 

mean Bar SOM content is 4.79 ± 0.52 %. With the exception of TZb, where SOC content 
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initially increased with depth, surface SOC content decreases with depth. Mean surface 

SOC stocks for the MZb and DCb sites are within error of each mean stock, 1.48 ± 0.37 

and 1.90 ± 54 kg/m2 respectively. While SOC content decreases, SOC stocks increase in 

all sites with depth with an overall mean surface stock of 1.31 ± 0.24 kg/m2 (Fig.7).  

Buried layers in the Bars have a very similar SOM content compared with the 

surface soils. Buried layers have a mean value of 4.65 ± 0.19 % at the MZb site and a 

mean value of 4.0 ± 0.14 % at the DCb site and an overall mean of 4.53 ± 0.18 %. With 

the exception of TZb, SOC content in the buried layers ares very similar to that of the 

surface soil with DCb increasing with depth. The MZb site has the highest buried SOC 

stock of the Bar sites with a mean value of 3.49 ± 0.57 kg/m2. The buried layers in the 

Bars have an overall mean stock of 3.07 ± 0.54 kg/m2 (Fig.7).  

 

3.3.2. Floodplains 

Floodplain vegetation is forest with a dense understory. Surface soil SOM content 

decreases with depth and varied little across sites, with a mean content of 4.47 ± 0.23 %. 

Like SOM content, SOC content in the surface soil decreased with depth and varied little 

with depth as it decreased. Surface stocks did increase with depth having an overall mean 

value of 2.62 ± 0.3 kg/m2 (Fig.7).  

Mean SOM contents of the buried soils in the Floodplain sites vary little across 

sites and decrease with depth. The overall mean value was approximately half that of the 

surface soils: 2.68 ± 0.09 %. At the MZf site the SOC content decreases and then 

increases slightly with the occurrence of two buried layers (Fig.4). In contrast to the 
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surface soils and sediments, SOC stocks decrease with depth in the buried layers, with an 

overall mean stock of 2.68 ± 0.24 kg/m2 (Fig.7).  

 

3.3.3. Terraces 

 Terrace site vegetation consists of post oak hardwood forests with very little 

understory vegetation. The surface soil SOM of the Terraces is within error of the mean 

across all sites; with the highest mean at the MZt site (5.38 ± 0.58 %) and the lowest mean 

at the DCt site (4.71 ± 0.40 %). Surface soils have a mean SOM content of 4.91 ± 0.23 % 

that decreases with depth in all Terrace sites. SOC content decreases with depth in the 

surface soils. Terrace sites have an overall mean surface stock of 2.31 ± 0.21 kg/m2 

(Fig.7).  However, surface SOC stocks increase with depth, the highest being at the MZt 

site (3.35 ± 0.50 kg/m2) and the lowest at the TZt site (1.74 ± 0.22 kg/m2).  

Terrace SOM content increases in buried layers 3 m deep in the MZt and the TZt 

sites. SOM content of buried layers is statistically similar to surface SOM. Unlike the 

surface SOM, the highest and lowest SOM of the buried layers were in the TZt and the 

CRt sites; 4.97 ± 0.24 % and 4.31 ± 0.13 %, respectively. The mean SOM content of the 

buried layers is 4.69 ± 0.13 %. SOC content in the buried layers decreases with depth 

until a depth of approximately 2.75 m where the SOC content increases, reaching SOC 

concentrations similar to that of the surface soils. Buried stocks have an overall mean 

value of 4.13 ± 0.24 kg/m2 (Fig.7). At all sites, the buried stocks increase with depth but 

vary with horizon thickness. 
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3.3.4. Isotope geochemistry of SOC and SIC 

The δ13Csoc of all surface and buried layers from all landforms ranges from −23 to 

−29‰, which is consistent with aboveground vegetation using the C3 photosynthetic 

pathway (Diefendorf et al., 2010; Kohn, 2010). The δ13Csic from the 8,036-year-old 

pedogenic carbonate is −10.8‰. This is consistent with the δ13Csoc values when using a 

14-17‰ fractionation factor between plant-derived soil CO2 and pedogenic carbonate 

(Quade et al., 1989; Cerling, 1984). This shows that the aboveground vegetation 8,000 

yrs ago were also using the C3 photosynthetic pathway 

The SOC content and C/N decrease and δ13Csoc values become less negative 

(enriched in 13C) with increasing depth on all landforms (Fig. 8). This trend is consistent 

with calculations for mean δ13Csoc of surface and buried layers for bars (surface = −26.4 ± 

0.2‰; buried = −24.9 ± 0.02‰), floodplains (surface = −27.2 ± 0.4‰; buried = −25.2 ± 

0.3‰) and terraces (surface = −26.2 ± 0.3‰; buried = −25.5 ± 0.2‰). The difference 

between surface and buried mean δ13Csoc range from 1.5‰ in the bars, 2‰ in the 

floodplains and 0.7‰ in the terraces. The SOC turnover rates were also examined for 

each landform using β, the slope of the line of δ13Csoc to log[SOC] (Acton et al., 2013). 

Less negative β indicate longer turnover times compared to slopes with a more negative 

β. The Terrace sites have the least negative slope (β = -1.50 ± 0.38) with slower turnover 

rates compared to the Bar (β = -2.23 ± 0.77) or Floodplain sites (β = -2.43 ± 0.53). While 

is less negative β in the Terraces, all three of the slopes are within error of the means. The 

δ13Csoc values, plotted against SOC and C/N, show no discernible trends or clustering by 

landform, soil horizon or parent material (C horizons) (Fig.8).  
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3.4. Statistical Test and Classification and Regression Tree 

 The surface soil SOC are similar when compared by landscape position (F = 

1.545, p = 0.162) (Fig. 9A). However, buried layer SOC did differ by landscape position 

(F = 9.784, p = 1.54 x 10-10) (Fig. 9B) Post-hoc tests show that buried layer SOC differs 

by terrace vs. bar (p = 0.038) and floodplain vs. bar/terrace also differ (p <0.0001). 

The pruned classification and regression tree results show that cross-validated 

error was minimized using 5 splits, with a prediction error of 0.24 wt. % (Fig. 10). The 

tree results show that soil horizon (= B, C) is the first predictor, with a mean SOC of 1.6 

± 0.21 wt. %.  The pH (<7.9) is the second predictor, with a mean SOC of 1.2 ± 0.09 wt. 

%. Landscape position (Floodplain = yes/no) is the third predictor, with a mean SOC of 

0.65 ± 0.02 wt. % and magnetic susceptibility (Xlf <2.37x10-7 kg/m3) is fourth and last 

predictor, where observations with a Xlf >2.37x10-7 kg/m3 have a mean SOC of 0.59 ± 

0.03 wt. % and observations with a Xlf <2.37x10-7 kg/m3 have a mean SOC of 0.25 ± 

0.02 wt. %. Predictors not useful for estimating SOC are landscape position, layer 

descriptions (surface v buried), sample thickness, ρd, EC, and Χfd.



 
 

DISCUSSION 

Radiocarbon results shows the youngest observed age is from a low-relief bar and 

the oldest observed age from a high-relief terrace. This is consistent with the common 

knowledge that older alluvial landforms (Terraces) are found at higher elevations than 

younger alluvial landforms (Bars), as well as first-principles of relief and age of 

geomorphic surfaces and underlying landforms (Ritter et al., 2002). This increasing age 

of landform with increasing relief is further supported by the appearance of clay coatings, 

more prominent soil structure and lower surface soil pH in the Terraces. These are all 

indicators of greater, more prolonged, soil development relative to the Bars and 

Floodplains. An exception to this is the fact that alkaline soils occur in the buried layers 

of the Terraces due to the occurrence of carbonate rhizoliths (Fig. 4). 

 

4.1. Effects of alluvial landscape position on soil carbon 

Total and mean SOM and SOC concentrations and stocks differ significantly 

between the Bar, Floodplain and Terrace landforms (Tables 2-5). Total SOC inventories 

increase with increasing observed landform thickness: Terrace > Floodplain >Bar. 

Although the thickness trend is biased by the sampling depths and refusal, when 

examining the proportion of total surface soil SOC to the minimum buried layer SOC, 

buried SOC was 68 % of the total SOC in the Bars, 79 % of the total SOC in the 

Floodplains, and 83 % of the total SOC in the Terraces (Fig. 8A). At all three landscape
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positions, the minimum estimate of total SOC in buried layers (soil and LDs) makes up 

over half of the total SOC inventory for that landform. Terraces have the greatest 

proportion of buried SOC and are also the oldest valley bottom landforms. This age may 

play a role in soil development and SOC storage as older, more developed, soils contain 

older C or C that is cycling more slowly (Lawrence et al., 2015).  

Bars and Terraces have higher mean SOC stocks in their buried layers than 

Floodplains. By contrast, Floodplains have the highest mean surface stock. Two of the 

three Bar sites (TZb and DCb) are composed mostly of river-derived gravel and sediment 

or sediment from bank erosion that has little to no soil development. Bar sites also 

contain fragments of woody debris (Fig. 4), indicating rapid burial and storage of OC 

contributing to their high SOC stocks in otherwise OC-poor sediments. Due to the young 

age of the Bars, the SOC may be young and labile C that has yet to decompose. 

The MZb site, having greater soil development and a much thicker profile than the 

other Bar sites, skews the mean SOC stocks for the Bars because it has a much greater 

SOC content. Intriguingly, a radiocarbon age (Table 1) shows that this MZb site has a 

median age of 21 years BP, where this sample was collected from 1.3 m below the 

surface. This shows that even though alluvial Bars make up far less area than Floodplains 

and Terraces, rapid deposition promotes SOC burial to the point that the mean SOC per 

unit area exceeds the more spatially extensive Floodplain. 

Bar sites likely vary in SOC density due to differences in texture, bulk density, 

and SOC inputs. This variability is largely a function of hydrodynamic effects due to 

proximity to the Clarks River channel, which affect observed SOC storage. For example, 

differences in flow velocity along inside and outside meander bends, woody debris 
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obstructions, large bank erosion slumps and catastrophic stripping of flood chute material 

(Nanson, 1986) may all contribute to the textural variations in the Bar soil and sediment. 

This textural variation would affect SOC concentrations. Woody debris (<2mm) (Fig. 4) 

is also present; it may take longer to decompose due to anaerobic conditions resulting 

from higher moisture levels (Sutfin et al., 2016; Berhe et al., 2007). The presence of 

woody debris may also increase the SOC stocks in the < 2 mm fraction as there may be 

debris 2 mm or smaller in size. However, this woody debris is not noted at all Bar sites 

and thus represents a heterogenous source of SOC. 

 Floodplain sites have high surface SOC content that decreases with depth into the 

associated buried layers. This low SOC content in the buried layers may be due to lack of 

soil development. The Floodplain sites all have dense understories that may produce high 

inputs of C at the surface from shallow roots (Rumpel and Kögel-Knabner, 2011; 

Jobbágy and Jackson, 2000). The top 1.5 meters of the Floodplains also have a higher 

relative magnetic susceptibility than Bars and Terraces, indicating a better drained soil 

profile where oxidation would minimize SOC retention (Grimley et al., 2004). The 

subsequent decrease in magnetic susceptibility and the occurrence of redoximorphic 

features below 1.5 m suggests a more poorly-drained portion of the profile. This depth to 

a more poorly-drained portion of the profile is possibly related to water table height. The 

decrease in SOM and SOC contents lessens with SOM contents remaining at ~2 wt % 

and SOC content remaining at ~0.25 wt % until the end of the profiles.  

Although Floodplains Clarks River valley may have greater inputs of SOC into 

the surface soil, the weakly developed and poorly structured buried layers may not have 

the physical or chemical properties needed to retain the high inputs of SOC. This lack of 
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characteristics needed to retain SOC facilitates SOC oxidation at depth in the buried 

layers (Doetterl et al., 2016). Only in deeper buried layers did poor drainage appear to 

slow the loss of SOC, promoting SOC retention.  

The Terraces experience infrequent flooding and prolonged landscape stability 

due to their higher landform relief and distance from the channel. This greater stability 

allows for greater soil development (Vervoort et al., 1999). The Bt horizons in the 

Terrace sites suggest clay translocation likely facilitated soil aggregate formation in the 

subsoil and in buried layers (Bullinger-Weber et al., 2014; Leifeld and Kögel-Knabner, 

2005). This increased aggregate formation promotes increased soil structure in the 

Terraces (Post et al., 2004; Rasmussen et al., 2005). The relatively lower magnetic 

susceptibility values in the Terrace in the first 2 m of the profiles compared to Bars and 

Floodplains at similar depths suggests poor drainage (Grimley et al., 2004). This low Χlf 

was consistent with the presence of redoximorphic features in Terrace field descriptions 

and the mapped soil series for these sites - Natalbany series: fine, smectitic, thermic 

Vertic Epiaqualfs (Soil Survey Staff et al., 2013). It is likely that the clay and silt-rich 

LDs at depth in the Terrace soils act as restrictive boundaries between layers, creating 

prolonged perched water conditions. Increased soil moisture due to poor drainage has 

been linked to increased SOC accumulation (Grimley et al., 2004).  

The deep Terrace SOC is further stabilized by these aggregates, and in 

combination with available Fe and Al in the acidic layers as well as the exchangeable Ca 

in the deeper calcareous layers, help bind SOM and promote C stabilization (Rasmussen 

et al., 2018). The calcareous layers are characterized by soil carbonate rhizoliths (Fig. 4) 

that were formed approximately 8,000 years ago under soil-forming conditions that 
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differed from today (Cerling, 1984; Driese et al., 2008). The presence of soil carbonate is 

not an uncommon occurrence as researchers in the lower Mississippi River basin to the 

west and middle Tennessee River basin to the east document the occurrence of soil 

carbonates in buried soils during the middle and late Holocene (Cox et al., 2004; Driese 

et al., 2008). These buried soil carbonates and the surrounding calcareous sediment in the 

Clarks River valley promote alkaline conditions which facilitates deep SOC storage. 

Consequently, there is a legacy effect from past Holocene climates and soil-forming 

environments that play a direct role in the storage of SOC today. 

 

4.2. Classification and Regression Tree (CART) Analysis of SOC 

The pruned regression tree analysis shows that landform type predicts SOC but is 

less influential than soil horizon and pH (Fig. 10). The selection of A horizons in the 

model yields the highest predicted mean SOC wt. % (1.6 wt %), consistent with the 

Clarks River valley SOC. The second predictor is pH and is indirectly linked with 

alluvial landform position and buried soil. The soil pH ≥ 7.9 in the model yields the 

second highest predicted mean SOC wt. % (1.2 wt %), consistent with the occurrence of 

deep calcareous buried soil in the Terrace sites. Previous work shows that exchangeable 

Ca binds to SOM and clay, leading to increased SOM stabilization and concentration 

(Rasmussen et al., 2018). This link between pH and landform was reconfirmed here using 

this recursive partitioning method and further shows that buried landscapes preserved in 

older landforms may have physicochemical properties different from the surface that 

promote SOC storage. This buried layer in the Terrace sites has a similar SOC content to 

that of the overlying surface soil and sediment (Fig. 6).  
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Lower mean SOC values are more common in Floodplains with Xlf of less than 

2.37x10-7 kg/m3. Although the label of buried vs. surface soil is not used in the pruned 

tree, landform retains information that improves prediction of SOC, where; samples are 

divided into either (i) Floodplain or (ii) Bar and Terrace sites with B or C horizons and 

pH <7.9. Buried or surface soils are still used to predict SOC, although indirectly. The 

selection of A horizons captured the majority of the surface soils, and the selection of pH 

≥7.9 only occurs in buried layers.  

 

4.3 Long-term differences in SOC turnover (β) by landform 

The δ13Csoc in all landforms and at all depth are consistent with the fractionation 

of carbon due to decomposition in the soil. The difference between mean surface and 

buried δ13Csoc, ranged from 1.5‰, 2‰, and 0.7‰ in the Bars, Floodplains, and Terraces, 

respectively. The differences in β (slope of the line of δ13Csoc to log[SOC]) , as well as 

differences in mean layer δ13Csoc, suggest that Terraces have longer turnover rates than 

either Bars or Floodplains (Acton et al., 2013; Kramer and Gleixner, 2008; Garten Jr et 

al., 2000). That in combination with the local properties of the Terraces, such as the poor 

drainage and the more alkaline sediments at depth, due to the buried calcareous soil, 

promotes further stabilization rather than decomposition. 

 

4.4 Comparison to Other Studies 

 The SOC stocks from our humid-subtropical study area are consistent with 

previous carbon-stock studies in valley bottoms but vary with the scale of the study and 
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with climate. A non-exhaustive literature review shows that four such studies focus on 

floodplains or overbank C stocks. Bullinger-Weber et al. (2014) calculate C stocks in 

restored floodplains of the Rhine, Emme, and Thur Rivers. Their study finds that 

floodplains in the Rhine have stocks of 1.21 ± 0.21 kg/m2, the Emme have stocks of 1.88 

± 0.73 kg/m2, and the Thur have stocks of 1.55 ± 0.32 kg/m2. Two Rhine river studies by 

Hoffman et al., (2013, 2009) show that floodplains retain 5.0 ± 1.3 kg/m2.  

Clarks River floodplains retain the most SOC within the surface soils and have 

mean values in the range of the studies previously mentioned. However, the floodplains 

are spatially restricted (Fig. 2). The floodplains and bars comprised 24.7 % of the valley 

bottom area in our study area and while they experience deposition on a more regular 

basis, they only store a portion of the total SOC deposited within the valley bottom. 

Rather, the terrace landscape comprises 75.3 % of the Clarks River valley bottom study 

area and likely extend further upstream and downstream. The mean SOC stock of the 

Clarks River floodplains was 2.72 ± 0.20 kg/m2, which is 54 % less than the Hoffman 

estimates (2013, 2009) and two times greater than the Bullinger-Weber estimates (2014). 

These differences to the Rhine studies may be due to elevation differences (alpine or non-

alpine floodplains) and the differences in sampling depths further emphasizing the need 

to account for deeper C. The differences between Hoffman et al., (2013, 2009) and this 

study are likely due to differences in scale. This study only focused on a small portion of 

the Clarks River valley, and as such, the results are smaller than the larger Rhine valley 

meta-analysis (ibid.). 

A study of floodplains along the Cosumnes River in northern California (D’elia et 

al., 2017) was also compared to the Clarks River. Cosumnes River SOC stock 
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calculations integrated to 1m in depth showed that floodplains contained 12.9 kg/m2 (129 

Mg/ha). When SOC stock were integrated to 3 m, which included a buried horizon, SOC 

stocks more than doubled to 28.6 kg/m2 (286 Mg/ha). This increase with depth is 

consistent with our Clarks River findings and supports the argument that deeper soil 

horizons and buried horizons need to be accounted for when estimating SOC stocks. The 

0 - 3 m stocks from the Cosumnes floodplains were less than all of the Floodplain sites (0 

- 2.7 m) in the Clarks River (MZf = 76.8 ± 0.26 kg/m2 TZf = 69.40 ± 0.40 kg/m2 DCf = 

29.73 ± 0.14 kg/m2). The results from the Cosumnes River differ from the Clarks River 

dataset likely due to climatic and vegetation differences as the Cosumnes River valley is 

located in a region with a Mediterranean climate. The differences in climate also likely 

reduce the amount of above ground biomass, with Clarks River being more densely 

forested than the Cosumnes River valley. This reduction in above ground biomass would 

limit the amount of C inputs to the soil.  

 



 
 

CONCLUSION 

Previous work shows that depositional sites have the potential to store SOC and 

that landform position does impact the fate of eroding SOC. In this study, data collected 

from the Clarks River valley in western Kentucky shows that buried SOC stocks were 

much greater than the stocks in the associated surface soils. These buried stocks made up 

over half of the SOC stocks in each landform. This study also demonstrates through a 

classification and regression tree analysis that valley bottom landscape position does play 

a role in SOC storage. The storage or oxidation of SOC at each landform appears to be 

driven by the varying physical and chemical properties of each landform position.  

Within the Clarks River valley, Bars and Terraces retain more SOC through burial 

of woody debris and the inputs of local vegetation at the Bars and the stabilization and 

protection of older SOC at the Terraces. In contrast, the Floodplains oxidize SOC in more 

weakly developed and well drained soils. Deep calcareous layers in the Terraces that may 

have formed under different soil forming processes also had a legacy effect on the storage 

of SOC as exchangeable Ca was shown to bind to SOC more readily in alkaline soils and 

sediments. Notably, the pH variability of buried soils and landscape position play an 

important role in SOC storage, suggesting that future work focusing on valley-bottom 

depositional profiles should consider these effects on SOC storage. 

 



 
 

TABLES 

 

Table 1. Radiocarbon (RC) and modeled calendar ages from the Clarks River valley. 

Landform Site Sample 
type 

Sample 
depth 
(cm) 

Lab code pMC 1-σ 
error 

RC 
(yr. BP = AD 

1950) 

1-σ 
error 

Calendar age (PD) 1 
(yr. BP= AD 2010) 

Median 
age 

yr. BP2 

Bar MZ wood 
debris 131-141 D-AMS 

025714 116.83 0.39 modern 
(post-bomb) - 

51.59-50.97 (0.075) 
24.14-24.13 (0.001) 
22.89-22.71 (0.020) 
22.12-19.82 (0.856) 
19.58-19.12 (0.048) 

21 

Floodplain MZ charcoal 256-266 D-AMS 
025715 92.91 0.26 591 22 

707-644  
627-601 
(0.954) 

 
666 

Terrace 
TZ charcoal 60 D-AMS 

025716 95.95 0.30 332 25 528-369 (0.954) 447 

MZ CaCO3 305 D-AMS 
025717 41.05 0.15 7,152 29 8,076-7,998 (0.954) 8,036 

1(PD)= Relative area under probability distribution of calibration curve which is listed in parentheses following the age range. 
Modern (post-bomb) RC ages modeled using CALIBomb. Pre-Bomb ages calibrated using CALIB 7.1. 
2The Median age in yr. BP is the median calibrated calendar age of the weighted PD. 
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Table 2. Soil organic carbon stocks for alluvial Bar sites along Clarks River. See Appendix 1, 4, & 7 for soil description 
details. 

Site Soil/Layer* Horizon Thickness 
(cm) 

Horizon 
stock 

(kg/m2) 

Mean soil/layer 
stock (kg/m2) 

Mean site stock 
(kg/m2) 

Mean landform 
stock (kg/m2) 

MZb 

Surface 

A 3 0.57 

1.48 ± 0.43 

2.78 ± 0.48 

2.16 ± 0.34 

AB 17 2.80 
Bg1 10 1.29 
Bg2 10 1.17 
Bg3 15 1.58 

Buried 

2Ab1 3 0.29 

3.49 ± 0.65 2Bg1b1 27 2.43 
2Bg2b2 45 5.03 
2Cg 26 3.10 

TZb Surface 
C1 12 0.45 

0.68 ± 0.25 0.68 ± 0.25 C2 13 1.36 
C3 7 0.47 

DCb 
Surface Ag 10 0.82 1.90 ± 0.70 

1.60 ± 0.43 Cg 34 2.44 
Buried 2Cg2 14 1.16 1.16 ± 0.47 

*Soil/Layer refers to either surface soils, buried soils or lithologic discontinuities (LD). Both buried soils and LDs are referred 
as “buried layers”. 
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Table 3. Soil organic carbon stocks for alluvial Floodplain sites along Clarks River. See Appendix 2, 5, & 8 for soil description 
details. 

Site Soil/Layer Horizon Thickness 
(cm) 

Horizon 
stock 

(kg/m2) 

Mean soil/layer 
stock (kg/m2) 

Mean site stock 
(kg/m2) 

Mean landform 
stock (kg/m2) 

MZf 

Surface 
 

A 7 0.88 3.22 ± 0.79 

3.36 ± 0.26 

2.72 ± 0.20 

Bwg 43 3.81 

Buried 
 

Bwg1b1 55 4.56 

3.40 ± 0.29 Bwg2b1 45 2.43 
Bwg3b2 50 2.73 
2Cg 86 2.87 

TZf 

Surface A 4 0.53 2.47 ± 0.65 

3.65 ± 0.43 
Bw1 45 2.96 

Buried 
 

Bw2b1 100 5.27 
4.07 ± 0.53 2Bw3b2 40 2.25 

2Bw4b2 30 1.40 

DCf 

Surface A 10 1.20 2.05 ± 0.52 

1.29 ± 0.15 

Bt 30 2.33 

Buried 

Bt2 40 2.14 

1.13 ± 0.15 

Bw 50 1.46 
Bw2 20 0.43 
2Bw3b1 30 0.77 
2Bgb1 40 0.99 
3Bg2b2 30 0.73 
4Bg3b3 32 0.81 
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Table 4. Soil organic carbon stocks for alluvial Terrace sites along Clarks River. See Appendix 3, 6, & 9 for soil description 
details. See Table 5 for additional alluvial Terrace sites. 

Site Soil/Layer Horizon Thickness 
(cm) 

Horizon 
stock 

(kg/m2) 

Mean soil/layer 
stock (kg/m2) 

Mean site stock 
(kg/m2) 

Mean landform 
stock (kg/m2) 

MZt 

Surface 
O, A, AB 5 0.78 

3.35 ± 0.65 

3.78 ± 0.32 

3.63 ± 0.20 

Btg1 25 2.56 
Btg2 38 4.02 

Buried 

Btg3 43 5.48 

3.88 ± 0.38 

2Btg 34 2.49 
2Btgss 32 2.18 
2BC 23 1.33 
2Btkgb1 65 4.03 
2Btgb 20 1.20 
2Btkgb2 45 5.52 
2BCkgb 40 6.21 
3Cg 9 0.92 

TZt 

Surface 

A 2 0.33 

1.74 ± 0.29 

4.01 ± 0.37 

EBg 19 1.75 
Btg1 28 1.88 
Btg2 30 2.21 

Buried 

Btg3b 40 2.70 

4.56 ± 0.41 

2Btgssb 45 2.95 
2Btg2b 45 2.85 
2Btg3 70 3.80 
2Btgkb 45 4.92 
2Ctk1 50 8.28 
2Ctk2 40 7.48 
3Btgk1 20 3.51 
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Table 5. Soil organic carbon stocks for alluvial Terrace sites along Clarks River. See Appendix 3, 6, & 9 for soil description 
details. 

 

Site Soil/Layer Horizon Thickness 
(cm) 

Horizon 
stock 

(kg/m2) 

Mean soil/layer 
stock (kg/m2) 

Mean site stock 
(kg/m2) 

Mean landform 
stock (kg/m2) 

DCt 

Surface 

A 3 0.52 

1.93 ± 0.31 

2.56 ± 0.34 

3.63 ± 0.20 

Btg1 27 2.06 
Btg2 24 1.88 

Btg3 30 2.35 

Buried 
Btg4 16 1.40 

3.28 ± 0.64 
Btgb1 45 4.03 

CRt 

Surface 

A 3 0.68 

2.36 ± 0.65 

3.10 ± 0.62 

Btg1 21 2.44 
Btg2 19 2.13 
Btg3 34 4.12 

Buried 
2Bssgb 55 5.43 

4.02 ± 1.22 2Btgb 27 2.07 
2BCgb 29 3.16 

 

 

 

 

 

 



 
 

FIGURES 

 

 
Figure 1. Clarks River study area. Inset map: mid-continent and eastern U.S.A. map 
showing location of study (red star). Main map: Elevation map and hill shade of the 
Clarks River study area. Color gradient shows results of digital elevation model, 
delineating surfaces between 95.4 and 108.2 m asl. Gray hill shade approximates upland 
and side slope landforms that drain into the Clarks River study area. Elevations 
corresponding to darker brown colors approximate the location of Terraces. Elevations 
corresponding to the green and tan colors denote the location of Floodplains and Bars. 
Cross-valley transects and landform sites are noted as black lines and red dots, 
respectively. Transect elevation profiles and sites are shown in figure 2. 
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Figure. 2. Cross-valley elevation transects (downstream from A to C) showing the soil 
profile locations and depth of sampling landform sites sampled. (A) MZ transect showing 
location and depths of profiles sampled at each landform: Bar (MZb), Floodplain (MZf) 
and Terrace (MZt). (B) TZ transect showing location and depths of profiles sampled at 
each landform: Bar (TZb), Floodplain (TZf) and Terrace (TZt). (C) DC transect showing 
location and depths of profiles sampled at each landform: Bar (DCb), Floodplain (DCf) 
and Terrace (DCt). (D) CR transect (upstream of A) showing location of Terrace site and 
depth of profile sampled (CRt). See figure 1 for the transect and site location along the 
Clarks river valley. 
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Figure 3. Examples of site setting for the three alluvial landscape positions studied along 
Clarks River. (A) Bar site (MZb), where samples were taken along the top of the 
vegetated Bar. Note the large woody debris deposited along the base of the Bar in the un-
vegetated and more frequently inundated zone. (B) Floodplain site (MZf), where samples 
were taken in the open-canopy area with a dense understory. Dense herbaceous 
understory was common along Floodplains. (C) Terrace site (TZt) showing location of 
auger and bulk density coring hole to left of blue tarp. Note the low amount of 
herbaceous understory, a common feature along Clarks River Terraces dominated by 
Quercus stellata (post oak). 
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Figure 4. Radiocarbon samples. (A) Woody debris from MZb (B) Charcoal sample from 
MZf (C) Carbonate rhizolith collected from TZt. See Table 1 for associated ages. 
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Figure 5. Soil profile examples for each landform type. Bars had two types of soil 
profiles, ranging from little soil development (DCb) to fairly developed (MZb) and 
reached also varied in depth to refusal. Floodplains were weakly developed B and buried 
B horizons that ranged from 2.2 to 2.8 m in depth. Terraces reached 4 m in depth and 
contained multiple LDs as well as carbonate rhizoliths at 3 m in depth. See key for 
symbology.  
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Figure 6. Physical, chemical and biological characteristics of the Clarks River soil and 
sediment profiles. See wt. % sand plot for symbology and color key. Landscape position 
corresponds to color: Bars are blue, Floodplains are green and Terraces are red. Refer to 
Fig. 3 for profile locations and Appendix 1 for profile descriptions. 
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Figure 7.  SOC stock calculations by landform position and layer position. (A) Total SOC 
stocks by landform. (B) Mean SOC stocks by landform. See color-shade key in B.  
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Figure 8. Isotope geochemistry of SOC by landform and soil horizon. (A) δ13CSOC against 
log[SOC] by landform position with regression lines and slope (β). Landform positions 
are color-coded and soil horizons are arranged by symbology. (B) δ13CSOC against C/N by 
landform position. See key in (A) for definitions of symbology in (B). Empty rows in key 
indicate the lack of those horizons in the profiles.  
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Figure 9. Box plots showing mean SOC in wt % for surface and buried layers. P values 
from Tukey HSD tests show variance in mean SOC wt % across landforms. P values 
show no statistical difference in surface SOC wt % by landform while buried layers in the 
Floodplains are statistically different from buried layers in both the Bar and Terrace. 

A 

B 
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Figure 10. Pruned Classification and regression tree analysis output with mean SOC wt % 
for each terminal node. Terminal node box plots show the mean and distribution of SOC 
wt % at each branch in the regression tree. The model had a prediction error of ± 0.2 wt 
%
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APPENDICES 

  

Appendix 1: Mosquito Zone, Bar soil profile description. 

Horizon Depth 
(cm) 

Description 

A 0-3 Light yellowish brown (10YR 6/4) sandy loam with weakly 
subangular blocky structure; common coarse roots  

AB 3-20 Yellowish brown (10YR 5/4) sandy loam with subangular blocky 
structure; common coarse roots; mica present 

Bg1 20-30 Dark yellowish brown (10YR 4/4) loam with subangular blocky 
structure; Yellowish red (5YR 5/6) redox concentrations and gray 
(10YR 6/1) redox depletions; few fine roots; redox features follow 
roots.  

Bg2 30-40 Dark yellowish brown (10YR 4/4) silty clay loam with subangular 
blocky structure; common coarse roots with clay coatings.  

Bg3 40-55 Dark yellowish brown (10YR 4/4) loam with subangular blocky 
structure; very pale brown (10YR 7/3) redox depletions; manganese 
concentrations present; common coarse to fine roots.  

2Ab1 55-58 Dark yellowish brown (10YR 4/4) silty clay loam with subangular 
blocky structure; common medium to fine roots with clay coatings.  

2Bg1b1 58-85 Dark yellowish brown (10YR 4/4) sandy loam with weakly 
subangular blocky structure; very pale brown (10YR 7/4) redox 
depletions; increase in sand and rock gravel content.  

2Bg2b2 85-130 Dark yellowish brown (10YR 4/4) silty clay loam with weakly 
subangular blocky structure; very pale brown (10YR 7/4) redox 
depletions; common coarse roots; increased gravel content and 
moisture.  

2Cg 130-156 Brown (10YR 4/3) sandy clay loam with weakly subangular blocky 
structure; common coarse roots with woody debris; strong brown 
(7.5YR 5/8) redox concentrations and pale brown (10YR 6/3) redox 
depletions; manganese concentrations; refusal.  
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Appendix 2: Mosquito Zone, Floodplain soil profile description. 

Horizon Depth 
(cm) 

Description 

A 0-7 Brown (10YR 5/3); sandy loam with subangular blocky structure; 
common medium to fine roots 

Bw 7-50 Dark yellowish brown (10YR 4/4) silt loam with subangular blocky 
structure; common coarse to medium roots with Mn coatings and 
redox concentrations around roots; charcoal fragments present at 30 
cm 

Bw1b1 50-105 Dark yellowish brown (10YR 3/4) silty clay loam with subangular 
blocky structure; common fine roots with Mn concentrations; mica 
present 

Bw2b1 105-150 Dark yellowish brown (10YR 4/4) sandy clay loam with subangular 
blocky structure; few medium to fine roots; mica present.  

Bw3b2 150-200 Dark brown (7.5YR 3/3) silty clay loam with subangular blocky 
structure; very few fine roots; clay infilling in root traces.  

2Cg 200-286 Yellowish brown (10YR 5/4) silty clay loam with subangular blocky 
to massive structure; gray (10YR 6/1) redox depletions Mn 
concentrations present; few fine roots; charcoal present; refusal at 
water table.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

Appendix 3: Mosquito Zone, Terrace soil profile description. 

Horizon Depth 
(cm) 

Description 

O 0-2 Dark brown (7.5YR 3/2); common coarse roots 
A 2-3 Dark grayish brown (10YR 4/2) clay loam with granular structure; 

common fine roots  
AB 3-5 Light brownish gray (10YR 6/2) silty clay loam with granular 

structure; common medium to fine roots; mica present 
Btg1 5-30 Brown (10YR 5/3) silty clay loam with subangular blocky structure; 

Yellowish red (5YR 5/6) redox concentrations and gray (10YR 6/1) 
redox depletions; few fine roots; redox features follow roots.  

Btg2 30-68 Brownish yellow (10YR 6/6) silty clay loam with subangular blocky 
structure; light gray (10YR 7/1) redox depletions; common very fine 
roots; mica present.  

Btg3 68-111 Brownish yellow (10YR 6/8) silty clay loam with subangular blocky 
structure; strong brown (7.5YR 5/8) redox concentrations and light 
brownish gray (10YR 6/2) redox depletions; manganese 
concentrations present; mica present; few fine roots.  

2Btg 111-145 Pale brown (10YR 6/3) silty clay loam with subangular blocky 
structure; strong brown (7.5 YR 4/6) and reddish yellow (7.5 YR 7/8) 
redox concentrations; very dark brown (10YR 2/2) redox depletions; 
manganese coatings; compact.  

2Btgss 145-177 Dark gray (10YR 4/1) silty clay loam with subangular blocky 
structure; reddish yellow (7.5YR 6/8) redox concentrations and gray 
(10YR 6/1) redox depletions; Mn concentrations; few fine roots with 
Mn coatings around roots; slickensides; mica present  

2BC 177-200 Light yellowish brown (10YR 6/4) silty clay loam with sub angular 
blocky structure; few medium to fine roots and pores; Charcoal 
fragments and mica present.  

2Btkgb1 200-265 Yellowish brown (10YR 5/4) silty clay loam with subangular blocky 
structure; few fine to medium roots; manganese nodules and channel 
infills around root traces; clay coatings inside Mn tubules; carbonate 
nodules and coatings along roots.  

2Btgb 265-285 Strong brown (7.5YR 5/8) silty clay loam with subangular blocky 
structure; manganese concentrations and clay coatings along root 
traces; Mn channel infills; fine mica present.  

2Btkgb2 285-330 Grayish brown (10YR 5/2) silty clay loam with subangular blocky 
structure; strong brown (7.5YR 5/8) redox concentrations; Mn 
channel infills; few fine roots; clay coatings; diffuse lower boundary 
with loss of strong brown color. 

2BCkgb 330-370 Grayish brown (10YR 5/2) silty clay loam with subangular blocky 
structure; strong brown (7.5YR 5/8) redox concentrations with gray 
(10YR 6/1) redox depletions; few fine roots; fine spherical Mn 
concentrations.  

3Cg 370-379 Brownish yellow (10YR 6/6) silty clay loam with subangular blocky 
structure; light brownish gray (10YR 6/2) redox depletions; 
laminations and very fine pore spaces; refusal at water table  
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Appendix 4: Twilight Zone, Bar soil profile description. 

Horizon Depth 
(cm) 

Description 

C1 0-12 Strong brown (7.5YR 5/6) unconsolidated sand and gravels with no 
structure; young vegetation with few medium to fine roots.  

C2 12-25 Dark yellowish brown (10YR 4/6) clay loam with massive structure; 
strong brown (7.5YR 5/6) redox concentrations and gray (10YR 5/1) 
redox depletions; buried woody debris; no roots.  

C3 25-32 Strong brown (7.5YR 5/6) unconsolidated sand and gravels with no 
structure; no roots; refusal.  

 

Appendix 5: Twilight Zone, Floodplain soil profile description. 

Horizon Depth 
(cm) 

Description 

Ag 0-4 Dark yellowish brown (10YR 4/4); silty clay loam with granular 
structure; common coarse to medium roots; strong brown (7.5YR 
4/6) redox concentrations along roots; mica present.  

Bwg1 4-50 Dark yellowish brown (10YR 4/4) silty clay loam with subangular 
blocky structure; common coarse to fine roots; light brownish gray 
(10YR 6/2) redox depletions and strong brown (7.5YR 4/6) redox 
concentrations; charcoal fragments present at 30 cm; very fine mica 
present.  

Bwg2b1 50-150 Dark yellowish brown (10YR 4/6) silty clay loam with subangular 
blocky structure; common medium to fine roots; strong brown 
(7.5YR 5/8) redox concentrations and light yellowish brown (10YR 
6/4) redox depletions; burrow at 50 cm; charcoal at 90 cm; diffuse 
boundary. 

2Bwg3b2 150-190 Dark yellowish brown (10YR 4/4) silty clay loam with subangular 
blocky structure; common medium to fine roots with manganese and 
clay coatings; light brownish gray (10YR 5/8) redox depletions; 
charcoal at 160cm.  

2Bwg4b2 190-220 Yellowish brown (10YR 5/4) silty clay loam with subangular blocky 
structure; strong brown (7.5YR 5/6) redox concentrations and light 
gray (2.5YR 7/1) redox depletions; manganese concentrations; very 
fine mica present.  

 

 

 

 

 

 

 

 



56 
 

Appendix 6: Twilight Zone, Terrace soil profile description. 

Horizon Depth 
(cm) 

Description 

A 0-2 Brown (10YR 5/3) loam with granular structure; common coarse to 
medium roots 

EBg 2-21 Light gray (10YR 7/2) weakly mottled silt loam with weakly 
subangular blocky structure; common coarse to medium roots; 
yellow (10YR 7/6) redox concentrations; charcoal at 20cm; very dry. 

Btg1 21-49 Light brownish brown (10YR 6/4) silty clay loam with subangular 
blocky structure; common coarse to medium roots; yellowish brown 
(10YR 5/8) redox concentrations and light gray (10YR 7/1) redox 
depletions; charcoal at 45-49 cm.  

Btg2 50-70 Brownish yellow (10YR 6/8) silty clay loam with subangular blocky 
structure; Yellowish brown (10YR 5/8) redox concentrations and 
gray (10YR 5/1) redox depletions; common coarse roots with clay 
coatings; manganese concentrations; charcoal at 60cm; increase in 
clay content; diffuse boundary.  

Btg3b 70-110 Grayish brown (10YR 5/2) silty clay loam with subangular blocky 
structure; strong brown (7.5YR 5/6) redox concentrations; few 
medium to fine roots with clay coatings; manganese concentrations; 
very fine mica present.  

2Btgssb 110-155 Dark gray (10YR 4/1) silty clay loam with subangular blocky 
structure; strong brown (7.5YR 4/6) redox concentrations and light 
gray (10YR 7/2) redox depletions; manganese concentrations 
increase; slickensides; very dense.  

2Btg2b 155-200 Yellow brown (10YR 5/6) silty clay loam with subangular blocky 
structure; gray (10YR 5/1) and light gray (10YR 7/1) redox 
depletions; manganese coatings; few medium to fine roots with clay 
coatings; mica present; clear gradual boundary.  

2Btg3 200-270 Yellow brown (10YR 5/6) silty clay loam with subangular blocky 
structure; gray (10YR 5/1) redox depletions; Manganese 
concentrations; mica present; possible carbonate.  

2Btgkb 270-315 Yellowish brown (10YR 5/4) silty clay loam with subangular blocky 
to massive structure; very few fine to very fine roots; carbonate 
rhizoliths; increase in manganese concentrations and clay coatings; 
mica present.  

2Ctk1 315-365 Light yellowish brown (10YR 6/4) silty clay loam with massive 
structure; carbonate rhizoliths; loss of manganese concentrations and 
roots.  

2Ctk2 365-405 Yellowish brown (7.5YR 5/8) silty clay loam with massive to platy 
structure; very pale brown (10YR 8/2) redox depletions; manganese 
concentrations return; clay coatings; carbonate rhizolith.  

3Btgk1 405-425 Light brownish gray (10YR 6/2) silty clay loam with massive 
structure; strong brown (7.5YR 5/8) redox concentrations; 
manganese concentrations; carbonate rhizolith. 
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Appendix 7: Dry Coyote, Bar soil profile description. 

Horizon Depth 
(cm) 

Description 

Ag 0-10 Dark brown (10YR 3/3) silty clay loam with very fine granular 
structure; few fine roots; pale brown (10YR 6/3) redox depletions.  

Cg 10-44 Dark brown (10YR 3/3) silty clay loam with massive structure; pale 
brown (10YR 6/3) redox depletions; few fine roots; mica present.  

2Cg2 44-58 Dark yellowish brown (10YR 4/4) sandy clay loam with massive 
structure, yellowish brown (10YR 5/8) redox concentrations and light 
brownish gray (10YR 6/2) redox depletions; common medium to 
very fine roots; water table; refusal.  

 

Appendix 8: Dry Coyote, Floodplain soil profile description. 

Horizon Depth 
(cm) 

Description 

A 0-10 Dark yellowish brown (10YR 3/4) silt loam with granular structure; 
common coarse to very fine roots with clay coatings; pale brown 
(10YR 6/3) redox depletions.  

Bt 10-40 Dark yellowish brown (10YR 4/4) clay loam with angular blocky 
structure; common coarse to fine roots with clay coatings; pale brown 
(10YR 6/3) redox depletions; mica present. 

Bt2 40-80 Dark yellowish brown (10YR 4/4) clay loam with angular blocky 
structure; common coarse to fine roots with clay coatings; mica 
present.  

Bw 80-130 Yellowish brown (10YR 5/4) silty clay loam with weakly angular 
blocky structure; strong brown (7.5YR 5/8) redox concentrations and 
light brownish gray (10YR 6/2) redox depletions; few fine to very 
fine roots; mica present.  

Bw2 130-150 Yellowish brown (10YR 5/4) sandy clay loam with weakly angular 
blocky structure; light brownish gray (10YR 6/2) redox depletions; 
few fine to very fine roots; very fine mica present; charcoal at 
130cm.  

2Bw3b1 150-180 Yellowish brown (10YR 5/4) sandy clay loam with weakly angular 
blocky structure; strong brown (7.5YR 5/8) redox concentrations and 
light brownish gray (10YR 6/2) redox depletions; few fine to very 
fine roots; charcoal at 170cm; clay coatings in root traces; mica 
present.  

2Bgb1 180-220 Yellow brown (10YR 5/4) sandy clay loam with angular blocky 
structure; light brownish gray (10YR 6/2) redox depletions and 
strong brown (7.5YR 5/8) redox concentrations; few very fine roots; 
mica present. 

3Bg2b2 220-250 Light yellow brown (10YR 6/4) silty clay loam with angular blocky 
structure; gray (7.5YR 6/1) redox depletions and reddish yellow 
(7.5YR 6/8) redox concentrations; mica present; loss of roots.  

4Bg3b3 250-282 Light yellowish brown (10YR 6/4) silty clay loam with angular 
blocky structure; reddish yellow (7.5YR 6/8) redox concentrations 
and gray (7.5YR 6/1) redox depletions; no roots; mica present; 
charcoal at 280cm.  
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Appendix 9: Dry Coyote, Terrace soil profile description. 

Horizon Depth 
(cm) 

Description 

A 0-3 Brown (10YR 4/3) loam with granular structure; common coarse to 
fine roots; some decaying OM.  

Btg1 3-30 Yellowish brown (10YR 5/4) silty clay loam with angular blocky 
structure; common coarse to fine roots with clay coatings; gray 
(10YR 6/1) redox depletions and yellowish brown (10YR 5/8) redox 
concentrations; mica present; manganese concentrations begin.. 

Btg2 30-54 Brownish yellow (10YR 6/6) silty clay loam with angular blocky 
structure; strong brown (7.5YR 5/8) redox concentrations and gray 
(10YR 6/1) redox depletions; manganese concentrations associated 
with redox features; common fine to very fine roots; very fine mica 
present; increase in density.  

Btg3 54-84 Light yellowish brown (10YR 6/4) silty clay loam with angular 
blocky structure; strong brown (7.5YR 5/8) redox concentrations and 
gray (10YR 6/1) redox depletions; few medium to fine roots with 
clay coatings; charcoal at 55cm; manganese concentrations.  

Btg4 84-100 Light yellowish brown (10YR 6/4) silty clay loam with angular 
blocky structure; gray (10YR 6/1) redox depletions and strong brown 
(7.5YR 5/8) redox concentrations; few medium to fine roots with 
clay coatings; manganese concentrations; consistency weakens; drier 
and moderately hard but crumbles.  

Btgb1 100-145 Light brownish gray (10YR 6/2) grayish brown (10YR 5/2) redox 
depletions and strong brown (7.5YR 5/8) redox concentrations; silty 
clay loam with angular blocky structure; few fine to very fine roots; 
manganese concentrations and coatings along channel pores; very 
fine distinct discontinuous clay coatings, light brownish gray (10YR 
6/2) in color along ped faces and channel pores; very fine mica.  
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Appendix 10: Alluvial Bar sites, elemental analyzer results.  

Landform Site Layer Horizon Depth 
(cm) 

SOC wt 
% δ13C δ15N N wt % C/N 

Bar 

MZb 

Surface 

A 0 10 2.68 -28.0 6.3 0.19 14.11 

Bg1 20 30 0.86 -26.2 7.8 0.09 9.56 

Bg2 30 40 0.55 -25.0 8.7 0.07 7.86 

Bg3 42 52 0.46 -24.9 8.7 0.06 7.67 

Buried 

2Bg1b1 55 64 0.49 -24.7 8.4 0.06 8.17 

2Bg1b1 65 74 0.39 -24.9 8.8 0.04 9.75 

2Bg2b2 109 120 0.41 -24.4 8.9 0.06 6.83 

2Cg 131 141 0.42 -25.4 6.9 0.05 8.40 

TZb Surface 

C1 0 3 0.34 -26.9 7.3 0.03 11.33 

C2 10 20 1.26 -26.6 6.8 0.11 11.45 

C3 20 30 1.24 -26.9 6.4 0.11 11.27 

DCb 
Surface 

Ag 0 6 1.03 -26.8 7.0 0.1 10.30 

Cg 20 30 0.14 -25.6 4.8 0.04 3.50 

Buried 2Cg2 44 54 1.05 -   4.9 0.04 26.25 
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Appendix 11: Alluvial Floodplain sites, elemental analyzer results. 

Landform Site Layer Horizon Depth 
(cm) 

SOC wt 
% δ13C δ15N N wt % C/N 

Floodplain 

MZf 

Surface 

A 0 10 1.97 -27.6 5.6 0.18 10.94 

Bwg 10 20 1.5 -27.0 6.3 0.15 10.00 

Bwg 30 40 0.63 -25.5 8.0 0.08 7.88 

Buried 

Bwg1b1 74 84 0.39 -24.3 7.8 0.05 7.80 

Bwg2b1 130 140 0.26 -24.5 8.0 0.04 6.50 

Bwg3b2 175 186 0.33 -24.6 7.1 0.04 8.25 

2Cg 243 253 0.22 -24.5 7.6 0.03 7.33 

TZf 

Surface 
A 0 6 2.48 -29.1 6.3 0.2 12.40 

Bw1 20 30 0.66 -26.2 8.2 0.1 6.60 

Buried 

Bw2b1 102 112 0.3 -24.9 6.9 0.04 7.50 

2bw3b2 168 178 0.33 -25.2 7.0 0.04 8.25 

2Bw4b2 208 218 0.48 -24.8 6.6 0.05 9.60 

DCf 

Surface 
A 0 6 0.68 -  7.1 0.04 17.00 

Bt 20 30 0.1 -25.3 5.7 0.03 3.33 

Buried 

Bt2 60 70 0.2 -25.3 5.1 0.05 4.00 

Bw 110 120 0.15 -25.1 5.4 0.04 3.75 

Be2 133 143 0.16 -24.3 5.0 0.03 5.33 

2Bw3b1 160 170 0.19 -26.3 5.1 0.03 6.33 

2Bgb1 200 209 0.33 -26.6 5.2 0.03 11.00 

3Bg2b2 238 244 0.21 -25.6 6.0 0.03 7.00 

4Bg3b3 260 269 0.43 -26.5 3.0 0.04 10.75 
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Appendix 12: Alluvial Terrace sites, elemental analyzer results. 

Landform Site Layer Horizon Depth 
(cm) 

SOC wt 
% δ13C δ15N N wt % C/N 

Terrace 

MZt 

Surface 

O, A, 
AB 0 9 3 -28.7 3.5 0.17 17.65 

Btg1 20 30 0.59 -26.2 6.4 0.05 11.80 

Btg2 49 58 0.22 -25.9 7.0 0.04 5.50 

Buried 

Btg3 93 102 0.22 -27.3 6.0 0.03 7.33 

2Btg 128 137 0.11 -25.5 5.4 0.03 3.67 

2Btgss 158 167 0.13 -26.1 4.2 0.03 4.33 

2BC 188 198 0.1 -25.4 3.7 0.03 3.33 

2Btkgb1 232 241 0.21 -26.5 3.4 0.03 7.00 

2Btgb 275 285 0.11 -25.0 3.8 0.03 3.67 

2Btkgb2 307 312 0.16 -26.2 4.3 0.03 5.33 

2BCkgb 349 359 0.1 -25.7 6.2 0.02 5.00 

3Cg 368 372 0.1 -25.9 6.1 0.02 5.00 

TZt 

Surface 

A 0 3 2.64 -28.6 1.1 0.22 12.00 

EBg 3 13 0.28 -25.3 7.6 0.05 5.60 

Btg1 31 41 0.19 -25.4 8.0 0.03 6.33 

Btg2 60 70 0.15 -25.3 7.6 0.03 5.00 

Buried 

Btg3b 90 100 0.23 -25.4 8.0 0.04 5.75 

2Btgssb 130 140 0.16 -25.2 7.7 0.03 5.33 

2Btg2b 163 172 0.25 -25.4 6.9 0.03 8.33 

2Btg3 241 249 0.35 -25.2 7.9 0.05 7.00 

2Btgkb 291 302 0.97 -24.4 7.4 0.12 8.08 
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2Ctk1 340 349 1.94 -27.2 6.9 0.2 9.70 

2Ctk2 370 379 0.84 -25.1 8.2 0.1 8.40 

3Btgk1 412 422 0.62 -24.7 7.8 0.08 7.75 

DCt Surface 

A 0 6 2.19 -28.1 1.2 0.16 13.69 

Btg1 10 20 0.28 -25.5 7.2 0.04 7.00 

Btg2 31 40 0.43 -24.0 7.9 0.06 7.17 

Btg3 65 74 0.34 -23.6 7.8 0.05 6.80 

CRt 

Surface 

A 0 5 1.93 -27.5 2.5 0.16 12.06 

Btg1 15 47 0.41 -26.0 7.6 0.04 10.25 

Btg1 15 47 0.25 -25.6 8.4 0.04 6.25 

Btg2 47 70 0.27 -26.1 6.6 0.04 6.75 

Btg3 47 70 0.26 -26.4 8.7 0.03 8.67 

Buried 

2Bssgb 70 110 0.22 -26.4 5.5 0.02 11.00 

2Bssgb 110 141 0.16 -25.1 5.6 0.03 5.33 

2Btgb 141 170 0.12 -24.2 6.9 0.03 4.00 

2BCgb 170 200 0.15 -25.5 6.3 0.04 3.75 
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Appendix 13: Soil organic carbon linear regression results comparing SOC correction factor to SOC measured by elemental 
analyzer.  

Regression 
Statistics        

Multiple R 0.886591362        
R Square 0.786044243        
Adjusted R Square 0.783369796        
Standard Error 0.420421423        
Observations 82        
         
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 51.94965638 51.94965638 293.9090795 1.63246E‐28    
Residual 80 14.14033386 0.176754173      
Total 81 66.08999024          
         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

Intercept ‐0.20986156 0.071580054 
‐

2.931844128 0.004392203 
‐

0.352310407 
‐

0.067412714 
‐

0.352310407 
‐

0.067412714 
X Variable 1 1.00989913 0.058907623 17.1437767 1.63246E‐28 0.892669225 1.127129035 0.892669225 1.127129035 

The correction factor is compared to the SOC measured by the elemental analyzer using a linear regression model. The model 
is shown to have an R2 value of 0.78. 
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