Old Dominion University

ODU Digital Commons

OES Theses and Dissertations

Ocean & Earth Sciences

Spring 1994

Methods for the Comparison of Timing Behavior Applied to the Pink Salmon Fisheries of Prince William Sound, Alaska

Louis J. Rugolo Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/oeas_etds

Part of the Aquaculture and Fisheries Commons, and the Biostatistics Commons

Recommended Citation

Rugolo, Louis J.. "Methods for the Comparison of Timing Behavior Applied to the Pink Salmon Fisheries of Prince William Sound, Alaska" (1994). Doctor of Philosophy (PhD), Dissertation, Ocean & Earth Sciences, Old Dominion University, DOI: 10.25777/wrgr-hv34 https://digitalcommons.odu.edu/oeas_etds/155

This Dissertation is brought to you for free and open access by the Ocean & Earth Sciences at ODU Digital Commons. It has been accepted for inclusion in OES Theses and Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

METHODS FOR THE COMPARISON OF TIMING BEHAVIOR APPLIED TO THE PINK SALMON FISHERIES OF PRINCE WILLIAM SOUND, ALASKA

bу

Louis J. Rugolo

B.S. June 1972, York College of the City University of New York

A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
OCEANOGRAPHY

OLD DOMINION UNIVERSITY
May, 1984

Approved by:	
Phillip R. Mundy	(Director)

© Copyright by Louis John Rugolo, 1984

All Rights Reserved

ABSTRACT

METHODS FOR THE COMPARISON OF TIMING BEHAVIOR APPLIED TO THE PINK SALMON FISHERIES OF PRINCE WILLIAM SOUND, ALASKA

bу

Louis John Rugolo
Department of Oceanography
Old Dominion University, 1984
Director: Dr. Phillip R. Mundy

Harvest control in salmonid fisheries was examined as a problem in the objective formulation of regulations which restrict the time and area of fishing. An ability to rigorously define and compare the form of the progression of the migration across time and between harvest areas was judged fundamental to objective harvest management decisions. The identification and evaluation of statistical methods appropriate to a quantitative comparison of empirical migratory time densities between years and harvest areas was performed.

Previously applied methods for the comparison of migratory behavior were shown to be lacking. The development of the measure of central tendency (mean date) of the time density as the consistent, unbiased estimator of migratory behavior was given. Practical evidence demonstrated that the mean date was highly resistant to factors which contribute variability to the basic expression of migratory behavior. The mean date was the statistic of choice to serve as the basis for the comparative analysis of empirical time densities.

Brood year cycle and locality were treated as fixed effects in statistical analyses which were applied to the timing statistics of catch and spawning escapement. Fixed effects, two-way and one-way analysis of variance models were examined to analyze differences in the mean dates of migration. Multiple comparison analysis, Scheffe's a priori method, correlation, and multiple regression analyses were employed to objectively define the performance of the fishery and the

escapement in time and space.

Highly significant differences were shown to exist between the timings of odd and even populations. For each cycle year for both catch and escapement the management districts were shown to be highly distinct with respect to timing behavior.

Considering even-cycle catch data, the combined migratory behavior in the Coghill and Northwestern districts was shown to be significantly different from the the combination of the remaining districts. Multiple regression analysis revealed that these two districts explained 99.98% of the total variation in the sound-wide timing behavior. Using odd-cycle catch data, Northern, Coghill, and Northwestern combined had a highly distinct timing behavior from other districts, and they collectively explained 95.95% of the total sound-wide variation in timing behavior.

Linear combinations of escapement data for historically early districts were identified which collectively explained a large percentage of the total sound-wide variation in the mean dates of migration for both cycle years. For even-cycle escapement, the subset of districts consisted of Eastern, Northern, and Coghill while for odd-cycle escapement several combinations of Eastern, Northern, Coghill and Southeastern Districts were suitable for predictive purposes.

It was concluded that migratory timing as a quantitative description of migratory behavior could be rigorously compared across years and harvest areas. Several statistical models were shown to be extremely robust for determining differences in migratory behavior when the measures of central tendency of the time densities were employed as modeled variables. Results of the analysis of even and odd cycles were consistent with the genetic distinctness between these two populations, and with the hypothesis of the genetic heritability of migratory timing.

The statistical system of analysis identified was shown to be highly appropriate for quantitatively describing the functional relationships between timing behaviors across spatial and temporal dimensions. It was concluded that this system will serve as a design standard for the comparison of migratory behavior, and that it will be applicable to the needs of harvest control for any migratory organism.

To

Evelyn and Johnny
with my eternal devotion and love.

ACKNOWLEDGEMENTS

I would like to thank Dr. Phillip R. Mundy for providing me with the opportunity to experience Alaskan salmon fisheries, and for posing the question on which this research was based. I am deeply indebted to Dr. Mundy for his undaunted patience, his exceptional vision in guiding my academic path, and for his keen editorial pen. Without his support, the completion of this dissertation would not have been possible.

My sincere appreciation is extended to Drs. John R. McConaugha, Chester E. Grosch, and Edward P. Markowski for serving on my dissertation committee. Their assistance was instrumental in the successful completion of this research.

Special thanks go to Dr. Edward P. Markowski for first introducing me to probability theory. For his councel and for his good-natured demeanor, I am deeply appreciative.

I am indebted to my colleagues Erik Barth and Howard Schaller for their assistance and encouragement, and for providing me with a buffer against the ebbs in my spirit that I encountered along the way.

I especially wish to thank Susan Cooke at the Center of Instructional Development for her cooperation and artistic talents in the preparation of the illustrations which appear in the text.

The practical experience I acquired while working with the management staff in Cordova was invaluable. I particularly wish to

thank Rich Randall and Mike McCurdy for their hospitality and insight of which they gave freely. If this research provides them with only a modicum of further understanding of the dynamics of the pink salmon fisheries in Prince William Sound, I will feel that I have accomplished a great deal.

I extend my sincere appreciation to Sam Sharr, Kris Monk, and Dave Dickson for their friendship, and for providing the fondest memories I have of my stay in Cordova. The education I gained while working with Sam's stock biology group could not have been purchased at any price.

Partial funding for this work was provided by the Yukon and Kuskokwim Fisheries Management Studies, Contract No. 83 - 611.

In many ways I am particularly indebted to Dr. Ronald E. Johnson who is solely responsible for me persuing my graduate education at Old Dominion University. Dr. Johnson has been a constant source of advice and support during my graduate education. I sincerely thank him.

I am extremely fortunate to know and to have studied under Dr. Robert M. Finks. My deepest graditude goes to him for his encouragement and for his friendship.

I would like to thank my family and Grace Main for the support they have provided me. My fondest appreciation goes to my friend Mario Paula. His companionship has been a great comfort to me.

Although he is yet too young to realize, the happiness provided by my son John Edward has given me the strength necessary to persevere. For her unyielding support, her uncompromising devotion and love, I thank my dearest friend Evelyn Rugolo. This work would not have been possible without her.

TABLE OF CONTENTS

		Page
LIST OF	TABLES	vii
LIST OF	FIGURES	x
CHAPTER		
1.	INTRODUCTION	1
	MIGRATORY TIMING	. 7
	THE PINK SALMON	13
2.	STUDY AREA AND FISHERY DESCRIPTION	. 17
3.	METHODS	26
	MIGRATORY TIME DENSITIES AND ASSOCIATED STATISTICS	. 28
	ANALYSIS OF VARIANCE AND MULTIPLE COMPARISON METHODS	35
	CORRELATION AND REGRESSION ANALYSIS	. 44
4.	RESULTS	50
	TIMING BEHAVIOR OF THE PINK SALMON FISHERY	. 50
	ANALYSIS OF VARIANCE AND MULTIPLE COMPARISONS	101
	CORRELATION AND REGRESSION ANALYSIS	. 117
5.	DISCUSSION	. 131
	MEAN DATE: THE UNBIASED, CONSISTENT ESTIMATOR	. 138
6.	CONCLUSION	. 145
D TOT TOO	DADUY	1 47

APPENDICES

A.	AVERAGE CUMULATIVE PROPORTION CURVES FOR ALL	
	MANAGEMENT DISTRICTS	153
В.	AVERAGE HISTORICAL TIME DENSITIES FOR ALL	
	MANAGEMENT RECORDED TO COM	175

LIST OF TABLES

TABLE	·	PAGE
1.	Historic catch and catch-per-unit-effort data base. Availability of data by year and by district suitable to the calculation of annual migratory time densities	.29
2.	Historic escapement data base. Availability of data by year and by district suitable to the calculation of annual migratory time densities	.30
3.	Mean and variance of the annual migratory time densities for pink salmon catch in Prince William Sound Alaska 1969 - 1982	.51
4.	Mean and variance of the annual migratory time densities for pink salmon CPUE in Prince William Sound Alaska 1969 - 1982	.52
5.	Mean and variance of the annual migratory time densities for pink salmon escapement in Prince William Sound Alaska 1969 - 1982	.53
6.	Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970 - 1982, excluding 1972, All districts combined, Prince William Sound	.54
7.	Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981, inclusive. All districts combined, Prince William Sound	.56

TABLE

8.	Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970 - 1982, excluding 1972. All districts combined, Prince William Sound
9.	Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981, inclusive. All districts combined, Prince William Sound
10.	Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1964 - 1982, inclusive. All districts combined, Prince William Sound
11.	Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1965 - 1983, inclusive. All districts combined, Prince William Sound
12.	Characteristic percentage points of the migration, the month and day, and the duration in days of the percentage points, the median, the grand mean and standard deviation of the average time densities for the even-cycle of catch, CPUE, and spawning escapement, and the earliest and latest mean dates for the management districts of Prince William Sound
13.	Characteristic percentage points of the migration, the month and day, and the duration in days of the percentage points, the median, the grand mean and standard deviation of the average time densities for the odd-cycle of catch, CPUE, and spawning escapement, and the earliest and latest mean dates for the management districts of Prince William Sound

TABLE

14.	Pearson product moment correlation coefficients (r), sample sizes (n), and critical values (p) for pairwise combinations of management districts $(r/n/p)$, for the even-cycle of catch	•	 .118
15.	Pearson product moment correlation coefficients (r) , sample sizes (n) , and critical values (p) for pairwise combinations of management districts $(r/n/p)$, for the odd-cycle of catch	•	 .120
16.	Pearson product moment correlation coefficients (r), sample sizes (n), and critical values (p) for pairwise combinations of management districts $(r/n/p)$, for the even-cycle of spawning escapement	•	 .121
17.	Pearson product moment correlation coefficients (r), sample sizes (n), and critical values (p) for pairwise combinations of management districts (r/n/p), for the		
	odd-orolo of onorming occompant		122

LIST OF FIGURES

FIGURI	E P	AGE
1.	Topographic adjustments in Prince William Sound due to the earthquake of March 27, 1964	.16
2.	Prince William Sound Management Region	.18
3.	The Pink Salmon Management Districts	.20
4.	Hatchery Facility locations	.25
5.	Sound-wide. Average cumulative proportion of even-cycle pink salmon catch, and the upper and lower bound for its 95% confidence interval	.64
6.	Sound-wide. Average cumulative proportion of even-cycle pink salmon CPUE, and the upper and lower bound for its 95% confidence interval	.64
7.	Sound-wide. Average cumulative proportion of odd-cycle pink salmon catch, and the upper and lower bound for its 95% confidence interval	.65
8.	Sound-wide. Average cumulative proportion of odd-cycle pink salmon CPUE, and the upper and lower bound for its 95% confidence interval	. 6 5
9.	Sound-wide. Average cumulative proportion of even-cycle pink salmon escapement, and the upper and lower bound for its 95% confidence interval	.66
10 .	Sound-wide. Average cumulative proportion of odd-cycle pink salmon escapement, and the upper and lower bound for its 95% confidence interval	.66

FIGURE

11.	The average number of days required for the central 95% of the migration (2.5 - 97.5%) to completely traverse the harvest area as measured by even-year catch data
12.	The average number of days required for the central 95% of the migration (2.5 - 97.5%) to completely traverse the harvest area as measured by odd-year catch data
13.	The average number of days required for the central 95% of the migration (2.5 - 97.5%) to completely escape to the spawning grounds in an even year
14.	The average number of days required for the central 95% of the migration (2.5 - 97.5%) to completely escape to the spawning grounds in an odd year
15.	The historic average mean date of migration plus and minus one standard deviation by management district as measured by even-year catch
16.	The historic average mean date of migration plus and minus one standard deviation by management district as measured by odd-year catch
17.	The historic average mean date of even-year spawning escapement plus and minus one standard deviation for each management district
18.	The historic average mean date of odd-year spawning escapement plus and minus one standard deviation for each management district
19.	The average mean date of spawning escapement (top curve) and the average mean date of catch (bottom curve) of even-year catch and spawning escapement by management district
20.	The average mean date of spawning escapement (top curve) and the average mean date of catch (bottom curve) of odd-year catch and spawning escapement by management district

21.	Sound-wide. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for even years excluding 1972
22.	Sound-wide. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for odd-years
23.	Eastern District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for even years excluding 1972 and 1974
24.	Eastern District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for odd years
25.	Northern District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for even years excluding 1972 and 1974
26.	Northern District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for odd years
27.	Coghill District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for even years excluding 197296
28.	Coghill District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for odd years
29.	Northwestern District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for even years excluding 1972 and 1978
30.	Northwestern District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for odd years.

FIGURE

31.	Southwestern District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for even years excluding 1972, 1974 and 1978
32.	Southwestern District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for odd years
33.	Montague District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for odd years excluding 1969 and 1971
34.	Southeastern District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for even years excluding 1972 and 1974
35.	Southeastern District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for odd years

CHAPTER 1

INTRODUCTION

Harvest control can be viewed as an algorithm for the interpretation of information which is used to direct the operation of a fishery toward some objective (Mundy 1983a). In commercial marine fisheries, the ultimate objective is the proper division of a biologic population into two categories, catch (dead) and escapement (alive). The minimum information necessary to achieve the objectives of harvest control is divided into the categories of spatial distribution (where), temporal distribution (when), and abundance (how many) with respect to each identifiable stock of fish and fishing gear under the jurisdiction of the harvest control authority. Indeed, a rational system of harvest control is the fundamental requirement of a properly managed fishery (Mundy 1983a).

Harvest control in salmonid fisheries, or in other migrating organisms, is a problem of objectively formulating regulations which restrict the time and area of fishing. Within the course of a season, the harvest manager directs the operation of the fishery toward the achievement of the harvest objective that is established by the proprietor of the resourse. In fisheries of this type, it is often the complement of the harvest objective, the escapement goal, that forms the basis for harvest control decisions. In either case, the extent to

which the management agency can define the abundance of stocks and gear types by area and time, determines the ability of the agency to direct the fishing operation toward the achievement of the specified harvest objective (Mundy 1983a).

In general terms, the harvest control process consists of a series of decisions to harvest or not to harvest. The consequences of such decisions are immediate and irrevocable. Fish that have been harvested can no longer contribute to the annual escapement, while those that have escaped the fishery are no longer susceptible to commercial harvest. It is the dynamic process of balancing these mutually exclusive events on the fulcrum of specified harvest goals that necessitates precise and timely harvest information.

In the case of maturing salmonids, an ability to rigorously define the form of the progression of the migration through time in each harvest area is fundamental to objective management decisions. In fisheries that operate over very large geographic reference frames, the ability to quantitatively define the spatial progression of the migration is also necessary. Any method which could provide such information, and rules for its implementation, would be of significant benefit to the management agency in terms of the formulation of harvest control regulations during the course of fishing operations.

The central objective of this study is to identify and evaluate those statistical methods which are appropriate to a rigorous, and quantitative comparison of empirical migratory time densities, the quantitative representation of migratory behavior. The methods will then be incorporated into a dynamic system of analysis whose utility will be demonstrated on the Prince William Sound commercial pink salmon fisheries. To be successful, the system must quantitatively describe, for any year, the functional relationships between the timings of catches, and spawning escapements by geographic area for any arbitrary level of production. Such a description would provide a rational basis for harvest control decisions which direct the operations of the fishery toward the achievement of catches within conservation limits, and which achieves a distribution of spawning escapement that provides full utilization of spawning grounds in each area.

Prince William Sound, Alaska is the location of major commercial fisheries for salmon and other species. All five of the Pacific salmon species indigenous to North America (Oncorhynchus spp.) occur in these waters, among which the pink salmon (O. gorbuscha) is of greatest economic importance. Lesser fisheries exist for chum (O.keta) and sockeye (O.nerka). Pink salmon usually constitute ninety percent, by number, of the annual salmon migration into Prince William Sound. Chum and sockeye account for approximately six and three percent, respectively. Less than one percent is attributed to chinook (O. tshawytscha) and coho (O. kisutch) combined. Total annual numbers (catch plus escapement) for pink salmon from 1960 to 1982 averaged 7.8 million (S = 6.1). The ex-vessel economic value of commercial catch for natural returns of pink salmon during this period is estimated to be 8.9 million dollars per season (based on an historic average commercial catch of 6.2 million (S = 5.6), a weight of 3.9 pounds per fish and a

price of 0.37 dollars per pound) (Anonymous 1982).

Fisheries management in Prince William Sound is characterized by extraordinary complexity. Harvest control operations must function under a variety of competing biological, economic, and geographic constraints. The Alaska Department of Fish and Game (ADF&G) office in Cordova is responsible for approximately 38,000 square miles of coastal waters and inland drainages, in which more than 800 tributaries have been identified as sources of pink salmon production (Noerenberg, 1961). Fisheries occur in eleven major management districts corresponding to the local geography and distribution of the five species of Pacific salmon harvested by the commercial fishery (Anonymous 1982). geographic component of these constraints is expressed in the difficulties encountered in directing the operations of the fishery within these eleven districts. Additional dimensions of complexity have been imposed by the development of five major hatchery facilities and by changes in productivity created by the catastrophic earthquake of March 27, 1964.

Hatchery races of salmon with similar migratory timing and migration routes occur coincidentally with natural stocks in the fishery. Optimal utilization of these stocks is achieved with higher exploitation rates than those applied to natural stocks. Regulatory complexity is imposed, consequently, by the necessity of the distribution and allocation of various levels of fishing effort among stocks of widely differing optimum exploitation rates (Wright 1981).

Effective apportionment of effort, of course, must consider spatial as well as temporal dimensions. A number of authors (see Killick 1955, Alexandersdottir and Mathisen 1982) have suggested, in the case of maturing salmonids, that each stock (geographic isolate) may have a characteristic migratory timing. Harvest regulations, therefore, must also be directed at achieving a proportionate distribution of catch through time in an attempt to avoid differential exploitation of the stocks.

The management objective in Prince William Sound for both sympatric and supplementally produced fish is to maintain and enhance salmon runs by the achievement of desired escapement goals for each stock component, while allowing orderly harvest of all fish surplus to spawning requirements. Ideally, this objective would be best achieved by managing the salmon escapement on a stream-by-stream basis with a 'terminal area fishery' for each stream (Wright 1981, Schnute and Sibert 1983). Logistic and economic limitations imposed by the requirement to formulate complex regulations across an area of such geographic complexity, however, preclude this type of control. Regulatory action, consequently, can presently control fishing operations only on the district level, with minor exceptions.

Harvest management in Prince William Sound requires a flexible, rigorous, and quantitative definition of the relation between the progression of catch and spawning escapement in time and space. Knowledge of the migratory timing of the target species in each district is paramount to such model development, since the aim of harvest control

is to define the relation between the timings of catch and escapement for as many areas as the data permit. The formulation of fishing regulations which minimize errors in the attainment of spawning escapement objectives across temporal and spatial dimensions, and which allow the fleet to take the maximum possible harvest, must rely on the definition of the relations between the timings of catches and escapements.

The following specific objectives and questions to be addressed by this study will each be evaluated for differences between the average performance across the even-year, and the odd-year brood cycles for pink salmon;

- (1) To what extent do catch and spawning escapement data allow the description of the fishing operation?
- (2) Are there significant differences in the mean dates of catches and spawning escapements between districts. If so, which districts are similar, and which are different?
- (3) Determine the timing of catches, and spawning escapements among the management districts.
- (4) Determine the individual contribution of the management districts to the overall, sound-wide timing behavior.
- (5) Are there linear combinations of the eight districts which can be used to predict the timings of catches and escapements on a sound-wide basis?
- (6) Determine the nature of the relation, if any, between the timings of catches, and spawning escapements among districts.

Migratory Timing

The basic operational hypothesis governing this analysis holds that migratory behavior in salmonids is a genetically transmitted, environmentally mediated, adaptive response of the population (see Leggett 1977; Mundy 1979, 1982). The time of arrival in the fishery of the members of a migratory stock is an inherited trait that may be influenced by abiotic or physical factors. Migratory time densities across time and space, therefore, may be sufficiently distinct and conservative to serve as reliable classificatory characteristics of migratory species.

The evaluation of this migratory behavior from commercial catch data introduces the variability of regulatory, economic, and social factors which may obscure its fundamental form. While it is realized that this variability may be present, it is assumed that it is the sourse of only a small constant bias.

In Pacific salmon fisheries, management operations are necessarily driven by the dominant aspect of behavior of the target species, the migratory timing or abundance per unit time (Mundy 1982). The representation of an annual migration in terms of abundance per unit time and its application as an objective harvest control tool has been demonstrated in a number of commercial marine applications (Vaughan 1954; Roberson and Fridgen 1974; Walters and Buckingham 1975; Mundy 1979; Mundy 1982; Mundy and Mathisen 1981; Hornberger and Mathisen 1982;

Brannian 1982; Schnute and Siebert 1983).

The empirical methodology based on catch and effort data, which is used to characterize the migratory behavior of the target species in Alaskan salmon fisheries is given by Mundy (1984). Migratory timing is defined as the abundance as a function of time in a fixed geographic reference frame for a single life history stage of a population whose abundance may be measured from that locale (Mundy 1979). The daily proportion of catch (or catch-per-unit-effort) per unit time is termed the 'time density'.

The time density is an empirical probability density function in the time domain with variable t_i (date of capture) which can be discrete or continuous depending on the magnitude of the time interval employed. This function assigns a probability to each of the elements of the random variable T (time) in its space R; $t_i \in T$ in space R. If the arrival of a single individual in the fishery on the i-th time interval (i = 1 to m) is defined as an event with outcome t_i , and n_i is the number of such events, then the empirical probability density function (time density) of T is:

$$f(t) = P(T=t_i) = n_i / n$$
 (1)

where,
$$n = \sum_{i=1}^{m} n_i$$

Equivalently, $P(T=t_i) = p_i$ where, p_i is the probability associated with the outcome t_i . Thus, the time density of the random variable T assigns an empirical probability measure to each element in the space R of T. The random variable T, therefore, has a distribution of probability associated with the space R.

We note that f(t) is a real-valued function which satisfies the properties of a probability density function (Hogg and Tanis 1977) since, $f(t) = P(T=t_i)$, $t_i \in R$:

(1)
$$f(t) > 0$$
 $t_i \in R$

(2)
$$\sum_{\mathbf{t} \in \mathbb{R}} f(\mathbf{t}) = 1$$

(3)
$$P(T \in A) = \sum_{t \in A} f(t)$$
 where, $A \in \mathbb{R}$.

When each observation is the sum of the probability (or proportion) of the current time interval, and all preceeding probabilities, the time series is termed the cumulative time density or performance curve (Mundy 1983). By analogy, therefore, the empirical cumulative probability density function (cdf) is:

$$F(t) = P(T \le t) = N(n_i: t_i \le t) / n$$
 (2)

where, n and n_i are as previously defined, and N represents the number events defined within the parentheses. The cumulative density function, therefore, represents the number of events (n_i) with outcomes t_i that are less than or equal to t divided by the total number of outcomes (n).

The measure of central tendency, or mean date of capture, of the time density is represented by:

$$E(T) = \overline{t} = \sum_{i=1}^{m} t_i f(t_i), \qquad (3)$$

while the measure of dispersion, or variance, of the distribution function is:

$$V(T) = S^{2} = \sum_{i=1}^{m} (t_{i} - \overline{t})^{2} f(t_{i}).$$
 (4)

To model the migratory behavior in terms of proportion of total abundance as a function of time is a significant achievement in that the migration is no longer measured with the dimension, number of fish, but

is solely measured in the dimension of time. Annual migrations of salmon, therefore, may be conveniently and explicitly described in terms of the mean (\bar{t}) and variance (S^2) of the time density.

The basic premise underlying this analysis is that migratory timing, as a quantitative description of migratory behavior, can provide the basis for a comparative analysis of migrations across time and space. Migratory timing by definition, however, is specified with respect to a single, fixed geographic reference frame. Demonstrating the utility of the time density function as a comparative tool in fisheries which operate over different geographic reference frames, or between different fisheries, is the principal objective of this study. Note that 'different geographic reference frames' is used in the generic sense. It could, for instance, also denote different classes of migratory time densities within a single point in space, i.e. that based on catch, CPUE, or spawning escapement, for example.

The question of the reliability of the statistics of migratory timing is very crucial to the analysis of Prince William Sound. In a simulation study of the Yukon River chinook salmon fishery, Butt (1984) found that estimates of the mean date of migration were within 35% of the true mean of the population if the time domain was randomly sampled at a rate greater than 12%. Sampling randomly 50%, and 75% of the time domain, the estimates of the true population mean date were within 2%, and less than 1%, respectively. Butt's analysis assumed a 100% exploitation rate of all available fish on each date sampled, and a non-varying catchability coefficient q, during the course of the season.

Schaller (1984), in a simulation study of the Copper River sockeye fishery, found that the mean date of migration was a highly conservative property of migratory behavior. Estimates of the mean of the time density, he found, were independent of the rate of migration of the target species, patterns of fishing effort, and a variable catchability coefficient, q, as long as a threshold exploitation rate of 70% was achieved.

Highly conservative estimates of rates of exploitation for the commercial pink salmon fisheries in Prince William Sound (1969 - 1982) averaged 81% (S = 8.3), and 77% (S = 7.7) for the even-year and odd-year cycle, respectively. Sample estimates for the mean of the time densities, therefore, are likely to be extremely reliable. A contributing factor in this regard is that the regulatory agency in Prince William Sound intentionally manages for a proportionate distribution of effort through time, which further improves the reliability of the estimate of the mean date of migration.

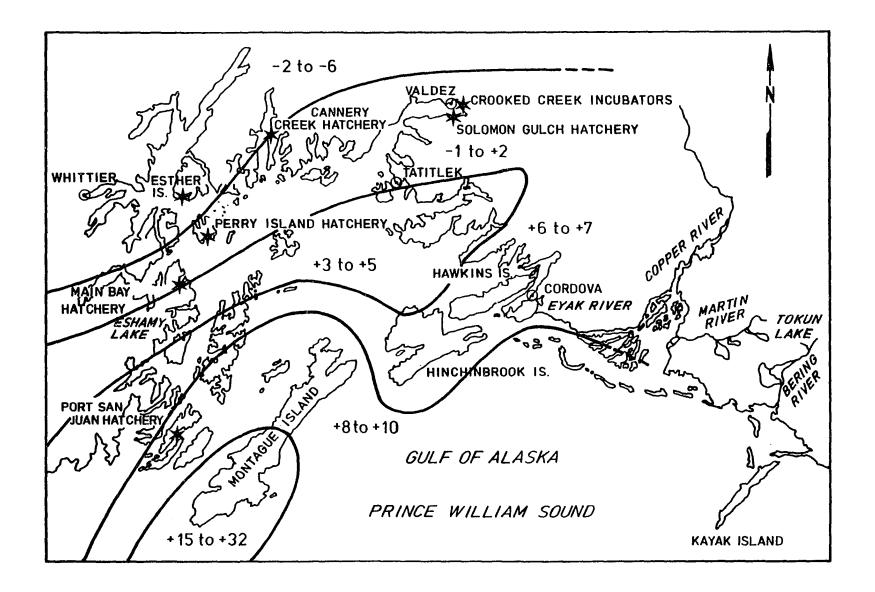
The mean of the time density is a most promising statistic for the comparative analysis of migratory behavior. As an estimator, it possesses all of those characteristics identified as being most desirable. In addition to its unbiased and consistent properties, it is, unexpectedly, highly resistant to factors which contribute variability to the basic genetic expression of migratory behavior. Practically, it benefits from being easily estimable and readily understood.

The Pink Salmon

Pink salmon display a unique life history trait relative to other salmonids, they spawn and die in their second year of life. Two genetically distinct lines (odd-year and even-year spawners) exist (Altukhov and Salmenkova 1981; Alexandersdottir and Mathisen 1982). In contrast to other Pacific salmon, pink salmon migrations of commercial importance occur in both even and odd numbered (or cycle) years. Considering the genetic inheritability of migratory timing, it is inconsistent with the basic operational hypothesis to combine even-year and odd-year harvest data when generating migratory time densities. The models constructed and analyzed by this study, therefore, will be applied to even-year and odd-year cycles independently.

Pink salmon utilize intertidal areas to for spawning. Virtually all streams in Prince William Sound with year round flow, gravel substrate, and moderate intertidal gradient have pink spawning populations (Anonymous 1975). Alexandersdottir and Mathisen (1982) suggest that separate population components of pink stocks occur in streams located within a defined geographic area and having spawning times similar to each other. Early, middle and late runs (the term, run, is a synonym for migration) of pink salmon are distributed by geographic zones associated with different stream temperature regimes (Sheridan 1962; Anonymous 1975). Early runs (peaking 7/20-8/5) occur in a few fiords of the northern mainland. Middle runs (peaking 8/6-8/20) utilize most large, cold mountain streams while late runs (peaking

8/20-9/10) occupy the majority of island, mainland and lake fed streams.


Long term trends in cycle or single year dominance favor even-year stocks (Anonymous 1975; McCurdy 1981; Anonymous 1983a).

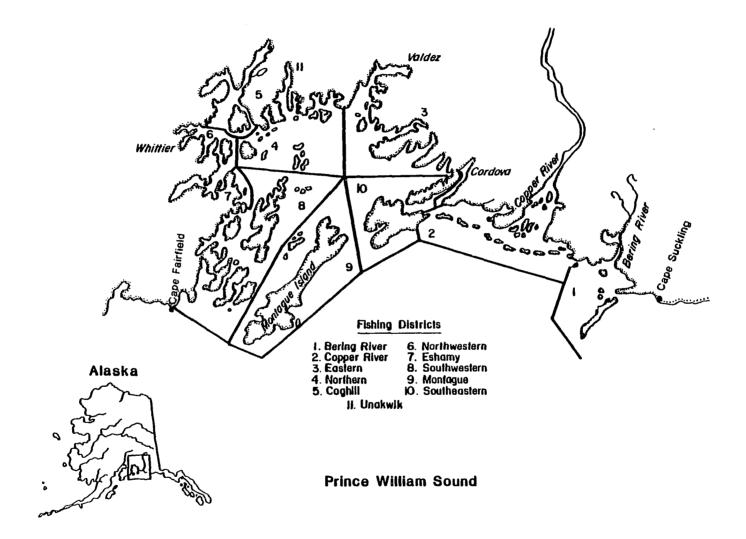
On March 27, 1964 an earthquake of severe intensity, measuring 8.5 on the Richter scale, struck Prince William Sound. Topographic adjustments occurred in both horizontal and vertical directions. The seaward shift was as much as 64 feet while elevations changed from -6 feet in Whittier to +32 feet near Montague island (Fig. 1). Of those tributaries identified as major sources of pink salmon production, approximately 62% experienced uplift from 3 to 32 feet, 19% subsided from 2 to 6 feet, and 19% remained essentially unchanged (-1 to +2 feet) (Anonymous 1975; Anonymous 1983a).

Intertidal spawning and rearing environments utilized by pink salmon were heavily impacted. Alterations ranged from the complete removal of tidal influence through uplift to the elimination of intertidal and freshwater environments through subsidence and subsequent saltwater inundation (Noerenberg and Ossiander 1964; McCurdy 1983). The net effect, however, was to increase the amount of potential spawning area by several million square meters as a result of the overall lengthening of stream courses (Anonymous 1975; Anonymous 1983a). It may take many years to realize this potential, since uplifted intertidal zones must stabilize and rehabitation must occur before production of pink salmon can begin.

The altered intertidal area resulted in reversed productivity rates in favor of odd-year stocks which utilize, to a greater extent, upstream or freshwater spawning grounds (Noerenberg 1963). These environments experienced less alteration than the intertidal zones in the aftermath of the earthquake. Not surprisingly, the migratory timing of the annual migration for both stocks was affected. Comparisons of migratory behavior prior to the earthquake to subsequent behavior for pink stocks, consequently, are not valid (Noerenberg and Ossiander 1964; Roys 1968; McCurdy 1983).

Figure 1. Topographic adjustments due to the earthquake of March 27, 1964.

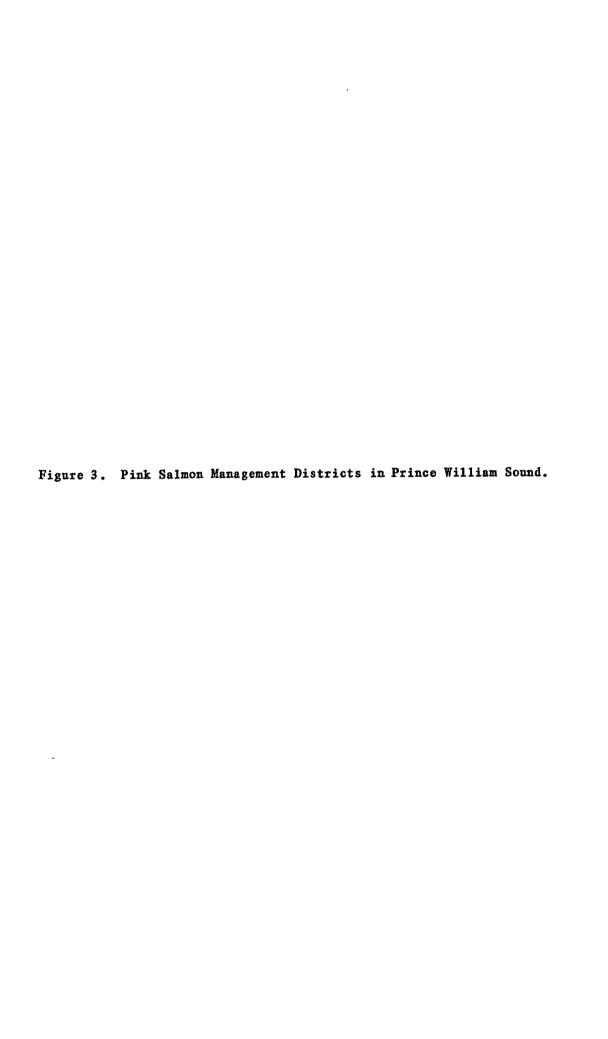
CHAPTER 2

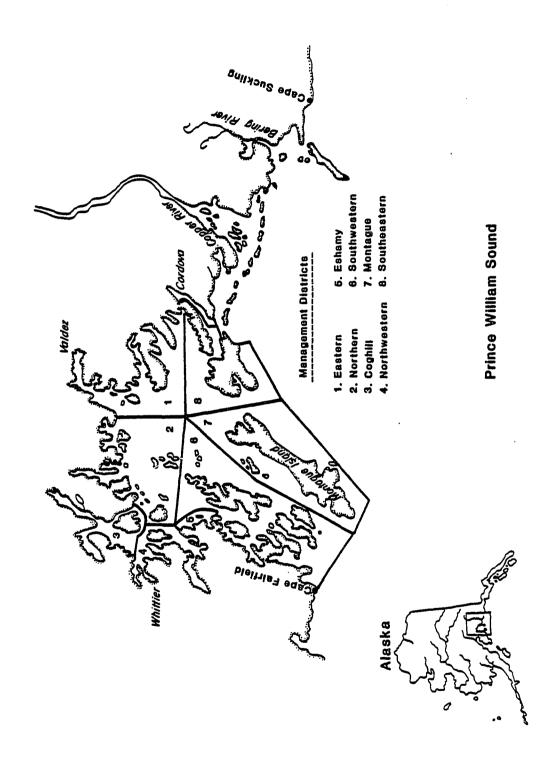

STUDY AREA AND FISHERY DESCRIPTION

Located in the south-central area of Alaska, Prince William Sound is a region of great economic importance in natural resources, of which the salmon fishery is the mainstay of the economy. Of the five species of Pacific salmon (Oncorhynchus spp.) indigenous to this area, pink salmon constitute an average ninety percent (1960-1982), by number, of the annual salmon migration (Anonymous 1982).

The sound is a relatively deep, island studded embayment of substantial complexity, shaped over time by glacial activity, earthquakes, and meltwater runoff. Commercial fisheries management, seated in Cordova, has jurisdiction over all coastal waters and inland drainages on the north-central Gulf of Alaska between Cape Suckling and Cape Fairfield consisting of the Bering River, the Copper River, and Prince William Sound (Fig. 2). These watersheds, together with their adjacent land area, represent an approximate area of 38,000 square miles. The region consists of eleven management districts corresponding to the local geography and distribution of the five species harvested by the commercial fishery. The management objective for all districts is the achievement of desired escapement goals for each stock component of the annual migration and the full utilization of fish which are surplus to these needs (Anonymous 1982).

Figure 2. Prince William Sound Management Region.


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Of the eleven management districts which constitute the Prince William Sound region, the annual pink salmon commercial harvest is restricted, almost entirely, to eight districts known as Prince William Sound proper, (1) Eastern, (2) Northern, (3) Coghill, (4) Northwestern, (5) Eshamy, (6) Southwestern, (7) Montague, and (8) Southeastern (Fig. 3). Only incidental catches of pink salmon occur outside this area (Anonymous 1982). In spite of the relative proximity of the Bering River, Copper River, and Unakwik districts to these eight districts, sufficient physical and regulatory differences exist to account for the concentration of pink salmon catches in Prince William Sound proper.

Prince William Sound proper represents approximately 8000 square miles of coastal waters and inland drainages. More than 800 tributaries have been identified within this area as sources of pink salmon production. For the purposes of this study, the analysis of the pink salmon commercial fishery in Prince William Sound will be restricted to these eight districts.

The commercial fishery of Prince William Sound has existed since 1889 with the establishment of the first salmon cannery at Eyak. It has since experienced three distinct phases of development (Anonymous 1975; Anonymous 1983a). During the initial phase, 1889-1915, sockeye and, to a lesser extent, chinook and coho salmon were the preferred species due to marketing conditions. The major fishery occurred on the Copper River delta where these species were most abundant. Pink salmon were harvested incidentally to other catches, while chums were avoided entirely.

Cannery construction and operation proliferated in the second phase of development, 1915-1959, and management of the fishery resource was assumed by the federal government. A major trap fishery (floating and pile driven) accounted for the majority of the annual harvest relatively small purse seine and gill net fisheries also were in operation. Traps and sites were continually varied in a search for the design and location which produced the greatest catches. Ultimately, federal regulations fixed these localities to the sound entrances and the major migratory zones.

With the development of such intense fishing effort, catches of both pink and chum salmon escalated to high levels which peaked in the late 1940's and harvests of these stocks declined, thereafter. Average annual catches of even-year pink, odd-year pink, and chum salmon were approximately 8.0, 6.0, and 0.7 million fish, respectively. At the close of this era of federal management, stocks of both pink (even-year) and chum salmon were driven to approximately one-half of the historic maximum levels while the odd-year pink cycle was, seemingly, near total extinction (Anonymous 1975; Anonymous 1983a).

Following Alaskan statehood in 1959, the third phase of development began with the prohibition of the trap fishery and the subsequent proliferation of the purse seine fleet, and the assumption of the management, research and law enforcement responsibilities for the resource by the state government. The commissioner of the Alaska Department of Fish and Game (ADF&G) was granted authority to adjust intraseason fishing operations in terms of time and area. Pink and chum

salmon remained the primary target species, whose harvest was regulated according to the achievement of desired escapement goals for each district. As a result of a greater flexibility in regulatory powers granted to the resident biologist, and a few initial years of favorable survival, significant increases in pink and chum salmon stocks occurred.

A fourth and ongoing phase in the history of this fishery was initiated in 1971 by legislative action which emphasized the establishment of large scale salmon aquaculture programs. Further legislation on limited entry to the commercial salmon net fisheries and the formation of regional salmon planning associations sets the stage for a bold new era whose consequences are still not fully understood. Presently, there are two public, and four private non-profit hatchery locations either operational or proposed in Prince William Sound (Fig. 4) (McCurdy 1981). The public sites are Cannery Creek and Main Bay, both operated by the ADF&G Fisheries Rehabilitation, Enhancement and Development Division (FREDD). The private non-profit sites are; (1) Solomon Gulch - proposed by Valdez Fisheries Devopment Association (V.F.D.A.), (2) Perry Island - operated by NERKA, Incorporated, (3) Esther Island facility, and (4) Port San Juan, Evans Island site proposed and operated, respectively, by Prince William Sound Aquaculture Corporation (P.W.S.A.C.).

The successful management of both wild and hatchery stocks with similar timing and migration routes, but requiring different exploitation rates, poses additional levels of regulatory complexity (see Wright 1981). Although state policy mandates management action

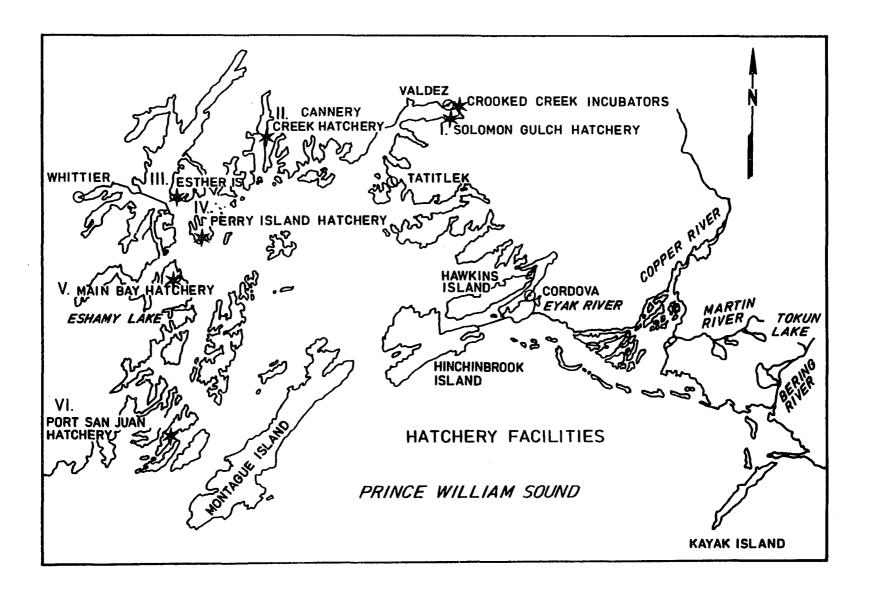
favoring the protection of wild stocks, the resource manager must permit hatchery owners and common property fishery participants to harvest hatchery returns in a timely fashion. This is necessary to ensure product quality and to allow the proper level and distribution of escapement to the hatchery for purposes of brood stock and operational budget requirements (McCurdy 1981).

Legal gear for the salmon fishery is restricted to purse seines and both drift and set gill nets. Purse seine fishing is permitted in all districts with the exception of the Eshamy, Copper and Bering River districts. Pink and chum salmon are the primary target species of this gear type. Drift gill netting is permitted in the Bering River, Copper River, Coghill, Unakwik and Eshamy districts. Set gill netting is legal in Eshamy only. The gear is restricted to one gill net of 150 fathoms in length, or to one purse seine of 125-150 fathoms in length, per boat (Anonymous 1983b).

In 1982, 525 drift gill net and 260 purse seine permit holders participated at some time during the season. There was no set gill net fishery this year due to the closure of Eshamy. The duration of the pink salmon fishery in Prince William Sound is usually from mid-May to late August, and it is regulated by emergency orders in terms of the time and area allocation of fishing effort permitted during the season (Anonymous 1982).

Catch data are generated by gill net and purse seine participants.

Escapement data are collected by aerial and ground observations from


two-hundred eleven (211) index spawning streams which, collectively, represent an average of eighty-five percent of the total spawning activity in Prince William Sound (Pirtle 1977). The weekly escapement estimates for each index stream are separated into the categories of stream, mouth (of stream), and bay (adjacent to stream), according to the actual location of the fish on the date of the survey.

Intraseason control of the commercial pink salmon fishing operation depends on the timely analysis of catch and escapement data. Commercial fisheries regulations are developed by comparing the time series of current performance of escapement by district to the time series of historical performance of both the cycle year and the brood year. Similarly, current catch by district is compared to historical performance of average cycle and brood year catch.

Simply stated, whenever the current time series of escapements are greater than or equal to the historic time series, scaled to current escapement goals, regularly scheduled fishing periods are permitted. Otherwise, management action to prevent harvest is indicated. Management also considers the comparison of the current time series of catch to the historic time series of catch which is expected on the basis of the current forecast of total abundance (Pirtle and McCurdy 1980; Mundy et al. 1982; Anonymous 1982; Anonymous 1983a).

Figure 4. Hatchery Facility locations.

- I. Solomon Gulch
- II. Cannery Creek
- III. Esther Island
- IV. Perry Island
- V. Main Bay
- VI. Port San Juan

CHAPTER 3

METHODS

The daily catch and effort data of thirteen years, obtained from the Computer Services Division of the Alaska Department of Fish and Game, (1969-1982, inclusive) were the subject of the analysis. A maximum of seven years of observations for the odd-cycle, and six years of observations for the even-cycle, were available for any single district. Catches from the purse seine fishery were treated independently from the catches of the set and drift gill net fisheries.

The measure of nominal effort used in the construction of the catch-per-unit-effort (CPUE) time densities was the boat day, the number of boats that made at least one commercial delivery of fish to a processor within a given twenty-four hour period. Vessels that made multiple deliveries during the same fishing period were counted only once in the calculation of total effort. Catch-per-unit-effort is the ratio of the total numbers caught (C) to total nominal effort (f) during the fishing period, C/f (CPUE).

At the time of delivery of fish to a processor, catches are reported according to the area of capture. The district boundaries which constitute the management area of Prince William Sound (Fig. 3) have long been fixed and the fishery operates effectively within them.

The vast majority of catches are obtained in near shore waters and embayments adjacent to 'home-stream' entrances. Indeed, it can be argued that virtually no overlap of districts by the fishing operation occurs. Inaccurate reporting of locality of catch, on the other hand, may be a source of error, however such error is regarded as a small constant bias. Adjustment in the catch data for area effects, therefore, was not undertaken.

The following time series data categories were designated for the analysis: daily catch, daily proportion of total catch, cumulative daily catch, and cumulative daily proportion of total catch. The same four data categories were used for the analysis of catch-per-unit-effort.

Twenty years of weekly escapement data (1964-1983, inclusive) of the 'stream count' variety, collected from the index spawning streams (Computer Services Division, ADF&G), were subject to the analysis. A maximum of ten years of observation for the odd-cycle, and ten years of observation for the even-cycle, were available for any single district. Escapement enumeration of the 'bay count' and 'mouth count' varieties were not considered. The following time series data categories were designated for the analysis: weekly escapement, weekly proportion of total escapement, cumulative weekly escapement, and cumulative weekly proportion of total escapement.

3.1 Migratory Time Densities and Associated Statistics

Using the empirical methodology of Mundy (1979), migratory time densities for each annual data category of catch, CPUE, and spawning escapement, were computed on a sound-wide basis (all districts combined) and for each district independently, for every available year of data (Tables 1 and 2). The descriptive statistics of mean (central date of the migration), and variance (dispersion of the migration through time), along with the measures of the shape of the distribution function (skewness and kurtosis), were calculated for all annual time densities. Unless otherwise noted, the eight management districts plus the sound-wide category will, collectively, be referred to simply as 'districts'.

The mean and variance of the migratory time density, being conserved across generations, provide a convenient and quantifiable summary of migratory behavior. To calculate these statistics, the empirical migratory time density was defined as the time series of daily proportions, P_t' , where

$$P_t' = n_t / N \tag{5}$$

 n_t = abundance or CPUE on time interval t, and

N = total annual abundance or CPUE.

Table 1. Historic catch and catch-per-unit-effort data base. Availability of data by year and by district suitable to the calculation of annual migratory time densities. + = data were available, - = no data were available for that year. District codes: 1 = Eastern, 2 = Northern, 3 = Coghill, 4 = Northwestern, 5 = Eshamy, 6 = Southwestern, 7 = Montague, 8 = Southeastern, 1-8 = Sound-Wide.

Year Cycle	Management District										
		1_	_2_	_3_	4_	_5_	<u>·6</u>	7_	_8_	1 - 8	
	1970	+	+	+	+	-	+	-	+	+	
E	1972	-	-	-		-	-	-	-		
v	1974	-	_	+	+	-	-	_	-	+	
E	1976	+	+	+	+	_	+	-	+	+	
N	1978	+	+	+	-	-	-	_	+	+	
	1980	+	+	+	+	-	+	_	+	+	
	1982	+	+	+	+	-	+	-	+	4	
	Tota1	5	5	6	5	0	4	0	5	6	
	1969	+	+	+	+	_	+	_	+	+	
	1971	+	+	+	+	-	+		+	+	
0	1973	+	+	+	+	-	+	+	+	+	
D	1975	+	+	+	+	-	+	+	+	+	
D	1977	+	+	+	+	-	+	+	+	+	
	1979	+	+	+	+	_	+	+	+	+	
	1981	+	+	+	+	_	+	+	+	+	
	Tota1	7	7	7	7	0	7	5	7	7	

Table 2. Historic escapement data base. Availability of data by year and by district suitable to the calculation of annual migratory time densities. += data were available, -= no data were available for that year.

District codes: 1 = Eastern, 2 = Northern, 3 = Coghill, 4 = Northwestern, 5 = Eshamy, 6 = Southwestern, 7 = Montague, 8 = Southeastern, 1-8 = Sound-Wide.

Year Cycle	Management District										
		1	_2_	_3_	4	<u>· 5</u>	6	_7_	_8_	1 - 8	
	1964	+	+	+	+	+	+	+	+	+	
	1966	+	+	+	+	-	+	+	+	+	
	1968	+	+	+	+	+	+	+	+	+	
E	1970	4	+	+	+	+	+	+	+	+	
V	1972	+	+	+	+	-	+	+	+	+	
E	1974	+	+	+	+	-	+	+	+	+	
N	1976	+	+	+	+	-	+	+	+	+	
	1978	+	+	+	+	-	+	+	+	+	
	1980	+	+	+	+	+	+	+	+	+	
	1982	+	+	+	+	+	+	+	+	+	
	Tota1	10	10	10	10	5	10	10	10	10	
	1965	+	+	+	+	_	+	+	+	+	
	1967	+	+	+	+	+	+	+	+	+	
	1969	+	+	+	+	-	+	+	+	+	
0	1971	+	+	+	+	+	+	+	+	+	
D	1973	+	+	+	+	-	+	+	+	+	
D	1975	+	+	+	+		+	+	+	+	
	1977	+	+	+	+	+	+	+	+	+	
	1979	4	+	+	+	-	+	+	+	+	
	1981	+	+	+	+	+	+	+	+	+	
	1983	+	+	+	+	-	-	+	+	+	
	Tota1	10	10	10	10	4	9	10	10	10	

For each annual time density with a duration of migration of 'm' days,
the mean of 't' was estimated by:

$$\frac{\Lambda}{t} = \sum_{t=1}^{m} t P_t', \tag{6}$$

and its variance by:

$$\hat{S}_{t}^{2} = \sum_{i=1}^{m} (t - \bar{t})^{2} P_{t}'.$$
 (7)

Only those days fished, in the case of catch, or those weeks with actual escapement enumerations, were used to compute these statistics. On all other days, P_t^\prime is undefined.

Proportions were used for the purpose of constructing the empirical probability density function as an approximation of the true migratory time density. In practice, the use of proportion as a function of time minimizes the effect of relatively large fluctuations in interannual numerical abundance of salmon populations. Such time densities, therefore, become suitable for comparisons across years.

The catch, effort, and spawning escapement data obtained from the Computer Services Division were ordered on a calendar date basis. For convenience, these dates were coded as integers referenced to some

starting date in the season. It is these coded dates that were used in the calculation of the migratory time densities. For the catch season with a duration of 95 days, day 1 = June 13, day 2 = June 14, ..., day 95 = September 15. The escapement data, provided on a weekly basis, had a season duration of 15 weeks and was coded in the following manner: week 1 = week ending date June 19, week 2 = week ending date June 26, ..., week 15 = week ending date September 25. Coded dates and their corresponding calendar dates are provided in the tables for reference.

Since estimates of migratory behavior based on catch data may be influenced by abiotic factors, the time density of a single year, for a geographic area, may be of limited use in harvest control for describing the migratory timing. The time density of a single year when used in a harvest control system may pose more risk of error than the use of the average time density based on several past years. Similarly, the fishery may be of varying duration year-to-year, or may not cover every day of the migration. To minimize these effects, while obtaining the best image of migratory behavior, migratory time densities and cumulative time densities were averaged across years.

All district annual migratory time densities for each data category (catch, CPUE, and spawning escapement) were grouped according to even and odd years (see Tables 1 and 2). Average daily proportions, and average cumulative daily proportions were calculated for both cycle years on a district basis. In the case of daily proportions, each date averaged can have a variable number of records depending on the number of observations available for that date for the years averaged. In the

calculation of average cumulative proportions, daily records were considered to exist, in any year, for every date in the season starting with the first date on which a catch observation or escapement enumeration was made.

The average daily, P'_t , or average cumulative daily proportion, P_t for day 't' (t = 1 to m) and 'j' years (j = 1 to y), was calculated by:

$$\bar{P}_{t} = 1/y \sum_{j=1}^{y} P_{tj}$$
 (8)

for all years where $P_{tj} \neq 0$, and where P_{tj} is defined as the proportion on the t-th time interval in the j-th year.

A fundamental premise of this study is that migratory timing is conserved across generations. If the mean of the time density function in year 'i', i=1 to y, is represented by \overline{t}_i , this premise is analogous to the statement: $E(\overline{t}_1)=E(\overline{t}_2)=$, ..., $=E(\overline{t}_i)$ for a fixed geographic reference frame, absent abiotic influences. It can be argued, consequently, that $E(P_{t1})=E(P_{t2})=$, ..., $=E(P_{tj})$, j=1 to y, t=1 to m. With the exception of a random error of measurement term, whose expectation is zero, and external modulating influences of abiotic factors, the 'y' proportions on a fixed time interval 't' are assumed to be equal.

Considering these proportions as an independent and identically

distributed random sample from a normal population with unknown population mean and variance, the (1-a)% confidence interval for the average daily (P_t') or average cumulative proportion (P_t) on 'y' years was calculated by:

$$\bar{P}_{t} + b_{\alpha,y-1} \left[S_{\bar{P}_{t}}^{2} / y \right]^{\frac{1}{2}}$$
 (9)

where Student's - t is denoted by 'b' to avoid confusion, and where the estimate of the variance of the average cumulative proportion, P_t , and average daily proportion P_t was determined by:

$$s_{\overline{P}_{t}}^{2} = 1/(y-1) \sum_{j=1}^{y} (P_{tj} - \overline{P}_{t})^{2}$$
 (10)

Preliminary analysis of the time densities required the ability to compare the variability among the data categories (catch, CPUE, and escapement) over the years. In populations which differ appreciably in their means, numerical and proportional data for example, direct comparison of their variances is not informative since the variance of a data category is proportional to the magnitudes of the observations. The coefficient of variation (CV) (Sokal and Rohlf 1981), which expresses the standard deviation as a percentage of the mean, provides a method for making such comparisons. Simply stated, the data category that is less variable will have a lower numerical CV.

The coefficient of variation was computed for each data category by

date over all years of record. As an example, the CV of a proportional data category is:

$$CV = (S_{\overline{P}_{t}} / \overline{P}_{t}) 100$$
 (11)

Empirical time densities based on CPUE are thought to better approximate the distribution of total abundance than those based on catch alone, provided that the units of fishing gear are not highly competitive, and that catchability does not vary over the course of the season (Brannian 1982; Mundy 1982; Schaller 1984). This is expected when effort is not the same on each and every time interval. When effort is constant throughout the season, the time densities of catch and CPUE are identical. The comparison of catch and CPUE data categories will be based on an examination of the behavior of the coefficients of variation over time. The statistics of the least variable category will serve as the basis for the comparison of migratory behavior among districts.

3.2 Analysis of Variance and Multiple Comparison Methods

A fixed effects two-way analysis of variance model with interaction (Neter and Wasserman 1974; Hogg and Tanis 1977) was constructed to analyze the differences in the mean dates of migration between cycle years and among districts. The model was applied to catch, CPUE, and spawning escapement data categories independently. The two factors, or independent variables, represented in this model were cycle year (A) and management district (B), consisting of two and eight levels,

respectively.

The coded mean dates of the empirical density functions for each district across all years of record constituted the observations of the response variable for each level of both factors. The fixed effects model for the two factor design was represented by:

$$Y_{ijk} = \mu ... + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$
 (12)

where,

 Y_{ijk} is the k-th observation of the response variable for the i-th level of factor A (cycle year) and the j-th level of factor B (management district), $i=1,\ldots,a;\ j=1,\ldots,b;\ k=1,\ldots,c.$

μ.. is a constant, unknown component common to all observations i.e. the overall or grand mean response for all levels of both factors.

 α_i is the additional or main effect due to the i-th level of factor A (cycle year), i = 1 to 2.

 β_j is the additional or main effect due to the j-th level of factor B (management district), j = 1 to 8.

 $(\alpha\beta)_{ij}$ is the interaction effect between the i-th level of factor A and the j-th level of factor B.

 ϵ_{ijk} is the random experimental error associated with the k-th observation of the response variable for the i-th level of factor A and the j-th level of factor B.

The model assumes ϵ_{ijk} are independent $N(0,\sigma^2)$, and Y_{ijk} represent n=abc mutually independent random variables that are normally

distributed with mean μ_{ij} and common but unknown variance σ^2 . Corresponding to each factor level, therefore, is a probability distribution for the response variables which differs only with respect to their means. In terms of expectation, the mean date of migration for year-cycle (i) and management district (j) is represented by:

$$E(Y_{ijk}) = \mu_{ij} = \mu_{\cdot \cdot} + \alpha_{i} + \beta_{j} + (\alpha\beta)_{ij}$$
(13)

This formulation implies that the mean for any factor can be viewed as the sum of four components:

- 1. an overall unknown effect $\mu ... = \sum_{i} \sum_{j} \mu_{i,j}$ / ab,
- 2. the main effect ai for factor A at the i-th level,
- 3. the main effect β_{j} for factor B at the j-th level, and
- 4. the interaction effect $(\alpha\beta)_{ij}$ when factor A is at the i-th level and factor B is at the j-th level.

Restrictions of this model are:
$$\sum_{i} \alpha_{i} = \sum_{j} \beta_{j} = \sum_{i} (\alpha \beta)_{ij} = \sum_{j} (\alpha \beta)_{ij} = 0$$
.

Guided by the previously stated harvest control objectives, three hypotheses of interest were examined by this model. They were:

- 1. H_0 : α_i = 0 against H_a : not all α_i =0, i=1,..., a. Are there significant differences in the mean dates of the empirical distributions of catch, catch per unit effort, or spawning escapement between the odd-year and the even-year cycle? This hypothesis is equivalent to testing the genetic distinctness between odd-year and even-year pink salmon populations.
- 2. H_0 : $\beta_j = 0$ against H_a : not all $\beta_j = 0$, j=1, ..., b. Within any one data category, are there significant differences in the mean dates

of time densities among districts for odd-year and even-year cycles combined?

3. H_0 : $(\alpha\beta)_{ij} = 0$ against H_a : not all $(\alpha\beta)_{ij} = 0$. for all i and j. Do different combinations of the levels of the two factors produce different effects? If so, factor A and B are said to interact. Testing the hypothesis of interaction is equivalent to examining whether or not all factor means μ_{ij} can be expressed according to: $\mu_{ij} = \mu_{..} + \alpha_{i} + \beta_{j}$. If they can, no interaction is present. This hypothesis is sometimes represented by: H_0 : $\mu_{ij} = \mu_{..} + \alpha_{i} + \beta_{j}$ for all i, j against H_a : $\mu_{ij} \neq \mu_{..} + \alpha_{i} + \beta_{j}$ for some i, j.

Non interaction implies that the expected difference between the mean responses for any two levels of one factor is the same for all levels of the other factor. There would be no interaction between factor A and B if, for example, the differences in the means of the time densities between any two management districts was the same for both cycle years, or if the difference in means between the two cycle years was the same for any two management districts.

A fixed effects one-way analysis of variance model (Neter and Wasserman 1974; Hogg and Tanis 1977) was constructed to analyze differences in the mean dates of migration among districts for a given cycle year. The model was applied to catch, CPUE, and spawning escapement categories for odd-year and even-year cycles independently. The independent variable, or treatment effect, examined by this model was the management district, consisting of eight levels.

The coded mean dates of the empirical density functions for each district across all years of record (within a cycle year) constituted the observations on the response variable for each level of the treatment. The design of the one-way fixed effect model was represented by:

$$Y_{ij} = \mu \cdot + \tau_j + \varepsilon_{ij} \tag{14}$$

where.

 Y_{ij} is the i-th observation of the response variable for the j-th treatment level, $i=1,\ldots,n_j;\ j=1,\ldots,k.$

 μ . is a constant, unknown component common to all observations, the overall mean for all k levels of the treatment.

 τ_j is the treatment deviation, or the additional effect that the j-th treatment level (management district) has on the response variable, $j=1,\ldots,8$.

 ϵ_{ij} is the random experimental error associated with the i-th observation of the response variable for the j-th treatment level.

Assumptions for this model are:

- 1. ϵ_{ij} are independent $N(0,\sigma^2)$.
- 2. The k sets of observed data constitute k independent random samples of size n_j from their respective populations.
- 3. Each of the populations from which the samples come is normally distributed with mean μ_j and common but unknown variance σ^2 .
- 4. The τ_j 's are unknown constants and $\sum \tau_j = 0$ since the sum of the deviation of the μ_j from the mean μ_i is zero.

Associated with each treatment level, therefore, is a probability distribution for the response variables which differ only with respect to their means. This can be expressed in terms of expectation by: $E(Y_{i\,j}) = \mu_j = \mu. + \tau._j \ .$ The mean of the migratory time density for each management district j, can be viewed as the sum of an overall effect $\mu. = \sum \mu_j \ / \ k$, and the main effect τ_j due to treatment j.

The hypothesis of interest tested by this model was that all treatment means are equal against the alternative that the members of, at least, one pair are not equal. This analysis provides a method, therefore, for examining differences in the means of the migratory time densities among the management districts for any category of data within a given cycle year. The null hypothesis was formally stated as:

$$H_0: \mu_1 = \mu_2 = ... = \mu_k$$

 H_a : not all μ_j are equal.

If the population means are equal, each treatment effect is equal to zero, so that, alternatively, the null hypothesis may be stated as:

$$H_0: \tau_i = 0, j = 1, ..., k$$

$$H_a$$
: not all $\tau_i = 0$.

The one-way analysis of variance F test was the initial step in the analysis used to determine if significant differences existed among the treatment means. Once this was concluded, the next objective was then

to test for likenesses and differences among the k treatments. Two a posteriori procedures for multiple comparison analysis between treatment means were selected for this purpose, namely, Tukey's Honestly Significant Difference (HSD) technique, and a modified Least Significant Difference (LSD) method.

With the proviso, therefore, of a significant F test, the multiple comparison procedure was used to test the hypotheses that all possible pairwise combinations of the k treatment means were equal. The advantage of these procedures is that the 'k choose 2' possible confidence intervals for treatment means are constructed in such a manner that the joint probability for all comparisons is guaranteed not to fall below an overall significance level σ . The probability is σ , then, that one or more of the null hypotheses is false.

For the modified LSD procedure, a set of $100(1-\sigma)\%$ simultaneous confidence intervals for m = 'k choose 2' pairwise differences $(\mu_i - \mu_j)$ is given by:

$$(\bar{Y}_{,i} - \bar{Y}_{,j}) + t_{\alpha/2k} S[1/n_i + 1/n_j]^{\frac{1}{2}}$$
 (15)

where.

$$S = [MSE/2]^{\frac{1}{2}} = [SSE / 2(N-k)]^{\frac{1}{2}},$$

k = number of treatment levels in the experiment,

N = total number of observations in the experiment,

 $t_{\alpha/2k}$ = the upper $\alpha/2k$ point of the t distribution with (N-k) df,

 \overline{Y}_{i} , \overline{Y}_{i} = sample estimates for treatment means i and j,

 n_i , n_j = the number of observations in treatments i and j, respectively,

LSD =
$$t_{\alpha/2k} S[1/n_i + 1/n_j]^{\frac{1}{2}}$$

Using this procedure, the probability of all m comparisons being simultaneously correct is at least $(1-\alpha)$. If the confidence interval for two treatment means constructed in this manner contains zero, or if the absolute difference between the sample estimates for the treatment means is greater than LSD, we reject H_0 : $\mu_{\hat{\mathbf{i}}} = \mu_{\hat{\mathbf{j}}}$ in favor of H_a : $\mu_{\hat{\mathbf{i}}} \neq \mu_{\hat{\mathbf{j}}}$, at the α significance level.

Tukey's HSD test makes use of a single value against which treatment means are compared. This value, called HSD, is given by:

$$HSD = q_{\alpha,k,N-k} \left[MSE / (1/n_i + 1/n_j) \right]^{\frac{1}{2}}$$
 (16)

where, $q_{\alpha,k,N-k}$ is obtained from a table of percentage points of the Studentized Range, and all other parameters are as defined for the LSD procedure.

If the absolute difference between the sample estimate for the treatment means (i,j) is greater than HSD, we reject $H_0\colon \mu_i=\mu_j$ in favor of $H_a\colon \mu_i\neq \mu_j$ at the α significance level. We accept H_0 otherwise.

Scheffe's a priori method for multiple comparisons was used to examine linear combinations of treatment means defined by the contrast,

 $L = \sum_j C_j \mu_j \text{ where, } C_j \text{ 's are constants subject to the restriction } \sum_j C_j = 0.$ This procedure has the advantage that an infinite number of such contrasts can be examined for the k treatments, not just 'k choose 2' pairwise comparisons. The analysis tests the null hypothesis H_0 : L = 0 against H_a : $L \neq 0$ on the basis that the simultaneous probability is $(1-\alpha)$ that all such contrasts lie between:

$$\stackrel{\wedge}{L} \pm S \left[Var(L) \right]^{\frac{1}{2}} \tag{17}$$

where,

$$Var(L) = MSE \sum_{j} C_{j}^{2} / n_{j}$$
, and $S^{2} = (k-1)F_{\sigma}(k-1, N-k)$.

When zero falls within this (1-a)% confidence interval, accept H_0 : L=0, otherwise reject in favor of H_a : $L\neq 0$ at the a significance level.

An example of the application of Scheffe's procedure would be a test of whether the mean date of migration in management districts one, two, and three combined was significantly different from the overall mean date of migration in management districts four, five, and six. The contrast tested in this case would be $L = (\mu_1 + \mu_2 + \mu_3)/3 - (\mu_4 + \mu_5 + \mu_6)/3$. Scheffe's method proves useful in the context of this study since an infinite number of a priori contrasts can be tailored to the data in a fashion that lends most insight to the nature of the relationships of migratory behavior among districts.

3.3 Correlation and Regression Analysis.

The models so far developed were intended to permit the evaluation of the nature of the relationships and differences, if any, in timing behavior among the management districts for any cycle year and category of data. In support of any conclusions drawn from these models, and to further evaluate methods which could contribute, in a predictive sense, to our understanding of the timing behavior by district, various correlation and regression models were considered.

The targeted objectives of these methods, for any cycle year and data category, were: (1) to determine the degree of association between the timing behavior among districts, (2) to determine the nature of the association between the eight districts and the overall sound-wide timing behavior, and (3) to determine if there were linear combinations of the management districts which could be used to predict the timings of catches and spawning escapements on a sound-wide basis.

For each data category of catch, CPUE, and spawning escapement, the Pearson product moment correlation coefficient, r (Neter and Wasserman 1974) was computed for all possible pairwise combinations of the management districts for odd-cycle and the even-cycle independently. The principal intent of this analysis was to examine the strength of the linear relationships or dependency in migratory behavior among the management districts, and to make conditional inferences on timing behavior for one district given another district. The coded mean dates of the empirical density functions for each district across all years of

record constituted the observations on the ordered pairs of the response variables. Within any cycle year and data category, therefore, 'nine choose two' or seventy-two unique correlation coefficients were computed.

If \bar{t}_{ik} (i = 1, ..., j, k = 1, ..., n) represents the mean of the time density for district 'i' in year 'k', the Pearson correlation model assumes that:

- 1. \bar{t}_{ik} , \bar{t}_{jk} (i\delta j) are random samples of size 'n' from normal populations $N(\mu_{\bar{t}_i}, \sigma_{\bar{t}_i}^2)$, $N(\mu_{\bar{t}_i}, \sigma_{\bar{t}_i}^2)$, respectively.
- 2. each ordered pair (\bar{t}_i,\bar{t}_j) of the random sample vary together according to a joint bivariate normal distribution with parameters $\mu_{\bar{t}_i}$, $\mu_{\bar{t}_j}$, $\sigma_{\bar{t}_i}^2$, $\sigma_{\bar{t}_j}^2$, and ρ where, ρ is the population correlation coefficient which measures the strength of the linear relationship between \bar{t}_i and \bar{t}_j .

Given the sample analog, r, to the population correlation coefficient ρ , and any pairwise combination (\bar{t}_i,\bar{t}_j) , a hypothesis test was conducted to determine if the value of r was of significant magnitude to indicate that (\bar{t}_i,\bar{t}_j) were correlated. When the population is modeled as a bivariate normal, the test of independence between (\bar{t}_i,\bar{t}_j) is based on the test statistic:

$$t^* = r((n-r)/(1-r^2))^{\frac{1}{2}}$$
 (18)

which is distributed as Student's - t distribution with (n-2) degrees of freedom. If the computed valut of $t^* \ge t_{\sigma/2}$,n-2, the null hypothesis

 H_0 : ρ = 0 was rejected at the α significance level in favor of H_a : $\rho \neq$ 0, and the two variables were concluded to be correlated. Otherwise, the null hypothesis was accepted. The critical or 'p-value' was also computed for all such hypothesis tests.

Multiple linear regression models (Neter and Wasserman 1974) were constructed to determine if there were linear combinations of the management districts which could be used to predict the timings of catches and spawning escapements on a sound-wide basis. For a given cycle year, the models were applied to catch, CPUE, and spawning escapement data categories, independently. The coded mean dates of the empirical density functions for each district across all years of record constituted the observations on the dependent and independent variables. In all models constructed, the dependent variable Y_i ($i=1,\ldots,n$ years) was the overall sound-wide mean date of migration, while the dependent variables X_{ij} ($i=1,\ldots,n$, $j=1,\ldots,k$) represented the corresponding mean dates of migration for each management district.

The first order, multiple linear regression model was represented by:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i1} + ... + \beta_{k}X_{ik} + \varepsilon_{i}$$
 (19)

where:

 β_0 , β_1 , ..., β_k are the regression coefficients or parameters which are considered to be unknown quantities.

Yi is the response of the dependent variable for the i-th

observation which represents the overall sound-wide mean date of migration for year i = 1, ..., n.

 X_{ij} 's are the fixed values of the independent or predictor variables for the i-th observation which represent the mean dates of migration for districts $j=1,\ldots,k$, and

 $\epsilon_{\dot{1}}$ are the error components which are independent $N(\,0\,,\sigma^{\,2}\,)$.

The analysis of variance procedure for the decomposition of the total variation in the response variable Yi into its component parts was performed for the purposes of making inferences on the significance of the fitted regression relation. To test whether there was a relation between the dependent variable Yi and the set of independent variables X_{i1} , ..., X_{ik} , the statistic $F^* = MSR/MSE$ was computed. Under the assumptions of the model, F*, is distributed as an F distribution with (k, n-k-1) degrees of freedom. If the computed value of $F^* \geq F(1-\alpha, k, \alpha)$ n-k-1), the null hypothesis H_0 : $\beta_1 = \beta_2 = ... = \beta_k = 0$ was rejected at the α significance level in favor of H_a : not all $\beta_k=0$. If the null hypothesis is rejected, we conclude that one or more of the regression coefficients has an absolute value greater than or equal to zero, and that the regression equation explains a significant portion of the total variation in Y. The coefficient of multiple determination, denoted R2, which measures the proportionate reduction of the total variation in Yi associated with the use of the set of Xij variables, was also computed for each regression equation.

Several methods for selecting the subsets of independent variables, and for specifying their order of inclusion into the regression model

were examined. For any one cycle year and category of data, however, only that method or methods which produced the most appropriate models, in terms of harvest control information, were used. In such instances, comparisons of the models were made. In the case where the independent variables were added to the model in a stepwise manner, the incremental R² attributable to the variable added at each step was computed. Significance tests on these part correlation coefficients were performed, when necessary, by standard methodology (see Neter and Wasserman 1974).

The forward, stepwise inclusion method was used to isolate the 'best' subset of independent variables that yielded the optimal prediction equation with as few terms as possible. The term 'best' implies that the subset of independent variables selected accounted for the greatest reduction in the total variation of the response variable Y_i. Hierarchial methods of selection and inclusion of the independent variables were also performed according to certain prespecified criteria. The criteria established for this purpose were:

- 1. Inclusion of all independent variables in a stepwise manner beginning with that district most highly correlated with the dependent variable (sound-wide mean date of migration) in terms of having the highest r, followed by the next most highly correlated district, ..., the least most highly correlated district.
- 2. The selection of a subset of independent variables on the basis of those districts with an earlier average mean date of migration than the sound-wide average mean date of migration, then ordering their inclusion beginning with the 'earliest' district, the next 'earliest'

district, ..., the 'latest' district from this subset. No districts in that year cycle and data category with an average mean date later than the sound-wide average mean date were considered for inclusion in this model.

- 3. The selection of a subset of independent variables on the basis of those districts that were both highly correlated with the dependent variable, and had an earlier average mean date of migration than the sound-wide average mean date.
- 4. The selection of those independent variables on the basis of subsets, of districts, if any, identified from the analysis of variance model, and from Scheffe's a priori method of multiple combinations.

CHAPTER 4

RESULTS

4.1 Timing Behavior of the Pink Salmon Fishery

Migratory time densities for each data category of catch, CPUE, and spawning escapement were calculated on a sound-wide basis (all districts combined), and for each district independently, for every available year of data (Tables 1 and 2). The descriptive statistics of mean and variance for all annual time densities of the categories of catch, CPUE, and escapement were also calculated (Tables 3, 4, and 5). A total of three-hundred and fifty-seven such empirical density functions were generated by the analysis (Rugolo 1984), ninety-three each for catch and CPUE, and one-hundred and seventy-one for spawning escapement.

All district and sound-wide annual migratory time densities for each data category were grouped according to even and odd years. Average daily proportions and average cumulative daily proportions were calculated for both cycle years on a district basis for all years of record. A total of 42 management district average historical time densities for both cycle years (Appendix B), together with the corresponding graphs of the time series of average daily (weekly) cumulative proportions (Appendix A), were generated by the analysis. Six sound-wide average historical time densities for the categories of

Table 3. Mean and variance of the annual migratory time densities for pink salmon catch in Prince William Sound Alaska 1969 - 1982. Mean: digit one = calendar month, digits two and three = calendar day. Variance in square days.

MEAN DATE													
Year	Management District												
	1		3	_4_	5	6		8	1 - 8				
1969	731	724	718	723		729		730	729				
1970	726	726	713	724		727		728	726				
1971	806	801	724	729		802		804	803				
1972													
1973	731	727	718	720		729	729	728	727				
1974			715	714					715				
1975	725	723	721	723		728	801	727	726				
1976	730	722	721	723		723		723	726				
1977	709	716	710	713		722	726	717	715				
1978	805	730	714		*****			805	803				
1979	715	716	709	720		726	726	724	722				
1980	802	725	723	724		731	*	727	731				
1981	717	712	720	729		723	729	723	721				
1982	808	804	731	730	**	807	***	806	806				
	VARIANCE												
1969	41.5	34.7	156.7	40.4		47.6		39.3	50.6				
1970	66.4	49.2	139.8	37.8		45.0		1.2	56.4				
1971	55.6	61.3	48.4	41.6		48.3		42.4	58.6				
1972													
1973	21.8	11.9	19.6	24.7		14.0	9.4	13.7	26.1				
1974			11.5	22.2					14.5				
1975	50.4	47.2	43.2	67.8		32.5	21.5	40.8	47.5				
1976	182.0	38.5	64.3	31.7	-	27.7		34.6	122.1				
1977	171.4	55.8	48.2	75.5		35.0	1.3	45.0	124.0				
1978	144.8	122.1	45.5					7.8	133.3				
1979	226.3	69.5	117.2	30.1		96.2	51.0	65.9	144.8				
1980	110.9	50.4	73.3	75.7		75.0		47.8	85.8				
1981	183.8	114.3	177.5	9.2		105.8	15.0	57.8	128.2				
1982	85.8	44.3	58.9	102.0	**	60.0	***	15.3	66.8				

^{* -} Mean = 818, Variance = 0.0 - based on one day of catch.

^{** -} Mean = 715, Variance = 0.0 - based on one day of catch.

^{*** -} Mean = 812, Variance = 0.2 - based on two days of catch.

Table 4. Mean and variance of the annual migratory time densities for pink salmon CPUE in Prince William Sound Alaska 1969 - 1982. Mean: digit one = calendar month, digits two and three = calendar day. Variance in square days.

				MEA	DATE				
Year				Mana geme	nt Dist	rict			
	1			_4_	_5_	6	7	8	<u>-1 - 8</u>
1969	728	726	728	726		724		728	727
1970	724	727	722	726		727		729	725
1971	804	803	727	802		802		804	803
1972									
1973	729	728	720	719		728	727	728	723
1974			713	713					713
1975	725	724	723	725		727	730	726	725
1976	723	719	721	723		724		723	723
1977	713	718	712	714		719	727	716	715
1978	809	803	717					806	808
1979	722	724	715	720		731	727	723	728
1980	801	728	724	727		809	*	728	802
1981	724	718	727	729		811	731	722	810
1982	805	804	801	729	**	803	***	809	803
				VAR	TANCE				
1969	70.3	46.4	77.5	46.5		158.9		88.8	108.8
1970	60.1	52.8	75.6	44.8		82.7		2.0	108.5
1971	68.1	72.2	48.0	38.6		58.7		51.2	72.1
1972									
1973	20.4	16.3	46.4	84.9		14.3	9.6	13.4	69.4
1974			22.3	28.1					26.0
1975	47.5	46.2	62.2	59.7		42.3	17.5	60.1	70.6
1976	137.9	56.2	57.1	32.3		41.8		35.0	155.2
1977	145.9	54.2	72.7	96.3		62.5	2.6	58.1	133.7
1978	204.5	104.6	22.0					9.9	192.6
1979	272.6	71.4	157.4	39.5		225.5	67.7	70.4	328.4
1980	114.6	54.5	65.1	81.3		154.3	*	66.1	122.2
1981	211.8	88.4	88.3	13.7		168.3	23.7	117.8	239.4
1982	254.0	96.6	74.2	81.7	**	180.4	***	37.2	204.6

Mean = 818, Variance = 0.0 - based on one day of catch.

^{** -} Mean = 715, Variance = 0.0 - based on one day of catch.

^{*** -} Mean = 812, Variance = 0.2 - based on two days of catch.

Table 5. Mean and variance of the annual migratory time densities for pink salmon escapement in Prince William Sound Alaska 1969 - 1982. Mean: digit one = calendar month, digits two and three = calendar day. Variance in square weeks.

				MEA	N DATE				
Year				Manageme	ent Dist	rict			
2002	1.	2	3	4	5	6	7	88	1 - 8

1964	81.8	822	812	820	811	825	820	819	819
1965	818	821	813	826	828*	823	826	823	823
1966	808	817	818	81.9	724*	820	824	823	815
1967	822	809	820	809	828	821	821	821	818
1968	730	808	806	819	825	825	823	823	813
1969	816	805	801	815		817	802	802	810
1970	816	814	815	813	823	813	819	819	816
1971	829	815	908	910	905	904	902	829	830
1972	818	820	813	818		820	825	825	819
1973	803	804	813	821		821	815	813	810
1974	811	814	811	817		817	817	816	814
1975	805	805	808	824		825	824	822	812
1976	825	823	824	818		820	826	826	824
1977	803	805	824	823	820	821	819	817	814
1978	824	818	818	817		818	825	825	821
1979	807	808	820	829		826	814	813	813
1980	814	818	818	817	824	818	820	820	817
1981	807	807	801	815	812	824	814	811	810
1982	815	824	820	819	817	819	824	823	820
1983	723	724	730	729		728**	729	729	727
				<u>VA</u>	RIANCE	•			
1964	3.7	3.1	4.3	2.7	5.2	4.1	2.0	1.8	3.5
1965	5.4	1.9	3.4	0.6	0.0*	1.0	0.6	0.6	2.3
1966	2.7	8.1	3.3	3.1	0.0*	2.6	1.2	1.4	4.6
1967	3.6	1.8	2.5	2.3	0.2	2.4	1.9	2.0	3.2
1968	1.9	1.8	1.0	0.2	0.1	0.2	1.1	1.2	3.8
1969	4.2	2.9	2.8	2.1		1.7	0.8	0.8	3.8
1970	5.2	2.1	2.2	2.3	1.0	1.9	2.8	3.1	3.8
1971	5.6	3.7	6.4	4.7	0.7	1.9	2.3	3.2	4.7
1972	2.4	2.0	1.6	1.8		2.0	1.5	1.7	2.3
1973	4.7	3.5	2.2	1.9		1.3	2.4	2.3	3.7
1974	4.0	2.1	1.4	2.3		2.9	3.9	4.0	3.1
1975		2.8	1.9	0.6		1.5			3.9
		3.9		3.2		2.8		1.2	4.0
1977	5.4			2.1	5.6				5.5
1978	4.8	2.0	1.3	1.5		1.0	1.9	2.0	3.0
1979	7.3	5.9	3.0	1.5		3.4	5.0	5.1	6.3
1980	4.5	2.2	2.6	3.0	1.3	2.3	2.9	3.3	3.5
1981	8.3	7.0	3.7	5.1	0.9	1.0	5.0	4.9	6.8
1982	4.5	2.6	2.4	4.0	3.1	4.6	3.1	3.1	3.7
1983	1.0	1.5	0.4	0.2		0.2**	0.4	0.4	0.8

^{* / ** -} based on one / two week(s) of escapement enumeration, respectively.

Table 6. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970 - 1982, excluding 1972. All districts combined, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
6 7 8 9 10	618 619 620 621 622	1 1 2 3	.0000 .0000 .0000 .0000	0 0 0 100 70	0 0 0 0	1 2 2 2 3	.0000 .0000 .0000 .0000	0 0 0 100 74	0 0 0 0 0.01
11 12 13 14 15	623 624 625 626 627	2 2 2 3 3	.0002 .0002 .0002 .0007 .0002	60 19 60 84 112	0.01 0 0.01 0.05 0.02	3 3 4 4	.0003 .0005 .0006 .0010 .0012	70 74 79 64 65	0.02 0.03 0.05 0.06 0.07
16 17 18 19 20	628 629 630 701 702	2 3 2 3 3	.0003 .0005 .0008 .0010 .0009	66 75 75 64 36	0.02 0.04 0.06 0.06 0.03	4 4 4 4	.0013 .0017 .0021 .0029 .0035	51 50 63 65 65	0.07 0.08 0.13 0.19 0.23
21 22 23 24 25	703 704 705 706 707	2 1 3 3	.0034 .0024 .0036 .0016 .0020	8 0 99 62 40	0.02 0 0.36 0.10 0.08	4 5 5 5	.0053 .0059 .0068 .0078	75 78 106 94 80	0.40 0.46 0.73 0.74 0.73
26 27 28 29 30	708 709 710 711 712	4 4 5 3 5	.0098 .0252 .0200 .0132 .0347	129 102 116 70 111	1.27 2.57 2.33 0.93 3.89	5 5 5 5 5	.0169 .0371 .0572 .0651 .0999	107 112 105 102 105	1.82 4.17 6.02 6.69 10.52
31 32 33 34 35	713 714 715 716 717	4 6 5 5 6	.0234 .0166 .0407 .0452 .0397	51 69 81 102 119	1.21 1.15 3.31 4.64 4.76	5 6 6 6	.1186 .1155 .1495 .1872 .2270	83 83 84 90 93	9.85 9.62 12.63 16.87 21.22
36 37 38 39 40	718 719 720 721 722	5 4 4 5 5	.0398 .0627 .0329 .0321 .0292	114 119 50 50 71	4.56 7.52 1.66 1.63 2.10	6 6 6	.2602 .3019 .3239 .3508 .3751	97 105 96 86 79	25.26 31.95 31.30 30.47 29.85
41 42 43 44 45	723 724 725 726 727	4 4 3 4 3	.0357 .0256 .0188 .0209 .0618	50 100 78 136 52	1.80 2.57 1.47 2.86 3.22	6 6 6	.3990 .4160 .4255 .4394 .4704	73 69 67 65 61	29.43 29.08 28.86 28.81 29.13
46 47 48 49 50	728 729 730 731 801	4 4 4 3	.0578 .0463 .0447 .0413 .0456	46 49 18 54 67	2.68 2.30 0.83 2.25 3.09	66666	.5090 .5398 .5697 .5972 .6200	58 55 53 49 45	29.54 30.21 30.26 29.67 28.39
51 52 53 54 55	802 803 804 805 806	1 3 4 4 3	.0541 .0831 .0784 .0356 .0507	0 60 53 54 14	0 5.02 4.21 1.93 0.74	6 6 6 6	.6290 .6706 .7229 .7467 .7721	43 35 29 26 25	27.29 23.99 21.03 19.97 19.36

Table 6 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
56 57 58 59 60	807 808 809 810 811	3 2 2 1 3	.0317 .0466 .1053 .0383 .0693	58 29 50 0 55	1.85 1.38 5.31 0 3.83	6 6 6 6	.7879 .8035 .8386 .8449 .8796	23 21 15 14 11	18.39 17.19 12.91 12.05 9.83
61 62 63 64 65	812 813 814 815 816	2 3 3 2	.0401 .0465 .0642 .0237 .0130	9 40 65 59 99	0.38 1.88 4.23 1.41 1.29	6 6 6 6	.9930 .9162 .9484 .9602 .9646	9 8 5 4 3	8.86 7.65 5.21 4.13 3.33
66 67 68 69 70	817 818 819 820 821	1 3 3 1 2	.0234 .0232 .0092 .0127 .0055	0 58 66 0 5	0 1.35 0.61 0 0.02	6 6 6 6	.9685 .9801 .9847 .9869 .9887	2 2 1 1 1	2.69 2.00 1.85 1.72 1.72
71 72 73 74 75	822 823 824 825 826	3 2 3 2 2	.0126 .0050 .0022 .0038 .0015	84 56 70 45 3	1.06 0.28 0.15 0.17	6 6 6 6	.9950 .9967 .9977 .9990 .9995	0 0 0 0	0.77 0.49 0.33 0.12
76 77 78 79 80	827 828 829 830 831	2 2 0 2 0	.0001 .0002 .0000 .0007 .0000	33 0 0 73 0	0 0 0 0.05 0	66666	.9996 .9997 .9997 .9999	0 0 0 0	0 0 0 0
81 82 83 84 85	901 902 903 904 905	0 0 0 0	.0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0	6 6 6 6	.9999 .9999 .9999 .9999	0 0 0 0	0 0 0 0
86 87 88 89 90	906 907 908 909 910	0 0 0 0	.0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0	6 6 6 6	.9999 .9999 .9999 .9999	0 0 0 0	0 0 0 0
91 92 93 94	911 912 913 914	0 0 0 1	.0000 .0000 .0000 .0002	0 0 0	0 0 0 0	6 6 6	.9999 .9999 .9999 1.0000	0 0 0	0 0 0 0

Table 7. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981, inclusive. All districts combined, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
2 3 4 5 6	614 615 616 617 618	1 0 1 2 1	.0000 .0000 .0001 .0000	0 0 0 0	0 0 0 0	1 1 2 3 3	.0000 .0000 .0000 .0000	0 0 100 141 141	0 0 0 0
7 8 9 10 11	619 620 621 622 623	1 3 4 3 3	.0000 .0000 .0000 .0000	0 141 173 141 70	0 0 0 0 0.01	3 4 5 6 6	.0000 .0000 .0000 .0001 .0002	141 100 89 125 128	0 0 0 0.01 0.02
12 13 14 15 16	624 625 626 627 628	3 5 5 6 5	.0058 .0026 .0020 .0172 .0140	139 190 174 149 128	0.81 0.50 0.35 2.57 1.80	6 6 7 7	.0031 .0053 .0070 .0208 .0308	202 207 204 121 130	0.63 1.11 1.44 2.52 4.02
17 18 19 20 21	629 630 701 702 703	5 6 5 7 5	.0125 .0052 .0065 .0029 .0033	119 166 150 150 121	1.50 0.86 0.98 0.44 0.40	7 7 7 7	.0398 .0443 .0490 .0519 .0543	135 138 141 135 131	5.38 6.12 6.92 7.05 7.16
22 23 24 25 26	704 705 706 707 708	6 7 6 6 5	.0057 .0060 .0101 .0080 .0099	169 159 108 126 110	0.98 0.97 1.09 1.01 1.09	7 7 7 7	.0593 .0653 .0740 .0809 .0880	135 136 134 132 130	8.02 8.95 9.98 10.73 11.45
27 28 29 30 31	709 710 711 712 713	7 6 6 6 5	.0091 .0089 .0111 .0133 .0222	136 115 133 117 64	1.24 1.03 1.49 1.56 1.44	7 7 7 7	.0971 .1048 .1144 .1259 .1417	122 116 117 117 113	11.87 12.22 13.45 14.74 16.12
32 33 34 35 36	714 715 716 717 718	6 7 7 6	.0217 .0208 .0193 .0222 .0295	68 71 62 73 61	1.48 1.50 1.21 1.63 1.81	7 7 7 7	.1604 .1783 .1977 .2199 .2452	103 97 88 80 76	16.59 17.46 17.53 17.62 18.84
37 38 39 40 41	719 720 721 722 723	5 6 6 7	.0242 .0277 .0375 .0363 .0460	55 71 51 62 62	1.33 1.98 1.94 2.25 2.86	7 7 7 7	.2626 .2864 .3185 .3497 .3958	75 74 68 63 52	19.78 21.35 21.69 22.16 20.79
42 43 44 45 46	724 725 726 727 728	7 6 7 6 6	.0374 .0503 .0352 .0416 .0508	79 54 98 51 52	2.99 2.73 3.47 2.13 2.69	7 7 7 7	.4333 .4764 .5117 .5473 .5909	45 43 40 39 35	19.91 20.62 20.66 21.49 21.10
47 48 49 50 51	729 730 731 801 802	6 7 6 5 5	.0422 .0552 .0525 .0480 .0399	50 48 49 60 70	2.11 2.65 2.61 2.91 2.79	7 7 7 7	.6271 .6823 .7274 .7617 .7902	32 27 25 24 21	20.67 18.86 18.66 18.80 17.09

Table 7 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. ×100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
52 53 54 55 56	803 804 805 806 807	5 5 5 6 5	.0442 .0496 .0439 .0409	62 59 69 59 85	2.78 2.97 3.03 2.43 1.64	7 7 7 7	.8218 .8572 .8886 .9237 .9374	19 15 12 10 9	16.06 13.33 11.33 9.34 9.29
57 58 59 60 61	80 8 809 810 811 812	6 3 3 3	.0107 .0269 .0253 .0195 .0134	124 125 108 118 128	1.34 3.38 2.74 2.31 1.72	7 7 7 7 7	.9466 .9582 .9690 .9774 .9832	10 7 5 3 1	9.60 7.04 4.87 3.12 1.90
62 63 64 65 66	813 814 815 816 817	3 4 3 3 1	.0168 .0028 .0023 .0095 .0013	46 63 71 131 0	0.77 0.18 0.17 1.26 0	7 7 7 7 7	.9904 .9920 .9930 .9971 .9973	1 0 0 0	1.10 1.04 0.98 0.52 0.52
67 68 69 70 71	81 8 81 9 82 0 82 1 82 2	1 0 2 1 2	.0049 .0000 .0023 .0005 .0019	0 0 36 0 79	0 0 0.08 0 0.15	7 7 7 7 7	.9980 .9980 .9987 .9988 .9993	0 0 0 0	0.35 0.35 0.24 0.24 0.11
72 73 74 75 76	823 824 825 826 827	1 2 1 0 0	.0003 .0014 .0002 .0000	0 92 0 0	0.13 0 0 0	7 7 7 7 7	.9994 .9998 .9998 .9998 .9998	0 0 0 0	0.11 0 0 0 0
77 78 79 80 81	828 829 830 831 901	1 0 0 1	.0001 .0000 .0000 .0003 .0000	0 0 0 0	0 0 0 0	7 7 7 7 7	.9998 .9998 .9998 .9999	0 0 0 0	0 0 0 0
82 83 84 85 86	902 903 904 905 906	0 0 0 0	.0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0	7 7 7 7 7	.9999 .9999 .9999 .9999	0 0 0 0	0 0 0 0
87 88 89 90 91 92	907 908 909 910 911 912	0 0 0 0 0	.0000 .0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0 0	7 7 7 7 7	.9999 .9999 .9999 .9999 .9999	0 0 0 0	0 0 0 0 0

Table 8. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970 - 1982, excluding 1972. All districts combined, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
6 7 8 9 10	618 619 620 621 622	1 1 1 2 3	.0008 .0000 .0001 .0005	0 0 0 83 63	0 0 0 0.05 0.06	1 2 2 2 2 3	.0008 .0004 .0004 .0010 .0013	0 100 77 80 93	0 0.04 0.03 0.08 0.12
11 12 13 14 15	623 624 625 626 627	2 2 2 3 3	.0013 .0015 .0015 .0057 .0015	18 16 26 106 105	0.02 0.02 0.04 0.62 0.16	3 3 4 4	.0020 .0033 .0043 .0072 .0084	81 74 71 68 71	0.16 0.24 0.30 0.49 0.61
16 17 18 19 20	628 629 630 701 702	2 3 2 3 3	.0019 .0022 .0035 .0050 .0040	63 35 42 77 37	0.11 0.07 0.14 0.38 0.14	4 4 4 4	.0095 .0112 .0130 .0167 .0197	60 47 45 54 56	0.57 0.53 0.59 0.91 1.12
21 22 23 24 25	703 704 705 706 707	2 1 3 3	.0116 .0111 .0122 .0055 .0073	20 0 85 14 51	0.23 0 1.05 0.08 0.37	4 4 5 5 5	.0255 .0282 .0298 .0332 .0374	65 73 103 90 75	1.67 2.06 3.07 2.99 2.83
26 27 28 29 30	708 709 710 711 712	4 4 5 3 5	.0290 .0363 .0476 .0172 .0356	113 102 80 62 91	3.29 3.72 3.84 1.08 3.25	5 5 5 5 5	.0608 .0902 .1376 .1478 .1835	95 103 89 89 89	5.82 9.36 12.28 13.17 16.36
31 32 33 34 35	713 714 715 716 717	4 6 5 5 6	.0225 .0189 .0335 .0341 .0447	45 26 76 80 76	1.01 0.50 2.56 2.76 3.41	5 6 6 6	.2016 .1868 .2148 .2435 .2879	77 86 86 86 83	15.62 16.23 18.58 21.11 24.06
36 37 38 39 40	718 719 720 721 722	5 4 4 5 5	.0326 .0479 .0247 .0255 .0240	80 114 24 29 42	2.63 5.50 0.61 0.74 1.01	6 6 6 6	.3148 .3473 .3638 .3851 .4051	83 89 83 77 71	26.35 31.07 30.52 29.73 29.11
41 42 43 44 45	723 724 725 726 727	4 4 3 4 3	.0306 .0295 .0375 .0375 .0429	17 28 21 13 28	0.54 0.84 0.81 0.52 1.21	6 6 6 6	.4255 .4451 .4638 .4890 .5103	67 62 58 55 53	28.55 28.02 27.31 26.94 27.18
46 47 48 49 50	728 729 730 731 801	4 4 4 3	.0407 .0357 .0304 .0513 .0330	15 17 18 57 42	0.64 0.61 0.56 2.95 1.41	6 6 6 6	.5376 .5613 .5816 .6158 .6325	50 48 46 45 43	27.05 27.10 27.12 28.12 27.77
51 52 53 54 55	802 803 804 805 806	1 3 4 4 3	.0197 .0513 .0522 .0612 .0348	0 53 55 76 34	0 2.75 2.90 4.67 1.21	6 6 6 6	.6358 .6615 .6963 .7370 .7544	43 38 32 25 24	27.60 25.31 22.45 18.86 18.63

Table 8 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
56 57 58 59 60	807 808 809 810 811	3 2 2 1 3	.0291 .0252 .0483 .0171 .0402	23 11 61 0 47	0.68 0.29 2.95 0	6 6 6	.7691 .7774 .7936 .7965 .8165	24 23 20 19 16	18.58 18.09 15.91 15.66 13.71
61 62 63 64 65	812 813 814 815 816	2 3 3 2	.0266 .0314 .0450 .0280 .0166	16 27 53 34 20	0.44 0.86 2.41 0.96 0.33	6 6 6 6	.8253 .8413 .8636 .8776 .8831	15 13 13 11 11	13.18 11.63 11.53 10.08 9.90
66 67 68 69 70	817 818 819 820 821	1 3 3 1 2	.0198 .0286 .0232 .0190 .0198	0 22 37 0 39	0.63 0.87 0.77	6 6 6 6	.8865 .9008 .9125 .9156 .9223	10 10 10 10 10	9.63 9.77 9.86 9.70 9.73
71 72 73 74 75	822 823 824 825 826	3 2 3 2 2	.0339 .0213 .0328 .0375 .0221	32 35 43 64 29	1.09 0.76 1.44 2.40 0.65	6 6 6 6	.93 93 .9465 .9628 .9755 .9828	9 7 6 3 2	8.58 7.50 5.87 3.68 2.56
76 77 78 79 80	827 828 829 830 831	2 2 0 2 0	.0052 .0152 .0000 .0233 .0000	2 44 0 65 0	0.01 0.67 0 1.52	6 6 6 6	.9845 .9896 .9896 .9975 .9975	2 1 1 0 0	2.34 1.53 1.53 0.55 0.55
81 82 83 84 85	901 902 903 904 905	0 0 0 0	.0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0	6 6 6 6	.9975 .9975 .9975 .9975 .9975	0 0 0 0	0.55 0.55 0.55 0.55 0.55
86 87 88 89 90	906 907 908 909 910	0 0 0 0	.0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0	6 6 6 6	.9975 .9975 .9975 .9975 .9975	0 0 0 0	0.55 0.55 0.55 0.55 0.55
91 92 93 94	911 912 913 914	0 0 0 1	.0000 .0000 .0000 .0149	0 0 0	0 0 0 0	6 6 6	.9975 .9975 .9975 1.0000	0 0 0	0.55 0.55 0.55 0

Table 9. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981, inclusive. All districts combined, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
2 3 4 5 6	614 615 616 617 618	1 0 1 2 1	.0000 .0000 .0168 .0009 .0002	0 0 0 89 0	0 0 0 0.08 0	1 1 2 3 3	.0000 .0000 .0084 .0063 .0063	0 0 99 119 118	0 0.84 0.75 0.74
7 8 9 10 11	619 620 621 622 623	1 3 4 3 3	.0001 .0005 .0004 .0005 .0020	0 128 139 129 105	0.06 0.06 0.07 0.21	3 4 5 5 6	.0063 .0052 .0045 .0044 .0046	117 131 139 147 145	0.74 0.68 0.63 0.64 0.67
12 13 14 15 16	624 625 626 627 628	3 5 5 6 5	.0016 .0012 .0017 .0157 .0130	112 91 128 142 134	0.18 0.11 0.22 2.24 1.75	6 6 7 7	.0055 .0065 .0078 .0201 .0295	119 103 83 118 133	0.65 0.67 0.65 2.37 3.94
17 18 19 20 21	629 630 701 702 703	5 6 5 7 5	.0101 .0068 .0051 .0044 .0020	139 139 169 106 109	1.42 0.95 0.86 0.47 0.22	7 7 7 7	.0367 .0427 .0465 .0508 .0522	141 143 146 142 139	5.19 6.11 6.81 7.26 7.28
22 23 24 25 26	704 705 706 707 708	6 7 6 6 5	.0059 .0114 .0085 .0085	120 83 89 81 76	0.71 0.95 0.76 0.69 0.59	7 7 7 7	.0572 .0690 .0764 .0838 .0891	138 121 118 113 111	7.93 8.41 9.04 9.55 9.97
27 28 29 30 31	709 710 711 712 713	7 6 6 6 5	.0133 .0095 .0119 .0181 .0191	74 83 70 85 69	0.99 0.80 0.83 1.54 1.32	7 7 7 7	.1024 .1107 .1207 .1365 .1500	104 94 92 87 84	10.66 10.44 11.21 11.95 12.69
32 33 34 35 36	714 715 716 717 718	6 6 7 7 6	.0174 .0183 .0183 .0216 .0280	61 60 46 54 33	1.07 1.10 0.85 1.18 0.93	7 7 7 7	.1650 .1807 .1990 .2207 .2448	78 74 69 64 62	12.88 13.38 13.80 14.26 15.26
37 38 39 40 41	719 720 721 722 723	5 6 6 7	.0240 .0206 .0252 .0273 .0437	39 33 52 52 71	0.95 0.69 1.32 1.43 3.13	7 7 7 7	.2620 .2795 .3014 .3247 .3685	61 59 54 51 53	16.07 16.53 16.57 16.84 19.67
42 43 44 45 46	724 725 726 727 728	7 6 7 6 6	.0289 .0396 .0315 .0332 .0355	71 48 57 49 52	2.07 1.92 1.80 1.65 1.88	7 7 7 7	.3974 .4314 .4630 .4914 .5218	49 49 48 46 43	19.84 21.31 22.35 22.94 22.90
47 48 49 50 51	729 730 731 801 802	6 7 6 5 5	.0326 .0397 .0394 .0366 .0344	42 41 44 47 37	1.37 1.66 1.76 1.75 1.29	7 7 7 7	.5498 .5895 .6234 .6495 .6742	41 40 38 37 36	22.88 23.72 23.72 24.60 24.51

Table 9 continued.

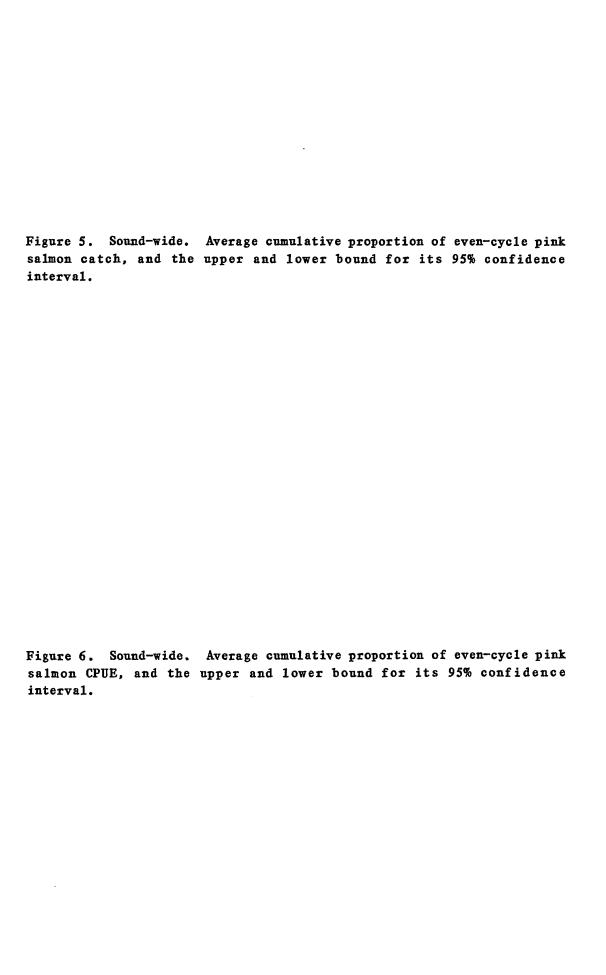
Day No.	Dodo	Sample Size	Avg.	c.v.	S.D. x100	Sample Size	Avg. Cum.	c.v.	S.D. x100
No.	Date	Size	Prop.	U. V.	XTOO	Size	Prop.	U.V.	XIOO
52	803	5 5 5 5 5	.0283	60	1.70	7 7 7 7	.6945	34 32	24.15
53	804	5	.0399	45	1.80	7	.7232	32	23.71
54	805	5	.0461	50	2.31	<u>7</u>	. 7560	31	23.68
55 56	806	<u>6</u>	.0280	<u>57</u>	1.60	<u>7</u>	.7560 .7800 .7961	30	23.83
56	807	5	.0226	71	1.61	7	.7961	29	23.65
57 58 59	808	6	.0294	74	2.19	7	.8215	28	23.81
58	809	3	.0221	104	2.32	7	. 8310	28	23.39
59	810	6 3 3 3	.0221 .0186	120	2.32 2.23	7 7 7 7	.8310 .8391	28 27	23.06 22.76
60	811	3	.0215	62	1.33	7	.8481	26	22.76
60 61	812	3	.0158	78	1.24	7	.8550	26	22.35
62	813	3	.0172	41	0.70	7	.8624	26	22.51
63	814	ă	.0126	75	0.94	ή	.8697	25	22.43
64	815	3	.0935	103	9.69	ż	.9097	1 6	14.77
65	816	3	.0280	51	1.43	Ż	.9218	16	15.22
65 66	817	3 4 3 3 1	.0100	ō	0	7 7 7 7 7	.9218 .9232	16	15.22 15.20
67	818	0	.0000	0	0	7	0222	16	15 20
66	819	X	.0000	ŏ	ŏ	4	.9232 .9232	16	15.20 15.20
67 68 69	820	ž	.0874	85	7.46	4	.9482	10	9.68
7 0	821	ĩ	.0076	ő	0	ż	.9492	ĩŏ	9.65
71	821 822	0 0 2 1 2	.0955	93	8.92	7 7 7 7 7	.9767	10 3	9.65 3.73
70	002	4	0044	^	•	7	0770		
72 73	823 824	1 2 1 0	.0044 .0364	0 90	2 07	4	.9772	3	3.66 2.19
13 74	825	<u> </u>	.0089	90	3.27 0	4	.9877 .9890	2	2.19
75	623 826	7	.0000	ŏ	ŏ	4	.9890	2	2.14
74 75 76	826 827	ŏ	.0000	ŏ	ŏ	7 7 7 7	.9890	3 2 2 2 2	2.14 2.14
70		U		_	v	-			
77 78 79 80 81	828	1 0 0 1	.0063	0	0 0 0 0	7 7 7 7	.9898	2 2 2 2 2	2.13
<u>78</u>	829	Q	.0000	Ó	0	7	.9898	2	2.13 2.13
79	830	Ų	.0000	Ŏ	Ŏ	7	.9898	2	2.13
80	831 901	7	.0081	Ŏ	Ď.	7	.9911 .9911	2	2.16 2.16
	901	U	.0000	U	U	,	•3311	2	2.10
82 83 84	902	0	.0000	0	0	7 7 7 7	.9911	2 2 2 2 2	2.16
83	903	Ŏ	.0000	Õ	Q	<u>7</u>	.9911 .9911	2	2.16 2.16 2.16 2.16
84	904	Q	.0000	Ō	Õ	7	.9911	2	2.16
85 86	905	Ŏ	.0000	Õ	Ŏ	7	.9911	2	2.16
86	906	Ö	.0000	0	Ö	7	.9911	2	2.16
87	907	0	.0000	0	0	7	.9911	2	2.16 2.16 2.16
88	908	0	.0000	Ŏ	0	7	.9911	2	2.16
89	909	0	.0000	0	0	7	.9911	2	2.16
90	910	Ō	.0000	Q	Õ	7	.9911	2	2.16 2.16
89 90 91 92	911	0 0 0 1	.0000	Ò	0 0 0 0	7 7 7 7 7	.9911	2 2 2 2 2 0	2.16
92	912	1	.0618	0	0	7	1.0000	0	0

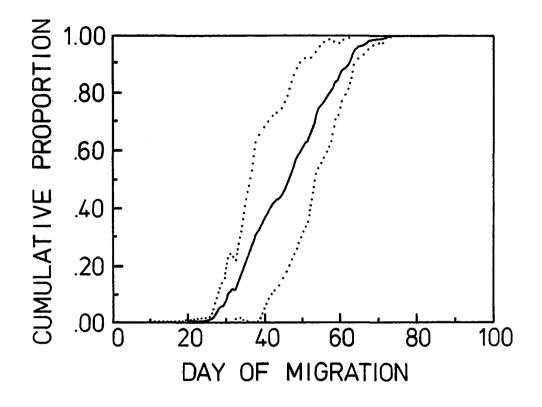
Table 10. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1964 - 1982, inclusive. All districts combined, Prince William Sound.

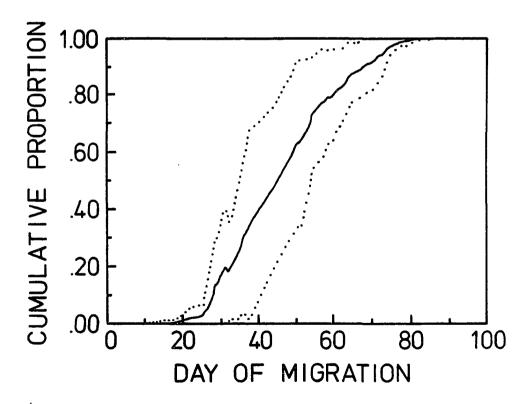
Week No.	Date	Sample Size	Avg. Prop.	C.V.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
1	619	1	.0214	0	0	1	.0214	0	0
2	626	2	.0000	100	0	3	.0071	140	1.00
3	703	4	.0011	74	0.08	5	.0051	157	0.81
4	710	8	.0030	81	0.24	8	.0062	107	0.67
5	717	9	.0146	63	0.93	10	.0182	81	1.48
6	724	10	.0615	97	6.03	10	.0797	77	6.16
7	731	10	.0765	34	2.65	10	.1563	46	7.33
8	807	9	.1216	39	4.77	10	.2657	25	6.71
9	814	10	.2125	27	5.83	10	.4783	24	11.76
10	821	9	.1817	39	7.14	10	.6419	17	10.94
11 12 13 14 15	828 904 911 918 925	10 8 5 3 1	.2060 .1415 .0696 .0106 .0074	49 53 69 83 0	10.14 7.55 4.81 0.89 0	10 10 10 10 10	.8479 .9612 .9960 .9992 1.0000	13 5 0 0	11.14 4.99 0.90 0.22 0

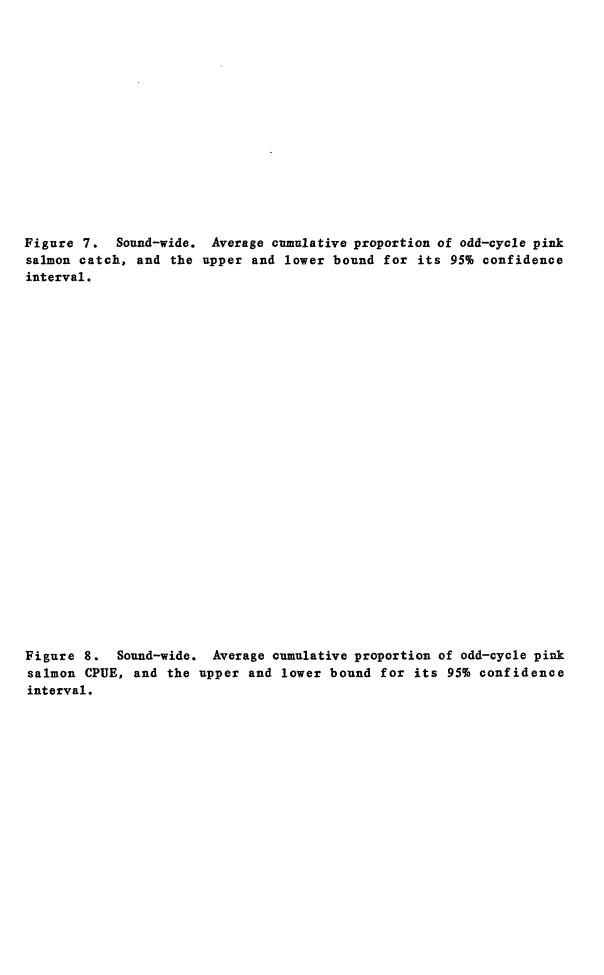
Table 11. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1965 - 1983, inclusive. All districts combined, Prince William Sound.

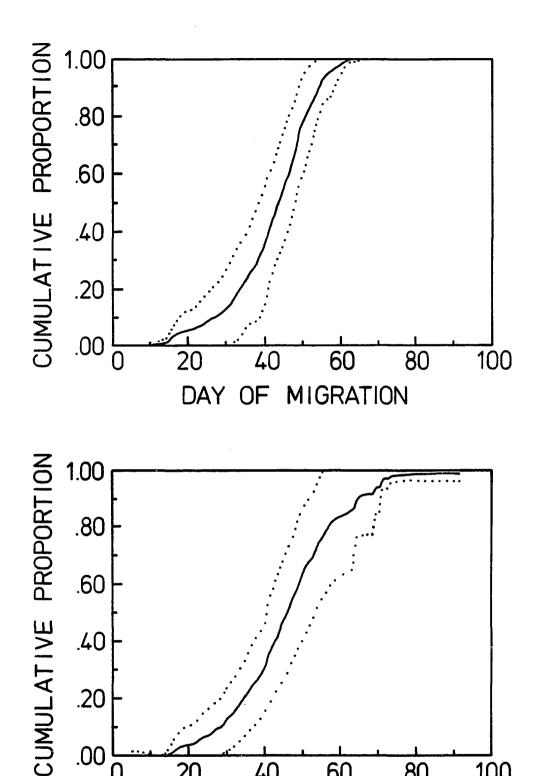
Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
2 3 4 5 6	626 703 710 717 724	3 4 10 9	.0004 .0135 .0171 .0522 .0942	84 92 101 54 75	0.03 1.24 1.73 2.82 7.14	3 4 10 10 10	.0004 .0138 .0226 .0696 .1639	84 92 120 68 68	0.03 1.28 2.72 4.75 11.24
7 8 9 10 11	731 807 814 821 828	10 9 9 9	.1668 .1181 .1494 .0948 .2477	91 48 67 64 70	15.25 5.68 10.13 6.07 17.49	10 10 10 10 10	.3307 .4371 .5716 .6570 .8800	75 53 38 31 18	24.99 23.40 21.78 20.48 16.43
12 13 14 15	904 911 918 925	6 4 3 1	.1145 .0898 .0464 .0136	51 117 84 0	5.87 10.57 3.92 0	10 10 10 10	.9487 .9847 .9986 1.0000	11 3 0 0	11.07 3.39 0.40 0


catch, CPUE, and spawning escapement (Tables 6 through 11), together with the corresponding graphs of the time series of average daily cumulative proportions (Figs. 5 through 10), were also constructed.


Sound-wide timing of the even-cycle of catch

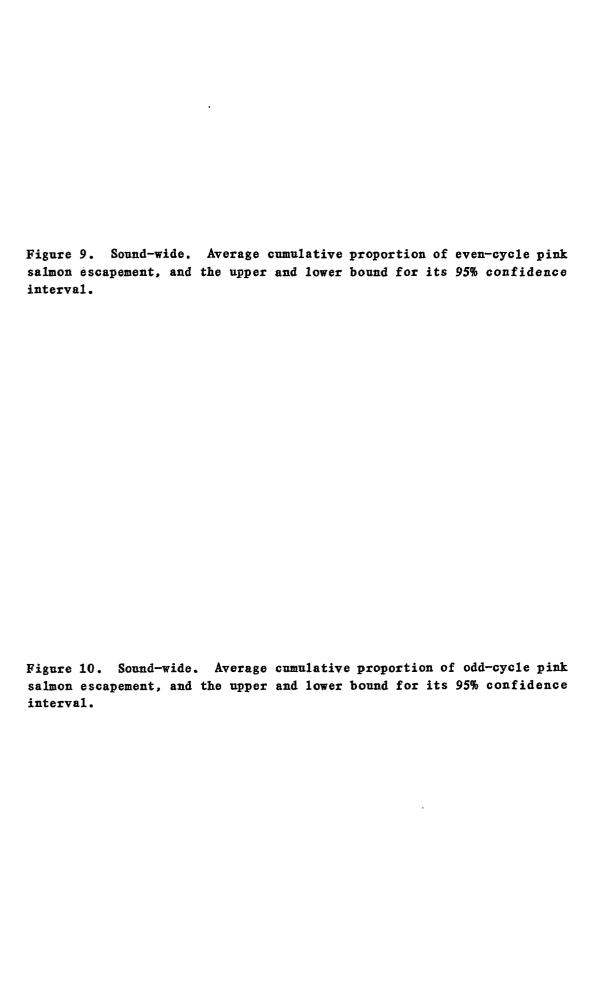

Maturing even-year pink salmon migrated into Prince William Sound from June 18 through September 14, based on commercial catches from the purse seine fishery from 1970 through 1982. On the average, 90% of all the commercial catch was taken during a period of 57 days (June 18 - August 13) in these years, with one-half of the catch occurring prior to July 28 (Table 6). Maturing salmon continued to migrate into Prince William Sound waters during September, but the migration was nearly over by mid-August. Less than 1% of the commercial catches during even years 1970 - 1982 usually were taken after August 21.

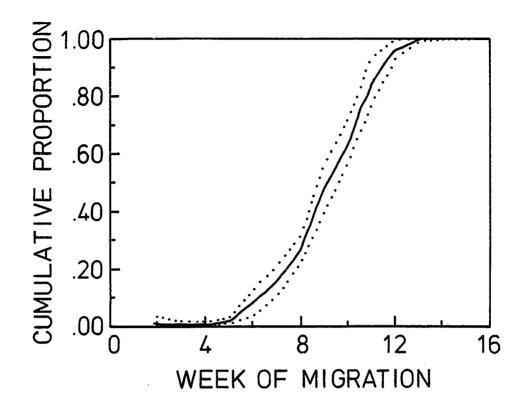

On the average, the central half of the population (25 - 75%), was available for harvest over a span of 19 days (July 18 - August 5). The major portion of the migration (2.5 - 97.5%) required an average 46 days (July 8 - August 18) to completely traverse the harvest area. The curve for the average daily cumulative proportions of catch showed a linear increase in catch of approximately 2.6% per day for the central half of the migration (Fig. 5) during even-years, 1970 - 1982. The 95% confidence interval about the average daily cumulative proportions was fairly large over the major portion of the migration (Fig. 5).

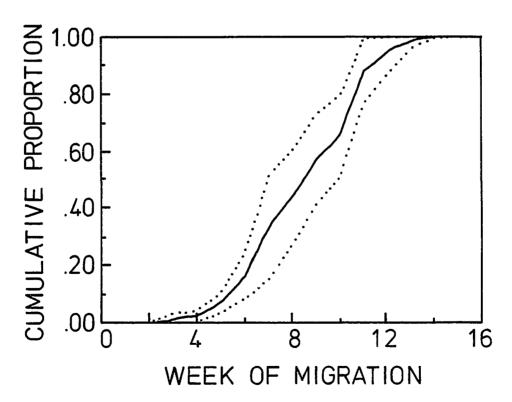

Considering even-year catch data, the mean dates of migration have

20

40


DAY OF MIGRATION


60


80

<u>1</u>00

.00

varied between July 15 (1974) and August 6 (1982), with an overall average mean date of July 28 (S = 7.7 days). In 1974, fishing took place in only management districts, 3 and 4, (Coghill and Northwestern). The 1974 mean date of July 15, therefore, represents a highly censored average performance of the sound-wide fishery. The next earliest average mean date for the even-year cycle was July 26 (1970), which was based on catch data from six of the eight management districts.

Sound-wide timing of the even-cycle of CPUE

Maturing even-year pink salmon migrated into Prince William Sound from June 18 through September 14, based on commercial CPUE data from the purse seine fishery from 1970 through 1982. On the average, 90% of all commercial CPUE occurred during a period of 62 days (June 18 - August 18) in these years, with one-half of the CPUE occurring prior to July 27 (Table 8). Maturing salmon continued to migrate into Prince William Sound waters during September, but the migration was nearly over by the end of August. Less than 1% of the commercial CPUE during even years 1970 - 1982 occurred, on the average, after August 30.

On the average, the central half of the population (25% - 75%) was available for harvest over a span of 22 days (July 16 - August 6). The major portion of the migration (2.5 - 97.5%) required an average 54 days (July 3 - August 25) to completely traverse the harvest area. The curve for the average daily cumulative proportions of CPUE showed an approximately linear increase in CPUE of 2.3% per day for the central half of the migration (Fig. 6) during even-years 1970 - 1982. The 95%

confidence interval about the average daily cumulative proportions was fairly large over the major portion of the migration (Fig. 6).

Using even-year CPUE data, the mean dates of migration have varied between July 13 (1974) and August 8 (1978), with an overall average mean date of July 28 (S = 9.5 days). In 1974, only two of the management districts, 3 and 4, (Coghill and Northwestern) were fished commercially. The 1974 mean date of July 13, therefore, represents a highly censored average performance of the sound-wide fishery. The next earliest average mean date for the even-year cycle was July 23 (1976), which was based on CPUE data from six of the eight management districts.

The time series of average daily proportions of even-year catch and CPUE (Tables 6 and 8) were actually quite different. Comparison of the time series of average daily cumulative proportions for these two data categories (Figs. 5 and 6; Tables 6 and 8), demonstrated a similar behavior. The daily averages for proportions of catch and for proportions of CPUE in this cycle year, indicated that the actual daily proportion was highly variable. The extent of this variability was demonstrated by the behavior of the standard deviations of these observations as a function of time (Tables 6 and 8). Daily variances of average cumulative proportions of both catch and CPUE fluctuated sharply, peaking in the area of the grand mean of migration for both categories, July 28.

From an inspection of the coded standard deviations (Tables 6 and 8), it appeared that the average cumulative proportion of even-year

catch was less variable than the average cumulative proportion of even-year CPUE for about 80% of the season. On dates between July 19 (0.30 cumulative proportion) and August 1 (0.62 cumulative proportion), however, the standard deviations for the average cumulative proportions of catch were slightly more variable than the corresponding standard deviations for CPUE, 93% of the time. The 95% confidence interval on the curve of average cumulative proportion of catch was narrower than the corresponding interval about the curve of cumulative average proportion of CPUE (Figs. 5 and 6).

The behavior of the coefficients of variation (CV) of these two data categories (Tables 6 and 8) through time, can be divided into daily and cumulative for comparison. The CV's for the daily proportions for the even-year cycle of catch and CPUE were initially large, and declined to a minimum in the area of the grand mean date, July 28. Beyond the mean date, the daily CV's tended to increase toward the magnitudes initially observed. The time series of the CV's for the cumulative proportions for both data categories were initially large and declined rapidly toward the grand mean. Decline in the CV's for the cumulative proportion time series of both catch and CPUE were relatively small after the grand mean date, July 28.

The CV's of the average daily proportions of even-year CPUE were routinely less than the CV's of the average daily proportions of even-year catch, although the magnitude of the differences were consistently small (Tables 6 and 8). Inspection of the time series of CV's for the average cumulative proportions of catch and CPUE, however,

revealed conflicting behavior. On dates prior to August 1 (0.63 cumulative proportion), the CV's for the average cumulative proportion of even-year catch were greater than the CV's for the average cumulative proportion of CPUE 80% of the time, while this pattern was reversed on the remaining 20% of dates prior to August 1 (Tables 6 and 8). On all dates after August 1, the CV's for the cumulative proportion of catch were always less than the corresponding CV's for the cumulative proportion of CPUE.

These results tend to agree with the conclusions drawn from the comparison of the time series of coded standard deviations (Tables 6 and 8), and from the inspection of the width of the 95% confidence interval about the curves for the average cumulative proportions of catch and CPUE (Figs. 5 and 6). The average cumulative proportions of even-year catch were slightly less variable than the average cumulative proportions of even-year CPUE, over the course of the season.

Sound-wide timing of the odd-cycle of catch

Maturing odd-year pink salmon migrated into Prince William Sound from June 14 through September 12, based on commercial catches from the purse seine fishery from 1969 through 1981. On the average, 90% of all the commercial catch was taken during a period of 55 days (June 14 - August 7) in these years, with one-half of the catch occurring prior to July 26 (Table 7). Maturing salmon continued to migrate into Prince William Sound waters during September, but the migration was nearly over by mid August. In any given odd year, less than 1% of the commercial

catch is expected to be taken after August 13.

On the average, the central half of the population (25% - 75%), was available for harvest over a span of 15 days (July 18 - August 1). The major portion of the migration (2.5 - 97.5%) required an average 46 days (June 27 - August 11) to completely traverse the harvest area. The curve for the average daily cumulative proportions of catch showed a linear increase in catch of, approximately, 3.3% per day for the central half of the migration (Fig. 7) during odd-years 1969 - 1981. The 95% confidence interval about the average daily cumulative proportions was fairly narrow over the major portion of the migration (Fig. 7).

Using odd-year catch data, the mean dates of migration have varied between July 15 (1977) and August 3 (1971), with an overall average mean date of July 25 (S = 6.2 days).

Sound-wide timing of the odd-cycle of CPUE

Maturing odd-year pink salmon migrated into Prince William Sound from June 14 through September 12, based on commercial CPUE data from the purse seine fishery from 1969 - 1981. On the average, 90% of all commercial CPUE occurred during a period of 63 days (June 14 - August 15) in these years, with one-half of the CPUE occurring prior to July 28 (Table 9). Maturing salmon continued to migrate into Prince William Sound waters during September, but the migration was nearly over by the end of August. Less than 1% of the commercial CPUE during the odd-years 1969 - 1981 occurred, on the average, after August 30.

On the average, the central half of the population (25 - 75%) was available for harvest over a span of 19 days (July 18 - August 5). The major portion of the migration (2.5 - 97.5%) usually required 57 days (June 27 - August 22) to completely traverse the harvest area. The average daily cumulative proportions of CPUE showed a linear increase in CPUE of about 2.6% per day for the central half of the migration (Fig. 8) during odd-years 1969 - 1981. The 95% confidence interval about the average daily cumulative proportions was moderately narrow, but less so than those of the cumulative proportions of odd-year catch, over the major portion of the migration (Fig. 7).

Considering odd-year CPUE data, the mean dates of migration have varied between July 15 (1977) and August 10 (1981), with an overall average mean date of July 28 ($S=8.3~\mathrm{days}$).

The two time series of average daily proportions of odd-year catch and CPUE (Tables 7 and 9) were quite different. Comparison of these two data categories (Figs. 7 and 8; Tables 7 and 9) demonstrated a similar behavior, although on dates prior to July 23 the two time series of proportions were nearly the same. The daily averages for proportions of catch and for proportions of CPUE in this cycle year, indicated that the actual daily proportion was highly variable. The extent of this variability was demonstrated by the behavior of the standard deviations of these observations as a function of time (Tables 7 and 9). Daily variances of average cumulative proportions of both catch and CPUE increased gradually, peaking in the area of the respective grand means

of migration for these categories, July 25 and July 28.

Inspection of the coded standard deviations (Tables 7 and 9), demonstrated that the average cumulative proportion of odd-year catch was less variable than the average cumulative proportion of odd-year CPUE for about 65% of the season. Between July 4 (0.96 cumulative proportion) and July 24 (0.40 cumulative proportion), however, the standard deviations for the average cumulative proportions of CPUE were less than the corresponding standard deviations for catch.

This behavior of alternating roles of the highest and lowest variability between these two time series data categories was also shown by comparison of the width of the 95% confidence interval on the average cumulative proportion curves for odd-year catch and CPUE (Figs. 7 and 8). Prior to cumulative proportion 0.40, the width of the confidence limits about the catch curve is greater than that for the CPUE curve, followed by a reversal of this situation for the remainder of the season.

The CV's for the average daily proportions of odd-year catch and CPUE were initially large and declined to a minimum in the area of the respective grand means of migration, July 25 and July 28 (Tables 7 and 9). Beyond these mean dates, the daily CV's for both data categories tended to increase toward the magnitudes initially observed. The time series of the CV's for the cumulative proportions for catch and CPUE were initially large and declined rapidly toward the grand mean dates. Thereafter, declines in the CV's for the cumulative proportion time

series of both data categories were gradual, and relatively small.

The CV's of the average daily proportions of odd-year CPUE were routinely less than the CV's of the average daily proportions of odd-year catch over about 85% of the season (Tables 7 and 9). Inspection of the time series of CV's for the average cumulative proportions for these two data categories, however, revealed that, for approximately 81% of the season, the CV's for the cumulative proportions of CPUE were greater than the corresponding CV's for catch (Tables 7 and 9). On dates between June 14 and July 21 (0.30 cumulative proportion), the CV's for the cumulative proportions of CPUE were greater than those of catch approximately 50% of the time. On all dates after July 21, the time series of CV's for average cumulative proportions of CPUE were always greater than the corresponding time series of CV's for catch.

These results agree with the conclusions drawn from the comparison of the time series of coded standard deviations (Tables 7 and 9), and from the inspection of the width of the confidence limits on the curves for the average cumulative proportions of catch and CPUE (Figs. 7 and 8). The average cumulative proportions of odd-year catch were less variable than the average cumulative proportions of odd-year CPUE, over the major portion of the season.

Within both even and odd cycles, the data category of catch was shown to be less variable than the corresponding data category of CPUE over the course of the season, even though the magnitude of the difference between the two categories was marginal. The more consistent

behavior of the time series of cumulative proporiton of catch suggested a higher degree of reliability in its descriptive statistics (mean and variance). Catch data, therefore, was selected to serve as the basis for the comparison of migratory behavior among management districts.

Sound-wide timing of the even-cycle of spawning escapement

Even-year pink salmon escaped to the spawning grounds in Prince William Sound from June 19 through September 25, based on escapement enumeration data collected from the 211 index spawning streams for 1964 - 1982. On the average, 90% of all the escapement occurred during a period of 43 days (June 19 - August 30) in these years, with one-half of the escapement occurring prior to August 17 (Table 10). Spawning escapement continued into October, but it was nearly over by the beginning of September. Less than 1% of the escapement during even-years 1964 - 1982 occurred, on the average, after September 10.

The central half of the distribution of spawning escapement (25 - 75%) occurred over a span of 18 days (August 7 - August 24). The major portion of the escapement distribution (2.5 - 97.5%) required about 53 days (July 17 - September 7) to completely escape the harvest area. The curve of the average weekly cumulative proportions of even-year spawning escapement showed a linear increase in escapement of approximately 2.8% per day for the central half of the distribution (Fig. 9). The 95% confidence interval about the average weekly cumulative proportions was extremely narrow over the major portion of the escapement distribution (Fig. 9).

Employing even-year escapement data, the mean dates of spawning escapement have varied between August 13 (1968) and August 24 (1976), with an overall average mean date of August 18 (S = 3.6 days).

Sound-wide timing of the odd-cycle of spawning escapement

Odd-year pink salmon escaped to the spawning grounds in Prince William Sound from June 26 through September 25, based on escapement enumeration data collected from the 211 index spawning streams for 1965 - 1983. On the average, 90% of all the escapement occurred during a period of 66 days (June 26 - August 30) in these years, with one-half of the escapement occurring prior to August 10 (Table 11). Spawning escapement continued into October, but it was nearly over by mid September. Less than 1% of the spawning escapement during odd-years 1965 - 1983 occurred, on the average, after September 14.

The central half of the distribution of spawning escapement (25 - 75%) occurred over a span of 29 days (July 27 - August 24). The major portion of the escapement distribution (2.5 - 97.5%) required an average 61 days (July 10 - September 8) to completely escape the harvest area. The curve of the average weekly cumulative proportions of odd-year spawning escapement showed a linear increase in escapement of approximately 1.7% per day for the central half of the distribution (Fig. 10). The 95% confidence interval about the average weekly cumulative proportions was fairly narrow over the major portion of the escapement distribution (Fig. 10).

Using odd-year escapement data, the mean dates of spawning escapements have varied between July 27 (1983) and August 30 (1971), with an overall average mean date of August 14 (S = 8.9 days).

Comparison of the time series of average weekly proportion, and average cumulative proportion for even-year escapement with those for odd-year escapement (Figs. 9 and 10; Tables 10 and 11), revealed that these two data categories were quite different. From an inspection of the coded standard deviations (Tables 10 and 11), it appeared that the average cumulative proportions of even-year spawning escapement were much less variable than the average cumulative proportions of odd-year spawning escapement over the course of the season. This behavior was also demonstrated by the tighter 95% confidence interval on the curve for the average cumulative proportion of even-year escapement (Fig. 9), as compared to that of the curve for the average cumulative proportion of odd-year escapement (Fig. 10). Comparison of the time series of CV's for the average weekly proportions, and for the average cumulative proportions for these two data categories, also supports this conclusion.

Descriptive characteristics of the average historical time densities for all management districts by cycle year, analogous to those summarized in the previous descriptions of the sound-wide average historical time densities, were also evaluated for the data categories of catch, CPUE, and spawning escapement (Tables 12 and 13) for every available year of data (Tables 1 and 2).

Table 12. Characteristic percentage points of the migration, the month and day, and the duration in days of the percentage points, the median, the grand mean and standard deviation of the average time densities for the even-cycle of catch, CPUE, and spawning escapement, and the earliest and latest mean dates for the management districts of Prince William Sound.

705 - 823	2 EVEN	3 CATCH	4
	EVEN	CATCH	
	708 - 815	618 - 809	626 - 811
708 - 821	709 - 813	626 - 807	47 704 - 809 37
723 - 811	720 - 804	712 - 727	716 - 729 14
			721
802 / 5.0	728 / 5.2	720 / 6.9	723 / 5.7
726 / 808	722 / 804	713 / 731	714 / 730
EVEN CPUE			
705 - 828	708 - 818 42	618 - 809 56	626 - 812 48
706 - 826	709 - 815	630 - 809	702 - 809 39
719 - 810 23	721 - 805 16	715 - 728 14	716 - 730 15
730	728	720	723
731 / 7.3	728 / 6.3	721 / 6.3	724 / 6.6
723 / 809	719 / 804	713 / 801	713 / 729
EVEN ESCT			
626 - 909	619 - 906	626 - 904	703 - 904 64
703 - 907	621 - 904	715 - 902	718 - 902 47
730 - 825	808 - 825	804 - 822	808 - 823
			16
			814 818 / 2.0
			813 / 820
_	50 708 - 821 45 723 - 811 20 803 802 / 5.0 726 / 808 705 - 828 55 706 - 826 52 719 - 810 23 730 731 / 7.3 723 / 809 626 - 909 76 703 - 907 67	50	50

	Management District			
	5	6	7	8
Percentage	EVEN CATCH			
1% - 99%		706 - 819		712 - 814
2.5%-97.5%		45 713 - 816 35		34 713 - 811 30
25% - 7 <i>5</i> %		722 - 805		720 - 801
Median (50%) Date		15 729		13 727
Grand Mean / S.D.		730 / 6.5		730 / 6.0
Earliest / Latest		723 / 807		723 / 806
Percentage	EVEN CPUE			
1% - 99%		706 - 824		712 - 818
2.5%-97.5%		50 710 - 822		38 713 - 816
		44		35
25% - 75%		721 - 807		720 - 805
Mediem (50%) Date		18 720		17
Median (50%) Date Grand Mean / S.D.		730 731 / 7.3		726 731 / 6.9
Earliest / Latest		724 / 809		723 / 809
Percentage	EVEN ESCT			
1% - 99%	717 - 904	710 - 904	710 - 908	710 - 905
2.5%-97.5%	50 719 - 828	57 722 - 902	61 725 - 903	58 724 - 903
& .JN" 71 .JN	719 - 628 41	43	41	724 - 903 42
25% - 75%	728 - 824	808 - 825	811 - 827	810 - 826
	28	18	17	17
Median (50%) Date	822	81.5	820	820
Grand Mean / S.D.	821 / 5.9	820 / 3.5	822 / 3.2	822 / 3.1
Earliest / Latest	811 / 825	813 / 825	817 / 826	816 / 826

Table 13. Characteristic percentage points of the migration, the month and day, and the duration in days of the percentage points, the median, the grand mean and standard deviation of the average time densities for the odd-cycle of catch, CPUE, and spawning escapement, and the earliest and latest mean dates for the management districts of Prince William Sound.

	Management District				
	1	2	3	4	
Percentage	ODD CATCH				
1% - 99%	617 - 816	624 - 810	614 - 805	627 - 806	
2.5%-97.5%	61 624 - 812	48 625 - 809	53 628 - 804	41 701 - 805	
	50	46	38	36	
25% — 75%	702 - 803	706 - 728	708 - 726	716 - 728	
	33	23	19	13	
Median (50%) Date	727	721	717	720	
Grand Mean / S.D. Earliest / Latest	724 / 10.0 709 / 806	721 / 7.2 712 / 801	717 / 5.7 709 / 724	722 / 5.6	
Percentage	ODD CPUE				
1% - 99%	617 - 822	624 - 812	614 - 805	627 - 808	
2. <i>5</i> %-97. <i>5</i> %	67 624 – 815	50 625 - 810	53 628 - 804	43 628 - 807	
2.50 51.50	53	47	38	31	
25% - 75%	716 - 802	717 - 730	714 - 731	716 - 730	
	18	14	18	15	
Median (50%) Date	726	724	723	725	
Grand Mean / S.D.	725 / 6.9	725 / 5.6	722 / 6.3	724 / 6.5	
Earliest / Latest	713 / 804	718 / 803	712 / 728	714 / 802	
Percentage	ODD ESCT				
1% - 99%	626 - 913 80	626 - 903 70	626 - 910 77	710 - 923 76	
2.5%-97.5%	703 – 910 70	703 - 901 61	706 - 915 72	718 - 919 64	
25% - 7 <i>5</i> %	723 — 823 32	724 - 815 23	727 - 825 30	803 - 826 24	
Median (50%) Date	806	801	807	822	
Grand Mean / S.D.	810 / 10.9	807 / 7.2	814 / 12.5	820 / 11.	
Earliest / Latest	723 / 829	724 / 821	730 / 908	729 / 910	

Table 13 continued.

	Management District			
	5	6	7	8
Percentage	ODD CATCH			
1% - 99%		616 - 813	712 - 809	624 - 812
2.5%-97.5%		59 707 - 810 36	29 714 - 806 24	50 705 - 810 37
2 <i>5</i> % - 7 <i>5</i> %		721 - 801 12	719 - 731 13	719 - 80: 14
Median (50%) Date		727	727	726
Grand Mean / S.D.		727 / 3.8	728 / 2.4	726 / 5.6
Earliest / Latest		722 / 802	726 / 801	717 / 80
Percentage	ODD CPUE			
1% - 99%		616 - 824	712 - 810	624 - 81.5
2.5 % -97.5%		70 629 – 822	30 713 - 809	53 704 - 812
2 <i>5</i> % - 7 <i>5</i> %		55 721 - 804	28 719 - 731	40 717 - 803
Median (50%) Date		15 729	13 728	16 725
Grand Mean / S.D.		729 / 7.4	728 / 1.9	726 / 5.8
Earliest / Latest		719 / 811	727 / 731	716 / 804
Percentage	ODD ESCT			
1% - 99%	710 - 916 69	724 - 915 54	703 - 911 71	703 - 91: 71
2.5%-97.5%	717 - 912	725 - 911	725 – 908 46	717 - 90
25% - 7 <i>5</i> %	58 803 - 829	49 814 – 827	731 - 825	54 730 - 82
Median (50%) Date	27 823	14 822	26 81.4	26 811
Grand Mean / S.D.	824 / 10.3	824 / 5.0	817 / 10.5	
Earliest / Latest	812 / 905	817 / 904	729 / 902	729 / 82

The average duration, in days, of the central 95% of the migration (2.5 - 97.5%) for all management districts within a cycle year, was calculated for the data categories of catch, CPUE, and spawning escapement (Tables 12 and 13). Using even-year catch data, the average length of time required for this portion of the migration to traverse the harvest area varied between 45 days (Eastern District) and 30 days (Southeastern District) (Fig. 11). Within this range of days, a central group of management districts was discernible consisting of, Northern (36 days), Northwestern (37 days), and Southwestern (35 days). The central 95% of the migration through Coghill District also required a relatively long period of time (43 days) to fully clear the harvest area.

Using odd-year catch data, the average time required for the central 95% of the migration to traverse the harvest area varied between 50 days (Eastern District) and 24 days (Montague District) (Fig. 12). Within this range of days, a central group of management districts was discernible consisting of, Coghill (38 days), Northwestern (36 days), Southwestern (36 days), and Southeastern (37 days). The central 95% of the migration through Northern District also required a relatively long period of time (46 days) to fully clear the harvest area.

Inspection of the average number of days required for the central 95% of the distribution of spawning escapement to completely escape to the spawning grounds, revealed a similar behavior between management districts for both cycle years (Figs. 13 and 14). Using even-year spawning escapement data, the average time required for the central 95%

of the migration to fully escape the harvest area varied between 75 days District 2 (Northern District) and 41 days Districts 5 and 7 (Eshamy and Montague). Using odd-year spawning escapement data, this same behavior varied between 72 days District 3 (Coghill District) and 46 days District 7 (Montague).

Within the even-year cycle of spawning escapement (Fig. 13), however, the distribution among management districts of these average durations was more segregated than the corresponding distribution within the odd-year cycle of spawning escapement (Fig 14). Two distinct groups of districts were discernible within the even cycle escapement category consisting of, Eastern (75 days) and Northern (67 days) Districts in the group requiring the greater length of time, and all remaining management districts in the group with relatively small durations. Within the odd-year cycle of spawning escapement, the distinction between management districts on the basis of large and small durations was much less defined. Management districts in the odd cycle escapement category with the smaller durations consisted of Southwestern District (49 days) and Montague District (46 days), while Eastern (70 days) and Coghill (72 days) were the management districts which required the longer period of time for the central 95% of the migration to escape to the spawning grounds. All remaining management districts in this cycle year fell within a broad zone of transistion between these extremes.

Regardless of the cycle year or category of data (catch or escapement), a similarity in the behavior among districts of the duration of the 95% of the migration, was demonstrated. The lower

numerically-coded districts (Eastern and Northern) required the longest period of time for this portion of the migration to traverse the harvest area, while the migration through the higher numerically-coded districts was generally faster.

The average historical mean date of migration (\pm 1 standard deviation) for all management districts within both cycle years, was calculated for the data categories of catch, and spawning escapement (Figs. 15 through 18). Under normal theory, \pm one standard deviation about the mean of the population spans, approximately, 68% of its distribution.

Considering even-year catch data (Fig. 15), average historical mean dates for the management districts varied between July 20 (Coghill District) and August 2 (Eastern District). Examination of the error bars (± 1 S.D.) about the average mean dates, failed to reveal any distinct differences among management districts with respect to timing behavior. The average mean date of migration in Northwestern District (July 23), was among the earliest of all management districts.

Using odd-year catch data (Fig. 16), average historical mean dates for the management districts varied between July 17 (Coghill District) and July 28 (Montague District). Examination of the error bars about the average mean dates revealed that only one pair of management districts (Coghill and Montague) could be identified as probably having different timing behavior. Comparison of even-year and odd-year catch data (Figs. 15 and 16), showed that the overall pattern of variation in

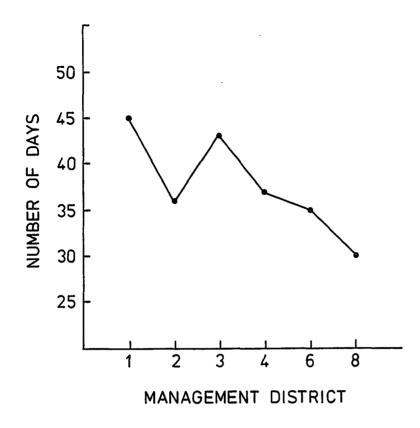
mean dates among management districts was quite similar for both cycle years.

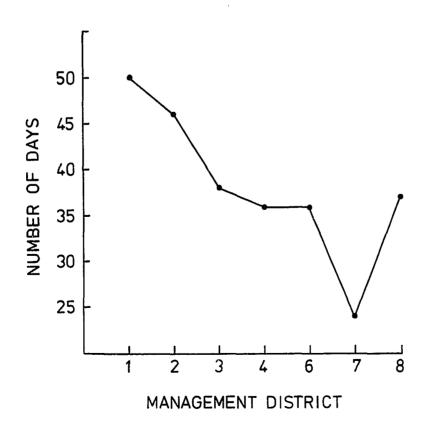
Comparison of even-year and odd-year spawning escapement data (Figs. 17 and 18), revealed that the overall pattern of variation in average mean dates among management districts was quite different for both cycle years. Using even-year escapement data (Fig. 17), average historical mean dates for the management districts varied between August 16 (Eastern and Coghill Districts) and August 22 (Montague and Southeastern Districts). No differences in timing behavior between management districts were detected from the inspection of the error bars about the even-year average mean dates of spawning escapement.

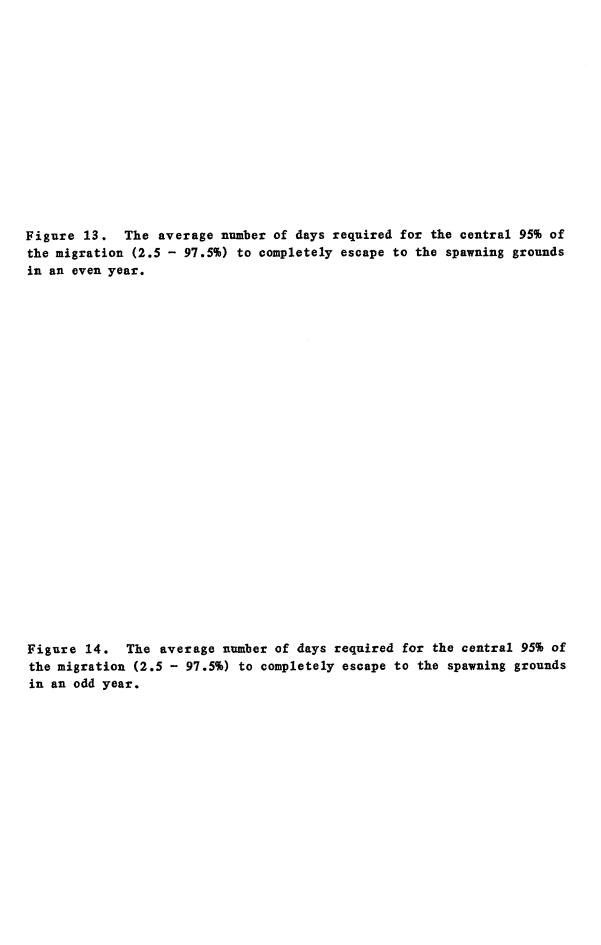
The low degree of variability in the average mean dates among management districts in the even cycle of spawning escapement, indicated a very stable average performance in the time distribution of escapement on a sound-wide basis. This conclusion agreed with that previously obtained from the examination of the width of the 95% confidence intervals about the curve for the average weekly cumulative proportion of even-year escapement (Fig. 9).

Employing odd-year spawning escapement data (Fig. 18), average historical mean dates for the management districts varies between August 7 District 2 (Northern) and August 24 Districts 5 and 6 (Eshamy and Southwestern). Examination of the error bars about the average mean dates, revealed that one pair of management districts (Northern and Southwestern) could be identified as having different timing behavior.

The overall pattern of variation in the average mean dates among management districts for odd-year escapement was quite similar to that for odd-year catch (Fig. 20), indicating a strong relation between the sound-wide time distributions of odd-cycle catch and spawning escapement. Examination of the overall pattern of variation in mean dates among management districts for the even-year cycles of catch and escapement (Fig. 19), however, showed that the sound-wide relation between the even-cycle timing behaviors of catch and spawning escapement were not as strong as that for the odd-year cycle.


Both the variation of average mean dates among districts, and the width of the error bars about the means, were much greater for the odd-year cycle of escapement (Fig. 18) than were the corresponding observations for the even-year cycle of escapement (Fig. 18). The greater variability within the odd cycle escapement category, therefore, may weaken the relation found between the sound-wide time distributions of catch and spawning escapement.


The similarity between the timing behaviors of catch and spawning escapement was shown by the extent of the relation between the time series of annual mean dates of catch and escapement independently (Figs. 21-34). The degree of similarity between the time series of annual mean dates of catch and spawning escapement varied from district to district and from cycle year to cycle year. On the average, however, this relation was stronger for the even-year cycle than for the odd-year cycle as, perhaps, best illustrated by the greater similarity between the sound-wide time series of catch and escapement in the even-year


cycle (Fig. 21) than between the corresponding data categories in the odd-year cycle (Fig. 22).

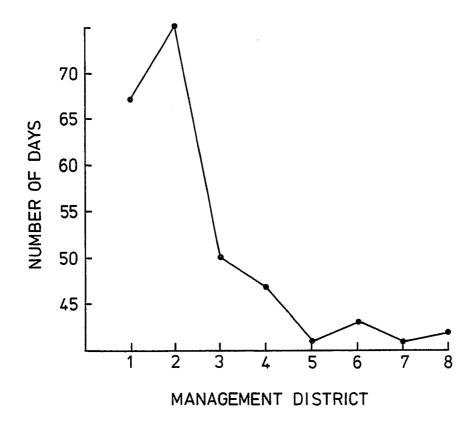
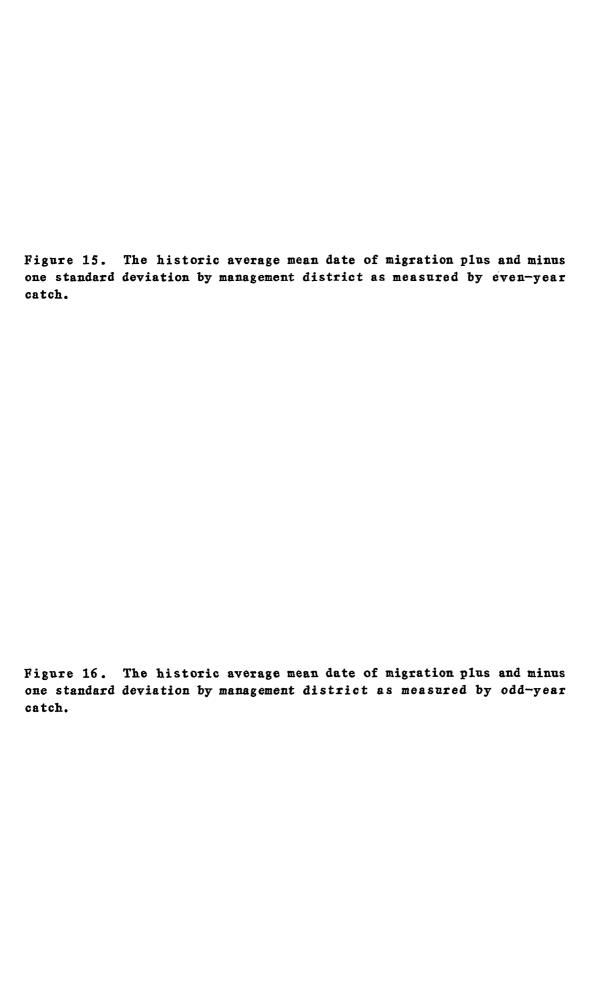
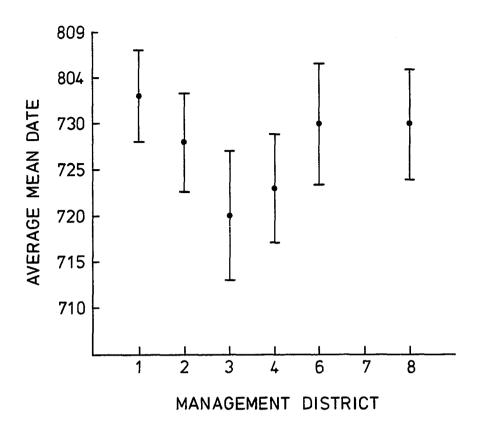
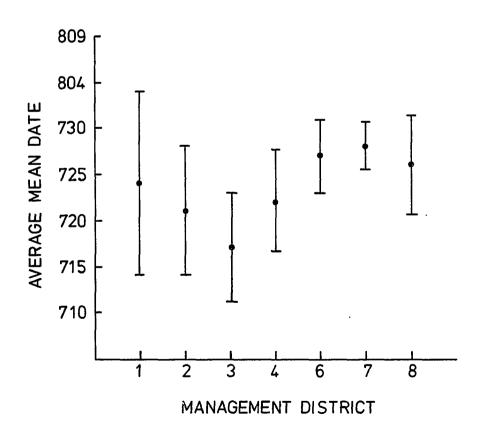
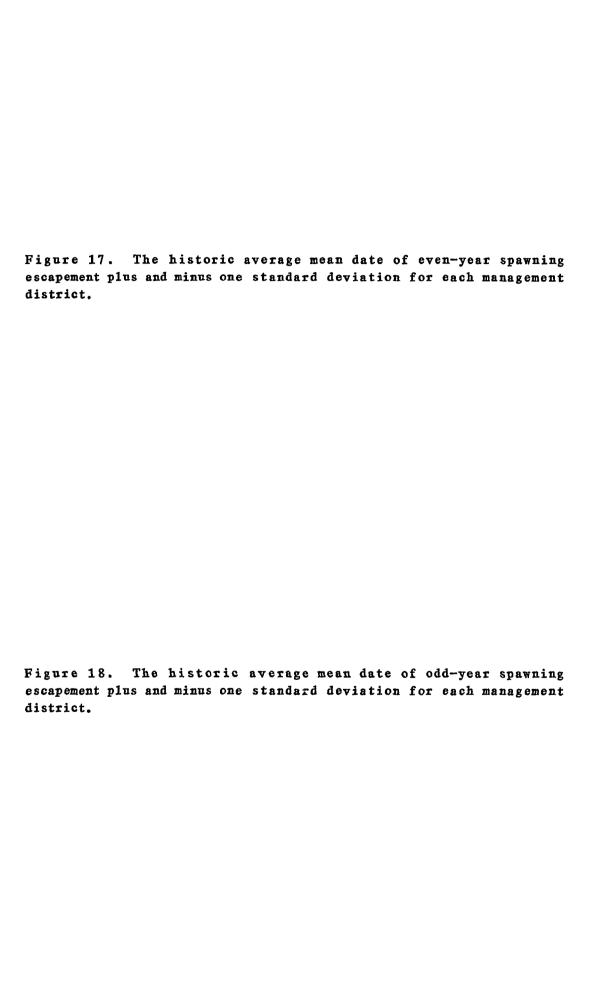

Figure 11. The average number of days required for the central 95% of the migration (2.5 - 97.5%) to completely traverse the harvest area as measured by even-year catch data.

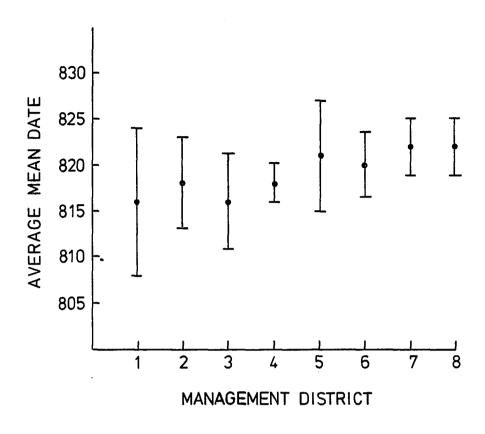

Figure 12. The average number of days required for the central 95% of the migration (2.5 - 97.5%) to completely traverse the harvest area as measured by odd-year catch data.

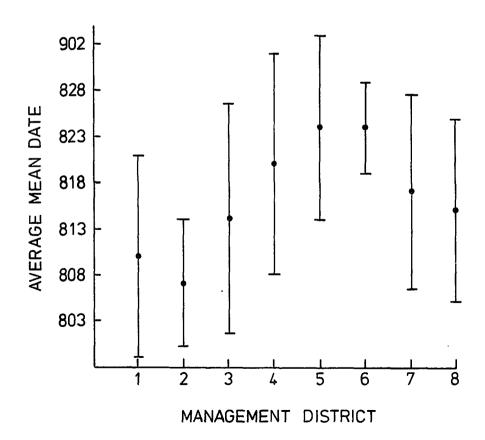


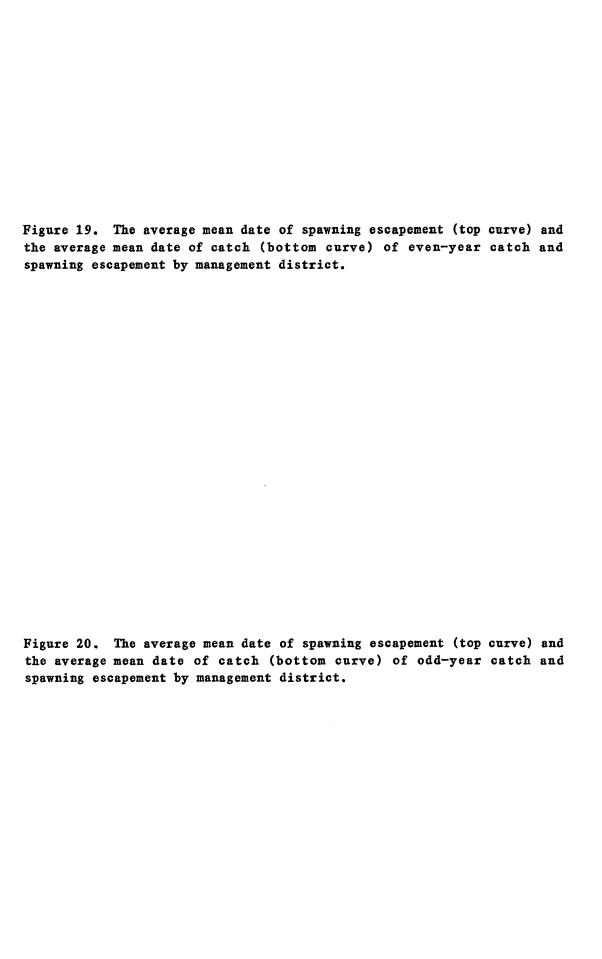


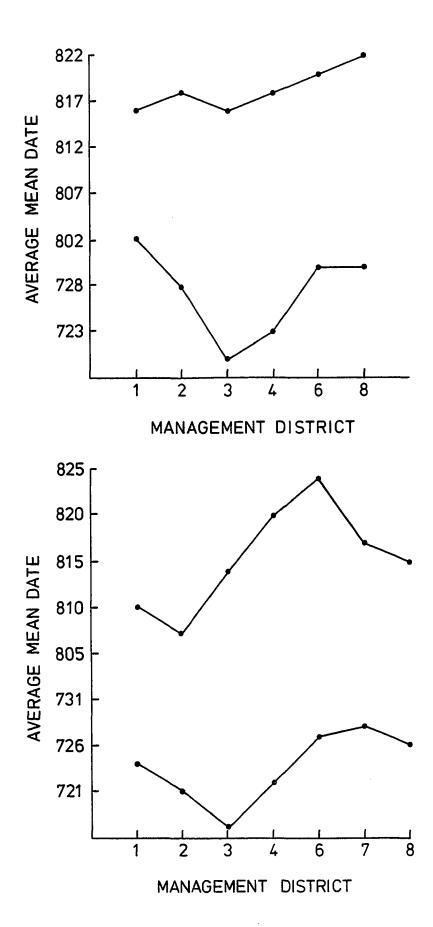


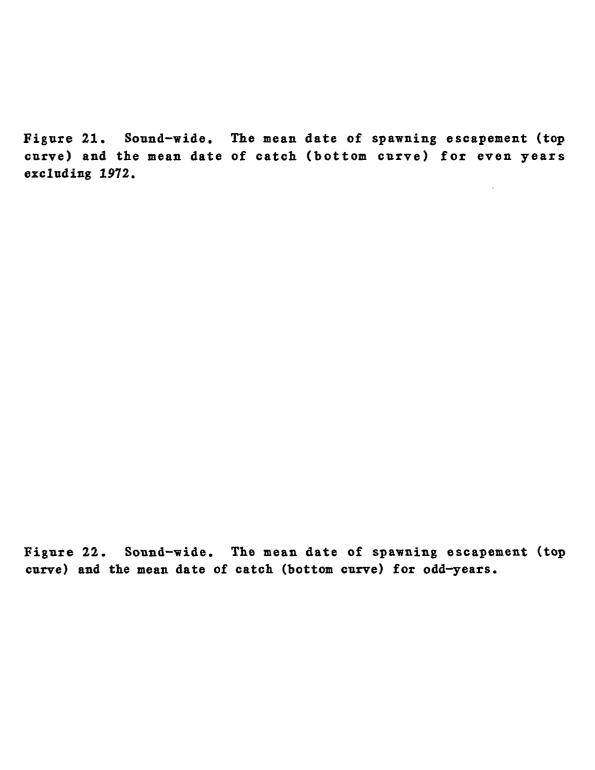


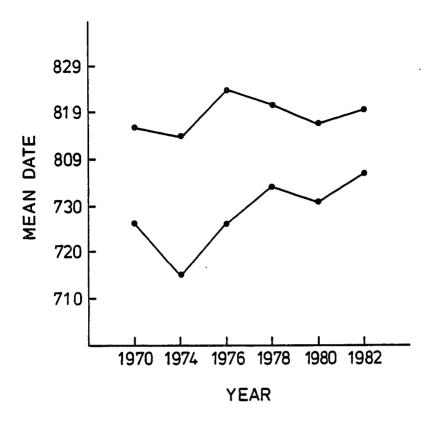


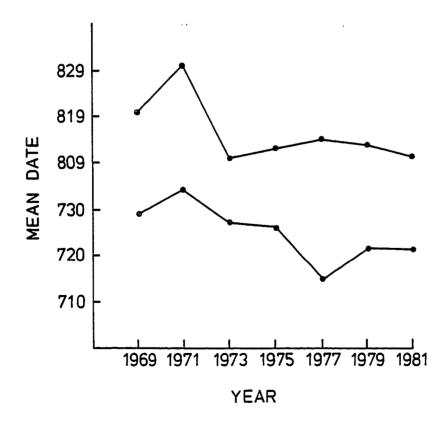


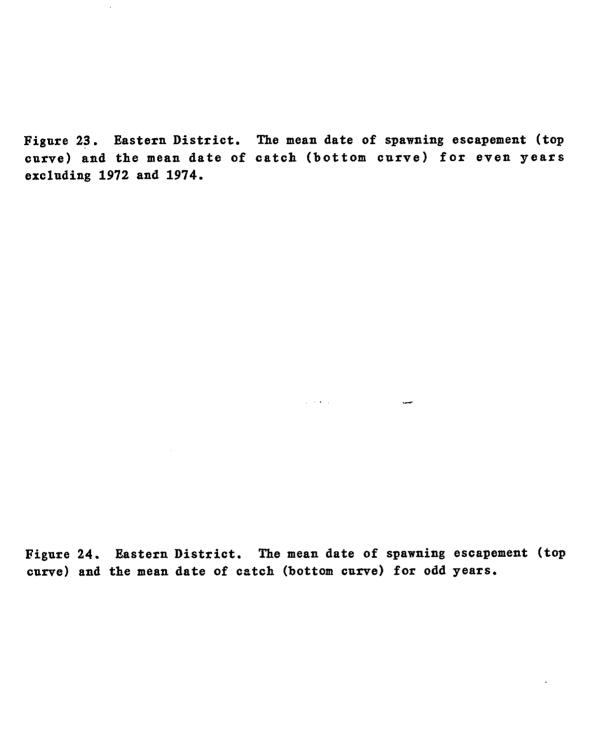


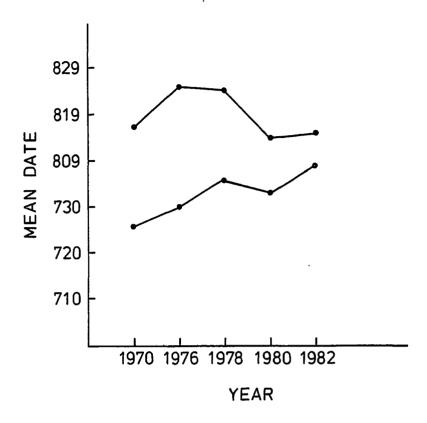


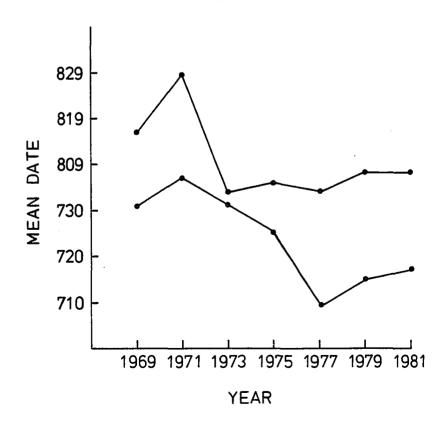


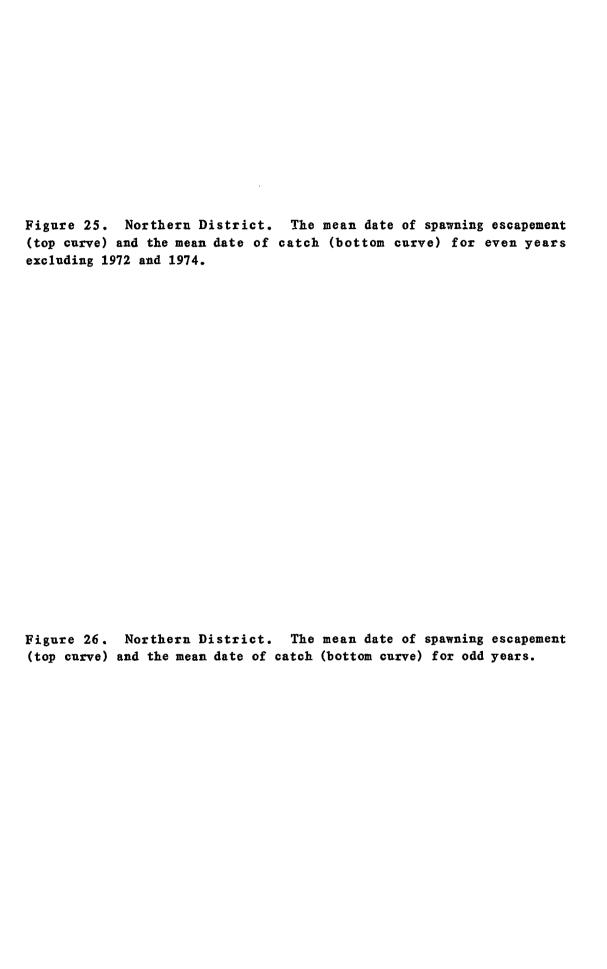


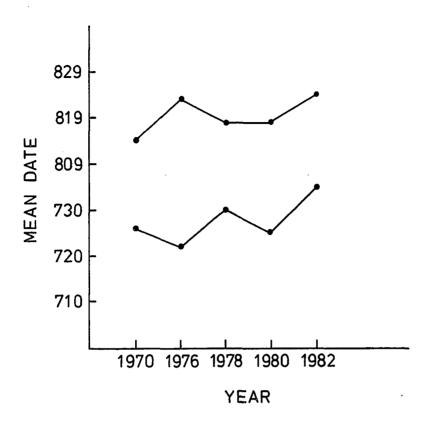


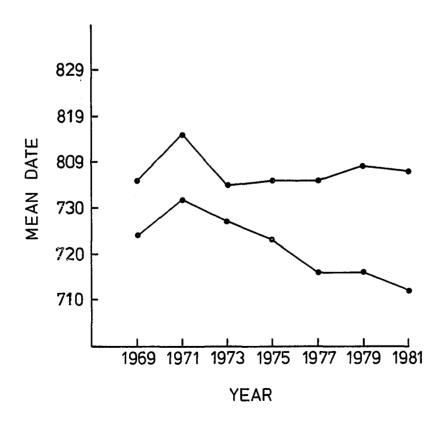


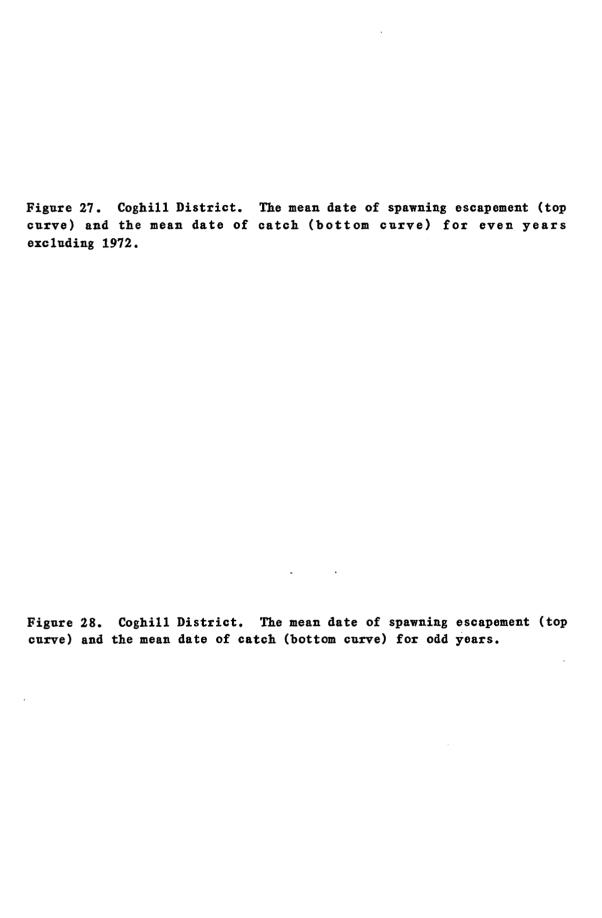


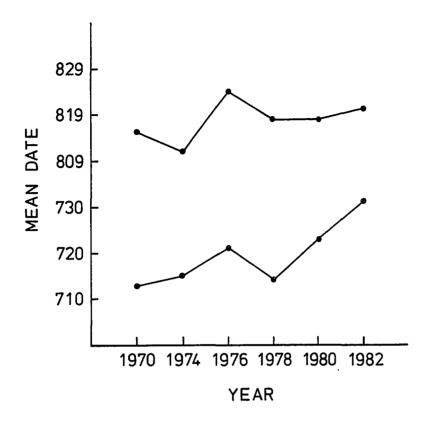


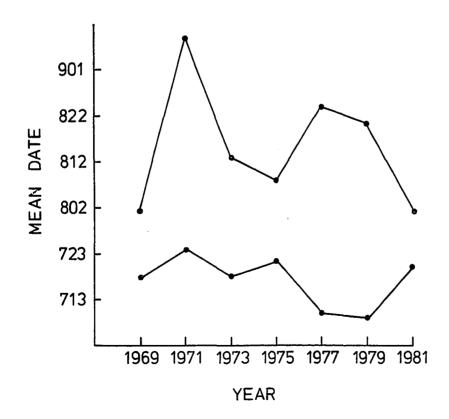


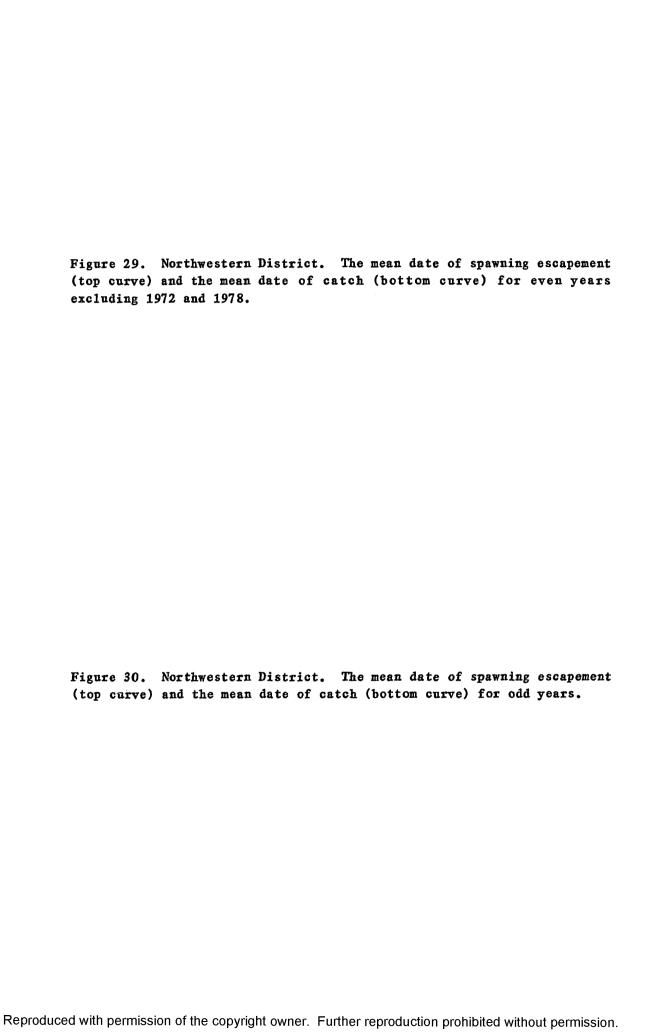


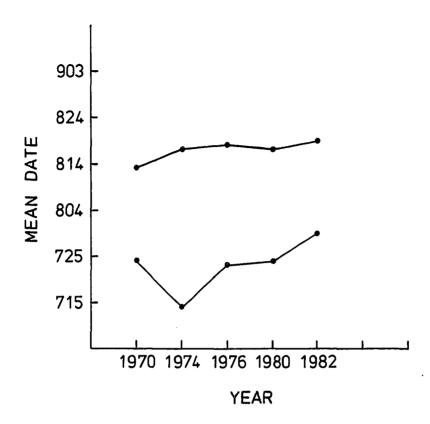


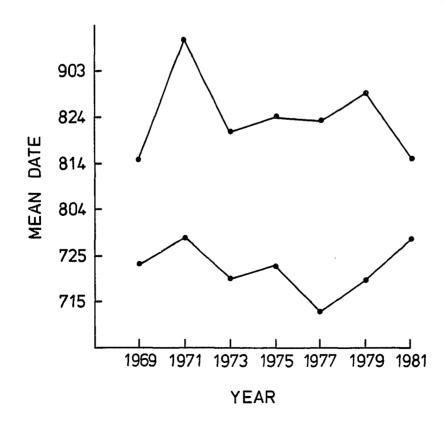


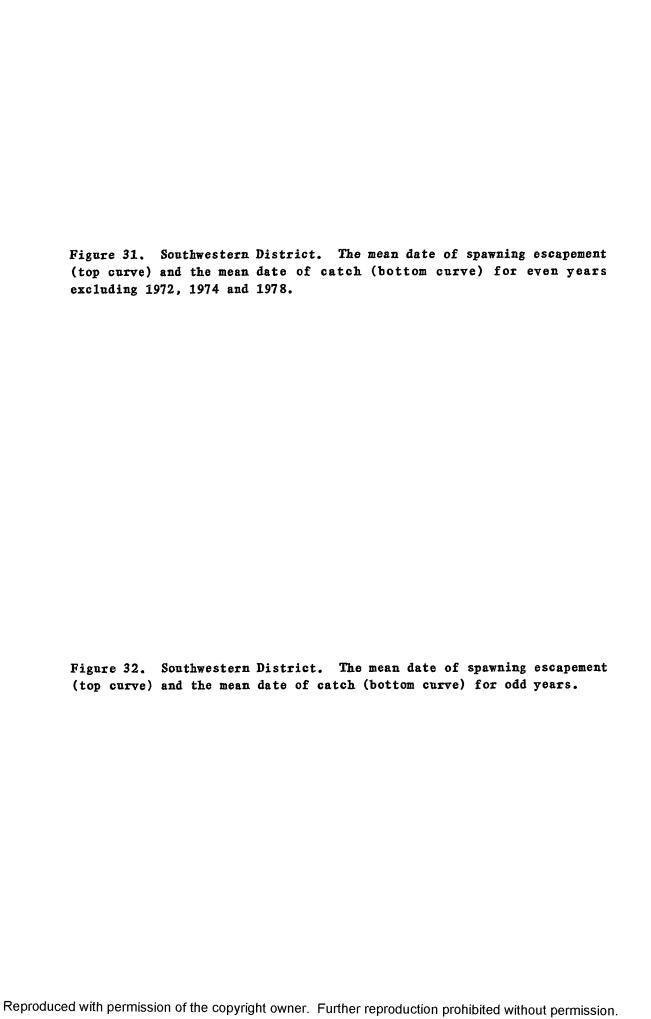


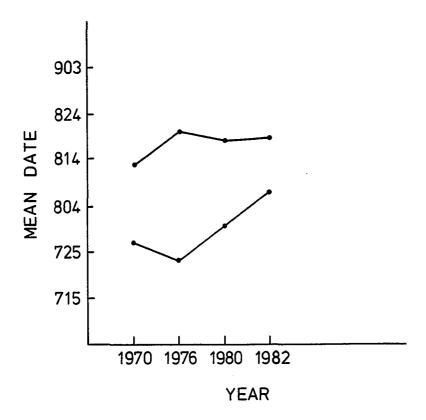












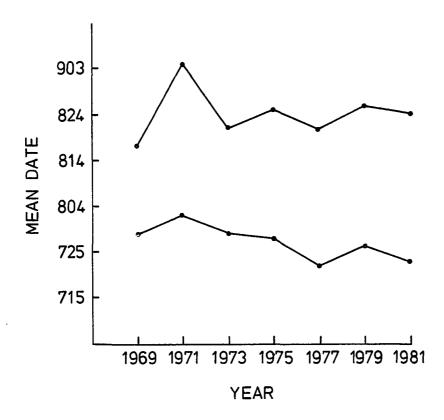
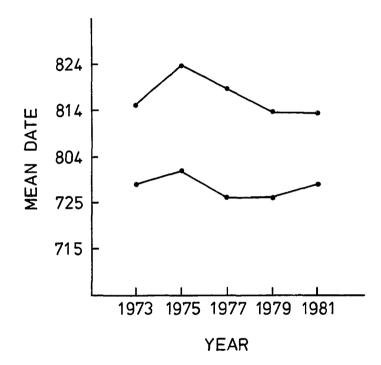
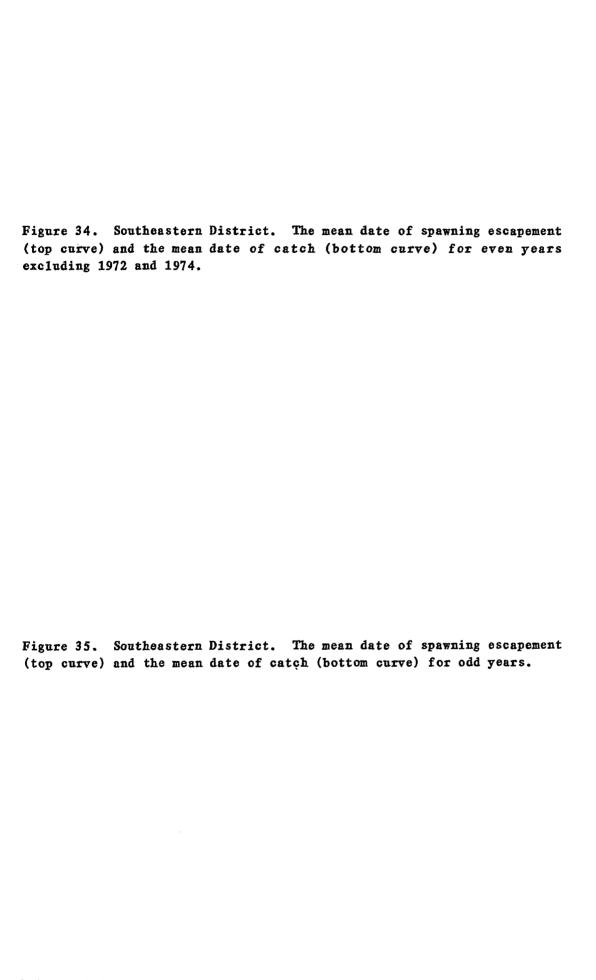
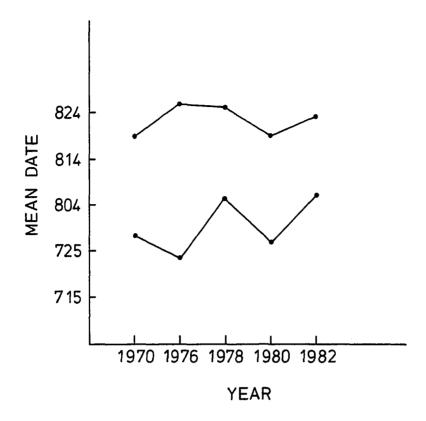
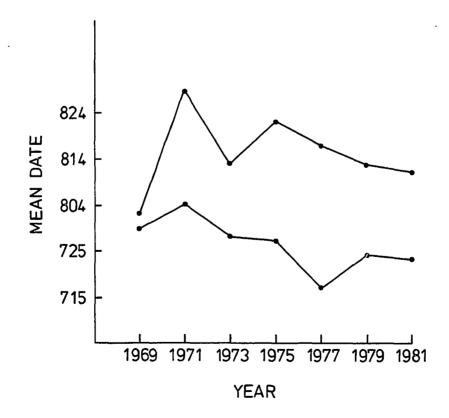






Figure 33. Montague District. The mean date of spawning escapement (top curve) and the mean date of catch (bottom curve) for odd years excluding 1969 and 1971.

4.2 Analysis of Variance and Multiple Comparison Methods

A fixed effects two-way analysis of variance model with interaction was constructed to analyze differences in the mean dates of migration between cycle years and among districts, for the data categories of catch and spawning escapement. In each data category, the two factors, or independent variables, examined by this model were, cycle year (A), and management district (B), consisting of two and eight levels, respectively.

Two-way Analysis of Catch Data

Using catch data, results of the three hypotheses of interest examined by this model were:

- 1. H_0 : $\alpha_i = 0$ against H_a : not all $\alpha_i = 0$, i = 1, ..., a. Are there significant differences in the mean dates of the empirical distributions of catch between the odd-year and the even-year cycles? The test concluded a significant $F^* = 8.36$ (p = 0.005), based on the F distribution with 1 and 64 degrees of freedom (df). Based on empirical distributions of catch, therefore, the analysis supported, at the 99.5% confidence level, that the odd-year population and the even-year population of pink salmon were genetically distinct.
- 2. H_0 : $\beta_j = 0$ against H_a : not all $\beta_j = 0$, j = 1, ..., b. Are there significant differences among districts in the mean dates of the empirical distributions of catch when the odd-year and the even-year data are combined? The test concluded a significant $F^* = 4.76$ (p \leq 0.0001), based on the F distribution with 6 and 64 df. When odd-year

and even-year catch data were combined, therefore, a highly significant difference was shown to exist in the migratory behavior among management disticts, at the 99.99% confidence level. Since it is inconsistent with the genetic inheritability of migratory timing to combine even-year and odd-year catch data, this result may be of limited value.

The significant sample F value with respect to distinct effects on combined even and odd populations demonstrates that the differences between districts are stronger than the differences between even and odd populations within districts. The timing behaviors of the districts really do differ, and they differ substantially enough to overcome the combination of even and odd populations, which combination we know to be biologically inappropriate.

3. H_0 : $(\alpha\beta)_{ij} = 0$ against H_a : not all $(\alpha\beta)_{ij} = 0$, for all i and j. Do different combinations of the levels of the two factors produce different effects? The test failed to conclude a significant $F^* = 0.72$ (p = 0.61), based on the F distribution with 5 and 64 df. Based on empirical distributions of catch, therefore, differences in the means of the time densities between any two management districts were the same for both even-year and odd-year populations, and differences in the means between the two populations were the same for all management districts.

Two-way Analysis of Spawning Escapement Data

Using escapement data, results of the three hypotheses of interest examined by this model were:

1. H_0 $\alpha_i = 0$ against H_a : not all $\alpha_i = 0$, $i = 1, \ldots, a$. Are there

significant differences in the mean dates of the empirical distributions of spawning escapement between the odd-year and the even-year cycles? The test concluded a significant $F^* = 5.65$ (p = 0.019), based on the F distribution with 1 and 132 df. Based on the empirical distributions of escapement, therefore, the analysis supported, at the 98.1% confidence level, that the odd-year population and the even-year population of pink salmon were genetically distinct.

- 2. H_0 : $\beta_j = 0$ against H_a : not all $\beta_j = 0$, j = 1, ..., b. Are there significant differences among districts in the empirical distributions of escapement when the odd-year and the even-year data are combined? The test concluded a significant $F^* = 3.80$ (p = 0.001), based on the F distribution with 7 and 132 df. When odd-year and even-year data are combined, therefore, a highly significant difference was shown to exist in the migratory behavior among management districts, at the 99.9% confidence level.
- 3. H_0 : $(\alpha\beta)_{ij} = 0$ against H_a : not all $(\alpha\beta)_{ij} = 0$, for all i and j. Do different combinations of the levels of the two factors produce different effects? The test concluded a significant $F^* = 2.19$ (p = 0.039), based on the F distribution with 7 and 132 df. Based on the empirical distributions of escapement, therefore, differences in the means of the time densities between any two management districts were not the same for both populations, and differences in the means between the two populations were not the same for all management districts.

A fixed effects one-way analysis of variance model was constructed to analyze differences in the mean dates of migration among districts for each cycle year independently, for the data categories of catch and spawning escapement. The independent variable, or treatment effect, examined by this model was the management district, consisting of eight levels.

One-way Analysis of Even-year Catch Data

Using even-year catch data, the hypothesis of interest examined by this model was: H_0 : $\tau_j = 0$ against H_a : not all $\tau_j = 0$, j = 1, ..., k. Are there significant differences among management districts in the mean dates of the empirical distributions of even-year catch? The test concluded a significant $F^* = 3.68$ (p = 0.013), based on the F distribution with 5 and 24 df. When only even-year catch data were examined, therefore, a highly significant difference was shown to exist between the timing behavior among management districts, at the 98.7% confidence level.

One-way Analysis of Odd-year Catch Data

Using odd-year catch data, the hypothesis of interest examined by this model was: H_0 : $\tau_j = 0$ against H_a : not all $\tau_j = 0$, j = 1, ..., k. Are there significant differences among management districts in the mean dates of the empirical distributions of odd-year catch? The test concluded a significant $F^* = 2.41$ (p = 0.044), based on the F distribution with 6 and 40 df. When only odd-year catch data were examined, therefore, a significant difference was shown to exist between the timing behavior among management districts, at the 95.6% confidence level.

One-way Analysis of Even-year Spawning Escapement Data

Using even-year spawning escapement data, the hypothesis of interest examined by this model was: H_0 : $\tau_j = 0$ against H_a : not all $\tau_j = 0$, $j = 1, \ldots, k$. Are there significant differences among management districts in the mean dates of the empirical distributions of even-year escapement? The test concluded a significant $F^* = 2.79$ (p = 0.013), based on the F distribution with 7 and 67 df. When only even-year escapement enumeration data were examined, therefore, a highly significant difference was shown to exist between the timing behavior among management districts, at the 98.7% confidence level.

One-way Analysis of Odd-year Spawning Escapement Data

Using odd-year spawning escapement data, the hypothesis of interest examined by this model was: H_0 : $\tau_j = 0$ against H_a : not all $\tau_j = 0$, j = 1, ..., k. Are there significant differences among management districts in the mean dates of the empirical distributions of odd-year escapement? The test concluded a significant $F^* = 3.00$ (p = 0.009), based on the F distribution with 7 and 65 df. When only odd-year data were examined, therefore, a highly significant difference was shown to exist between the timing behavior among management districts, at the 99.1% confidence level.

With the proviso of a significant F test for differences in the mean dates of migration among districts, multiple comparison analysis was performed to test for likenesses and differences among the management districts in each cycle year and data category. Contrasting results between the two a posteriori procedures selected for this analysis were anticipated since Tukey's method of multiple comparisons is more conservative than that of the LSD procedure. For the purposes of obtaining a higher level of sensitivity in the analysis, the method of LSD was preferred. With the exception of those instances where highly contradictory conclusions were suggested by these two methods, only the results of the LSD procedure were reported. Differences between the 'k choose 2' pairwise combinations of management districts were tested at the $\alpha = 0.05$ significance level unless otherwise noted.

Multiple Comparison Analysis of Catch Data

Considering even-year catch data, the mean date of migration in District 3 (Coghill) was found to be significantly different from the mean dates of migration in Districts 1 (Eastern), 2 (Northern), 6 (Southwestern), and 8 (Southeastern), but not from District 4 (Northwestern). District 4 (Northwestern) was found to differ significantly from District 1 (Eastern), but it is not likely to be different from Districts 6 (Southwestern) ($\alpha = 0.14$), and 8 (Southeastern) ($\alpha = 0.10$). Northwestern was not significantly different in timing from Districts 2 (Northern), and 3 (Coghill).

Using odd-year catch data, the mean date of migration in District

3 (Coghill) was found to be significantly earlier than the mean dates in Districts 6 (Southwestern), 7 (Montague), and 8 (Southeastern), but it may not be significantly earlier than District 1 (Eastern) ($\alpha = 0.10$). Coghill District was not found to differ significantly in timing from Districts 2 (Northern), and 4 (Northwestern). District 7 (Montague) was shown to be significantly later than District 3 (Coghill), but it may not be later than Districts 2 (Northern) ($\alpha = 0.10$), and 4 (Northwestern) ($\alpha = 0.19$).

Multiple Comparison Analysis of Spawning Escapement Data

Employing even-year escapement data, the mean date of the distribution of escapement in District 3 (Coghill) was found to be significantly earlier than Districts 6 (Southwestern), 7 (Montague), and 8 (Southeastern), but not different from Districts 1 (Eastern), 2 (Northern), and 4 (Northwestern). Coghill may not be significantly different from District 5 (Eshamy) ($\alpha = 0.14$). District 1 (Eastern) was shown to be significantly earlier than Districts 7 (Montague), and 8 (Southeastern), but it may not be earlier than Districts 5 (Eshamy) (a = 0.19), and 6 (Southwestern) (α = 0.11). Eastern was not found to differ in timing from Districts 2 (Northern), 3 (Coghill), and 4 (Northwestern). The mean date of migration in District 4 (Northwestern) may be significantly different from District 8 (Southeastern) ($\alpha = 0.075$), while District 2 (Northern) may not be different from Southeastern ($\alpha = 0.10$). The mean dates of migration in Northern and Northwestern were not shown to differ significantly from any other district.

Considering odd-year escapement data, the mean date of the distribution of spawning escapement in District 2 (Northern) was shown to be significantly earlier than Districts 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), and 7 (Montague), but probably not earlier than District 8 (Southeastern) ($\alpha = 0.15$). Northern did not differ significantly from Districts 1 (Eastern) and 3 (Coghill). District 1 (Eastern) differed significantly from Districts 4 (Northwestern), 5 (Eshamy), and 6 (Southwestern), but not from Districts 2 (Northern), 3 (Coghill). 7 (Montague), and 8 (Southeastern). District 3 (Coghill) was shown to differ significantly from District 6 (Southwestern), but it is not likely to be different from District 5 (Eshamy) ($\alpha = 0.16$). The mean date of migration in District 8 (Southeastern) may be significantly different from that of District 6 (Southwestern) ($\alpha = 0.075$), but not from any other district.

Scheffe's method for multiple comparisons was used to examine whether significant differences existed among the mean dates of migration defined by linear combinations of management districts for each cycle year and category of data. The design of the contrasts was guided by the relationships among the management districts as shown by the pairwise comparison analysis, and by the relative timings of the districts to the overall sound-wide timing within the cycle year.

Scheffe's Multiple Comparison Analysis of Catch Data

Inspection of the average means of the time densities by district

for even-cycle catch data, revealed that both District 3 (Coghill) and District 4 (Northwestern) had earlier historic average mean dates of migration (July 20 and July 23, respectively) than the overall sound-wide average mean date of July 27. District 2 (Northern) was also among the earliest of all management districts, although its grand mean date of migration (July 28) was greater than the sound-wide historic average. On the basis of the pairwise comparison analysis (LSD) of even-cycle catch data, District 3 (Coghill) was not shown to differ significantly with District 4 (Northwestern), nor was District 4 (Northwestern) shown to be significantly different from either District 2 (Northern) or District 3 (Coghill).

Using even-year catch data, four linear combinations of management districts were examined for significant differences in the mean dates of migration:

- 1. Is the overall mean date of even-year catch in Districts 2 (Northern) and 3 (Coghill) combined significantly different from Districts 1 (Eastern), 4 (Northwestern), 6 (Southwestern), and 8 (Southeastern) combined? The test concluded that this contrast was significant (p = 0.029).
- 2. Is the overall mean date of even-year catch in Districts 3 (Coghill) and 4 (Northwestern) combined significantly different from Districts 1 (Eastern), 2 (Northern), 6 (Southwestern), and 8 (Southeastern), combined? A highly significant difference was concluded (p = 0.001).
- 3. Is the overall mean date of even-year catch in Districts2 (Northern) and 4 (Northwestern) combined significantly different from

Districts 1 (Eastern), 3 (Coghill), 6 (Southwestern), and 8 (Southeastern) combined? The test failed to conclude that this contrast was significant (p = 0.237).

4. Is the overall mean date of even-year catch in Districts 2 (Northern), 3 (Coghill), and 4 (Northwestern) combined significantly different from Districts 1 (Eastern), 6 (Southwestern), and 8 (Southeastern) combined? A highly significant difference was concluded (p = 0.002).

Examination of the average means of the time densities by district for odd-year catch data, revealed that only Districts 2 (Northern), 3 (Coghill), and 4 (Northwestern) had earlier historic average mean dates of migration (July 21, July 17, and July 22, respectively) than the overall sound-wide average mean date of July 24. Pairwise comparison analysis of odd-cycle catch data, revealed that District 3 (Coghill) was significantly different from Districts 2 (Northern) and 4 (Northwestern).

Employing odd-year catch data, four linear combinations of management districts were examined for significant differences in the mean dates of migration:

- Is the overall mean date of odd-year catch in Districts
 (Northern) and 3 (Coghill) combined significantly different from
 Districts 1 (Eastern), 4 (Northwestern), 6 (Southwestern), 7 (Montague),
 and 8 (Southeastern) combined? The test concluded that this contrast
 was significant (p = 0.004).
 - 2. Is the overall mean date of odd-year catch in Districts

- 3 (Coghill), and 4 (Northwestern) combined significantly different from Districts 1 (Eastern), 2 (Northern), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test concluded a significant difference did exist (p = 0.009).
- 3. Is the overall mean date of odd-year catch in Districts 2 (Northern), and 4 (Northwestern) combined significantly different from Districts 1 (Eastern), 3 (Coghill), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test failed to conclude that this contrast was significant (p = 0.206).
- 4. Is the overall mean date of odd-year catch in Districts 2 (Northern), 3 (Coghill), and 4 (Northwestern) combined significantly different from Districts 1 (Eastern), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test concluded a significant difference (p = 0.003).

Scheffe's Multiple Comparison Analysis of Spawning Escapement Data

Inspection of the average means of the time densities by district for the even-cycle of spawing escapement, showed that only Districts 1 (Eastern), 2 (Northern), 3 (Coghill), and 4 (Northwestern) had earlier historic average mean dates of migration (August 16, August 18, August 16, and August 18, respectively) than the overall sound-wide grand mean date of escapement (August 19). Pairwise comparison analysis revealed that District 3 (Coghill) was not significantly different from Districts 1 (Eastern), 2 (Northern), and 4 (Northwestern), and that District 1 (Eastern) did not differ significantly from Districts 2 (Northern), 3 (Coghill), and 4 (Northwestern). All possible two-way, three-way, and

four-way combinations of these four districts were examined for combined differences in migratory behavior with the combined remaining districts.

Using even-year escapement data, eleven linear combinations of management districts were examined for differences in the mean dates of escapement:

- 1. Is the overall mean date of even-year escapement in Districts 1 (Eastern), 3 (Coghill), and 4 (Northwestern) combined significantly different from Districts 2 (Northern), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? A highly significant difference was concluded (p = 0.001).
- 2. Is the overall mean date of even-year escapement in Districts 2 (Northern), 3 (Coghill), and 4 (Northwestern) combined significantly different from Districts 1 (Eastern), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test concluded that this contrast was significant (p = 0.017).
- 3. Is the overall mean date of even-year escapement in Districts 1 (Eastern), 2 (Northern), and 4 (Northwestern) combined significantly different from Districts 3 (Coghill), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test concluded a significant difference (p = 0.022).
- 4. Is the overall mean date of even-year escapement in Districts 1 (Eastern), 2 (Northern), and 3 (Coghill) combined significantly different from Districts 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? This contrast was shown to be highly significant (p = 0.001).
 - 5. Is the overall mean date of even-year escapement in Districts

- 1 (Eastern), and 3 (Coghill) combined significantly different from Districts 2 (Northern), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? A highly significant difference was concluded (p = 0.001).
- 6. Is the overall mean date of even-year escapement in Districts 3 (Coghill), and 4 (Northwestern) combined significantly different from Districts 1 (Eastern), 2 (Northern), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test concluded that this contrast was significant (p = 0.024).
- 7. Is the overall mean date of even-year escapement in Districts 1 (Eastern), and 4 (Northwestern) combined significantly different Districts 2 (Northern), 3 (Coghill), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? A significant difference was concluded (p = 0.033).
- 8. Is the overall mean date of even-year escapement in Districts 2 (Northern), and 3 (Coghill) combined significantly different from Districts 1 (Eastern), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test concluded a significant difference (p = 0.028).
- 9. Is the overall mean date of even-year escapement in Districts 2 (Northern), and 4 (Northwestern) combined significantly different from Districts 1 (Eastern), 3 (Coghill), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test failed to conclude that this contrast was significant (p = 0.313).
- 10. Is the overall mean date of even-year escapement in Districts
 1 (Eastern), and 2 (Northern) combined significantly different from
 Districts 3 (Coghill), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern),

7 (Montague), and 8 (Southeastern) combined? A significant difference was concluded (p = 0.037).

11. Is the overall mean date of even-year escapement in Districts 1 (Eastern), 2 (Northern), 3 (Coghill), and 4 (Northwestern) combined significantly different from Districts 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test concluded that this contrast was highly significant (p < 0.001).

Examination of the average means of the time densities by district for the odd-cycle of spawning escapement, showed that only Districts 1 (Eastern), 2 (Northern), 3 (Coghill), and 8 (Southeastern) had earlier historic average mean dates of migration (August 10, August 7, August 14, August 15, respectively) than the overall sound-wide grand mean date of escapement. Pairwise comparison analysis revealed that District 2 (Northern) was not significantly different from Districts 1 (Eastern), and 3 (Coghill), and that District 1 (Eastern) did not differ significantly from Districts 2 (Northern), 3 (Coghill), 7 (Montague), and 8 (Southeastern). All possible two-way, three-way, and four-way combinations of these four management districts were examined for combined differences in migratory behavior with that of the combined remaining districts.

Considering odd-year escapement data, eleven linear combinations of management districts were examined for differences in the mean dates of escapement:

1. Is the overall mean date of odd-year escapement in Districts
1 (Eastern), 2 (Northern), and 3 (Coghill) combined significantly

different from Districts 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test concluded that this contrast was highly significant (p < 0.001).

- 2. Is the overall mean date of odd-year escapement in Districts 2 (Northern), 3 (Coghill), and 8 (Southeastern) combined significantly different from Districts 1 (Eastern), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), and 7 (Montague) combined? A significant difference was concluded (p = 0.007).
- 3. Is the overall mean date of odd-year escapement in Districts 1 (Eastern), 3 (Coghill), and 8 (Southeastern) combined significantly different from Districts 2 (Northern), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), and 7 (Montague) combined? The test concluded a significant difference (p = 0.032).
- 4. Is the overall mean date of odd-year in Districts 1 (Eastern), 2 (Northern), and 8 (Southeastern) combined significantly different from Districts 3 (Coghill), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), and 7 (Montague) combined? A highly significant difference was concluded (p = 0.001).
- 5. Is the overall mean date of odd-year in Districts 2 (Northern), and 8 (Southeastern) combined significantly different from Districts 1 (Eastern), 3 (Coghill), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), and 7 (Montague) combined? The test concluded that this contrast was significant (p = 0.012).
- 6. Is the overall mean date of odd-year escapement in Districts 3 (Coghill), and 8 (Southeastern) combined significantly different from Districts 1 (Eastern), 2 (Northern), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), and 7 (Montague) combined? The test failed to

conclude that this contrast was significant (p = 0.341).

- 7. Is the overall mean date of odd-year escapement in Districts 1 (Eastern), and 8 (Southeastern) combined significantly different from Districts 2 (Northern), 3 (Coghill), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), and 7 (Montague) combined? A significant difference was concluded (p = 0.062).
- 8. Is the overall mean date of odd-year escapement in Districts 1 (Eastern), and 2 (Northern) combined significantly different from Districts 3 (Coghill), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? This contrast was shown to be highly significant (p < 0.001).
- 9. Is the overall mean date of odd-year escapement in Districts 2 (Northern), and 3 (Coghill) combined significantly different from Districts 1 (Eastern), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? A significant difference was concluded (p = 0.006).
- 10. Is the overall mean date of odd-year escapement in Districts 1 (Eastern), and 3 (Coghill) combined significantly different from Districts 2 (Northern), 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) combined? The test showed that this contrast was significant (p = 0.033).
- 11. Is the overall mean date of odd-year escapement in Districts 1 (Eastern), 2 (Northern), 3 (Coghill), and 8 (Southeastern) combined significantly different from Districts 4 (Northwestern), 5 (Eshamy), 6 (Southwestern), and 7 (Montague) combined? This contrast was shown to be highly significant (p < 0.001).

4.3 Correlation and Regression Analysis

For the data categories of catch, and spawning escapement, the Pearson product moment correlation coefficient r, was computed for all possible pairwise combinations of the management districts for the odd-cycle and the even-cycle independently. For the purposes of determining the nature of association between the management districts and the overall sound-wide timing behavior, the sound-wide category was included as a 'district' member. A test of significance was performed on each correlation coefficient computed which was based on the Student's - t distribution with (n-2) degrees of freedom. The critical or 'p' value was reported for all hypotheses tested.

Correlation Analysis of Catch Data

Employing the mean dates of migration for even-cycle catch data, r was calculated for all possible combinations of Districts 1 (Eastern), 2 (Northern), 3 (Coghill), 4 (Northwestern), 6 (Southwestern), and 8 (Southeastern) (Table 14). Those management districts whose mean dates of migration were found to be most highly correlated with the overall sound-wide migratory behavior were: 4 (Northwestern) (r = 0.98, p = 0.002), 1 (Eastern) (r = 0.96, p = 0.004), and 6 (Southwestern) (r = 0.96, p = 0.018). Districts 2 (Northern) (r = 0.87, p = 0.023), and 8 (Southeastern) (r = 0.87, p = 0.027) were also significantly correlated with the overall sound-wide timing behavior. Only District 3 (Coghill) failed to show a significant correlation with the sound-wide mean dates of migration (r = 0.57, p = 0.12).

Table 14. Pearson product moment correlation coefficients (r), sample sizes (n), and critical values (p) for pairwise combinations of management districts (r/n/p), for the even-cycle of catch. District codes: 1 = Eastern, 2 = Northern, 3 = Coghill, 4 = Northwestern, 5 = Eshamy, 6 = Southwestern, 7 = Montague, 8 = Southeastern, 1-8 = Sound-wide. *** = data were not available. --- = correlation was not performed.

	Management District								
	1	2	3	4	5	6	7	8	1-8
1		0.751 5 0.072	0.672 5 0.107	0.864 4 0.068	***	0.858 4 0.071	***	0.737 5 0.078	0.964 5 0.004
2	0.751 5 0.072		0.383 5 0.262	0.964 4 0.018	***	0.908 4 0.046	***	0.956 5 0.006	0.886 5 0.023
3	0.672 5 0.107	0.383 5 0.262		0.723 5 0.084	***	0.782 4 0.109	***	0.175 5 0.389	0.568 6 0.120
4	0.864 4 0.068	0.964 4 0.018	0.723 5 0.084		***	0.910 4 0.045	***	0.951 4 0.024	0.979 5 0.002
5	***	***	***	***	- Continues	***	***	***	***
6	0.858 4 0.071	0.908 4 0.046	0.782 4 0.109	0.910 4 0.045	***		***	0.925 4 0.038	0.963 4 0.018
7	***	***	***	***	***	***		***	***
8	0.737 5 0.078	0.956 5 0.006	0.175 5 0.389	0.951 4 0.024	***	0.925 4 0.038	***		0.873 5 0.027
1-8	0.964 5 0.004	0.886 5 0.023	0.568 6 0.120	0.979 5 0.002	***	0.963 4 0.018	***	0.873 5 0.027	

Using the mean dates of migration for odd-cycle catch data, r was calculated for all possible pairwise combinations of Districts 1 (Eastern), 2 (Northern), 3 (Coghill), 4 (Northwestern), 6 (Southwestern), 7 (Montague), and 8 (Southeastern) (Table 15). Districts 8 (Southeastern) (r = 0.995, p < 0.001), 1 (Eastern) (r = 0.97, p < 0.001), and 6 (Southwestern) (r = 0.97, p < 0.001) were the most highly correlated with the sound-wide mean dates of migration. District 2 (Northern) (r = 0.86), and District 3 (Coghill) (r = 0.76) were also significantly correlated with the sound-wide timing behavior, p = 0.006 and p = 0.02, respectively. Only Districts 4 (Northwestern) (r = 0.61, p = 0.74), and 7 (Montague) (r = 0.69, p = 0.10) failed to demonstrate significantly correlated behavior with the sound-wide mean dates of migration at the $\alpha = 0.05$ significance level.

Correlation Analysis of Spawning Escapement Data

Considering the means of the annual migratory time densities of even-cycle escapement data, r was computed for seventy-two different combinations of Districts 1 through 8 plus District 1-8 (Sound-wide) (Table 16). Those districts shown to be most highly correlated with sound-wide mean dates of migration were: 2 (Northern) (r = 0.87, p = 0.001), 3 (Coghill) (r = 0.76, p = 0.005), and 1 (Eastern) (r = 0.73, p = 0.008). District 8 (Southeastern) (r = 0.59), and District 7 (Montague) (r = 0.57) were also significantly correlated with the overall timing in the sound with p = 0.037 and p = 0.042, respectively. Districts 5 (Eshamy) (r = -0.74, p = 0.07),

Table 15. Pearson product moment correlation coefficients (r), sample sizes (n), and critical values (p) for pairwise combinations of management districts (r/n/p), for the odd-cycle of catch. District codes: 1 = Eastern, 2 = Northern, 3 = Coghill, 4 = Northwestern, 5 = Eshamy, 6 = Southwestern, 7 = Montague, 8 = Southeastern, 1-8 = Sound-wide. *** = data were not available. --- = correlation was not performed.

	Management District								
	1	2	3	4	5	6	7	8	1-8
1		0.904 7 0.003	0.785 7 0.018	0.522 7 0.115	***	0.945 7 0.001	0.697 5 0.095	0.961 7 0.001-	0.973 7 0.001-
2	0.904 7 0.003		0.605 7 0.075	0.208 7 0.327	***	0.933 7 0.001	0.500 5 0.195	0.857 7 0.007	0.863 7 0.006
3	0.785 7 0.018	0.605 7 0.075		0.799 7 0.016	***	0.647 7 0.058	5	7	0.761 7 0.023
4	0.522 7 0.115	7	0.799 7 0.016		***	0.444 7 0.159		7	0.608 7 0.074
5	***	***	***	***		***	***	***	***
6	0.945 7 0.001	7	0.647 7 0.058	0.444 7 0.159	***	<u> </u>	0.545 5 0.171	0.972 7 0.001-	7
7	0.697 5 0.095	5	0.889 5 0.022	0.533 5 0.177	***	0.545 5 0.171	Wilderin .	0.689 5 0.099	5
8	0.961 7 0.001-	7	7	0.626 7 0.066	***	7	0.689 5 0.099		0.995 7 0.001-
1-8	0.973 7 0.001-	0.863 7 0.006	0.761 7 0.023	7	***	0.971 7 0.001-	0.688 5 0.100	7	

Table 16. Pearson product moment correlation coefficients (r), sample sizes (n), and critical values (p) for pairwise combinations of management districts (r/n/p), for the even-cycle of spawning escapement. District codes: 1 = Eastern, 2 = Northern, 3 = Coghill, 4 = Northwestern, 5 = Eshamy, 6 = Southwestern, 7 = Montague, 8 = Southeastern, 1-8 = Sound-wide. --- = correlation not performed.

	Management District								
	1	2	3	4	5	6	7	8	1-8
1		0.630 10 0.025	0.571 10 0.042	-0.312 10 0.190	-0.583 5 0.151	10	10	0.023 10 0.474	0.733 10 0.008
2	0.630 10 0.025				-0.724 5 0.083	10	0.372 10 0.145	0.365 10 0.150	10
3	0.571 10 0.042	0.748 10 0.006		-0.096 10 0.396	5	-0.379 10 0.140	10	0.416 10 0.116	10
4	-0.312 10 0.190	0.224 10 0.267	-0.096 10 0.396		-0.384 5 0.262	0.835 10 0.001	0.424 10 0.111	0.382 10 0.138	0.084 10 0.409
5	-0.583 5 0.151	-0.724 5 0.083	-0.122 5 0.423	-0.384 5 0.262	-	-0.375 5 0.267	0.082 5 0.448	0.172 5 0.391	-0.745 5 0.074
6	-0.432 10 0.106	0.004 10 0.495	10		-0.375 5 0.267		0.284 10 0.213	0.270 10 0.225	10
7	0.022 10 0.476	0.372 10 0.145	0.408 10 0.121	10	5	10	- Tilenan	0.995 10 0.001-	0.571 10 0.042
8	0.023 10 0.474		0.416 10 0.116		0.172 5 0.391	0.270 10 0.225	0.995 10 0.001-		0.587 10 0.037
1-8	0.733 10 0.008	0.872 10 0.001	0.761 10 0.005	10	-0.745 5 0.074	10		0.587 10 0.037	

4 (Northwestern) (r = 0.08, p = 0.41), and 6 (Southwestern) (r = -0.04, p = 0.46) failed to show show significant correlation with the overall sound-wide even-year timing behavior.

Using the means of the annual migratory time densities of odd-cycle escapement data, r was computed for seventy-two unique combinations of all nine district categories (Table 17). All management districts demonstrated significant correlation with the sound-wide timing behavior. In order of decreasing level of significance they were: 1 (Northern) (r = 0.91, p < 0.001), 8 (Southeastern) (r = 0.88, p < 0.001), 7 (Montague) (r = 0.88, p < 0.001), 1 (Eastern) (r = 0.88, p < 0.001), 3 (Coghill) (r = 0.80, p = 0.002), 4 (Northwestern) (r = 0.80, p = 0.003), 6 (Southwestern) (r = 0.70, p = 0.019), and 5 (Eshamy) (r = 0.95, p = 0.023).

For each cycle year of data, first order multiple linear regression models were constructed for the purpose of determining if there were linear combinations of the management districts which could be used to predict the timings of catches and spawning escapements on a sound-wide basis. In all such models, the dependent variable was the sound-wide mean date of migration while the dependent variables were the corresponding mean dates of the migratory time densities for each management district.

Selection of the subset of dependent variables was guided by the results obtained from the pairwise comparison analysis, by linear combinations of districts suggested by Scheffe's method of multiple

Table 17. Pearson product moment correlation coefficients (r), sample sizes (n), and critical values (p) for pairwise combinations of management districts (r/n/p), for the odd-cycle of spawning escapement. District codes: 1 = Eastern, 2 = Northern, 3 = Coghill, 4 = Northwestern, 5 = Eshamy, 6 = Southwestern, 7 = Montague, 8 = Southeastern, 1-8 = Sound-wide. --- = correlation not performed.

	Management District								
	1	2	3	4	5	6	7	8	1-8
1		0.781 10 0.004	0.596 10 0.035	0.522 10 0.061	0.894 4 0.053	0.386 9 0.153	0.629 10 0.026	0.649 10 0.021	0.879 10 0.001-
2	0.781 10 0.004		0.559 10 0.046	0.700 10 0.012	0.835 4 0.083	0.446 9 0.114	0.791 10 0.003	0.785 10 0.004	0.910 10 0.001-
3	0.596 10 0.035	0.559 10 0.046		0.751 10 0.006	0.906 4 0.047	0.706 9 0.017	0.755 10 0.006	0.773 10 0.004	0.805 10 0.002
4	0.522 10 0.061	0.700 10 0.012	0.751 10 0.006		0.609 4 0.196	0.835 9 0.003	0.770 10 0.005	0.748 10 0.006	0.804 10 0.003
5	0.894 4 0.053	0.835 4 0.083	0.906 4 0.047	0.609 4 0.196		0.657 4 0.172	0.946 4 0.027	0.988 4 0.006	0.953 4 0.023
6	0.386 9 0.153	0.446 9 0.114	0.706 9 0.017	0.835 9 0.003	0.657 4 0.172		0.760 9 0.009	0.730 9 0.013	0.695 9 0.019
7	0.629 10 0.026	0.791 10 0.003	0.755 10 0.006	0.770 10 0.005	0.946 4 0.027	0.760 9 0.009		0.996 10 0.001-	0.879 10 0.001-
8	0.649 10 0.021	0.785 10 0.004	0.773 10 0.004	0.748 10 0.006	0.988 4 0.006	0.730 9 0.013	0.996 10 0.001-	******	0.883 10 0.001-
1-8	0.879 10 0.001-	0.910 10 0.001-	0.805 10 0.002	0.804 10 0.003	0.953 4 0.023	0.695 9 0.019	0.879 10 0.001-	0.883 10 0.001-	

comparisons, and by the nature of the relative timings of the districts to the overall sound-wide timing within each cycle year and category of data. The coefficient of multiple determination, R^2 , was computed for each regression equation. Simply stated, R^2 can be interpreted as the proportion of total variation in the sound-wide timing behavior, Y that is explained by the use of the set of management districts, X_i 's according to the rules of the model.

Multiple Regression Analysis of Catch Data

Considering even-cycle catch data, the following multiple linear regression equations were computed:

1.
$$Y = -0.774 + (0.161)X_4 - (0.328)X_3$$
, $R^2 = 0.9998$

District 4 (Northwestern) accounted for the majority of the explained variation ($R^2=0.958$), while the incremental R^2 attributable to District 3 (Coghill) given that Northwestern was already in the model was 0.041. The test of the regression relationship concluded a significant $F^*=831.74$ (0.001 $\leq p \leq 0.005$), based on the F distribution with 2 and 2 df.

2.
$$Y = -0.245 + (0.804)X_1 + (0.621)X_6$$
, $R^2 = 0.9993$

District 1 (Eastern) accounted for the majority of the explained variation ($R^2 = 0.929$), while the incremental R^2 attributable to District 6 (Southwestern) given that Eastern was already in the model

was 0.07. The test of the regression relationship concluded a significant $F^*=708.34$ (0.025 \leq p \leq 0.05), based on the F distribution with 2 and 1 df.

Using odd-cycle catch data, the following multiple linear regression equations were computed:

1.
$$Y = -0.649 + (0.811)X_2 - (0.416)X_3 + (0.790)X_4$$
, $R^2 = 0.9595$

District 2 (Northern) accounted for 74.45% of the explained variation, while the incremental R^2 's attributable to Districts 3 (Coghill) and 4 (Northwestern) were 0.09 and 0.12, respectively. The test of the regression relationship concluded a significant $F^* = 23.67$ (0.01 $\leq p \leq 0.025$), based on the F distribution with 3 and 3 df.

2.
$$Y = -0.327 + (0.662)X_2 + (0.495)X_4$$
, $R^2 = 0.9361$

District 2 (Northern) accounted for the majority of the explained variation ($R^2=0.745$), while the incremental R^2 attributable to District 4 (Northwestern) given that Northern was already in the model was 0.19. The test of the regression relationship concluded a significant $F^*=29.29$ (0.001 $\leq p \leq 0.005$), based on the F distribution with 2 and 4 df.

3.
$$Y = 0.677 + (0.545)X_2 + (0.412)X_3$$
, $R^2 = 0.835$

District 2 (Northern) accounted for the majority of the explained

variation ($R^2=0.745$), while the incremental R^2 attributable to District 3 (Coghill) given that Northern was already in the model was 0.09. The test of the regression relationship concluded a significant $F^*=10.11$ (0.025 $\leq p \leq 0.005$), based on the F distribution with 2 and 4 df.

4.
$$Y = 0.567 + (0.422)X_1 + (0.331)X_2 - (0.436)X_3 + (0.542)X_4$$
, $R^2 = 0.9905$

The decreasing order of inclusion of these districts into the model was: 3 (Coghill), 2 (Northern), 4 (Northwestern), and 1 (Eastern). The incremental R^2 's attributable to each district when added to the model in this order were 0.580, 0.255, 0.125, and 0.031, respectively. The test of the regression relationship concluded a significant $F^* = 51.84$ (0.001 $\leq p \leq 0.005$), based on the F distribution with 2 and 4 df.

Multiple Regression Analysis of Spawning Escapement Data

Considering even-cycle escapement data, the following multiple linear regression equations were computed:

1.
$$Y = 0.239 + (0.126)X_1 + (0.398)X_2 + (0.125)X_3$$
, $R^2 = 0.8305$

District 2 (Northern) accounted for the majority of the explained variation ($R^2 = 0.759$), while the incremental R^2 's attributable to Districts 1 (Eastern) and 3 (Coghill) were 0.044 and 0.027, respectively. The test of the regression relationship concluded a

significant $F^* = 9.8 \ (0.005 \le p \le 0.01)$, based on the F distribution with 3 and 6 df.

2.
$$Y = 0.254 + (0.483)X_2 + (0.14)X_1$$
, $R^2 = 0.8161$

District 2 (Northern) accounted for the majority of the explained variation ($R^2=0.759$), while the incremental R^2 attributable to District 1 (Eastern) given that Northern was already in the model was 0.056. The test of the regression relationship concluded a significant $F^*=15.53$ (0.001 $\leq p \leq 0.005$), based on the F distribution with 2 and 7 df.

3.
$$Y = 0.314 + (0.204)X_1 + (0.345)X_3$$
, $R^2 = 0.7112$

District 1 (Eastern) accounted for the majority of the explained variation ($R^2=0.579$), while the incremental R^2 attributable to District 3 (Coghill) given that Eastern was already in the model was 0.133. The test of the regression relationship concluded a significant $F^*=8.62$ (0.025 \leq p \leq 0.01), based on the F distribution with 2 and 7 df.

4.
$$Y = 0.233 + (0.488)X_2 + (0.168)X_3$$
, $R^2 = 0.7866$

District 2 (Northern) accounted for the majority of the explained variation ($R^2 = 0.759$), while the incremental R^2 attributable to District 3 (Coghill) given that Northern was already in the model was 0.027. The test of the regression relationship concluded a significant

 $F^* = 12.90 (0.001 \le p \le 0.005)$, based on the F distribution with 2 and 7 df.

Using odd-cycle escapement data, the following multiple linear regression equations were computed:

1.
$$Y = -0.149 + (0.232)X_1 + (0.602)X_2 + (0.262)X_3$$
, $R^2 = 0.9828$

District 2 (Northern) accounted for the majority of the explained variation ($R^2=0.827$), while the incremental R^2 's attributable to Districts 1 (Eastern) and 3 (Coghill) were 0.072 and 0.083, respectively. The test of the regression relationship concluded a significant $F^*=114.25$ (p < 0.001), based on the F distribution with 3 and 6 df.

2.
$$Y = -0.185 + (0.325)X_1 + 0.353X_2 + (0.37)X_8$$
, $R^2 = 0.9615$

District 2 (Northern) accounted for the majority of the explained variation ($R^2 = 0.827$), while the incremental R^2 's attributable to Districts 1 (Eastern) and 8 (Southeastern) were 0.072 and 0.062, respectively. The test of the regression relationship concluded a significant $F^* = 49.93$ (p < 0.001), based on the F distribution with 3 and 6 df.

3.
$$Y = -0.357 + (0.83)X_2 + (0.308)X_3$$
, $R^2 = 0.9547$

District 2 (Northern) accounted for the majority of the explained

variation ($R^2 = 0.827$), while the incremental R^2 attributable to District 3 (Coghill) given that Northern was already in the model was 0.127. The test of the regression relationship concluded a significant $F^* = 73.73$ (p < 0.001), based on the F distribution with 2 and 7 df.

4.
$$Y = 0.519 + (0.435)X_1 + (0.496)X_8$$
, $R^2 = 0.9408$

District 1 (Eastern) accounted for the majority of the explained variation ($R^2 = 0.772$), while the incremental R^2 attributable to District 8 (Southeastern) given that Eastern was already in the model was 0.169. The test of the regression relationship concluded a significant $F^* = 55.61$ (p < 0.001), based on the F distribution with 2 and 7 df.

5.
$$Y = -0.270 + (0.701)X_2 + (0.403)X_8$$
, $R^2 = 0.9013$

District 2 (Northern) accounted for the majority of the explained variation ($R^2 = 0.827$), while the incremental R^2 attributable to District 8 (Southeastern) given that Northern was already in the model was 0.074. The test of the regression relationship concluded a significant $F^* = 31.97$ (p < 0.001), based on the F distribution with 2 and 7 df.

6.
$$Y = 0.155 + (0.355)X_1 + (0.711)X_2$$
, $R^2 = 0.8997$

District 2 (Northern) accounted for the majority of the explained variation ($R^2 = 0.827$), while the incremental R^2 attributable to

District 1 (Eastern) given that Northern was already in the model was 0.072. The test of the regression relationship concluded a significant $F^* = 31.38$ (p < 0.001), based on the F distribution with 2 and 7 df.

7.
$$Y = 0.129 + (0.509)X_1 + (0.312)X_3$$
, $R^2 = 0.8945$

District 1 (Eastern) accounted for the majority of the explained variation ($R^2=0.772$), while the incremental R^2 attributable to District 3 (Coghill) given that Eastern was already in the model was 0.123. The test of the regression relationship concluded a significant $F^*=29.66$ (p < 0.001), based on the F distribution with 2 and 7 df.

CHAPTER 5

DISCUSSION

This research has been a search for the understanding of the dynamics of the pink salmon fisheries of Prince William Sound. During the course of the analysis several statistical methods have been identified as unexpectedly robust for the purposes of the comparison of timing behavior. It is the system of analysis constructed from these statistical utilities which provide the fisheries management staff in Cordova with extremely useful objective information. The order of the statistical analyses was dictated by biological and physical constraints on the search for the understanding of the dynamics of the fishery.

Initially, because of the unique life history of pink salmon there were obvious questions about differences between the odd-cycle and the even-cycle populations. The first issue to be addressed, therefore, was whether differences between the two populations were discernible. Would the hypothesized genetic distinctness between the populations of odd and even years be quantifiable?

The two-way analysis of variance model was constructed to analyze differences for catch and spawning escapement data. For both data categories, highly significant differences were shown to exist between the timings of odd-year and even-year populations of pink salmon.

Compelling quantitative evidence which is consistent with the genetic heritability of migratory behavior was demonstrated with high levels of confidence.

From a management point of view, the principal issue to be considered was the difference between the management districts with respect to timing behaviors for the cycle years of catch and spawning escapement. Each of the four one-way analysis of variance models constructed for this purpose concluded highly significant differences among districts. What was previously supported by only intuition was now rigorously demonstrated; the management districts were highly distinct with respect to timing behaviors in both even-years and odd-years.

Even when the odd-year and the even-year data were combined, the distinctness between management districts was still shown for each category of data. The timing behaviors of the districts really did differ, and they differed substantially enough to overcome the combination of even and odd populations, which combination we know to be biologically inappropriate.

It was not intuitively obvious from inspection of the one standard deviation error bars about the average mean dates of migration (Figs. 15 through 18) that such highly significant differences existed among districts with respect to migratory behavior for any cycle year and data category. It was concluded that a simple one-dimensional graphic analysis of this type was inadequate for discerning differences in the

mean dates of migration among management districts.

The analysis of variance procedure, or more appropriately the analysis of variation about means, on the other hand is a more versatile statistical tool for studying the relation between the means of populations. During the analysis, the total variation present in a set of data is partitioned into several components. Associated with each of these components is a specific source of variation, so that it is possible to ascertain the magnitude of the contributions of each of these sources to the total variation. The nature of this partitioning of the total variation into component parts makes the analysis of variance procedure highly appropriate to the comparative analysis of migratory behavior between years and across harvest areas.

Given that the timing behavior among districts was distinct, the next logical questions to be addressed were those of the likenesses and differences among the management districts in each cycle year and data category. Natural corollaries to these issues were the questions of existence of linear combinations of the management districts which could be used as indices to predict the timings of catches and spawning escapements on a sound-wide basis. A final issue concerned the extent to which any linear combination of districts could be used as an index to predict the timings of catches and escapements on a sound-wide basis.

When even-cycle catch data were examined, a preliminary grouping of management districts on the basis of the LSD procedure indicated that Districts 3 (Coghill), 4 (Northwestern), and to some extent

2 (Northern), displayed similar timing behavior. Further refinement by Scheffe's analysis revealed that Coghill and Northwestern Districts combined displayed a highly distinct timing behavior when compared to the other management districts combined. A less distinct conclusion was obtained when Northern was added to the contrast with Coghill and Northwestern. From a harvest control point of view this outcome was ideal, since Coghill and Northwestern Districts were the earliest two management districts based on historical mean dates of migration. When modeled by a multiple linear regression equation, these two districts were shown to explain 99.98% of the total variation in the sound-wide timing behavior.

Considering odd-cycle catch data, multiple comparison analysis identified an initial group of similar management districts consisting of Districts 2 (Northern), 3 (Coghill), and 4 (Northwestern). Scheffe's analysis demonstrated that the timing behavior in this linear combination of districts was highly distinct from that of the other remaining districts combined. Multiple linear regression analysis revealed that these districts collectively explained 95.95% of the total variation in the sound-wide timing behavior. Since Northern, Coghill, and Northwestern Districts are also the earliest of all management districts based on historical mean dates of migration, these results were highly desirable in terms of this linear combination serving as an index of sound-wide timing behavior.

The analysis of spawning escapement data for both cycle years revealed equally exciting results. The pattern of results was similar

to that for catch data where a subset of historically early districts was identified which collectively explained a large percentage of the total variation in the sound-wide timing behavior. For each cycle year of spawning escapement, four management districts were selected on the basis of the results of multiple comparison analysis, and on the basis of the relative timings among districts to the overall sound-wide timing behavior.

Considering even-year spawning escapement data, Districts 1 (Eastern), 2 (Northern), 3 (Coghill), and 4 (Northwestern) were identified for this purpose. Scheffe's analysis tested several linear combinations of these four districts, and the application of multiple regression analysis determined the best contrasts to be used for predictive purposes. The subset of districts consisting of Eastern, Northern, and Coghill appears to be the best linear combination to use as an index of sound-wide timing behavior.

The most exciting results were obtained when odd-cycle escapement data were examined. Nearly all of the management districts in this cycle year are highly correlated with the sound-wide timing behavior. Not suprisingly, a variety of linear combinations of Districts 1 (Eastern), 2 (Northern), 3 (Coghill), and 8 (Southeastern) demonstrated significant predictive potential giving the management authority greater flexibility in choosing any one linear combination to use. It appears that the best linear contrast consisted of Eastern, Northern, and Coghill which collectively accounted for 98.28% of the total variation in the sound-wide timing behavior.

The use of multiple regression analysis proved useful in the context of this study in that the predictive models not only explained a significant portion of the total variation in the response variable Y_i, they did so on the basis of a subset, or linear combination, of the eight independent variables (districts). In order to produce estimates on the overall sound-wide mean date of migration, therefore, a significantly reduced amount of harvest information is required to fit the model. Since these models are primarily intended to be used within a harvest control system delivering intraseason estimates of the timing of the fishery, the latter is a highly desirable outcome.

Application of these predictive models in an intraseason harvest control system requires timely estimates of the mean dates of migration for those management districts fitted by the linear equation. Barth (1984) demonstrated the utility of a two parameter linear model for the purposes of an intraseason yield forecasting system for commercial marine fisheries. It is anticipated by this author that a similar forecasting technique will produce reliable intraseason estimates of the mean dates of migration for any management district.

If such estimates can be realized in a timely fashion, a reliable sound-wide estimate of the mean date of migration can be determined by fitting the predictive multiple linear regression equations defined above. Prediction or confidence intervals on the estimates of the sound-wide mean date of migration can also be determined using standard regression methodology.

The difference between the estimate of the overall sound-wide mean date of migration and the mean date of the average historical sound-wide empirical time density function, would provide the harvest manager an indication of whether the migration was early or late. The magnitude and direction of the difference can be employed as a location or shift parameter for reconciling the historical empirical time density function to the current pattern of incoming migration in the manner of Mundy and Mathisen (1981). The potential benefit of this procedure is a reduction in the error of the yield estimate derived from the application of the average historical time densities. Estimates of the mean dates of migration for the individual districts can similarly be employed for the purposes of producing yield estimates on a management district level.

The Unbiased, Consistent Estimator of Migratory Behavior

The characterization of an annual migration in terms of an empirical probability density function in the time domain is a relatively recent development in fisheries science. Several applications of the migratory timing concept to commercial marine fisheries (Babcock 1983; Paula 1983; Hill 1984) have attempted to compare migratory behavior between years and harvest areas on the basis of migratory time densities.

To determine if brown shrimp (Panaeus aztecus) were recruited to the commercial fishery in a discrete or continuous manner, Paula (1983) compared the means of the time densities by calculating 99% confidence intervals on the mean dates of migration for each size class and by employing a Bonferroni correction to guarantee an overall significance level a for all intervals. All other comparisons of migratory behavior by Babcock, Paula, and Hill were based on a test that considers the 'closeness' of fit between the empirical distribution functions themselves, the Kolmogorov-Smirnov goodness of fit test (Hogg and Tanis 1977).

While the procedures of applying this test to the data were not violated by these authors, the use of the Kolmogorov-Smirnov test is inappropriate for comparing migratory behavior simply because of the way in which the random variable of the density function is defined. Recall, the random variable t_i is defined according to the number of

individuals n₁ which arrive in, or which are harvested by the fishery, on the i-th time interval. Strictly speaking, the sample size 'n' for an annual migration is the total number of individuals which have been harvested (total catch) or which have migrated through the geographic reference frame of the fishery (total abundance) during the entire year. In most commercial marine fisheries, the 'time density' sample size ranges from hundreds of thousands to tens of millions. By applying an 'n' of this magnitude to the Kolmogorov-Smirnov goodness of fit test, the analysis becomes highly over-sensitive to even the slightest difference between the density functions being compared. Almost invariably, conclusions of significant differences result with such frequency that it is inconsistent with the genetic heritability of migratory timing.

Hill (1984), attempted to correct for the large sample size problem in an analysis of a weakfish (Cynoscion regalis) fishery by expressing 'n' as a function of effort. While this procedure produced more reasonable estimates of 'n', on the order of a few hundred, it did not adequately address the problem of over-sensitivity of the test statistic. In each of his comparisons Hill concluded significant differences between each annual time density and all other annual time densities.

To place this in perspective, one must consider that a fishery is a human activity (Royce 1983), and that abiotic factors as well as methods of data collection can modulate the expression of migratory behavior.

The time density function, as a consequence, represents the combined

behavior not only of the target species, but also that of the harvest community, as well as climatic events. Indeed, it may be impossible to distinguish between the various biologic, sociologic, and environmental factors that are expressed on each time increment of the time density.

If it is the intent to objectively compare migratory behavior, it is ill-advised to do so by such a close scrutinization of empirical distribution functions which have been constructed from data that have an inherent variance. Erroneous conclusions can be drawn from a homogeneity test of migratory time density functions, especially when that test has been applied under the strict interpretation of the definition of migratory timing. Alternate procedures suitable to a rigorous comparison of migratory behavior across time and space, consequently, had to be identified and evaluated.

The determination of the most representative characteristic or estimator of migratory behavior was a prerequisite to the realization of the objectives of this study. Such an estimator would be unbiased, and consistent. To be of most benefit to a harvest manager, it should also be easily estimable and readily understood. The consistent, unbiased estimator of migratory behavior is, in fact, the measure of central tendency (mean date) of the time density, \bar{t} .

An unbiased, consistent estimator of a parameter, in a statistical sense, is one whose mathematical expectation equals the parameter, and whose variance converges to some value (zero) as the sample size approaches infinity (Hogg and Tanis 1977). To show that \bar{t} is such an

estimator of migratory behavior, let f(t) be the actual time density within the fishery such that, $a^{\int_{0}^{b}f(t)}$ is the proportion of total abundance succeptible to harvest between any two dates a,b. From the 'sampling' of f(t) by the fishery, therefore, we can generate an empirical distribution function of catch, and an estimate, $\frac{\Delta}{t}$ (Equation 3), of the parametric mean date of the migration μ_{T} where,

$$\mu_{\mathbf{T}} = \int_{+\infty}^{-\infty} \mathbf{t} \ \mathbf{f}(\mathbf{t}) \ \mathbf{dt}$$
 (20)

The difficulty with arguing that $\frac{\Delta}{t}$ is an unbiased, consistent estimator of μ_T , is twofold; (1) the form of the density function f(t) is unknown, and (2) we are estimating the mean of a continuous distribution by a discrete process, fishing. If we assume a particular form for the migratory time density of total abundance f(t) (normal, logistic, etc.), it could be shown that $\frac{\Delta}{t}$ is not only the consistent, unbiased estimator of μ_T , but it is also the maximum likelihood estimator of μ_T . Since, in practice, f(t) is never known, a redefinition of the distribution function f(t) is necessary to permit the development of $\frac{\Delta}{t}$ as the consistent, unbiased estimator of μ_T .

Let f(t) be the actual time density within the fishery which describes the distribution of probability associated with the space R of the random variable T, time. We can choose a magnitude for the increment in the time domain such that, the abundance N_t available within any one time increment t_i , $i=1,\ldots,k$ can be represented by

some constant, average abundance, \bar{N}_t . If f(t) is observed at each of k distinct points, t_1 , ..., t_k , so that $f(t_1)$, ..., $f(t_k)$ are completely known, then

$$\bar{t}_k = \sum_{i=1}^k t_i f(t_i)$$
 (21)

and, $E(\bar{t}_k) = \mu_T$ if k spans the entire space of the random variable T. Being 'completely known' is analogous to a 100% exploitation rate which requires every available fish on time increment t_i to be harvested by the fishery. Over the course of the season, therefore, catch (n_i) on time increment t_i equals abundance (N_i) on time increment t_i , and total catch (n) equals total abundance (N) when $t_i = t_k$. When the distribution function of total abundance, f(t) defined in this manner is sampled, what is the consistent, unbiased estimator of the parametric mean μ_T ?

Suppose that on each of k distinct points, the distribution of catch, defined by $\hat{f}(t_i)$, measures the distribution of total abundance with a corresponding distribution of error, s_i , whose elements are independent $(0,\sigma^2)$. The distribution of catch on time increment t_i would be:

The mean date of migration based on the catch distribution would be represented by:

$$\frac{\hat{\mathbf{t}}_{k}}{\hat{\mathbf{t}}_{k}} = \sum_{i=1}^{k} \mathbf{t}_{i} \hat{\mathbf{f}}(\mathbf{t}_{i}) = \bar{\mathbf{t}}_{k} + \sum_{i} \mathbf{t}_{i} \boldsymbol{\epsilon}_{i}$$
(23)

whose variance is:

$$V(\overline{t_k}) = \sum_{i} t_i^2 \sigma^2 = \sigma^2 (\sum_{i} t_i^2)$$
 (24)

For t_k to be an unbiased estimator of μ_T , the expected value of t_k must equal μ_T . Since $E(\epsilon_i) = 0$, it follows that $E(\hat{t}_k) = \mu_T$, which implies that the mean of the sample distribution of catch is an unbiased estimator of the parametric mean date of migration. For t_k to be a consistent estimator of μ_T , $V(\hat{t})$ must ---> 0 as n ---> ∞ . The variance of t_k will equal zero if and only if $\sigma^2 = 0$, so that $f(t_i) = f(t_i)$. As the sample size, n approaches infinity, $f(t_i)$ i = 1,...k are completely known, and $f(t_i) = f(t_i)$. The mean of the sample distribution of catch, therefore, is also a consistent estimator of the parametric mean date of migration.

The mean date of migration, consequently, is a reliable estimator of migratory behavior. In addition to its highly desirable unbiased and consistent properties, it is extremely resistent to factors which contribute variability to the basis expression of migratory behavior. It also benefits from being easily estimable and readily understood.

To be suitable as the basis for a comparative analysis between years as well as harvest areas, the mean of the time density function must also be a consistent estimator of interannual migratory behavior. Since in the case of maturing salmonids migratory timing is genetically transmitted (see Leggett 1977; Mundy 1979, 1982), the time of arrival in the fishery of the members of a migratory stock is conserved across generations, absent abiotic influences. If the mean date of migration in year 'i', i = 1 to y, is represented by \overline{t}_i , this premise is analogous to the statement: $E(\overline{t}_1) = E(\overline{t}_2) = \dots = E(\overline{t}_i)$, for a fixed geographic reference frame.

The consistent, unbiased properties of the estimator \overline{t} , as well as its conservative behavior across generations makes its use well suited to many statistical methods. The mean date of migration is appropriate, therefore, to serve as the basis for a comparative analysis of timing behavior across spatial as well as temporal dimensions.

CHAPTER 5

CONCLUSION

Fisheries management is appropriately directed toward the achievement of rational utilization of the resource. Since fisheries invariably represent complex, dynamic systems of interacting components, mathematical modeling is used to express these interactions in terms of identifiable, functional relationships. The very nature of the regualtory complexities imposed on the Prince William Sound pink salmon fisheries lent itself to such an approach.

Several principal conclusions can be drawn from the results of this research;

- 1. Migratory timing as a quantitative description of migratory behavior can, in fact, be rigorously compared across years and areas.
- 2. The mean date of migration as a consistent, unbiased estimator of migratory behavior, can serve as the basis for a comparative analysis of empirical time densities.
- 3. Many classical statistical models are extremely robust for determining differences in migratory behavior between years and across harvest areas when the measures of central tendency of the time densities are employed as variables in the models.

- 4. The results of the analysis of the even and odd cycles of pink salmon are consistent with the genetic distinctness between these two populations, and with the hypothesis of the genetic heritability of migratory timing.
- 5. The dynamic statistical system of analysis identified by this research is highly appropriate for quantitatively describing the functional relationships between timing behaviors across spatial and temporal dimensions. It is anticipated that this system will serve as a design standard for the comparison of migratory behavior, and that it will be applicable to the needs of harvest control for any migratory organism.

REFERENCES

- Anonymous, 1975. Salmon culture program. Prince William Sound Aquaculture Corporation, Cordova, Alaska. 116 pp.
- Anonymous, 1982. Prince William Sound Area Annual Finfish Management Report, 1981. Alaska Department of Fish and Game, Division of Commercial Fisheries, Cordova, Alaska. 122 pp.
- Anonymous, 1983a. Prince William Sound Copper River Comprehensive Salmon Plan, Phase 1 20-Year Plan. Prince William Sound Regional Fisheries Planning Team, Prince William Sound Aquaculture Corporation, Cordova, Alaska. 163 pp.
- Anonymous, 1983b. 1983 Commercial Finfish Regulations. Alaska Department of Fish and Game, Division of Commercial Fisheries, Juneau, Alaska. 181 pp.
- Alexandersdottir M., and O.A. Mathisen, 1982. Changes in S.E. Alaska pink salmon (Oncorhynchus gorbuscha) populations, 1914-1960. University of Washington, Fisheries Research Institute. 55 pp.
- Altukhov, Yu.P., and E.A. Salmenkova, 1981. Applications of the stock concept to fish populations in the U.S.S.R. Canadian Journal of Fisheries and Aquatic Sciences 38:1591-1600.
- Babcock, M.A. 1982. A quantitative measure of migratory timing illustrated by applications to the commercial brown shrimp fishery. Department of Oceanography Technical Report No. 82-4, Old Dominion University, Norfolk, Virginia. 160 pp.

- Barth, E.J. 1984. An intraseason forecasting system for commercial marine fisheries. Ph.D. Dissertation, Old Dominion University, Norfolk, Virginia. 82 pp.
- Butt, A.J. 1984. An examination of the variability of migratory timing statistics estimated from catch and effort data. Ph.D. dissertation, Old Dominion University, Norfolk, Virginia. 133 pp.
- Brannian, L.K. 1982. The estimation of daily escapement and total abundance from catch per unit effort of the sockeye salmon fishery in Togiak Bay, Alaska. M.S. Thesis, University of Washington, Seattle, Washington. 173 pp.
- Hill, B.W. 1984. A description and analysis of the timing of Virginia's weakfish fishery. M.S. Thesis, Old Dominion University, Norfolk, Virginia. 115 pp.
- Hogg, R.V., and E.A. Tanis. 1977. Probability and Statistical Inference. Macmillam Publishing Company, Incorporated.
- · Hornberger, M.L., and O. A. Mathisen. 1982. Nushagak Bay salmon fishery model. University of Washington, Fisheries Research Institute. 97 pp.
 - Killick, S.R. 1955. The chronological order of Fraser River sockeye salmon during migration, spawning, and death. International Pacific Salmon Fisheries Commission. Bulletin VII. 95 pp.
 - Leggett, W.C. 1977. The ecology of fish migrations. Annual Review of Ecological Systems 8:175-182.
 - Matylewich, M.A. 1982. Environmental influence on the migratory behavior of the brown shrimp in Pamlico Sound, North Carolina.

 M.S. Thesis, Old Dominion University, Norfolk, Virginia. 65 pp.

- McCurdy, M.L. 1981. Prince William Sound Tagging Research, 1980.

 Alaska Department of Fish and Game, Technical Data Report No. 62,

 Juneau, Alaska. 94 pp.
- McCurdy, M.L. 1983. Prince William Sound Salmon Tagging Research, 1981. Alaska Department of Fish and Game, Technical Data Report No. 81, Juneau, Alaska. 51 pp.
- Mundy, P.R. 1979. A quantitative measure of migratory timing illustrated by the application to the management of commercial salmon fisheries. Ph.D. Dissertation, University of Washington, Seattle, Washington. 85 pp.
- Mundy, P.R. 1982. Computation of migratory timing statistics for adult chinook salmon in the Yukon River, Alaska, and their relevance to fisheries management. North American Journal of Fisheries Management 4:359-370.
- Mundy, P.R. 1983a. Harvest control systems for commercial marine fisheries management; theory and practice. Sea Grant lecture series on real-time salmon management. University of Washington, Seattle, Washington, 64 pp.
- Mundy, P.R. 1984. Migratory timing of salmon in Alaska with a bibliography on migratory behavior of relevance to fisheries research. Alaska Department of Fish and Game, Informational Leaflet No. 234, Juneau, Alaska.
- Mundy, P.R., H.A. Schaller, and E.J. Barth. 1982. Prince William Sound management study, phase 1: pink salmon escapement data management. Department of Oceanography Contract Report No. 82-0739, Old Dominion University, Norfolk, Virginia. 90 pp.
- Mundy, P.R., and O.A. Mathisen. 1981. Abundance estimation in a feedback control system applied to the management of a commercial salmon fishery. Pages 81-98 in K. Brian Haley, editor. Applied

- Operations Research in Fishing, Plenum Publishing Corporation, New York, New York.
- Neter, J. and W. Wasserman. 1974. Applied Linear Statistical Models.
 Richard D. Irwin Inc, Illinois. 842 pp.
- Noerenberg, W.H. 1963. Salmon forecast studies on 1963 runs in Prince William Sound. Alaska Department of Fish and Game, Informational Leaflet No. 21, Juneau, Alaska. 29 pp.
- Noerenberg, W.H., and F.J. Ossiander. 1964. Effect of the March 27, 1964 earthquake on pink salmon alevin survival in Prince William Sound spawning streams. Alaska Department of Fish and Game, Informational Leaflet No. 43, Juneau, Alaska.
- Paula, M.A. 1983 The relationship of size class distribution to migratory behavior in brown shrimp in Pamlico Sound, North Carolina. M.S. Thesis, Old Dominion University, Norfolk, Virginia. 112 pp.
- Pirtle, R.B. 1977. Historical pink and chum salmon estimated spawing escapements from Prince William Sound, Alaska streams, 1960-1975. Alaska Department of Fish and Game, Technical Data Report No. 35, Juneau, Alaska. 332 pp.
- Pirtle, R.B., and M.L. McCurdy. 1980. Prince William Sound general districts 1976 pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) aerial and ground escapement surveys and consequent brood year egg deposition and preemergent fry index programs. Alaska Department of Fish and Game, Technical Data Report No. 51, Juneau, Alaska. 62 pp.
- Roberson, K. and P.J. Fridgen 1974. Identification and enumeration of Copper Rever sockeye salmon stocks. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Completion Report AFC-32, Washington, D.C., USA.

- Royce, W.F. 1983. Trends in fishery science. Fisheries 8:10-13.
- Rcys, R.S. 1968. Forecast of 1968 pink and chum salmon runs in Prince William Sound. Alaska Department of Fish and Game, Informational Leaflet No. 116, Juneau, Alaska. 50 pp.
- Rugolo, L.J. 1984. Migratory timing data base for the pink salmon fisheries of Prince William Sound, Alaska. Department of Oceanography Technical Report No. 84-05, Old Dominion University, Norfolk, Virginia.
- Schaller, H.A. 1984. Determinants for the timing of escapement from the sockeye salmon fishery of the Copper River, Alaska: a simulation model. Ph.D. Dissertation, Old Dominion University, Norfolk Virginia. 96 pp.
- Schnute, J. and J. Sibert. 1983. The salmon terminal fishery: a practical, comprehensive timing model. Canadian Journal of Fisheries and Aquatic Sciences 40:835-853.
- Sheridan, W.L. 1962. Relationship of stream temperatures to timing of pink salmon escapements in Southeast Alaska. Pages 87-102 <u>in</u> 1960 Symposium on Pink Salmon, N. J. Wilimovsky, editor, University of British Columbia, Vancouver, British Columbia, Canada.
- Sokal, R.R., and F.J. Rohlf. 1981. Biometry. W.H. Freeman and Company. 859 pp.
- Vaughan, E. 1954. The use of catch statistics for estimating parameters of the pink salmon migration pattern in Icy Strait. Science in Alaska 1952. American Association for the Advancement of Science, Alaskan Division, Anchorage, Alaska.

- Walters, C.J., and S.J. Buckingham. 1975. A control system for intraseason salmon management. International Institute for Applied Systems Analysis, Schloss Laxenburg, 2361 Laxenburg, Austria.
- Wright, S. 1981. Contemporary Pacific salmon fisheries management.

 North American Journal of Fisheries Management 1:29-40.

APPENDIX A

AVERAGE CUMULATIVE PROPORTION CURVES FOR ALL MANAGEMENT DISTRICTS

Figure 1. Eastern District, even-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

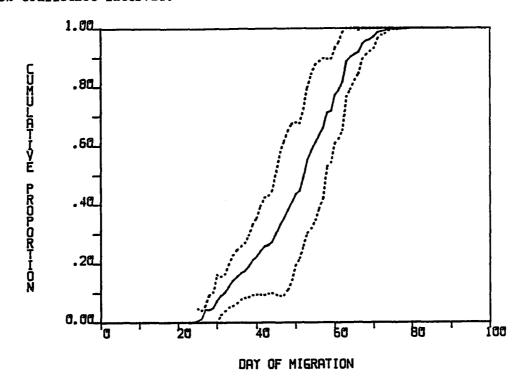


Figure 2. Eastern District, even-year cycle. Average cumulative proportion of pink salmon CPUE, and the upper and lower bound for its 95% confidence interval.

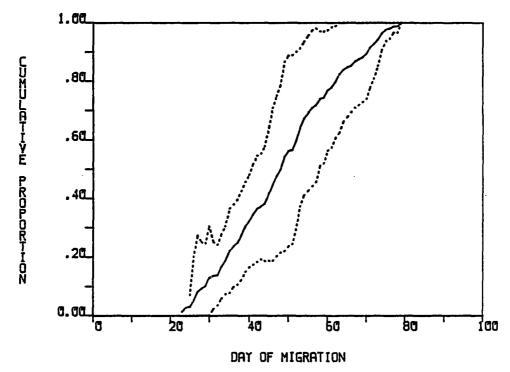


Figure 3. Northern District, even-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

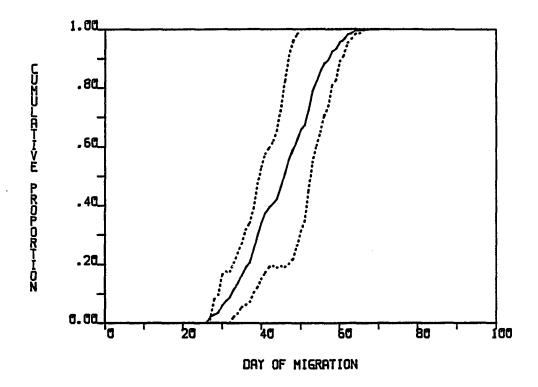


Figure 4. Northern District, even-year cycle. Average cumulative proportion of pink salmon CPUE, and the upper and lower bound for its 95% confidence interval.

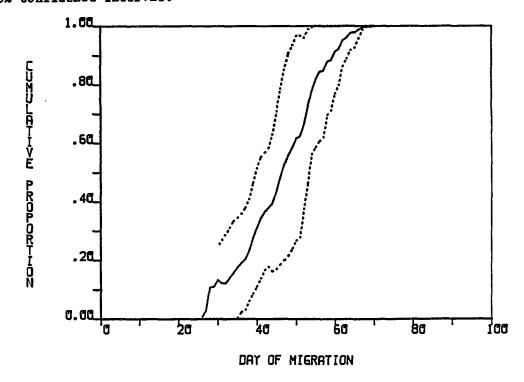


Figure 5. Coghill District, even-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

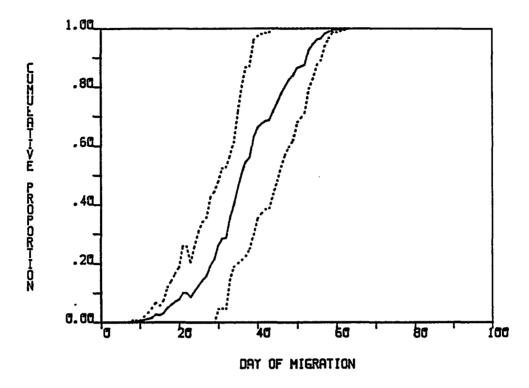


Figure 6. Coghill District, even-year cycle. Average cumulative proportion of pink salmon CPUE, and the upper and lower bound for its 95% confidence interval.

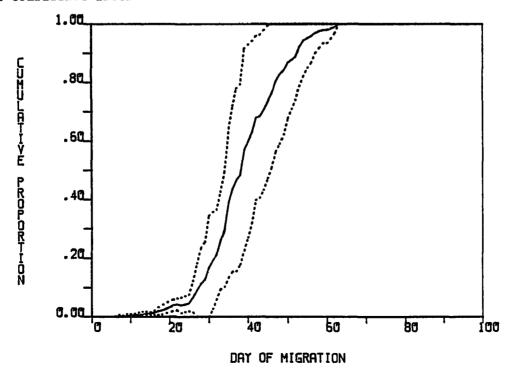


Figure 7. Northwestern District, even-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

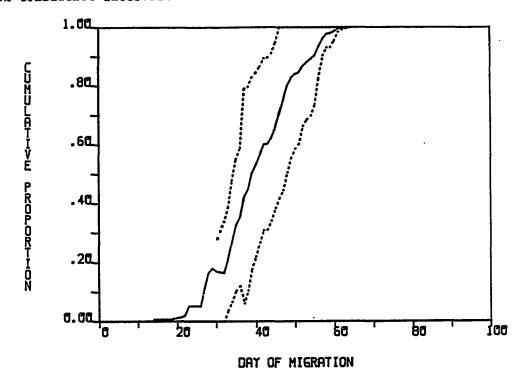


Figure 8. Northwestern District, even-year cycle. Average cumulative proportion of pink salmon CPUE, and the upper and lower bound for its 95% confidence interval.

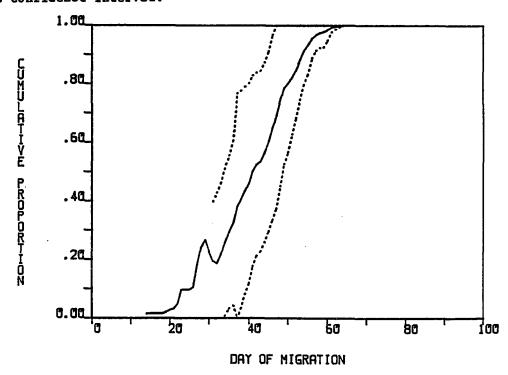


Figure 9. Southwestern District. even-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

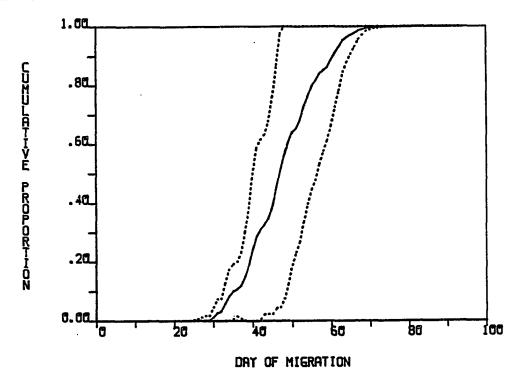


Figure 10. Southwestern District, even-year cycle. Average cumulative proportion of pink salmon CPUE, and the upper and lower bound for its 95% confidence interval.

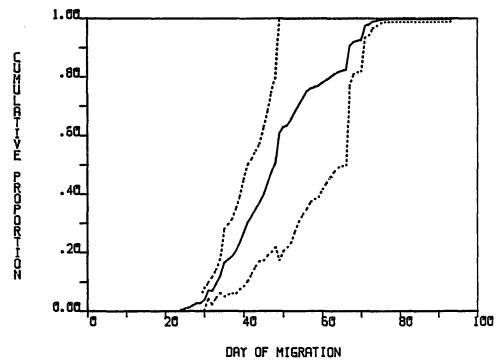


Figure 11. Southeastern District. even-year cycle. Average cumulative proportion of pink salmon catch. Construction of a 95% confidence interval was not possible.

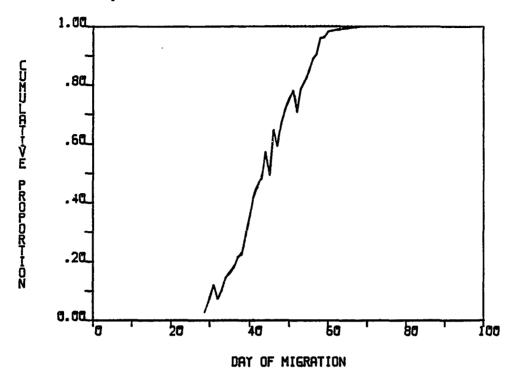


Figure 12. Southeastern District. even-year cycle. Average cumulative proportion of pink salmon CPUE. Construction of a 95% confidence interval was not possible.

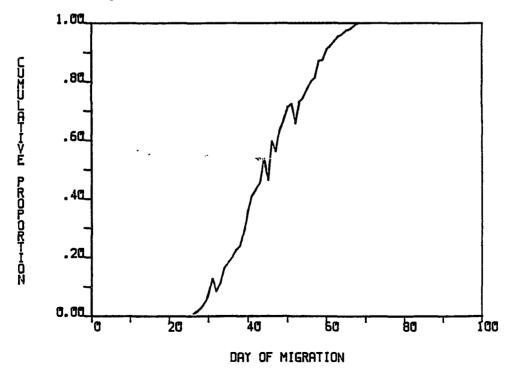


Figure 13. Eastern District, odd-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

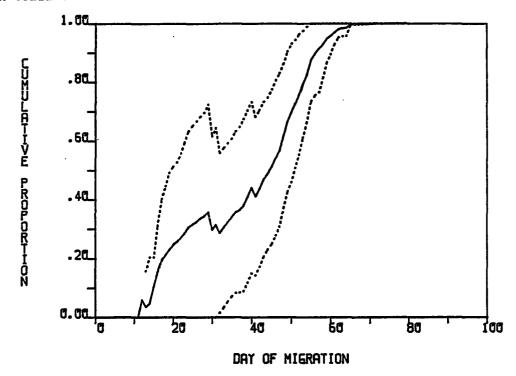


Figure 14. Eastern District, odd-year cycle. Average cumulative proportion of pink salmon CPUE, and the upper and lower bound for its 95% confidence interval.

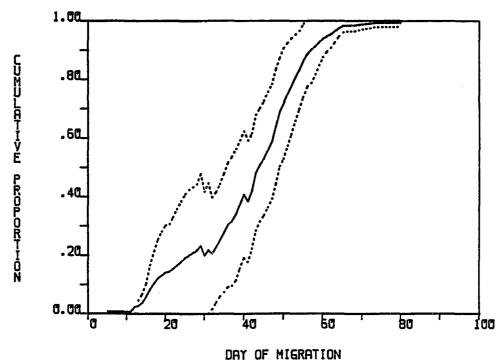


Figure 15. Northern District, odd-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

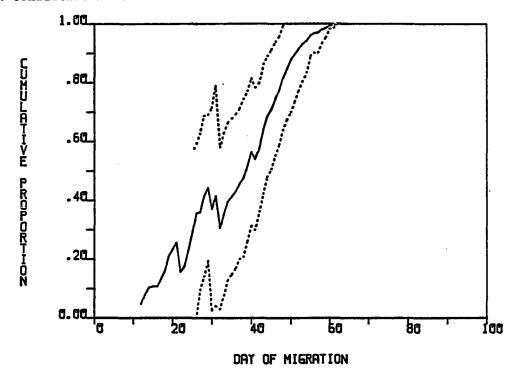


Figure 16. Northern District. odd-year cycle. Average cumulative proportion of pink salmon CPUE. and the upper and lower bound for its 95% confidence interval.

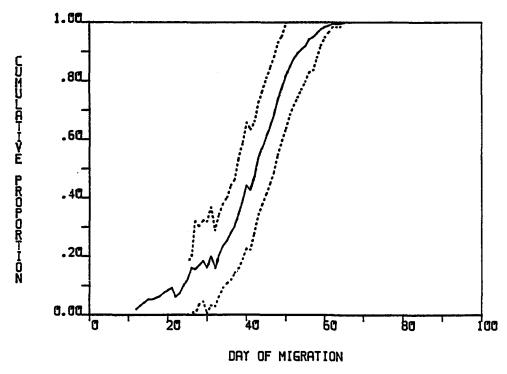


Figure 17. Coghill District, odd-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

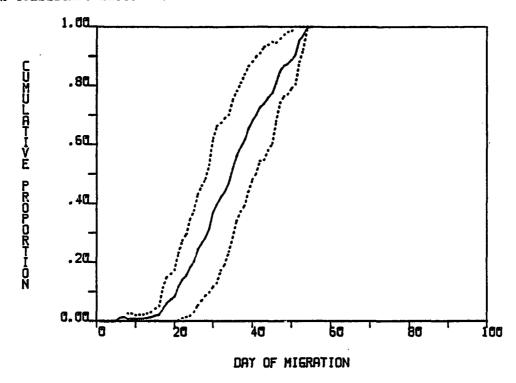


Figure 18. Coghill District, odd-year cycle. Average cumulative proportion of pink salmon CPUE, and the upper and lower bound for its 95% confidence interval.

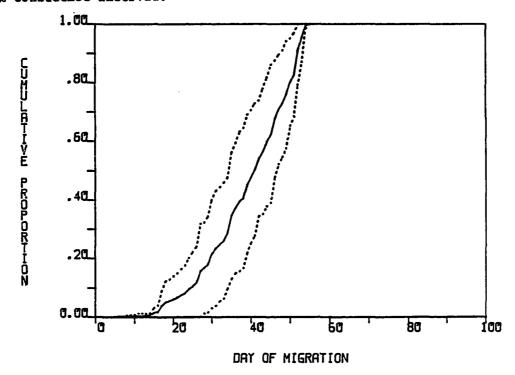


Figure 19. Northwestern District, odd-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

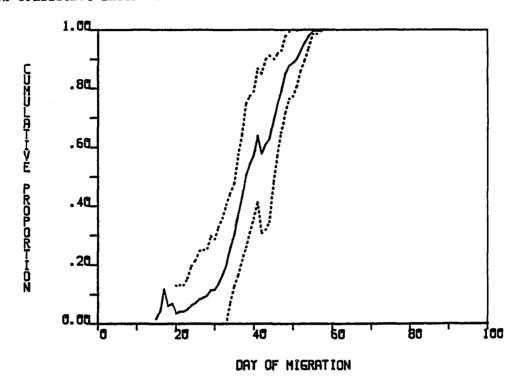


Figure 20. Northwestern District, odd-year cycle. Average cumulative proportion of pink salmon CPUE, and the upper and lower bound for its 95% confidence interval.

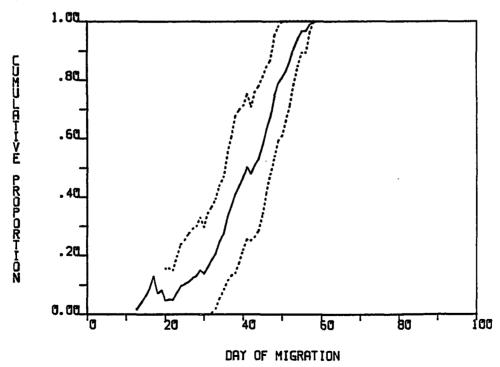


Figure 21. Southwestern District. odd-year cycle. Average cumulative proportion of pink salmon catch. and the upper and lower bound for its 95% confidence interval.

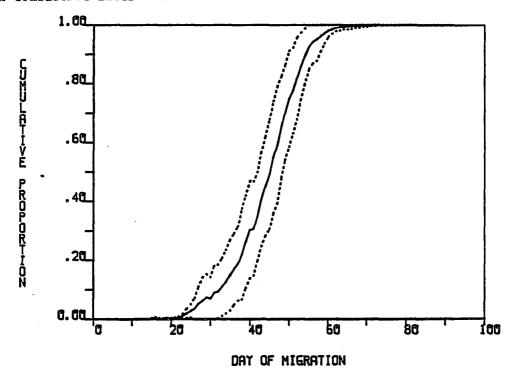


Figure 22. Southwestern District, odd-year cycle. Average cumulative proportion of pink salmon CPUE, and the upper and lower bound for its 95% confidence interval.

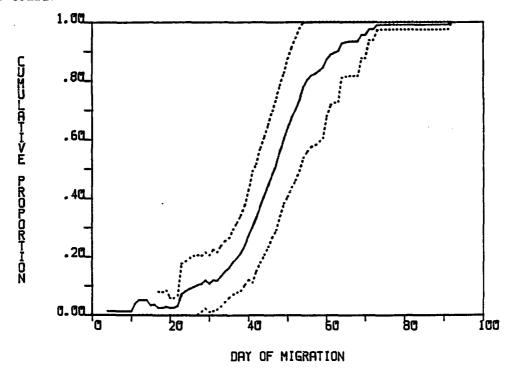


Figure 23. Montague District, odd-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

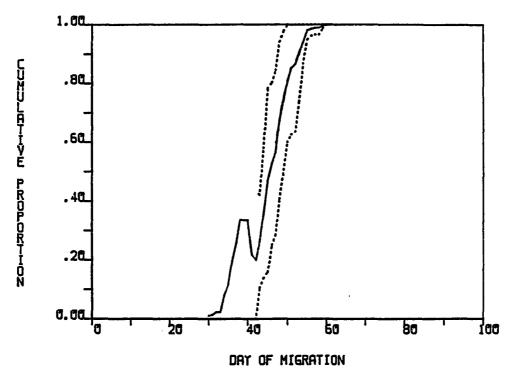


Figure 24. Montague District, odd-year cycle. Average cumulative proportion of pink salmon CPUE, and the upper and lower bound for its 95% confidence interval.

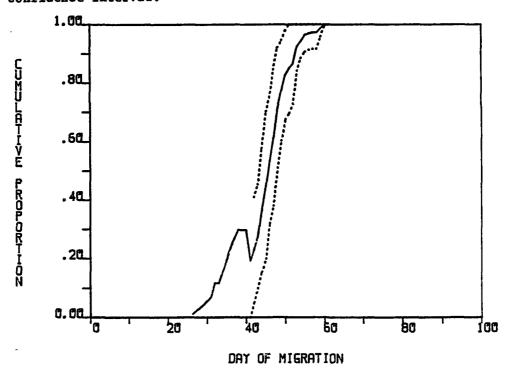


Figure 25. Southeastern District, odd-year cycle. Average cumulative proportion of pink salmon catch, and the upper and lower bound for its 95% confidence interval.

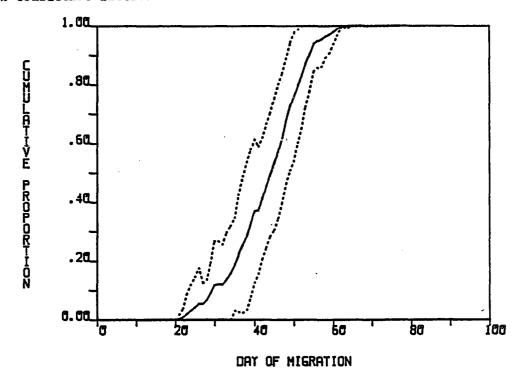


Figure 26. Southeastern District. odd-year cycle. Average cumulative proportion of pink salmon CPUE. and the upper and lower bound for its 95% confidence interval.

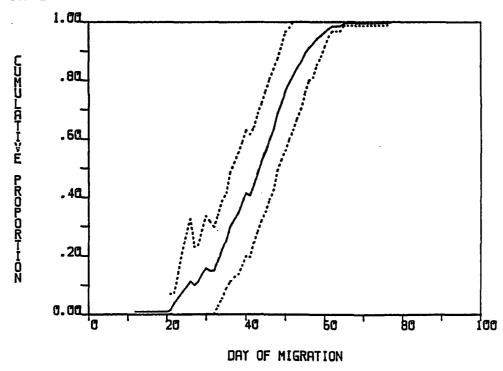


Figure 27. Eastern District, even-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

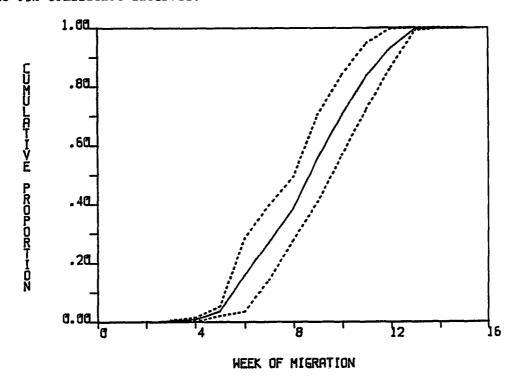


Figure 28. Eastern District, odd-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

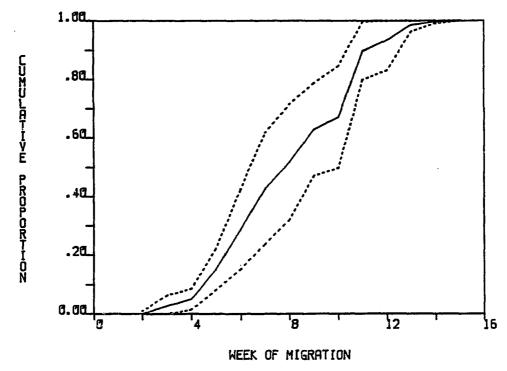


Figure 29. Northern District, even-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

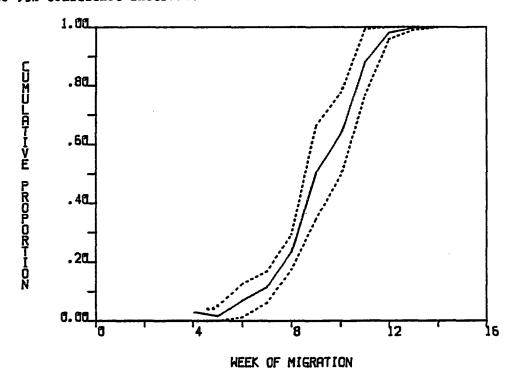


Figure 30. Northern District, odd-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

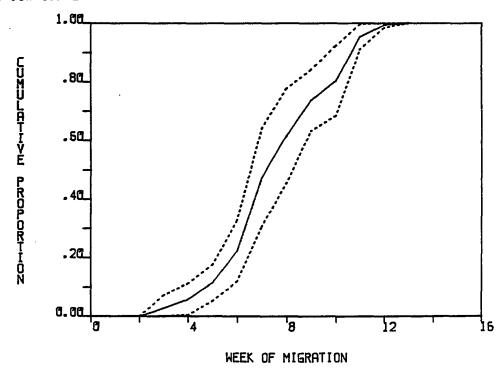


Figure 31. Coghill District, even-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

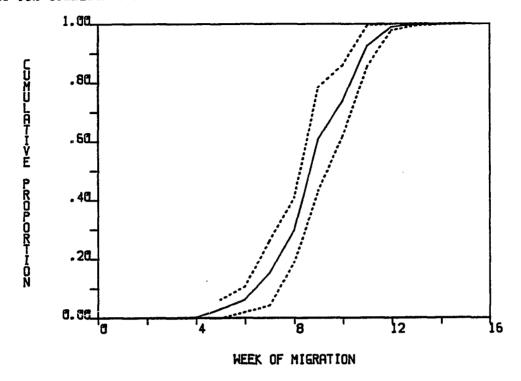


Figure 32. Coghill District, odd-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

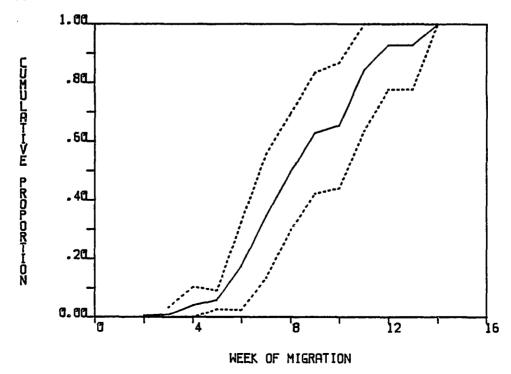


Figure 33. Northwestern District, even-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

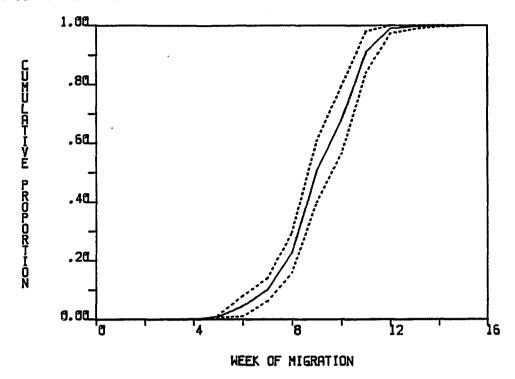


Figure 34. Northwestern District, odd-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

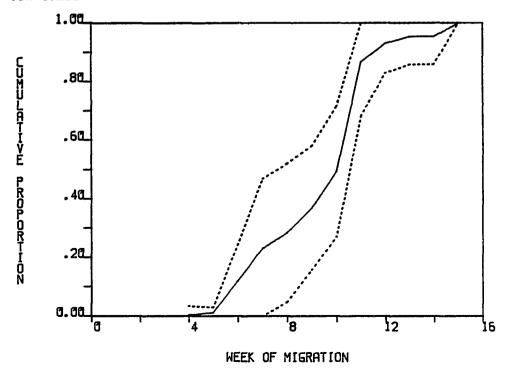


Figure 35. Eshamy District, even-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

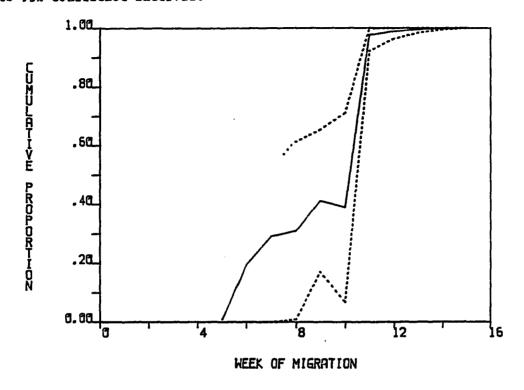


Figure 36. Eshamy District, odd-year cycle. Average cumulative proportion of pink salmon escapement. Construction of a 95% confidence interval was not possible.

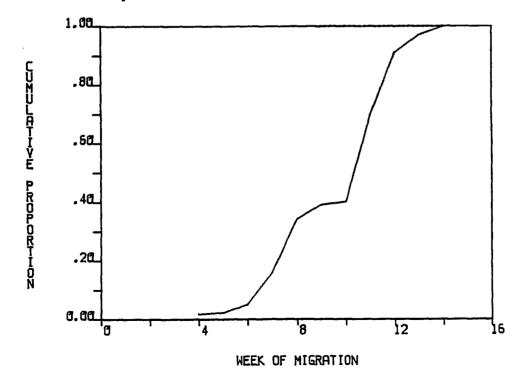


Figure 37. Southwestern District. even-year cycle. Average cumulative proportion of pink salmon escapement. and the upper and lower bound for its 95% confidence interval.

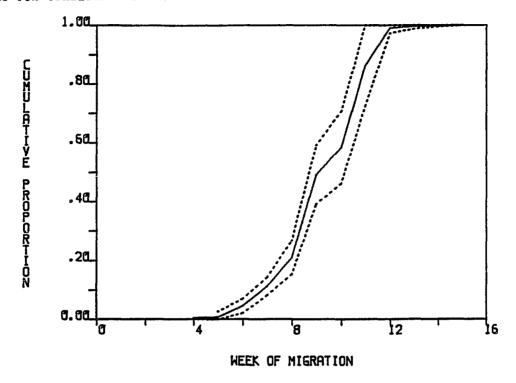


Figure 38. Southwestern District, odd-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

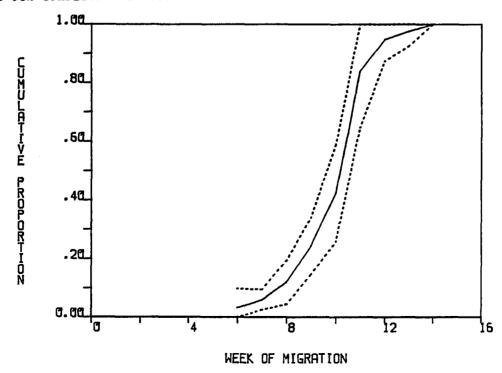


Figure 39. Montague District, even-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

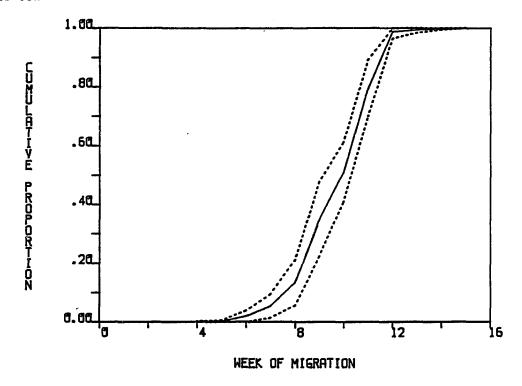


Figure 40. Montague District, odd-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

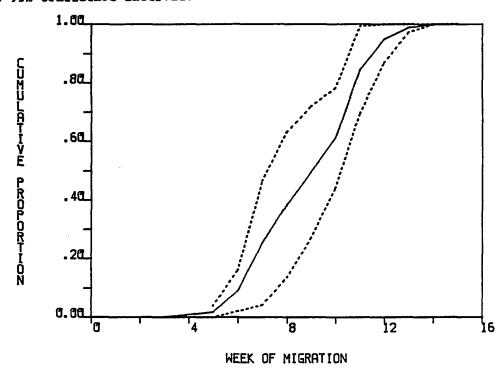


Figure 41. Southeastern District, even-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

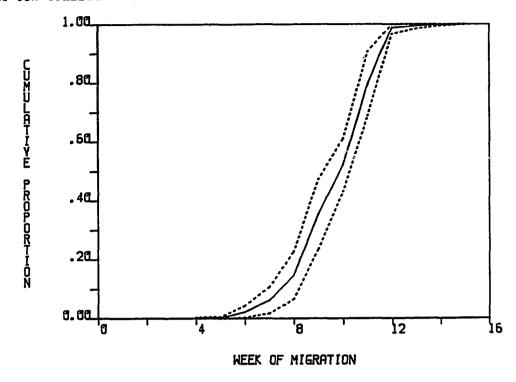
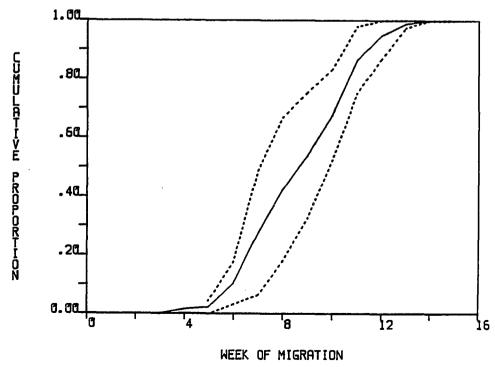



Figure 42. Southeastern District, odd-year cycle. Average cumulative proportion of pink salmon escapement, and the upper and lower bound for its 95% confidence interval.

APPENDIX B

AVERAGE HISTORICAL TIME DENSITIES

FOR ALL MANAGEMENT DISTRICTS

Table 1. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1976 - 1982. Eastern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
23 24 25 26 27	705 706 707 708 709	1 1 2 2 2 2	.0006 .0006 .0054 .0059 .0320	0 0 96 24 84	0 0.52 0.14 2.69	1 1 2 2 2	.0006 .0012 .0060 .0120 .0440	0 76 26 54	0 0.46 0.31 2.37
28	710	3	.0143	113	1.62	3	.0436	46	2.02
29	711	2	.0111	99	1.10	3	.0510	40	2.07
30	712	3	.0229	66	1.52	3	.0739	48	3.56
31	713	4	.0365	90	3.30	4	.0920	44	4.06
32	714	5	.0283	69	1.97	5	.1019	49	5.06
33	715	4	.0286	52	1.49	5	.1249	47	5.93
34	716	4	.0232	77	1.81	5	.1435	48	6.95
35	717	5	.0136	79	1.09	5	.1572	46	7.35
36	718	4	.0148	85	1.26	5	.1691	43	7.27
37	719	3	.0128	61	0.79	5	.1768	42	7.54
38	720	4	.0194	53	1.04	5	.1924	43	8.42
39	721	5	.0214	68	1.46	5	.2139	45	9.64
40	722	4	.0156	59	0.93	5	.2264	46	10.49
41	723	4	.0239	77	1.86	5	.2455	49	12.17
42	724	3	.0237	80	1.91	5	.2598	51	13.38
43	725	2	.0141	93	1.32	5	.2654	50	13.39
44	726	1	.0458	0	0	5	.2746	51	14.07
45	727	3	.0513	59	3.07	5	.3054	55	16.95
46	728	3	.0494	39	1.93	5	.3351	58	19.67
47	729	4	.0264	78	2.07	5	.3562	59	21.10
48	730	4	.0332	28	0.93	5	.3828	56	21.72
49	731	4	.0346	54	1.89	5	.4106	51	21.34
50	801	3	.0447	71	3.20	5	.4374	44	19.52
51	802	1	.0533	0	0	5	.4481	41	18.37
52	803	3	.0766	57	4.38	5	.4941	37	18.71
53	804	4	.0732	60	4.42	5	.5527	36	19.93
54	805	4	.0366	66	2.44	5	.5820	36	21.09
55	806	3	.0515	20	1.07	5	.6129	34	21.33
56	807	3	.0420	67	2.83	5	.6381	31	20.07
57	808	2	.0590	21	1.26	5	.6617	28	19.05
58	809	2	.1289	51	6.65	5	.7133	20	14.69
59	810	1	.0323	0	0	5	.7197	19	14.22
60	811	3	.0876	55	4.83	5	.7723	16	13.03
61	812	2	.0425	59	2.52	5	.7893	16	13.18
62	813	3	.0525	44	2.31	5	.8208	16	13.45
63 64 65 66 67	814 815 816 817 818	3 2 1 2	.1112 .0250 .0245 .0359 .0685	91 86 99 0 18	10.20 2.15 2.43 0 1.28	5 5 5 5 5	.8876 .9026 .9124 .9196 .9470	10 9 7 6 4	9.68 8.81 7.08 5.90 4.21
68 69 70 71 72	819 820 821 822 823	2 1 2 3 2	.0287 .0242 .0216 .0240 .0115	11 0 16 72 20	0.33 0 0.35 1.74 0.24	5 5 5 5	.9585 .9633 .9720 .9864 .9910	3 3 1 1	3.80 3.35 3.25 1.67 1.09

Table 1 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
73 74 75 76	82.4 82.5 82.6 82.7	2 2 2 2	.0052 .0092 .0047 .0004	37 5 39 60	0.19 0.05 0.18 0.03	5 5 5 5	.9931 .9968 .9987 .9989	0 0 0	0.84 0.40 0.15 0.12
77 78 79	828 829 830	2 0 2	.0008 .0000 .0017	52 0 31	0.04 0 0.05	5 5 5	.9993 .9993 1.0000	0 0 0	0 0 0

Table 2. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1976 - 1982. Northern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
26	708	1	.0006	0	0	1	.0006	0	0
27	709	2	.0215	99	2.15	2	.0218	97	2.12
28	710	2	.0214	58	1.25	3	.0288	73	2.12
29	711	1	.0187	0	0	3	.0350	69	2.43
30	712	3	.0247	81	2.01	3	.0598	71	4.25
31	713	4	.0302	69	2.09	4	.0750	84	6.30
32	714	4	.0358	24	0.86	5	.0887	79	7.01
33	715	3	.0428	29	1.24	5	.1144	65	7.43
34	716	3	.0345	45	1.56	5	.1351	61	8.28
35	717	3	.0466	25	1.20	5	.1631	53	8.73
36 37 38 39 40	718 719 720 721 722	2 3 4 5 5	.0662 .0288 .0524 .0491 .0435	25 45 38 74 62	1.70 1.31 2.00 3.66 2.71	5 5 5 5 5 5	.1896 .2069 .2488 .2979 .3415	54 52 46 47 45	10.30 10.85 11.61 14.20 15.38
41	723	4	.0411	25	1.06	5	.3744	43	16.22
42	724	3	.0335	49	1.66	5	.3945	41	16.28
43	725	2	.0344	49	1.69	5	.4083	42	17.17
44	726	1	.0692	0	0	5	.4222	44	18.80
45	727	3	.0722	66	4.82	5	.4655	47	21.92
46	728	4	.0543	67	3.64	5	.5090	50	25.59
47	729	4	.0571	67	3.87	5	.5547	51	28.45
48	730	4	.0436	37	1.62	5	.5896	50	29.89
49	731	3	.0581	13	0.80	5	.6245	46	29.00
50	801	2	.0866	2	0.22	5	.6591	42	27.86
51	802	1	.0690	0	0	5	.6729	38	26.22
52	803	3	.0880	69	6.15	5	.7257	30	21.99
53	804	4	.0800	62	4.96	5	.7897	24	19.51
54	805	4	.0408	71	2.92	5	.8224	21	17.46
55	806	3	.0608	12	0.74	5	.8589	19	16.78
56	807	3	.0411	105	4.32	5	.8835	16	14.26
57	808	1	.0681	0	0	5	.8971	14	12.73
58	809	2	.0675	28	1.91	5	.9241	10	9.31
59	810	1	.0453	0	0	5	.9332	9	8.45
60	811	2	.0589	70	4.17	5	.9568	5	5.31
61 62 63 64 65	812 813 814 815 816	1 2 1 2	.0403 .0437 .0228 .0216 .0034	0 62 0 35 0	2.73 0 0.76 0	5 5 5 5 5	.9649 .9824 .9869 .9956 .9962	4 2 1 0 0	4.36 2.34 1.61 0.87 0.74
66 67 68 69 70	817 818 819 820 821	1 1 1 0 1	.0133 .0029 .0022 .0000 .0003	0 0 0 0	0 0 0 0	5 5 5 5 5	.9989 .9995 .9999 .9999	0 0 0 0	0.22 0 0 0 0

Table 3. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1974 - 1982. Coghill district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. ×100
1101									
6 7 8 9 10	618 619 620 621 622	1 1 2 3	.0001 .0001 .0013 .0009 .0038	0 0 0 15 21	0 0 0 0.01 0.08	1 2 2 2 3	.0001 .0001 .0008 .0017 .0049	0 0 87 29 12	0 0.06 0.05 0.06
11 12 13 14 15	623 624 625 626 627	2 2 2 2 3	.0059 .0055 .0061 .0164 .0051	69 63 77 22 133	0.41 0.34 0.47 0.36 0.68	3 3 3 4	.0088 .0125 .0166 .0276 .0246	48 65 78 56 81	0.43 0.81 1.29 1.57 2.00
16 17 18 19 20	628 629 630 701 702	2 3 2 3 3	.0172 .0238 .0209 .0122 .0109	63 61 84 127 98	1.10 1.47 1.76 1.56 1.07	4 4 4 4	.0332 .0510 .0615 .0707 .0789	80 84 82 85 86	2.67 4.30 5.08 6.06 6.82
21 22 23 24 25	703 704 705 706 707	2 1 3 3	.0445 .0008 .0092 .0339 .0309	90 0 120 88 102	4.02 0 1.11 3.00 3.17	4 4 5 5 5	.1012 .1013 .0866 .1070 .1255	98 98 109 113 118	9.97 9.95 9.51 12.12 14.86
26 27 28 29 30	708 709 710 711 712	4 4 2 3	.0217 .0213 .0416 .0549 .0793	68 72 75 70 28	1.48 1.55 3.14 3.89 2.29	5 5 5 5 5	.1429 .1600 .1934 .2153 .2629	111 99 96 85 66	15.98 15.84 18.71 18.41 17.45
31 32 33 34 35	713 714 715 716 717	4 6 4 4 4	.0287 .0490 .1012 .0698 .0897	66 136 91 84 87	1.91 6.72 9.30 5.86 7.80	5 6 6 6	.2858 .2873 .3549 .4014 .4612	67 79 56 50 53	19.18 22.95 19.99 20.16 24.65
36 37 38 39 40	718 719 720 721 722	4 3 4 5 4	.0709 .0760 .0225 .0827 .0488	79 78 51 91 35	5.64 5.97 1.16 7.61 1.72	6 6 6 6	.5085 .5465 .5615 .6305 .6631	55 55 52 49 44	28.12 30.50 29.49 31.47 29.52
41 42 43 44 45	723 724 725 726 727	3 4 1 2 3	.0248 .0131 .0211 .0880 .0602	56 45 0 67 10	1.40 0.59 0 5.94 0.61	6 6 6	.6755 .6843 .6878 .7172 .7473	42 41 41 37 33	29.02 28.57 28.50 26.83 25.28
46 47 48 49 50	728 729 730 731 801	4 3 3 4 2	.0483 .0466 .0448 .0217 .0780	100 35 44 89 19	4.83 1.66 1.98 1.95 1.54	6 6 6	.7795 .8029 .8253 .8398 .8658	30 27 26 24 20	23.67 22.17 21.75 20.84 17.66
51 52 53 54 55	802 803 804 805 806	1 1 3 2 1	.0337 .0348 .1016 .0587 .0884	0 0 46 35 0	0 0 4.74 2.11 0	6 6 6 6	.8714 .8772 .9280 .9476 .9624	19 17 13 12 8	16.59 15.51 12.65 11.45 8.16

Table 3 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
56 57 58 59	807 808 809 810	2 2 1 1	.0141 .0451 .0488 .0361	69 97 0 0	0.98 4.39 0	6 6 6	.9671 .9821 .9902 .9963	7 4 2 0	7.30 3.99 2.17 0.82
60 61 62 63	811 812 813 814	0 1 1	.0000 .0052 .0070 .0100	0 0 0	0 0 0	6 6 6	.9963 .9971 .9983 1.0000	0 0 0	0.82 0.63 0.37 0

Table 4. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1974, 1976, 1980, 1982. Northwestern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. *100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
14 15 16 17 18	626 627 628 629 630	1 1 0 0	.0062 .0010 .0000 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.0062 .0072 .0072 .0072	0 0 0 0	0 0 0 0
19 20 21 22 23	701 702 703 704 705	1 1 1 1	.0023 .0026 .0019 .0073 .0312	0 0 0 0	0 0 0 0	1 1 1 1	.0094 .0120 .0140 .0212 .0524	0 0 0 0	0 0 0 0
24 25 26 27 28	706 707 708 709 710	0 0 2 2 1	.0000 .0000 .0249 .0610 .1029	0 0 84 78 0	0 0 2.11 4.76 0	1 1 2 2 2	.0524 .0524 .0511 .1121 .1636	0 92 84 89	0 0 4.73 9.50 14.65
29 30 31 32 33	711 712 713 714 715	1 3 4 5	.0326 .0503 .0527 .0384 .0492	0 58 25 19 23	0 2.96 1.33 0.75 1.14	2 3 4 5 5	.1799 .1702 .1672 .1646 .2138	90 109 92 84 65	16.28 18.59 15.49 13.85 14.10
34 35 36 37 38	716 717 718 719 720	5 4 3 3	.0586 .0690 .0470 .1166 .0415	54 61 84 106 79	3.17 4.22 3.95 12.46 3.28	5 5 5 5 5	.2724 .3276 .3558 .4258 .4507	61 54 53 69 61	16.65 18.01 18.95 29.38 27.85
39 40 41 42 43	721 722 723 724 725	4 4 2 2	.0652 .0364 .0431 .0878 .0053	67 48 60 33 50	4.43 1.75 2.60 2.97 0.26	5 5 5 5 5 5	.5028 .5320 .5665 .6016 .6037	52 47 42 39 38	26.23 25.16 24.08 23.53 23.52
44 45 46 47 48	726 727 728 729 730	2 3 3 4 4	.0562 .0679 .0792 .0502 .0589	94 73 62 58 54	5.29 5.00 4.94 2.95 3.20	5 5 5 5 5	.6262 .6670 .7145 .7547 .8017	36 34 33 32 29	22.91 22.67 23.74 24.78 23.76
49 50 51 52 53	731 801 802 803 804	4 2 1 2 3	.0333 .0314 .0248 .0577 .0219	63 27 0 48 26	2.11 0.84 0 2.81 0.57	5 5 5 5 5	.8285 .8410 .8460 .8690 .8822	26 24 23 18 17	22.00 20.47 19.52 16.50 15.78
54 55 56 57 58	80 5 80 6 80 7 80 8 80 9	3 2 2 2 1	.0182 .0333 .0726 .0663 .0837	33 72 73 97 0	0.61 2.40 5.37 6.49 0	5 5 5 5 5	.8931 .9064 .9355 .9620 .9788	17 14 9 4 3	15.64 13.58 8.81 4.64 3.85
59 60 61 62 63 64	810 811 812 813 814 815	1 1 1 1 1	.0080 .0332 .0423 .0109 .0064 .0052	0 0 0 0	0 0 0 0	5 5 5 5 5 5 5 5	.9804 .9870 .9955 .9977 .9989 1.0000	3 2 0 0 0	3.92 2.58 0.89 0.45 0.20

Table 5. Average daily propertion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1976, 1980, 1982. Southwestern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
24 25 26 27 28	706 707 708 709 710	1 1 1 1	.0001 .0006 .0006 .0010	0 0 0	0 0 0 0	1 2 2 2 2 2	.0001 .0004 .0006 .0012	0 75 85 91 94	0.03 0.05 0.11 0.17
29 30 31 32 33	711 712 713 714 715	0 3 3 4 4	.0000 .0113 .0144 .0121 .0256	0 122 56 63 70	0 1.39 0.80 0.76 1.80	2 3 4 4	.0018 .0125 .0270 .0323 .0579	94 105 68 80 74	0.17 1.32 1.85 2.60 4.33
34 35 36 37 38	716 717 718 719 720	4 4 3 2 3	.0243 .0172 .0106 .0245 .0394	63 88 122 87 68	1.54 1.52 1.31 2.14 2.71	4 4 4 4	.0823 .0995 .1076 .1198 .1494	68 58 53 59 64	5.66 5.83 5.79 7.08 9.63
39 40 41 42 43	721 722 723 724 725	4 4 4 3 3	.0406 .0522 .0447 .0328 .0217	65 76 63 79 66	2.67 3.98 2.85 2.60 1.43	4 4 4 4	.1900 .2422 .2868 .3115 .3278	64 66 65 61 58	12.25 16.11 18.85 19.09 19.08
44 45 46 47 48	726 727 728 729 730	3 3 4 4 4	.0298 .0568 .0637 .0540 .0493	96 46 44 63 28	2.88 2.62 2.83 3.40 1.42	4 4 4 4	.3502 .3929 .4566 .5106 .5600	58 59 56 57 54	20.54 23.20 25.99 29.21 30.50
49 50 51 52 53	731 801 802 803 804	4 3 1 2 3	.0463 .0458 .0508 .0531 .0606	53 77 0 24 21	2.46 3.55 0 1.30 1.32	4 4 4 4	.6063 .6407 .6534 .6800 .7254	49 44 40 38 33	30.22 28.25 26.42 25.84 24.38
54 55 56 57 58	80 <i>5</i> 806 807 808 809	3 3 2 1	.0470 .0509 .0240 .0443 .0487	28 22 68 9	1.32 1.16 1.63 0.44	4 4 4 4	.7607 .7990 .8170 .8392 .8513	29 27 26 22 20	22.78 22.03 21.26 19.21 17.27
59 60 61 62 63	810 811 812 813 814	1 2 2 2 2	.0414 .0503 .0478 .0425	0 25 24 35 51	1.30 1.18 1.50 2.17	4 4 4 4	.8617 .8869 .9108 .9321 .9533	18 15 12 9 7	15.64 14.00 11.60 9.31 6.72
64 65 66 67 68	815 816 817 818 819	2 1 1 2 2	.0220 .0295 .0266 .0168 .0084	55 0 0 50 86	1.22 0 0 0.84 0.73	4 4 4 4	.9643 .9717 .9784 .9868 .9910	5 4 3 1	5.34 4.07 2.93 1.91 1.24
69 70 71 72 73	820 821 822 823 824	1 1 2 1 2	.0150 .0038 .0049 .0012 .0017	0 0 1 0 64	0 0 0 0 0.11	4 4 4 4	.9948 .9957 .9982 .9985 .9993	0 0 0 0	0.61 0.45 0.27 0.22 0.10

Table 5 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. *100
74 75 76 77	82.5 82.6 82.7	1 1 0	.0013 .0006 .0002	0 0 0	0 0 0	4 4 4	.9997 .9998 .9999	0 0 0	0
77 78	82.8 82.9	0	.0000	0	0 0 0	4 4	.9999 .9999	0 0 0	0 0 0
79 80 81 82 83	830 831 901 902	0 0 0 0	.0000 .0000 .0000	0 0 0	0 0 0 0	4 4 4	.9999 .9999 .9999	0 0 0 0	0 0 0 0
84	903 904 905	0 0 0	.0000 .0000	0 0 0	0	4 4 4	.9999 .9999	0	0
85 86 87 88	906 907 908	0 0 0	.0000 .0000 .0000	0 0 0	0 0 0	4 4 4 4	.9999 .9999 .9999	0 0 0	0 0 0
89 90 91 92 93	909 910 911 912 913	0 0 0 0	.0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0	4 4 4 4	.9999 .9999 .9999 .9999	0 0 0 0	0 0 0 0
94	914	0	.0003	ŏ	0	4	1.0000	ŏ	0

Table 6. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1976 - 1982. Southeastern district, Prince William Sound.

Day No.	Da te	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
30 31 32 33 34	712 713 714 715 716	1 1 2 2 2	.0740 .0465 .0134 .0287 .0434	0 0 61 69 22	0 0 0.81 2.00 0.96	1 1 2 2 2	.0740 .1205 .0736 .1024 .1459	0 0 92 86 54	0 0 6.84 8.84 7.87
35 36 37 38 39	717 718 719 720 721	1 1 1 2	.0357 .0346 .0675 .0201 .0630	0 0 0 0 16	0 0 0 0 1.04	2 2 2 2 2	.1637 .1810 .2147 .2248 .2877	37 24 36 38 26	6.09 4.36 7.73 8.73 7.69
40 41 42 43 44	722 723 724 725 726	2 2 1 1	.0646 .0676 .0673 .0631 .1742	18 0 0 0 0	1.20 0.01 0 0	2 2 2 2 2	.3525 .4201 .4538 .4853 .5724	18 15 6 0 15	6.48 6.47 3.11 0.04 8.66
45 46 47 48 49	727 728 729 730 731	2 3 4 4 3	.1701 .1517 .1073 .0767 .0617	60 64 116 36 59	10.26 9.78 12.48 2.76 3.65	3 3 4 4 4	.4950 .6468 .5924 .6692 .7155	37 17 61 58 50	18.53 11.55 36.14 38.86 36.17
50 51 52 53 54	801 802 803 804 805	3 1 2 3 2	.0504 .1066 .2117 .1278 .0700	52 0 90 101 90	2.63 0 19.18 12.95 6.30	4 5 5 5	.7533 .7799 .7087 .7854 .8134	44 37 41 31 24	33.63 29.12 29.54 24.83 20.17
55 56 57 58 59	806 807 808 809 810	2 2 2 2 1	.0913 .1004 .0384 .1361 .0183	43 53 96 60 0	3.99 5.35 3.70 8.19 0	5 5 5 5 5	.8499 .8901 .9054 .9599 .9636	19 14 12 4 4	16.33 12.83 11.53 4.56 3.97
60 61 62 63 64	811 812 813 814 815	2 1 1 1	.0482 .0114 .0179 .0147 .0060	40 0 0 0	1.96 0 0 0	5 5 5 5 5	.9828 .9851 .9887 .9917 .9929	2 2 1 1 0	2.70 2.25 1.57 1.06 0.87
65 66 67 68	816 817 818 819	1 1 2 2	.0055 .0071 .0094 .0019	0 0 59 57	0 0 0.56 0.10	5 5 5 5	.9940 .9954 .9992 1.0000	0 0 0 0	0.73 0.62 0.11 0

Table 7. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Eastern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
5 6 7 8 9	617 618 619 620 621	1 0 0 0 0	.0001 .0000 .0000 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.0001 .0001 .0001 .0001	0 0 0 0	0 0 0 0
10 11 12 13 14	622 623 624 625 626	0 0 1 3 2	.0000 .0000 .0601 .0155 .0179	0 0 0 133 81	0 0 0 2.07 1.44	1 1 3 3	.0001 .0001 .0603 .0356 .0475	0 0 0 138 133	0 0 0 4.91 6.36
15 16 17 18 19	627 628 629 630 701	2 2 3 3 2	.1413 .0958 .0543 .0246 .0355	10 7 49 86 54	1.52 0.69 2.67 2.13 1.94	4 4 4 4	.1063 .1542 .1950 .2134 .2312	58 64 66 68 70	6.17 9.89 13.02 14.59 16.34
20 21 22 23 24	702 703 704 705 706	3 2 3 2 3	.0208 .0219 .0165 .0303 .0275	76 30 76 8 12	1.59 0.66 1.26 0.25 0.35	4 4 4 4	.2468 .2577 .2701 .2852 .3059	67 65 66 67 67	16.61 16.86 18.02 19.37 20.54
25 26 27 28 29	707 708 709 710 711	3 2 2 2 2	.0143 .0161 .0220 .0181 .0248	54 5 18 25 8	0.78 0.08 0.40 0.45 0.21	4 4 4 4	.3167 .3248 .3358 .3448 .3573	66 64 63 64	21.06 21.45 21.70 21.96 23.03
30 31 32 33 34	712 713 714 715 716	3 4 6 5 6	.0194 .0213 .0245 .0230 .0169	11 39 127 74 79	0.22 0.84 3.14 1.70 1.34	5 5 6 6 6	.2974 .3145 .2867 .3058 .3228	86 84 90 84 79	25.60 26.55 25.88 25.84 25.62
35 36 37 38 39	717 718 719 720 721	6 5 4 5 6	.0162 .0229 .0102 .0200 .0294	87 61 79 75 81	1.41 1.42 0.80 1.50 2.40	6 6 6 6	.3391 .3582 .3651 .3818 .4112	75 72 73 73 67	25.53 26.14 26.76 27.87 27.84
40 41 42 43 44	722 723 724 725 726	5 6 7 6	.0362 .0385 .0269 .0363 .0221	64 50 74 57 88	2.33 1.96 2.00 2.10 1.95	6 7 7 7 7	.4414 .4114 .4384 .4695 .4885	62 70 65 60 57	27.68 29.11 28.74 28.38 27.90
45 46 47 48 49	727 728 729 730 731	5 6 7 6	.0345 .0335 .0307 .0498 .0562	53 66 66 62 71	1.85 2.24 2.05 3.12 4.02	7 7 7 7	.5132 .5419 .5683 .6181 .6663	55 52 49 42 38	28.26 28.55 28.25 26.42 25.72
50 51 52 53 54	801 802 803 804 805	5 5 5 5 5	.0407 .0417 .0469 .0473 .0455	69 70 76 72 75	2.84 2.94 3.58 3.43 3.42	7 7 7 7	.6954 .7253 .7588 .7926 .8251	36 32 29 24 21	25.42 23.56 22.20 19.60 17.63

Table 7 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
P. P.	006		0500	60	2 60	7	99 C E	17	15.30
55	806 807	6 5 4 3 3	.0599 .0286	60 86	3.60 2.46	7 7	.8765 .8970	17 17	15.43
56		3	.0305	78	2.39	ή	.9144	17	16.14
57 58	808 809	4	.0389	121	4.72	7	.9311	13	12.52
59	810	3	.0369	110	4.68	7	.9494	13 9	8.86
39	व्यक		.0420	TTO	4.00	,	.7474	9	0.00
60	811	3 2 3 4 2	.0221	117	2.59	7	.9588	7	6.91
61	81.2	2	.0401	96	3.86	7	.9703	Å	4.32
62	813	3	.0270	49	1.34	7 7 7 7 7	.9819	7 4 3 3	3.07
63	814	4	.0053	90	0.48	7	.9850	3	3.08
64	815	2	.0023	90 52	0.12	7	.9856	3	3.05
65	816	2	.0451	96	4.34	77	.9985	Ó	0.30
66	817	2 1 0 0	.0019	0	Ö	7	.9988	Ŏ	0.24
67	818	Ō	.0000	0	0	7	.9988	Ō	0.24
68	819	0	.0000	0	Ō	7 7	.9988	Ŏ	0.24
69	820	1	.0027	Ō	Ō	7	.9992	0	0.14
70	821	1	.0017	0	0	7	.9994	0	0
71	822	1 1 2 0	.0012	0	Ŏ	7 7 7 7	.9996	Ŏ	Ŏ
72	823	1	.0009	Ō	0	7	.9997	0	0
73	824	2	.0003	66	0.02	Ž	.9998	Ŏ	Ŏ
74	825	0	.0000	0	0	7	.9998	Ö	0
75	826	0	 0000	0	0	7	.9998	0	0
76	827		.0000	Ŏ		7	.9998	Ŏ	
77	828	0 0	.0000	0	Ŏ	Ż	.9998		ŏ
78	829 830	Õ	.0000	0	Ō	7	.9998	Ŏ	Ŏ
78 79 80	830	0 0 1	.0000	0	0 0 0	7 7 7 7 7	.9998	0 0 0	0 0 0 0
80	831	1	.0009	Ó	0	7	1.0000	0	0

Table 8. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Northern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
12 13 14 15 16	624 625 626 627 628	1 1 1 1 0	.0484 .0326 .0236 .0036 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.0484 .0810 .1046 .1082 .1082	0 0 0 0	0 0 0 0
17 18 19 20 21	629 630 701 702 703	1 1 1 1	.0249 .0286 .0486 .0232 .0234	0 0 0 0	0 0 0 0	1 1 1 1	.1331 .1617 .2103 .2334 .2569	0 0 0 0	0 0 0 0
22 23 24 25 26	704 705 706 707 708	1 1 2 2 2	.0541 .0386 .0526 .0652 .0639	0 7 27 22	0 0 0.37 1.82 1.43	2 2 2 2 2	.1555 .1748 .2274 .2927 .3566	65 46 37 35 33	10.13 8.20 8.58 10.41 11.85
27 28 29 30 31	709 710 711 712 713	3 2 2 3 4	.1225 .0805 .0434 .0502 .0446	107 82 11 44 43	13.15 6.64 0.49 2.25 1.91	3 3 4 4	.3603 .4139 .4428 .3698 .4144	29 26 22 58 56	10.63 10.95 9.96 21.64 23.44
32 33 34 35 36	714 715 716 717 718	5 5 4 4	.0343 .0588 .0502 .0260 .0285	81 84 69 59 73	2.78 4.95 3.49 1.56 2.08	6 6 6	.3049 .3539 .3958 .4132 .4322	85 74 64 60 57	26.15 26.24 25.57 25.14 24.82
37 38 39 40 41	719 720 721 722 723	4 6 5 6	.0368 .0284 .0415 .0556 .0668	73 31 70 58 64	2.69 0.88 2.93 3.23 4.28	6 6 6 7	.4568 .4758 .5173 .5637 .5404	53 53 46 42 48	24.38 25.46 24.20 23.79 26.07
42 43 44 45 46	724 725 726 727 728	6 5 5 5 5	.0457 .0875 .0605 .0339 .0499	98 64 108 70 49	4.49 5.61 6.58 2.38 2.47	7 7 7 7	.5797 .6422 .6854 .7097 .7454	40 36 32 30 27	23.58 23.72 22.11 21.95 20.81
47 48 49 50 51	729 730 731 801 802	5 6 5 4 3	.0391 .0489 .0449 .0559 .0407	45 31 65 54 57	1.78 1.53 2.93 3.07 2.33	7 7 7 7	.7734 .8153 .8474 .8794 .8969	25 23 22 22 19	19.85 19.15 18.71 19.47 17.39
52 53 54 55 56	803 804 805 806 807	3 4 3 2 3	.0433 .0267 .0258 .0680 .0149	56 79 106 72 77	2.44 2.13 2.73 4.93 1.16	7 7 7 7	.9154 .9307 .9418 .9612 .9676	17 14 12 7 7	15.64 13.76 11.59 7.62 7.24
57 58 59 60 61	808 809 810 811 812	1 1 1 1	.0170 .0685 .0408 .0634 .0080	0 0 0 0	0	7 7 7 7	.9701 .9799 .9857 .9947 .9959	7 5 3 1 1	7.32 4.92 3.49 1.27 0.99

Table 8 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
62 63 64 65	813 814 815 816	1 0 0 1	.0264 .0000 .0000 .0022	0 0 0	0 0 0	7 7 7 7	.9996 .9996 .9996 1.0000	0 0 0	0 0 0

Table 9. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Coghill district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
2 3 4 5 6	614 615 616 617 618	1 0 0 1 1	.0002 .0000 .0000 .0005 .0104	0 0 0 0	0 0 0 0	1 1 1 1	.0002 .0002 .0002 .0006	0 0 0 0	0 0 0 0
7 8 9 10 11	619 620 621 622 623	1 3 4 3 3	.0031 .0016 .0033 .0009 .0023	0 74 127 141 107	0 0.11 0.42 0.12 0.24	1 3 4 5 5	.0142 .0063 .0080 .0069 .0083	0 121 141 151 127	0.76 1.13 1.06 1.06
12 13 14 15 16	624 625 626 627 628	2 5 5 5 5	.0004 .0045 .0027 .0101 .0047	100 111 111 111 136	0.04 0.50 0.30 1.13 0.64	5 6 7 7	.0085 .0108 .0131 .0185 .0219	123 129 122 138 143	1.05 1.40 1.61 2.57 3.15
17 18 19 20 21	629 630 701 702 703	5 6 5 7 5	.0306 .0216 .0169 .0099 .0457	169 92 81 155 145	5.20 2.00 1.38 1.54 6.63	7 7 7 7	.0438 .0623 .0744 .0844 .1171	174 150 125 114 106	7.64 9.38 9.37 9.70 12.42
22 23 24 25 26	704 705 706 707 708	5 5 6 4 5	.0341 .0183 .0327 .0364 .0550	94 118 100 89 75	3.23 2.17 3.29 3.27 4.14	7 7 7 7	.1415 .1546 .1827 .2035 .2429	101 98 97 91 84	14.34 15.24 17.82 18.66 20.49
27 28 29 30 31	709 710 711 712 713	6 5 4 5 4	.0252 .0285 .0498 .0780 .0467	124 122 97 90 55	3.13 3.49 4.86 7.02 2.60	7 7 7 7	.2645 .2849 .3134 .3691 .3958	79 75 74 74 73	21.01 21.45 23.38 27.35 28.90
32 33 34 35 36	714 715 716 717 718	4 3 6 4 4	.0468 .0446 .0310 .0887 .0738	94 15 76 13 98	4.41 0.70 2.38 1.16 7.25	7 7 7 7	.4226 .4417 .4683 .5190 .5612	63 60 53 48 42	27.04 26.90 25.09 25.19 23.82
37 38 39 40 41	719 720 721 722 723	4 3 5 4 3	.0514 .0569 .0536 .0489 .0425	113 103 60 96 19	5.81 5.91 3.23 4.70 0.81	7 7 7 7	.5906 .6150 .6533 .6813 .6995	40 39 35 31 30	23.64 24.12 22.97 21.64 21.54
42 43 44 45 46	724 725 726 727 728	3 4 4 3 4	.0617 .0231 .0334 .0413 .0617	71 59 96 63 107	4.42 1.37 3.22 2.62 6.60	7 7 7 7	.7260 .7392 .7583 .7760 .8113	27 27 25 23 17	19.76 20.68 19.37 18.62 14.39
47 48 49 50 51	729 730 731 801 802	4 4 5 3 2	.0679 .0310 .0105 .0319 .0524	99 95 95 73 83	6.76 2.95 1.00 2.33 4.39	7 7 7 7 7	.8502 .8679 .8754 .8891 .9041	13 13 13 11 11	11.72 11.31 11.41 10.48 10.77

Table 9 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
52	803	3	.1163	91	10.58	7	.9539	8	7.80
53	804	4	.0313	83	2.61	7	.9718	5	5.35
54	805	3	.0618	109	6.76	7	.9983	0	0.40
55	806	1	.0115	0	0	7	1.0000	0	0

Table 10. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Northwestern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
15	627 628 629	1	.0162 .0297 .0729 .0011	0	0	1	.0162	0	0
16	628	1	.0297	Ō	Ŏ	1	.0458 .1188	Ŏ	Ŏ
17	629	1	.0729	Ŏ	Ŏ	1	.1188	Ŏ	Ŏ
15 16 17 18 19	630	1 1 2 2	.0011	100 97	0.11	1 1 2 2	.0605 .0691	100	6.05 6.88
	701		.0086		0.83			99	
20	702	3	.0026 .0070 .0154 .0140	73	0.18	4	.0365	160 134	5.86
21	703	3	.0070	141 141	$0.99 \\ 2.17$	4	.0418	134	5.64
22	704	3	.0154	141 104	1.46	٥	.0418 .0426 .0510	167 164	7.14
20 21 22 23 24	703 704 705 706	3 3 3 2	.0328	79	2.60	4 4 5 5 5	.0642	166	5.86 5.64 7.14 8.42 10.70
		2	0200	31	0.62	5	0722	160 156 145 131	
26	708	2	.0298	31 47	1.41	5	.0842	156	13.21
<u>2</u> 7	709	2	.0131	4	0.06	5	.0894	145	12.98
25 26 27 28 29	707 708 709 710 711	2 2 2 2 4	.0200 .0298 .0131 .0192	64	1.23	5 5 5 5 5	.0971	131	12.75
29	711	4	.0227	90	1.41 0.06 1.23 2.04	5	.0722 .0842 .0894 .0971 .1153	127	11.60 13.21 12.98 12.75 14.73
30	712	3 3 5 4 6	.0413	66 67	2.74	6 6 6 6	.1167 .1365 .1658 .2011	139 134	16.28
31	713	3_	.0394	67	2.64	6	.1365	134	18.31
32	714	5	.0352 .0529	54	1.92	6	.1658	111	18.42
31 32 33 34	715 716	4	.0529 .0578	56 53	1.92 3.00 3.10	9	.2011	96 67	18.42 19.48 17.55
35	717	4	.0686	66	4.57	6	.3047	54 52 47	16.61
36	718 719	5	.0798 .0713	37 76	2.96	6	.3713 .4308	52 47	19.39
36	720	3	.1111	70 71	7 05	6	.5049	41 16	20.40
35 36 37 38 39	721	4 5 5 4 5	.0455	71 65	2.96 5.46 7.95 2.97	6 6 6	.5428	46 40	16.61 19.39 20.46 23.29 22.06
40	722	4	.0473	20	0.96	6	.5743	35	20 51
4 <u>1</u>	723	5	.0793	7ĭ	5.69	Ğ	.6405	33	21.59
42	722 723 724	5	-0412	71 56	5.69 2.31	7	.5743 .6405 .5784	35 33 50	29.34
40 41 42 43 44	725 726	4 5 5 5 4	.0430 .0350	43 84	1.85 2.96	6 7 7 7	.6091 .6291	51 48	21.59 29.34 31.30 30.52
44	726	4	.0350	84	2.96	7	.6291	48	30.52
45	727	4	.1115	117	13.10	7	.6929	32 25 19	22.25
46 47	<u>728</u>	5	.0749 .0599	45 53	3.41	7	.7464	25	18.70 15.07
47	728 729 730	5	.0599	53	3.41 3.21 3.60	7	.7464 .7892 .8490	19	15.07
48 49	730 731	4 5 5 6 5	.0697 .0411	51 81	3.60 3.34	7 7 7 7	.8490	16 14	14.00 12.36
							.8784		
50	801	3	.0214	45 114	0.98	7	.8876	14	12.49
51	802 803	3	.0344	114	3.92	7	. 9023	11	10.17
52 52	803 804	3	.0039	78	5.00	7	.9297 05.52	8	7.49
50 51 52 53 54	80 5	3 3 4 3	.0447	42 70	1.91 3.71	7 7 7 7	.9023 .9297 .9553 .9779	11 8 6 4	10.17 7.49 6.18 4.15
55	806	3	.0415	88	3.66	7			
56	807	ŏ	.0000			i	.9957	1	1.04
57	807 808	ĭ	.0194	ŏ	ŏ	7	.9984	ō	1.04 1.04 0.37
55 56 57 58 59	809 810	3 0 1 1	.0000 .0194 .0098	0 0 0	0 0 0	7 7 7 7	.9957 .9957 .9984 .9998 1.0000	1 0 0 0	0
59	810	1	.0008	0	0	7	1.0000	0	0

Table 11. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Southwestern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
4 5 6 7 8	616 617 618 619 620	1 0 0 0	.0003 .0000 .0000 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.0003 .0003 .0003 .0003	0 0 0 0	0 0 0 0
9 10 11 12 13	621 622 623 624 625	0 0 1 1 0	.0000 .0000 .0006 .0003	0 0 0 0	0 0 0 0	1 1 1 1	.0003 .0003 .0008 .0011	0 0 0 0	0 0 0 0
14 15 16 17 18	626 627 628 629 630	0 1 1 2 1	.0000 .0013 .0008 .0002 .0006	0 0 0 60 0	0 0 0 0.01 0	1 2 2 3 3	.0011 .0012 .0016 .0012 .0013	0 8 31 60 40	0 0.01 0.04 0.07 0.05
19 20 21 22 23	701 702 703 704 705	2 2 2 2 4	.0006 .0011 .0021 .0034 .0050	23 36 2 18 67	0.01 0.03 0 0.06 0.34	3 4 4 4 4	.0018 .0019 .0029 .0047 .0098	45 53 46 46 52	0.08 0.10 0.13 0.21 0.51
24 25 26 27 28	706 707 708 709 710	3 2 2 3 2	.0125 .0168 .0172 .0203 .0240	14 16 61 83 33	0.17 0.26 1.05 1.68 0.81	4 4 4 4	.0192 .0276 .0362 .0514 .0634	52 50 62 72 78	1.00 1.39 2.24 3.72 4.97
29 30 31 32 33	711 712 713 714 715	3 4 4 6 6	.0143 .0140 .0241 .0187 .0161	73 88 56 93 76	1.05 1.23 1.36 1.74 1.24	4 5 5 6 6	.0742 .0706 .0899 .0936 .1098	67 81 81 92 85	4.98 5.76 7.29 8.68 9.42
34 35 36 37 38	716 717 718 719 720	6 5 5 4 4	.0168 .0275 .0261 .0270 .0482	75 62 61 61 46	1.27 1.71 1.60 1.65 2.25	6 6 6 6	.1266 .1497 .1714 .1894 .2216	81 76 67 63 66	10.29 11.48 11.58 12.07 14.76
39 40 41 42 43	721 722 723 724 725	6 7 6 6	.0410 .0416 .0471 .0481 .0683	54 59 44 62 65	2.24 2.48 2.11 3.00 4.49	6 7 7 7	.2626 .3043 .3080 .3493 .4079	56 51 56 46 42	14.95 15.78 17.32 16.19 17.24
44 45 46 47 48	726 727 728 729 730	6 6 6 6	.0526 .0479 .0659 .0496 .0733	76 52 53 47 31	4.04 2.53 3.52 2.37 2.30	7 7 7 7	.4530 .4942 .5507 .5932 .6561	40 40 37 36 28	18.27 20.09 20.51 21.39 18.70
49 50 51 52 53	731 801 802 803 804	6 4 5 4 5	.0564 .0767 .0398 .0730 .0568	65 47 76 42 57	3.67 3.62 3.04 3.12 3.27	7 7 7 7 7	.7044 .7483 .7768 .8186 .8592	25 23 20 18 14	17.63 17.63 15.78 15.19 12.33

Table 11 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
54	805	5	.0465	66	3.09	7	.8924	11	10.28
55	806	5	.0475	39	1.88	ż	9263	8	8.22
56	807	5 5 4 3 2	.0273	74	2.02	7 7 7 7	.9420 .9515	8 8 8 5	7.88
57	808	3	.0223	69	1.55	7	.9515	8	8.01
55 56 57 58	809	2	.0223 .0384	69 81	1.55 3.11	7	.9625	5	8.22 7.88 8.01 5.69
59 60 61 62 63	810	2 2 3 2 2	.0356 .0301	56	2.02 2.22	7 7 7 7	.9727	3 2 1 1	3.88
60	811 812	2	.0301	74	2.22	7	.9813	2	2.29 1.68
61	812	3	.0097 .0197	112	1.09	7	.9813 .9854 .9911	1	1.68
62	813 814	2	.0197	23	0.46	7	.9911	1	1.27
63	814	2	.0042	16	0.07	7	.9923	1	1.26
64	81.5	2 2 1 1 0	-0064	35	0.23	7 7 7 7	.9941	0	0.95
65 66	816	2	.0033	54	0.17	7	.9951	Ó	0.97
90	817	1	.0022	Ó	Ŏ	7	.9954	0	0.97 0.97 0.64
67 68	818 819	¥	.0094	0	0	7	.9967 .9967	Ö	0.04
80	97.7	U	.0000	U		7		U	0.64
69	820	2	.0041	46	0.19	7	.9979	0	0.43
70	821	Ō	-0000	0	0	7	.9979	0	0.43
70 71	822	2 0 1 0 1	.0070	Ō	Ō	7 7 7 7	.9989	0	0.19 0.19
72 73	823	0	.0000	0	0	7	.9989	0	0.19
73	824	1	.0052	0	Ŏ	7	.9979 .9989 .9989 .9996	Ŏ	0
74	82.5	1	.0003	0	0	7 7 7 7	.9997	0	0
75	826	Ō	.0000	Q	Ō	7	.9997 .9997	0	0
<u>76</u>	827	0	.0000	Ō	0 0 0	<u>7</u>	.9997	Ŏ	Ō
75 76 77 78	828	Ŏ	.0000	Ŏ	Õ	7	.9997 .9997	Ŏ	0 0 0
78	829	Ŏ	.0000	0	Ō	7	.9997	0	Ü
79	830	0	.0000	Õ	0	7 7 7 7	.9997	0	0 0 0
80 81 82 83	831	1 0	.0002	Ŏ	Ŏ O	<u>7</u>	.9997	Ŏ	Q
81	901	0	.0000	Ò	Ü	7	.9997 .9997 .9997	Ŏ	0
82	902	0	.0000	0	0	7	.9997	0	0
83	903	Ö	.0000	0	Ō	7	.9997	Ō	0
84	904	0	.0000	0	Q	7 7 7 7	.9997	Q	0
85 86 87 88	905	Ŏ Q	.0000	Õ	0	7	.9997 .9997	Ŏ	0 0 0
<u>86</u>	906	Ŏ	.0000	Ŏ	Ŏ	<u>7</u>	. 9997	Ŏ	Õ
87	907	Ŏ	.0000	Ŏ	Ŏ	7	.9997 .9997	Ŏ	Õ
88	908	0	.0000	Ō	ŏ	7	.9997	Ō	Ö
89	909	0	.0000	0	0 0 0	7 7 7 7	.9997	0 0 0 0	0
90	910	Ŏ Q	.0000	Ō	Q	<u>7</u>	.9997	Õ	0
91	911	õ	.0000	Ò	Ŏ	7	9997	Ŏ	Ŏ
92	912	Ĭ	.0017	0	Ŏ	7	1.0000	e	Ŏ

Table 12. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1973 - 1981. Montague district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Cum. Prop.	c.v.	S.D. *100
30 31 32 33 34	712 713 714 715 716	1 1 0 1	.0098 .0050 .0085 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.0098 .0149 .0234 .0234 .0800	0 0 0 0	0 0 0 0
35 36 37 38 39	717 718 719 720 721	1 1 1 0	.0354 .0820 .0587 .0798 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.1154 .1974 .2561 .3360 .3360	0 0 0 0	0 0 0 0
40 41 42 43 44	722 723 724 725 726	0 2 4 4 4	.0000 .0488 .0902 .1299 .1208	0 9 63 86 97	0.48 5.69 11.17 11.78	1 2 4 5 5	.3360 .2168 .1987 .2629 .3596	0 79 76 48 49	17.28 15.12 12.70 17.80
45 46 47 48 49	727 728 729 730 731	4 4 4 5 4	.1397 .0706 .0465 .1109 .0835	66 69 64 96 36	9.28 4.91 3.00 10.67 3.07	5 5 5 5 5	.4713 .5279 .5651 .6760 .7428	53 42 39 31 25	25.07 22.23 22.54 21.45 18.97
50 51 52 53 54	801 802 803 804 805	4 2 3 3	.0856 .1063 .0218 .0583 .1956	45 24 62 104 0	3.89 2.63 1.36 6.12	5 5 5 5 5	.8114 .8539 .8669 .9020 .9411	20 21 21 14 6	17.02 18.32 18.61 13.13 5.91
55 56 57 58 59	806 807 808 809 810	2 1 1 0 2	.0972 .0292 .0203 .0000 .0156	60 0 0 0 96	5.91 0 0 0 1.50	5 5 5 5 5	.9800 .9858 .9899 .9899	2 1 1 0	2.45 1.92 1.93 1.93 0.71
60 61	811 812	. 2	.0090 .0011	87 0	0.79	5 5	.9997 1.0000	0	0

Table 13. Average daily proportion of catch, average cumulative proportion of catch, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Southeastern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
12 13 14 15 16	624 625 626 627 628	1 0 0 0	.0004 .0000 .0000 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.0004 .0004 .0004 .0004	0 0 0 0	0 0 0 0
17 18 19 20 21	629 630 701 702 703	0 0 0 0	.0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0	1 1 1 2	.0004 .0004 .0004 .0004 .0021	0 0 0 0 80	0 0 0 0 0.17
22 23 24 25 26	704 705 706 707 708	3 1 2 2 2	.0092 .0333 .0156 .0168 .0177	132 .0 30 13 9	1.22 0 0.47 0.22 0.16	33333	.0106 .0217 .0322 .0435 .0553	106 124 107 95 87	1.13 2.70 3.45 4.13 4.85
27 28 29 30 31	709 710 711 712 713	2 2 3 2 4	.0283 .0269 .0300 .0543 .0338	29 42 87 39 66	0.84 1.14 2.62 2.11 2.26	4 4 4 5	.0556 .0690 .0916 .1187 .1220	77 61 70 78 96	4.31 4.27 6.47 9.35 11.73
32 33 34 35 36	714 715 716 717 718	6 5 6 5	.0181 .0231 .0210 .0286 .0443	102 104 79 85 104	1.85 2.40 1.68 2.44 4.65	6 6 6	.1198 .1391 .1602 .1888 .2257	108 108 94 79 84	13.05 15.07 15.17 15.08 19.02
37 38 39 40 41	719 720 721 722 723	4 6 6 7	.0461 .0434 .0446 .0398 .0552	82 63 66 70 86	3.78 2.74 2.94 2.81 4.76	6 6 6 7	.2565 .2855 .3301 .3699 .3723	86 83 72 62 62	22.16 23.94 23.85 23.30 23.37
42 43 44 45 46	724 725 726 727 728	5 5 5 6	.0577 .0594 .0516 .0529 .0503	60 24 83 55 64	3.48 1.47 4.30 2.95 3.24	7 7 7 7	.4136 .4560 .4929 .5306 .5737	53 49 46 45 42	22.22 22.72 22.69 24.21 24.57
47 48 49 50 51	729 730 731 801 802	5 6 5 4	.0626 .0668 .0715 .0458 .0630	29 28 16 61 52	1.84 1.88 1.20 2.81 3.33	7 7 7 7	.6185 .6758 .7269 .7596 .7957	38 33 32 31 26	23.88 22.89 23.62 23.74 20.90
52 53 54 55 56	803 804 805 806 807	4 4 4 5 4	.0609 .0705 .0562 .0527 .0159	45 45 56 69 78	2.77 3.23 3.16 3.67 1.25	7 7 7 7	.8305 .8708 .9029 .9406 .9497	23 18 14 10 10	19.31 15.74 13.52 10.27 10.03
57 58 59 60 61	808 809 810 811 812	3 2 3 2 1	.0139 .0333 .0129 .0337 .0627	88 96 102 94 0	1.23 3.21 1.32 3.17 0	7 7 7 7 7	.9557 .9653 .9708 .9804 .9894	10 8 7 4 2	10.22 7.93 6.87 4.59 2.40

Table 13 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Cum. Prop.	c.v.	S.D. x100
62 63 64 65 66	813 814 815 816 817	2 0 0 2 0	.0290 .0000 .0000 .0076 .0000	95 0 0 69	2.76 0 0 0.53	7 7 7 7	.9977 .9977 .9977 .9998	0 0 0 0	0.44 0.44 0.44 0
67 68 69 70 71	81.8 81.9 82.0 82.1 82.2	0 0 0 0	.0000 .0000 .0000 .0000	0	0 0 0	7 7 7 7	.9998 .9998 .9998 .9998	0	0 0 0
72 73 74 75 76 77	823 824 825 826 827 828	0 0 0 0 0	.0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0	7 7 7 7 7	.9998 .9998 .9998 .9998 .9998 1.0000	0 0 0 0 0	0 0 0 0

Table 14. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1976 - 1982. Eastern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
23	705	1	.0143	0	0	1	.0143	0	0
24	706	1	.0143	0	0	1	.0287	0	0
25	707	2	.0173	57	1.00	2	.0315	14	0.44
26	708	2	.0222	53	1.17	2	.0535	30	1.65
27	709	2	.0285	17	0.50	2	.0823	25	2.13
28 29 30 31 32	710 711 712 713 714	3 2 3 4 5	.0393 .0124 .0283 .0397 .0289	64 65 41 72 40	2.54 0.80 1.18 2.88 1.17	3 3 4 5	.0941 .1024 .1308 .1380 .1392	67 57 53 52 60	6.35 5.84 7.03 7.22 8.41
33	715	4	.0356	40	1.45	5	.1678	52	8,79
34	716	4	.0258	73	1.90	5	.1885	49	9,31
35	717	5	.0328	77	2.53	5	.2215	52	11.58
36	718	4	.0206	41	0.86	5	.2380	47	11.29
37	719	3	.0192	29	0.57	5	.2496	46	11.66
38	720	4	.0307	35	1.08	5	.2741	44	12.24
39	721	5	.0297	50	1.50	5	.3039	40	12.33
40	722	4	.0246	44	1.10	5	.3237	39	12.66
41	723	4	.0280	57	1.62	5	.3462	39	13.84
42	724	3	.0309	31	0.96	5	.3647	40	14.61
43 44 45 46 47	725 726 727 728 729	2 1 3 4	.0219 .0450 .0593 .0513 .0347	61 0 31 33 13	1.35 0 1.84 1.73 0.46	5 5 5 5	.3735 .3825 .4183 .4491 .4769	38 41 44 46 46	14.52 15.74 18.47 20.94 22.01
48	730	4	.0297	42	1.25	5	.5005	45	22.97
49	731	4	.0528	54	2.86	5	.5430	47	25.99
50	801	3	.0333	41	1.37	5	.5629	46	26.11
51	802	1	.0168	0	0	5	.5663	45	25.92
52	803	3	.0507	65	3.30	5	.5969	40	24.37
53	804	4	.0569	84	4.83	5	.6425	33	21.72
54	805	4	.0385	43	1.68	5	.6733	31	21.12
55	806	3	.0313	51	1.60	5	.6920	30	21.29
56	807	3	.0274	33	0.92	5	.7085	30	21.43
57	808	2	.0263	8	0.22	5	.7190	29	21.05
58	809	2	.0537	61	3.30	5	.7406	24	18.46
59	810	1	.0168	0	0	5	.7440	24	18.11
60	811	3	.0423	50	2.12	5	.7694	21	16.53
61	812	2	.0250	55	1.39	5	.7794	21	16.52
62	813	3	.0308	23	0.73	5	.7979	19	15.33
63 64 65 66 67	814 815 816 817 818	3 3 2 1 2	.0440 .0243 .0239 .0319 .0326	40 71 52 0 3	1.77 1.73 1.25 0	5 5 5 5 5	.8243 .8391 .8486 .8550 .8681	19 17 16 15 14	15.99 14.28 13.59 12.91 12.83
68	819	2	.0208	31	0.66	5	.8763	14	12.68
69	820	1	.0294	0	0	5	.8821	13	12.33
70	821	2	.0321	38	1.21	5	.8950	13	12.50
71	822	3	.0358	28	1.00	5	.9166	12	11.09
72	823	2	.0301	12	0.38	5	.9287	10	9.63

Table 14 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. ×100
73	82.4	2	.0376	59	2.24	5	.9438	7	7.38
74	82.5	2	.0502	43	2.16	5	.9638	4	4.61
75	82.6	2	.0323	3	0.11	5	.9769	3	3.08
76	82.7	2	.0077	18	0.14	5	.9800	2	2.78
77	828	2	.0201	27	0.55	5	.9879	1	1.75
78	829	0	.0000	0	0	5	.9879	1	1.75
79	830	2	.0296	52	1.54	5	1.0000	0	0

Table 15. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1976 - 1982. Northern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
26 27 28 29 30	708 709 710 711 712	1 2 2 1 3	.0081 .0264 .1301 .0139 .0217	0 98 72 0 71	0 2.61 9.46 0 1.54	1 2 3 3 3	.0080 .0303 .1069 .1115	0 73 113 106 100	0 2.23 12.10 11.84 13.37
31 32 33 34 35	713 714 715 716 717	443333	.0215 .0308 .0306 .0265 .0309	36 38 3 20 30	0.77 1.19 0.11 0.55 0.93	4 5 5 5 5	.1215 .1219 .1403 .1562 .1749	110 107 98 91 78	13.38 13.05 13.76 14.33 13.75
36 37 38 39 40	718 719 720 721 722	2 3 4 5 5	.0420 .0242 .0364 .0411 .0358	50 27 19 40 50	2.11 0.66 0.72 1.68 1.81	5 5 5 5 5 5	.1917 .2063 .2355 .2766 .3125	70 67 59 55 51	13.48 13.99 14.01 15.27 16.18
41 42 43 44 45	723 724 725 726 727	4 3 2 1 3	.0407 .0369 .0344 .0708 .0732	23 9 0 34	0.17 0.88 0.32 0 2.52	5 5 5 5 5	.3451 .3674 .3812 .3953 .4392	48 44 42 47 49	16.67 16.17 16.33 18.79 21.65
46 47 48 49 50	728 729 730 731 801	4 4 4 3 2	.0576 .0496 .0461 .0432 .0736	32 32 37 38 62	1.85 1.60 1.74 1.65 4.58	5 5 5 5 5 5	.4854 .5252 .5621 .5881 .6176	49 49 49 47 45	24.19 26.10 27.76 27.87 28.15
51 52 53 54 55	802 803 804 805 806	1 3 4 4 3	.0281 .0741 .0744 .0636 .0675	0 47 45 94 50	3.48 3.42 6.03 3.37	5 5 5 5 5 5 5	.6232 .6676 .7271 .7782 .8188	44 35 28 22 22	27.72 23.47 21.07 17.44 18.69
56 57 58 59 60	807 808 809 810 811	3 1 2 1 2	.0424 .0278 .0765 .0262 .0682	7 0 68 0 64	0.29 0 5.25 0 4.43	5 5 5 5 5	.8442 .8498 .8804 .8856 .9130	22 21 16 15 12	19.07 18.41 14.81 14.07 11.47
61 62 63 64 65	812 813 814 815 816	1 2 1 2 1	.0468 .0728 .0396 .0425 .0119	0 21 0 43 0	$ \begin{array}{c} 0 \\ 1.59 \\ 0 \\ 1.83 \\ 0 \end{array} $	5 5 5 5 5	.9224 .9515 .9593 .9763 .9787	10 7 5 4 4	9.90 7.03 5.59 4.71 4.23
66 67 68 69 70	817 818 819 820 821	1 1 0 1	.0460 .0405 .0151 .0000	0 0 0 0	0 0 0 0	5 5 5 5 5	.9879 .9961 .9991 .9991 1.0000	2 0 0 0	2.39 0.75 0.15 0.15

Table 16. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1974 - 1982. Coghill district, Prince William Sound.

									
Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
6 7 8 9 10	618 619 620 621 622	1 1 2 3	.0013 .0000 .0008 .0013 .0023	0 0 0 46 29	0 0 0 0.06 0.06	1 2 2 2 3	.0013 .0006 .0011 .0023 .0040	0 100 18 33 49	0.06 0.01 0.08 0.19
11 12 13 14 15	623 624 625 626 627	2 2 2 2 3	.0021 .0025 .0023 .0041 .0037	14 12 23 9 74	0.02 0.03 0.05 0.04 0.27	3 3 3 4	.0054 .0070 .0087 .0114 .0114	39 40 43 21 21	0.21 0.28 0.37 0.24 0.24
16 17 18 19 20	628 629 630 701 702	2 3 2 3 3	.0055 .0070 .0055 .0093 .0053	6 61 39 86 13	0.03 0.43 0.21 0.81 0.07	4 4 4 4	.0142 .0196 .0223 .0294 .0334	30 42 39 8 8	0.43 0.82 0.88 0.23 0.27
21 22 23 24 25	703 704 705 706 707	2 1 3 3	.0176 .0054 .0067 .0080 .0069	18 0 67 25 34	0.32 0 0.45 0.20 0.24	4 4 5 5 5	.0422 .0436 .0389 .0436 .0478	26 29 55 50 47	1.13 1.30 2.16 2.20 2.25
26 27 28 29 30	708 709 710 711 712	4 4 4 2 3	.0254 .0289 .0274 .0352 .0682	119 114 100 27 48	3.04 3.30 2.74 0.95 3.31	5 5 5 5 5	.0683 .0916 .1134 .1275 .1685	63 79 86 80 84	4.34 7.28 9.83 10.32 14.20
31 32 33 34 35	713 714 715 716 717	4 6 4 4	.0287 .0528 .0727 .0571 .1367	54 76 68 77 84	1.55 4.03 5.00 4.40 11.48	5 6 6 6	.1916 .2126 .2611 .2991 .3903	69 68 60 62 62	13.29 14.51 15.83 18.77 24.29
36 37 38 39 40	718 719 720 721 722	4 3 4 5 4	.0706 .0599 .0277 .1029 .0414	37 73 31 96 31	2.67 4.39 0.86 9.89 1.29	6 6 6 6	.4374 .4674 .4859 .5717 .5994	61 63 60 57 52	26.95 29.72 29.23 32.76 31.39
41 42 43 44 45	723 724 725 726 727	3 4 1 2 3	.0631 .0717 .0350 .0627 .0583	84 4 0 70 35	5.35 0.29 0 4.40 2.04	6 6 6 6	.6309 .6789 .6847 .7057 .7347	46 39 38 36 33	29.52 26.65 26.55 26.01 24.84
46 47 48 49 50	728 729 730 731 801	4 3 3 4 2	.0419 .0813 .0464 .0236 .0791	63 46 25 69 30	2.65 3.74 1.20 1.63 2.44	6 6 6 6	.7628 .8034 .8267 .8425 .8688	31 28 27 24 20	23.94 22.64 22.42 20.93 18.06
51 52 53 54 55	802 803 804 805 806	1 1 3 2 1	.0591 .0607 .0699 .0606 .0515	0 0 49 45	0 0 3.49 2.78 0	6 6 6 6	.8786 .8888 .9238 .9440 .9527	18 15 13 12 10	16.10 14.15 12.85 11.69 9.76

Table 16 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
56 57 58 59 60	807 808 809 810 811	2 2 1 1 0	.0229 .0311 .0320 .0271 .0000	37 87 0 0	0.85 2.72 0 0	6 6 6 6	.9603 .9706 .9759 .9804 .9804	9 6 5 4 4	8.69 6.55 5.36 4.35 4.35
61 62 63	81.2 81.3 81.4	1 1 1	.0271 .0368 .0522	0 0 0	0 0 0	6 6 6	.9851 .9911 1.0000	3 1 0	3.31 1.97 0

Table 17. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1974, 1976, 1980, 1982. Northwestern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
14 15 16 17 18	626 627 628 629 630	1 1 0 0 0	.0143 .0022 .0000 .0000	0 0 0 0 0	0 0 0 0 0	1 1 1 1 1	.0143 .0166 .0166 .0166	0 0 0 0	0 0 0 0
19 20 21 22 23	701 702 703 704 705	1 1 1 1	.0053 .0059 .0044 .0168 .0480	0 0 0 0	0 0 0 0	1 1 1 1	.0219 .0279 .0323 .0493 .0974	0 0 0 0	0 0 0 0
24 25 26 27 28	706 707 708 709 710	0 0 2 2 1	.0000 .0000 .0560 .0769 .1193	0 0 90 63 0	0 0 5.08 4.92 0	1 1 2 2 2	.0974 .0974 .1047 .1816 .2413	0 0 95 81 86	0 9.95 14.87 20.83
29 30 31 32 33	711 712 713 714 715	1 3 3 4 5	.0504 .0489 .0336 .0379 .0317	0 35 15 34 37	0 1.73 0.52 1.32 1.19	2 3 4 5 5	.2665 .2267 .1953 .1866 .2184	87 107 111 103 89	23.36 24.29 21.75 19.39 19.62
34 35 36 37 38	716 717 718 719 720	5 4 3 3 3	.0403 .0436 .0510 .0954 .0383	35 20 23 97 39	1.43 0.88 1.17 9.26 1.52	5 5 5 5 5	.2588 .2938 .3244 .3818 .4048	78 71 69 81 73	20.28 21.06 22.68 31.07 29.91
39 40 41 42 43	721 722 723 724 725	4 4 2 2	.0386 .0309 .0525 .0554 .0264	51 47 63 26 51	1.99 1.48 3.32 1.48 1.35	5 5 5 5 5	.4357 .4605 .5026 .5248 .5354	65 59 52 48 46	28.54 27.53 26.27 25.25 24.86
44 45 46 47 48	726 727 728 729 730	2 3 3 4 4	.0774 .0624 .0801 .0507 .0698	35 57 38 50 39	2.77 3.60 3.06 2.53 2.77	55555 5	.5664 .6039 .6520 .6926 .7485	43 40 38 36 31	24.75 24.72 25.42 25.56 23.89
49 50 51 52 53	731 801 802 803 804	4 2 1 2 3	.0471 .0389 .1033 .0631	70 42 0 41 31	3.31 1.65 0 2.62 1.95	5 5 5 5 5	.7862 .8018 .8225 .8477 .8844	26 23 19 15 12	20.85 18.86 15.70 13.22 11.10
54 55 56 57 58	80 5 80 6 80 7 80 8 80 9	3 2 2 2 1	.0504 .0470 .0560 .0290 .0387	15 27 17 88 0	0.78 1.26 0.97 2.56 0	5 5 5 5	.9147 .9336 .9560 .9676 .9754	10 8 5 4 4	9.46 8.15 5.38 4.27 4.13
59 60 61 62 63 64	810 811 812 813 814 815	1 1 1 1	.0166 .0325 .0414 .0133 .0104 .0084	0 0 0 0	0 0 0 0 0	5 5 5 5 5 5 5	.9787 .9852 .9935 .9962 .9983 1.0000	4 2 1 0 0	4.25 2.94 1.28 0.75 0.33

Table 18. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1976, 1980, 1982. Southwestern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
24 25 26 27 28	706 707 708 709 710	1 1 1 1	.0041 .0153 .0048 .0141 .0165	0 0 0 0	0 0 0 0	1 2 2 2 2 2	.0041 .0097 .0121 .0192 .0275	0 57 66 78 85	0 0.55 0.80 1.51 2.34
29 30 31 32 33	711 712 713 714 715	0 3 3 4 4	.0000 .0211 .0313 .0170 .0240	0 48 56 32 42	0 1.03 1.77 0.54 1.01	2 3 3 4 4	.0275 .0395 .0709 .0702 .0943	85 36 16 42 31	2.34 1.44 1.14 2.96 3.01
34 35 36 37 38	716 717 718 719 720	4 4 3 2 3	.0239 .0467 .0155 .0222 .0270	37 108 12 2 35	0.90 5.08 0.19 0.06 0.94	4 4 4 4	.1183 .1650 .1767 .1878 .2082	30 44 42 42 44	3.56 7.27 7.56 7.99 9.22
39 40 41 42 43	721 722 723 724 725	4 4 4 3 3	.0276 .0328 .0349 .0289 .0338	29 48 40 51 47	0.81 1.57 1.42 1.49 1.62	4 4 4 4	.2359 .2687 .3037 .3255 .3509	42 42 41 37 35	10.01 11.54 12.53 12.36 12.41
44 45 46 47 48	726 727 728 729 730	3 4 4 4	.0278 .0392 .0371 .0351 .0331	38 33 34 43 32	1.08 1.31 1.29 1.52 1.06	4 4 4 4	.3718 .4013 .4386 .4737 .5069	34 35 35 36 35	12.68 14.41 15.66 17.12 18.16
49 50 51 52 53	731 801 802 803 804	4 3 1 2 3	.1017 .0268 .0247 .0417 .0353	112 24 0 26 19	11.42 0.65 0 1.10 0.68	4 4 4 4	.6087 .6289 .6350 .6559 .6824	45 42 41 40 37	27.45 26.54 26.24 26.48 25.71
54 55 56 57 58	80 <i>5</i> 806 807 808 809	3 3 2 1	.0321 .0330 .0253 .0205 .0211	24 51 39 19	0.78 1.70 1.00 0.39 0	4 4 4 4	.7066 .7314 .7504 .7607 .7660	35 34 33 31 31	25.17 25.16 25.12 24.26 24.07
59 60 61 62 63	810 811 812 813 814	1 2 2 2 2	.0175 .0204 .0191 .0195 .0205	0 23 15 25 45	0 0.47 0.30 0.50 0.92	4 4 4 4	.7704 .7806 .7902 .8000 .8103	31 29 28 26 25	23.94 22.88 22.12 21.44 20.91
64 65 66 67 68	81.5 81.6 81.7 81.8 81.9	2 1 1 2 2	.0141 .0174 .0171 .1602 .0273	30 0 0 88 40	0.42 0 0 14.11 1.09	4 4 4 4	.8173 .8217 .8260 .9061 .9198	25 24 24 9 7	20.50 20.50 20.54 8.51 6.97
69 70 71 72 73	820 821 822 823 824	1 1 2 1 2	.0172 .0120 .0985 .0098 .0242	0 0 78 0 21	0 0 7.77 0 0.51	4 4 4 4	.9241 .9271 .9764 .9789 .9910	7 7 2 2 1	6.79 6.72 2.66 2.28 1.53

Table 18 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
74 75	82.5 82.6	1	.0086	0	0	4 4	.9932 .9957	1 0	1.16 0.73
76 77 78	827 828 829	1 0 0	.0041 .0000 .0000	0	0	4 4 4	.9967 .9967 .9967	0 0 0	0.55 0.55 0.55
79 80 81	830 831	0	.0000	0	0	4 4	.9967 .9967	0	0.55 0.55
81 82 83	901 902 903	0 0 0	.0000 .0000	0 0 0	0 0 0	4 4 4	.9967 .9967 .9967	0 0 0	0.55 0.55 0.55
84 85	904 905	0	.0000	0	0	4 4 4	.9967 .9967	0	0.55 0.55
85 86 87 88	906 907 908	0 0 0	.0000 .0000	0 0 0	0 0 0	4 4 4	.9967 .9967 .9967	0 0 0	0.55 0.55 0.55
89 90 91	909 910	0	.0000	0	0	4	.9967 .9967	0	0.55 0.55
92 93 94	911 912 913 914	0 0 0 1	.0000 .0000 .0000 .0127	0 0 0	0 0 0	4 4 4 4	.9967 .9967 .9967 1.0000	0 0 0	0.55 0.55 0.55 0

Table 19. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1970, 1976-1982. Southeastern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
30 31 32 33 34	712 713 714 715 716	1 1 2 2 2	.0722 .0555 .0203 .0295 .0511	0 0 3 36 28	0 0.07 1.07 1.47	1 1 2 2 2 2	.0722 .1278 .0842 .1138 .1649	0 0 76 66 36	0 0 6.46 7.55 6.07
35 36 37 38 39	717 718 719 720 721	1 1 1 2	.0403 .0334 .0483 .0308 .0501	0 0 0 0 6	0 0 0 0 0.31	2 2 2 2 2	.1851 .2018 .2260 .2414 .2916	21 11 21 26 20	4.04 2.37 4.79 6.33 6.02
40 41 42 43 44	722 723 724 725 726	2 2 1 1	.0670 .0511 .0486 .0469 .1560	6 1 0 0 0	0.42 0.06 0 0	2 2 2 2 2	.3587 .4098 .4342 .4577 .5357	15 13 7 1 16	5.60 5.67 3.23 0.88 8.69
45 46 47 48 49	727 728 729 730 731	2 3 4 4 3	.1612 .1323 .1136 .0745 .0473	35 80 91 30 36	5.77 10.60 10.45 2.27 1.71	3 3 4 4 4	.4646 .5970 .5614 .6360 .6715	44 22 61 56 51	20.73 13.68 34.30 35.89 34.42
50 51 52 53 54	801 802 803 804 805	3 1 2 3 2	.0573 .0420 .1942 .1206 .0415	33 0 83 79 8	1.94 0 16.17 9.63 0.35	4 4 5 5 5	.7145 .7251 .6578 .7301 .7468	47 44 47 37 35	33.87 32.19 31.49 27.26 26.17
55 56 57 58 59	806 807 803 809 810	2 2 2 2 1	.0744 .0630 .0305 .1454 .0233	12 3 41 76 0	0.92 0.20 1.25 11.10	5 5 5 5 5	.7765 .8018 .8140 .8722 .8768	31 29 27 21 19	24.65 23.29 22.23 18.39 17.50
60 61 62 63 64	811 812 813 814 815	2 1 1 1	.0854 .0653 .0683 .0842 .0345	57 0 0 0	4.91 0 0 0 0	5 5 5 5 5	.9110 .9241 .9378 .9546 .9615	18 15 12 8 6	16.68 14.07 11.34 7.99 6.62
65 66 67 68	816 817 818 819	1 1 2 2	.0644 .0270 .0278 .0222	0 0 56 55	0 0 1.56 1.22	5 5 5 5	.9744 .9798 .9910 1.0000	4 3 1 0	4.07 3.03 1.34 0

Table 20. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Eastern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
5 6 7 8 9	617 618 619 620 621	1 0 0 0 0	.0070 .0000 .0000 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.0070 .0070 .0070 .0070 .0070	0 0 0 0	0 0 0 0
10 11 12 13 14	622 623 624 625 626	0 0 1 3 2	.0000 .0000 .0166 .0204 .0136	0 0 0 29 25	0 0 0 0.60 0.34	1 1 3 3	.0070 .0070 .0236 .0283 .0374	0 0 0 23 32	0 0 0 0.67 1.20
15 16 17 18 19	627 628 629 630 701	2 2 3 3 2	.0635 .0481 .0267 .0231 .0191	27 32 69 45 68	1.77 1.56 1.84 1.04 1.31	4 4 4 4	.0598 .0839 .1041 .1214 .1310	46 61 66 68 71	2.80 5.17 6.96 8.31 9.33
20 21 22 23 24	702 703 704 705 706	3 2 3 2 3	.0133 .0085 .0116 .0195 .0176	36 25 85 30 36	0.48 0.21 0.99 0.60 0.63	4 4 4 4	.1410 .1453 .1541 .1639 .1772	71 69 71 73 73	10.03 10.05 11.00 12.05 12.94
25 26 27 28 29	707 708 709 710 711	3 2 2 2 2	.0190 .0160 .0182 .0162 .0280	33 4 1 18 23	0.63 0.06 0.02 0.30 0.66	4 4 4 4	.1914 .1995 .2087 .2168 .2308	71 70 66 64 67	13.63 14.00 13.98 14.07 15.47
30 31 32 33 34	712 713 714 715 716	3 4 6 5 6	.0233 .0239 .0242 .0264 .0224	24 39 78 63 50	0.57 0.95 1.90 1.68 1.13	5 5 6 6	.1987 .2178 .2058 .2279 .2503	87 83 88 78 73	17.47 18.28 18.12 17.96 18.28
35 36 37 38 39	717 718 719 720 721	6 5 4 5 6	.0258 .0334 .0175 .0275 .0346	57 47 53 36 63	1.47 1.57 0.93 0.99 2.21	6 6 6 6	.2762 .3041 .3158 .3388 .3736	69 66 66 62 55	19.33 20.22 21.02 21.34 20.88
40 41 42 43 44	722 723 724 725 726	5 6 7 6	.0401 .0408 .0345 .0729 .0316	56 54 76 71 81	2.27 2.22 2.62 5.22 2.57	6 7 7 7 7	.4070 .3839 .4184 .4811 .5083	50 58 50 44 41	20.54 22.40 21.29 21.34 20.90
45 46 47 48 49	727 728 729 730 731	5 6 7 6	.0334 .0320 .0332 .0530 .0560	51 71 37 54 57	1.71 2.29 1.25 2.90 3.23	7 7 7 7	.5322 .5596 .5882 .6412 .6893	39 38 35 33 29	21.03 21.32 21.17 21.20 20.01
50 51 52 53 54	801 802 803 804 805	5 5 5 5 5	.0400 .0435 .0385 .0407 .0369	51 36 46 46 66	2.05 1.58 1.79 1.90 2.44	7 7 7 7	.7180 .7491 .7767 .8058 .8323	28 25 22 19 17	20.42 19.02 17.80 15.97 14.40

Table 20 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
55 56 57 58 59	806 807 808 809 810	6 5 4 3 3	.0380 .0318 .0268 .0274 .0289	49 67 27 84 78	1.88 2.13 0.73 2.31 2.27	7 7 7 7 7	.8649 .8877 .9031 .9149 .9274	15 13 13 11 9	13.59 12.05 12.48 10.52 8.56
60 61 62 63 64	811 812 813 814 815	3 2 3 4 2	.0309 .0260 .0168 .0184 .0312	39 67 35 49 62	1.23 1.76 0.59 0.90 1.95	7 7 7 7 7	.9407 .9481 .9553 .9659 .9748	7 5 5 4 3	6.95 5.67 5.09 4.17 2.94
65 66 67 68 69	816 817 818 819 820	2 1 0 0 1	.0322 .0119 .0000 .0000	67 0 0 0	2.17 0 0 0 0	7 7 7 7	.9841 .9858 .9858 .9858 .9876	2 2 2 2 2	2.50 2.23 2.23 2.23 1.99
70 71 72 73 74	821 822 823 824 825	1 1 1 2 0	.0120 .0099 .0071 .0062 .0000	0 0 0 10 0	0 0 0 0.06 0	7 7 7 7 7	.9893 .9908 .9918 .9936	1 1 1 1	1.84 1.77 1.77 1.55 1.55
75 76 77 78 79 80	826 827 828 829 830 831	0 0 0 0 0	.0000 .0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0	7 7 7 7 7	.9936 .9936 .9936 .9936 .9936	1 1 1 1 0	1.55 1.55 1.55 1.55 1.55

Table 21. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Northern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
12 13 14 15 16	624 625 626 627 628	1 1 1 0	.0201 .0115 .0100 .0115 .0000	0 0 0	0 0 0 0	1 1 1 1	.0201 .0317 .0418 .0533	0 0 0 0	0 0 0 0
17 18 19 20 21	629 630 701 702 703	1 1 1 1	.0054 .0058 .0116 .0083 .0077	0 0 0 0	0 0 0 0	1 1 1 1	.0587 .0646 .0763 .0847 .0924	0 0 0 0	0 0 0 0
22 23 24 25 26	704 705 706 707 708	1 1 2 2 2	.0290 .0269 .0262 .0236 .0368	0 0 12 6 43	0 0 0.33 0.15 1.61	2 2 2 2 2	.0607 .0741 .1004 .1241 .1610	52 24 14 10 1	3.17 1.82 1.49 1.33 0.28
27 28 29 30 31	709 710 711 712 713	3 2 2 3 4	.0480 .0212 .0224 .0311 .0375	43 45 19 46 42	2.07 0.96 0.43 1.43 1.58	3 3 4 4	.1554 .1696 .1846 .1618 .1994	42 31 30 60 52	6.65 5.38 5.57 9.87 10.55
32 33 34 35 36	714 715 716 717 718	5 5 4 4	.0305 .0535 .0383 .0301 .0390	51 66 64 52 50	1.56 3.58 2.47 1.57 1.95	6 6 6	.1584 .2030 .2350 .2551 .2812	78 66 58 54 54	12.36 13.43 13.66 13.97 15.43
37 38 39 40 41	719 720 721 722 723	4 4 6 5 6	.0330 .0646 .0453 .0601 .0562	58 55 36 29 55	1.91 3.57 1.67 1.76 3.10	6 6 6 7	.3032 .3463 .3917 .4419 .4270	50 51 48 46 52	15.20 17.89 19.10 20.53 22.23
42 43 44 45 46	724 725 726 727 728	6 5 5 5 5	.0498 .0927 .0507 .0571 .0542	65 51 60 92 60	3.26 4.73 3.05 5.29 3.26	7 7 7 7	.4697 .5360 .5723 .6131 .6519	44 38 36 34 33	20.68 20.77 20.86 21.33 21.53
47 48 49 50 51	729 730 731 801 802	5 5 4 3	.0486 .0613 .0498 .0751 .0740	22 48 45 26 58	1.09 2.98 2.28 1.98 4.31	7 7 7 7	.6867 .7394 .7750 .8179 .8497	31 27 24 23 20	21.35 20.69 19.28 19.47 17.81
52 53 54 55 56	803 804 805 806 807	3 4 3 2 3	.0604 .0328 .0317 .0420 .0512	75 51 51 28 71	4.58 1.69 1.63 1.20 3.68	7 7 7 7	.8757 .8945 .9081 .9201 .9421	19 18 16 14 12	17.26 16.36 14.96 13.34 12.08
57 58 59 60 61	808 809 810 811 812	1 1 1 1	.0544 .0947 .0886 .0566 .0405	0 0 0	0 0 0 0	7 7 7 7	.9499 .9634 .9761 .9842 .9900	12 9 5 3 2	12.25 8.93 5.83 3.85 2.43

Table 21 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
62 63 64 65	813 814 815 816	1 0 0 1	.0364 .0000 .0000 .0330	0 0 0	0 0 0 0	7 7 7 7	.9952 .9952 .9952 1.0000	1 1 1 0	1.15 1.15 1.15 0

Table 22. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Coghill district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
2 3 4 5 6	614 615 616 617 618	1 0 0 1 1	.0001 .0000 .0000 .0012 .0015	0 0 0 0	0 0 0 0	1 1 1 1	.0001 .0001 .0001 .0013 .0029	0 0 0 0	0 0 0 0
7 8 9 10 11	619 620 621 622 623	1 3 4 3 3	.0005 .0010 .0013 .0009 .0026	0 96 96 133 136	0 0.09 0.12 0.12 0.36	1 3 4 5 5	.0034 .0021 .0029 .0029 .0045	0 78 101 119 132	0.16 0.30 0.35 0.60
12 13 14 15 16	624 625 626 627 628	2 5 5 5 5	.0001 .0025 .0006 .0134 .0045	0 136 88 108 112	0 0.35 0.05 1.45 0.51	5 6 7 7	.0045 .0059 .0065 .0151 .0184	131 95 87 121 125	0.60 0.56 0.57 1.84 2.31
17 18 19 20 21	629 630 701 702 703	5 6 5 7 5	.0269 .0167 .0061 .0053 .0088	149 137 113 103 105	4.02 2.29 0.69 0.55 0.92	7 7 7 7 7	.0377 .0520 .0564 .0618 .0680	148 149 139 136 128	5.58 7.77 7.88 8.41 8.74
22 23 24 25 26	704 705 706 707 708	5 5 6 4 5	.0122 .0095 .0157 .0168 .0186	118 107 110 137 75	1.45 1.01 1.73 2.31 1.40	7 7 7 7	.0768 .0836 .0971 .1067 .1200	121 118 115 115 107	9.36 9.91 11.19 12.28 12.92
27 28 29 30 31	709 710 711 712 713	6 5 4 5 4	.0425 .0147 .0209 .0485 .0361	136 100 69 76 43	5.81 1.48 1.44 3.70 1.55	7 7 7 7	.1565 .1670 .1790 .2136 .2343	111 100 98 93 90	17.37 16.74 17.68 19.88 21.23
32 33 34 35 36	714 715 716 717 718	4 3 6 4 4	.0256 .0283 .0308 .1038 .0435	57 10 70 67 55	1.48 0.30 2.17 6.98 2.42	7 7 7 7	.2489 .2611 .2876 .3469 .3718	84 81 71 66 64	20.96 21.39 20.45 23.21 24.04
37 38 39 40 41	719 720 721 722 723	4 3 5 4 3	.0385 .0263 .0685 .0434 .0553	70 61 40 53 41	2.73 1.62 2.74 2.30 2.29	7 7 7 7	.3938 .4050 .4540 .4788 .5026	65 63 56 50 48	25.72 25.84 25.43 24.38 24.30
42 43 44 45 46	724 725 726 727 728	3 4 4 3 4	.0891 .0402 .0580 .0650 .0906	67 63 58 52 96	5.97 2.54 3.37 3.42 8.70	7 7 7 7	.5408 .5638 .5969 .6248 .6766	39 40 39 40 31	21.26 23.09 23.75 25.39 21.39
47 48 49 50 51	729 730 731 801 802	4 4 5 3 2	.0549 .0351 .0416 .1001 .0877	51 71 78 71 68	2.81 2.52 3.27 7.18 6.00	7 7 7 7	.7080 .7280 .7578 .8007 .8258	28 26 26 20 18	20.19 19.59 19.73 16.10 15.43

Table 22 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
52 53 54 55	803 804 805 806	3 4 3 1	.1979 .0726 .1007 .0326	70 60 112 0	14.02 4.42 11.29 0	7 7 7 7	.9106 .9521 .9953 1.0000	14 9 1 0	12.82 8.86 1.14

Table 23. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Northwestern district, Prince William Sound.

								····	
Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
					_				
15	627 628 629 630	1	.0632	0	0	1	.0632	Õ	Õ
16 17	628	1	.0290 .0388	0	. 0	1	.0921 .1310	0	Ō
1/ 10	620	7	.0064	96	0.62	7	.0719	90	7 16
18 19	701	1 1 2 2	.0103	94	0.96	1 1 2 2	.0820	99 99	7.16 8.14
20	702	3	.0080	77	0.62	4	.0470	143	6.74
20 21 22	703	3	-0063	77 136	0.86 2.11	4	.0517	125	6.51
22	703 704	3 3 3 3 2	.0151	139	2.11	4 4 5 5 5	.0517 .0505	143 125 157	6.51 7.96
23 24	705 706	3	.0431 .0503	75	3.25	5_	.0763	127 118	9.74 11.39
	706	2	.0503	40	2.03		.0965	118	
25	707	2 2 2 2 4	.0184	38	0.71	5 5 5 5 5	.1038	116	12.09 13.16 13.50
26	7 08	2	.0222 .0289	54 62	1.21 1.80	5	.1128	116	13.16
26 27 28 29	708 709 710	2	.0289	62	1.80	5	.1128 .1244 .1316	108 102	13.50
28	710 711	2	.0181	2 46	0.03 1.10	5	.1316	102 95	13.52
			.0238				.1507		14.46
30 31 32 33 34	712 713 714	3 3 5 4 6	.0257	60 79 55	1.54 3.50 1.73 1.56	6 6 6	.1384	109 109 92	15.13
31	713	3	.0439 .0310	79	3.50	6	.1604	109	17.63 17.17
32	714	5	-0310	55	1.73	6	.1863 .2075 .2467	92	17.17
33	715 716	4	.0318 .0391	49 57	2.23	9	.2075	85 74	17.78 18.30
35	717	4	.0458	28 65 56	1.29	6	.2773 .3344 .3702	66 62 60	18.30
36	718	5	•06.85	65	4.47	6	.3344	62	20.75
37	719	2	.0685 .0429 .0565	20	2.40	6	.3702	60	22.55
35 36 37 38 39	718 719 720 721	4 5 5 4 5	.0352	83 67	4.71 2.37	6 6 6 6	.4079 .4373	62 56	18.30 20.75 22.55 25.54 24.90
40		4	.0430	47	2.06		.4660	50	
40 41	722 723 724	4	.0450	41 12	1 04	6	.5035	30 46	23.49 23.61
41 42	72.4	5	.0680	43 92	1.94 6.28	7	4802	40 51	24.69
43	725	4 5 5 5 4	.0429	$\tilde{25}$	1.10	6 7 7 7	.5108	52	26.66
43 44	725 726	4	.0374	25 30	1.10 1.15	7	.5108 .5322	46 51 52 49	24.69 26.66 26.61
45	727 728 729	4	.0817	75	6.18	7	.5789 .6311 .6734	43	25.28
46 47	728	5	.0730 .0592	40	2.97	7	.6311	36 31	23.18 20.93
47	729	4 5 5 6 5	-0592	41	2.97	7 7 7 7 7	.6734	31	20.93
48 49	730	6	.0853	64 73	5.46 4.16	7	.7465 .7872	30	22.44 20.97
	731	5	.0569	73	4.16	7	.7812	26	20.97
50 51 52	801	3	.0483 .0536 .0781	38	1.85	<u>7</u>	.8079	26 22 18	21.51
51	802 803	3	.0536	81 61	4.35 4.77	7	. 8309	22	18.38
52	803	3	.07.81	61	4.77	7	.8644	18	15.82
53 54	804 805	3 3 3 4 3	.0787 .0754	36 23	2.89 1.78	7 7 7 7 7	.9093 .9417	14 10	15.82 13.36 10.19
55	806	2	.0602	52	3.17	7	.9675	8	
55 56	200 207	õ	.0002	52 0	3.17	4	.9675	Q Q	7.95
56 57	807 808	ĭ	.0000 .1472	0	0	'n	.9885	2	2.20
58 59	809 810	3 0 1 1	.0744	Ŏ	0	7 7 7 7	9991 1.0000	8 2 0 0	7.95 2.80 0.19
59	810	1	.0057	0	0	7	1.0000	0	0

Table 24. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Southwestern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
4 5 6 7 8	616 617 618 619 620	1 0 0 0 0	.0129 .0000 .0000 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.0129 .0129 .0129 .0129 .0129	0 0 0 0	0 0 0 0
9 10 11 12 13	621 622 623 624 625	0 0 1 1 0	.0000 .0000 .0269 .0126 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.0129 .0129 .0398 .0525	0 0 0 0	0 0 0 0
14 15 16 17 18	626 627 628 629 630	0 1 2 1	.0000 .0148 .0095 .0007 .0006	0 0 0 57 0	0 0 0 0.04 0	1 2 2 3 3	.0525 .0336 .0383 .0260 .0262	0 56 36 81 80	0 1.88 1.41 2.13 2.10
19 20 21 22 23	701 702 703 704 705	2 2 2 2 4	.0074 .0042 .0028 .0110 .0410	91 74 57 45 117	0.68 0.31 0.16 0.49 4.83	3 4 4 4 4	.0312 .0255 .0269 .0325 .0735	69 82 73 68 88	2.16 2.10 1.98 2.21 6.47
24 25 26 27 28	706 707 708 709 710	3 2 2 3 2	.0123 .0175 .0109 .0093 .0080	67 73 32 21 37	0.83 1.28 0.35 0.19 0.30	4 4 4 4	.0827 .0915 .0970 .1040 .1080	76 71 68 61 55	6.33 6.57 6.63 6.34 5.97
29 30 31 32 33	711 712 713 714 715	3 4 4 6	.0148 .0153 .0144 .0180 .0161	43 75 74 57 68	0.65 1.15 1.08 1.04 1.10	4 5 5 6 6	.1192 .1076 .1191 .1172 .1334	50 72 70 79 73	6.01 7.75 8.40 9.29 9.83
34 35 36 37 38	716 717 718 719 720	6 5 5 4 4	.0152 .0166 .0234 .0218 .0229	57 60 43 36 58	0.86 1.01 1.01 0.79 1.33	6 6 6	.1487 .1625 .1821 .1966 .2119	66 59 57 57 57	9.90 9.66 10.55 11.38 12.29
39 40 41 42 43	721 722 723 724 725	6 7 6	.0287 .0337 .0649 .0385 .0492	66 65 93 87 70	1.91 2.22 6.08 3.39 3.44	6 7 7 7	.2406 .2744 .3001 .3332 .3754	53 53 68 59 56	12.98 14.60 20.57 19.74 21.15
44 45 46 47 48	726 727 728 729 730	6 6 6	.0384 .0400 .0449 .0415 .0531	77 52 47 40 58	2.99 2.10 2.11 1.69 3.08	7 7 7 7	.4084 .4427 .4812 .5168 .5624	53 51 48 47 42	21.83 22.62 23.30 24.39 24.01
49 50 51 52 53	731 801 802 803 804	6 4 5 4 5	.0492 .0638 .0474 .0500 .0442	64 40 51 72 57	3.18 2.58 2.43 3.63 2.55	7 7 7 7	.6046 .6411 .6749 .7035 .7351	39 39 38 37 35	23.98 25.40 25.85 26.26 26.22

Table 24 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
54 55 56	805 806	5 5	.0617	66 51	4.11 1.69	7 7	.7793 .8027	33 32	26.15 26.39
56 57 58	807 808 809	5 5 4 3 2	.0266 .0167 .0341	56 63 71	1.51 1.06 2.43	7 7 7 7 7	.8179 .8251 .8349	32 31 31	26.27 26.39 26.17
59 60	810 811 812	2 2 3 2 2	.0365 .0981 .0357	41 56 84	1.50 5.55 3.03	7 7 7 7	.8453 .8733 .8886	30 23 20	26.10 20.93 18.42
61 62 63	813 814	2 2	.0357 .0261 .0178	36 66	0.94 1.18	7 7	.8961 .9012	20 20 20	18.48 18.61
64 65 66	81 <i>5</i> 816 817	2 2 1 0	.0939 .0150 .0120	82 45 0	7.73 0.68 0	7 7 7 7	.9281 .9323 .9341	13 13 13	12.77 12.88 12.84
65 66 67 68	818 819	0	.0000	0	0	7 7	.9341 .9341	13 13	12.84 12.84
69 70 71 72 73	820 821 822	2 0 1 0	.0779 .0000 .1379	55 0 0	4.31 0 0	7 7 7 7	.9563 .9563 .9760	9 9 4 4	8.64 8.64 4.07
	823 824		.0000 .1020	0	0 0	•	.9760 .9906	_	4.07 1.91
74 75 76 77 78	82.5 826 82.7	1 0 0 0	.0067 .0000 .0000	0 0 0	0 0 0 0	7 7 7 7	.9915 .9915 .9915	1 1 1 1	1.92 1.92 1.92
	828 829		.0000	0		-	.9915 .9915		1.92 1.92 1.92
79 80 81 82 83	830 831 901	0 1 0 0	.0000 .0036 .0000	0 0 0	0 0 0	7 7 7 7	.9915 .9920 .9920 .9920	1 1 1 1	1.92 1.93 1.93
	902 903 904	-	.0000	0 0 0	0		.9920 .9920 .9920		1.93 1.93
84 85 86 87 88	905 906 907	0 0 0	.0000 .0000 .0000	0	0 0 0	7 7 7 7	.9920 .9920 .9920	1 1 1 1	1.93 1.93 1.93 1.93 1.93
	908 909	0 0 0	.0000	0 0	0 0		.9920		1.93
89 90 91 92	910 911 912	0 0 0 1	.0000 .0000 .0554	0 0 0	0 0 0	7 7 7 7	.9920 .9920 .9920 1.0000	1 1 0	1.93 1.93 0

Table 25. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1973 - 1981. Montague district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
30 31 32 33 34	712 713 714 715 716	1 1 0 1	.0555 .0142 .0479 .0000 .0376	0 0 0 0	0 0 0 0	1 1 1 1	.0555 .0697 .1176 .1176 .1552	0 0 0 0	0 0 0 0
35 36 37 38 39	717 718 719 720 721	1 1 1 0	.0399 .0421 .0316 .0290 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.1951 .2372 .2687 .2978 .2978	0 0 0 0	0 0 0 0
40 41 42 43 44	722 723 724 725 726	0 2 4 4 4	.0000 .0443 .1341 .1144 .1127	0 27 84 63 64	1.24 11.28 7.22 7.24	1 2 4 5 5	.2978 .1931 .2307 .2760 .3662	0 70 48 51 46	0 13.64 11.27 14.27 16.99
45 46 47 48 49	727 728 729 730 731	4 4 4 5 4	.1054 .1060 .0967 .1028 .0733	52 40 62 51 21	5.50 4.30 6.08 5.25 1.57	5 5 5 5 5	.4506 .5354 .6128 .7156 .7743	45 32 30 23 17	20.28 17.28 18.70 16.50 13.79
50 51 52 53 54	801 802 803 804 805	4 2 3 1	.0660 .0591 .0276 .0966 .0917	27 19 68 48 0	1.79 1.16 1.89 4.65	5 5 5 5 5	.8271 .8508 .8674 .9253 .9437	14 14 12 7 5	12.19 12.42 11.24 6.73 4.78
55 56 57 58 59	806 807 808 809 810	2 1 1 0 2	.0537 .0254 .0163 .0000 .0314	50 0 0 0 94	2.69 0 0 0 2.97	5 5 5 5 5	.9652 .9703 .9735 .9735 .9861	4 4 4 4 2	4.70 4.58 4.62 4.62 2.22
60 61	811 812	2 1	.0315 .0064	61 0	1.94 0	5 5	.9987 1.0000	0	0.25

Table 26. Average daily proportion of CPUE, average cumulative proportion of CPUE, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1969 - 1981. Southeastern district, Prince William Sound.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
12 13 14 15 16	624 625 626 627 628	1 0 0 0	.0095 .0000 .0000 .0000	0 0 0 0	0 0 0 0	1 1 1 1	.0095 .0095 .0095 .0095	0 0 0 0	0 0 0 0
17 18 19 20 21	629 630 701 702 703	0 0 0 0	.0000 .0000 .0000 .0000 .0217	0 0 0 0	0 0 0 0	1 1 1 2	.0095 .0095 .0095 .0095 .0156	0 0 0 0 39	0 0 0 0 0.61
22 23 24 25 26	704 705 706 707 708	3 1 2 2 2	.0295 .0522 .0273 .0293 .0271	58 0 67 46 24	1.71 0 1.84 1.34 0.65	3 3 3 3	.0399 .0573 .0755 .0950 .1131	35 61 72 76 75	1.40 3.51 5.48 7.24 8.56
27 28 29 30 31	709 710 711 712 713	2 2 3 2 4	.0314 .0256 .0331 .0397 .0273	15 28 42 29 64	0.49 0.74 1.39 1.17 1.76	4 4 4 5	.1005 .1134 .1382 .1581 .1483	81 68 68 70 91	8.19 7.75 9.40 11.12 13.50
32 33 34 35 36	714 715 716 717 718	6 5 6 5	.0255 .0423 .0370 .0318 .0567	57 21 45 75 35	1.47 0.92 1.69 2.40 2.03	6 6 6	.1491 .1844 .2214 .2533 .3005	94 80 71 61 59	14.05 14.78 15.86 15.57 17.77
37 38 39 40 41	719 720 721 722 723	4 4 6 6 7	.0363 .0310 .0346 .0347 .0502	41 51 43 46 75	1.51 1.58 1.52 1.62 3.80	6 6 6 7	.3248 .3455 .3800 .4147 .4057	57 57 53 49 55	18.70 19.87 20.25 20.48 22.68
42 43 44 45 46	724 725 726 727 728	5 5 5 6	.0519 .0597 .0515 .0500 .0488	68 40 82 48 26	3.55 2.41 4.25 2.40 1.29	7 7 7 7	.4428 .4855 .5224 .5581 .5999	48 44 41 40 37	21.38 21.76 21.83 22.34 22.29
47 48 49 50 51	729 730 731 801 802	5 6 5 4	.0462 .0610 .0581 .0507 .0478	32 30 35 27 27	1.49 1.89 2.07 1.37 1.31	7 7 7 7	.6330 .6853 .7269 .7631 .7904	35 30 29 28 25	22.25 20.63 21.18 21.91 20.47
52 53 54 55 56	803 804 805 806 807	4 4 5 4	.0443 .0438 .0394 .0424 .0331	42 43 45 63 74	1.89 1.91 1.78 2.70 2.47	7 7 7 7 7	.8158 .8408 .8634 .8937 .9126	24 22 20 16 13	20.04 18.56 17.28 14.52 12.22
57 58 59 60 61	80 8 80 9 81 0 81 1 81 2	3 2 3 2 1	.0359 .0525 .0251 .0410 .0737	60 76 90 87 0	2.16 3.99 2.28 3.59 0	7 7 7 7	.9280 .9430 .9538 .9655 .9760	13 10 8 5 2	12.70 9.60 7.75 5.19 2.92

Table 26 continued.

Day No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
62 63 64 65 66	813 814 815 816 817	2 0 0 2	.0325 .0000 .0000 .0381 .0000	75 0 0 40 40	2.45 0 0 1.54	7 7 7 7	.9853 .9853 .9853 .9962 .9962	1 1 0 0	1.91 1.91 1.91 0.92 0.92
67 68 69 70 71	81.8 81.9 82.0 82.1 82.2	0 0 0 0	.0000 .0000 .0000 .0000	0 0 0 0	0 0 0 0	7 7 7 7	.9962 .9962 .9962 .9962	0 0 0 0	0.92 0.92 0.92 0.92 0.92
72 73 74 75 76 77	823 824 825 826 827 828	0 0 0 0 0	.0000 .0000 .0000 .0000 .0000	0 0 0 0 0	0 0 0 0 0	7 7 7 7 7	.9962 .9962 .9962 .9962 .9962 1.0000	0 0 0 0 0	0.92 0.92 0.92 0.92 0.92

Table 27. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1964 - 1982. Eastern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
2 3 4 5 6	626 703 710 717 724	1 4 8 9	.0003 .0030 .0075 .0337 .1355	0 74 81 63 125	0 0.22 0.61 2.14 17.00	1 4 8 10 10	.0003 .0031 .0091 .0376 .1596	0 71 89 59 107	0 0.22 0.81 2.24 17.23
7	731	10	.1115	53	6.01	10	.2712	65	17.77
8	807	9	.1278	29	3.77	10	.3862	39	15.14
9	814	10	.1706	37	6.45	10	.5569	36	20.57
10	821	8	.1862	26	4.87	10	.7059	27	19.06
11	828	8	.1649	50	8.38	10	.8378	18	15.61
12	904	7	.1354	59	8.01	10	.9326	9	9.15
13	911	4	.1603	48	7.79	10	.9968	0	0.66
14	918	2	.0147	23	0.34	10	.9997	0	0
15	925	1	.0024	0	0	10	1.0000	0	0

Table 28. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1964 - 1982. Northern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
1 2 3 4 5	619 626 703 710 717	1 0 0 3 4	.0866 .0000 .0000 .0023 .0015	0 0 0 80 69	0 0 0 0.18 0.10	1 1 3 6	.0866 .0866 .0866 .0311	0 0 0 128 191	0 0 0 4.00 3.18
6	724	8	.0665	118	7.87	9	.0702	105	7.39
7	731	10	.0523	69	3.61	10	.1155	64	7.50
8	807	9	.1320	61	8.09	10	.2343	35	8.25
9	814	10	.2709	62	16.85	10	.5052	43	22.18
10	821	5	.2559	22	5.87	10	.6332	31	19.65
11	82.8	7	.3535	43	15.24	10	.8897	17	15.79
12	90.4	5	.2021	73	14.87	10	.9118	3	3.27
13	91.1	4	.0374	76	2.87	10	.9968	0	0.95
14	91.8	1	.0319	0	0	10	1.0000	0	0

Table 29. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1964 - 1982. Coghill district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
2	626	1	.0000	0	0	1	.0000	0	0
3	703	1	.0011	0	0	1	.0011	0	0
4	710	1	.0022	0	0	1	.0033	0	0
5	717	6	.0302	100	3.05	6	.0308	97	3.01
6	724	8	.0409	75	3.09	8	.0639	80	5.17
7	731	7	.1459	127	18.58	10	.1533	100	15.36
8	807	9	.1616	56	9.19	10	.2988	51	15.43
9	814	10	.3092	41	12.84	10	.6080	40	24.64
10	821	5	.2647	48	12.95	10	.7404	22	16.83
11	828	7	.2648	42	11.27	10	.9257	10	9.78
12	904	5	.1306	66	8.69	10	.9911	1	1.58
13	911	2	.0324	45	1.48	10	.9976	0	0.47
14	918	2	.0098	10	0.10	10	.9995	0	0.12
15	925	1	.0043	0	0	10	1.0000	0	0

Table 30. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1964 - 1982. Northwestern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
3 4 5 6 7	703 710 717 724 731	1 0 5 8 9	.0002 .0000 .0108 .0444 .0679	0 0 26 98 80	0 0 0.28 4.36 5.50	1 1 5 9	.0002 .0002 .0108 .0455 .1021	0 0 26 99 53	0 0 0.28 4.53 5.46
8	807	9	.1409	35	4.95	10	.2290	42	9.64
9	814	10	.2759	37	10.21	10	.5050	28	14.47
10	821	6	.2895	84	24.43	10	.6787	23	16.15
11	828	8	.2895	52	15.18	10	.9104	10	9.83
12	904	6	.1335	64	8.63	10	.9905	2	2.47
13	911	2	.0296	60	1.77	10	.9964	1	1.06
14	918	1	.0236	0	0	10	.9988	0	0.35
15	925	1	.0118	0	0	10	1.0000	0	0

Table 31. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1964, 1968, 1970, 1980, 1982. Eshamy district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. ×100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
5 6 7 8 9	717 724 731 807 814	1 2 2 2 2 3	.0089 .1900 .0980 .1748 .2386	0 84 22 0 50	0 15.99 2.19 0.07 11.97	1 2 2 3 4	.0089 .1945 .2925 .3116 .4126	0 79 60 39 36	0 15.54 17.74 12.17 15.20
10 11 12 13 14 15	821 828 904 911 918 925	2 5 1 1 1	.1484 .5879 .0605 .0301 .0148 .0072	67 49 0 0 0	10.08 29.33 0 0 0	555555	.3895 .9775 .9895 .9956 .9985 1.0000	66 4 2 0 0	25.91 4.50 2.08 0.87 0.28

Table 32. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1964 - 1982. Southwestern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
4 5 6 7 8	710 717 724 731 807	1 3 8 9 7	.0051 .0062 .0429 .0725 .1252	0 81 61 43 36	0 0.50 2.63 3.14 4.57	1 3 8 9	.0051 .0079 .0459 .1134 .2108	0 93 63 35 35	0 0.74 2.92 3.99 7.45
9 10 11 12 13	814 821 828 904 911	9 6 9 5 1	.2808 .2373 .3097 .2558 .0479	31 65 65 78 0	8.82 15.59 20.32 19.99	9 10 10 10 10	.4916 .5849 .8636 .9916 .9964	26 29 22 2 1	12.98 17.17 19.09 2.50 1.07
14 15	918 925	1 1	.0239 .0119	0	0	10 10	.9988 1.0000	0	0.35

Table 33. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1964 - 1982. Montague district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. *100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
4 5 6 7 8	710 717 724 731 807	2 5 8 8 9	.0005 .0019 .0208 .0460 .0878	27 115 110 80 64	0.01 0.22 2.30 3.72 5.64	2 5 9 10 10	.0005 .0021 .0196 .0545 .1336	27 97 122 102 80	0.01 0.21 2.42 5.57 10.71
9 10 11 12 13	814 821 828 904 911	9 7 7 8 1	.2392 .2311 .4077 .2402 .0623	32 50 42 44 0	7.72 11.65 17.29 10.61	10 10 10 10 10	.3489 .5108 .7962 .9884 .9946	50 27 16 3 1	17.60 14.13 13.39 3.25 1.39
14 15	918 925	2 1	.0188 .0156	65 0	1.23	10 10	.9984 1.0000	0	0.46 0

Table 34. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for even-years: 1964 - 1982. Southeastern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
4 5 6 7 8	710 717 724 731 807	2 5 8 8	.0007 .0022 .0243 .0527 .0938	33 106 103 81 59	0.02 0.23 2.51 4.28 5.56	2 5 9 10 10	.0007 .0025 .0230 .0629 .1473	33 88 114 99 76	0.02 0.22 2.64 6.27 11.21
9 10 11 12 13	814 821 828 904 911	9 7 7 7 1	.2309 .2362 .3947 .2741 .0590	23 45 49 38 0	5.35 10.80 19.44 10.44	10 10 10 10 10	.3552 .5206 .7969 .9888 .9947	46 24 19 3 1	16.44 12.53 15.16 3.08 1.32
14 15	918 925	2 1	.0190 .0147	55 0	1.05	10 10	.9985 1.0000	0	0.44

Table 35. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1965 - 1983. Eastern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
2 3 4 5 6	626	2	.0011	90	0.09	2	.0011	90	0.09
	703	4	.0270	82	2.22	4	.0275	83	2.31
	710	10	.0400	82	3.29	10	.0511	97	4.99
	717	9	.1120	49	5.50	10	.1519	63	9.70
	724	9	.1523	71	10.91	10	.2890	66	19.12
7	731	10	.1399	61	8.59	10	.4289	61	26.57
8	807	8	.1121	44	5.00	10	.5186	52	27.46
9	814	8	.1393	51	7.17	10	.6302	34	22.00
10	821	5	.0853	21	1.85	10	.6728	36	24.27
11	828	9	.2505	83	20.95	10	.8983	15	13.80
12	904	5	.0719	58	4.20	10	.9343	15	14.40
13	911	3	.1734	114	19.92	10	.9863	3	3.13
14	918	3	.0354	134	4.76	10	.9969	0	0.91
15	925	1	.0305	.0	0	10	1.0000	0	0

Table 36. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1965 - 1983. Northern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. *100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
2 3 4 5 6	626 703 710 717 724	2 4 7 7 8	.0007 .0286 .0423 .0891 .1507	6 95 88 46 33	0 2.73 3.74 4.16 5.04	2 4 7 9 10	.0007 .0290 .0589 .1152 .2242	6 95 97 69 65	2.77 5.76 8.02 14.63
7 8 9 10 11	731 807 814 821 828	10 8 6 5 8	.2511 .1766 .2016 .1309 .1878	49 39 41 73 80	12.45 6.97 8.35 9.64 15.14	10 10 10 10 10	.4753 .6167 .7376 .8031 .9534	49 36 19 20 6	23.41 22.48 14.66 16.64 6.03
12 13	904 911	5 2	.0811 .0298	81 52	6.59 1.55	10 10	.9940 1.0000	10	1.38

Table 37. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1965 - 1983. Coghill district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
2 3 4 5 6	626 703 710 717 724	1 2 4 5 7	.0055 .0069 .0372 .0499	0 0 111 66 107	0 0 4.15 3.30 15.11	1 2 4 7 8	.0055 .0097 .0421 .0597 .1748	0 29 93 57 102	0 0.28 3.92 3.42 18.00
7	731	10	.2070	122	25.46	10	.3469	85	29.54
8	807	9	.1673	38	6.46	10	.4975	56	27.87
9	814	6	.2182	123	26.89	10	.6284	45	28.74
10	821	3	.0893	85	7.67	10	.6552	45	29.91
11	828	7	.2706	83	22.60	10	.8447	34	29.15
12	904	3	.2802	92	25.91	10	.9288	22	21.22
13	911	1	.0040	0	0	10	.9292	22	21.23
14	918	1	.7079	0	0	10	1.0000	0	0

Table 38. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1965 - 1983. Northwestern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
4 5 6 7 8	710 717 724 731 807	2 2 4 9 7	.0038 .0147 .1399 .1661 .1077	92 48 63 151 115	0.35 0.71 8.89 25.12 12.44	2 3 5 9	.0038 .0123 .1193 .2324 .2846	92 56 84 132 115	0.35 0.69 10.10 30.88 32.97
9 10 11 12 13	81.4 82.1 82.8 90.4 91.1	4 5 7 3 2	.2117 .2482 .5353 .2135 .1137	44 99 33 68 91	9.48 24.67 17.70 14.55 10.46	10 10 10 10 10	.3693 .4935 .8682 .9323 .9550	80 63 29 15 14	29.63 31.25 25.63 14.27 13.48
14 15	91 8 925	0 1	.0000 .4494	0	0	10 10	.9550 1.0000	14 0	13.48 0

Table 39. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1967, 1971, 1977, 1981. Eshamy district, Prince William Sound.

Week No.	Da te	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. ×100
4 5 6 7 8	710 717 724 731 807	1 1 1 1 3	.0185 .0055 .0273 .1109 .2909	0 0 0 0 90	0 0 0 0 26.32	1 1 1 1 3	.0185 .0240 .0514 .1622 .3450	0 0 0 0 74	0 0 0 0 25.69
9 10 11 12 13 14	814 821 828 904 911 918	1 3 2 2 1 1	.1430 .1442 .5922 .4220 .2417 .1189	0 102 65 94 0	0 14.83 38.86 39.95 0	3 4 4 4 4	.3927 .4027 .6988 .9098 .9702 1.0000	68 99 55 10 5	26.98 39.94 38.45 10.00 5.14

Table 40. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1965 - 1981. Southwestern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. ×100
6 7 8 9 10	724 731 807 814 821	4 6 6 5 6	.0335 .0480 .1083 .2226 .2711	120 69 67 53 91	4.05 3.34 7.30 11.93 24.91	4 7 9 9	.0335 .0603 .1191 .2428 .4236	120 61 81 51 51	4.05 3.71 9.69 12.53 21.62
11 12 13 14	828 904 911 918	7 4 2 1	.5348 .2439 .1285 .2107	20 86 94 0	10.71 21.21 12.11 0	9 9 9	.8396 .9480 .9765 1.0000	29 10 6 0	25.01 9.57 6.62 0

Table 41. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1965 - 1983. Montague district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. x100
3 4 5 6 7	703 710 717 724 731	1 1 6 9 10	.0009 .0087 .0205 .0765 .1727	0 0 119 102 127	0 0 2.45 7.83 22.01	1 7 9 10	.0009 .0095 .0189 .0912 .2548	0 0 121 98 116	0 0 2.30 9.01 29.71
8 9 10 11 12	807 814 821 828 904	8 8 7 5	.1633 .1380 .1460 .3329 .2073	93 88 53 56 49	15.33 12.28 7.76 18.74 10.26	10 10 10 10 10	.3855 .4959 .6128 .8458 .9495	89 63 38 24 11	34.66 31.43 23.67 20.64 10.99
13 14 15	911 918 925	3 2 1	.1311 .0555 .0001	96 17 0	12.68 0.95 0	10 10 10	.9888 .9999 1.0000	2 0 0	2,26 0 0

Table 42. Average daily proportion of escapement, average cumulative proportion of escapement, their coefficients of variation, standard deviations (x100), and sample sizes for odd-years: 1965 - 1983. Southeastern district, Prince William Sound.

Week No.	Date	Sample Size	Avg. Prop.	c.v.	S.D. x100	Sample Size	Avg. Cum. Prop.	c.v.	S.D. *100
3 4 5 6 7	703 710 717 724 731	1 1 6 9	.0015 .0145 .0236 .0866 .2033	0 0 108 93 107	0 0 2.57 8.11 21.78	1 7 9 10	.0015 .0160 .0225 .1042 .2767	0 0 106 89 107	0 0 2.39 9.35 29.70
8	807	8	.1840	81	15.03	10	.4240	80	34.24
9	814	7	.1650	69	11.41	10	.5395	55	29.87
10	821	8	.1737	63	10.98	10	.6785	32	21.74
11	828	6	.3107	66	20.79	10	.8649	18	16.01
12	904	5	.1699	42	7.30	10	.9499	11	11.28
13	911	3	.1330	105	13.98	10	.9898	2	2.02
14	918	2	.0505	6	0.33	10	.9999	0	0
15	925	1	.0002	0	0	10	1.0000	0	0

VITA

Louis John Rugolo was born on May 31, 1950 in New York City, New York. He completed his secondary education at Msgr. McClancy Memorial High School, Jackson Heights, New York. In 1972 he received a Bachelor of Science in Biology from York College of the City University of New York.

From 1976 - 1978 he attended Queens College of the City University of New York under a non-degree program where his studies emphasized geological sciences. He became an associate member of Sigma Xi, The Scientific Research Society in 1978.

In the fall of 1980 he began his graduate education in oceanography at Old Dominion University receiving a university fellowship for his first academic year. In February 1981 he was granted a bypass of the Master's of Science in Oceanography.

He is a member of Phi Kappa Phi Honor Society, and the National Dean's List of Graduate Scholars. His professional affiliations include, The American Fisheries Society, Sigma Xi, and The American Association for the Advancement of Science.

He was married to Evelyn Main in January 1976, and experienced the joyous birth of his son, John Edward Rugolo, in June 1979.