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ABSTRACT

Radiative transitions of hydrogenlike atoms in external magnetic fields of 

strength applicable to magnetic white dwarfs, i.e. B < 103 megagauss, have 

been investigated for field-free principal quantum numbers n < 6. Finite 

proton mass corrections are included. Relativistic corrections are also investi

gated. Transition probabilities are determined using the length, velocity, and 

acceleration forms of the electric dipole operator. Discrepancies between pre

vious calculations and magnetic white dwarf observations of low-lying bound- 

bound transitions have been studied. New results for high-lying transitions 

are also obtained.

The transition probability for the hydrogenlike 2s two-photon decay has 

been investigated and shown to increase substantially with field strength. 

The computed two-photon spectra show resonances and interference minima. 

Anomalous Zeeman depolarization features are found in computed two-photon 

polarization spectra of alkali atoms in laboratory strength magnetic fields. A
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previously observed fine structure depolarization feature is shown to decay 

with decreasing field strength.

The molecular processes of radiative association, photodissociation, and 

free-free absorption for the ions HeJ and are investigated for various 

temperatures. New partition functions and dissociation equilibrium constants 

have also been determined for the two molecular ions.

A persistent ~  2 mn discrepancy in the Lya a~ line center between theo

retical calculations and observations of the highly magnetic (~  320 MG) white 

dwarf Grw +70°8247 is interpreted as resonance broadening due to hydrogen- 

proton and hydrogen-hydrogen collisions in the high-density (~  1021 cm-3 ), 

high-magnetic environment of the star.

The detection prospects of Hej and in cool white dwarfs are discussed 

and shown to be insignificant. It is suggested, though, that continuous ab

sorption by HeJ may be responsible for an observed ultraviolet flux deficiency 

in some cool helium-rich white dwarfs.
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1. INTRODUCTION

Some atomic and molecular data which are difficult to acquire in the laboratory 

must be determined by theoretical means. Generally, this information is necessary 

for astrophysical investigations where the species are not easily produced, the process 

of interest is difficult to separate from others, or the environment cannot be recreated 

on the earth. This dissertation considers two such situations: (i) the hydrogen atom 

in a strong magnetic field and (ii) radiative formation and destruction of diatomic 

molecular ions consisting of hydrogen or helium.

Theoretical investigations of hydrogen and other atoms in strong magnetic fields 

have been pursued for the past thirty years with ever increasing sophistication and 

precision [1-43]. This work was originally stimulated by the discovery of strong mag

netic fields in neutron stars [44] and some white dwarfs [45]. Recent theoretical 

spectra incorporating calculated atomic data with atmospheric models of magnetic 

white dwarf stars have revealed some discrepancies with flux and polarization mea

surements [46,47]. This development and the increasing precision of observations 

foster further and more accurate calculations of atomic structure in strong fields. 

We present new calculations of nonrelativistic energies, relativistic corrections, and 

transition probabilities for hydrogen and the hydrogenlike ion He+ in Sec. 2.1.

While structure calculations have received considerable attention, little work has 

been directed toward higher-order processes, for example, photoionization and two- 

photon transitions. Photoionization calculations have centered predominately around 

the low-field regime (B  ~  6 Tesla (T), where 1 T  =  104 G) [48-52] in an effort 

to understand experimental observations [53-56]. Some work in intense fields has 

also been performed by Schmitt et al. [57] and Wunner et al. [58] for applications 

to neutron stars. Investigations in the intermediate-field regime has been generally

1
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limited to the work of Alijah et al. [59] and Wang and Greene [60], but only for 

transitions originating from the ground state. Photoionization cross sections from 

excited states are believed to be necessary to resolve the above mentioned polarization 

spectra discrepancies in magnetic white dwarfs. Though these cross sections are 

not given here, the wave functions determined in Sec. 2.1 are a first step in that 

calculation, possibly by time-dependent methods [61], to be attempted in the future. 

Some discussion is given in Sec. 4.1 on the anticipated impact of magnetic-field- 

dependent photoionization cross sections on the interpretation of spectra from the 

star Grw +70°8247.

Atomic two-photon transitions in a magnetic field have not been previously inves

tigated theoretically or experimentally. Experiments involving two-photon absorption 

and polarization of alkali atoms in the absence of a field are numerous and reveal in

terference effects due to fine structure coherence [62-65]. A calculation of two-photon 

electron cyclotron emission in a field of 109 T  has been performed by Alexander and 

Meszaros [66,67] who demonstrate its importance as an opacity source in the x-ray 

spectra of accreting pulsars. Sec. 2.2 presents the first calculation of spontaneous two- 

photon emission by hydrogenlike atoms in strong magnetic fields while two-photon 

polarization of alkali atoms in laboratory strength magnetic fields is computationally 

investigated in Sec. 2.3.

Light diatomic molecules particularly those containing hydrogen are important in 

many astrophysical situations with the most important being H2. In contrast, the 

molecular ions and HeJ have not been astronomically observed. We investigate 

in Sec 3.1 the formation of these ions by radiative association while their destruction 

by photodissociation is studied in Sec. 3.2. New semiclassical calculations of free-free 

absorption by and HeJ are also given in Sec. 3.2. Sec. 3.3 gives new tabulations 

of H j and He£ partition functions and dissociation equilibrium constants which are 

useful for computations of cool stellar atmospheres and absorption coefficients.

2
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Finally, an effort is made to apply the results of Chapters 2 and 3, particularly 

Secs. 2.1 and 3.2, to investigations of magnetic and cool white dwarf stars. These 

stars contain the extreme environmental conditions of strong magnetic fields and high 

particle densities certainly unreachable by earth-bound experimental investigations. 

They are excellent laboratories for testing theoretical calculations in these peculiar 

situations.

3
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2. MAGNETIC FIELD EFFECTS ON ATOMS

2.1. Structure Calculations of Hydrogenlike Atoms

2.1.1. Nonrelativistic Infinite Proton Mass Energies

For an electron in the presence of a nucleus of infinite mass with charge Z  and a 

uniform external magnetic field B  parallel to the z-axis, the Schrodinger Hamiltonian 

is given by*

tt V 2 Z  \  B 2 , . ,  . . .
H0 =  — v T  + m,j + ~8“r sm  ̂ (2.1-1)

where m  is the magnetic or azimuthal quantum number, m ,  is the spin quantum 

number, and B  = 1 corresponds to ~  2.350 x 10s T (2350 MG). The individual terms 

of the Hamiltonian are the kinetic energy T, the Coulomb potential Vc , the linear 

Zeeman potential Viz , and the quadratic Zeeman potential V qz , respectively.

The strong field problem can be loosely divided into three regimes [1]: (i) the 

Paschen-Back region where (Vc) »  ( V lz )  > >  (V q z ))  (ii) the intermediate-field 

region with ( V lz )  ~  (V q z )  ~  (Vc) or (V q z )  Z  ( V lz )  ~  (Vc), and (iii) the intense- 

field or Landau regime where (V q z )  >  (Viz) > >  (Vc). Here ( V )  corresponds to the 

expectation value of the operator V.

As is well known, in the Paschen-Back regime the linear Zeeman potential can 

be treated as a perturbation to the field-free solution [68]. The shift in energy from 

the field-free eigenvalue is simply B (m /2  +  m ,)  which is independent of the principal 

quantum number n  and the angular momentum quantum number I. Note that in this

‘Atomic units are used throughout this work unless otherwise noted. These units corre

spond to setting e = h =  m e = 1 and a =  1/c. Lengths are given in Bohr radii a0 and 

energies in au (hartrees) where 1 au =  27.2113962 eV.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



regime n  and I  are “good” quantum numbers while for higher field strengths they are 

not. Further, only m  and z-parity n  remain “good” quantum numbers at any field 

strength. Nevertheless, n  and I  will be used to label the states since they indicate 

the dominant contribution.

Since the spin and angular momentum are not coupled in strong fields, m , is not 

allowed to change during a transition, giving the selection rule

A m , =  0 (2.1-2)

in addition to

A m  =  0, ±1. (2.1-3)

Selection rules (2.1-2) and (2.1-3) are applicable for all the work considered in Secs. 

2.1 and 2.2. As a consequence of Eq. (2.1-2), and as is customary, only spin down 

states, m ,  =  — will be considered since we are ultimately only interested in spin- 

allowed transitions.

For the intense-field regime, Vc is treated as a perturbation to the solution of a 

free electron in a magnetic field. This approach is generally referred to as the adia

batic approximation. Much work involving the energy levels and radiative transitions 

has been carried out by various groups [4,5,17-19,23,29,30,36,43], generally for appli

cations to neutron stars with field strengths of ~  106 MG and as such will not be 

considered here.

In the intermediate-field regime, Vc and the Zeeman contributions are comparable 

so a perturbative approach is inappropriate. The Ritz variational method [68] has 

received the most attention and has been applied in the intermediate-field regime 

by the Louisiana State University (LSU) group [6-12], Kara and McDowell [16], the 

Tubingen group [17-23], and others. The m ethod is based on Rayleigh’s variational 

principle which states for the Hamiltonian H0 with exact eigenvalue E,  an approxi

m ate eigenvalue E(ip) is given by

5
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where ip is an arbitrary trial function which differs from the exact eigenfunction of 

H0 to first order. E(ip) is larger than E, but with a small difference to only second 

order which decreases as ip approaches the exact eigenfunction. The Ritz method 

chooses ip to be a function with adjustable parameters which are optimized to obtain 

the minimum value of E(ip). E(ip) is then an upper limit to the exact eigenvalue E.

Various types cf trial functions have been used for the intermediate-field regime, 

but most are based on the expansion of field-free hydrogenic functions. The LSU 

group used a basis of the form

<% =  (air l + V p t - A r ) * ^ , ? )  (2.1-5)

where Y^^d, p) is a spherical harmonic, ai and 6; are linear expansion coefficients, 

and fa is a nonlinear variational parameter. The Tubingen group used a form similar 

to Eq. (2.1-5) for B  ^  1 given by

<P? = - f i ( r ) Y ? ( 6 , < p )  (2.1-6)
T

where f i { r )  is a numerical function which reduces to the usual hydrogenic radial 

function as B  —> 0. For fi >  1, the Tubingen group incorporated an expansion in 

terms of the Landau functions $$(/>, 'f) given in cylindrical coordinates by

W  = gK(z)*N(p,<e) (2-1-7)

where giq{z) is a numerical horizontal hydrogenic-type function,

$ n {p , <p) =  ^|m|/2L t l( 0  exP(—£/2) exp(imp), (2.1-8)

N  is the Landau quantum number, is an associated Laguerre polynomial, £ =  

(p/p0)2, p0 =  y 2/a B , and a  is the fine structure constant. The Landau functions 

are exact solutions of a free electron in a magnetic field which is obtained for the 

Hamiltonian of Eq. (2.1-1) in the limit where B  —> oo or Z  —* 0.

6
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Kara and McDowell [16], who were only interested in B  > 0.1, chose to work in 

the cylindrical basis

<f>M = z^p 1 exp(—5r2)exp(im<p) (2.1-9)

where fi , 7 , and 6 are nonlinear variational parameters.

The Tiibingen expansions of Eqs. (2.1-6) and (2.1-7) do not include a nonlinear 

variational parameter. Instead, they exploit the limiting symmetries by choosing basis 

sets which give the exact solution as B  —> 0 (hydrogenic: spherical) and B  —> 00 or 

Z  —> 0 (Landau: cylindrical). Their results appear to converge to higher accuracy 

with fewer terms than the LSU results or those of Kara and McDowell, however 

convergence becomes poorer as B  =  1 is approached from either limit. All of these 

calculations give transition data for n  <  5 typically. The most comprehensive work 

in terms of field strength range is that by Forster et al. [21] who considered all three 

field regimes but for n  <  3 only. Wunner et al. [22] supplemented these calculations 

for n  up to five, but concentrated on the intermediate regime. The work of Henry 

and O’Connell [12] is also limited to the intermediate-field region, but includes n  <  5.

Most recently, Chen and Goldman [37] incorporated both limiting symmetries into 

a single function by constructing a mixed Slater-Landau basis of the form

=  r n_1 exp(—X'r — fir2 sin2 9) cos*- lml 9 s in ^  9 exp(im<p) (2.1-10)

where n =  1,2,3,...,

0, 2,4 ,..., even parity states,
1 = (2 .1- 11) 

1 ,3 ,5 ,..., odd parity states,

and A' and fi are nonlinear variational parameters. In the present investigation, 

we choose to adopt the basis of Eq. (2.1-10) since it contains both symmetries with 

correct solutions at each limit, can be easily optimized by increasing the basis size and 

adjusting the nonlinear parameters, and can be completely represented analytically.
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There are many other basis sets and approaches that have been used but are 

not discussed here since most are similar to one of the above. One exception is the 

Hamiltonian matrix method of Garstang and Kemic [2,3]. While a basis set of field- 

free hydrogenic functions is used, Garstang and Kemic do not minimize the energy 

but instead construct a matrix of expectation values for the Hamiltonian of Eq. (2.1- 

1) which is truncated to some cutoff value nc. The matrix then gives approximate 

eigenvalues and eigenfunctions for all states (below the cutoff). They choose nc = 9 

and obtain results for n < 6 and B  < 20 MG. While this is a Rayleigh variational 

method and should in principle work at higher field strengths, it does not give the 

precision obtainable from a minimalization procedure. For example, as will be shown 

later, their transition wavelengths agree at best to within only 0.4 nm of the current 

work.

2.1.2. Method of Calculation and Results

It is well known that the time-independent Schrodinger equation with the Hamil

tonian given by Eq. (2.1-1) is not completely separable. Only the (^-dependence can 

be removed hence giving the only “good” quantum number m  with the exception 

of the z-parity. The problem remaining is a coupled set of second-order ordinary 

differential equations in r and 6.

We chose to use the Ritz variational method which requires matrix elements of 

the Hamiltonian. The effect of the kinetic energy operator in Eq. (2.1-1) on the basis 

function (2.1-10) can be obtained analytically. The necessary matrix elements in 

Eq. (2.1-4) are then of the form

J  cos1 6sinm 9d9 J  rn exp(—A'r — (3r2 sin2 6)dr (2.1-12)

which can be obtained by multiple Gauss quadrature [70]. Laguerre polynomials 

were used to evaluate the inner r-integral and Legendre polynomials for the outer 9- 

integral. The resulting Hamiltonian matrix was then diagonalized with the EISPACK

8
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subroutine RSG.

The typical procedure requires a guess for A' and (3 and the choice of a starting 

basis size for a particular B .  The integrals in Eq. (2.1-12) are evaluated and the 

Hamiltonian m atrix is diagonalized to obtain the eigenvalues and expansion coeffi

cients. The above is repeated twice for different but similar values of the variational 

parameters. Though RSG gives the full spectrum of eigenvalues, we must concentrate 

on a particular n£m-sta.te for the minimalization. A downhill simplex method [71] 

is then incorporated to minimize energy £ “R by varying A' and /? until convergence. 

The three sets of ( 2 ^ ,  A',/?) are supplied as initial guesses. The above procedure is 

repeated for incremental increases in basis size until convergence.

Results for typical states at various field strengths are given in Table 2.1-1 with 

comparison to some previous calculations. The present results generally converge to 

an accuracy better than or equal to the previous computations. Though the basis sizes 

of our calculations are greater than those of Ref. [20], we are always smaller than Chen 

and Goldman [37,38] who use the same basis functions but appear to incorporate 50 

terms. Also, Rosner et al. [20] use an adapted multiconfiguration Hartree-Fock code 

which is presumably more computationally expensive. Comparison to Xi et al. [35] 

is difficult since they use a B-spline basis, but require over 500 terms.

Even as B  —> 0 some states remain admixtures of degenerate field-free levels. 

For example, the “4po” and “4 /0” states are mixtures of hydrogenic 4p0 and 4/o 

levels and are labeled by the dominant level contribution with a “prime,” i.e., |4p(,) % 

-0.811|4po) +  0.585|4/o) and |4/q) ~  —0.81114/0) -0.585|4po)- Tables of approximate 

mixing coefficients are given in Garstang and Kemic [2]. These are naturally obtained 

in our computation by requiring the starting basis size to be large enough to have the 

flexibility of incorporating both levels in the variational calculation.

This mixing increases the difficulty of eigenvalue convergence by adding addi

tional states to a symmetry. For example, the 5p'0 is the sixth eigenvalue and not

9
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TABLE 2.1-1. Some nonrelativistic infinite proton mass energies of hydrogen in a 

magnetic field for m ,  =  — | .

State B  (au) ' E m  (au)
nlm-K Ref. [20] Refs. [37,38]“ Ref. [35]b Present results
1*+ 2.0 X 10-4 0.500100(1)° - 0.50009999 0.5000999900000(1)°

2.0 X 10~3 0.500994(1) - 0.500999 0.5009990000442(8)
2.0 x 10-2 0.509900(2) - 0.509900045 0.5099000440894(8)
0.1 0.5475265(3) 0.5475264804 - 0.547526480401(21)
1.0 0.831169(7) 0.83116889673 0.83116889 0.83116889(28)
2.0 1.022214(11) 1.02221390766 1.02221285 1.022214(24)

2s-f 2.0 X 10~4 0.12509985(1) - - 0.12509986000024(2)
2.0 X 10"3 0.1259860(2) - - 0.125986002548(8)
1.0 X 10"2 0.1296516(2) 0.129651571 - 0.129651571358(15)
2.0 x 10"2 0.1336242(3) - - 0.133624177535(24)
0.1 0.1480892(7) 0.148089156 - 0.14808916(28)

2po- 2.0 X 10"4 0.12509995(1) - 0.12509994 0.1250999400000612(1)
1.0 x 10"3 0.1254985(1) 0.1254985000 0.12549850 0.1254985000420(6)
2.0 x 10"3 0.125994(1) - 0.12599400 0.1259940006717(8)
1.0 x 10"2 0.1298504(2) 0.1298504158 0.12985042 0.1298504158325(12)
2.0 x 10"2 0.13440645(3) - 0.134406465 0.1344064660(15)
0.1 0.1624101(6) 0.1624100784 0.16241008 0.1624100789(30)
0.2 0.1851840(8) - 0.18518404 0.18518404(24)

2p~i+ 2.0 x 10-4 0.1251999(1) - - 0.1251998800002(1)
2.0 x 10“3 0.1269880(2) - - 0.12698800185(8)
2.0 x 10-2 0.1438176(3) - - 0.143817610348(21)
0.1 0.20084567(5) 0.20084567237 - 0.2008456724(32)
0.2 0.2505391(7) - - 0.2505391(24)

3do+ 2.0 x 10-4 0.05565535(2) - - 0.0556553486978(12)
2.0 x 10"3 0.05653489(3) - - 0.0565348858464(18)
2.0 x 10“2 0.06361695(5) - - 0.06361693547(45)
0.1 0.074938(12) - - 0.074938(40)

3 d _ i- 2.0 x 10"4 0.0557552(1) - - 0.055755195559(6)
2.0 x 10"3 0.0575196(3) - - 0.057519594775(24)
2.0 x 10"2 0.07225355(4) - - 0.072253547538(24)
0.1 0.1078121(8) - - 0.10781210(18)

¥ o ~ 2.0 x lO”4 0.03134845(2) - - 0.031348454156(12)
2.0 x 10"3 0.03209659(4) - - 0.03209658635(18)
1.0 x 10-2 0.03291787(5) - - 0.0329178768(36)

“Typically 50 terms of the basis (2.1-10) are used. 
bTypically 500 B-spline functions are used. 
cThe number in parenthesis gives the basis size.
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the fourth of the po symmetry since the eigenvalues are, in decreasing binding energy, 

2p0, 3poj 4/q, 4^0, 5/q, 5p[), ... This problem becomes acute for high-lying levels in 

the intermediate-field regime as was experienced by Rosner et al. [20] who obtain 

convergence to only two figures for 4p'0 near B  =  10-2 using basis set (2.1-7). They 

have made improvements to six figures by increasing the basis size to give matri

ces of ~  6000 x 6000 using a Cray 1 supercomputer [72]. The present results are 

obtained with the computational resources of IBM RS/6000-type workstations only. 

The reported number of significant figures reflects our converged accuracy.

Appendix A contains a more extensive list of energies. The new results are pre

sented for fields applicable to magnetic white dwarfs and are given for a finer grid of 

field strengths than previously. In particular, values for n =  6 states are given for the 

first time.

2.1.3. Nuclear Mass and Charge Scaling

The nuclear mass is set to infinity for computational convenience, but does not 

represent the physical situation. In field-free calculations, the infinite nuclear mass 

energies are corrected by multiplication of the reduced mass p  =  tontoc/(ton +  m e) 

where ton and m c are the nuclear and electron masses, respectively. Pavlov-Verevkin 

and Zhilinskii [73] have shown that the correction is slightly more complicated in the 

presence of a magnetic field and give the result

E m (B) = pE£K{B /p 2) -  — (to +  2tos). (2.1-13)
ton

The correction is important for small ton (i.e., hydrogen), large B , and non-zero to. 

The binding energy of hydrogen is reduced by 2.7216 xlO -4 at zero-field which is 

significant compared to the reported accuracy of the previous section. The binding 

energy will be increased for positive to when B m  > ton(/j — 1 )£ “R neglecting m 3.

Surmelian and O’Connell [74] obtained the following relation for scaling the nu

clear charge

11
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£ fo (Z , B) = Z 2E ^ ( Z  = 1, B / Z 2), (2.1-14)

which is rigorously applicable only to infinite mass energies.

To obtain a scaling relation for both charge and mass, one begins with the 

Schrodinger equation for the two-particle system in a uniform magnetic field and 

reduces it to the one-particle, relative motion form [73]. Taking the center of mass 

momentum to be zero and performing the scale transformation r t =  /iZ t gives the 

new scaling relation

Ehr{Z, B ) =  f iZ2E^n(Z  =  1, Bj f i2Z 2)  (m  +  2m ,). (2.1-15)
771N

Equation (2.1-15) reduces to (2.1-13) for Z  =  1 and to (2.1-14) for mpj =  oo.

2.1.4. R e la tiv is tic  C o rrec tio n s

Relativistic effects on hydrogenlike atoms have been addressed by only a few 

authors. The early calculations of Lindgren and Virtamo [76,77] applied the adiabatic 

approximation in intense fields. They obtained a correction which reduces the Is 

binding energy and showed that it increases with field strength from 5.1 x 10-7 at 

B  = 2 to 2.0 x  10-4 at B  = 2000. The Dirac equation for an electron in the presence 

of an infinite mass nucleus and external magnetic field has recently been variationally 

solved by Chen and Goldman [37,38] using basis sets similar to Eq. (2.1-10). Their 

relativistic correction changes sign from positive to negative below B  ~  40. Above 

B  = 200 the corrections of Lindgren and Virtamo are in reasonable agreement with 

the newer calculation, but at B  = 2 the adiabatic approximation is an order of 

magnitude too small and the wrong sign.

Since as Chen and Goldman show, the corrections are no larger than 10-5 of the 

ground state energy and smaller for excited states, a perturbational approach would 

seem appropriate. Treating the problem of the Dirac electron in a Coulomb field, 

but introducing the magnetic field perturbatively through the general Paschen-Back 

effect [68], Chen and Goldman obtain for the ground state energy following Rose [78]

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



■®B°p,ia — (7i -  I )/**2 -  -B(27i +  1 )/6  
Z 2 a 2Z 4 £  a 2Z 2B
2 8 2 6

where 7*. =  ^/c2 — (a Z )2 and the second line is given to order a 2. From Eq. (2.1-16), 

the relativistic correction is

A ^ p.u = W l  (2-H7)

They also obtained the 2p_i ( j  =  | , m . j  =  —|)  energy

Ek.p.2^  = (72/2  -  l ) / a 2 -  B(2l2 + l) /5  

ZJ a ! Z* „ a !Z!B
8 128 10  ̂ (2-M 8)

and the relativistic correction

-  (2.1-19)

From Rose, one can determine the energy for the 2s (j  = ^,rrij = —^) state as

B  W, 1 1
^ p , 2s =  ^ 21/ a 2 -  ( 2 W 21 +  1 ) ( 1  -  W&

Z 2 5 a2Z 4 B  a2Z 2B
=  - T - l 2T - 2 + - ^  +  -  P ' 1-20*

where W21 =  y  (1 +  7 i ) / 2 . The relativistic correction is then

A-Egp,,, =  (2 -1-21)

These relations begin to diverge from the variational results of Chen and Goldman 

for B  10-2 as shown in Table 2.1-2. Though both methods incorporate the Dirac 

electron, i.e. relativistic corrections to all orders, the above relations only treat the 

field dependence perturbatively and as a result it is no surprise that they break down 

for strong fields. Below we try  an alternative approach which treats the relativistic 

corrections to the electron perturbatively to first order, but variationally includes the 

field dependence by incorporating the wave functions determined in Sec. 2.1.2.

13
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TABLE 2.1-2. Relativistic infinite proton mass corrections for hydrogen in a magnetic 

field. Comparison of variational solutions of the Dirac equation for Coulomb and 

magnetic fields [37,38], exact Dirac electron in a Coulomb field with perturbative 

treatm ent of the magnetic field, and the present calculation of Pauli approximation 

corrections with the magnetic field treated variationally.

State B{au) (au) A E g  (10 au)
Refs. [37,38] Eqs. (2.1-17)-(2.1-21) Present Results

2P-1 ( ! , - § )  o

0 -0.500000000 -6.6565975 -6.6564202 -6.6564202
10"2 -0.5049750028 -6.569601 -6.5673429 -6.657529
0.1 -0.5475264804 -5.92794 -5.742953 -6.803989
1 -0.831168896 -4.3290 1.844263 -15.26919

0 -0.12500000 - -2.0801313 -2.0801313
10“2 -0.1296515714 -2.074 -2.052428 -2.09338
5 X 10"2 -0.1420167205 -2.236 -1.8644 -2.3602
0.1 -0.14808916 -2.577 -1.5725 -2.9035
0.2 -0.148986678 -2.905 -1.0835 -3.699
0.5 -0.150807855 -2.292 -0.3904
1 -0.160468983 -2.086 0.0356

0 -0.12500000 - -2.0801313 -2.0801313
10"2 -0.1298504158 -0.9479 - -2.08566
0.1 -0.1624100789 -0.9740 - -2.48349

0 -0.12500000 - -0.4160263 -0.4160263
0.1 -0.2008456724 -0.225 0.10398 -0.79511

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Relativistic Kinetic Energy

The nonrelativistic infinite nuclear mass Hamiltonian Eq. (2.1-1) neglects the term

a
Hke =  — —V (2 .1-22)

which can be obtained from the Pauli approximation (to order a 2) of the Dirac 

equation for an electron in a potential Vc [75]. Utilizing Eq. (2.1-1), Eq. (2.1-22) can 

be written

a
H ke = - y T 2

a
T

"__ Z  / to  \  B 2 ,  . , . l 2 
Ha + — -  B y — + m , j  -  — r sin 9 (2.1-23)

or

a
Hke = - y H 2 + - j  + ~r{™- +  2m , ) 2 +  ^ - r 4 sin4 92 , "  , w ^ „ 4  „;„4

64
1 1 „  .   _ . 5 2

+  Z(H 0-  +  - H 0) — B H 0(m  +  2m,) — 7r{H 0r sin 9 + r sin2 9H0) 
r r 8

1 Z B 2 B 3
— Z B (m  + 2m ,)-------- -— r sin2 6 +  —  (m +  2m ,)r2 sin2 9 . (2.1-24)

r 4 8

Since, H0 is Hermitian and (H0) =  E “R, the expectation value of Eq. (2.1-24) 

gives

Z 4a 2 ( 1 A /  , 1
V’) + 0 ljj\

r /  \ T /
/ 1

^NR + r /
— B (m  + 2m,)

B 2
+ —  (m +  2m , ) 2 -  (^ |r s in 20 |V») -  E^H(ilj\r2 sin29 \x/j) 

+  y ( m  +  2m,)(V>|r2 s in29\ijj) +  ^-(V»|**4 sin4 0|V>) j , (2.1-25)

where the energies and expectation values depend on B  but are for Z  =  1. For 5  =  0, 

Eq. (2.1-25) reduces to Eq. (16.4-9) of Ref. [75] given by

Z 4a 2
A £ ke =  - (E ^ r )2 +  22^ r U

1 A /  , 1
r /  \ r 2 /

(2.1-26)
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or

A E ke =  r-KE 2 n3
3

i n  I +  2̂J
(2.1-27)

2.1.4-2. Spin-Orbit Coupling

The Hamiltonian of Eq. (2.1-1) also neglects the spin-orbit interaction term

v2a
Hso = — —a  • VVc x p 

4

=  C(r )L • S (2.1-28)

where ((r)  =  Z a 2f2r3. Since the total angular momentum J  =  L +  S , L - S  =  

| (J 2 — L2 — S 2). The matrix element of Eq. (2.1-28) which does not depend explicitly 

on B  is then given by

A£f°o =
Z*a2 /

yl>
j{ j  +  1) -  ({£ +  1) - s { s  + 1)

V1)) (2.1-29)

where j  =  I  ±  s. Equation (2.1-29) is non-zero for s-states with B  >  0 since they 

will have d,g, . . .  -wave contributions. In addition, if) which consists of the uncoupled 

representation basis expansion (2.1-10) will give off-diagonal matrix elements for the 

L • S operator. When B  =  0, Eq. (2.1-29) reduces to Eq. (16.3-17) of Ref. [75] given 

by

Z 4a 2 1
A P 00 —

so 4 n3(£ +  l ) ( ^ + i ) £

£/2, j  = 1 + 1/2 

- \ ( £ + l ) ,  j  = £ - l / 2 .
(2.1-30)

2.1.4-3. The Darwin Term

The final correction is due to the neglected Hamiltonian term

*2a
Hb = — V • E

Z a 2
V 2

\ )

for which the matrix element is

(2.1-31)
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A E S  = — M r  = 0 ,Z  = 1 ,B )\2. (2.1-32)

This correction is non-zero for s-states only. It reduces to

Z Aa2
A E S  =  (2-1-33)

for B  = 0 which is Eq. (16.4-22) of Weissbluth [75].

2.1.4-4- Results and Discussion

The total relativistic correction is then given by

A E S  = A E S e +  AESq +  A E S -  (2.1-34)

Some results for the total correction are presented in Table 2.1-2 with comparisons to 

the Dirac-variational computations of Chen and Goldman [37,38] and the relativistic 

perturbational Eqs. (2.1-17) to (2.1-21). The present calculations appear to be di

verging from both the Chen and Goldman values and the perturbational results. Our 

corrections always give increased binding with field strength while the perturbational 

values always decrease the binding energy with increasing field strength. One can see 

this will always be true by noting the field dependent relativistic correction term , the

fourth term  of the second line of Eq. (2.1-16) for the Is for example, is positive. For

our corrections, the first order term  in B  of Eq. (2.1-27) is dominant and gives an 

increasing negative contribution. While the Darwin term and the zeroth order term  

of Eq. (2.1-27) give increasing positive contributions with field strength, they cannot 

offset the first order B  term. The spin-orbit contribution for s-states is negligible. 

Taking the Chen and Goldman results as “exact” , it appears that the present formu

lation can only give the relativistic correction to about one significant figure up to 

B  =  0.5. A more extensive tabulation is given in Appendix B including data for each 

of the three individual contributions.

According to Eqs. (2.1-25), (2.1-29), and (2.1-32), the total relativistic correction 

scales as Z A for hydrogenlike ions, but this correction is only the leading term  to
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TABLE 2.1-3. Z-scaling of relativistic infinite proton mass corrections for the ground 

state of hydrogenlike atoms in a magnetic field from variational solutions of the 

Dirac equation from Refs. [37,38] and present corrections compared to direct Dirac- 

variational solutions.

z R(au) ~ESk  (au) - A E g  (au)
-A  E§?{Z) 

Refs. [37,38]
-Z * A E g {Z  = 1) 

Refs. [37,38]
- Z 'A E g i Z  =  1) 
Present Results

1 0 0.5000 6.6565975 x 10"6 6.6565975 x 10"6 6.6564202 x 10"6
20 0 200.000 1.0765234 1.0650556 1.065027232
40 0 800.000 17.8074978 17.0408896 17.04043571
92 0 4232.000 629.198023 476.873959 476.861257

1 1 0.8311688967 4.3290 X 10“6 4.3290 X 10-6 1.527 x 10"5
5 25 20.7792224 2.707475 X 10"3 2.7056 X 10-3 9.543 x 10-3

1 2 1.022139 4.121 X 10"6 4.121 X 10-6 .
5 50 25.55534768 2.577475 x 10-3 2.576 x lO"3 -

20 800 408.8855628 0.6662508 0.6594 -
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a 2 from the Pauli approximation of the Dirac equation. Chen and Goldman [37,38] 

evaluated explicitly the relativistic corrections for a particular nuclear charge Z. In 

Table 2.1-3 we compare how well the Z 4-scaling holds for the present corrections and 

the Z  =  1 Dirac-variational corrections. The Z4-scaling is accurate to three significant 

figures for Z  <  20 at B  =  0. For B  >  0, the Chen and Goldman results can be scaled 

up to B  < 2 for Z  < 20 to two significant figures. The present corrections which do 

not agree well with the Chen and Goldman results at B  =  1 and Z  = 1, also do not 

scale well. It maybe necessary to include the next order term in a  to obtain a better 

Z-scaling.

2.1.5. Radiative Transitions

Transition strengths have not been as thoroughly investigated by previous authors 

as the binding energies. An extensive tabulation of wavelengths, dipole strengths, 

oscillator strengths, and transition probabilities is given in Forster et al. [21] for n < 3, 

addition transition data is given in Wunner et al. [22,72], Garstang and Kemic [2,3], 

Smith et al. [8], Brandi et al. [13], and Kara and McDowell [16]. Henry and O’Connell 

[12] give the transition wavelengths graphically, but apparently the probabilities are 

unpublished. Below we give some definitions and relations for computing transition 

results.

The length form of the electric-dipole (E l) transition operator between initial 

state ipe. and final state V’b with binding energies E& and Eh, respectively, is given by 

the familiar

D bb =  (^b|r|^) (2.1-35)

even in the presence of a magnetic field [8], while the velocity form

Dv = - ( W V t f . )  + fWb|B X  T \ A )  (2 J 36)
ab E&h

has been found by Smith et al. [8] to contain an additional magnetic-field-dependent 

term. The transition energy E&b =  E& — Eh and r  is the position vector of the
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electron with respect to the origin. Equation (2.1-36) can be obtained by introducing 

the uniform external magnetic field into the usual semiclassical formulation of the 

interaction of an atom with a classical radiation field [79]. We derive the new, more 

convenient velocity form

Dv = J « L  
ab E&b -  f  (mh -  m &)

(2.1-37)

as well as the new acceleration form

B 2n A _  ^<^bl?l& ) + ~ [(tM rsin 2# ^ )  +  (fo|rsinflcosflflhk)] 
ab ^ b [ ^ b - f ( m b - m a)] ’ (2‘1' 38)

where m a and m b are the magnetic quantum numbers of states ib& and fa ,  respectively. 

The absorption oscillator strength is defined as

/ b a = - ^ b | D ab|2,

while the transition probability is given by

A b  =

Hasegawa and Howard [80] obtained the oscillator strength sum-rule

g
£  Aa =  1 +  {mb -  m a)ma +  — (mb -  rnb)(fa \r2 sin2 9\fa).
b 1

We derive the new, more convenient sum-rule

E*b -  f  (mb -  ma) /ba
=  1 .

b E^b

Forster et al. [21] give the scaling relations for nuclear charge

(2.1-39)

(2.1-40)

(2.1-41)

(2.1-42)

D&h{Z ,B ) = Z - l Dab{Z = l ,B / Z 2) (2.1-43)

and

A<b(Z,B) = Z i A A {Z = l ,B / Z 2). 

20
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The oscillator strength is independent of Z . Wunner et al. [81] give the nuclear mass 

scaling relations, but these axe not usually applied since the correction is on the order 

of the computational uncertainties.

2.1.5.1. Results and Discussion

We have determined transition data from the wave functions obtained in Sec. 2.1.2 

using the basis of Eq. (2.1-10). Typical examples of transition probabilities are given 

in Table 2.1-4 with comparison to some previous calculations. The new results agree 

with the calculations of Forster et al. [21] to within their quoted accuracy of four 

figures. The earlier calculations of Kemic [3], Smith et al. [8], Brandi et al. [13], 

and Kara and McDowell [16] are not as accurate, but generally agree with the new 

computation. Due to  the difficulty in obtaining accurate relativistic corrections to  the 

energies as discussed in Sec. 2.1.4, the wavelengths include only finite nuclear mass 

corrections and therefore are reliable to only six significant figures.

Considerable pain was taken to ensure the convergence of the present results. 

Transition data were evaluated for different basis sizes and all three forms of the 

dipole operator. Convergence in the oscillator strength sum rules and amount of 

basis set cancellation were also checked. Table 2.1-5 gives some typical examples of 

the quality of basis set convergence.

A tabulation of transition wavelengths, dipole strengths, oscillator strengths, and 

transition probabilities for many spin-allowed transitions in hydrogen is given in Ap

pendix C. Appendix D contains some corresponding results for the hydrogenlike ion 

He+. Figures 2.1-1 and 2.1-2 display the wavelengths of the H I and He II Lya 

components, respectively.
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TABLE 2.1-4. Comparison of hydrogen transition probabilities and wavelengths in a

magnetic field to previous calculations. The finite proton mass correction is included.

Transition B  (au) A(108 s"1)
A (A)

Ref. [8] Ref. [16] Refs. [13,3] Ref. [21] Present results
Is -  2po 4.254xl0-3 6.27 6.27 6.17 - 6.261131

(10 MG) 1210.8 - - - 1215.611
0.02 - - - 6.324 6.3238

- - - 1214 1214.09
4.254X10-2 6.55 6.5 6.44 - 6.5341
(100 MG) 1204.0 - - - 1208.77
0.1 - - - 7.430 7.433

- - - 1184 1183.75

Is -  2pi 4.254X10"3 6.39 6.37 6.27 6.3715
1203.9 - - - 1208.68

0.02 - - - 6.918 6.9178
- - - 1181 1180.82

4.254X10-2 8.06 7.93 7.94 - 8.03555
1132.7 - - - 1137.10

0.1 - - - 12.35 12.353
- - - 1021 1020.72

Is -  2 p - i 4.254xl0-3 6.18 6.17 6.06 _ 6.1585
1217 - - - 1222.45

0.02 - - - 5.898 5.89803
- - - 1245 1245.26

4.254xl0-2 5.76 5.69 5.63 - 5.7405
1267 - - - 1271.92

0.1 - - - 5.780 5.780
- - - 1315 1314.78

0.2 - - - 5.979 5.97905
- - - 1341 1341.02

2p0 -  3d_i 4.254xl0-3 0.279 0.304 0.299 . 0.298
6731.9 - 6758.7 - 6755.10

0.02 - - - 0.2386 0.2386
- - - 7334 7333.50

4.254xl0-2 0.198 0.172 0.197 - 0.197
7807.1 - 7946.6 . 7834.24
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2p0 - 3  d0 4.254xlO"3 0.437
6532.8

0.02

4.254xl0-2 0.518
6095.1

0.1

6558.4

6085.8

0.4357398
6558.450003
0.459773
6439.95905
0.514392
6120.540
0.60131
5211.7

2 s - 2 p 0 4.254xl0-3 9.05-11 8.46-11 3.12-6
1.2583+7 -

0.02

4.254X10"2 7.05-5

0.1

6.50-5 1.77-4
1.3739+5

9.237-7
5.828+5

6.024-3
3.183+4

9.1019-11
1.26069+7
9.2388-7
5.82754+5
7.075259-5
1.3766323+5
6.02418-3
3.1833261+4
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TABLE 2.1-5. Convergence properties of hydrogen transition probabilities in a mag

netic field for various basis sizes.

B  (au) 1.:
i V

i 2p0
N iN n Ni

A(108 s"1) Cancellation15 /-sum  
Eq. (2.1-42)

Dipole
Form0

0 1 1 1 1 6.25808580 1.000000 - L,V,A
1 1 16 1 6.25808580 0.999994 1.000000 L

6.25808580 0.999998 1.000000 V
6.25808580 1.000000 1.010213 A

4.254X10"3 4 1 4 3 6.26107272 0.999269 0.9455173 L
6.26114302 0.999560 0.98916 V
6.26113253 0.999855 1.20561 A

5 3 4 5 6.26113107 0.99917 0.945517 L
6.26113104 0.99953 0.983976 V
6.26113077 0.99983 1.205606 A

5 3 5 4 6.26113105 0.999168 0.979014 L
6.26113106 0.999552 0.996562 V
6.26113116 0.999831 1.142353 A

5 3 6 5 6.26113105 0.99917 0.992341 L
6.26113105 0.999515 0.999330 V
6.26113103 0.99985 1.088363 A

2.0xl0"2 5 3 4 4 6.32380241 0.978616 0.948122 L
6.32380153 0.987343 0.984949 V
6.32378998 0.99592 1.19996 A

5 3 5 3 6.32380214 0.85475 0.97289 L
6.32380192 0.88541 0.99464 V
6.32379220 0.94231 1.15461 A

5 3 6 3 6.32380191 0.930225 0.991429 L
6.32380211 0.947132 0.999179 V
6.32379810 0.974396 1.091280 A

4.254xl0-2 5 3 6 3 6.53415888 0.862894 0.992587 L
6.53415973 0.919207 0.999311 V
6.53414084 0.958430 1.081406 A
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5 3 7 3 6.53415911 0.854815 0.997434 L
6.53415960 0.906720 0.999875 V
6.53412942 0.955495 1.048757 A

5 3 5 4 6.53415876 0.749634 0.995656 L
6.53415967 0.815375 0.999708 V
6.53414395 0.904091 1.061540 A

0.1 5 3 6 3 7.43273113 0.758149 0.997675 L
7.43274983 0.895996 0.999880 V
7.43263063 0.952099 1.043072 A

5 3 7 3 7.43273171 0.417092 0.995042 L
7.43274950 0.564747 0.999462 V
7.43267909 0.758904 1.057318 A

6 3 6 3 7.43274799 0.7940131 0.997675 L
7.43274834 0.898706 0.999880 V
7.43263065 0.963356 1.043072 A

*Nn and Nt are the number of expansion terms in n and I for the basis (2.1-10). The total 
basis size is Nn X N{.
bA measure of the cancellation is obtained from the ratio of the dipole moment determined 
by taking the absolute values of the expansion coefficients to the real dipole moment. A 
ratio of one gives no cancellation.
°L=length, V=velocity, and A=acceleration.
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2.2. Spontaneous Two-Photon Emission by Hydrogenlike Atoms

The investigation of two-photon processes, and in particular the 2s —> Is transi

tion for hydrogen and hydrogenlike ions, has been of considerable interest from the 

beginnings of quantum mechanics to the present day [82-89]. Until recently how

ever, little attention has been given to two-photon processes in strong magnetic fields 

[66,67].

In this section, the theory of two-photon processes as developed by Shapiro 

and Breit [85] and Tung et al. [89] along with previously available magnetic-field- 

dependent energy level values and dipole strengths are used to estimate the sponta

neous emission probability for the 2s —► Is transition of hydrogen and hydrogenlike 

ions in a uniform magnetic field ranging from 47 to 4.7 x 108 T. Published results 

from this section can be found in Stancil and Copeland [90].

2 .2.1. T h eo ry

The probability per second for spontaneous two-photon emission in the nonrel- 

ativistic electric dipole approximation from an arbitrary state =  |n'L'm!) to 

an arbitrary state ip^ =  |nlm ) in the frequency range dvi of the first photon with 

frequency ui is [85]

2107t6i ^  j  (n'£'m'\r • ex|n"^"m"){n"^"m"|r • e2|n£m)
A(vi)dvi =

h2c6 E  {■niipimii [ V-n'l'm',n"i"m" ^2

(n 'l'm ! |r  • e2\n"l"m"){n"t"m"\T • e ^n im ) } 

Vn‘Vm\n"l"zn" + J

2

dux, (2.2-1)

where u2 is the frequency of the second photon, \n"l"m") is the intermediate state, 

ei is the polarization vector of i/l5 and e2 is the polarization vector of v2. The sum 

over intermediate levels includes the bound as well as the continuum states. The 

two-photon frequencies are related by
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V \ V 2 —  V n 'i 'm ' ,rUm

=  V a (2 .2-2)

where v0 is the total frequency difference between states \n'l'm ') and |nlm ). The 

total two-photon transition probability is then given by [83]

Vo

We now let

A(i/i)dvi =  c i v ^ M d v i ,

where

Cl =
210tt6 
h?c6

and

M  =
j  [n'i'm!\v ■ ex\n"l"m")(n"l"m"\T  • e2|nlm )

ti, [ Vn'l'm.',n"l"m" + v 2

(n 'l'm '[r • <t2\n"t"m")(n"l"m"\T  • ^{n im }  } *
+

+  v l  J

is the effective matrix element.

For n's —* ns transitions {£' = I  = m ' = m  = 0 and t"  — 1), we have

M  =
“  * ( (n'00|r • ei|ra"lm ")(n"lm "|r • e2|n00)

n " = 2 m " = - l l  ^n'00,n"lm " +  ^2

(n'00|r • e2|7i"lm//)(n"lm /' |r  • e i|n 0 0 ) ' 12

(2.2-3)

(2.2-4)

(2.2-5)

(2 .2-6)

(2.2-7)
Vn '0 0 ,n " lm "  +  ^1

At this point we note that previous workers [83] neglected the Zeeman structure 

and set the matrix elements for individual m-states equal. We must retain the m- 

state structure here because of the large quadratic Zeeman splitting in the n"p states 

as a result of the strong magnetic field and the effect the field has on the different 

m -state dipole strengths. We define in cartesian coordinates the field to be parallel
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to the z-axis, B  =  (0 ,0 ,5 ) , and the polarization vector to be e =  (ex, ey, e.) which 

gives the effective m atrix element

1 1
M  =

oo f

E l y n ’OO y  nOO

n "= 2  I

i yn'OO ynOO 
n"10 n"10

I yn'OO ynOO 
n " ll  n " ll

+
.^n'00,n"l-l +  Vi ZVOO,n"l-l +  V\ 

1 1
+

^n'00,n"10 +  V i  ^n'00,n''10 +  V \

1
+

1
(2 .2-8 )

Vn < 0 0 ,n " ll +  V i Un i 0 0 ,n " ll +  V \

where X , Y, and Z  are dipole m atrix elements. Since for Am =  0 transitions the 

photon is linearly polarized with the field [68], we define

^n''ioes =  fa'00|r • e|n"10). (2.2-9)

Likewise, for Am  =  ±1 transitions the photon is linearly polarized perpendicular to 

the field so that

X ^ e *  =  (n'00|r • e |n " ll) (2 .2- 10)

and

=  (n'00|r • e|7i"l-l). (2 .2- 11 )

For the total two-photon spontaneous emission, we average over all orientations 

of the polarization. Therefore, we require

^ 1 X^2 X — e l v e 2y — e lx e 2I — 6 l e 2

which gives ^  • e2 =  3eie2. 

Defining for Eq. (2.2-8)

s ,(B )  =  £  1 3 S 1 3 Z .
n "= 2

and similarly for Sx and Sz gives

1
+

1

.IV00tn"l-l +  Vi iV00,n"l-l +  v \

(2 .2-12)

(2.2-13)
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U ( B )  =  |(e ,e!)! |. ,s |{S»(B) +  S=(B) +  S .(B )}JU  

1 [ |{ 5 ,(» )  +  S,(® ) +  S ,(B )} (2.2-14)
avg3

The sums Sx, Sy, and Sz are functions of the frequencies v\, z^, and i/n>oo,n"im" 

and the dipole m atrix elements X , Y , and Z . The matrix elements and z/n|oo,n,,im" 

are functions of the magnetic field. Therefore, the total transition probability can be 

written

1 M B )

■^n00,n'00= ^ J  A (v i , B )dvx 
0

M B )

= 2Cl /  ~  vi f M { vu B )d v i. (2.2-15)
0

Eq. (2.2-1), which leads to Eq. (2.2-15), was derived in Ref. [82] using second- 

order perturbation theory for an atom interacting with a radiation field, but not with 

an external, homogeneous magnetic field. The derivation incorporated the standard 

rotating wave approximation and the assumption that the populations of the inter

mediate states are much less than that of the final state. It can be shown that both 

approximations are valid for the application of a magnetic field.

2.2.2 Calculations

Prior to the  work performed in Sec. 2.1 the published magnetic-field dependent 

computations were available over the field range of 47 to 4.7 x 108 T and consist of 

energy levels with n  <  4, but only dipole transition strengths for n  <  3. Contin

uum transition calculations are available only for a few field strengths (2000 T [59], 

1175-11,750 T [60], 2 .35xl07 T, and 4 .7x l09 T [57,58]). We neglect the continuum 

contribution and include only the 2p and 3p levels in the sum for the calculation of M . 

A sum over I" with I" =  1,3,5, .. .is actually required in Eq. (2.2-7) since the interme

diate states are no longer restricted to p-states and virtual transitions are no longer 

restricted by electric dipole selection rules. Transitions with A£=3,5, ...becom e al

lowed for atoms in strong magnetic fields since L is no longer a good quantum number
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and the states contain admixtures of different ^-character. Though the results of Sec. 

2.1 could allow the inclusion of higher A£  transitions, their contribution is probably 

negligible and are not included here.

The exact calculation of the 2s —> Is  spontaneous emission in the field-free case 

results in a value of 8.2284 s-1 [89]. If only the 2p term is included in the sum M  

a result of 11.71342 s-1 is obtained while inclusion of both 2p and 3p terms gives 

10.09387 s-1 (about 20% too large). If higher np terms and the continuum are 

included, the result will reduce to the exact value as n —► oo. This reduction in 

the probability with n, for n  >  3, occurs because the contribution given by the 2p 

term is opposite in sign from the remaining np terms and the continuum [88]. If 

at worst, the same error occurs for the transition rate under the application of an 

arbitrary magnetic field, then using only the 2p and 3p data we can obtain an upper 

limit to the effect of a magnetic field on the 2s —► Is emission rate. Actually, our 

calculation improves with field strength as shall be discussed below. The reliance of 

our semi-empirical method on the available magnetic-field-dependent atomic data can 

be avoided by using the variational procedure of Victor and Dalgarno [91]. Though 

the variational method has been successfully applied to two-photon processes in the 

field-free helium isoelectronic sequence [91-93], it is not pursued here.

To solve Eq. (2.2-15), we have generated code in REDUCE 3.3, an algebraic 

manipulation software package [94]. The uncertainty in the results are independent 

of the machine calculation and depend only on the uncertainty of the previously 

published energy levels (10-4%) and transition strength data (0.1%), the appropriate 

physical constants (<  10_6%), and the limit of the sum in the effective matrix element 

M .

A problem arises because M  contains singularities. The current integration algo

rithm in REDUCE is not able to handle singularities. Note this is not a numerical 

integration technique; REDUCE actually returns an analytic function, but evaluating
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it over an interval containing one or more singularities cannot be guaranteed to give 

a correct result.

A singularity occurs when a photon is in resonance with an intermediate state. At 

or near resonance, the natural linewidths of the intermediate states must be included 

in Eq. (2.2-1) [95]. This is done by replacing the denominator in Eq. (2.2-1) by

{vn'Vm‘ +  Vi)2 +   j  > (2.2-16)

where r„»7< i s  the FWHM natural linewidth of the intermediate level and i = 1,2. 

The natural linewidths are calculated from the magnetic-field-dependent energy levels 

and matrix elements and are given in Table 2.2-1. The inclusion of Eq. (2.2-16) re

moves the singularities, but large resonances still occur when V{ =

Currently, an integration library for REDUCE can integrate functions involving 

square roots, but unfortunately it cannot handle products of square roots as intro

duced by inclusion of Eq. (2.2-16) in Eq. (2.2-15). As a consequence, the integration 

in Eq. (2.2-15) was performed in a piece-wise fashion. Regions near the resonances 

were evaluated with the IMSL numerical algorithm QDAGP with Eq. (2.2-16) in

cluded in Eq. (2.2-15), while REDUCE code was used for regions away from the 

resonances without including Eq. (2.2-16). The matching occurred at photon fre

quencies ± e rn-7»m/< from each resonance. The parameter e was varied over the range 

from 10 to 105 with a resulting variation in the total transition probability of no more 

than 0.06%, but more typically about 0.01% except for the low field case where the 

uncertainties in the Zeeman splitting calculations of previous authors are on the or

der of the splitting. Numerical integration contributed an uncertainty only of 10_6%. 

So within the limit of the sum in M , the uncertainty in the two-photon transition 

probability is dominated by the dipole moment uncertainty. The results are reported 

to this corresponding accuracy.
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TABLE 2.2-1. Energies i/j, FWHM linewidths T, and magnitudes A u 2a(vi) of the 

first two resonances for the 2s —► Is hydrogen two-photon transition.

B  (au) 2po resonance 2_p_i resonance
_______ ^i(au) r a(10~8 au) Ai<2,(yi)(an~1s-1) yi(au) Ta (10~8 au) Ai32a(^i)(au~1s~1)
0.0002 - - - 0.0002001 1.515 1.938+6
0.002 0.0000096 1.504 1.33+3b 0.002004 1.504 1.959+9
0.014 0.0003871 1.524 1.146+8 0.00710 1.448 7.110+11
0.02 0.000785 1.532 9.222+8 0.01020 1.430 2.096+12
0.04 0.002955 1.576 4.824+10 0.02071 1.393 1.652+13
0.06 0.00614 1.640 4.220+11 0.03140 1.385 5.148+13
0.1 0.01432 1.802 5.902+12 0.0528 1.401 1.839+14
0.14 0.02334 1.982 2.094+13 0.0734 1.423 3.630+14
0.2 0.03620 2.269 7.204+13 0.1016 1.448 6.026+14
0.4 0.0651 3.199 2.916+14 0.1722 1.457 7.498+14
0.6 0.0809 4.077 3.940+14 0.2219 1.427 5.940+14
1 0.0996 5.710 4.472+14 0.2962 1.367 5.028+14
1.4 0.1115 7.205 4.478+14 0.3543 1.321 4.558+14
2 0.1238 9.301 4.266+14 0.4226 1.272 4.166+14
4 0.1469 15.50 3.550+14 0.4930 1.181 3.594+14
6 0.1595 20.75 3.082+14 0.545 1.133 3.318+14
10 0.1738 29.69 2.512+14 0.621 1.073 3.014+14
14 0.1820 37.33 2.164+14 0.681 1.032 2.828+14
20 0.1896 47.16 1.833+14 0.750 0.988 2.640+14
40 0.2006 72.15 1.304+14 0.905 0.897 2.300+14
60 0.2047 90.70 1.060+14 1.008 0.841 2.114+14
100 0.2075 118.6 8.134+13 1.155 0.766 1.899+14
200 0.2077 164.4 5.672+13 1.380 0.662 1.634+14
400 0.2044 218.8 3.962+13 1.636 0.555 1.408+14
1000 0.1967 302.9 2.496+13 2.024 0.423 1.156+14
2000 0.1894 374.2 1.786+13 2.353 0.334 9.980+13

aDetermined from Refs. [20,21]
bThe notation 1.33+3 corresponds to 1.33 X 103.
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2.2.3. Results and Discussion

2.2.3.1. Transition probabilities for hydrogen. Fig. 2.2-1 displays a plot of the 2s —> 

Is two-photon spontaneous emission transition probability A ^ a  of atomic hydrogen 

as a function of the magnetic field as calculated from Eq. (2.2-15). Numerical results 

are presented in Table 2.2-2. At B  =  1, the cyclotron radius is equal to the Bohr 

radius.

For B  =  2 x 10-4 there is little change in the transition probability Ai^a from the 

field-free case. Between B  =  2 x 10-3 and 2 x 10—1, Ai^a quickly climbs six orders 

of magnitude to 1.626 x 107 s"1. Als2, reaches a maximum of 1.537 x 108 s_1 at 

B  = 60 (1.41 x 106 T) and decays slightly to 1.055 x 108 s-1 out to B  = 2000 (4.7 x 108 

T). Compare this behavior to that of the 2p.a —► Is  one-photon transition probability, 

which has a field-free value of 6.26 x 108 s_1 and decreases slightly to a value of 

1.38 x 108 s-1 at B  = 2000. In the high field region, Al323 is comparable in magnitude 

to the 2p.i —> Is  one-photon transition probability. This is greater than seven orders 

of magnitude change from the field-free case. This dramatic increase in transition 

probability can be attributed to the ^-character mixing of the states which results in 

“stealing” of transition strength. This increase might suggest for a physical system 

with a magnetic field in the region of 104 to  109 T , that two-photon transitions may 

contribute significantly to an observed spectrum. A similar effect has been shown to 

occur by Alexander and Meszaros [66] for electron cyclotron emissions in a field of 

109 T.

2.2.3.2. Hydrogen two-photon spectra. Fig. 2.2-2 displays plots of the spectral 

distribution A i ^ J 'i )  as a function of the frequency of the first photon v\ (in atomic 

units) for various field strengths. The dash line includes only the 2p terms in the 

sum of M  while the solid line includes both the 2p and 3p terms. The first plot 

(B  =  2 x 10~4) is similar to that given by Tung et al. [89] for the field-free case except 

for the resonances near 0 and 0.375. The spectral distribution is zero at 0 and 0.375.
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TABLE 2.2-2. Two-photon 25 —> Is spontaneous emission transition probabilities 

j4.i,2» for bydrogenbke atoms at various magnetic field strengths and nuclear charge 

Z. The results were obtained by including 2p and 3p contributions to the sum in 

Eq. (2.2-7). The data in brackets include only 2p  contributions. Where bracketed 

results are not given, was not changed by inclusion of 3p terms to within the 

precision indicated.

B  (au) Z 4l*23(s_1) B  (au) Z 4l*23(s-1)
0.0002 1 10 [11.74] 40 1 1.509+8
0.002 1 56 [58.08] 60 1 1.537+8
0.014 1 1.615+4* 100 1 1.537+8
0.02 1 4.712+4 200 1 1.481+8
0.04 1 3.625+5 400 1 1.373+8
0.06 1 1.130+6 1000 1 1.195+8
0.1 1 4.188+6 2000 1 1.055+8
0.14 1 8.765+6
0.2 1 1.626+7 0.0008 2 6+2 [7.490+2]
0.4 1 3.179+7 0.008 2 1.3+3 [1.491+3]
0.6 1 3.853+7 0.056 2 2.589+5 [2.591+5]
1 1 5.084+7 0.08 2 7.544+5 [7.547+5]
1.4 1 6.007+7 0.8 2 2.602+8
2 1 7.063+7
4 1 9.307+7 0.0018 3 7+3 [8.527+3]
6 1 1.063+8 0.018 3 1.0+4 [1.229+4]
10 1 1.222+8 0.126 3 1.315+6 [1.317+6]
14 1 1.314+8 0.18 3 3.822+6 [3.826+6]
20 1 1.398+8 1.8 3 1.317+9

“The notation 1.615+4 corresponds to 
1.615 X 104.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

0©

cd
C
.2
3

X>
’£V3

o
CL

100 100 10

80 80 ,2
10'

60 60
i10

40 40 B =  1.4x10B = 2x10
,o

10’20 20

i10
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

10

10

10

10”

10‘

: 10 :

: (d)
*

(e)
■

- 102
w —

-

:
-------- ---- --

:

■ - 101 -

B  = 2x102 ;
B  = 4x102

- 10° -

■1 » ■ « « 1 ■ . . . 1 . i i_i
■

10-1 1 ■ 1 1 1 1 1 1 1 1 «_« » 1 i t .1
•

10 ’

nr

10

10"

10 "

B = 6x10

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
energy o f  the first photon (au)

FIG. 2.2-2. Spectral distribution function for various magnetic field strengths. The dashed line includes only 2p  contributions 
while the solid line contains both 2p  and 3p  contributions.



c  o

cm

x o ©

O
CM

c

C
Q

"5.
y:

<D

C
SO
C
C0)

c cX

CN

u3

Cc
U
cmiCM
CM

b
E

( s m)  uoijnqujsip jBJioads

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



oc

00

VC

<NCN

x t c oX c

00

O

CT

x o o X

00

Cl

3c3

C
Cr-
a
t:

C
>»CO
o

■aU

cc
U
<Nt<N
(N
bM
U.

( ( s nB) uopnqujsip pmosds

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This is as expected since both cases correspond to 2s-Is single-photon transitions 

(where the photon frequencies are forbidden by dipole selection rules). The spectral 

distribution is maximum (neglecting the resonances) when the two photons have equal 

frequencies. A finer energy resolution of this plot reveals features at low and high 

energy (see Fig. 2.2-3).

As the magnetic field is increased these features are resolved more readily. The 

resonances occur as a consequence of the Zeeman interaction removing the m -state 

degeneracy of the 2p level. The magnetic field pushes both the 2p0 and the 2p_i states 

below the 2s level. Between the 2s and Is levels there is an infinite distribution of 

intermediate virtual states. W ith the applied magnetic field, two of these virtual 

states correspond to the two real discrete 2po and 2p_i states resulting in resonant 

enhancements of the two-photon transition probability. For example, consider the 

case where B  =  1.4. The resonances at 0.1115 and 0.638 are due to an interaction 

with the 2po state while those at 0.3543 and 0.3952 are due to the 2p_i state. The 

2pi state does not contribute a resonance because the magnetic field pushes it into 

the continuum. The minima at 0.3471 and 0.4025 result from an interference effect 

between the two resonant pathways: 2s —► 2po —> Is and 2s —> 2p_i —* Is. Table 2.2-1 

gives the energies, linewidths, and magnitudes of the first two resonances for each of 

the field strengths in Fig. 2.2-2 while Table 2.2-3 gives the energies and linewidths 

of the minima. The minima linewidths are FWHM with respect to the magnitude at 

\V -

The frequencies of the resonances do not depend on the number of terms used for 

the sum in M , but the frequency and linewidth of the minima do. When 3p terms 

are included, the frequencies of the minima shift generally by < 0.6% of vQ from the 

2p only values. For B  < 1, the shift is to lower energies for the first minimum and to 

higher energies for the second. The reverse is true for B  >  1. The linewidths decrease 

for B  < 1 by usually < 4%, but for B  >  1, they may increase by as much as 30%.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



q
04

O 1

m
o

or)

( ,  Sj TO) ( ‘a  f \

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FI
G

. 
2.

2-
3.

 S
am

e 
as 

FI
G

. 
2.

2-
2 

bu
t 

at 
re

du
ce

d 
fr

eq
ue

nc
y 

sc
al

e 
to 

sh
ow

 
low

 
fr

eq
ue

nc
y 

m
in

im
um

 
an

d 
re

so
na

nc
e 

at 
B

 = 
2x

10
 

.



TABLE 2.2-3. Energies V\ of the minima., their linewidths T at half the magnitude 

and the total 2s —> Is energy difference v0 for hydrogen. The minima 

and linewidths were determined with 2p and 3p contributions included in M .

B (au) First minimum 
i/l(au)

Second minimum 
z/i(au)

T(au) v0 (au) B

0.0002 0.0000537 0.3450 0.000008b 0.3750001
0.002 0.000571 0.3745 0.000781 0.375008
0.014 0.004228 0.3717 0.00592 0.3756311
0.02 0.00616 0.3708 0.00810 0.3762758
0.04 0.01313 0.3668 0.01448 0.3798607
0.06 0.02088 0.3644 0.01955 0.3852401
0.1 0.03804 0.3614 0.02691 0.3994374
0.14 0.05605 0.3599 0.03182 0.4159167
0.2 0.08245 0.3589 0.03684 0.4413948
0.4 0.1542 0.3613 0.04920 0.5154392
0.6 0.2069 0.3679 0.05965 0.5746970
1 0.2846 0.3862 0.09785 0.6707001
1.4 0.3452 0.4044 0.1663 0.7494414
2 - - - 0.84827
4 0.4999 0.5920 0.01198 1.0919834
6 0.5505 0.7200 0.01177 1.270596
10 0.6265 0.9125 0.009915 1.538912
14 0.6845 1.061 0.008570 1.7450275
20 0.7525 1.239 0.007290 1.991594
40 0.9065 1.657 0.003952 2.562853
60 1.010 1.950 0.003225 2.958864
100 1.156 2.378 0.003299 3.532881
200 1.381 3.078 0.002262 4.457590
400 1.637 3.934 0.001590 5.570125
1000 2.024 5.340 0.000955 7.366195
2000 2.353 6.645 0.000605 8.99824

aErom Ref. [20]
bThere is only one resonance at this field strength. The linewidth is determined with respect 
to the local maximum of energies less than the minimum. See Fig. 2.2-3.
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Results given in Table 2.2-3 include contributions from 2p  and 3p  terms.

Both resonances and minima have been observed in other hydrogen two-photon 

calculations, but without a magnetic field and only for higher state transitions. For 

example, Tung et al. [89] found resonances for the 3s —> Is spontaneous emission 

due to resonant transitions to the 2p level. In the 4s —» Is spontaneous emission, 

resonances and interference minima occur through an interaction between the 3p and 

2j> levels. Experimentally, both of these effects have been observed in field-free two- 

photon absorption in sodium vapor between the 3s and 4d levels where the 3p 2 P i 

and 3p 2P i levels are the resonant states [62].

Another interesting feature can be seen in Fig. 2.2-2 by comparing the sequence 

of plots from B  =  1.4 to 4. In the first instance, and for all preceding plots, the first 

minimum is between the first and second resonances. At B  =  2, the minima have 

disappeared and the second and third resonances appear to overlap. In the latter 

instance, and for all plots thereafter, the first minimum appears to be between the 

second and third resonances. This shifting of the minimum is due to the migration 

of the 2p_! level from near the 2s level to halfway between the 2s and Is  levels (at 

B  ~  1) to near the Is level. Actually, the minimum is not shifting its relative 

position with respect to the resonances, but it is the second and third resonances 

that are switching places because the second resonance is migrating towards higher 

frequency while the third is migrating towards lower frequency. The resonances pass 

each other at B  ~  1 and interesting enough this is the field strength that gives a 

cyclotron radius approximately equal to the Bohr radius.

Comparing the plots in Fig. 2.2-2 reveals the cause of the increase in transition 

probability with field strength. The energy difference between the 2s and Is levels 

increases from 0.375 to 8.998 due to the rapid increase of the Is level binding energy 

with field strength. Neglecting resonances, the maximum of the spectral distribution 

increases from 64 to 11280 au-1s-1. But, most importantly, the resonances themselves

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



contribute significantly and are dominant for B  >  0.014. The above effects collectively 

increase the spectral distribution curve whose area is the total transition probability.

Inclusion of the higher n"p terms (n" >  4) and the continuum in the sum in M  

will not affect the general shape of the spectral distributions, but will only slightly 

reduce the magnitude. Of the n"p states, only 2p0 and 2p_i can reside between the 

2s and Is  states for all values of B . None of the higher n"p levels cross the 2s 

level and therefore will not produce any additional resonance or interference features. 

Since the resonances give the dominant contributions to the transition probability 

for large fields, the exclusion of the higher n"p terms and the continuum will have a 

negligible effect for B  >  0.014 as can be seen by comparing the transition probabilities 

calculated with and without the 3p terms given in Table 2.2-2. Other n"£"-states with 

I" =3,5, . .  .and m" ~  —I" will cross the 2s level, but with negligible dipole strengths.

2.2.3.3. Cascade emission o f the 2s level. When an intermediate state \n"£"m") 

corresponds to a real state and has energy between the \n'l'm') and |nlm ) states, 

cascade emission from the \n't'm') state (the 2s level in our situation) must also be 

considered as a possible decay route. In the field-free case, cascade emission is not 

important since A 2p2s =  0. Even, if the Lamb shift is considered, Shapiro and Breit 

[85] have estimated that A 2p2, =  2 x  10-1° s-1 , ten orders of magnitude smaller than 

the two-photon decay rate and therefore negligible. Conversely, cascade emission 

becomes important when a strong magnetic field is applied.

In the nonrelativistic dipole approximation, decay of the 2s level can only result 

from the 2s —» Is two-photon emission and the cascade emissions 2s —* 2po —> Is 

and 2s —* 2p.\ —> Is. The total decay rate is therefore the sum of the rates of the 

three possible decay routes. Fig. 2.2-4 plots the branching ratios r; for each of the 

decay routes as a function of magnetic field. At the low-field limit, the two-photon 

ratio 7*! is unity while the cascade ratios, r 2 and r 3, approach zero as expected. For 

B  > 2 x 10—2, is constant at 0.193 and remains an important contribution to the
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total decay rate. The ratio r 2 remains small for 5  < 0.2, but becomes the major 

rate for B  >  0.4. The ratio r3 is the major decay route between B  =  2 x 10-3 and 

2 x 10—1, but is small between 5  =  2 and 2000.

2.2.3.4. Higher multipole and other corrections. The inclusion of relativistic effects 

to the field-free 2s —> Is two-photon emission is on the order of 7 x 10~4 s-1 [96], but 

may become important for B  > 100 [37]. Contributions from higher multipole terms 

are less than 3 x 10-1° s-1 at zero field [96]. Recent work by Cuvelliez et al. [39] has 

shown that magnetic dipole (M l) and electric quadrupole (E2) transitions are weak 

for field strengths between 5  =  2 and 5  = 2000 except for E2 A m  =  0 transitions. 

The E2 2s —> Is transition approaches a probability of 107 s-1 at 5  =  2000, which 

is about 10% of the two-photon A u 2i rate and therefore contributes 2% to the total 

2s decay. In addition, a two-E2-photon transition may contribute to the total two- 

photon rate and need to be included in Eq. (2.2-7), but the contribution is probably

no greater than 0.01%. Decay by a one-photon M l transition at zero field is only

2.4957 x 10-6 s-1 [97], but may become important in the intermediate-field regime 

for 5 ^ 1 .

2.2.3.5. Hydrogenlike ions. Results for hydrogenlike ions with nuclear charge Z  

can be obtained from the hydrogen values using the relations for the energy, dipole 

moment matrix element, and one-photon transition probability given by Eqs. (2.1-14), 

(2.1-43), and (2.1-44), respectively, and the linewidth

r  (Z, 5 )  =  Z 4T(Z  =  1, B IZ 2). (2.2-17)

For 5  =  0 [85],

Au2a(Z) =  %6A u 2>{Z =  1), (2.2-18)

which can easily be obtained from the relations for the effective matrix element and 

the spectral distribution
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M u is iy i ,Z )  — Z  8M ia2a(i/l)  z  — 1) (2.2-19)

and

•^is2«(^i) Z) = Z 4A ia2 ,(vi,Z  =  1). (2.2-20)

For n's —> Is transitions with n' >  3, Eqs. (2.2-18) to (2.2-20) are not valid since 

there are resonances between n' and n  =  1 created by real n"p states. The resonances 

require that the denominator in Eq. (2.2-1) be replaced by Eq. (2.2-16). Now E  (or v) 

scales as Z 2 while T scales as Z A and thus near the resonances the T-term dominates

the z/-term in Eq. (2.2-16). Thus Eqs. (2.2-19) and (2.2-20) are replaced near the

resonances by

M Un.,{vu Z)  =  Z ~u M i,ni,(vh Z  = 1), n' >  3, (2.2-21)

and

Z) = A imis(u i ,Z  =  1), 71' >  3. (2.2-22)

Eq. (2.2-22) reveals the unexpected result that at a resonance the spectral distri

bution is independent of Z.  Therefore, the spectral distribution magnitudes given 

in Table 2.2-1 are appropriate for all Z, but with their energies shifted by Z 2 from 

the value for hydrogen. Since the resonances dominate the spectral distribution, the 

two-photon transition is then given approximately by

A lm, , (Z ) = Z 2A lm.s(Z  = 1), n' > 3, (2.2-23)

which scales as Z 2 instead of Z 6 as in Eq. (2.2-18).

When a large magnetic field is applied, resonances appear as discussed above for 

the 2s —» Is case similar to the n's  —> Is  field-free case with n' > 3. So, for B  > 0.014 

and near the resonances we have

Z, B)  =  Z  12M u2s{v-i , Z  = 1 ,B / Z 2), (2.2-24)
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and

Ai,2t (v i ,Z ,  B )  = Au2a(v i ,Z  =  1 , B / Z 2), (2.2-25)

and since the resonances dominate the spectral distribution

A 1s2,{Z, B)  w Z 4A U2s{Z = 1, B / Z 2), B  >  0.014. (2.2-26)

Eq. (2.2-26) scales as Z 4 instead of Z 2 because the integration over energy in Eq. 

(2.2-15) is dominated by the linewidth which scales as Z 4. So, the total two-photon 

transition probability can be obtained for all hydrogenlike ions when B  > 0.014 using 

Eq. (2.2-26) and Table 2.2-2. Some values for He+ and Li2+ are given in Table 2.2-2 

for B  < 0.014.
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2.3. Two-Photon Polarization of Alkali Atoms

It is well known that the application of a strong, laboratory-strength external mag

netic field (B  <  10 T) to an atom and the subsequent probing of the highly-excited 

Rydberg states results in rich, seemingly chaotic spectra containing a multitude of 

resonance and interference features (for a compilation see Gay [98]). These features 

are attributed to  Rydberg progressions converging to many Landau thresholds cre

ated by the applied field and are a consequence of the quadratic Zeeman splitting of 

levels near the continuum.

In the absence of a magnetic field, interference effects in two-photon experiments 

were first observed by Bjorkholm and Liao [62]. They measured the fluorescence from 

the Na 4p 2 P j  level after a 3s 2S i  -+ 4d 2 D j  excitation using two counterpropagating 

lasers tuned to resonance near the intermediate 3p 2 P j  levels. At a frequency between 

the intermediate 2 P j  levels (~  larger than the Na D2 frequency, where ( is the 2P j  

spin-orbit constant) a minimum in the fluorescence was observed and was attributed 

to the destructive interference of the intermediate levels. About two decades ago it 

was noted that high precision measurements could be made by obtaining polarization 

spectra. Tam and Au [63] investigated Rayleigh scattering in Na and found a reversal 

in the polarization to ~  —100% at the excitation frequency observed by Bjorkholm 

and Liao [62] for the fluorescence minimum. Later, Zei et al. [64] performed a two- 

photon experiment similar to Bjorkholm and Liao [62], but measured the polarization 

and found an analogous reversal to the one observed by Tam and Au [63].

In this section, we regress from the strong field regime to extend the previous two- 

photon investigation of Sec. 2.2 to study this depolarization phenomena for low-lying 

levels in H and the alkali-atoms Li and Na in the presence of laboratory-strength mag

netic fields. Published results from this work are to appear in Stancil and Copeland
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[99]. For this section units typical for experimentalists are used, i.e. energy or fre

quency u  in cm-1 and magnetic field strength in T.

2.3.1. T h eo ry

The probability for an atom in an initial level |a) to be excited via a two-photon 

absorption to a final level |6) with an intermediate level |i) is given within the non- 

relativistic dipole approximation analogous to Eq. (2.2-1) by

2

(2.3-1)

where Ii and I 2 are the intensities of the incident laser beams of frequencies uii and 

w2 with polarization vectors e: and e2, ion and W{a are the gross structure frequency 

differences, the sums are taken over the various sublevels of |a), |6), and Jz), and K '  

is a proportionality constant. The geometry of the problem is displayed in Fig. 2.3-1 

with the excitation scheme given in Fig. 2.3-2. Equation (2.3-1) as discussed in Sec. 

2.2.2 is obtained from second-order time-dependent perturbation theory assuming the 

incident intensities to be weak and the population of \b) to be negligible compared to 

|a ) .

For laboratory situations, we are interested in field strengths less than or equal 

to those corresponding to the Paschen-Back regime discussed in Sec. 2.1.1. More 

specifically, we will study the transition between the weak-field region or anomalous 

Zeeman effect and the Paschen-Back regime. In the weak-field regime, the total

angular momentum j  is a “good” quantum number while I  and s are not since the

orbital and spin angular momentum are coupled. The transition selection rules are

A j  = 0, ±1 (2.3-2)

and

A n i j  =  0 ,± 1  (2.3-3)

where r r i j  = m  + m ,  is the projection of j  onto the z-axis.
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FIG. 2.3-2. Two-photon excitation scheme.
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The problem becomes a ten-level atom (eight levels contributing to the excitation 

scheme as shown in Fig. 2.3-2) in the coupled representation |nljn ij)  basis. In the 

weak-intermediate field regime the spin-orbit and magnetic perturbations must be 

treated simultaneously. The energy splittings are as given by Condon and Shortley 

[100]. After a straight-forward, but tedious, exercise in angular momentum algebra, 

the transition probability with the polarization vectors of the incident photons parallel 

is given by

<  =  K h h
Sa ( B ) /S a( 0) S a (B ) /S a ( 0)

Aw +  C/2 +  (R + + JL )/4  -  A pBB  +  ( £ + -  iL ) /4  +  A

+  2 S c (B ) /S c (0) 2Sc (B)JSc(0)
Aw +  C/2 -  (R + - R - ) j 4 -  A iibB  -  (R + +  R . ) / 4 +  A

+ Sb (B ) /S b ( 0) Sb (B ) /S b (0)
Aw — fip B  -(- C/2 +  R - /2  — A A

(2.3-4)
| 2SD( B ) /S D(Q) | 25o (B )/5 g (0)12

Aw — fiBB  -(- C/2 -  A —R —/2  -)- A 

and the probability with the polarization vectors perpendicular is given by

W 1 =  K h h \  (s 4 B ) S E ( B ) I S 4 0 ) S Em i n
Aw — 2pBB  +  C/2 +  (R+ +  R - ) j  4 — A 

(Sb (B )Sf (B )/Sb(0)S f (0))1/2 
A

(Sc (B )S g( B ) /S c(0)Sg(0))1/2 (Sd (B )S h (B ) /S d (0)Sh (0))1/2)

+

Aw — 2fiBB  + C/2 — (R+ — R ~ ) / i  — A - R . / 2  + A

\ S a (B )S e ( B ) /S a (0)Se (0)Y /2 (SB(B )SF(B)JSB(0)SF(0 )y /2

+

fiBB  -|- {R+ — R - ) j 4 +  A Aw -|- fiBB  +  C/2 +  R - /2  — A

(Sc (B )S G( B ) / S c ( 0 ) S G m 1/2 
fiBB — (R+ +  H_)/4 +  A

(5d(5)5h(B)/5b(0)5h(0))1/2
Aw +  fiBB  +  C/2 — (R+ — jR_)/4 -  A j J (2‘3' 5^

where fiB is the Bohr magneton, A is the detuning of the second photon from reso

nance with the 2Pi(rrij =  - | )  state while wx is held fixed at the nas 2S\.{m,j =  - | )  

nip 2Pi{ rrij =  — | )  frequency, Aw =  w ^—wto, SX(B)  are the magnetic-field-dependent 

line strengths with x = A , . . . , H  being labels for the transitions shown in Fig. 2.3-2, 

and
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R± = (4h2bB 2 ±  4(fiBB  +  9C2)1/2. (2.3-6)

Relations for the line strengths can be found in Darwin [101] and the reduced ma

trix elements of the dipole operator are absorbed into the K '  of Eq. (2.3-1) to give 

K  in Eqs. (2.3-4) and (2.3-5). The probabilities W^a and are proportional to 

the fluorescence intensities J|| and I±, respectively, which would be monitored in an 

experiment as shown in Fig. 2.3-1.

The linear degree of polarization is then given by

(2.3-7)
h + I ±  w l + W £ ,

2.3.2. Results and Discussion

Figures 2.3-3 and 2.3-4 display two-photon polarization spectra of an alkali atom 

for various scaled magnetic field strengths B / (  for scaled detunings A /(  near reso

nance with intermediate 2P j  levels. The (-scaled spectra can be obtained since the 

only parameters in Eqs. (2.3-4) and (2.3-5) that depend on the atom’s structure are 

(  and Aw. Aw has a negligible contribution.

We reproduce the usual polarization reversal for B / (  = 0 as obtained by Zei et 

al. [64] and others. This feature occurs at A / (  ~  Two additional depolariza

tion features become visible when a magnetic field is applied. The first appears near 

A /(  ~  0 for weak fields and is a result of interference among the anomalous Zee

man split components of the 2 P i  level. The depolarization increases and shifts to
2

more negative detunings with increasing field strength as shown in Fig. 2.3-3. The 

second depolarization feature appears near A / (  ~  |  and can be attributed to Zee

man split 2P |(m  =  ± | )  levels. This depolarization feature also increases with field 

strength, but its detuning decreases to slightly less than f  for weak to intermediate 

field strengths before finally increasing for large fields.

Tam and Au [63] found that Pi in their Na ((  ~  11.5 cm-1) Rayleigh scattering 

experiment was unaltered for B  ~  0.01 T. It is clear from Fig. 2.3-3 that a resolved
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depolarization feature will only be observable for B  > 1 T. Even for Li where (  ~  

0.224 cm-1, B  > 0.05 T is required.

Depolarization near A ~  in the absence of a field has been previously observed. 

In the work of Zei et al. [64], theory predicted Pi ~  60% for A ~  |£ ,  but their 

measurement revealed a dip to Pi  ~  0%. Cook et al. [65] have recently attributed 

this depolarization to collisional processes occurring in the relatively high density 

(~  1016 cm-3) conditions of Zei et al.’s experiment. The depolarization may be the 

result of collisional disalignment of the 3p 2Pi  level. Cook et al. [65] performed a 

similar two-photon polarization experiment, but with a gas cell containing Na at a 

density of ~  1011 cm-3. They obtained Pi = 58% at A =  §£ (Note Cook et al. 

defined the detuning with respect to the 2Pi  level) in close agreement with theory. 

They next introduced Ar as a buffer gas in the Na cell and measured Pi  as a function 

of pressure. A depolarization increase was observed at A ~  |£  with increasing Ar 

gas pressure. This suggests that to investigate the magnetic effects proposed here, 

densities of <  1011 cm-3 would be necessary to minimize collisional depolarization. 

Collision induced transitions between 2Pj Zeeman levels in strong magnetic fields have 

been previously investigated by Gay and Schneider [102].

In Figs. 2.3-3 and 2.3-4 the spin-orbit depolarization feature also reveals interest

ing magnetic-field-dependent behavior. The feature migrates toward A /£  =  0 and 

decreases (polarization increase) with field strength, while near B / (  =  30 T /cm -1, 

the feature has essentially vanished resulting in Pi ~  100%. This is not unexpected 

since at large fields the spin-orbit interaction becomes negligible in comparison with 

the magnetic interaction, the so-called Paschen-Back (PB) regime. But as displayed 

in Fig. 2.3-4 the anomalous Zeeman features continue to increase even at large fields. 

In a rigid application of the PB selection rules, Pi  is identically 100% at all detun

ings. Nevertheless, the calculated Zeeman depolarization features persist into the 

PB region. The negative (positive) A feature corresponds to the A — A  and A  — E
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(D — D and D — H)  transitions which are forbidden in a strict PB formulation by 

the requirement that Sa =  0 (Sd =  0), but S a —* 0 (Sn —* 0) only when B  —> oo. 

There remains some small strength in the transitions even at very large fields. This is 

shown in the intensity plot of Fig. 2.3-5. W hether this can be experimentally verified 

is questionable because of the weak strength of the “forbidden” lines, but the great 

utility of polarization measurements is to enhance small differences in intensity.

We now consider the hyperfine interaction. In the absence of a magnetic field,

the shortest hyperfine precession times for the lowest 2Pi and 2Pi are 42 and 17 ns,
2 2

109 and 11 ns, and 20 and 5 ns for H, Li, and Na, respectively. Recent two-photon 

experiments (Cook et al. [65]) use lasers with short-pulses typically of ~  0.5 ns. Thus 

negligible hyperfine precession can occur over the time scale of the experiment. If 

longer pulse lasers or continuous wave sources are used, hyperfine coherence will result 

in additional depolarization (Walkup et al. [103]). The application of a magnetic field 

will split the hyperfine F  levels into the magnetic sublevels m p , but the splitting will 

be of the order of the field-free hyperfine splittings. The multiplet will reorganize 

itself rapidly from a \sIFmp)  basis to a \ s lm 3mi)  basis over a field range from zero 

to a few hundred gauss. The result will be m ,  levels split only by the field-free dipole- 

dipole hyperfine term. We therefore suggest the hyperfine interaction, while worthy 

of investigation, will not contribute significantly for this application. Poustie and 

Dunn [104] have resolved hyperfine transitions in two-photon Na 3s 2S i  —> 4d 2Dj 

sum-frequency mixing experiments for B  < 0.4 T.

2.3.3. Comments

Measurements of magnetic-field-dependent polarization spectra offer the interest

ing possibility of tracing the relative strength of the spin-orbit and magnetic inter

actions through the weak, intermediate, and PB regions at much higher precision 

than intensity measurements, which give uncertainties of ~  10%. This method also 

presents the opportunity to answer accurately the philosophical question: “At what
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field strength is the PB criterion fully established?” The exact answer is for B  —* oo,

but for practical applications Fig. 2.3-3 suggests tha t B  > 4 T is sufficient for Li.

We comment that the Li 2s 2Si —*• 4s 2Si  scheme appears the best suited for
2 2

such an investigation though its spin-orbit constant is small, £ ~  0.224 cm-1. The 

required excitation photon wavelengths are 670 and 497 nm, fluorescence from the 

3p  2 P j  levels could be monitored at 323 nm, and the field range from weak to PB 

could be studied with B  < 6 T.

Finally, this work shows that interesting magnetic-field-induced interference phe

nomena can occur in low-lying atomic states and without inclusion of the quadratic 

Zeeman effect.
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3. MOLECULAR CALCULATIONS

3.1. Radiative Association of He+ and He and H+ and H

The abundance of CO in the ejecta of supernova SN 1987A is controlled mainly 

through the level of element mixing and the dissociative charge exchange reaction 

[105]

He+ +  CO —> He +  C+ +  0 . (3.1-1)

Lepp, Dalgarno, and McCray [105] investigated chemical models incorporating a com

plete mixing of the ejecta constituents and predicted CO abundances two orders of 

magnitude less than what is observed due to the high efficiency of process (3.1-1). A 

partially unmixed model involving CO clumps surrounded by He can reproduce the 

observed abundances by adjusting the volume fraction of the unmixed gas [106].

Removal of He+ through radiative recombination, charge exchange, and the ra

diative association process

He+ +  He -► He+(A 2£+) -> He+(X 2£+) +  hv  (3.1-2)

can reduce the effectiveness of reaction (3.1-1). The rate coefficient for process (3.1-

2) has not been previously calculated, though the process has been assumed in the 

models of Lepp et al. [105] and Liu et al. [106] to be unimportant. They took the 

rate coefficient to be approximately equal to the corresponding process for hydrogen

H+ +  H -> H+{A 2£+) -> Ht { X  2£ g ) +  hv. (3.1-3)

In this section, we present a calculation of the rate coefficient for the radiative 

association process (3.1-2) over a range of temperatures. We also give the energy- 

dependent cross sections calculated using a fully quantum-mechanical method for 

reactions (3.1-2) and (3.1-3). Published results from this section appear in Stancil,
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Babb, and Dalgarno [107] including the implications of process (3.1-2) to the ejecta 

of supernova SN 1987A, the abundance of He^ in the planetary nebula NGC 7027, 

and the chemistry of the early universe.

3.1.1. Theory

The direct radiative association of two atomic species to form a molecule can 

occur when the species approach with a relative energy E  in an excited electronic 

state of the molecule. The particles, initially in the vibrational continuum of the 

excited electronic state, decay to a bound rotational-vibrational (RV) level of a lower 

bound electronic state through spontaneous emission thereby forming a molecule.

We will be considering only the 2E+ states which obey the rules of Hund’s case 

(b) [108]. The electronic spin S and the internuclear axis are not coupled so that the 

total angular momentum J is related to the nuclear angular momentum N  through 

the relation J  =  N  + S ,  N  + S  — 1, . . . ,  \ N  — S \ .

The initial state with momentum hk' can be described as a superposition of partial

waves characterized by N ' ,  where k'2 =  2/iE/h  and f i  is the reduced mass of the

colliding system. The final RV levels are labeled by the vibrational quantum number 

v "  and N "  =  N '  ±  1. The photon energy Eph = hv = E  + Ev»w», where v  is the 

photon frequency and EvuN„ is the binding energy of the v " N "  RV level.

The quantum-mechanical radiative association cross section is given by [109]

=  (S.l-4)
N 1 v"

where

6 4  7T5 I/3
<tn>{v", E)  =  ,N'-v,k' ,N' +  (N 1 +  l)M*„N,+1 .jt»jJV-,] (3.1-5)

is the partial cross section and

= J  Xl",N"(R)Dfi{R)'X.klN,(R)dR  (3.1-6)

is the matrix element of the transition dipole moment given by
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D(R)  = J r ^ l R )  d  i>i(r\R)dT. (3.1-7)

tpi is the initial continuum electronic wave function, ipf the final bound electronic wave 

function, R  the internuclear distance, d the dipole operator, and p the probability of 

approach in the initial electronic state. The final bound RV wave function Xv"N"(R)  

and the initial continuum RV wave function Xk‘N'{R) are solutions of the appropriate 

radial nuclear Schrodinger equation (for a review see Kirby and van Dishoeck [110]) 

with the bound wave function normalized to unity and the continuum wave function 

having the asymptotic form

Xk'N'(R) ~  2 sin{k'R -  + ,* ,) , (3.1-8)

where i is a phase shift. The energy eigenvalues Ev"N" are obtained by solution of 

the Schrodinger equation through Numerov techniques [111].

For the systems considered here, HeJ and H j , the transition is from the first 

excited electronic state to the ground electronic state, X  2£ + <— A  2£ +, and p is 

| .  Using the reduced masses p{H j) =  918.3263 and /i(He^) =  3647.8995 and the 

appropriate constants, Eq. (3.1-5) may be written as

B) =  c , ( x ) ^ p [ N 'U ‘, + (JV' + 1)A& (3.1-9)

with cx(H+) =  5.56845 x 10"9 and cj(He+) =  1.40182 x 10"9.

The rate coefficient at a temperature T  is given by

(3.M 0)

or

a (T) = c2{x ) T ~ * [°° E<t{E) exp(-E /fcbT)dE  c m V 1, (3.1-11)
J o

where is the Boltzmann constant, ^ ( H j)  =  5.72431 x 10—2, and c2(He2 ) =  

2.87210 x 10"2.
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3.1.2. Molecular Data

3.1.2.1. The Hydrogen Molecular Ion. The exact nonrelativistic Born- 

Oppenheimer potentials for the initial A  2E+ and final X  2E+ states were obtained 

using the code of Power [112] and the X  <— A  transition dipole moment using other 

methods out to a internuclear distance of 50 [113]. The results were checked using 

available tabulations [114,115]. Beyond R  =  50, the long range form of the poten

tials, —ad/2fZ4, and the dipole moment, | R, were used. The dipole polarizability ay 

is equal to 4.5 for hydrogen [116]. The integration for the continuum wave function 

was carried out over the interval R  =  0.3 to R = 100. The potentials and transition 

moment are displayed in Figs. 3.1-1 and 3.1-2, respectively.

3.1.2.2. The Helium Molecular Ion. The potentials of Metropoulos et al. [117] 

were used between R  =  0.8 and R  =  4 for both the X  and A  states. Data between 

R  =  5 and R  =  100 as well as extrema and asymptotes for the two potentials were 

taken from the “uncorrected” curves of Ackermann and Hogreve [118]. Supplemental 

data for the ground state between R  =  6 and R  =  15 were taken from Metropoulos 

and Nicolaides [119] and Bauschlicher, Partridge, and Ceperley [120] and similarly 

for the excited state between R = 4.6 and R  = 6 from Metropoulos, Nicolaides, 

and Buenker [121]. All of the above cited potentials were obtained using ab initio  

multireference configuration-interaction (MRD-CI) methods and therefore justify the 

compilation. Additional short range points between R = 0.378 and R  =  0.75 from the 

early ab initio  calculation of Gupta and Matsen [122] were included in both states.

The long range form was adopted from the model potential of Peach [123] with 

the inclusion of the van der Waals term  and is given by

VL(«) = n 'l?  exp( - X R )  -  ^  ^  -  j j f ,  (3.1-12)

where Ce is the van der Waals constant, which was determined [113] using the effective 

transition energies and oscillator strengths for He+ and He given by Johnson, Epstein,
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and Meath [124]. The parameters aq, fi', and A' were determined by Peach [123] and 

are reproduced in Table 3.1-1. The long range form was matched to the ab initio 

data at R  =  12. The adopted potentials are displayed in Fig 3.1-1.

The transition dipole moment data of Metropoulos et al. [117] cover the interval 

from R  =  0.8 to R  =  4. They were extended to R — 10 using the results of McLaugh

lin et al. [125]. The Be+ moment of 1.32, derived from data of Wiese, Smith, and 

Glennon [126], was used at R  =  0, the united atom limit [113]. Beyond R — 10, 

the dipole moment has the long range form \R.  As for the Hj case, the integration 

over the continuum wave function extended from R  =  0.5 to R  = 100. The adopted 

transition moment is shown in Fig. 3.1-2. The discontinuity of the transition moment 

near R  =  1.5 is due to an avoided crossing of the A  2E+ and 22E* states [117].

The X  2E+ potential was tested by computing for 3He4He+ the frequencies of 

the (v" =  1, N")  <— (y" =  0,N "  — 1) RV transitions and comparing them to the 

experimentally measured values of Yu and Wing [127]. The discrepancy was within 

4 cm-1 or 0.2% for all transitions. A similar comparison cannot be made for the 

A  2E+ state since it is essentially repulsive.

The 4He nucleus has nuclear spin zero and obeys Bose statistics which require 

the total nuclear wave function to be symmetric. The nuclear spin wave function is 

symmetric. For the X  2E* state the nuclear coordinate wave function is symmetric 

for odd N"  and antisymmetric for even N".  The even N "  levels are unpopulated and 

since N '  =  N "  ±  1 the sum in Eq. (3.1-4) is only taken over even N '  [128].

3.1.3. Results

The radiative association cross sections <r(E) given by Eq. (3.1-4) are shown in 

Fig. 3.1-3 for reactions (3.1-2) and (3.1-3). To my knowledge, no other published 

cross sections for these two systems exist. The similarity in the shape of the cross 

sections is related to the potentials and transition dipole moments of the two systems. 

The ground states for both molecules are attractive with minima near R  =  2, while
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the excited states are essentially repulsive.

The maximum cross section occurs at a relative energy of 5.5 eV for both systems 

and is due to the large density of final RV states at energies corresponding to vertical 

transitions at the R  =  2 m in im um - The cross sections quickly drop for energies 

greater than about 10 eV as the bound RV states become inaccessible due to the 

vanishing Franck-Condon overlap. The cross section minimum occurs at 3 meV for 

both systems.

Enhancements occur at 0.14 meV and 0.34 meV for H j and HeJ, respectively. 

These are attributed to orbiting of the atomic species within a rotationally-enhanced 

van der Waals well of the excited state. The particles approach at an energy E  

slightly above a rotational barrier produced by the potential N '(N '  + 1)/2fiR2. After 

reaching the turning point of the nuclear repulsive wall, there is a probability that 

the particles will be turned again at the rotational barrier. They may then “bounce 

around” for some time within the well before escaping over the barrier and flying 

apart. The interaction time of the particles is increased which in turn  increases the

TABLE 3.1-1. Parameters used in the long range potentials of HeJ.

1.38309*

Q9 2.11380b
c 6 0.374c

X 2E+:

y' -0.314918b
A' 2.12809b

A 2S+ :
/*' 4.19449b
A' 2.88960b

“From Ref. [116] 
bFrom Ref. [123]
'Determined using data Ref. [124]
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probability of a spontaneous emission and therefore enhances the cross section. The 

difference in the energy of the features between H j and HeJ is related to the internu- 

clear distance where the van der Waals minima occur: 12.55 and 8.85, respectively. 

For H j , the enhancement is caused primarily by the N '  =  3 barrier which contributes 

66.7% of the total cross section at the resonance energy with some contribution from 

N ' = 2 (15.1%) and N ' = 1 (12.6%). About 58% of the cross section resonance 

arises from only four transitions originating from N ' = 3: v" = 17,1V" =  2 (18.9%); 

v" = 17,1V" =  4 (14.8%); v" =  16,1V" =  2 (14.0%); and v" =  16, IV" =  2 (10.2%). 

The major contributor for the HeJ enhancement is IV' =  6 (59.3%) with additional 

contribution from N 1 = 4 (19.1%) and IV' =  2 (17.4%). The four major transitions, 

which originate from IV' =  6, are v" =  21,1V" =  5 (14.9%); v" =  21,1V" =  7 (7.5%); 

v" = 20,1V" =  5 (11.5%); and v" = 20, N " = 7 (11.4%). Figures 3.1-4 and 3.1-5 dis

play the major contributing potential barriers for H j and HeJ, respectively. There 

are hints of additional structure in the low-energy cross section of reaction (3.1-2), 

but due to the uncertainties in the coefficients used for the long range form of the 

potentials given by Eq. (3.1-12) further investigation is deemed unwarranted.

One would expect an additional enhancement in the cross section to appear as a 

shape resonance in HeJ near the avoided crossing in the A  2E+ state at R  = 1.395 

corresponding to a transition energy of 20.35 eV. It is absent because this internuclear 

distance is located within the continuum of the X  2E+ state. This is clearly seen in 

the high energy drop of the cross section.

The result that the H j radiative association cross section is greater than that of 

Hej" is primarily related to the different reduced masses of the two systems. From 

Eq. (3.1-5), the cross section scales with reduced mass as

M(Ht)
(Thc+ ~  ° h+

01 <7He+ ~  /4- The qualitative differences between the and He^ also contribute

to the larger magnitude of the Hj cross section. The difference in energy between the
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He^ potentials is generally less than for the H2 potentials causing the photon energy 

Eph to be less for HeJ and as a consequence (rHe+ is reduced.

Since the even N "  levels of Hej are not populated one might expect the cross 

section to be further reduced. This does not play a role because there are a comparable 

number of populated RV levels in the ground states of the systems: 423 for Hj and 

411 for He^. As noted by Ramaker and Peek [129], the v" =  19, N "  =  0 state of H j 

is a major contributor to the cross section for energies less than  ~  0.1 meV. At high 

energies for both systems, we observe that the cross section contributions tend to 

equalize among the individual RV states so that it becomes im portant to ensure that 

all states are accounted for. Table 3.1-2 gives the maximum N"  for each v" included 

in the calculations.

The cross sections are averaged over a Maxwellian velocity distribution as in 

equation (3.1-10) to give the rate coefficients. The integration is performed by Gauss- 

Legendre quadrature [71]. The results for H eJ, reaction (3.1-2), and H j , reaction (3.1-

3), are shown in Figure 3.1-6 with some numerical values given in Table 3.1-3. Our 

calculated rate coefficients for H j agree to within 3% with those given by Ramaker 

and Peek [129] for tem peratures above 20 K. Temperatures below 20 K were investi

gated, but the coefficients given by Ramaker and Peek were as much as 25% larger. 

The origin of the discrepancy is unclear but may be due to  adiabatic corrections pre

sumably incorporated in Ref. [129], though we do include the same number of RV 

states.

An analytic fit to the coefficients for reaction (3.1-3) gives to within 25%

a H+(T) =  1.9 x 10_2OT _OO64exp(—T/45)

+3.5 x 10"23T 1-7exp (-r/28800 ) c m V 1 (3.1-14)

which is applicable for the tem perature range 20 K to 50,000 K. This can be compared 

to the relation 3.4 x 10_22T 1'5 cm3s_1 given by Dalgamo and Lepp [130].

The rate coefficient for HeJ has a tem perature dependence similar to H j, but it
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TABLE 3.1-2. Maximum rotational quantum numbers for each vibra
tional quantum number v" of the ground state used in the calculations.

Molecule v"
0 1 2 3 4 5 6 7 8 9 10 11

HJ 35 34 33 31 30 28 27 25 24 22 20 19
He+ 57 57 53 51 51 49 47 45 43 41 39 37

v"
12 13 14 15 16 17 18 19 20 21 22 23

H? 17 15 13 11 9 6 3 1 - - - -

Hej 33 31 29 27 23 21 19 15 11 9 5 5
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TABLE 3.1-3. Rate coefficients for the radiative association process 
x+ +  x —> X2 +  hv.

T( K) a(T) cm3s 1
x=Ha x=Hb x=Heb

20 1.69-20° 1.65-20 1.44-21
30 2.10-20 2.05-20 1.83-21
50 3.25-20 3.22-20 2.91-21

100 7.85-20 7.95-20 7.18-21
200 2.46-19 2.52-20 2.36-20
500 1.39-18 1.42-18 1.48-19

1000 5.27-18d 5.41-18 5.82-19
2000 1.93-17d 1.95-17 2.16-18
2500 2.88-17 2.88-17 3.22-18
3000 - 3.92-17 4.42-18
4000 6.20-17d 6.22-17 7.13-18
6000 - 1.13-16 1.33-17
8000 1.67-16 1.66-16 1.98-17

10000 - 2.17-16 2.62-17
16000 3.53-16 3.49-16 4.39-17
20000 - 4.18-16 5.36-17
25000 - 4.85-16 6.34-17
32000 5.55-16 5.48-16 7.30-17
50000 - 6.04-16 8.29-17
64000 5.96-16d 5.91-16 8.23-17

100000 5.05-16d 5.01-16 7.11-17
200000 2.96-16d 2.93-16 4.24-17
500000 1.04-16d 1.03-16 1.51-17

°From Ref. [129] 
bPresent results
cThe notation 1.69-20 corresponds to 1.69 xlO-20 
dSemiclassical results
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is approximately an order of magnitude less. This difference is related to the reduced 

mass ratio as previously discussed for the cross section giving the scaling relation

a He+ ~  a H+ (3.1-15)
./i(HeJ).

or a He+ «  a H+ /8. Equation (3.1-15) is slightly modified for high and low tempera

tures. Between 20 K and 50,000 K, the rate coefficient may be represented to within 

25% by

a He+(T) =  1.3 x 10-21T -0'008e x p (-T /67)

+2.1 x 10~24T 18exp(-T/22800) c m V 1. (1)

The radiative association spectra for H j and HeJ at an energy of 0.75 eV are shown 

in Fig. 3.1-7. The spectra appear in the near infrared with maxima near 1150 nm. 

The lines are due to transitions to individual RV levels where the intensities are 

given by the partial cross section of Eq. (3.1-5). Spectra obtained at the energies of 

the orbiting features are shown in Fig. 3.1-8 and are dominated by four lines in the 

infrared between 20 and 250 /xm and arise from transitions to high-lying RV levels as 

discussed above.
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3.2. Photodissociation and Free-Free Absorption by He£ and H j

In the previous section, the formation of HeJ by radiative association was investi

gated. We continue our studies of this rare molecule by investigating its destruction 

through the photodissociation process

He+(X 2E+) + k v ->  He+(A 2£+) He+ +  He, (3.2-1)

where v  is the photon frequency. In addition, the corresponding destruction reaction 

for H^,

H+(X 2£+) +  hv  -> Ht { A  2£+) -» H+ +  H (3.2-2)

is revisited. The wavelength- and temperature-dependent cross sections and absorp

tion coefficients calculated using a fully quantum-mechanical method are presented 

for reactions (3.2-1) and (3.2-2) within the Born-Oppenheimer approximation.

In addition, absorption coefficients for the free-free processes

(He+ +  He)(X 2E+) +  hv  -> (He+ +  He)(A 2£+) (3.2-3)

and

(H+ +  H)(X 2Eg ) + h v ^  (H+ +  H)(A 2£+) (3.2-4)

are obtained through semiclassical methods. Published results from this section are 

given in Ref. [131].

3.2.1. Theory and Calculations

The direct photodissociation of a molecule can occur through the absorption of 

a photon of wavelength A. The molecule, initially in a bound rotational-vibrational 

(RV) level of the ground electronic state i, is promoted to the vibrational continuum
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of an excited electronic state / .  The promotion can occur to a repulsive state or to 

the repulsive wall of an attractive state resulting in the break-up of the molecule into 

its constituent particles separating with relative energy E.

Following the notation of Sec. 3.1, the initial RV levels are labeled v" and 

N"  =  N '  ±  1. The photon energy Eph =  hv  =  he/ A =  E  + Ev"n », where 

EvnNn is the binding energy of the v"N"  level.

The total quantum-mechanical cross section for photodissociation as a function 

of both temperature and wavelength in local thermodynamic equilibrium (LTE) is 

given by [132]

£  £  AT" exp [ — (Eg — EvnNn)/kbT]avnNn(̂ X)
« (* ,T )  = ^ -------------------— - ------------------------- , (3.2-5)

Qx+i1 )

where [110]

2 7re2<V'/V"(Eph) = -  EphMyN,„N„ (3.2-6)
o me

is the partial cross section from the v"N"  level, is the total electronic-

vibrational-rotational statistical weight, Es is the binding energy of the lowest RV 

level, Qx+{T) is the partition function given by

Gx+(T) = X X  &v'AT"exp[-(Eg — Ev«w)IWT] (3.2-7)
v" N"

for the molecule x^, where x=He or H.

The statistical weight is given by

9iv"N" = (2 -  <Va")(2S +  1)(2N" + l)PnUC, (3.2-8)

where for the ground states of the molecules considered in this work

, _ [ ( M  +  l ) ( /  +  l ) /s b « .o d d J V ',
5nuc — \ (3.2-9)

( (21 +  1)7/5nUC, even N",

I  is the nuclear spin, and gnuc =  (21 +  l ) 2 is the nuclear spin statistical weight. It is

convention to divide by pnuc in the partition function definition [133].
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For the case of He^, as discussed in Sec. 3.1.2.2, only odd N "  levels can be popu

lated in 4HeJ so tha t the sums in Eq. (3.2-5) and (3.2-7) are taken only over odd N"

and 15g(He^) =  Eo\. This can be seen from Eq. (3.2-9) since /(H eJ) =  0.

If both the m atrix element and the photon energy are given in atomic units, the 

partial cross section of Eq. (3.2-6) can be written as

Vv"N"{Eph) =  2.69 x 10~I S cm2. (3.2-10)

The photodissociation absorption coefficient is given by

o(A,T) =  * p T  cm' ’ (3-M 1 )

where

7i(x)n(x+)
K ( T )  =

n ( 4 )

/27rp.febT\ * Q x Q x +  ,  T )  11 r p \  ( n  n  - ,n \

O *5  /  < 3 ' 2 ' 1 2 >

is the dissociation equilibrium constant, n(x) is the number density in cm-3, Qx  

and Qx + are the partition functions of the atom x and ion x+ given analogous to 

Eq. (3.2-7), and De is the molecular dissociation energy.

The above derivation has neglected stimulated emission which becomes an im

portant process for long wavelengths and high temperatures. Eqs. (3.2-3) or (3.2-11) 

should be multiplied by [1 -  exp(—hv/k^T)], the so-called LTE stimulated emission 

correction factor [134].

Transition dipole moments and nonrelativistic Born-Oppenheimer potentials were 

incorporated for both molecular ions as detailed in Sec. 3.1.2. The m a x im um  ro

tational quantum numbers N ^ a x  use(  ̂ *he sum of equations (3.2-5) and (3.2-7)

were 57 and 35 giving a total of 411 and 423 RV states for HeJ and H j as shown in

Table 3.1-2.
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The molecular partition functions and equilibrium constants were determined as 

discussed below in Sec. 3.3. The atomic partition functions incorporated in Eq. (3.2- 

12) are taken from Ref. [133].

3.2.2. Results

The partial photodissociation cross sections 0V'jv»(j£ph) given by Eq. (3.2-10) are 

shown in Fig. 3.2-1 for reactions (3.2-1) and (3.2-2) for the first vibrational level and 

various N". The reaction (3.2-2) cross sections agree with those given by Argyros 

[132],

Fig. 3.2-2 and 3.2-3 display the total cross sections c r( \ ,T ) of Eq. (3.2-5) for 

processes (3.2-1) and (3.2-2), respectively, with the individual cross sections given for 

convenient values of 8 where 8 =  5040jT .  Numerical data are given in Tables 3.2-1 

and 3.2-2. The individual cross section curves in Fig. 3.2-2 show to the author’s 

knowledge the first quantum-mechanical calculation of HeJ photodissociation.

Previous work on H j by Argyros [132] incorporated only the first nine rotational 

levels and presumably only 166 RV levels. Using only V " .v =  8, we reproduced 

Argyros’s results which are similar to Fig. 3.2-3 (see Argyros’s Fig. 6). The low- 

temperature iV".v =  8 cross sections have a peak near 115 nm which shifts slightly to 

larger wavelengths with increasing temperature. For example, at 12,600 K the peak 

occurs at ~  140 nm. Inclusion of the higher lying rotational levels results in a more 

pronounced temperature-dependent wavelength shift of the peak as can be seen in 

Fig. 3.2-3. We obtain a peak at ~  210 nm for T  = 12,600 K. In addition, the cross 

section amplitude for A >  200 nm is increased and the long-wavelength oscillations for 

T  >  8400 K found by Argyros are practically removed. It is clear, different from the 

assumption of Argyros, that the upper envelope of the 1V".V =  8 cross section does not 

give the correct result, but as pointed out by Buckingham, Reid, and Spence [135], 

all RV levels must be included. Their calculation at T  =  2500 K includes vibrational
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TABLE 3.2-1. Photodissociation cross sections (7(10 18 cm2) for reaction (3.2-1),
He^ + hu —* He+ +  He.

A _______________________________ T  (K)
(nm) 4200 6300 8400 12600 16800 25200 33600 50400

50 5.99-6* 1.15-5 1.50-5 1.86-5 2.62-5 2.18-5 2.25-5 2.31-5
60 4.31-2 8.49-3 0.0112 0.0140 0.0153 0.0165 0.0171 0.0176
70 0.0523 0.0816 0.0973 0.1108 0.1166 0.1213 0.1232 0.1249
80 0.2503 0.2883 0.2956 0.2927 0.2876 0.2809 0.2770 0.2729
90 0.6587 0.6169 0.5716 0.5169 0.4869 0.4584 0.4446 0.4313

100 1.2197 1.0054 0.8757 0.7493 0.6879 0.6333 0.6081 0.5842
110 1.7949 1.3801 1.1630 0.9667 0.8758 0.7973 0.7617 0.7285
120 2.2739 1.6955 1.4083 1.1557 1.0409 0.9426 0.8984 0.8573
130 2.5948 1.9282 1.5999 1.3121 1.1816 1.0701 1.0200 0.9734
140 2.7699 2.0876 1.7438 1.4385 1.2986 1.1784 1.1241 1.0735
150 2.8293 2.1868 1.8478 1.5389 1.3950 1.2699 1.2129 1.1596
160 2.7978 2.2354 1.9185 1.6198 1.4775 1.3523 1.2948 1.2407
170 2.7012 2.2420 1.9582 1.6787 1.5418 1.4194 1.3625 1.3087
180 2.5652 2.2185 1.9747 1.7208 1.5924 1.4754 1.4203 1.3678
190 2.4108 2.1766 1.9764 1.7532 1.6360 1.5269 1.4750 1.4250
200 2.2515 2.1226 1.9663 1.7752 1.6702 1.5701 1.5217 1.4748
210 2.0956 2.0615 1.9468 1.7873 1.6944 1.6034 1.5586 1.5146
220 1.9478 1.9976 1.9221 1.7934 1.7127 1.6310 1.5899 1.5492
230 1.8099 1.9334 1.8946 1.7958 1.7275 1.6553 1.6182 1.5809
240 1.6822 1.8694 1.8646 1.7945 1.7382 1.6756 1.6425 1.6087
250 1.5643 1.8060 1.8322 1.7894 1.7449 1.6919 1.6628 1.6326
260 1.4557 1.7438 1.7985 1.7817 1.7488 1.7054 1.6805 1.6541
270 1.3561 1.6834 1.7641 1.7720 1.7506 1.7168 1.6962 1.6736
280 1.2648 1.6249 1.7291 1.7601 1.7497 1.7253 1.7088 1.6901
290 1.1815 1.5685 1.6935 1.7458 1.7457 1.7302 1.7177 1.7026
300 1.1056 1.5144 1.6579 1.7297 1.7391 1.7320 1.7234 1.7119
350 0.8192 1.2864 1.4950 1.6420 1.6905 1.7188 1.7266 1.7304
400 0.6390 1.1210 1.3675 1.5665 1.6448 1.7017 1.7233 1.7406
450 0.5156 0.9900 1.2562 1.4893 1.5890 1.6678 1.7003 1.7283
500 0.4267 0.8818 1.1552 1.4080 1.5221 1.6161 1.6566 1.6927
600 0.3145 0.7275 1.0010 1.2736 1.4051 1.5195 1.5711 1.6187
700 0.2506 0.6309 0.9016 1.1870 1.3314 1.4619 1.5226 1.5799
800 0.2079 0.5578 0.8202 1.1078 1.2583 1.3977 1.4638 1.5271
900 0.1772 0.4991 0.7498 1.0327 1.1842 1.3269 1.3955 1.4618

1000 0.1551 0.4541 0.6941 0.9710 1.1219 1.2660 1.3360 1.4041
2000 0.0716 0.2458 0.4036 0.6028 0.7194 0.8366 0.8958 0.9549
3000 0.0454 0.1634 0.2743 0.4207 0.5041 0.5919 0.6368 0.6820
4000 0.0344 0.1268 0.2151 0.3334 0.4015 0.4738 0.5110 0.5486
5000 0.0290 0.1088 0.1861 0.2908 0.3516 0.4165 0.4501 0.4841

11000 0.0134 0.0517 0.0900 0.1429 0.1742 0.2080 0.2257 0.2437
15000 0.0104 0.0408 0.0711 0.1134 0.1384 0.1656 0.1798 0.1943
20000 8.88-3 0.0349 0.0611 0.0976 0.1194 0.1430 0.1554 0.1681

‘The notation 5.99-6 corresponds to 5.99 xlO 6.
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TABLE 3.2-2. Photodissociation cross sections <7 (10 18 cm2) for reaction (3.2-2),
H+ +  hu —. H+ +  H.

X
W

T ( K )
3150 4200 5040 6300 8400 12600 16800 25200

50 7.34-5 1.43-4 2.04-4 2.87-4 3.89-4 4.97-4 5.49-4 5.98-4
60 0.0100 0.0150 0.0186 0.0230 0.0276 0.0319 0.0337 0.0353
70 0.1676 0.1965 0.2105 0.2215 0.2266 0.2246 0.2211 0.2163
80 0.8477 0.8199 0.7797 0.7183 0.6376 0.5477 0.5037 0.4622
90 2.1113 1.8166 1.6135 1.3823 1.1403 0.9157 0.8176 0.7313

100 3.4427 2.8069 2.4213 2.0136 1.6137 1.2616 1.1129 0.9845
110 4.3470 3.5155 3.0224 2.5070 2.0062 1.5685 1.3846 1.2262
120 4.6981 3.8841 3.3806 2.8402 2.3019 1.8203 1.6147 1.4358
130 4.6169 3.9763 3.5361 3.0358 2.5120 2.0239 1.8096 1.6202
140 4.2811 3.8840 3.5476 3.1272 2.6535 2.1858 1.9729 1.7809
150 3.8331 3.6850 3.4660 3.1434 2.7388 2.3082 2.1033 1.9138
160 3.3624 3.4344 3.3301 3.1098 2.7840 2.4020 2.2106 2.0287
170 2.9167 3.1670 3.1662 3.0438 2.7985 2.4707 2.2958 2.1244
180 2.5172 2.9031 2.9909 2.9573 2.7898 2.5175 2.3610 2.2019
190 2.1697 2.6538 2.8149 2.8600 2.7657 2.5495 2.4128 2.2682
200 1.8726 2.4243 2.6444 2.7573 2.7300 2.5682 2.4516 2.3222
210 1.6208 2.2160 2.4821 2.6522 2.6843 2.5725 2.4748 2.3597
220 1.4085 2.0289 2.3297 2.5473 2.6314 2.5653 2.4852 2.3839
230 1.2295 1.8617 2.1883 2.4453 2.5755 2.5517 2.4889 2.4012
240 1.0785 1.7129 2.0581 2.3479 2.5188 2.5347 2.4885 2.4144
250 0.9508 1.5804 1.9387 2.2553 2.4622 2.5145 2.4840 2.4230
260 0.8424 1.4623 1.8293 2.1680 2.4063 2.4920 2.4762 2.4277
270 0.7501 1.3568 1.7296 2.0865 2.3530 2.4701 2.4687 2.4327
280 0.6712 1.2626 1.6392 2.0118 2.3045 2.4525 2.4660 2.4433
290 0.6033 1.1783 1.5577 1.9443 2.2620 2.4415 2.4707 2.4626
300 0.5448 1.1029 1.4843 1.8834 2.2256 2.4369 2.4825 2.4901
350 0.3477 0.8233 1.2037 1.6442 2.0832 2.4343 2.5567 2.6400
400 0.2412 0.6469 1.0069 1.4533 1.9363 2.3659 2.5349 2.6658
450 0.1782 0.5283 0.8605 1.2951 1.7920 2.2630 2.4604 2.6222
500 0.1389 0.4487 0.7547 1.1780 1.6859 2.1963 2.4228 2.6179
600 0.0927 0.3396 0.6120 1.0109 1.5255 2.0874 2.3564 2.6031
700 0.0685 0.2749 0.5175 0.8894 1.3923 1.9700 2.2587 2.5323
800 0.0542 0.2335 0.4534 0.8033 1.2940 1.8800 2.1824 2.4760
900 0.0448 0.2041 0.4046 0.7334 1.2067 1.7876 2.0941 2.3965

1000 0.0382 0.1813 0.3635 0.6701 1.1194 1.6816 1.9827 2.2828
2000 0.0159 0.0901 0.1982 0.3951 0.7108 1.1448 1.3953 1.6590
3000 0.0100 0.0596 0.1325 0.2699 0.4954 0.8132 1.0003 1.1999
4500 6.88-3 0.0425 0.0962 0.1994 0.3723 0.6216 0.7710 0.9325
5000 6.41-3 0.0400 0.0908 0.1889 0.3540 0.5932 0.7371 0.8932

10000 3.56-3 0.0229 0.0526 0.1110 0.2109 0.3582 0.4479 0.5463
15000 2.50-3 0.0161 0.0373 0.0790 0.1506 0.2567 0.3216 0.3929
20000 1.90-3 0.0123 0.0286 0.0607 0.1161 0.1982 0.2487 0.3042
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levels up to v" =  7 with N" = 0, 4, and 8. Our calculation agrees to within 20% since 

the high-lying states are unimportant a t this temperature.

The photodissociation absorption coefficients for processes (3.2-1) and (3.2-2) can 

be obtained from the data in Tables 3.2-1 and 3.2-2 for He^ and H j, respectively. 

In addition, the free-free absorption coefficients are given in Tables 3.2-3 and 3.2-4 

for reactions (3.2-3) and (3.2-4). The free-free coefficients were calculated using the 

method of Bates [136] (see his Eqs. (12) and (18)), who in the now classic semiclassical 

calculation investigated jointly the free-free process (3.2-4) with the photodissociation 

(or bound-free) process of reaction (3.2-2). Recently, Mihajlov & Dimitrijevic ( [137] 

hereafter MD1; [138] MD2), within a less accurate semiclassical formalism studied 

the combination of reactions (3.2-2) and (3.2-4) as well as process (3.2-1) and (3.2-3). 

MD1 and MD2 assumed the transition occurs near the resonant internuclear distance 

and approximated the dipole matrix element. Fortunately, both authors provide a 

means to extract the bound-free processes from the total. Note that Bates’s [136] 

coefficients include LTE stimulated emission while this work and that of MD1 and 

MD2 do not.

The He^ photodissociation results of MD2 agree with our absorption coefficients 

for intermediate wavelengths and low temperatures to within a few percent, but for 

T  >  8000 K and/or A >  1000 nm their coefficients deviate significantly and have the 

wrong long-wavelength behavior of increasing with wavelength. We give new results 

for T  <  30,000 K with 50 <  A <  200 nm and 2 <  A <  20 fim. We also present 

additional coefficients for 33,600 K and 50,400 K.

Our H j bound-free coefficients agree with Bates [136] to within a few percent for 

the wavelength range 385 < A <  20,000 nm and tem perature range 2500 < T  < 

12,000 K previously investigated. We also agree well with the Buckingham et al. 

[135] results for A < 455 nm at 2500 K. We extend the available coefficients to A =  50 

nm and T  =  25,200 K. The work of MD1 and MD2 deviate in a manner similar
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TABLE 3.2-3. Free-free absorption coefficients a (10 39 cms) for reaction (3.2-3),
He+ -(- He +  hv -* He+ +  He.

A
(nm)

T ( K )
4200 6300 8400 12600 16800 25200 33600 50400

70 7.08-3 6.05-3 5.45-3 4.78-3 4.41-3 3.99-3 3.75-3 3.50-3
80 0.0103 8.76-3 7.84-3 6.79-3 6.20-3 5.52-3 5.15-3 4.74-3
90 0.0134 0.0113 0.0101 8.66-3 7.87-3 6.97-3 6.48-3 5.91-3

100 0.0165 0.0139 0.0124 0.0106 9.65-3 8.52-3 7.89-3 7.19-3
110 0.0196 0.0165 0.0147 0.0126 0.0114 0.0101 9.30-3 8.47-3
120 0.0226 0.0190 0.0169 0.0145 0.0131 0.0116 0.0107 9.72-3
130 0.0259 0.0217 0.0193 0.0166 0.0150 0.0132 0.0122 0.0111
140 0.0288 0.0242 0.0215 0.0185 0.0167 0.0147 0.0136 0.0124
150 0.0317 0.0267 0.0237 0.0204 0.0185 0.0163 0.0151 0.0137
160 0.0347 0.0292 0.0260 0.0223 0.0203 0.0179 0.0165 0.0151
170 0.0377 0.0317 0.0283 0.0243 0.0220 0.0195 0.0180 0.0164
180 0.0405 0.0341 0.0304 0.0262 0.0237 0.0210 0.0195 0.0178
190 0.0433 0.0365 0.0326 0.0280 0.0254 0.0225 0.0209 0.0191
200 0.0460 0.0388 0.0346 0.0298 0.0271 0.0240 0.0223 0.0204
210 0.0487 0.0411 0.0367 0.0316 0.0288 0.0255 0.0237 0.0217
220 0.0514 0.0434 0.0387 0.0335 0.0304 0.0270 0.0251 0.0230
230 0.0540 0.0457 0.0408 0.0352 0.0321 0.0285 0.0266 0.0244
240 0.0567 0.0479 0.0429 0.0371 0.0338 0.0301 0.0280 0.0257
250 0.0593 0.0502 0.0449 0.0389 0.0354 0.0316 0.0294 0.0271
260 0.0619 0.0524 0.0469 0.0407 0.0371 0.0331 0.0308 0.0284
270 0.0645 0.0546 0.0489 0.0424 0.0387 0.0346 0.0323 0.0297
280 0.0669 0.0567 0.0508 0.0441 0.0403 0.0360 0.0336 0.0310
290 0.0693 0.0587 0.0527 0.0457 0.0418 0.0374 0.0350 0.0323
300 0.0716 0.0607 0.0545 0.0474 0.0433 0.0388 0.0363 0.0335
350 0.0825 0.0702 0.0632 0.0551 0.0506 0.0455 0.0427 0.0396
400 0.0934 0.0798 0.0719 0.0630 0.0580 0.0524 0.0494 0.0460
450 0.1036 0.0887 0.0802 0.0706 0.0651 0.0591 0.0558 0.0522
500 0.1122 0.0964 0.0873 0.0771 0.0714 0.0650 0.0615 0.0577
600 0.1280 0.1106 0.1006 0.0894 0.0831 0.0762 0.0724 0.0683
700 0.1446 0.1255 0.1146 0.1024 0.0956 0.0882 0.0841 0.0797
800 0.1573 0.1371 0.1257 0.1129 0.1058 0.0980 0.0938 0.0892
900 0.1673 0.1465 0.1347 0.1215 0.1143 0.1063 0.1020 0.0973

1000 0.1787 0.1570 0.1448 0.1312 0.1237 0.1155 0.1111 0.1064
2000 0.2615 0.2361 0.2221 0.2067 0.1984 0.1894 0.1847 0.1796
3000 0.3078 0.2825 0.2687 0.2537 0.2456 0.2371 0.2325 0.2278
4000 0.3556 0.3301 0.3162 0.3014 0.2934 0.2850 0.2806 0.2760
5000 0.4175 0.3909 0.3766 0.3612 0.3531 0.3445 0.3400 0.3353

11000 0.5835 0.5607 0.5487 0.5360 0.5294 0.5225 0.5190 0.5153
15000 0.6620 0.6406 0.6293 0.6176 0.6114 0.6051 0.6018 0.5985
20000 0.7563 0.7359 0.7252 0.7140 0.7083 0.7023 0.6992 0.6961
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TABLE 3.2-4. Free-free absorption coefficients a (10 39 cm5) for reaction (3.2-4), 
H+ +  H + hv -+ H+ +  H.

(nm) 3150 4200 5040 6300 8400 12600 16800 25200
70 0.0174 0.0154 0.0142 0.0130 0.0116 0.0100 9.10-3 8.08-3
80 0.0280 0.0246 0.0227 0.0207 0.0184 0.0158 0.0143 0.0126
90 0.0394 0.0346 0.0319 0.0290 0.0257 0.0220 0.0199 0.0175

100 0.0514 0.0451 0.0416 0.0378 0.0336 0.0287 0.0259 0.0227
110 0.0640 0.0562 0.0519 0.0471 0.0418 0.0357 0.0322 0.0283
120 0.0770 0.0676 0.0624 0.0567 0.0504 0.0431 0.0389 0.0341
130 0.0903 0.0794 0.0733 0.0666 0.0592 0.0506 0.0457 0.0401
140 0.1040 0.0914 0.0843 0.0767 0.0682 0.0584 0.0527 0.0464
150 0.1177 0.1035 0.0956 0.0869 0.0773 0.0663 0.0599 0.0527
160 0.1317 0.1158 0.1070 0.0973 0.0866 0.0743 0.0672 0.0592
170 0.1456 0.1281 0.1184 0.1078 0.0960 0.0824 0.0746 0.0658
180 0.1597 0.1405 0.1299 0.1183 0.1054 0.0906 0.0821 0.0725
190 0.1737 0.1530 0.1414 0.1288 0.1149 0.0988 0.0896 0.0793
200 0.1877 0.1654 0.1529 0.1394 0.1243 0.1071 0.0972 0.0861
210 0.2017 0.1777 0.1644 0.1499 0.1338 0.1154 0.1048 0.0930
220 0.2156 0.1901 0.1759 0.1605 0.1433 0.1237 0.1125 0.0998
230 0.2294 0.2023 0.1873 0.1709 0.1527 0.1319 0.1201 0.1068
240 0.2431 0.2145 0.1987 0.1814 0.1622 0.1402 0.1277 0.1137
250 0.2568 0.2266 0.2099 0.1917 0.1716 0.1485 0.1354 0.1206
260 0.2703 0.2387 0.2211 0.2020 0.1809 0.1567 0.1430 0.1276
270 0.2836 0.2506 0.2322 0.2123 0.1902 0.1649 0.1506 0.1345
280 0.2969 0.2624 0.2433 0.2225 0.1994 0.1731 0.1582 0.1414
290 0.3100 0.2741 0.2542 0.2325 0.2086 0.1812 0.1657 0.1483
295 0.3165 0.2799 0.2596 0.2376 0.2131 0.1853 0.1695 0.1518
300 0.3230 0.2857 0.2650 0.2425 0.2177 0.1893 0.1732 0.1552
350 0.3858 0.3419 0.3176 0.2913 0.2621 0.2290 0.2103 0.1894
400 0.4451 0.3952 0.3677 0.3378 0.3048 0.2674 0.2463 0.2228
450 0.5011 0.4457 0.4152 0.3821 0.3456 0.3044 0.2812 0.2555
500 0.5539 0.4935 0.4603 0.4243 0.3848 0.3401 0.3150 0.2873
600 0.6511 0.5821 0.5442 0.5032 0.4583 0.4078 0.3795 0.3484
700 0.7388 0.6625 0.6207 0.5756 0.5262 0.4710 0.4402 0.4064
800 0.8186 0.7362 0.6911 0.6425 0.5895 0.5303 0.4975 0.4615
900 0.8918 0.8042 0.7563 0.7049 0.6488 0.5864 0.5518 0.5141

1000 0.9596 0.8675 0.8173 0.7633 0.7047 0.6395 0.6036 0.5644
2000 1.4600 1.3450 1.2830 1.2170 1.1460 1.0680 1.0260 0.9815
3000 1.8050 1.6820 1.6170 1.5470 1.4740 1.3940 1.3510 1.3060
4500 2.2000 2.0750 2.0090 1.9390 1.8650 1.7860 1.7450 1.7000
5000 2.3130 2.1880 2.1220 2.0520 1.9790 1.9010 1.8590 1.8160

10000 3.1800 3.0620 3.0000 2.9360 2.8690 2.7980 2.7610 2.7230
15000 3.8110 3.7000 3.6420 3.5820 3.5200 3.4560 3.4220 3.3870
20000 4.3230 4.2180 4.1640 4.1080 4.0500 3.9900 3.9580 3.9260
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to that found for their HeJ values, as discussed above, and are typically a factor of 

two too small. Though they used the same potentials as Bates, the approximation 

of a classical transition is less accurate at large R  resulting in the long wavelength 

deviation.

Argyros [132] extended Bates’s [136] semiclassical formalism to shorter wave

lengths and found significant discrepancies for T  > 5000 K and A < 2000 nm 

with his quantum mechanical results. In contrast, we find excellent agreement be

tween the quantum and semiclassical methods at all temperatures with A > 90 

and 70 nm for Hj and HeJ, respectively, except for H j at high temperatures. For 

example, the semiclassical coefficients at 25,200 K are ~  20% too large in the range 

100 < A < 5000 nm. Figs. 3.2-4 and 3.2-5 compare the quantum mechanical and 

semiclassical photodissociation absorption coefficients for HeJ and H j , respectively.

Figs. 3.2-6 and 3.2-7 display the total semiclassical absorption coefficients for 

Hejj- and H j including stimulated emission with comparison to the results of MD2 

in Fig. 3.2-6 and to Bates [136], Buckingham et al. [135], and MD2 in Fig. 3.2- 

7. The results of MD1 and MD2 were corrected for stimulated emission. For H j, 

our results, Buckingham et al., and Bates agree. The slight differences between our 

work and that of Bates can probably be attributed to round-off error in the earlier 

calculation. The results of MD1 and MD2 are again consistently lower than Bates’s 

and our absorption coefficients, but contrary to their photodissociation values, their 

total absorption coefficients display the correct long-wavelength behavior. This can 

be attributed to the dominance of stimulated emission at long wavelengths. Similar 

considerations apply for HeJ shown in Fig. 3.2-6.
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3.3. Partition Functions and Dissociation Equilibrium Constants

for H j and HeJ

During the course of the work in Sec. 3.2, discrepancies between the molecular 

partition functions obtained quantum-mechanically and the polynomial expansions 

of Sauval and Tatum [139] were found. Sauval and Tatum [139] give tabulations for 

300 diatomic molecules and though we agree with their premise that a standard set of 

molecular equilibrium constants should be used for all model atmosphere calculations 

to prevent differences in molecular data from obscuring improvements in astrophysical 

insight, it becomes important for cases where only a small number of elements are 

considered, to use the most accurate values available. Such situations occur in white 

dwarfs where only H, He, C, and 0  are typically considered. Accurate constants 

are particularly important when attempting to match model fluxes to observations 

and in the determination of absorption coefficients. Thus we give a new tabulation 

of partition functions and equilibrium constants for and H e j. Published results 

appear in Ref. [140].

3.3.1. Theory and Calculations

The molecular partition function Qx+(T) is given by Eq. (3.2-7) while the disso

ciation equilibrium constant in terms of partial pressures is given by

{ )  r t i )
_  ^27T^bTj I ) j f a T )  dyne/cm2 (3.3-1)

where p(x) is the partial pressure in dyne/cm 2 and the remaining notation follows 

that from Secs. 3.1 and 3.2. The equilibrium constant in terms of number density is 

given simply by
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”K { T ) = ,J k p  (3-3'2)

where nK ( T ) is given in Eq. (3.2-12).

To obtain the energies of the RV states, we numerically solve the radial nuclear 

Schrodinger equation [110,111] using nonrelativistic Born-Oppenheimer potentials for 

the ground states X  2 Eg and X  2E+ of H j and H eJ, respectively. The potentials 

used are discussed in Sec. 3.1.2. We find all 423 RV levels of H j given in Table 

3.1-2 and the tabulation of Hunter, Yau, and Pritchard [141] to which our energies 

agree to within 10 cm-1. For the He^ ground state, all 411 levels were included as 

in Table 3.1-2. Dissociation energies and reduced masses are as given in Huber and

Herzberg [142]. The atomic partition functions were taken from Irwin [133].

3.3.2. Results and Discussion

Tables 3.3-1 and 3.3-2 display the molecular partition functions and dissociation 

equilibrium constants for H j and HeJ, respectively. The results are extended beyond 

the tem perature range 1000 to 9000 K previously given in Ref. [139]. In addition, 

some results are given for convenient values of 6 where 6 =  5040f T .  Our results differ 

for both Q and PK  by 43% and 19% for H j and H e j, respectively, at 9000 K. This

discrepancy can be attributed to the approximation

« -  =  £ £  <3 '3 - 3 >

used by Sauval and Tatum [139] (see for example Tatum [143] and Herzberg [108]). 

QI0t is the rotational portion of the partition function assuming a separation of elec

tronic, vibrational, and rotational motions and B v is the rotational constant. Eq. 3.3-3 

can only be used when B v is small, say ~  2 cm-1 as is found for heavy molecules, 

but Bv = 30.2 and 7.2 cm-1 for Hj and He^, respectively. This brings into question 

the accuracy of all the H-containing molecular constants in Ref. [139] especially H2 

which has B v =  60.8 cm-1.
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TABLE 3.3-1. Partition functions and dissociation equilibrium constants for H j .

T(K) Q rK  (dyne/cm2) T(K) Q TK  (dyne/cm2)
1500 4.3648+01 4.6007+01 12500 1.9453+03 1.4292+10
2000 6.6212+01 1.0475+04 12600 1.9682+03 1.4700+10
2500 9.4708+01 2.7724+05 13000 2.0594+03 1.6404+10
2520 9.5983+01 3.0769+05 13500 2.1723+03 1.8701+10
3000 1.3002+02 2.4778+06 14000 2.2838+03 2.1190+10
3150 1.4207+02 4.1753+06 14500 2.3938+03 2.3881+10
3500 1.7299+02 1.1854+07 15000 2.5021+03 2.6781+10
4000 2.2429+02 3.8316+07 15500 2.6087+03 2.9899+10
4200 2.4723+02 5.6644+07 16000 2.7134+03 3.3244+10
4500 2.8427+02 9.5399+07 16500 2.8164+03 3.6825+10
5000 3.5288+02 1.9810+08 16800 2.8773+03 3.9091+10
5040 3.5874+02 2.0874+08 17000 2.9175+03 4.0653+10
5500 4.2977+02 3.6103+08 17500 3.0166+03 4.4737+10
6000 5.1431+02 5.9740+08 18000 3.1139+03 4.9088+10
6300 5.6837+02 7.7934+08 18500 3.2093+03 5.3718+10
6500 6.0570+02 9.1875+08 19000 3.3028+03 5.8637+10
7000 7.0306+02 1.3351+09 19500 3.3944+03 6.3859+10
7500 8.0549+02 1.8551+09 20000 3.4841+03 6.9396+10
8000 9.1210+02 2.4867+09 20500 3.5720+03 7.5261+10
8400 9.9984+02 3.0771+09 21000 3.6581+03 8.1469+10
8500 1.0221+03 3.2369+09 21500 3.7424+03 8.8032+10
9000 1.1346+03 4.1126+09 22000 3.8249+03 9.4967+10
9500 1.2490+03 5.1202+09 22500 3.9057+03 1.0229+11

10000 1.3646+03 6.2660+09 23000 3.9848+03 1.1001+11
10080 1.3832+03 6.4625+09 23500 4.0623+03 1.1816+11
10500 1.4810+03 7.5563+09 24000 4.1382+03 1.2674+11
11000 1.5977+03 8.9975+09 24500 4.2125+03 1.3578+11
11500 1.7141+03 1.0596+10 25000 4.2852+03 1.4530+11
12000 1.8301+03 1.2359+10 25200 4.3138+03 1.4924+11
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TABLE 3.3-2. Partition functions and dissociation equilibrium constants for H e^.

T(K) Q rK  (dyne/cm‘
2000 3.0514+02 9.4540+04
3000 6.1339+02 1.2563+07
4000 1.0601+03 1.4693+08
4200 1.1668+03 2.0908+08
5000 1.6488+03 6.5088+08
5040 1.6751+03 6.8266+08
6000 2.3595+03 1.7910+09
6300 2.5919+03 2.2902+09
7000 3.1604+03 3.7785+09
8000 4.0190+03 6.7729+09
8400 4.3721+03 8.2817+09
9000 4.9074+03 1.0901+10

10000 5.8045+03 1.6270+10
10080 5.8761+03 1.6756+10
11000 6.6945+03 2.2975+10
12000 7.5669+03 3.1104+10
12600 8.0788+03 3.6700+10
13000 8.4146+03 4.0740+10
14000 9.2330+03 5.1959+10
15000 1.0020+04 6.4836+10
16000 1.0774+04 7.9440+10
16800 1.1353+04 9.2414+10
17000 1.1495+04 9.5841+10
18000 1.2184+04 1.1410+11
19000 1.2841+04 1.3429+11
20000 1.3468+04 1.5646+11
21000 1.4065+04 1.8068+11
22000 1.4635+04 2.0701+11
23000 1.5178+04 2.3549+11
24000 1.5697+04 2.6619+11
25000 1.6192+04 2.9916+11
25200 1.6288+04 3.0603+11
26000 1.6665+04 3.3446+11
27000 1.7117+04 3.7212+11
28000 1.7549+04 4.1222+11
29000 1.7962+04 4.5478+11
30000 1.8358+04 4.9987+11
31000 1.8737+04 5.4753+11
32000 1.9101+04 5.9781+11
33000 1.9449+04 6.5076+11
33600 1.9652+04 6.8382+11
34000 1.9784+04 7.0641+11

T(K) Q TK  (dyne/cm‘
35000 2.0106+04 7.6482+11
36000 2.0415+04 8.2602+11
37000 2.0712+04 8.9007+11
38000 2.0999+04 9.5700+11
39000 2.1274+04 1.0269+12
40000 2.1540+04 1.0997+12
41000 2.1796+04 1.1755+12
42000 2.2043+04 1.2544+12
43000 2.2282+04 1.3364+12
44000 2.2512+04 1.4215+12
45000 2.2735+04 1.5097+12
46000 2.2950+04 1.6012+12
47000 2.3158+04 1.6959+12
48000 2.3360+04 1.7939+12
49000 2.3555+04 1.8953+12
50000 2.3744+04 1.9999+12
50400 2.3818+04 2.0428+12
51000 2.3927+04 2.1080+12
52000 2.4105+04 2.2195+12
53000 2.4277+04 2.3345+12
54000 2.4445+04 2.4530+12
55000 2.4607+04 2.5750+12
56000 2.4765+04 2.7006+12
57000 2.4918+04 2.8297+12
58000 2.5067+04 2.9626+12
59000 2.5212+04 3.0991+12
60000 2.5353+04 3.2393+12
61000 2.5490+04 3.3832+12
62000 2.5623+04 3.5309+12
63000 2.5753+04 3.6825+12
64000 2.5880+04 3.8378+12
65000 2.6003+04 3.9971+12
66000 2.6124+04 4.1602+12
67000 2.6241+04 4.3273+12
68000 2.6355+04 4.4984+12
69000 2.6467+04 4.6734+12
70000 2.6576+04 4.8525+12
71000 2.6682+04 5.0356+12
72000 2.6786+04 5.2229+12
73000 2.6888+04 5.4142+12
74000 2.6987+04 5.6097+12
75000 2.7083+04 5.8094+12
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Finally, our equilibrium constants are dependent upon the atomic partition func

tions of Irwin [133] who chose an arbitrary binding energy cut-off of 0.1 eV in the 

partition function sum. The cut-off is actually dependent on the atom ’s environment 

[144]. We determined partition functions for H in situations typical of cool hydrogen- 

rich white dwarfs and found that Irwin’s [133] results differed by no greater than 

3% (see Sec. 4.2.1). Consequently, we retain the use of atomic partition functions 

from Ref. [133] to facilitate easy correction of our equilibrium constants by partition 

functions for particular environments which maybe obtained in the future.
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4. APPLICATIONS TO WHITE DWARFS

White dwarfs are the final evolutionary stage of all low-mass stars. For main- 

sequence stars the upper limit is approximately 7M0 where M0 is a solar mass. Stars 

with larger mass become neutron stars while black holes may result from still more 

massive objects. Formation of a white dwarf generally occurs near the completion 

of nuclear burning. The core contracts gravitationally and the outer envelope is lost 

either by ejection into a thin expanding shell eventually to become a planetary nebula 

or by accretion to a companion. W hat remains is a dense, hot, compact core with 

typically a 0.013J?© (~  104 km) radius, a 0.7M0 mass, and a large surface gravity 

of log <7 =  8. Because all thermonuclear reactions have ceased, only stored internal 

heat can be radiated resulting in generally low luminosity. Over the next billion or 

so years the star cools until it becomes a dark cinder know as a black dwarf.

White dwarfs can be broadly divided into two groups according to their optical 

spectra. The first, which makes up ~  80% of the known white dwarfs, have strong 

hydrogen features and are classified DA. D refers to degenerate, or dwarf, while A 

indicates a spectrum similar to main-sequence A-type stars which display H I Balmer 

line absorption. The second group lacks H I lines and may have no features, i.e. a 

continuous spectrum, or absorption lines of other elements. These stars may be loosely 

referred to as non-DA. The absorption results from a thin atmosphere with a depth 

of typically no more than 100 m. DAs are presumed to have hydrogen-dominated 

atmospheres while non-DAs are usually helium-rich. One must be cautious since this 

may not always be the case. Lines form in white dwarf spectra for effective stellar 

temperatures Te/ /  above 5000 K for H I, 13,000 K for He I, and 30,000 K for He II. A 

star with T .t t  =  10,000 K will display strong H I Balmer lines if a significant fraction 

of its atmosphere contains hydrogen. The line identifications, though, are not enough
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to exclude helium as a significant and possibly dominant atmospheric constituent. 

Nevertheless, the star is classified DA.

A sophisticated classification scheme has been worked out by the white dwarf 

community and is explained in Sion et al. [145] and Wesemael et al. [146]. Ref. [146] 

also gives typical spectra of each of the classes. Classifications of the stars investigated 

in this chapter only will be discussed.

The first letter is always D while the second indicates the primary optical spec

troscopic feature. A for H I, B for He I, 0  for He II, Q for carbon, Z for metals, and 

C for featureless or continuous. Additional letters may refer to secondary or tertiary 

spectral features or other properties. Of interest here is P for polarized magnetic, 

H for a magnetic star lacking polarization, and X for an unclassifiable or peculiar 

object. Finally a numerical index at the end corresponds to the effective temperature 

where #=50,400/Te/ / .  For example, the star Feige 7 is classified DBAP3 which in

dicates a polarized magnetic white dwarf with ~  17,000 K and a spectrum with 

strong He I and weak H I features. Two groups of these stars, namely magnetic and 

cool white dwarfs will be investigated below with the aid of some of the atomic and 

molecular data given in Chapters 2 and 3.

4.1. M agnetic W hite  Dwarfs

Of the approximately six hundred observable white dwarfs, a small group of 32 

are currently known to be highly magnetic. Typically one or two new stars may be 

discovered or reclassified each year. The field strengths range from a few MG to as 

high as ~  700 MG and may vary by a factor of two from the pole to the equator 

for a centered dipole distribution. A higher surface field variation may result from 

other field geometries. Their magnetic nature is inferred from broad-band continuum 

polarization measurements or Zeeman splitting of the H I Balmer lines. The lower 

limit is an observational effect. Below 1 MG, the Zeeman splitting is unresolvable
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in flux spectra. Recently, the limit has been pushed to below 0.1 MG by measuring 

high precision circular polarization spectra [147,148]. Polarization reversals appear 

at Balmer line wavelengths if the star is polarized magnetic. At the upper limit, the 

field strengths of the stars are generally uncertain, but must be quite large due to 

significant measured polarization. The uncertainty in the field strength is related to 

unidentifiable spectral features. The four largest field strength stars are probably 

GD 229 (WD 2010+310), Grw +70°8247 (WD 1900+705), PG 1031+234 [149], and 

one component of the newly discovered binary LB 11146 [150]. The spectral features 

of Grw +70°8247 [151,152,72,46] and PG 1031+234 [153] have only recently been 

identified as H I classifying them as DAP with field strengths of ~  320 MG and 200- 

500 MG, respectively. The identifications are a direct result of the strong field atomic 

structure calculations of the Tubingen [20,21] and LSU [8,11,12] groups. Conversely, 

the presence of strong fields in white dwarfs as well as neutron stars has been the main 

impetus for investigating atomic structure in such extreme conditions. As discussed 

in Sec. 2.1, the effort applicable to white dwarfs has concentrated on bound H I 

transitions. The remaining two stars, GD 229 and LB 11146, have features which 

cannot be reconciled by H I and therefore presumably are He I though little atomic 

data exist to attem pt an interpretation.

4.1.1. Grw +70°8247

The peculiar though now understood spectrum of this famous white dwarf was 

first observed by Minkowski [154] in 1938. Over the years many explanations have 

been put forth to account for the unusual features at 413.5 and 583.5 nm including 

Zeeman-shifted He I and C I lines. As mentioned above, the strong field H I calcu

lations finally resolved the mystery. The field strength (320+20 MG) and effective 

tem perature (~  14,000 K) have been further constrained by the synthetic spectra 

calculation of Wickramasinghe and Ferrario [46] (hereafter W F). W F determined a 

field-free atmosphere but incorporated the Tubingen and LSU H I calculations into
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line opacities for the radiative transfer calculations. Their synthetic spectra agree 

well for the wavelength region 300-620 nm, but are poor for 200-300 nm and 620-900 

nm. W F also note some discrepancies between the Tubingen and LSU calculations 

and with the observations. These discrepancies served as the motivation for the new 

calculations described in Sec. 2.1. Each of these is discussed in turn below.

The Is —► 2p_! (Lya a~) transition. Greenstein and Oke [155] obtained UV 

spectra of this star with the International Ultraviolet Explorer (IUE) and observed a 

fairly sharp absorption peak at 134.7 nm. Greenstein [151] later interpreted the line 

as H I Lya a~ in a field near 350 MG using the early LSU [8] calculations but noted 

the maximum theoretical wavelength was 133.5 nm. A more detailed computation by 

Henry and O’Connell [11] found a maximum wavelength of 134.26 nm but at 560 MG. 

Various calculations of the wavelength for the transition versus field strength are given 

in Figure 2.1-1. Inclusion of gravitational and Stark-induced redshifts may increase 

the wavelength by no more than 0.1 nm. Greenstein, Henry, and O’Connell [152] 

suggest the 0.4 nm shift may be due to observational error. Finally, the synthetic 

spectra of W F, which match the observed line positions and widths in the visible 

for B  = 320 MG, predict a line core at 132.5 nm, increasing the discrepancy to 2 

nm, and a fine strength an order of magnitude larger than observed. The synthetic 

spectra of W F and the observed spectrum are shown in Figure 4.1-1. The synthetic 

line position and depth persist regardless of reasonable field strength, magnetic axis 

viewing orientation, and effective temperature variation. W F note their use of a field- 

free atmosphere may have caused deviations at low optical depths but this is unlikely 

to account for the 2 nm difference. In addition, they suggest the 134.7 nm observation 

may not be Lya cr_ .

The energies determined from the nonrelativistic infinite proton mass Hamiltonian 

of Eq. (2.1-1) with the mixed Slater-Landau basis functions of Eq. (2.1-2) give Lya <x~ 

transitions wavelengths that agree (after correcting for the finite proton mass) with
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FIG. 4.1-1. Observed and modeled spectra of Grw +70°8247 from Ref. [46]. The top 

curve is the observed spectrum and the bottom two are models.
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the results of Forster et al. [21] to their reported four significant figure accuracy 

and with the computations of Henry and O’Connell [11] confirming the previous 

calculations and the 2 nm discrepancy. One might suggest that relativistic effects 

could account for some or all of the difference, but Henry and O’Connell [11] estimate 

its influence to be only ~  10-3 nm. In the absence of a magnetic field, relativistic 

corrections increase the binding energy and examination of Table 2.1-2 shows that 

this binding increase is larger for the ground state than excited states resulting in a 

shorter transition wavelength. Taking the relativistic energies determined by Chen 

and Goldman [37] and the nonrelativistic energies of Sec. 2.1 or Rosner et al. [20] 

near 235 MG (B  =  1 au) gives a relativistic correction of -0.0021 nm in agreement 

with Henry and O’Connell [11]. The variational relativistic correction computations 

performed in Sec. 2.1.4 and tabulated in Appendix B show that the correction is on 

the above order for applicable field strengths.

The origin of the discrepancy appears to be not in the magnetic field dependent 

atomic structure calculations, but possibly in the other environmental factor peculiar 

to white dwarfs, namely high density. Clues for this interpretation come from an

other mystery in DA white dwarfs provided by the IUE , the famous 140.4 and 162.3 

nm features. These features have been identified [156,157] as Lya satellites due to 

H-H+ [158] and H-H [159,160] collisions. Allard and Kielkopf [161] have investigated 

the temperature and density dependence of the satellites while Allard and Koester 

[162] have produced synthetic spectra longward of Lya for DAs of various effective 

temperatures. The IUE  spectra of Grw +70°8247 contain previously undiscussed fea

tures at 140.8 and 164 nm with profiles that compare reasonably well to the synthetic 

spectrum of Ref. [162] for T„// =  13,000 K (see their Fig. 7). Shifting of the 140.4 and

162.3 features by the magnetic field is certainly a seductive explanation. Magnetic- 

field-dependent computations of the Lya satellites have not been performed, but one 

can get a rough idea of the expected shifting by examining the associated molecular
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potentials.

According to Steward, Peek, and Cooper [158] there are actually three satellites 

on the red wing of Lya due to H-H+ collisions which are given in Table 4.1-1 with 

wavelengths of 123.4, 124.0, and 140.4 nm and result from the molecular transitions 

1 scrg *— 4/<ru, Is<7g <— 2piru, and 2pau <— Zd<rg, respectively. The first two satellites 

are not observed in white dwarfs due to weaker absorption coefficients and close 

proximity to the Lya core. Both the 4/cr„ and 3d(Tg correlate to H(2p0)+H + in the 

separated atom limit while the 2p7ru is degenerate and correlates to H(2p±i)+H+. 

The magnetic field will remove the 2piru degeneracy giving a total of four transitions 

to consider.

Peek and Katriel [163] have determined the equilibrium distance R c and dissocia

tion energy for all states listed above for 5  =  0,100, and 500 MG. Table 4.1-1 dis

plays estimates of the location of the Lya satellites for the various given field strengths 

using atomic energies from Sec. 2.1 and the dissociation energies of Ref. [163]. All the 

satellites remain redshifted Rom the atomic lines though the 123.4 and 124.0 (m  =  1) 

satellites blueshift to wavelengths less than 120 nm, below the IUE  spectral range. 

Interestingly, the 140.4 satellite appears to remain relatively stationary shifting only 

to 140.5 nm at 100 MG and may therefore be responsible for the 140.8 feature. The

124.0 (m =  — 1) feature is also redshifted but to near 130 nm for 100 MG. Inspection 

of the IUE  spectra given in Greenstein [152] (see his Fig. 1) reveals a shallow depres

sion near 130 nm which may possibly be explained by the shifted 124.0 (m  =  — 1) 

satellite.

Little can be inferred about the H-H satellite since the H2 potentials have not 

been investigated at these field strengths, though some speculation can be given by 

inspecting the field-free curves. According to Sando, Doyle, and Dalgarno [159] the

162.3 nm satellite results from the X  <— B  1S„ transition which occurs at closest 

approach near R  =  4 ac. Now, the equilibrium distances of the X  and B  states are
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1.40 and 2.44 a0, respectively indicating that the transition occurs closer to the R e 

of the B  state and on the shoulder of the X  state. A magnetic field has the effect of 

increasing the binding energy. One would expect the binding increase at the transition 

distance to be larger for the B  state resulting in longer wavelength absorption which 

may account for the shift to 164 nm.

Finally, if the identification of the 141 and 164 nm features as Zeeman-shifted Lya 

satellites is correct, it has profound implications for the line center and fine strength 

of the Lya a ~. The total oscillator strength for the Lya transition must be conserved. 

The satellites obtain their strength by borrowing from the line core. The strength 

of these satellites increase with density. Allard and Kielkopf [161] show the Lya fine 

strength is reduced by an order of magnitude as the density is increased from 1021 

to 2.5 X 1021 cm-3 (see their Fig. 10). While white dwarfs typically have densities 

of 102° cm-3 at optical depth r  =  1, Grw +70°8247 is believe to be one of the most 

massive white dwarfs [155] and may actually have a higher density.

In summary it is proposed that the observed redshift and strength reduction of the 

Lya <t~ fine from theoretical atomic structure and radiative transfer computations is 

a consequence of the collisions of hydrogen atoms with protons and other hydrogen 

atoms in the strong magnetic field and high density environment of Grw -|-70o8247.

TABLE 4.1-1. Approximate wavelengths of the Lya satellites at various magnetic 

field strengths. Lya components are given for comparison.

B  (MG) A (nm)
ls<Tg <— 2p7Tu(m = -1 ) H1£1H

1 s(Tg «- 2pTu(m = 1) Is *— 2pi
0 124.0 121.5 124.0 121.5

100 130.0 127.0 116.5 114.2
500 144.0 134.0 88.0 84.5

2pcru <— Zdcrg ls<rs <- 4/<r„ Is <- 2po
0 140.4 123.4 121.5

100 140.5 119.0 121.0
500 139.3 116.0 112.5
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The 2p0 —> Zd_i transition. A feature at 842.0 nm is observed with a broad 

linewidth of ~  1.5 nm. The wavelength agrees with the previous structure calculations 

of the Tubingen and LSU groups. The synthetic spectra computation of WF shown 

in Figure 4.1-2 predicts the correct transition wavelength, but gives a much narrower 

linewidth of ~  0.5 nm and ~  |  the strength.

This transition was recalculated in Sec 2.1. The new results give excellent agree

ment with the Forster et al. calculation to the four significant figure accuracy quoted 

in Ref. [21] for both the wavelength and transition probability. The feature may be 

a blend of other undetermined lines.

The Zd'0 —> 5p[, transition. A deep absorption feature at 720 nm is observed in the 

spectrum of Grw +70°8247. The synthetic spectra of WF predict a feature at 662 nm 

due to the 3d'0 —> 5p'0 transition which is not observed and no feature at 720 nm using 

the LSU data. Conversely, use of the Tubingen data gives a 720 nm feature for the 

3d'0 —> 5p[) and no 662 nm feature indicating a ~  60 nm error in the LSU calculation.

We have recalculated this transition and obtain agreement with the Tubingen 

wavelengths confirming the error in the LSU values.

The 3d'0 —> 4p'Q transition. Using the transition data of Henry and O’Connell [12], 

the model of WF predicts a strong and sharp feature at 883.0 nm due to the 3d'0 —> 4p'0 

transition which is not apparent in the observed spectrum (see Figure 4.1-2). WF 

suggest this is an error in the LSU group calculation of Henry and O’Connell and 

that the transition may actually be shifted ~  30 nm to the blue to aid in reconciling 

the large width of the 842 nm feature.

The transition is not presented in the Tubingen group calculation of Forster et 

al. [21], but the required energies are given in Rosner et al. [20]. One can obtain 

the wavelengths of 893.2 ±  1.4, 891.4 ±  0.7, and 944.25 ±  0.34 nm for 235, 329, and 

470 MG, respectively. This appears to reaffirm the LSU calculation. The wavelength 

uncertainties are due to poor convergence of the 4p'0 energies to only two or three
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FIG. 4.1-2. Observed and modeled infrared spectra of Grw +70°8247 from Ref. [46]. 

The top two curves are models using Tubingen group calculations [21], the third from 

the top is the observed spectrum, and the bottom is a model using LSU computations 

[12].
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figures at the indicated field strengths.

The transition is computed in Sec. 2.1. We also find convergence of the 4p'0 state 

difficult for the field strengths of interest, but obtain a wavelength of 890 nm at 320 

MG and longer wavelengths for weaker fields. Since WF determine that the maximum 

field on the stellar surface is ~  320 MG, our calculation and that of Rosner et al. 

indicate that this transition cannot contribute any absorption less than ~  890 nm 

and therefore Henry and O ’Connell’s data, of which no numerical values have been 

published, appear to be in error by ~  7 nm in the opposite direction suggested by 

WF. This shift is in better agreement with the observations and may account for an 

absorption feature at ~  890 nm with comparable depth and width.

Implications of hydrogen photoionization in a strong magnetic field. The most 

pressing issue for the modeling of magnetic white dwarfs is the lack of hydrogen 

bound-free opacities in strong fields. These are expected to be important in the UV, 

visible, and possibly the near infrared regions of the spectrum. W F, in their modeling 

of Grw +70°8247, use the approximation of Lamb and Sutherland [164] to estimate 

the continuum opacities from zero-field hydrogen cross sections using the relation

*(B pb,B )  = ¥ ^ v r (E rl, - E „ B  = 0) (4.1-1)
-Cph -  -C/s

where Es =  E( B)  — E ( B  =  0). This procedure splits and shifts the photoionization 

threshold in a fashion analogous to the splitting and shifting of the bound state en

ergies. Apparently, W F include only the Balmer continuum opacity which splits into 

four components. They obtain good agreement with the observed flux spectrum for 

the 300-620 nm range, but above 620 nm there are significant discrepancies between 

the model and observations as shown in Figure 4.1-2 presumably due to the approxi

mations for the bound-free opacities. In particular, for the wavelength range 760-920 

nm, a forest of deep absorption features appear in the observed spectrum, but are 

not predicted by the model. More telling are synthetic spectra of linear and circular 

polarization which show little agreement with observed optical polarization spectra.
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Later, Jordan [47] improved the approximation by determining the threshold en

ergy as the difference between the bound state energy and the lowest Landau level 

assessible by a particular Am  transition. This splits the Balmer threshold into twelve 

components with eight independent wavelengths. While this approach appears to 

account for the proper end-points of the transition, synthetic polarization spectra 

computed by Jordan [47] show no improvement over the results of W F.

The major difficulty with this approximation is that much of the interesting atomic 

physics of the problem is ignored. It is well known that in the absence of a magnetic 

field a progression or manifold of Rydberg states exists just below the ionization limit. 

As n  —*• oo, the manifold merges into the continuum. When a magnetic field is applied, 

an infinite set of Rydberg manifolds is projected out of the field-free continuum, but 

with each progression having a Landau level as its series limit and its ground state 

just above the next lower Landau level. The energy of a Landau level is given by

E5(B) = ( n +  b  (4.1-2)

above the field-free ionization limit. Therefore, each series limit is separated by an 

energy B  with the first, N  = 0, limit B/ 2  above the field-free limit. The “bound” 

states of the N  = 1 series overlap the N  =  0 continuum, likewise the N  = 2 series 

overlaps the N  =  1 and N  =  0 continua, and so on as N  —> oo. This gives a multitude 

of autoionization states which merge into the normal, bound hydrogen states of the 

N  =  0 manifold and as such the idea of a bound-free absorption edge or threshold is 

meaningless.

This behavior has been recognized since the early low-resolution photoabsorption 

measurements of Garton and Tomkins [53] on Ba. In the absence of a field, the 

spectrum shows a uniform series of bound-bound lines that merge smoothly into a 

featureless continuum. W ith the application of a 4.7 T field, the smooth progression 

turns into a seemingly chaotic assemblage of unevenly spaced and varying amplitude 

peaks that persist well into the continuum. More recent high-precision measurements
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have investigated the behavior of H, He, and Li [54-56] with theoretical computations 

reproducing the observed spectra to amazing detail [50-52], but little attention has 

been given to the intermediate-field regime. Alijah, Hinze, and Broad [59] computed 

a small portion of the photoionization cross section from the Is state at 20 MG and 

noted a multitude of resonances qualitatively similar to the low field observations. 

The most extensive calculation to date is the work of Wang and Greene [60] who 

determined cross sections a t 11.75, 23.5, 47.0 117.5, and 235.0 MG from the ground 

state using multichannel quantum defect theory (MQDT). Their computations in

clude the first ten Landau levels and reveal to high precision a series of resonance 

and interference phenomena. Unfortunately, these results are of little astrophysical 

utility since they are presented in a graphical form and have wavelengths in the far 

UV shorter than 90 nm which is below the I U E  short wavelength limit of 120 nm and 

near the long wavelength limit of the Extreme Ultraviolet Explorer (EUVE) which has 

a 20-75 nm window. In addition, MQDT gives a precision that is unnecessarily high 

for astrophysical applications where current flux and polarization measurements have 

a resolution of only ~  0.1 nm.

Further progress in modeling flux and polarization measurements require cross 

sections from excited states that contribute to the visible and near IR. The compu

tations need to be for a sufficiently fine field grid, but with a resolution comparable 

to the measurements only. Table 4.1-2 gives a list of photoionization “thresholds” 

from excited states at B  = 320 MG; clearly many continua in addition to the Balmer 

continuum considered by W F need to be included to accurately model the visible 

polarization of Grw +70°8247.

It is anticipated tha t the accurate wave functions computed in Sec. 2.1 will be use

ful for investigations of photoionization in strong fields by time-dependent methods. 

In the time dependent approach, the cross section is given by the Fourier transform 

of the autocorrelation function which is the overlap of the initial state wave function
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TABLE 4.1-2. Hydrogen photoionization thresholds for B =  320 MG.

State Ax (nm) State Ax (nm)
Is 80.9 2pi 552

2p-i 205 3 ^ 607

2po 264 3?o 642
3d_2 290 4d_2 659

2s 305 5/-3 742

4/-3 353 4d_i 804
3 <Lj 384 5/-2 917

4/-2 468 4 /i i 980
3p-i 535 34 1057

5^-3 535
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with the time-propagated final wave function [61]. The precision of the cross section 

can be controlled by limiting the propagation time.

4.1.2. Other Magnetic Stars

Absorption features near 140 and 162 nm appear in the IUE  spectra of the DAP6 

(B  = 36 MG) star BPM 25114 (WD 1743-521) and KUV 2316+123, a 29 MG DAP. 

These features may possibly be interpreted as the Lya satellites discussed in Sec.

4.1.1. The IUE  spectrum of PG 1034+234 is too noisy a t these wavelengths to discern 

any features although an absorption line is present at 117.5 nm, just blueward of the 

Lya geocoronal emission, and may be due to the Lya 7r component in a field of ~  300 

MG.

4.1.3. Hot Magnetic White Dwarfs

As previously mentioned, H I, He I, and He II absorption lines form in white 

dwarf spectra for T' f f  >  5000, 13,000, and 30,000 K, respectively. Lines of C IV, 

N V, and 0  VI have been observed in white dwarfs with temperatures greater than

100,000 K. Temperatures for the known population of magnetic white dwarfs do not 

exceed 30,000 K and hence only Zeeman-shifted lines of H I and He I have been ob

served. Higher tem perature magnetic stars are not physically excluded; their absence 

is probably related to a combination of high cooling rate and rarity of magnetic stars 

in general. Nevertheless, there is some possibility that high temperature magnetic 

white dwarfs will be found, particularly with the launching of the EUVE, and lines 

of highly ionized atoms will be observed.

For these possible observations, we determined wavelengths and transition prob

abilities from some of the hydrogen results. The energies incorporate the combined 

nuclear mass and nuclear charge scaling relation (2.1-15), while the dipole moments 

used the charge scaling relation (2.1-43). Some data for He+ is given in Appendix D. 

These wavelengths neglect relativistic corrections and are therefore only reliable to
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~  10-2 nm since the hydrogen corrections are ~  10-3 nm as discussed in Sec. 4.1.1 

and the relative correction scales as ~  Z 2 according to Sec. 2.1.4. For highly charged 

ions such as C5+, N6+, and 0 7+, the correction is ~  0.1 nm which is on the order of 

the current observational resolution. This presents the possibility of observing rela- 

tivistic effects in hydrogenlike ions if a hot magnetic white dwarf is discovered. Data 

for these ions will be given in the future after the discrepancies in the relativistic 

corrections are reconciled.
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4.2. Cool White Dwarfs

4.2.1. The Effect of Pressure on Atomic Partition Functions

The divergence of the atomic partition function due to the sum over the excited 

states of an isolated atom is a well-known problem. It is usually avoided by choosing 

an appropriate, but more often arbitrary, cutoff for the sum. Irwin [133] chose a 

binding energy of 0.1 eV for his partition function cutoff corresponding to the inclusion 

of the first 11, 23, and 11 levels for H, He+, and He, respectively. It turns out that 

the partition function, at least for H, is sensitive to the number of terms included 

at high temperatures [144]. More importantly, the actual cutoff is related to the 

physical environment in which the atom finds itself, i.e., temperature, pressure, and 

composition, which dictates the highest excited level that can be populated with 

remaining higher states delegated to the continuum. This has the effect of pushing 

the photoionization threshold to longer wavelengths. Determinations of the cutoffs 

in cool white dwarfs are clearly discussed by Bergeron, Wesemael, and Fontaine [165] 

(hereafter BWF) where it is shown that the cutoffs themselves result in discontinuity 

problems when obtaining opacities. Instead, a formalism developed by Hummer and 

Mihalas [144] incorporated by BW F where a modified partition function is used and 

is given by

Qx(T)  = Y tU igiex-p{-E ilh}T ), (4.2-1)
t

where is a occupation probability of the excited state i and varies smoothly with 

optical depth.

To estimate this effect, we determined Q# using the occupation probabilities ob

tained in BWF (see their Fig. 7) for models of pure-hydrogen cool DA white dwarfs 

with log g =  8.0 and compared to the results of Irwin [133]. The largest discrepancy 

we find is only 3% for a model with an effective stellar temperature Te/ /  =  12,000 K
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and optical depth r  =  10 (T  = 20,000 K). For Tef f  =  9000 K, the discrepancy does 

not exceed 0.3%. The equilibrium constants given in Table 3.3-1 should therefore be 

appropriate for cool white dwarfs within the above quoted discrepancies.

Irwin [133] gives QHe+ =  2 up to 60,000 K while Qhc =  1 with a variation of 

only 0.2% over the range 1000 to 60,000 K, indicating that the He^ equilibrium 

constants given in Table 3.3-2 should also be reliable for cool white dwarfs. While 

the equilibrium constants for both molecules could be improved by applying the 

occupation probability formalism to white dwarf models, its effect on the molecular 

absorption coefficients of Sec. 3.2 would be minimal.

4.2.2. HeJ and Hj Detection Prospects

It has been suggested by Gaur et al. [166] (henceforth G TJP) that HeJ and H j 

are the most abundant molecules in non-DA and DA white dwarfs, respectively, with 

the exception in DA stars of H2. Of all white dwarfs, only the cool helium-rich DQ 

stars have been observed to contain molecular features. The observed DQ dwarfs 

which number approximately 25 [167] all generally reveal absorption features due to 

the C2 Swan band. CH has been observed in only one white dwarf.

For the helium-rich models considered by GTJP, n(He^), the abundance of HeJ 

exceeds C2 by at least an order of magnitude at all r  for Tef f  > 9000 K. For lower 

temperatures, n (H eJ) exceeds n(C2) for r  > 1 only. For DA models, n (H j) is compa

rable to rc(He£) in the non-DA models. It therefore seems plausible if C2 is observed, 

HeJ and should be as well.

Since the stars likely to contain these molecules are cool, one might suggest the IR 

would be the obvious spectral region to investigate. Unfortunately, there is unlikely 

to be a detection of RV lines; since these molecules are homonuclear; RV electric 

dipole transitions are forbidden. The HeJ electric quadrupole transitions (1,0) Q(l) 

and (1,0) 0(1) occur at 6.16 fim. and 5.91 /im, respectively, but with strengths which 

are undoubtably weak.
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The lowest lying attractive electronic states of HeJ which could connect to the 

ground state by allowed dipole transitions are the 2 2 Eg and 1 2Hg states giving 

bands near 50 nm and 45 nm, respectively. The energies of the RV levels in these 

excited states are currently unavailable so that line locations and strengths cannot 

be obtained.

Similar considerations are applicable to H j, except for a lack of electronic tran

sitions due to the nonexistence of attractive excited states that can support bound 

RV levels. Some states, however, do contain van der Waals minima at large R  which 

may allow for a few bound RV levels, but due to poor wave function overlap with the 

ground state, the transitions are weak. The RV quadrupole transitions (1,0) Q(0) and 

(1,0) 0(0) occur at 4.56 fim  and 4.24 /zm, respectively with transition probabilities 

of the order 10-7  s_1 [168].

From the above discussion, it appears that the subject of Sec. 3.2, continuum 

absorption, may prove to be the only hope for detection. Unfortunately, there is no 

discernible feature in the cross sections of either He^ or H j, except for a broad peak 

in the UV. But the cross sections are large and according to GTJP, the molecular 

abundances should also be large suggesting a significant contribution to the continuum 

opacity. For late-type stars, Mihalas [134] has suggested that H j  may contribute up 

to 20% of the opacity in the visible region.

4.2.3. Hydrogen-Rich Stars

In a study of a number of cool white dwarfs, Wickramasinghe, Allen, and Bessell

[169] (hereafter WAB) noted that some stars classified as DK (currently called DZ) 

and DC contained flux deficiencies in the Johnson (U — B )  and the Stromgren (u — b) 

colors. A model atmosphere calculation for a hydrogen-rich DA star (Te/ f  =  5000 K) 

by WAB showed that the H j abundance ^ (H j) exceeded n (H ^) by at least an order 

of magnitude for r  <  1. They subsequently suggested that H j was responsible for 

the (U — B)  and (u — b) deficiencies. This concept was previously put forth by Linsky
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[170] to account for missing opacity in the solar ultraviolet, but was rejected due to 

an apparently low H j abundance. Since Linsky’s suggestion, the photodissociation of 

H j has been investigated by many authors [171-173] who have shown that the cross 

section from the v" =  0 level of the ground state to the first excited state 1J41 peaks at 

58 nm with a small magnitude of 10“21 cm2. Though a total temperature-dependent 

cross section is unavailable, the above value is a good estimate of the upper-limit for 

A >  58 nm.

To ascertain the continuum opacity importance of H j , the abundance ratios calcu

lated by WAB for Hg, H^, and H-  in conjunction with the partial pressures of H j and 

H2 from G TJP (their model set III) and the atmospheric structure models of BWF 

(see their Fig. 1) were used. Unfortunately, GTJP did not investigate polyatomic 

molecules and we were also required to extrapolate the Hj and H2 data to 5000 K. 

H2 has been included since it is apparently the most abundant molecule in cool DA 

white dwarfs and its continuum opacity is addressed through photodissociation [161], 

photoionization and dissociative ionization [175], and the Lya wing quasimolecular 

opacity [160]. We further include the H2 quasimolecular broadening of Lya [158], H-  

photodetachment [176], and H photoionization. The effect of density on the Lya wing 

as discussed by Allard and Kielkopf [161] does not appear to be important for these 

particular cool stars and is not included. The H2 pressure-induced and H-  free-free 

opacities are neglected since they are only important in the IR.

Fig. 4.2-1 shows the total opacity for each species at r  =  1. A similar plot is 

produced for r  =  0.01. Atmospheric parameters used in the calculation are also 

given in the figure. Only partial photodissociation cross sections from v" =  0, 1, 

and 2 for H3 and from v" =  0 and 14 for H2 are displayed. Clearly, H“ and H j 

are the dominant opacity sources for A > 200 nm, while H j is negligible. The 

(U — B)  deficiency cannot be attributed to H~ since its cross section has the wrong 

wavelength behavior or H j since its abundance appears to be too low. This suggests
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FIG. 4.2-1. Continuum opacities for a cool hydrogen-rich DA white dwarf with t  = 1, T .ff = 5000 K, and log g = 8.



some unknown opacity source.

4.2.4. Helium-Rich Stars

As mentioned previously, many DZ and DC stars have UV flux deficiences. Green- 

stein [177] has suggested tha t pressure-broadened lines due to metals in the photo

sphere may be responsible for the deficiencies, but it can be argued heavy elements 

do not contaminate a cool white dwarf’s photosphere since radiative levitation occurs 

only for the hotter stars [178]. In addition, deficiencies in the EUV have not been 

observed for moderately hot stars with Te/ /  <  35,000 K [179]. It has also been noted 

by Greenstein [177] tha t the DB stars show deficiencies in Greenstein’s multichannel 

U band when compared to the predicted fluxes from the models of Koester [180]. We 

offer the suggestion that for cool stars, Te/ /  < 20,000 K, the invocation of metals is 

unnecessary since the deficiencies may actually be due to He^.

Using the partial pressures of HeJ from GTJP (their model set II) and the helium- 

rich models of Koester [180], we estimate the abundances and opacities for T' f f  =

12,000 K, log g = 8.0, and n(H e)/n(H ) =  105 at r  =  1. We also include the He-  free- 

free opacity [181] and photoionization of He from the ground l 1 S  and first excited 

23S states. Results are plotted in Fig. 4.2-2. The HeJ opacity exceeds He” by 

almost an order of magnitude at U and B  with the difference increasing for shorter 

wavelengths. Inclusion of HeJ in future DB, DZ, and DC models may bring them 

into closer agreement with observations.

4.2.5. Selected Individual Cool White Dwarfs

EG 56 (WD 0752-676, BPM  4729). This star was observed by Wegner [182] to 

reveal weak C2 Swan band absorption features suggesting a helium-dominated atmo

sphere. Wickramasinghe and Bessell [183] later observed weak H a and H/3 absorption 

lines indicating this star to be a hydrogen-rich DA. They determined Te/ /  =  5500 K 

assuming a surface gravity of log <7 =  8. The later suggestion by WAB of H3 fur-
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ther pointed toward a hydrogen atmosphere. The above two works were apparently 

ignored in the white dwarf catalog of McCook and Sion [167] who classified EG 56 

as DQ, indicating helium-rich. Though Sec. 4.2.3 refutes the H3 claim and excludes 

H" and as possible (u — b) flux deficiency sources for this object, evidence sup

porting a hydrogen atmosphere comes from an investigation of helium contamination 

in a large sample of cool DA stars by Bergeron et al. [184]. Though their analy

sis indicates that helium contamination can reach as high as n(He)/ra(H) ~  25 for 

T' f f  = 12,000 K, their observations suggest a trend for cooler objects to have lower 

helium abundances. Extrapolating the upper envelope of their data (see their Fig. 1) 

gives n(H e)/n(H ) <  10~2 at Tcf f  =  5500 K. Further, the H a and H/3 line depths 

observed by Wickramasinghe and Bessell [183] compare well to the DA synthetic 

spectra of BWF (see their Figs. 12, 13, and 14) at T' f f  = 5000 K, log g =  8, and 

7i(H e)/n(H ) <  10-2 . Any increase in ra(He) or log g would result in the disappearance 

of H/3. This suggests that EG 56 has a hydrogen atmosphere.

G62-53 (WD 1334 + 039, Gr 100, W  489) and G 99-44 (W D 0552-041, Gr 45, 

LP 658-2). Both stars were observed by Eggen and Greenstein [185] to have Ca II 

absorption lines. Careful observations by Wehrse and Liebert [186] failed to detect 

Ha. Nevertheless, WAB suggested the stars were hydrogen-rich due to flux deficiencies 

in J H K  and (U — B ) which they attributed to H2 pressure-induced dipole opacity 

and H j opacity, respectively. The H2 interpretation has been criticized by Greenstein 

[177] since a predicted strong feature at 2 /im has yet to be observed. Also, Greenstein 

[177] has attributed the (U — B) deficiency to pressure-broadened metal lines in a 

helium-rich atmosphere. Subsequently, McCook and Sion [167] have retained the 

stars’ original classification of DZ9. Both Sec. 4.2.3 and 4.2.4 contribute to the 

helium atmosphere argument by excluding H j , H j , and H-  as candidates for the 

(U -  B )  deficiency while indicating H e j. Comparison of the synthetic spectra of 

BWF suggest three possible scenarios. For a pure hydrogen atmosphere H a will be
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removed if (i) log g =  8 and Tef f  <  5000 K or (ii) Tef f  = 5000 K and log g > 8.5. 

A helium-contaminated atmosphere would require for (iii) T.ft =  5000 K and log 

s  =  8, n(He)/n(H) >  1. Assuming log g =  8, WAB find from their J H K  photometry 

T 't t  =  5150 K and 5000 K, respectively, essentially excluding (i). Since the mean 

surface gravity of the known population of white dwarfs is log g =  8.0 with a standard 

deviation of =  0.25, option (ii) is unlikely. The presence of hydrogen in these 

stars may be checked through spectropolarimetry. If a star contains hydrogen and 

a magnetic field of at least 10 kG, a line feature in the circular polarization should 

appear at H a even though no feature may be present in the flux. This technique 

was used successfully by Cohen, Putney, and Goodrich [187] to detect hydrogen in 

the magnetic star G227-35 which has a featureless flux spectrum and previously 

classified DCP. The above indicates these two stars may have helium-rich atmospheres 

as previously suggested or at least comparable hydrogen and helium abundances and 

that the (17 -  B )  deficiencies may be due to H eJ .

4.2.6. The Ultraviolet and Extreme Ultraviolet

As mentioned in Sec. 4.2.2 the only prominent feature in the photodissociation 

cross sections is a broad peak in the UV, but both He^ and H j show effectively 

tem perature independent cutoffs or thresholds of the photodissociation cross sections 

in the EUV. These thresholds occur at ~  60 nm and ~  55 nm for He£ and HjT, 

respectively. From Fig. 4.2-1, it is clear the photoionization opacity of H and H2 will 

dominant this region completely obscuring H£. Between the Lya line and ~  200 nm 

the primary opacity is due to the H2 quasimolecular broadening. H j appears to be a 

minor opacity source at all wavelengths.

The H2 quasimolecular absorption, the famous 160 nm feature, has been observed 

in many cool DA white dwarfs by the IUE  (see, for example, Koester et al. [156] and 

Nelan and Wegner [157] and the discussion in Sec. 4.1.1). The strength of the ab

sorption is proportional to u(H)2 and has been shown to increase with decreasing T 'l f
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from 16,000 to 10,000 K. At T ', t  = 10,000 K, the atmosphere becomes completely 

opaque for A < 160 nm, but for lower temperatures n(H) begins to decrease as larger 

fractions of H become bound in H2. If some flux is present at these wavelengths, H2 

in a cool white dwarf may be observed via its photodissociation. Its photoionization 

may also compete with the photoionization of H below 50 nm.

The situation for helium-rich atmospheres is less complicated since the ground 

state of He2 is effectively repulsive and the cross section for He" is weak. Though the 

He ground state photoionization threshold occurs at 50.4 nm, pressure quenching of 

the upper levels as discussed in Sec. 4.2.1 will shift it to longer wavelengths possibly 

swamping the HeJ EUV cutoff. But for A > 60 nm, HeJ appears to be the dominant 

continuum opacity.

Depending on the distance to a particular star, absorption from the local inter

stellar medium may prove im portant. One can expect a strong, sharp Lya core and 

H, He, and He+ photoionization [188].

All of the stars in Sec. 4.2.5 have yet to be observed by the IUE  [182]. Effects on 

the continuum may be observable if these or other cool, near stars are investigated 

in high-resolution mode with long integration times. Many DB stars with the Green

stein U deficiency appear in Wegner and Swanson’s [189] tabulation and in particular 

the DBQ5 star WD 1917-077 has a deficiency in the Johnson (U  — B )  as well. Coin

cidentally, the EUVE  has recently become operational [190] with its long-wavelength 

window covering 28 to 76 nm. Though EUV sources are generally hot stars, two 

moderately cool white dwarfs are approved EUVE  targets. These are the DA4 star 

PG 1123+189 and GD 356 (WD 1639+537), a DAP7 dwarf. The Johnson (U -  B ) 

color of the DA4 star is unknown while GD 356 does not show a deficiency. Low- 

dispersion IUE  spectra of these stars are too noisy to reveal any features; improved 

spectra may prove interesting. I am unaware of any DB, DC, DZ, or DQ stars which 

may be possible EUVE  targets.
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5. CONCLUSIONS AND COMMENTS

This dissertation has presented a new tabulation of infinite proton mass energies 

for hydrogen in a magnetic field with some values for n  =  6 states given for the first 

time. We give new magnetic field dependent forms for the velocity and acceleration 

dipole operators as well as the oscillator strength sum rule. A new procedure for 

obtaining relativistic effects through a perturbative expansion of the Pauli approxi

mation corrections with the Zeeman Hamiltonian is attem pted with varying success. 

We present a new tabulation of wavelengths and probabilities with transitions to 

n  =  6 states given for the first time. We have confirmed the previous calculations 

of the Is —► 2p_1? 2po —> 3d_i, and 3d'Q —> 5p'0 transitions which were suspected by 

Wickramasinghe and Ferrario [46] to be in error. A 7 nm shift to the red at 320 MG is 

found for the 3d'0 —► 4p'0 transition as compared to the previous LSU [12] calculation 

giving better agreement with the spectra of Grw +70°8247. We suggest the observed 

shift in the Is —► 2p_i transition may be due to H-H+ and H-H collisions in the 

strong magnetic field of Grw +70°8247 which may also account for observed features 

at 140.8 and 164 nm.

Quantum mechanical cross sections for radiative association and photodissocia

tion and rate coefficients for the Hej" molecular system are given for the first time. It 

is shown that all rotational-vibrational levels must be included in a quantum mechan

ical calculation and agreement with semiclassical methods is then possible. This is 

demonstrated through the resolution of a discrepancy between previous calculations 

of photodissociation. New free-free absorption coefficients, partition functions, 

and dissociation equilibrium constants have also been obtained for and He£.

While the major effort of this investigation has been to calculate atomic and molec

ular data useful for the analysis of magnetic and cool white dwarfs, much remains to 

be done. The astronomer is severely handicapped, even for the hydrogen-rich mag-
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netic stars, due to the lack of a comprehensive set of hydrogen photoionization cross 

sections. As discussed earlier, further progress in the modeling of flux spectra and 

polarization spectra, in particular, awaits the generation of these cross sections. More 

information concerning the details of the field structure of the star may be obtained 

from polarization measurements than from the absorption lines, but it is here where 

the major modeling discrepancies persist. For cooler stars, T ' t f *  6000 K, H may 

become an important continuum opacity source. Our knowledge of photodetachment 

of H" in strong magnetic fields is limited to the calculation of Du [191] for B  = 10-2 

MG.

Further hydrogen work is required to investigate the suggestion given here that the 

2 nm shift in the Lya a~ line and other UV absorption features in the famous star Grw 

+70°8247 may be explained by hydrogen-proton and hydrogen-hydrogen collisions. 

Calculations of H j and H2 potentials and transition moments at the necessary field 

strengths and a detailed computation of the collision opacities versus field strength, 

pressure, and tem perature will be needed.

There are currently eight known hydrogen-deficient magnetic white dwarfs with 

field strengths greater than 10 MG. They are all presumed to have helium-dominated 

atmospheres. Many have unidentified features which cannot be attributed to hydro

gen in a magnetic field, but are probably helium lines. Reliable helium data exist 

for visible transitions up to only 20 MG [2,3]. Recently, the Tubingen group have 

applied their multiconfiguration Hartree-Fock techniques to triplet heliumlike states, 

but their wavelengths are not well converged in the intermediate-field regime [23]. To 

ascertain the accuracy of these results and other future many-electron field-dependent 

atomic structure calculations, it may be necessary to resort to a Hylleraas-type [68] 

procedure by explicitly introducing the interelectronic coordinate r 12 = Ti — r2 into 

the basis functions. For field-free structure problems, the method has provided bench

marks forjudging the accuracy of other calculations. Taking clues from the hydrogen
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problem, the magnetic-field-dependent symmetry can also be included by using a trial 

basis consisting of mixed Hylleraas- and Landau-type orbitals possibly of the form

4*abc — Pab rn* i r n»-i exp( _ ^ ri _  x'br2 -  f3ar\ sin2 0i -  p hr\ sin2 02)

x cos^" |ma| 61 cos^“ |mil 62 sin|ma| 0l sin1”16' 62 r 12 (5-1)

where the operator Paj, interchanges the indices a and b. While many times more 

complicated than  the hydrogen basis, the integrals can be evaluated and the method 

may prove the most accurate way to address simultaneously the problem of the mag

netic field and electron-electron correlation. Further progress on identifying features 

in helium-rich magnetic white dwarfs would then be possible. Also, the wave function 

could be used to  investigate H-  photodetachment and He photoionization.

The subject of molecules in white dwarfs has received little attention in the lit

erature. The cool stars tha t contain significant molecular abundances have low lu

minosities particularly for UV and shorter wavelengths so high precision spectra are 

difficult to obtain. The only two molecules that have been observed, C2 and CH, 

have electronic transitions in the visible. H2 and He^, the molecules expected to be 

the most abundant in DA and non-DA stars, respectively, have electronic transitions 

in the UV and hence are probably unobservable. Their RV transitions are forbidden. 

In this investigation, we have studied continuum absorption for He^ and H j, but 

find that there are no prominent features except for a weak, rounded peak and a 

sharp EUV cutoff. A comprehensive analysis of EUV, UV, and visible spectroscopy, 

a search for the cutoffs and absorption peaks, and modeling of the spectra with an 

emphasis on continuum absorption features may lead to a firm identification of HeJ 

or H2 in a cool white dwarf. The prospects for H j appear dim.
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APPENDIX A 

Infinite Proton Mass Energies for Hydrogen

TABLE A-l. Nonrelativistic infinite proton mass energy values for hydrogen s-states 

in a magnetic field for m , = —

B  (au) ■®NR (au)
Is 2s 3s' 4s'

0.20000000-4 -0.500009999900000 -0.12500999859999 -0.05556554772415 -0.0312599738705
0.20000000-3 -0.500099990000000 -0.12509986000024 -0.0556547724276 -0.03134738727
0.10000000-2 -0.50049975000027 -0.12549650015930 -0.0560359850234 -0.0316848127934
0.20000000-2 -0.500999000004417 -0.125986002548 -0.05647736875 -0.031990851407
0.42543812-2 -0.502122665753065 -0.1270638935094 -0.0573309413 -0.032235571026
0.60000000-2 -0.50299100035769 -0.1278742054550 -0.057860655082
0.10000000-1 -0.50497500275921 -0.129651571358 -0.0586693295753
0.20000000-1 -0.5099000440894 -0.133624177535 -0.05863423389
0.42543812-1 -0.520820309276 -0.140363458803 -0.052367
0.50000000-1 -0.524376706706 -0.142016720515
0.60000000-1 -0.529103522563 -0.143863462506
0.70000000-1 -0.533781490585 -0.1453419092
0.80000000-1 -0.5384110043895 -0.146507411
0.90000000-1 -0.54299250579 -0.147408855
0.10000000 -0.547526480401 -0.14808916 -0.043565
0.12000000 -0.5564539834772 -0.14893174716
0.13610402 -0.56350890784 -0.1492424440
0.15000000 -0.5695029457788 -0.14933121
0.20000000 -0.59038156503 -0.14898667
0.25000000 -0.610247435260
0.30000000 -0.629186552901
0.35000000 -0.647280764956
0.40000000 -0.6646053799
0.45000000 -0.6812283864
0.50000000 -0.6972105385
0.60000000 -0.727462288
0.80000000 -0.782283394
1.00000000 -0.831168896
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TABLE A-2. Nonrelativistic infinite proton mass energy values for hydrogen po-states

in a magnetic field for m , =  —

B  (au) ■®NR (au)
2po 3po 4po

0.2000000000-4 -0.125009999400000 -0.055565551955555 -0.03125998454037
0.2000000000-3 -0.1250999400001 -0.055655195561 -0.031348454156
0.1000000000-2 -0.1254985000420 -0.056046559083206 -0.031711425902
0.2000000000-2 -0.1259940006717 -0.05651961183 -0.03209658635
0.4254381205-2 -0.127100054697536 -0.0575209852313 -0.0327003874
0.6000000000-2 -0.1279460542354 -0.058235979481 -0.0329425014298
0.1000000000-1 -0.1298504158325 -0.059687869978 -0.0329178768
0.2000000000-1 -0.13440646598 -0.062378561912 -0.0309425516
0.4254381205-1 -0.14367503059 -0.0656741839 -0.026193
0.5000000000-1 -0.146464837782 -0.0663804983 -0.025398
0.6000000000-1 -0.150016268441 -0.067203260 -0.024712
0.7000000000-1 -0.153368549 -0.067940690 -0.02431
0.8000000000-1 -0.156540574 -0.0686254 -0.02410
0.9000000000-1 -0.159549365 -0.02399
0.1000000000 -0.1624100789
0.1200000000 -0.16773940
0.1361040199 -0.17169962 -0.023724
0.1500000000 -0.17491128 -0.0229492
0.2000000000 -0.18518404

B  (au) ■®NR (au)
5P'o 6Po 7Po

0.2000000000-4 -0.02000995619811 -0.0138987883546 -0.010213900
0.2000000000-3 -0.02009562111 -0.013978844445
0.1000000000-2 -0.020391295 -0.01414279
0.2000000000-2 -0.0205741476 -0.01395725
0.4254381205-2 -0.0203521314 -0.012507
0.6000000000-2 -0.019748593 -0.011307
0.1000000000-1 -0.017724047
0.2000000000-1 -0.0161
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TABLE A-3. Nonrelativistic infinite proton mass energy values for hydrogen

p_i-states in a magnetic field for m, =  —

B  (au) -®NR (au)
2p_i 3p_i

0.2000000000-4 -0.1250199987999998 -0.055575548355556
0.2000000000-3 -0.1251998800002 -0.05575483556696
0.1000000000-2 -0.125997000115 -0.0565375627456
0.2000000000-2 -0.12698800185 -0.0574836701743
0.4254381205-2 -0.1292001198328 -0.059486448706
0.6000000000-2 -0.1308921495869 -0.060916499227
0.1000000000-1 -0.134701144177 -0.063820114240
0.2000000000-1 -0.143817610348 -0.069175122
0.4254381205-1 -0.1624245019 -0.0752014
0.5000000000-1 -0.168058188
0.6000000000-1 -0.1752644186
0.7000000000-1 -0.182110099
0.8000000000-1 -0.188633895
0.9000000000-1 -0.194869409
0.1000000000 -0.2008456724
0.1200000000 -0.212119
0.1361040199 -0.220622253
0.1500000000 -0.227607738
0.2000000000 -0.2505391
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TABLE A-4. Nonrelativistic infinite proton mass energy values for hydrogen px-states

in a magnetic field for m , =  —

B  (au) Em . (au)
2?i 3pi 4?i 6pi

0.2000000000-4 -0.12499999880000 -0.05555554835556 -0.03124997500246 -0.01388875075
0.2000000000-3 -0.1249998800002 -0.055554835567 -0.0312475004520 -0.0138750868
0.1000000000-2 -0.1249970001150 -0.05553756274558 -0.0311876353495 -0.013550761
0.2000000000-2 -0.124988001854965 -0.05548367017435 -0.03100205581971 -0.01260732
0.4254381205-2 -0.12494573862783 -0.055232067501 -0.008997
0.6000000000-2 -0.1248921495869 -0.054916499227 -0.006578
0.1000000000-1 -0.124701144177 -0.053820114240 -0.00255
0.2000000000-1 -0.12381761035 -0.0491751219 +0.003
0.4254381205-1 -0.1198806899 -0.0326576393
0.5000000000-1 -0.118058188454 -0.0262577241
0.6000000000-1 -0.115264418760 -0.017373301
0.7000000000-1 -0.112110099393 -0.008333532
0.8000000000-1 -0.108633896259 +0.00074172
0.9000000000-1 -0.104869409125 +0.0098005
0.1000000000 -0.10084567237 +0.01882881
0.1200000000 -0.09211734640 +0.036822
0.1361040199 -0.0845196 +0.05129765
0.1500000000 -0.0776078 +0.063810
0.2000000000 -0.050539102 +0.109158
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TABLE A-5. Nonrelativistic infinite proton mass energy values for hydrogen 4 -sta tes

in a magnetic field for m, =

B  (au) ■®NR (au)
3 4 4 4

0.0000000000 -0.0555555555556 -0.03125000000000
0.2000000000-4 -0.055565553486961 -0.03125999252953
0.2000000000-3 -0.0556553486978 -0.03134925301
0.1000000000-2 -0.05605038508701 -0.0317313574831
0.2000000000-2 -0.0565348858464 -0.032175827349
0.4254381205-2 -0.0575894725487 -0.03304946802
0.6000000000-2 -0.058370667691
0.1000000000-1 -0.060047921913
0.2000000000-1 -0.06361693547
0.4254381205-1 -0.06919113
0.6000000000-1 -0.07191328
0.7000000000-1 -0.0730289
0.8000000000-1 -0.07388250
0.9000000000-1 -0.074509427
0.1000000000 -0.074938
0.1200000000 -0.0752912
0.1361040199 -0.0751731
0.1500000000 -0.074842
0.2000000000 -0.07261
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TABLE A-6. Nonrelativistic infinite proton mass energy values for hydrogen

cLi-states in a magnetic field for m, =

B  (au) •̂ NR (au)
3d_i 4<£_i

0.2000000000-4 -0.055575551955556 -0.03126998560001
0.2000000000-3 -0.055755195559 -0.03144856010914
0.1000000000-2 -0.0565465580136 -0.03221406788860
0.2000000000-2 -0.057519594775 -0.033107070606
0.4254381205-2 -0.034873378658
0.6000000000-2 -0.061234642207 -0.03602996327
0.1000000000-1 -0.064678149523 -0.03813218160
0.2000000000-1 -0.072253547538
0.4254381205-1 -0.086
0.5000000000-1 -0.089120138
0.6000000000-1 -0.0935275038
0.7000000000-1 -0.097536313
0.8000000000-1 -0.1012194
0.9000000000-1 -0.1046309
0.1000000000 -0.10781210
0.1200000000 -0.113606
0.1361040199 -0.1178219
0.1500000000 -0.12119
0.2000000000 -0.131785
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TABLE A-7. Nonrelativistic infinite proton mass energy values for hydrogen

di-states in a magnetic field for m3 =  — | .

B  (au) -®NR ( a u )

3<fi 6d[
0.2000000000-4 -0.05555555195556 -0.0138887907455
0.2000000000-3 -0.055555195560 -0.013879083
0.1000000000-2 -0.05554655801363 -0.013648578
0.2000000000-2 -0.0555195947749 -0.012978557
0.4254381205-2 -0.05539345044 -0.0104503
0.6000000000-2 -0.008077
0.1000000000-1 -0.00350
0.2000000000-1 +0.0027
0.4254381205-1 +0.022

TABLE A-8. Nonrelativistic infinite proton 

in a magnetic field for m a = — | .

mass energy values for hydrogen states

B  (au) ^NR (a u )
5 f'o 0/o 6h'0

0.0000000000
0.2000000000-2
0.4254381205-2

-0.020000000000
-0.020866092003
-0.02156111830

-0.01388888889
-0.01445258378
-0.01427837

-0.01388888889
-0.01468790601
-0.015195043
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A P PE N D IX  B 

R elativistic Corrections for Hydrogen

TABLE B-l. Relativistic infinite proton mass corrections for hydrogen in a magnetic 

field.

State B(au) A E r (10 6 au)
AEre AEso AEd Total

I s (§ ,-§ ) 0 -33.282101233 0.0 26.625680987 -6.6564202
2 x 10"5 -33.2821054687 0.0 26.62568492 -6.6564205475
2 x 10~4 -33.282100263 0.0 26.625678759 -6.65642150
10~2 -33.285657168 6.5738485545-5 26.6281211 -6.657529
0.1 -33.62954312 -3.8258451339-2 26.86381234 -6.803989
1 -52.71340467 -1.077778612 38.52199108 -15.2691922

0 -5.4083415 0.0 3.3282101 -2.0801313
10"2 -5.43916 -4.23455 3.34620 -2.09338
5 x 10"2 -6.0458 -7.3077-3 3.6928 -2.3602
0.1 -7.1752 -2.9616-2 4.3013 -2.9035
0.2 -8.479 -0.02291 4.803 -3.699

2Po ( § , - 5) 0 -0.97072795 -1.1094034 0.0 -2.0801313
2 x 10~5 -0.97072818 -1.1094036 0.0 -2.0801318
10"2 -0.974033 -1.11163 0.0 -2.08566
0.1 -1.23881 -1.24469 0.0 -2.48349

?P-i ( | , - | ) 0 -0.9707280 0.5547017 0.0 -0.4160263
0.1 -1.5411 0.74595 0.0 -0.79511

3?o ( | ,  —|) 0 -0.410890 -0.328712 0.0 -0.739602

3 ^  ( | , - | ) 0 -0.147920 -0.0986136 0.0 -0.246534
2 x 10~5 -0.402933 -1.34168 0.159383 -1.58523
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A PPE N D IX  C

Transition Wavelengths and Probabilities for H

TABLE C-l. Transition wavelengths, dipole moments, oscillator strengths, and tran

sition probabilities for the Lya transitions of hydrogen in a magnetic field. The 

wavelengths and transition probabilities include the finite nuclear mass correction.

B  (au) A (A) 
D\b (au) 

fb&
A*b (s_1)

Is —>2p_i Is -> 2p0 Is -*• 2pi
0.0000000000 1215.684474 1215.684474 1215.684474

0.5549289 0.5549290 0.5549290
0.4161967 0.4161967 0.4161967
625808500.0 625808580.4 625808580.4

0.2000000000-4 1215.716854 1215.684472 1215.652088
0.5549290 0.554929 0.554928966
0.4161856 0.4161967 0.416207824
625758600.0 625809000.0 625858610.0

0.2000000000-3 1216.008033 1215.684312 1215.360374
0.554930 0.554929 0.554930
0.416086 0.4161971 0.4163084
625310000.0 625809300.0 626310300.0

0.1000000000-2 1217.296841 1215.680422 1214.058590
0.554948 0.554938 0.55495
0.415659 0.4162052 0.41677
623346000.0 625825000.0 628350000.0

0.2000000000-2 1218.895571 1215.6682671 1212.419321
0.55500445 0.55496649 0.55500445
0.4151555 0.41623042 0.417375554
620960110.0 625875940.0 630964107.0

0.4254381205-2 1222.449135 1215.611177189 1208.675417
0.55526991 0.55510 0.55526991
0.41414534 0.41635 0.418869997
615855000.0 626110000.0
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0.6000000000-2

0.1000000000-1

0 .2000000000-1

0.4254381205-1

0.5000000000-1

0.6000000000-1

0.7000000000-1

0.8000000000-1

0.1000000000

1225.152056
0.5556055
0.4134803
612157700.0

1215.5387838
0.555266
0.4164992
626414000.0

1205.731302
0.555605499
0.420147602
642216803.0

1231.183240
0.556792554
0.412331455
604494110.0

1215.2807189
0.555859
0.417033
627482200.0

1198.841835
0.5567926
0.4234673
654748500.0

1245.260806
0.562110
0.411557
589803000.0

1214.086483160
0.55855
0.419462
632380000.0

1180.821780
0.5621100
0.434042
691727000.0

1271.923894
0.583000
0.417889
574052000.0

1208.769414477
0.56958
0.42963
653420000.0

1137.098996
0.5829996
0.4674953
803415400.0

1279.32397
0.59145
0.42149
572320000.0

1206.317438431
0.574233
0.434019
662780000.0

1122.056289
0.5914472
0.4806319
848279000.0

1288.267897
0.60322
0.42689
571650000.0

1202.57717116
0.58090
0.44042
676750000.0

1101.678630
0.60322
0.49928
914070000.0

1296.18800
0.615096
0.432623
572276000.0

1198.38635298
0.58783
0.44724
692040000.0

1081.228012
0.615096
0.518737
985956000.0

1303.18668
0.626723
0.438427
573750100.0

1193.81246049
0.594833
0.4542982
708359000.0

1060.847390
0.6267234
0.538703
1063614000.0

1314.783002
0.64839482
0.449572079
578021550.0

1183.750355270
0.608503
0.4686893
743274800.0

1020.722830
0.64839482
0.57925104
1235329430.0
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0.1200000000

0.1361040199

0.1500000000

0.2000000000

1323.70
0.66721
0.45949
582860000.0

1329.25241
0.68002
0.46634
586600000.0

1333.07723
0.689419
0.471418
589636000.0

1341.01996
0.7116468
0.4836956
597895800.0

1172.7928305
0.621172
0.482917
780216000.0

1163.5295257
0.6303997
0.4939929
810868620.0

1155.325149
0.6376016
0.50318457
837728800.0

1125.085048
0.657743
0.533031
935765000.0

981.930
0.667200
0.619611
1427847000.0

951.905
0.68003
0.6515
1597400000.0

926.940
0.68942
0.678243
1753860000.0

844.64221
0.7116468
0.7683543
2392836000.0
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TABLE C-2. Transition wavelengths, dipole moments, oscillator strengths, and tran

sition probabilities for a H a transition of hydrogen in a magnetic field. The wave

lengths and transition probabilities include the finite nuclear mass correction.

B  (au) A (A) 

Dlb M
fba 

A ab (S_ 1 ) 

2po —> 3d_i
0.0000000000 6564.696159

4.5086850
0.6262062
32290350.0

0.2000000000-4 6565.640297
4.5087
0.626116
32276400.0

0.2000000000-3 6574.1241807
4.50871
0.62531
32151800.0

0.1000000000-2 6611.5335054
4.50926
0.621844
31613000.0

0.2000000000-2 6657.5885706
4.510955
0.6177699
30973080.0

0.6000000000-2 6833.303665
4.52811
0.604153
28753550.0

0.1000000000-1
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0.2000000000-1

0.6000000000-1

0.7000000000-1

0.8000000000-1

0.9000000000-1

0.1000000000

0.1200000000

0.1361040199

0.1500000000

7333.553533
4.6442
0.57730
23858000.0

8065.63882
4.5431542
0.513274333
17543163.0

8159.63093
4.43140
0.494830
16527090.0

8234.14717
4.30709
0.476547
15631290.0

8293.65560
4.176880
0.4587758
14834770.0

8341.46536
4.0452
0.44172
14121600.0

8411.32453
3.78819
0.41013
12897500.0

8449.78923
3.59332
0.387200
12067720.0

8473.62334
3.436
0.3691
11440000.0
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0.2000000000 8519.80027
2.9514
0.31520
9669500.0
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TABLE C-3. Transition wavelengths, dipole moments, oscillator strengths, and tran

sition probabilities for the Paschen transitions of hydrogen in a magnetic field. The

wavelengths and transition probabilities include the finite nuclear mass correction.

B  (au) A (A)
f fb  (au)

fb a
A*b (s-1)
3 -» 4po 3 d'0 -> 5p'0

0.0000000000 18756.274739
0.15308287018367
0.74415284117063-2
47006.0302291

12821.672185

0.2000000000-4 18756.264406
1.55754
0.757136-1
478262.0

12821.657136

0.2000000000-3 18755.241518
1.5578
0.75730-1
478400.0

12820.167884

0.1000000000-2 18730.532979
1.56400
0.76132-1
482230.0

12784.444920

0.2000000000-2 18654.394417
1.5832
0.77381-1
494150.0

12677.205728

0.4254381205-2 18316.530095 12242.6

0.6000000000-2 17928.216806 11803.655136

0.1000000000-1 16803.572379
2.09315
0.113574
893845.0
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0.2000000000-1

0.4254381205-1

0.6000000000-1

0.7000000000-1

0.8000000000-1

0.9000000000-1

0.1361040199

0.1500000000

13952.265462
3.30178
0.21577
2463100.0

10602.342

9658.41375
2.9
0.27
6500000.0

9358.46
2.12
0.207
5250000.0

9197.162
2.
0.2
6000000.0

9024.17
1.37
0.138
3780000.0

8900.039

8785.113

9601.9

8697.
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TABLE C-4. Transition wavelengths, dipole moments, oscillator strengths, and tran

sition probabilities for some n =  6 transitions of hydrogen in a magnetic field. The

wavelengths and transition probabilities include the finite nuclear mass correction.

B  (au) A (A)

B L  M
fha.

•'fab (S_I)
Is -► 6p'0 2s -► 6p'0 3s' -> 6po

0.2000000000-4 937.813543215
0.0035379
0.00343962
8690900.0

4102.93143858 10941.1359220

0.2000000000-3 937.79437876
0.0035404
0.0034421
8697500.0

4102.5693964 10938.728897

0.1000000000-2 937.3397
0.003593
0.0034946
8839000.0

4093.996
1.
0.2
30000000.

10882.00

0.2000000000-2 936.0218
0.003675
0.003580
9080000.0

4069.327
0.5
0.12
160000000.

10721.55

0.4254381205-2 931.10
0.00311
0.00305
7820000.0

3979.5 10170.58

0.6000000000-2 927.18
0.00120
0.00118
3040000.0

3910.9 9792.6
0.0002
0.0002
500.
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A P P E N D IX  D  

Transition W avelengths and Probabilities for H e+

TABLE D-l. Transition wavelengths, dipole moments, and transition probabilities 

for the Lya transitions of He+ in a magnetic field. The wavelengths and transition 

probabilities include the finite nuclear mass correction.

B  (au) A (A) 
Dlh (au) 
A*b (s *)

Is —> 2p_i Is —> 2po Is -> 2pi
0.0000000000 303.7973308845633

0.1387322247028351
10025180833.58407

303.797330848424
0.1387322396039963
10025182121.23682

303.7973308345836
0.1387322396039963
10025182121.27599

0.7997806957-4 303.8054291958289
0.1387322545051575
10024380803.06877

303.7973304422435
0.1387322545051575
10025188843.36728

303.7892311320411
0.1387322396039963
10025984182.21896

0.7997806957-3 303.8782538034326
0.1387324929237366
10017188541.33935

303.7972903410835
0.1387322545051575
10025193649.23721

303.7162729559642
0.1387324184179306
10033224108.77320

0.3998903478-2 304.2005897330146
0.1387369930744171
9985700027.521420

303.7963182221906
0.1387345045804977
10025445156.43004

303.3906960469545
0.1387368738651276
10065882488.34517

0.7997806957-2 304.6004424622585
0.1387511193752289
9947446644.887281

303.7932808098381
0.1387416273355484
10026261193.14362

302.9807178267811
0.1387511193752289
10107837205.48545

0.1701285980-1 305.4892286656628
0.1388174742460251
9865592373.378040

303.7790141452939
0.1387750059366226
10030010732.86049

302.0443908883298
0.1388174742460251
10207010488.44977

0.2399342087-1 306.1652757611346
0.1389013677835464
9806307467.726307

303.7609231695331
0.1388165056705475
10034880681.05296

301.3081014291502
0.1389013677835464
10288234486.52612

0.3998903478-1 307.6738330465835
0.1391981393098831
9683413570.321974

303.6964332221069
0.1389647573232651
10051992781.90561
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0.7997806957-1

0.1701285980

0.1999451739

0.2399342087

0.2799232435

0.3199122783

0.3998903478

0.4798684174

0.5442668386

0.5998355217

0.7997806957

311.1953358811131
0.1405275017023087
9447756801.452646

317.8668471817093
0.1457500010728836
9194728667.137867

319.7190207430488
0.1478624939918518
9166744369.059544

321.9580592911887
0.1508049964904785
9155685527.590792

323.9413098241819
0.1537739932537079
9165381133.136999

325.6943493347305
0.1566807478666306
9188656331.010260

328.6005229746676
0.1620987057685852
9256387564.773739

330.8372270721421
0.1668024957180023
9333184494.985815

332.2315227396202
0.1700049936771393
9392515626.370775

333.1931708476985
0.1723547428846359
9440644776.548084

335.1988675129897
0.1779116988182068
9571138689.904272

303.3979958906955
0.1396375000476837
10130453414.33026

302.0692701328429
0.1423950046300888
10467505091.86198

301.4565257949007
0.1435582488775253
10617448233.57761

300.5218398315390
0.1452250033617020
10841241576.50147

299.4745620184750
0.1469575017690659
11086180747.10318

298.3315546346240
0.1487082540988922
11347604051.55376

295.8170529079896
0.1521257460117340
11906940028.85233

293.0787874703515
0.1552930027246475
12498722035.98326

290.7639045105070
0.1575999259948730
12989763718.10030

288.7136457498349
0.1594004034996033
13420052155.73355

281.1566997116480
0.1644357442855835
14990549573.45386

295.0789729467983
0.1405274718999863
11081873182.40885

284.1466659912062
0.1457498818635941
12872035598.56674

280.3857457603841
0.147861793637275
13591109877.59527

275.2911992776122
0.1508062332868576
14645662906.49513

270.1786127111363
0.1537739634513855
15797801487.01889

265.0836999280058
0.1566808521747589
17042511968.85802

255.0534814932115
0.1620987057685852
19794863525.34949

245.3565491716176
0.1667999327182770
22880718550.57314

237.8517556794639
0.1700078099966049
25598618979.56261

231.6118625600677
0.1723544895648956
28106511837.62339

211.0426513729365
0.1779116839170456
38349571997.42470
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