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ABSTRACT

Aircraft wakes represent potential hazards which can control aircraft spacing and 

thus limit airport capacity. Wake vortex trajectories and strengths are altered radically by 

interactions with the ground plane and by atmospheric conditions. This work has been 

concerned with developing more accurate numerical predictions. A two-dimensional, 

unsteady numerical-theoretical study is presented which has included viscous effects, the 

influence of stratification, crosswind and turbulence on vortex behavior near the ground 

plane, using a vorticity-streamfimction formulation.

A two-parameter perturbation procedure has been developed which uses analytic 

solutions for the initial flow field to accommodate the ground effect region in the 

numerical simulation. Using an order of magnitude analysis, it was possible to justify 

the Boussinesq approximations for turbulent wake vortex predictions, including ground 

effects and atmospheric stratification. It has been shown that the eddy-viscosity turbulence 

models were not effective in predicting wake vortex flows and a Reynolds stress transport 

model was implemented.

The numerical solutions to the Navier-Stokes equations have been compared with 

experimental results for the laminar, unstratified cases and good agreement has been 

obtained. The computational simulations show that the vortex rebound near the ground 

plane is caused by ground boundary-layer separation. High stratification levels can 

confine the motion of the vortex system and alleviate the primary vortex strength. Vortex
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turbulence influences vortex trajectories more strongly than it influences the rate of change 

in vortex strength. Weak crosswinds cause the upstream primary vortex to rebound less 

strongly than the downstream vortex. Finally, suggestions are made for future research.
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Chapter 1 Introduction

It is well-known that aircraft trailing vortex wakes can cause serious loss of control 

when following aircraft encounter them. The following aircraft can be subjected to rolling 

moments which exceed the aircraft’s roll control authority, leading to a dangerous loss 

of altitude, and to possible structural failure. With the advent of large transport aircraft, 

the wake vortex problem has taken on added significance. Since the probability of an 

aircraft-vortex encounter is greatest in airports where aircraft operate in close proximity, 

aircraft spacing at congested airports is dictated by the characteristics of the vortex wakes 

left in the terminal area (Hallock, 1992). Moreover, the hazard is more severe near the 

ground because of the limited time and space available to maneuver the aircraft so as to 

recover from an upset. Therefore, prediction of wake vortex trajectories and strengths 

is especially important for effective airport flight control and maintain maximum traffic 

volume.

In order to fully assess the hazard, complete information is needed regarding such 

processes as the initial organization of the wake vortex sheet, the subsequent roll

up and generation of primary vortices, the descent and decay of the wake in a real 

atmosphere, and the response/control characteristics of the encountering aircraft. The 

detailed treatment of aircraft wake vortex formation (e.g. Kandil, Wong and Liu, 1991 

and Wong, Kandil and Liu, 1992) is beyond the scope of the present research and will 

not be treated here. Rather, this work has focused on the viscous interaction between

1
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vortex wakes and the ground plane, including atmospheric effects such as stratification, 

wind shear and turbulence. An in-depth understanding of the mechanisms that bring 

about wake dissipation can provide information which could enable augmentation of the 

decay process, and thus lead to the accelerated destruction of wake vortices, thereby 

contributing to the alleviation of airport congestion.

A numerical-theoretical study of the motion of a two-dimensional, unsteady vortex 

pair in close proximity to the ground is presented here. The purpose of this research 

was to predict the flow pattern, structure, motion and persistence of trailing vortices, 

approximating those generated by aircraft after the initial roll-up stage. While the wake 

structure is established quickly, within a few spans during roll-up, the resulting vortex pair 

is stable for a long time, sometimes over several minutes, and thus poses a safety hazard. 

The character and potential hazard of the residual wake structure are not well understood 

(Widnall, 1975). The transverse motions of these vortices, without the inclusion of the 

sinusoidal instability (Crow, 1970), are slow enough, relative to the flight speed, to be 

described by a two-dimensional model (Atias and Weihs, 1984).

A representative airplane type considered in this study is the Boeing 747. Its circu

lation Reynolds number (T/v) is on the order of 107. Its span, which is a characteristic 

length for this problem, is about 60 m. The largest near ground lapse rate for a quasi

steady atmospheric temperature gradient is 0.2 C°/m, and this study has shown that the 

Boussinesq approximations can be used in modeling vortex wake behavior. That is, the 

density variation can be neglected except for the body force terms in momentum equa

tions. The governing equations for turbulent, stably stratified, incompressible flows are

2
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needed for the computations. The derivation procedure, which is not a simple matter, 

will be discussed in Chapter 3.

In the numerical computations, the vorticity-streamfunction formulation is used to 

model an unsteady, two-dimensional, incompressible flow approximation of the prob

lem. One reason for the use of vorticity-streamfunction formulation is that the number of 

unknowns is reduced from three (two velocity components and pressure) to two. Further

more, in this study the vorticity is of interest in its own right and it is desirable to compute 

its evolution directly, rather than compute the primitive variables and numerically dif

ferentiate the results. Besides, the pressure boundary condition on the ground is more 

difficult to represent than that for the vorticity. Then in Chapter 4, the computational 

domain and grid spacing have been chosen carefully for proper resolution which is con

formable with available computational resources and budgets. The boundary conditions 

for the vorticity-streamfunction formulation are developed in the transformed domain.

Finite-difference schemes are developed to obtain the difference equations for the 

problem. At low altitude, the strong effects of the viscous ground boundary not only 

preclude inviscid theories and approximate models (Greene 1986), but these viscous 

effects also represent difficulties for finite-difference techniques. These vortex wake 

flows produce very thin shear layers near the ground boundary as well as at various other 

time-dependent locations throughout the region. A specially designed computational 

approach for this application is presented. In Chapter 5, a time-dependent, double

series, asymptotic expansion, in terms of circulation Reynolds number and dimensionless 

time, is developed for the initial flow field. The initial velocity field problem has been 

addressed previously by Peace and Riley (1983), but they used a single series expansion

3
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in time, scaled by Reynolds number (t/Re), to start their asymptotic solution. Their 

method has difficulties in rigorously matching all the inner terms with the outer flow, 

particularly the pressure field which was not considered in their expansion. This so-called 

unsteady Reynolds number single-series expansion was replaced by a double-series similar 

to the method that had been used by Nam (1990), who expanded the series further in 

non-dimensional time. The double-series was required because the similarity conditions 

(Schlichting 1979) based on the unsteady Reynolds number are not always satisfied for 

the general unsteady flow. Since the boundary-layer thickness depends strongly on both 

Re and the elapsed time after the impulsive start, the choice of these two expansion 

parameters seems quite proper, a fact which has been shown previously by Nam (1990) 

for a different problem, and is developed in Chapter 5 for the wake vortex problem.

Turbulence models for vortex-dominated flows are evaluated in Chapter 6. Redis

tributions of the Reynolds stresses due to centrifugal and streamline curvature effects in 

these vortex flows have been reviewed in Bradshaw (1973) and Bushnell (1991). An iso

lated turbulent vortex, also studied by Donaldson (1972a), has been used as a test problem, 

because it only requires a small number of grid points, while incorporating streamline 

curvature and vortex core relaminarization effects. It is demonstrated in the test prob

lem that eddy-viscosity approaches are inherently inadequate and that a Reynolds-stress 

transport model should be used to calculate turbulent vortex flows.

The computational results, performed on the Cray II and Cray Y-MP multi-CPU 

machines at NASA Langley Research Center, simulating Reynolds number effects, 

stratification and crosswind effects, are discussed in Chapters 7, 8 and 9, respectively.

4
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Finally, conclusions from the present work and suggestions for the future research are 

contained in Chapter 10.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 Summary of Previous Research

In this chapter, a brief review of pertinent literature on the evolution of wake vortices 

of typical aircraft is presented. The discussion includes consideration of ground effects, 

stratification, wind shear and turbulence.

2.1 Ground Effects

As stated in the first chapter, one of the critical regions where wake penetration by 

other aircraft is of great concern is in the airport terminal area. The problem is most 

severe near ground level, where the aircraft may not have sufficient time or space to 

recover from the influence of the wake encounter. Also, the ground plays an important 

role in influencing the trajectory and strength of these generated vortex wakes. Viscous 

interaction with the ground boundary-layer flow changes the motion of the vortices 

dramatically. In practice, several other effects may be expected to modify the behavior 

of the vortices close to the ground. Because crosswind velocity profiles vary with the 

altitude from the ground plane, so do their effects on the vortices. Turbulence level and 

stratification intensity are different near the ground surface, when compared to conditions 

away from the ground.

Assuming that the ground surface acts as an image plane, potential theory repre

sentation of a pair of counter-rotating vortex filaments above an infinite plane yields 

reasonable estimates of wake vortex descent rates in an otherwise quiescent atmosphere,

6
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as long as the wake is sufficiently far from the ground (Dee and Nicholas 1968, Saffman 

1979). Following the methods of classical hydrodynamics, the trajectories of this four 

vortex system with mutual induction (a vortex pair and its images, as shown in Figure 

2.1) have been given by Lamb (1945), where

1 /x 2 +  1/ y 2 = A , (2.1)

and A is a constant depending on the initial positions, xq and ho, of the vortices. These 

vortex system equations can be derived from the fact that the circumferential velocity, 

due to a single vortex of strength To, is

V  =  T o /27i t (2.2)

where r is the distance from the vortex axis. From Eqns. (2.1) and (2.2) Dee and Nicholas 

(1968) derived the time dependent positions

2 2 [647t2/AT^ + A(t + B)] f  /  64tt2

647T2/rg | + \ A 2T2(t + B ) 2
(2.3)

2 _ 2 [6 A t 2/A T 2 + A(t + B)] 
V 64tt2/T 2

where B is another constant, defined by

At

1 + 1

647T2
-I

2

A*Tftt  + B y
+ 1

B  =
AT  o

Ah% -  2

(2.4)

(2.5)
. (Ah20 -  1)1/2.

and where the upper alternating sign applies when t < B  and the lower sign applies 

when t > B.  Hence, the vertical and horizontal displacements of the line vortices can 

be calculated as a function of time to give the potential theory vortex positions.
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Harvey and Perry (1971) examined the observed flight data of Dee and Nicholas 

(1968) and found a noteworthy discrepancy which had not been emphasized in their 

original report. It was shown that in many tests the vortices departed from the path 

predicted by potential theory by rising again, after descending to within close proximity 

of the ground (Figure 2.2). Apparently, wake vortices rebound as well as separate when 

they interact with the ground.

Some of Harvey and Perry’s experiments (1971) were conducted on a single vortex 

shed by a half-span wing over a moving floor in a low-speed wind tunnel. The 

primary objective of those experiments was to explain the cause of the vortex rebound 

phenomenon, which is considered to be a significant feature of the ground effect and 

which can influence terminal flight conditions. The experiments inferred that rebound 

was caused by separation of the ground boundary-layer flow underneath the vortex (see 

Figure 2.3). It is known that a trailing vortex system induces a cross flow along the ground 

with an attendant suction peak some place beneath the vortex core. The boundary layer, 

resulting from the interaction of this cross flow with the ground, has to negotiate an 

adverse pressure gradient once it has passed outboard from the suction peak under the 

vortex. When the vortex is sufficiently close to the ground, the pressure gradient is strong 

enough for separation to occur. A bubble containing vorticity of opposite sign to that 

of the primary vortex forms near the separation point and eventually detaches from the 

ground as a secondary vortex, fed by a vortex sheet emanating from the separation point. 

Although the subsequent interaction is complicated, Harvey and Perry argued that the 

development of the secondary vortex causes the primary vortex to rise.

8
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Later Barker and Crow (1977) observed rebound for a two-dimensional vortex pair, 

generated in water, approaching either a free upper surface or a rigid horizontal plane 

beneath the water. They asserted that the rebound phenomenon could be attributed to the 

effect of finite vortex core size. Their explanation was intuitive, using the idea that an 

elliptical vortex core, which was originally a circular core and had been deformed while 

nearing the surface, might have a tendency to rotate as it moved along its “image plane”. 

That rotation would lead to changes in both the distance of the vortex center from the 

bounding surface and in the propagation velocity of the vortex center. However, their 

arguments lacked rigorous proof for the causes of vortex rebound.

By introducing a pair of elliptical core vortices with axis ratio and orientation given 

by the inviscid theory of Moore and Saffman (1971), Saffman (1979) showed that in the 

framework of an inviscid theory it was not possible to explain the rebound phenomenon 

by finite core size and that the wallward velocity component could not change sign. 

Navier-Stokes computational results, performed by Bilanin, Teske and Hirsh (1978), 

demonstrated that rebound from a solid boundary did not occur unless the viscous, no

slip boundary condition was applied, even though the vortex cores were of finite size.

Recently, experiments were designed by Liu and Smsky (1990) to minimize flow 

channel sidewall effects, which can mask the ground effect. From their dye visualization 

results in water, they identified the emergence of secondary, counter-rotating vortices near 

the ground plane, outboard from the vortex wake. They determined that as soon as the 

secondary vortex began to form, rebound of the main vortex was initiated. Specifically, 

the primary and secondary vortices form a vortex pair that moves upward. Those results

9
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have confirmed the scenario of secondary vortex generation suggested by Harvey and 

Perry (1971).

Although there is no free surface boundary in the problem considered here, the 

rebound phenomenon was also observed by Barker and Crow (1977), Sarpkaya and 

Johnson (1983), Bernal et al. (1989) and Liu, Hwang and Smsky (1991), where their 

vortices approached a free surface in water tank experiments. Sarpkaya and Johnson 

(1983) suggested that sidewalls could be responsible for the rebound. Bernal etal. (1989) 

investigated the effects of surface contamination and showed that surface contamination 

due to dust or surface active agents effectively caused the free surface to act like a solid 

boundary during vortex impingement; an opinion which was shared by Liu, Hwang and 

Smsky (1991). Liu, Hwang and Smsky (1991) suggested that no practical clean-surface 

existed that would fulfill the ffee-surface boundary condition requirements. However, 

low Reynolds number computational results by Peace and Riley (1983) predicted the 

rebound for a theoretically enforced stress-free boundary. Since rebound appeared for 

both a no-slip and a stress-free boundary, they argued that flow separation, which is not 

a feature associated with the stress-free boundary condition, did not occur even for the 

no-slip cases at the Reynolds numbers used in their calculations. Their Reynolds numbers 

were at least two orders of magnitude lower than those reported in experiments. They 

agreed that the occurrence of flow separation, observed by Harvey and Perry (1971), 

would certainly induce a rebound of the incident vortex. They stated that even in the 

absence of separation, rebound was caused by viscous effects, regardless of whether or 

not the boundary conditions were no-slip or zero shear. They argued that the viscous 

displacement effect of the no-slip boundary was sufficient to force the vortex away from

10
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the boundary. For the zero-stress case there was no such effect and viscous effects were 

only significant at the boundary when vorticity had diffused from the neighborhood of 

the vortex pair to the ground boundary. This may explain why Orlandi (1990) found 

that for a flat slip-free surface, rebounding diminished with increasing Reynolds number 

until it ceased.

Another aspect of vortex-boundary interaction which is unique to free surface bound

aries is a time-dependent nonlinear free surface interacting with a viscous vortex pair 

(Ohring and Lugt 1991). The generation of surface vorticity and secondary vortices on 

a curved, wavy free-surface were found to induce a specialized type of rebound of the 

main vortex.

In summary, aspects of the rebound phenomenon can be explained over different 

Reynolds number ranges. For low Reynolds number cases where separation may not 

occur, the viscous displacement will be large enough to force the primary vortex away 

from its no-slip boundary, and the vorticity diffusion on a free surface will cause the 

rebound. For high Reynolds number cases the no-slip boundary layer is very thin, so the 

separation scenario inferred by Harvey and Perry (1971) is correct for solid boundaries, 

but the rebound phenomenon does not show up on free surfaces because the diffusion 

process is not significant at high Reynolds numbers.

Many theoretical studies of a vortex pair in ground effect have been reported using 

inviscid theory, discrete vortex methods, and finite difference schemes. Potential theory 

has failed to describe the ground effect, even when elliptical vortex cores were considered 

(Saffman, 1979). Another type of inviscid method was introduced by Liu and Ting (1987), 

who studied the interaction of decaying trailing vortices in a spanwise shear flow near

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the ground. They combined the matched asymptotic solution for decaying vortical spots 

with an Euler solution for the background, unsteady, rotational flow. Although some 

viscous core effects could be included in the leading terms of their asymptotic expansion, 

there was no ground boundary layer and the method could not be extended to include 

direct viscous interaction between the vortex and the ground. Starting from Leonard’s 

(1980) methods, which approximated the vortex sheet by an array of point vortices, Atias 

and Weihs (1984) developed a discrete vortex method which simulated viscous effects 

via vorticity generation near the ground using distributed planar vortex elements. This 

method was also developed and applied by Chorin (1973, 1978) to approximate unsteady 

boundary layers. Since the number, type and distribution of the discrete vortices produce 

considerable uncertainty and yet the viscous interaction is still not properly represented, 

Navier-Stokes calculations with finite difference schemes have been adopted.

Bilanin, Teske and Hirsh (1978) developed a numerical simulation of a trailing vortex 

pair near the ground for both laminar and turbulent conditions. One of their important 

conclusions was that the proximity of a ground plane reduces the vortex hazard by 

“scrubbing”. That is, the vortex pair separates or spreads and interacts viscously with 

the ground, thereby reducing its strength more rapidly.

The problem of the initial ground vorticity distribution was studied by Peace and 

Riley (1983) using an asymptotic solution to describe the early stages of fluid motion. 

Their low Reynolds number computational results showed the rebound for either a no

slip or a stress-free boundary.

A numerical study of the effects of stratification and wind shear on the evolution of 

aircraft wake vortices near the ground has been reported by Delisi, Robins and Fraser

12
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(1987), who found that both effects reduce the extent of vortex rebound. They employed 

a mixed no-slip/slip boundary condition on the ground plane which required an empirical 

adjustment for different flow cases.

It is noted that here, in the absence of ground effects, even in more realistic 

atmospheric conditions, an approximate prediction model developed by Greene (1986) 

has demonstrated surprisingly good agreement with experimental data. That method 

was based upon empirical engineering approximations. Unfortunately, the extension to 

include ground effect does not appear to be compatible with Greene’s model.

2.2 Stratification

The descent of a vortex pair in a stratified atmosphere poses a problem that has 

not been completely solved. There are fundamental differences in assumptions made 

previously by others and quite different conclusions have been reached (see Widnall 

1975). For levels of stable stratification (when atmospheric temperature increases with the 

altitude from the ground) which occur typically in the atmosphere, inviscid studies (Scorer 

and Davenport 1970, Tombach 1971, Kuhn and Nielsen 1972, Lissaman et al. 1973, 

Crow 1974) have produced quite different results from the intuitive notion that stable 

stratification ought to produce effects similar to a rigid barrier, causing the vortices to 

decelerate and spread apart. All of these investigators concluded that stable stratification 

in an inviscid medium increased the rate of descent of the vortex pair with time. Ivanov et 

al. (1987) identified two important effects due to a stably stratified medium: a buoyancy 

effect and a vorticity effect. The buoyant force, due to departure from equilibrium 

density level, produces vortex deceleration. At the same time, the density difference at 

the edge of the moving medium leads to the generation of a vortex sheet. As a result

13
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of the convective drift of vorticity along the edge of the recirculation zone, this sheet 

accelerates the vortex pair. The competition between these factors is extremely complex. 

However, the problem with any inviscid analysis of vortex descent is that it neglects the 

transport of vorticity across streamlines. The inviscid behavior described is not observed 

experimentally in any wake of appreciable age (Tombach 1973, Sarpkaya and Johnson 

1983, Liu and Smsky 1990), where the vorticity transport is dominant.

Liu and Smsky (1990) discussed stratification effects with different ranges of internal 

Froude number. The Froude number in their experiments was defined as F=U/NL, where 

U, N and L are the characteristic scales for the velocity, Brunt-Vaisala frequency and 

characteristic length, respectively. At low Froude numbers, where the stratification effect 

can be large, Saffman’s (1972) linear inviscid prediction agrees well with laboratory 

results (Sarpkaya and Johnson 1983, Liu and Srnsky 1990) and with numerical results 

(Hecht et al. 1979, Hirsh 1985). At high Froude numbers, Crow’s hypothesis (1974) 

of detrainment, which proposes that the vortex translation speeds up and the vortex 

separation contracts, is only expected to apply within a short period. Since the inertia 

of the vortex system is dominant at high Froude numbers, the full nonlinear equations 

are then necessary (Hirsh, 1985).

Nonlinear numerical calculations have been performed by Hecht et al. (1979), Hirsh

(1985), Delisi, Robins and Fraser (1987) and Robins and Delisi (1990). Hecht et al. 

(1979) calculated turbulent vortices in stably stratified fluids for both vortex rings and 

vortex pairs, using the second-order closure model of Donaldson (1972a). In a range 

of Froude numbers from 1 to 10, the descent velocity was a monotonically decreasing 

function and the spacing of the vortices in vortex pairs was nearly constant.

14
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The Euler calculations of Hirsh (1985) demonstrated that for low Froude numbers, 

a linear inviscid description of the flow was possible. A specially constructed numerical 

procedure that conserved energy was used when there was nonlinear transfer between 

kinetic and potential energy. At low Froude numbers, the results were in good agreement 

with the experiments of Sarpkaya and Johnson (1983) and Liu and Smsky (1990) and 

with the linear theory of Saffman (1972).

Robins and Delisi (1990) studied the influence of vertical shear and stratification 

effects on the evolution of a vortex pair away from the ground. Their numerical model, 

developed originally for use in gravity-wave-critical-level studies, was applied. Their 

model separated the solution for horizontally averaged quantities from the perturbations 

about those averages. Their equations for the average quantities and each term of their 

exponential series expansions of the perturbations were then calculated. With specified 

damping, their prediction of vortex ascent, obtained for non-sheared flow calculations 

agreed with the laboratory experiments of Barker and Crow (1977), Tomassian (1979) 

and Sarpkaya and Johnson (1983).

Delisi, Robins and Fraser (1987) also computed the case with ground effect, by 

applying ad hoc non-slip/slip-free boundary conditions along the ground plane. Their 

results showed no rebound of the vortex pair and that the inclusion of stratification 

inhibits the horizontal propagation of the vortices in ground effect.

2.3 C ross Wind

In a cross wind, the atmospheric shear vorticity must introduce some asymmetry into 

the wake. Aircraft flight tests have shown that the smoke contained in one of the two 

primary trailing vortices could vanish while the second smoke trail remained intact (see

15
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Burnham et al., 1978). Numerical calculations reported by Rossow (1976) and Bilanin, 

Teske and Hirsh (1978) demonstrated that the vortex with the same rotational sense 

as the shear gradient survives, while the vortex of opposite rotational sign is distorted 

rapidly. In addition, in the measurements by Burnham et al. (1978), vortex system 

tilting phenomenon was observed.

The unanswered question is: Why does the upwind vortex sometimes appear to 

rise relative to the downwind vortex, while at other times the opposite seems to occur 

(Donaldson and Bilanin 1975)? If atmospheric shear is constant and the wake is not 

in ground effect, a closed form potential flow solution approximation was found by 

Lissaman et al. (1973). For this ideal solution, even with wind shear, the two vortices 

descend at their classical rates, v =  T / A ttsq , where T is the circulation and so is the 

half-span of the vortex pair, and there is no tendency for the vortex pair to tip or tilt. The 

effect of a ground plane on the ideal solution was considered by Brashears, Logan and 

Hallock (1975). They studied the upwelling of streamlines by considering the stagnation 

point positions. The upper stagnation point of the two stagnation points in the flow field, 

caused by the interaction between crosswind shear and the vortex pair, agreed with the 

trends as to which vortex was observed to rise. But their solution could not predict the 

tilting phenomenon. The results showed that weak vertical shear will cause the downwind 

vortex to rise more rapidly than the upwind vortex and that strong vertical shear will have 

the opposite effect. The results of Delisi et al. (1987) for stable stratification, with and 

without ground effect, showed the same trend. Their ground effect results also showed 

that vertical shear reduced the rebound when compared with non-sheared flows.

16
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2.4 Turbulence

The aging of a wake vortex will be influenced by turbulent diffusion, entrainment and 

dissipation. Two types of turbulence effects must be considered. Obviously, the ambient 

turbulence generated within the atmospheric background must be considered. In addition, 

the turbulence originating from or generated by the vortices must be considered. (While it 

is known that Helmholtz and Rayleigh instabilities can occur during roll-up of the vortex 

sheets, it is not possible to achieve that level of resolution with the current computational 

capability.) In practical cases, one cannot distinguish atmospheric turbulence effects from 

vortex-generated turbulence effects. However, since they must have distinctly different 

effects on the evolution of the vortex structures, they will be discussed separately in 

this chapter.

2.4.1 Ambient Turbulence

The life-span of wakes in an ambient turbulence environment have been studied 

experimentally by Tombach (1973), Crow and Bate (1976), Sarpkaya and Daly (1987) 

and Liu (1992). The wakes were generated by a light airplane in Tombach’s (1973) 

experiments. He proposed that the life-span of wakes correlates with the reciprocal 

of the cube root of turbulent dissipation. He showed a strong correlation between 

atmospheric turbulence and both vortex linking and bursting instabilities. The linking 

instabilities, which result from mutual induction instabilities of the vortex pair, called 

Crow instabilities (Crow 1970), are considered to be inviscid instabilities (Donaldson 

and Bilanin 1975). Crow and Bate (1976) investigated large scale atmospheric turbulence 

effects and found that the linking instabilities were the first in a sequence of processes
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that destroyed the coherence of a vortex wake. Sarpkaya and Daly (1987) suggested that 

the life-span of the vortices was influenced strongly by the intensity of turbulence and, 

to a lesser extent, by its scale. In Liu’s (1992) tow-tank experiments, weak turbulence 

with large integral scales, compared with the vortex separation distance, produced flows 

where vortex linking was the dominant mode of instability. As the turbulence intensity 

was increased, vortex bursting occurred and eventually replaced linking as the dominant 

mode. For turbulence with small integral scales, the bursting instability was dominant and 

relatively weak intensity, small-scale turbulence was more effective than its large-scale 

counterpart in reducing the life-span of the wake. Ground effects were not considered 

in these experiments.

The effect of vortex transport of atmospheric turbulence was studied theoretically by 

Donaldson and Bilanin (1975) and Bilanin, Teske and Hirsh (1978) in their investigation 

of rates of decay and descent of vortex pairs. Their two-dimensional models were inca

pable of addressing the behavior either of sinusoidal instabilities or of vortex breakdown 

since both phenomena are inherently three-dimensional. Donaldson and Bilanin (1975) 

used eddy-viscosity ideas to model velocity-vorticity fluctuation correlations. Using a 

constant ambient turbulence kinetic energy and the one eighth separation distance be

tween the vortices as their integral scale, they obtained expressions for descent rates and 

circulation as functions of time, in the absence of a ground boundary. The maximum 

wake descent rates, given by their expressions, were in rough agreement with the obser

vations of Tombach (1973). Greene (1986) used the same relation in his approximate 

model for turbulence effects.
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Bilanin, Teske and Hirsh (1978) applied a second-order moment closure model 

developed by Donaldson (1972a). The initial vortex turbulence was computed together 

with atmospheric turbulence, assuming constant shear and homogeneous turbulence in 

the absence of a vortex wake. The background turbulence was assumed to be the result 

of a gradient in the headwind and the turbulence levels were determined using the "super

equilibrium" limit for the turbulent transport model (Donaldson 1973). The results for a 

vortex Reynolds number of 10,000, without ground effect, showed substantial diffusion 

of the vorticity, with a drop in maximum value of about an order-of-magnitude below 

the maximum vorticity value in the zero background turbulence case. Ground boundary 

effects were also considered in the calculations at Reynolds numbers of 100 for a laminar 

case and 10,000 for a turbulence case.

2.4.2 Vortex Core Turbulence

There are turbulent regions in the trailing vortices, produced during roll-up of vortex 

sheets. Barker and Crow (1977) determined from their flow-visualization photographs 

that two-dimensional vortices were unstable in an annular region surrounding the core. 

Transition began in the annular region, via instability waves which progressed radially 

inward and outward. The flow in the vortex recirculation cell remained fully turbulent 

until the vortices had dissipated, except for a small region near the center of each 

vortex. This inner region, or vortex core, appeared to remain laminar and grew slowly 

in radius during the evolution of the vortex. Intermittent patches of highly turbulent 

and partially relaminarized fluid in the vortex core were also found in the experiments 

by Bandyopadhyay, Stead and Ash (1991). Their experiments revealed the exchange
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of momentum between the outer turbulent region and the core carried out by organized 

motions.

An essential understanding of the nature of viscous transport of vortex wakes in a 

quiescent, neutrally stable atmosphere is still difficult. Experimentally, it is difficult to 

carry out systematic experiments because some parameters such as the core size and 

turbulence distributions in the core cannot be varied systematically and quantitative 

measurements of turbulence stresses are smeared by the vortex motion, owing to the 

presence of a probe and the "vortex meandering" due to free stream turbulence (Phillips 

and Graham 1984).

Theoretically, many problems associated with turbulence modeling, even for two- 

dimensional vortex wakes, still remain. The streamline curvature in vortex flows is 

expected to influence turbulence transport and the extra rates of strain must be modeled. 

Consideration of vortex core stability via Rayleigh stabilization or destabilization should 

also be included. The central, forced-vortex region, defined as an inner viscous region 

or vortex core, exhibits flow field and turbulence characteristics with unusual and 

interesting behavior. Such subtle details as vortex core relaminarization, along with the 

local anisotropy of Reynolds stresses, invalidate eddy-viscosity models for wake vortex 

problems. The influence of streamline curvature on turbulent flows has been reviewed 

by Bradshaw (1973) and Bushnell (1991).

Attempts have been made to establish the laws governing the flow in a turbulent 

line vortex along lines similar to the methods used in turbulent boundary-layer theory. 

The belief was that there was somehow a similarity between vortex cores and the 

viscous sublayers which occur in turbulent boundary layers. Ragsdale (1961) tested the
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applicability of mixing length theory to a compressible, turbulent vortex system, using 

both Prandtl and von Karman similarity functions. Some of his expressions failed to 

correlate with experimental data. A logarithmic distribution of circulation was utilized 

by Saffman (1973) for the outer region (outside the vortex core) and the inner region 

was represented using solid body rotation. Iversen (1974) studied a so-called "plateau" 

region trailing from a lifting airfoil where the decay of the vortex due to viscous or 

turbulent shear was very slow. He suggested that the delay in vortex decay was due to 

nonequilibrium turbulence in which the magnitude of the turbulent shear stresses take 

a significant period of time to catch up with the turbulent energy distribution. Both 

constant and variable eddy-viscosity models were applied to his calculations of the decay 

of a single line vortex. Donaldson and Bilanin (1975) studied a pair of vortices in 

descent, under the condition that the primary turbulent fluctuations were not due to the 

atmosphere but were due to the vortex swirling motion itself. The expressions they 

developed, using simple eddy-viscosity, were similar to the drag effect term in Greene’s

(1986) approximate model. Both approaches showed that turbulent transport, associated 

with the vortex motion, was incapable of stopping the descent of a vortex pair in a 

neutrally stable environment but that it could reduce the rate of descent.

Raj and Iversen (1979) employed zero-, one- and two-equation models in computa

tional simulations of turbulent vortex merger and decay. They utilized a spatially-varying 

mixing-length model to incorporate the streamline curvature effect. For appropriate 

choices of constants, the results of the zero- and one-equation formulations could be 

made to agree well with that of the two-equation model. Ayad and Cermak (1980) used 

a standard k-e model with coefficients taken from Launder and Spalding (1974) to study
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the interaction of tornado-like swirling flows with the ground. Their maximum tangential 

velocity result was in qualitative agreement with the results of Lewellen, Teske and Sheng 

(1979), who used a second-order turbulence closure. Recently, Childs (1990) compared 

the standard k-e model (Launder and Spalding, 1974) with the one modified for curvature 

for the ground vortex region beneath impinging jets. The ad hoc model coefficients had 

to be adjusted to achieve reasonable results.

Using a super-equilibrium model and Taylor’s (1923) stability analysis, Donaldson 

(1972b) determined, for the case of a turbulent line vortex, that eddy-transport models led 

to erroneous conclusions. He then developed an invariant Reynolds stress transport model 

(Donaldson and Sullivan 1971) to calculate the decay of isolated vortices. Encouraging 

results were obtained that included similarity solutions which were reached after long 

time iteration. Since streamline curvature effects and anisotropy of the normal stresses 

are incompatible with eddy-viscosity models but remain crucial to describe vortex motion 

properly, Reynolds stress transport models have to be considered. Reynolds stress 

transport models have the advantage, when applied to vortex flows, of including the 

physical mechanisms that the other models cannot imbed.

At the second moment closure level, algebraic stress models have also been applied 

to model swirl in turbulent flow systems (Sloan, Smith and Smoot 1986). Unfortunately, 

in some cases these algebraic stress models can be shown to reduce to eddy-viscosity 

models. Consequently, for the isolated turbulent line vortex case these models have 

drawbacks similar to those described by Donaldson (1972b) because they force turbulent 

shear in the vortex to be related directly to the local deformation.
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Figure 2.1 A vortex pair above an infinite plane and its images
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Figure 2.2 Comparison between two-dimensional, potential theory prediction and flight experimental data of 

Dee and Nicholas (1968) for vortex path, excerpted from Harvey and Perry’s (1971) Figure 1.
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Figure 2.3 Suggested interpretation of vortex rebound caused by ground booundary 

layer separation by Harvey and Perry (1971): (a) a section downstream of the 

initial separation, (b) the subsequent development of the secondary vortex
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Chapter 3 Derivation of Governing Equations

In this chapter, starting from the full, unsteady, three-dimensional, compressible 

Navier-Stokes equations, a set of governing equations is derived for wake vortex systems 

in ground effect. In order to consider atmospheric influences, such as stratification and 

crosswind, temperature and density effects must be included in the governing equations. 

Two types of flows — the atmosphere and the wake vortex system — must be considered 

simultaneously. The appropriate governing equations of motion can be simplified by 

properly establishing order of magnitude estimates of each term in the various general 

governing equations. Beginning by establishing characteristic scales for atmospheric 

processes, limits can be placed on the scales that represent aircraft wakes in ground effect. 

In Section 3.2, the conservation laws will be discussed using Boussinesq approximations, 

which will enable the compressible equations of motion to be approximated by modified 

incompressible equations. Then the equations will be reduced to two-dimensional flow 

cases for the vortex wake problem in Section 3.3. The modeled turbulent form of 

the equations will be discussed employing Donaldson’s Reynolds-stress-transport model 

(1972a, 1973) in Section 3.4. The dimensionless form of the equations will be introduced 

in Section 3.5. A coordinate system employed in this study is shown in Figure 3.1.

It has been noted that many researchers attempted to provide a rigorous derivation of 

Boussinesq equations. The reader is referred to the works of Spiegel and Veronis (1960), 

Mihaljan (1962) and Dutton and Fichtl (1969), who were concerned with atmospheric
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processes. None of them were able to come up with a mathematically rigorous justifi

cation in terms of asymptotic expansion developments. While ad hoc assumptions were 

unavoidably employed in their derivations, their assumptions were concerned exclusively 

with atmospheric flows. Since aircraft vortex dynamics is the goal of this research, the 

following discussion tries to establish a set of dynamic equations for a representative 

aircraft vortex system, treating atmosphere as an ambient flow. Therefore, the discussion 

is based on the scales of a typical large aircraft vortex system to justify the applicability 

of the Boussinesq approximations for the present problem. This development, to the 

author’s knowledge, is original.

3.1 Atmospheric Flow Conditions

Following Donaldson (1973), the vertical atmospheric length scale, Loo, can be 

represented in terms of the nominal atmospheric density gradient. The length scale, 

Loo, is thus be defined as

ioo =  (3.1)
poo ay

where Pco{y) is the nominal atmospheric density at altitude y. Using the U. S. Standard 

Atmosphere (1962), is on the order of 104 m in the lower atmosphere. Plate (1971) 

has discussed the importance of Coriolis acceleration effects on atmospheric processes. 

However, if it is recognized that the region in which wake vortices interact simultaneously 

with the atmosphere and the ground is only a few hundred meters, Coriolis acceleration 

terms are found to be four orders of magnitude smaller than gravitational acceleration and 

vortex inertial terms, even for crosswind velocities of up to 15m/s. (Higher crosswind 

velocities produce turbulent fluctuations which are comparable in magnitude to wake
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vortex effects, making wake-vortex forecasting requirements less important.) Hence, 

Coriolis effects can be neglected in the domain of interest.

Using the lapse rate (dToojdy, where T o o  is the nominal ambient temperature 

distribution) to characterize buoyancy effects, it can be assumed that the maximum 

sustainable lapse rate is less than 20 °C in 100 m (the average standard atmosphere 

gradient is about 6.51 °C/km and local gradients as high as 0.5 °C/m have been recorded, 

but over very small regions) so that

^  <  0.2°C /m  , (3.2)
ay

with respect to buoyancy induced flow effects. Furthermore, it is assumed that the ambient 

surface temperature T o o ( 0 )  is within the interval 230K  <  T ’o o ( O )  <  320K.  Under these 

temperature extremes, variation in thermophysical properties (p and k) are less than 10 

percent within the wake vortex domain.

Treating air as an ideal gas, the stratified ambient conditions (poo, Tx,) can be 

related to an assumed lapse rate. It is noted that, unlike meteorological studies, detailed 

flow field modeling of the background atmosphere is not attempted. The flow field of 

interest is the vortex system, interacting with certain assumed atmospheric conditions. 

The time scale of the vortex motion is very small compared to atmospheric response 

time. Therefore, the ambient atmosphere is assumed in a steady-state when vortex wakes 

have not appeared and the equilibrium of the atmosphere has already been established. Its 

significant motion can be approximated by cross-flow velocities U = U(y) , V  = W  = 0. 

If Too(y) is given by

Too(y) = T0 + /3y, (3.3)
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where /? is the (prescribed) lapse rate, conservation of momentum and energy for constant 

thermophysical properties, with the specified cross-flow, simplify to

respectively. Hence, the ambient density and pressure distribution are given by

where R  is the gas constant for air and p0 and p0 are the (prescribed) ambient density 

and pressure at the surface. If it is assumed that (Py/T0)max =  20/230, i.e. temperature 

varies by less than ten percent through the anticipated computational domain, then a 

simple calculation using Eqn. (3.6) and (3.7) can show that density varies by less than 

ten percent and pressure varies by less than 2%.

3.2 Conservation Equations for Wake Vortex 
System in Ground Effect

If a Boeing 747 is considered as the current upper limit on vortex wake scales, 

the appropriate length scale is on the order of the wing span and using terminal flight 

conditions for reference, the velocity and lift can be used to estimate characteristic vortex 

velocities, T/s ,  where T is the circulation and s is the aircraft half-span. Typical vortex 

velocities are therefore on the order of 5m/s (Burhnam, et al, 1978), which yields a Mach

(3.4)

and

(3.5)

■g/Rfi+l
(3.6)

and

(3.7)
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number on the order of 10 2, justifying the neglect of mechanical compressibility effects.

However, compressibility must still be considered with respect to stratification.

Treating air as an ideal gas, the thermodynamic variables are further considered in 

terms of their departure from their ambient distributions. That is, take

p{x ,y ,z , t )  = poo(y) + A p ( x , y , z , t ) , 

p(x, y, z, t) = p ^ y )  +  Ap(x, y, z, t ) ,

T { x , y , z , t )  = T00(y) + A T ( x , y , z , t ) , (3.8)

with

p =  p R T . (3.9)

It can be seen that

Poo — PooRToo (3.10)

Poo Poo 1-00 Poo lo o

The dimensionless thermodynamic departure variables are defined as

A p A p AT A p A T
(3.11)

P = A p /p o o  ,

P =  A p /p o o  ,

and

T =  AT/Too •
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3.2.1 Conservation of Mass

The continuity equation

s - s * -

can be rewritten, using the steady-state ambient density distribution and thermodynamic 

departure variables, as

a  + ( 1 + ? )
d i l n p o o )  d u /

U2~ d f ~  + & J .
=  0.  (3.15)

Furthermore, the maximum stratification case yields d ^ n p ^ / d y  < 0.001, justifying the 

neglect of the logarithmic density transport term, so that

duj  1 Dp
(3.16)

To go further, estimates of the vortex-induced flow quantities must be introduced.

Beginning by assuming that p, p and T  are much less than unity, product terms can then

be dropped in Eqn. (3.11), leaving

P  =  P + T .  (3.17)

Furthermore, pressure departure can only be on the order of the dynamic pressure so that

We have already determined that M  < 1 ,  justifying the approximation

P + T  = 0 , (3.19)
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so the conservation of mass can be written as

A fact is also noted from Eqn. (3.19) that compared with p and T, p is more than an 

order of magnitude smaller.

At this point it is necessary to estimate the physical orders of magnitude of the terms 

in Eqn. (3.20). This can be pursued by comparing the velocity gradient terms with the 

rates of temperature change, which include the changes due to both convection and local 

unsteadiness.

Using the estimated characteristic vortex velocity, it is likely that the vertical velocity 

component (u) will vary from zero (at the ground plane) to T js  in one half-span (5 ). 

Hence,

for the Boeing 747 case. The most extreme temperature departure is on the order of the 

total ambient change and, assuming a vertical convection speed of F/s,  over a required 

distance of 2 s (to achieve a maximum time rate of change of particle temperature), the 

order of magnitude of the temperature derivative, due to velocity convection, is estimated 

to be

Hence, the velocity gradient terms are nearly two orders of magnitude larger than the rates 

of change of the temperature departure (due to convection) so that, if local unsteadiness 

is not considered (no high frequency heat sources), enforcing conservation of mass as

^  =  0 ( r / s 2) « O ( 0 . 1 / s e c ) (3.21)

m ax
(3.22)

(3.23)
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is accurate to within two orders of magnitude. It is noted that Gebhart (1973) used an 

order of magnitude comparison approach to reach the same conclusion for a generalized 

three-dimensional atmospheric flow.

3.2.2 Conservation of Momentum

The momentum equation for compressible flows

Du{ dp d  ( dui d u j \  d (  *5u,„ .

after invoking the continuity equation Eqn. (3.23) and the expansion of Eqn. (3.8), 

becomes

Dui dfpoo) 3(Ap) dPu;
(*”  +  A p ) ~m  =  -  ~Sxi  & T  + + M i  + A m ' ( 3 ' 2 5 )

Dividing the equation by poo and utilizing the ambient state Eqn. (3.4), along with the 

fact that p <  1 , the following expression is obtained:

Dui = __ 1 d (A P) p d 2uj
Dt poo dxi poo dx jdx j  ^ p9 t ' K )

This equation shows that density variation effects can be neglected in the momentum 

equations except for the body force term. This fact is sometimes called the Boussinesq 

hypothesis (Turner, 1973). The extra body force term in this equation, compared with the 

incompressible momentum equations, is the only term in the dynamic equations where 

the density variation effects are included. Later in Section 3.2, it will shown that in the 

vorticity transport equation, this term will create vorticity due to density departure.
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3.2.3 Conservation of Energy

The energy conservation equation can be written:

D T  Dp . d2T  f d u i  d u j \ d u i  
pCp Dt ~  Dt  +  dx jdx j  +  P \ d Xj +  d x i )  dxj  ( )

where the solenoidal velocity field Eqn. (3.23) has already been used to neglect the bulk 

viscous effects. Moreover, The last term in Eqn. (3.27), the energy dissipation term, 

describes the heating of the medium caused by the internal friction of the vortex motion. 

This heating plays a completely insignificant role in changing the temperature field of 

high Reynolds number and low Mach number flows, since it is on the order of M 2 /Re,  

compared with the other terms in Eqn. (3.27). Thus, the following equation is obtained, 

with Eqn. (3.8),

and it can be rewritten as

dToo . s:\ „  D T(1 + p)cp . .  , fr\  , n, D T
1 d x , V +  T )  +  T"- Dt ^ 1 ^ ( 1  +  p) +  +  - p ^ p -  ■

poo OXj  D t  poo O X j O Xj

(3.29)

Since all the “tilde” terms are much smaller than unity, and neglecting the second 

order terms and terms with p compared with T,  the following approximate equation 

is justified:

D T = uL ( J _ _ d p o o _  dToo \ k d 2 (AT)
Dt Too \PooCp dxj dxj  )  PooTooCp dxjdxj

Then, making use of the nominal state relations Eqns. (3.3) and (3.4),

_ , ) +  * M  (, 31)
Dt Too \Cp J  PooTooCp dxjdxj
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is obtained. In this equation, g/cp represents the adiabatic lapse rate for air in neutral 

equilibrium (Plate, 1971), which is about 0.001 °C/m and can thus be neglected in 

comparison with /3. The diffusion term can also be neglected for high Reynolds number 

flows except near the ground boundary. However, since the time required for the 

atmosphere to establish an equilibrium thermal boundary layer is much longer than the 

characteristic time of the vortex motion, dynamic thermal boundary layer effects can 

be ignored in terms of their influence on unsteady temperature departure-driven vortex 

dynamics. Hence, the approximate conservation of energy equation finally becomes

It can be shown, from 3.1.1, that this equation can also be treated as a higher order 

representation of the conservation of mass.

To further simplify Eqns. (3.26) and (3.32), it has been noted that the background 

thermodynamic variables, Poo, Poo, ?oo, which are functions of the vertical distance from 

the ground, have appeared in Eqns. (3.26) and (3.32) as coefficients of certain terms. 

From Eqns (3.3), (3.6) and (3.7), it can be assumed that within the altitude range of 

ground-coupled vortex motion, these coefficients can be treated as constants to first order 

accuracy. That is, Poo ~  Po, Poo ~  Po and T00 «  T0 have been assumed. Then the 

momentum and energy conservation equations, Eqns. (3.26) and (3.32), become

D u i _  Po d p  d 2u j  „

D t  p0 d x i  +  V° d x ^ x j  +  P9t ’ ( )

where v0 is the kinematic viscosity, and
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respectively. In obtaining Eqn. (3.34), the relation between temperature departure and 

density departure in Boussinesq approximation, Eqn. (3.19), has been used.

Eqns. (3.23), (3.33) and (3.34) have been used to formulate the governing equations 

for both laminar and turbulent vortex wakes in a stratified atmosphere. If the stratification 

effects are not considered, only Eqns. (3.23) and (3.33) are needed to calculate the 

vortex motion, since the body force term is dropped in Eqn. (3.33), leaving the dynamic 

equations for incompressible flows.

3.3 Reduction to Two-Dimensional C ases

The coordinate system is shown in Figure 3.1, where the positive z-direction is 

perpendicular outward from the plane of the paper and is assumed to be parallel with 

the vortex rotational axes. Hence, X2 and £ 3  correspond to x, y and 2 , respectively. 

The coordinate system is fixed with respect to the ground and a section at a specified 

2  is considered.

The near field structure of an aircraft wake vortex system is quite complex and 

is influenced by the actual aircraft geometry, including trim and speed. While some 

progress has been made in predicting near field vortex behavior (see Wong, Kandil and 

Liu, 1992, for example), the work presented here is restricted to the far field. That is, it 

is assumed that the vortex system has evolved into a prescribed vortex pair, of known 

strength and spacing.

In vortex hazard problems, only vortex wakes in the far field from the aircraft are 

studied, where the changes in the flow field in the vortex axial (z) direction are small

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



compared with changes in the plane of the vortex. So it can be assumed that

d  d d  d
d z <  d x '  d z <  d y '  (  }

With these assumptions, Eqns. (3.23), (3.33) and (3.34) can be written as

du dv
f e + s r 0 ’ (3-36)

du du du po dp ( d 2u d2u \  _ _ x

l H + U f a + V f y ~ ~ y o l h  +  "0 \ l h ? +  d ^ J  ’ ( }

dv
T t +

dv dv Vo dp ( d 2v d 2v \  _

Ul h + V f y ~ ~ 7 o f y  d y * ) ~ P9'

dw dw dw ( d 2w d 2w \
~ d t + U J ^ ^ V^ ~ V° \ d ^  +  d y * J  ’  (  }

and

(3-40)

It can be seen that with the quasi-two-dimensional assumptions, Eqn. (3.35), the z- 

component of the conservation of momentum equation, Eqn. (3.39), is independent 

from the other two-dimensional equations. Since only the flows in the swirling velocity 

plane are of interest in the present study, Eqn. (3.39) can be omitted for the purposes 

of calculating velocities in the x-y plane for both laminar and time-averaged turbulent 

flows. That is, a fully two-dimensional assumption is made, setting the axial velocity 

component equal to zero or a constant, i.e. by assuming that both sides of Eqn. (3.39) 

are identically zero.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In unsteady, two-dimensional, incompressible flows, vorticity-streamfunction formu

lations can be employed. Furthermore, the vorticity field in this problem is a major 

variable of interest. Taking the cross-product of Eqns. (3.37) and (3.38), the vorticity 

transport equation is obtained:

f t  = '•**< " » f '  (3-41)
where

< - E - 5

From the incompressibility condition Eqn. (3.36), the streamfunction equation,

V 2 V> =  - C  , (3.43)

applies, where

dtb dtb

u = w  9 i -  (3'44)

Eqns. (3.40), (3.41) and (3.43) are the set of equations required to simulate laminar

vortex flows with stratification effects.

The boundary conditions for the cases without cross-flow effects are specified as

C(0,y,i) =  0 , # ) ,y ,< )  =  0 , |£ ( 0 ,y , t )  =  0 , (3.45)

C(oo, y, t) = 0 , 0 (0 0 , y, t) =  0 , p(oo, y,t) = 0 , (3.46)

d̂ 'ib
C(®, 0, t) = - ^ L ( x ,  0 , t ) , ^ ( s ,  0 , t) =  0  , p(x, 0, t) = 0 , (3.47)
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and

£(a:, oo, t) =  0 , i{>(x, oo,t) =  0 , p(x , oo, t) =  0 . (3.48)

The cross-flow boundary conditions will be discussed in Chapter 9.

3.4 Two-Dimensional, Stratified Turbulent Flows

In this section, equations for turbulent vortex flows have been derived based on Eqns. 

(3.36)-(3.40), where the velocity field is decomposed as:

Ui = Ui +  u’i (3.49)

and the thermodynamic departure variables can be decomposed by assuming the departure 

variables represent unsteady mean and fluctuating flows, i.e. Q  is replaced by Q  +

(/), where the tilde variables are assumed to be unsteady solutions to the time averaged

turbulent equations. For simplicity, in the following the prime for the fluctuation variables 

is omitted. Substituting the decompositions into Eqns. (3.36)-(3.40) and taking time 

averages, the following equations are gotten:

For the mean flow variables:

dU dV

^ + a r °  ( 3 -5 0 )

du TTdu , du podp , fd2u , d2u \  du2 &uv
m + u i t e + v ^  = - 7 0 irx + " i M + w ) - ^ - i ) i  ( 3 ‘ 5 1 )

dv  , TTdv  ( dv p0dp , (d2v  d2v \  duv d v 2
dt  +  d x +  dy p0 dy \  dx2 ^  d y 2 )  P9 dx dy  ( *
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dp dp dp n dpu drpv
d t  +  u f a  +  VJ y  ~  ~ V^  ~  ! h  ~  ' ( }

For the fluctuation field:

D u 2 n ( —?dU d U \  du3 du 2v np0 dpu np0 du—  = - 2 ( u ^  + _ _ _ _ _  aLJL + 2?-p_

( d 2u 2 d 2u 2\  ( d u d u  d u d u  du d u \

D v 2
Dt

+^o

=  - 2
_ d V  ~ ^ d V \  duv2
u v a ^  + v S i ) - ^ 7

^ 1 - 2 — — + 2 —  —  
dy po dy po dy

d2v 2 d2v 2
d x 2 d y 2

/ dv dv dv dv d v d v \  
0 \d a : dx  dy dy~^ dz  d z )

2 gpv (3.55)

D w 2 (  d W   5W A duw2 dvw2 v0 dw
- w = ~ 2 ( .“ ” 1 7 +vwi i ) - - d r - - d r + V  &

( d 2w2 d 2w 2\  f d w d w  d w d w  dw d w \

D u v
~Dt

’- s -dV - x d U

+v0

+  t r
d x  
/  d 2uv  
\  d x 2

du2v duv2

+

dy
d 2u v \
d y 2 )

dx  

-  2 v0

dy
Po_
Po

dpu dpv 
dy dx

Po ( du dv  

+  - P (  + ^
du dv du dv du d v \  
d x  d x  dy dy dz  d z )

Po

gpu

dx  / 

(3.57)

D uw  (  dU   d U \  du 2w duvw p0 dpw p0 ( du dw
 =  — u w ------ b v w —  1 ---------------------------- --— - b — n  1------

D t  V dx  ^  d y )  dx  dy p0 dx  ^  p0P \ d z  +  dx
( d 2uw d 2u w \  ^ f d u d w  d u d w  du d w \

+Uo\ d x 2 +  dy 2 ) ~  Uo\ J h l h  + I h j l h ; + ~d~z!h)  ’ ( 8)

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Careful examination of Eqns. (3.58), (3.59) and (3.63) suggests that if it can be 

assumed that initially all the turbulent Reynolds shear stresses and all the density-velocity 

correlations are zero (or arbitrarily small), the source terms in those equations are not 

operational at first. If the source terms subjected to the interactions between the axial
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velocity gradients and the density-velocity correlations in Eqn. (3.63) can be neglected, 

the influence of u w , vw  and pw on the mean flow variables can be neglected in comparison 

with the influence from the other Reynolds stresses and density-velocity correlations, since 

they have no significant source terms in their equations at any time. Here, neglect of 

the z-component velocity correlations is assumed to be a reasonable approximation for 

the two-dimensional study.

Using the same argument as in Section 3.1 that the diffusion effects can be neglected 

in the density departure equation, all the diffusion terms in the equations for density- 

velocity correlation can be neglected. Then following the Reynolds-stress-transport 

model suggested by Donaldson (see Donaldson 1972a, 1973 and Lewellen, Teske and 

Donaldson, 1976), the following modeled equations are obtained for the fluctuation 

field:

Du 2 

Dt
J -* » u   ac/ \  a („n du‘ \ d_ 

+  dy
~ j duv du2

2 - f c  +  w

+ 2 - J -Po OX
Qn\

+ v0
d 2 u 2 d 2u 2

d x 2 dy2

du2 \  q 2u2 —v2 — w 2

dx J  A 3

_  2 b q (~ —-.j i « 1 CC o

“ +  — « (3.64)

D v 2 n ( _ d V  ~ ^ d V \  d
- m = - \ uv^ ^ v ^ )  + Tx

+  ̂ 0

_ 2 — —  

Pody

d 2v 2 d 2 v2

dx 2 dy 2

( duv 
M  + dy

duv dv2 

dy dx

q 2 v 2 — u2 — w2

-  2v0 a ^  -  ( a v 2 +  ^ ~ y ^ q 2 ) -  2gpv , (3.65)
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Dw 2 __ d I  _ dw2 

Z?/ 5x \ 1  dx
q 2 w 2 - u 2 - v 2 

A 3

+  ̂ 0
a 2u;2 a 2to2 
5x2 5j/2

— 2  v0a (3.66)

Z?Uj; -» a c A  a
Dt \ U d x +V d y )  + dx

^  (  duv du2

Q l [ 2^ + i i +
d_

dy

+ d_
dx

(  duv dv 2

Q , , \ W  + W
d_ 

+  dy
(  du2 duv

Q n ( - t o '+ aiT

( dv 2 duv

? _—uv
A

/ d2uv d 2u v \  uv 2 bq ______
v0 I "ET'o +  a 0 J — ^uoO-To r~auv —

+ 1 '“ V a ?  i " V  ^  “  'M°a7? "  T 0” ”  “ gim (3.67)

and

where

+  3

D/9U ~odp __
~ D f ~ ~ U

dp — ( a , d p \  _ d U  _ dU
dy

+ 3
0.759,

-/)U

Dpv  dp dp_  =  2 ^ + _ a y a y

+ 3

^ a ^  "  ^
0.759 _

   gpv

0 .4 5  9^  

" A ^
(3.68)

(3.69)

(3.70)

/      \  1 / 2
Ql = Ajq =  A/ ^u2 +  v 2 +  w2) ,

/ —     x 1/2
Qll  = A u q  = k j i  (u 2 +  v 2 +  w2j  , (3.71)
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and

A j  =  A a  =  0.1A , 

a = 3.25, b =  0.125, a  = 0 , (3.72)

and A is the turbulence length scale and q2 is twice of the turbulent dynamic pressure 

or turbulent kinetic energy.

The vorticity-streamfunction formulation can still be used for turbulent cases if Eqns. 

(3.51) and (3.52) are combined into

D (  2> , & ( du2 , d u v \  d ( duv dv2\  dp /0
^ ~ Vo ^ ^ \ d ^ ^ ~ d ^ ) ~ ^ \ d ^ ' V ~ d ^ J ~ 9 d i  ( }

The streamfunction equation remains the same as Eqn. (3.43).

The fluctuation variable boundary conditions are

^ f ( 0 ,  y, t) = 0, u] (oo, y, t) =  0, ^ ( 0 ,  y, t) = 0 

u2(x,0, t)  = 0 , u |(x ,o o ,t)  =  0 , p2(x,0,t)  = 0 , p2(x, oo,t) = 0 (3.74)

where I = 1, or 2, or 3, without summation, and

uv = 0 , ~pu — 0 , and ~pv — Q (3.75)

on all the boundaries.
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3.5 Dimensionless Form of the Equations

The system of equations were made dimensionless using the initial vortex half-span, 

■so. as the characteristic length and the initial circulation, To, along with the fluid density, 

p0, to formulate the other dimensionless variables. The characteristic flow Reynolds 

number is

Re  =  Tq/ vo . (3.76)

Characteristic velocity, time and pressure are given by To/so, Sq/To and p0 T l / s l ,  

respectively.

If the same notations for the dimensionless variables as the corresponding dimensional 

variables are used, the non-dimensional form of the vorticity transport equation (3.41) 

becomes

( 3 - 7 7 )

where

F% = T20/gs l  (3.78)

is a Froude number, while the dimensionless form of the streamfunction is the same as 

Eqn. (3.43). The density departure equation (3.40) becomes

dp dp dp o
m + u Tx + v T y = n v ' (379)

where the non-dimensional density/temperature gradient is defined by

» 2 =  ^  ■ (3.80)
-L o
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In fact, all the corresponding non-dimensional governing equations can be obtained 

by just replacing u0 , g and with Re , 1 / F 2 and n2, defined in Eqns. (3.76), (3.78) 

and (3.80), respectively. The actual effects of stratification depend on the ratio between 

n 2 and F 2, which will give another dimensionless parameter called the non-dimensional 

Brunt-Vaisala Frequency. The physical meaning of this parameter will be discussed in 

Chapter 8.
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Figure 3.1 Right hand coordinate system employed
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Chapter 4 Domain Transformation and 
Boundary Conditions

4.1 Domain Transformation

A moving grid was considered for this study but was discarded subsequently, due to 

the complexity of the vortex trajectory in ground effect and to uncertainty in the viscous 

zones requiring fine grid resolution. It was deemed more reasonable to pack grid points 

adjacent to the symmetry- and ground-planes and allow the vortex system to move with 

respect to the grid. This was possible because the nominal regions where viscous effects 

occurred were known to a first order of approximation. It is noted further that the elliptic 

character of the incompressible flow field mandates enforcing the boundary conditions 

at the infinite limits of x  and y or alternatively the development of rigorous boundary 

condition approximations within a finite domain must be addressed.

Bilanin et al. (1977) and Ting (1983) studied the far field boundary condition 

problem. They used the far field expansions of Poisson integrals which could be employed 

in a finite subdomain of an unbounded fluid. By doing this, they obtained the approximate 

solutions for streamfunctions at the boundaries of the finite subdomain. The exponential 

decay laws for vorticity distributions were required for the convergence of the far field 

expansions (Ting 1983), since the convergence of Poisson integrals must be guaranteed 

by the vorticity distribution. The expansions were extended by Ting (1983) using integral 

invariants. Unfortunately, neither the decay laws nor the integral invariants apply when a
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no-slip boundary is present, because the vorticity distribution in the viscous ground-plane 

boundary layer cannot be estimated a priori.

Here a coordinate mapping has been used, employing a simple exponential transfor

mation which yields densely packed grid points near the ground plane and stretches the 

grid as the infinite limits are approached. The mapping

transforms 0 <  x <  oo, 0 <  y < oo into the finite domain 0 < X < a ,  0 < y < c .  

The corresponding spacing intervals are

A X  »  abe~hx A x  ,

Hence boundary layer and vortex core resolution can be controlled by adjusting arbitrary 

constants a, b, c and d.

Since the ground plane spacing is compressed automatically via the coordinate 

mapping, resolution requirements are more severe in the far field. In addition, vortex core 

resolution in the vertical direction is most sensitive at start-up (y =  yo), while horizontal 

resolution is least accurate at the end of the numerical simulation (when the vortex core is 

at the greatest horizontal distance from the symmetry plane) — say xj. Since the vortex 

is expected to dilate as time increases, selecting the appropriate grid spacing based on 

the initial vortex core size produces conservative spacing levels at later times.

As a representative example, when the initial vortex core radius is rc =  0.2, it has 

been required that Aymax =  0.02 (=  r c/10) at yo, and that Axmax =  0.1 (=  r c/2) at

X  = a ( l  -  e~bxJ

(4.1)

and A F  »  cde dyA y  . (4.2)
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x i . The A xmax spacing will be more compact relative to the vortex core due to dilation

beginning from t  =  0. However, the spacing interval is given by:

A X  <  0.1 abe~bxi , (4.3)

and

A F  <  0.02 cde~dy° . (4.4)

Since the number of grid increments in the X-direction must satisfy M A X  = a, while 

N A Y  =  c, the requirements for M  ajid N  are:

lOe6*'
M  >  -A—  , (4.5)

and

N > ^ 1 .  (4.6)u

The minimum number of grid points for acceptable resolution occurs when b — 1 fx \  and 

d =  l/j/o. and is given by

M  >  10xje , (4.7)

and

N  > 50y0e . (4.8)

A representative segment of a 150x300 grid is shown in physical coordinates in 

Figure 4.1. That system was set up for a vortex pair, located initially at zo =  ±1, yo = 2, 

and was inteded to resolve the lateral trajectory out to x\ — 5. The large lateral 

resolution requirement, coupled with the need to resolve the very thin viscous ground- 

plane boundary layer, produces very different packing in the two coordinate directions.
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4.2 Vorticity-Streamfunction Boundary Conditions and Their 
Compatibility with Velocity Boundary Conditions

Since the vorticity-streamfunction formulation is used in this study, all the boundary 

conditions, as in Chapter 3, are given for vorticity and streamfunction rather than 

requiring velocity boundary conditions. If the boundary conditions on the velocity 

field were enforced direcdy, the streamfunction would be over-determined. The present 

problem is not well-posed unless it can be shown that the boundary conditions for 

the vorticity-streamfunction formulation satisfy equivalent velocity boundary conditions, 

at least within the computational order of accuracy. The mathematical aspects of the 

equivalent requirements have been discussed by Anderson (1986). In the following, it is 

necessary to verify that the necessary boundary condition compatibility can be achieved 

in the transformed domain.

The boundary conditions in the transformed domain are:

C(0 ,y,<) =  0 , 0 (o,y, t)  =  o, (4.9)

(4.10)

C(X,0,t) = ~c2d2^ ( X , 0 , t ) , (4.11)

1&(X,0,<) =  0, (4.12)

c , f ) = 0 ,  and 4>(X, c, t) =  0. (4.13)
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Following Roache (1972), the first-order accurate, discretized expression for the 

ground-plane vorticity, Eqn.(4.11), can be developed using the Taylor series expansion

L + ¥ 0 L  +0M -
where the subscript, n, indicates the grid locations adjacent to the ground plane. Since 

on the ground boundary, ip\y-o  =  0 and =  0, the ground-plane vorticity is given

in the transformed domain as

C(X,0,<) *  -2 ^ „ c 2d2/A F 2 . (4.15)

This is the equivalent vorticity non-slip boundary condition on the ground. In this study, 

the vertical grid spacing was constructed with sufficient fineness to permit implementation 

of the no-slip boundary condition on the ground plane without exaggerating numerically 

the viscous interaction, as was encountered previously by Delisi, Robins and Fraser 

(1987).

While the velocity boundary conditions appear to be over specified, they are com

patible with the velocity components in the transformed domain, given by

“  =  f p  • d ■ (c -  Y )

v = - ^ b { a - X )  (4.16)

which can be verified. The symmetry-plane boundary condition, Eqn. (4.9), gives

u(0,Y,t) = m g y ' t) ■ J - ( c - Y )  = 0, (4.17)
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and

dvdv _  d 2 ij)
dx  x=x=o dx 2 i=o

At the infinite boundary limits, Eqns. (4.10) and (4.13) give

v(a ,Y ,t )  = ~  —  ^  - b - ( a - a )  = 0 , (4.19)

and

ii.( X. r.. t.\ — -----  -d. . (r. — =  fi

(4.20)

The zero normal-velocity component requirement at the ground boundary is easily verified 

as

while the non-slip condition can be expressed using the Taylor expansion Eqn. (4.14), 

with the ground vorticity boundary condition Eqn. (4.15), so that

which means that the first-order accurate vorticity ground-boundary condition guarantees 

enforcement of the non-slip boundary condition to second-order accuracy. Thus all of the 

velocity boundary conditions can be satisfied to within computational accuracy. These 

boundary conditions also satisfy the integral conditions developed by Anderson (1986).

An altemating-direction implicit (ADI) scheme (Anderson, Tannehill and Pletcher 

1984) was used to solve the vorticity transport equation, Eqn. (3.41), with the upwind

(4.21)

(4.22)
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flux-splitting method applied to the convection terms and central-differencing for the 

diffusion terms. An efficient Poisson solver (Swarztrauber and Sweet, 1979) was used 

to solve Eqn. (3.43), which can achieve 10-8 accuracy in the iteration residue. Viscous 

flow in a driven cavity was used as the test problem for that computational scheme to 

explore the capability of capturing the secondary-vortex evolution phenomena associated 

with high Reynolds number flow cases. The systematic numerical studies of this problem 

are well-documented in Bozeman and Dalton (1973) and Rubin and Harris (1975).

Based upon the discussions shown in Chapter 5, it has been determined that the 

vortex core centers can be placed initially at xq — 1, yo =  2 (and xo  =  — 1, yo =  2, 

from symmetry) to start the simulations. That vertical distance (yo = 2) has been deemed 

close enough to the ground plane to produce detectable coupling effects after moderate 

start-up time intervals, but it is also far enough from the ground plane to enable the 

vortex flow field to establish itself prior to strong ground-plane interactions. The initial 

vortex core is assumed to have a core radius, r c, of 0.2, which is about the size of the 

vortex core after the rolling-up is complete at moderate Reynolds numbers (Barker and 

Crow, 1977) and the wake of the vortex pair has evolved but the viscous vortex region 

is still small. A 150x300 grid in the x-y plane has then been employed in the numerical 

simulations reported herein for the right-half upper plane in the symmetric flow cases, 

while a 300x300 grid has been used in non-symmetric cases in Chapter 9. Computations 

were continued until the vortex system moved out of the grid region possessing the 

required resolution. Calculations have been performed using the Cray II and Cray Y-MP 

computers at NASA Langley Research Center.
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Figure 4.1 Sketch of part of the 150x300 grid
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Chapter 5 Asymptotic Techniques for 
Flow Field Initialization

Since the flow is for the most part inviscid, with an unsteady, viscous ground-plane 

boundary layer and a small viscous vortex core region, problems were encountered in 

starting the numerical calculations. A goal of this study was to extend the Reynolds num

ber range over which vortex-ground plane interactions could be modeled. Consequently, 

viscous effects were anticipated in both the vortex core and boundary-layer regions long 

before any interactions between the vortex core(s) and boundary layer occurred. Further

more, a fine numerical grid was required for both the vortex region, including its path of 

descent, and the ground-plane boundary layer. The grid requirements demanded an initial 

velocity field which was free of anomalous velocity gradients. In the following, approxi

mate analytic solutions for both the regions containing vortex cores and within the ground 

boundary are obtained to initiate the computational scheme. The outer flow (outside these 

regions) can be considered as a potential flow. Considerable effort has been devoted to 

developing an appropriate initial velocity field which resolved the ground effect region in 

the numerical simulation, without producing non-physical numerical start-up transients.

Asymptotic expansions, in terms of e =  \ / t / R e (recall that t is dimensionless), have 

been used for both the outer flow and the inner flow representations. That approach is 

warranted because those solutions can be developed as similarity solutions in terms of an 

unsteady Reynolds number tIRe. The Oseen (1911) type vortex, which has been used as
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the initial vortex, represents this type of similarity solution, where the vortex core size 

depends on tIRe. Blasius’ solution for an unsteady boundary layer (Schlichting, 1979) is 

also a similarity solution in terms of tIRe and t. However, that solution is only valid when 

the outer velocity is steady, which is obviously not true for the present problem. When the 

outer flow is non-uniform and unsteady, the inner solutions cannot be expanded simply in 

terms of a single parameter e, because the expansions cannot match the outer flow. The 

difficulty can be related to the boundary layer similarity property requirements developed 

by Schlichting (1979), which cannot be satisfied using a single parameter. However, 

since the influence of the outer flow on the inner boundary layer depends strongly on 

both Re  and elapsed time, it is logical to consider a series representation which includes 

both time t and the small parameter e (Nam, 1990). For the present problem, it will be 

shown that analytic solutions can be obtained when the inner solution, near the ground 

boundary, is expanded in terms of both time and the small parameter e.

The two-dimensional, unsteady incompressible, Navier-Stokes equations were used 

as the governing equations. Peace and Riley (1983) and Nam (1990) have both employed 

the fourth-order differential equation for streamfunction, which eliminated the pressure 

terms, in studies involving similar unsteady boundary layer problems. However, the 

Navier-Stokes equations represent one integration of the fourth-order streamfunction 

equation. Consequently, that integration recovers the pressure terms, which are included 

explicitly, and yields the additional advantage that the streamfunction and velocity can be 

matched asymptotically along with pressure by employing van Dyke (1976) type matching 

procedures. Thus the present Navier-Stokes formulation enables a more consistent 

asymptotic approach.
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After the asymptotic solutions are obtained, the dimensionless time limits, over which 

the analytic initial solutions can be employed, will be discussed. These limits must meet 

accuracy requirements for the truncated asymptotic expansions, as well as satisfy the 

resolution requirements imposed by the grid developed in the previous chapter.

5.1 Flow Field Near the Initial Vortices and the Outer Flow

The Oseen vortex is an exact solution to the Navier-Stokes equations for the diffusion 

of a vortex filament into a viscous region of infinite extent. For any time greater than 

zero, the Oseen vortex includes viscosity, while at t  =  0, it is an inviscid point vortex. 

Hence, placing a pair of those vortices at ± x q ,  yo at t  =  0, is equivalent to placing a 

pair of potential vortices at those locations, but then allowing viscous effects to occur 

immediately after placement. Oseen vortex solutions do not include either non-linear 

coupling of the vortex pair or the viscous influence of a ground plane. Peace and Riley 

(1983) proved that the influence of one vortex on the other is on the order of 0((t/Re)2), 

which is a higher order influence than can be considered in the truncated asymptotic 

expansion series employed here. Therefore, a mirror image pair of Oseen vortices 

(at ±a?o, —yo) can be used to initiate a ground plane interaction without introducing 

conflicting approximations. Since those vortices evolve immediately as viscous flows, 

they appear to be a more realistic starting flow than that of a pair of potential vortices, 

for any practical numerical grid.

The actual numerical computations start when the vortices have finite cores. This 

is true physically because some vorticity has already been rolled up into the center of 

the wake vortices during the rolling-up process. For the puipose of specifying initial 

conditions for the numerical solution, the Oseen vortices were assumed to have evolved
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sufficiently to possess finite vortex cores prior to initiation of the numerical computations. 

The core size was assumed to be sufficiently small, in comparison with the distances 

between the viscous regions, so that direct viscous interactions between the vortices and 

with the ground could be neglected. Hence, other than a time restriction on the asymptotic 

solution, the vortex starting positions for numerical modeling, with respect to permitting 

the evolution of realistic viscous interactions, needed to be justified.

Since the characteristic length was chosen as the initial half-span of the vortex 

pair, xq was logically assumed to be unity. On the other hand, yo must be chosen 

to satisfy the conditions: (1) the distances between the vortices and ground boundary 

must be large enough to permit direct viscous interactions to be neglected; and (2) for 

computational efficiency, the initial heights must be as small as possible to avoid wasting 

the considerable computational resources required for the Navier-Stokes model of the 

flow field. Vortex trajectories can be predicted approximately via potential flow theory 

at large distances from the ground plane.

Vortex core size is a reasonable measure of the viscous scales in this initial flow 

problem. After rolling-up, the core radius of the wake vortex is about twenty percent of 

the half-span for a moderate Reynolds number vortex system (Barker and Crow, 1977) 

and the core size changes more slowly with time at high Reynolds numbers. A non- 

dimensional initial core radius r c = 0.2, was chosen here and it was assumed that the 

core size was constant during the development of the initial flow field.

Liu and Ting (1987) used the initial vortex core size as a small parameter in an inviscid 

asymptotic representation for vortices near the ground. They tried to avoid viscous 

interactions between the vortices and the ground boundary in their inviscid solution and
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suggested that if the vortex was a few core-diameters away from the ground, the inviscid 

solution was still valid. Since the boundary-layer thickness was not considered in their 

inviscid solution, a larger initial height, yo, was anticipated for the present problem.

An initial height which was one order of magnitude larger than the initial vortex core 

size was considered to be adequate. Since the initial boundary layer could be resolved by 

the present computational grid when the boundary layer thickness was about one tenth of 

the vortex core, the order of magnitude increase in initial height satisfied the uncoupled 

viscous development requirements without over-taxing computer resources. Therefore, 

in the following calculations, it has been chosen that

The flight experiments reported by Dee and Nicholas (1968), represented in Figure 2.2, 

reinforce the idea that the vortex trajectories begin to deviate measurably from their 

potential theory predictions only within a height interval of approximately two half-spans 

above the ground. Therefore, the prescribed initial height can avoid the consumption of 

viscous computational resources on an essentially inviscid solution (if yo is too large) and 

yet safely satisfy the requirement that direct viscous interactions can be neglected initially.

In effect, an Oseen vortex in the first quadrant can be represented in the form of a 

non-dimensional vorticity function,

where r is the distance from the vortex center. Thus, it can be seen that the viscous 

influence of the vortex decays exponentially with distance. The maximum initial viscous 

influence between the two vortices in the vortex pair is on the order of exp(—xl/r^) &

yo = 10rc =  2 . (5.1)

(5.2)
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e-25 and the maximum initial viscous vortex influence from the ground was estimated 

to be on the order of exp(—y o / r 2)  ~  e - 1 0 0 , for an initial vortex pair height of yo =  2  

with vortex core radii equal to 0.2. Thus the magnitudes of the initial viscous effects are 

so small that they can be neglected justifiably.

From the previous discussion, it is apparent that each viscous region can be treated

separately, and the outer region can be modeled as a potential flow field. As mentioned

at the beginning of the section, the Oseen vortex can be as accurate as 0((t/Re)2) in the 

region near the vortices, but since the outer regions of the Oseen vortices are essentially 

inviscid, the ground boundary layer can be initiated by using the unmodified potential 

vortex pressure and velocity distributions. The development of the initial boundary-layer 

flow field will be presented in the next section. The present section will be concluded by 

developing the appropriate “far-field” velocity components, required to drive the unsteady 

boundary layer during the time over which the asymptotic solutions apply.

The outer flow field has been treated as the far field of a pair of potential vortices, 

with their associated ground plane images. Utilizing non-dimensional Cartesian velocity 

components, the potential vortex flow system can be represented by

Uc(x, y, t) = (y — yo)[$(x, y, t; x0, yo) -  $(x , y, t; - x 0, 2/0 )]

+  (y +  yo)[$(®, y, <; *0 , -yo)  -  y, t; -®o, -yo)] (5.3)

and

Vc(x, y, t )  =  ( x -  x o ) [ $ ( x ,  y ,  i;  x 0, yo) -  $(ar, y, i;  x 0, -yo)]

+  (* +  zo)[$(®, y, t\ -* o , -yo)  -  $ (s , y, t; - x 0, yo)] (5.4)
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where

$ (x ,y , t ;a , /3 ) =
1 1

(5.5)
27T (a; _  a ) 2 + [y -  ft) 2

and where xq =  xo(<), Vo =  yo(t) represent the instantaneous centers of the vortices. It 

should be noted here that during the time interval over which the asymptotic solutions 

apply, the downward displacement of the vortex pair can be neglected. Furthermore, these 

velocity functions are restricted to small time, where they do not alter the asymptotic 

matching conditions.

In the next section, it will be shown that the maximum allowable dimensionless time 

for the asymptotic representations cannot exceed 0.1 for the required truncation accuracy. 

Since the initial induced non-dimensional velocity at one vortex core is less than 0.1 at 

the initial position, xq = 1 and yo =  2, during the time period over which the asymptotic 

solution develops, changes in the initial vortex core positions are only O (l0 -3 ) and can 

be neglected, as stated previously. The trajectories for x0 and yo are only important 

when the unsteadiness of the outer velocity field is considered. That is, while and

cannot be neglected in terms of their influence on the outer flow velocities, the values 

of xq and yo can be treated as constants in terms of estimating the imposed initial velocity 

distribution above the ground-plane boundary layer.

5.2 Asymptotic Solutions for the Ground Boundary Layer

Analytic perturbation methods can be used to predict the flow near the ground 

plane during the initial time interval (when the magnitudes of local velocity gradients 

create severe problems for numerical techniques). In the following development, a two- 

term expansion has been developed for that application. First, the expansion for the 

streamfunction and velocity will be presented. Then matching conditions have been
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obtained by switching outer and inner variables according to van Dyke’s (1976) procedure. 

Since pressure can be derived in incompressible flows when the velocity field is known, 

pressure matching is accomplished through the governing equations. Hence, the pressure 

distribution will be developed after the governing equations for the inner and outer regions 

are discussed. Subsequently, closed form solutions for the two-term expansions are 

developed. Finally, the maximum time allowed, in terms of the validity of the solution, 

and the minimum development time required for the numerical grid are discussed.

5.2.1 Expansions and Matching for Streamfunction and Velocity

The appropriate streamfunction for the outer flow can be written

This streamfunction must satisfy the initial potential vortex requirements of both a 

symmetry plane and a ground plane.

Similarly, the inner flow is represented as

=  iS 0 (x ,y , t )  +  e^ i(x , y ,t) +  0 [e2], (5.6)

where

(5.7)

and

(5.8)

=  2e[i/>0 (x, T},t) + e.%!) 1 (x, rj,t)] + 0  [e3] , (5.9)
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where rj = y / 2 e is the inner stretched vertical coordinate (where, following Blasius’s 

solution [Schlichting, 1979], 2e is used instead of e, for algebraic simplicity in the 

matching). Here, the inner velocity components are

This streamfunction must satisfy the no-slip boundary conditions.

Following van Dyke’s (1976) generalized matching principle, which requires that 

the inner and outer asymptotic expansions match at their overlapping limits, the outer 

expansion is rewritten in terms of the inner variable r], while the inner expansion is 

rewritten in the outer variable y. Subsequently, both the streamfunction and velocity 

expansions are rewritten and the corresponding terms must be matched. Using this 

matching procedure allows the streamfunction and velocity representations to be matched 

simultaneously along the overlap zone, and yields:

(5.10)

and

(5.11)

For 0[e°) :

(5.12)

(5.13)

and

(5.14)
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For Ole1] :

d<S„
$ i ( x ,  0 ,  t) = 2 i})0 {x, r), t ) - 2  ri-jr-(x,  0 , t)

77—>oo y
(5.15)

77—*00

(5.16)

and

(5.17)

As expected, Eqns. (5.12)-(5.17) either give the bottom boundary condition for the 

outer flow or the top boundary condition for the inner-flow. Equations (5.12) and (5.14) 

are equivalent and they therefore give one boundary condition for \&0, which is obviously 

the no-penetration boundary condition. Equation (5.13) is the top boundary condition for 

tpo which must match (at the edge) the x-component of velocity, U0. Equations (5.15) 

and (5.17) are also equivalent and they provide a boundary condition for VPi, while 

Eqn. (5.16) is a boundary condition for The equivalence between Eqns. (5.12) and

(5.14) and between (5.15) and (5.17) shows that the streamfunction and velocity matching 

can be achieved simultaneously and without contradiction in this procedure. The physical 

boundary conditions are thus retained by the mathematical manipulation.

From the matching procedure, the solution for the two series can proceed sequentially; 

first the outer solution, ^ 0, then the inner solution, ip0 can be developed, followed 

sequentially by solution of \Pi, and so on.
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5.2.2 Governing Equations

As stated previously, the governing equations used are the two-dimensional unsteady, 

incompressible Navier-Stokes equations. Since continuity is implied by introducing 

the streamfunction, the conservation of momentum equations are all that need to be 

considered.

a. Outer Flow

Because viscous terms do not have any direct effect in the series until terms of 

order e2 are important, it is not necessary to include viscous effects for the two-term 

representation of the outer solution. Thus, the outer flow must satisfy the two-dimensional 

Euler equations:

dU TTdU 8 U dP
dt  +  dx  +  dy ~  dx  ’ ( J

and
d V  TTd V  „ d V  dP
dt  +  dx  +  dy ~  dy ' ( *

In addition, it was shown in the previous section that the induced flow, resulting from 

the far field of the Oseen vortices, is irrotational near the edge of the boundary layer, 

justifying the use of the potential flow relation

V 2$  =  0 , (5.20)

instead of Eqns. (5.18) and (5.19). That has been done here and the Euler equations have 

been used only to determine the pressure field from the velocity field.
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The following equations result from consideration of different orders of e:

0 [e°] : V 2$ 0 =  0 , (5.21)

and

0 [ t l ] : V2$ i = 0 . (5.22)

Since the outer solution here is only used for the purpose of generating the boundary- 

layer solution, the potential solution may or may not be applied to the whole outer flow 

field. It is also noted that, to 0 ( e 1),  the Oseen vortex solution has no viscous influence 

because it is introduced at 0 (e 2) accuracy.

b. Inner Flow

The dimensionless boundary layer momentum equation can be written

du du du dp 1 d2u
dt JrV‘dx dy dx~^ R e d y 2 ’

(5.23)

where the standard boundary layer approximations apply. (When the vortex system 

approaches closer to the ground, it is obvious that ^  will become important, thus 

negating the boundary layer approximations.) From Eqns. (5.9) and (5.10), the velocity 

derivatives can be calculated to yield:

du _  d 2 ij) 0 r) d 2 ip0

dt drjdt 21 dr]2

1 dij>i d2ipi y d 2tpi
21 dy drjdt 2 1 dy2

+ 0 [£2] (5.24)

du
dy

d 2 if>0 a v
-I- e

d y 2 dy 2
+  0[e] , (5.25)
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and
d2u d 3j>0 5 30 i

Tdy2 4e2 [ dy 3 dy 3 

Now, representing pressure as:

+  0[e°] . (5.26)

p = p0 (x, t)- \-epi{x,t) + 0[e2], (5.27)

these expressions (Eqns. 5.24-5.27), along with Eqn. (5.11), can be substituted into 

Eqn. (5.23), to obtain the streamfunction equations for different orders of e.

For 0[t°\ :

5 20 O _  rj 5 20 O 5 0 o 5 20 O _  5 20 O 5 0 o
drjdt 21 drj2 dy drjdx dr} 2 dx

_  dp0 1 5 30 O
(5.28)dx 41 dr]3

The three boundary conditions are the no-penetration and non-slip boundary conditions 

and the matching condition Eqn. (5.13):

0 o(x,O,t) =  0 (5.29)

and

5 0 o
dr} (x,0,<) =  0 ,

^ ( x , o o , t )  =  ~ - ( x , 0 , t) = Uo

(5.30)

(5.31)

For O ^ 1]11 .

1 50 i 520  1 1} 520 i 500 d2 rj) 1
“r ~  ^ ~  “f“21 dy drjdt 21 drj2 drj drjdx

50 i 520 O 50o 5 20 i 50 i 520 O
57/ 5?/5a; 5a; 57/2 5a; drj2

+

_ _ d p i 1 530 i 
dx 4f 57/3 (5.32)
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The three boundary conditions for ^ 1  are again the solid-waU conditions and the matching 

condition Eqn. (5.16):

i>i(x,Q,t) = 0 ,

din
dy

and

77—>00

M l
dy

(®,0 ,t)

From Eqn. (5.21),

d2^ n
°  S"°(a;)0,t) + ^ (x ,0 ,t )  = 0,
dx 2 ’ ’ dy 2

while Eqn. (5.12) yields \Po(a:,0, t) = 0

Hence

dy 2 5 ’ d x 2

Therefore, Eqn. (5.35) can be rewritten:
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5.2.3 Pressure Gradient Matching

As mentioned earlier, to second order, ^  =  0, in the boundary layer for the 

asymptotic expansions developed here. Consequently, the pressure gradient relationship 

can be written:

dP_
dx

From the governing equation for the outer flow (Eqn. 5.18), the “free-slip” require

ment is

Now

so that

0 \<?] :

and

0[J] :

dU_
dt 0 = 0

ttW4-  U -7— -  

dx 0=0

d_P_
dx 0=0

U(x, 0, t) = U0 (x, t) +  eUi (x , t)

dU0 fr dU0 dp0

dt 0 dx dx ’

^ + l Ul + UoM i  + U W ° -  *

(5.40)

(5.41)

(5.42)

(5.43)dt  21 dx dx dx

Thus the pressure distribution can be determined from the outer-flow representations of 

the velocity.
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5.2.4 Solution for the Inner Flow

From the discussion at the beginning of this chapter, it was shown that in an unsteady 

boundary layer, a two-series expansion is needed, which will be developed here in terms 

of t  and t. It is therefore necessary to expand each inner solution, to different orders 

of e, as power series in terms of t. Since these solutions are required only as initial 

flow conditions for this problem, dimensionless time can be chosen to be arbitrarily 

small so that only the first several terms in the asymptotic expansions are needed in each 

representation. Closed form solutions are thus obtained for the first two terms of the 

expansions.

<9[e°] :

Let
OO

• (5.44)
p = 0

Then the first two terms are:

00 =  Uof0! +  0 [ t 2] . (5.45)

Substituting Eqn. (5.45) into Eqn. (5.28), with boundary conditions, Eqns. (5.29), (5.30) 

and (5.31), then employing the pressure gradient Eqn. (5.42), the expressions, fij{rj), for 

different orders of t are

0 [t°] :

/ 0 1  +  2??/oi =  0, (5.46)

subject to:

/oi(0) =  /^ (0 )  =  0 , (5.47)
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O ft1] :

subject to:

and

along with

subject to:

and

/oi(oo) =  1 , (5.48)

f u  +  277/ji -  4 /n  =  - 4  +  4 / 'x , (5.49)

/n (0 )  =  /n (0 )  =  0 , (5.50)

/n ( ° ° )  =  0 , (5.51)

f u  +  W 12 ~  4/i2 =  - 4  +  4(/q1) 2 -  4/„i &  , (5.52)

/i2(0) =  / i 2(0) =  0 ,  (5.53)

/ i 2 (oo) =  0 . (5.54)

The solutions for foi, f n  and / 1 2  are given as:

A l =  V e r m  +  . (5.55)

=  5^72 ( J -  e' ’2)  -  .
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and

^  0  + 5 v l w er/(v5,) ~ i ( 2 +hyeTfc{,,)
-  ^ V 2 e - ' ‘ erfc(v) +  -  I ,  er/cs( ,)  +  ( l  -  e - 1)

+ G  -  s ) ’, e’'/ c ( , )  -  ^ e r / ( , , ) + ( j * + • <5-57)

It has been already pointed out that the derivatives of foi and / 1 2  are the same as the first- 

order and second-order solution functions, respectively, in Blasius’s solution (Schlichting 

1979).

0 [£>] :

Let
OO

• <5-58)
p=0

Then the first two terms

= ul901 11 +  ^°~q^9 i2 +  +  0 [ t 2] (5.59)

are gotten by substituting Eqn. (5.59) into Eqn. (5.32), with boundary conditions 

Eqns. (5.33), (5.34) and (5.38) and pressure gradient condition Eqn. (5.43). The fol

lowing relations are thus obtained, for different orders, of t

0[t°} :

gl'i + 2^0! -  H i  = - 2  , (5.60)

subject to

m(0)=ffoi (0)  =  0,  (5.61)

and

<7oi(°o) =  l ,  (5.62)
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0[**]

subject to:

and

along with

subject to:

and

subject to:

and

5il +  2?7 g{i — 6g'n — —4 +  4^^ , (5.63)

5ii (0) =  5n(0) =  0 , (5.64)

5n (°°) =  0 , (5.65)

5i2 +  277(7/2 — 6^22 — —4 +  47 /2^02 , (5.66)

512(0) =  5 / 3 (0 ) =  0 ,  (5.67)

5 /2 (0 0 ) =  0 , (5.68)

5 i 3 +  2t? g[3 -  6(723 -  —4 +  4 / 02^02 -  f̂oxg'oi (5.69)

513(0) =  5 / 3 (0 ) =  0 , (5.70)

5 /3 (0°) =  0 . (5.71)
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The solutions for <7 0 1 , gn ,  5 1 2  and 5 1 3  are given as:

#0 1 =  77 +  \'Kll 2 ri2 erfc(r)) — ^ 7/e v — y7r1/,2er/(?7), (5.72)

5ii =
7r1 /2

(7; 3 +  774 )er/c(77) +  ^  (-7 / 2 +  774)e 7,2 <*7 , (5.73)

+  7T1 /2  -  V ^  ( e r / ( 7? ) ) 2 +  -  2?72^  e - ^ e r f i 77) -

17+  3 ^ 0  +  \ Tf ) erf{n) +  ^ 7 2  (J +  7 2)e 7,2 

_  I « - - V

-  7r1 / 2 77 erf(r}) -  -er f (g)  + (5.74)

and

0 1 3  =  | t t 1 /2  ^ 2 +  ^ 77^  erfc(r)) +  |  j f  ^772 +  ^ 77̂  e . (5.75)

The above functions ( / 0 1 , / 1 1 , / 1 2 , 0 0 1 , 0 1 1 , 0 1 2 , and 5 1 3 ) are plotted in Figures

5.1 and 5.2.

It is noted that Uq{x , t ) and U\{x, t) are the outer flow representations of the vortices 

along the ground plane (y =  0). These solutions are restricted to small times and Uq is 

given by potential theory as

4 x Qy0x
U0 (x , t )  =

7r (5.76)
(a: -  x0)2 +  0o O® +  x o f  +  00  

while Ui is gotten by solving the Laplacian, Eqn. (5.22), using Green’s functions, where

dtdUo
dx t=S x - f

which are the same outer velocity forms as used by Peace and Riley (1983).

(5.77)
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5.2.5 Specification of Asymptotic Time Limits

Utilization of the asymptotic series permits the vortex system velocity field to evolve 

from the non-physical discontinuities produced by the initiation of a pair of point vortices 

approaching an inviscid wall boundary into a more physical, unsteady, fully viscous 

system. Since this study (Section 5.1) has shown that the viscous zones in the vortex cores 

can be represented initially by Oseen vortices acting independently, the wall boundary 

layer region is the only viscous zone which demands special care.

The initial velocity field, provided as starting conditions for the Navier-Stokes 

numerical simulation, corresponds to the maximum time allowed for the asymptotic 

expansion representation. By choosing small values for the upper asymptotic time limit 

— say tmax — the expansions are very accurate representations of an Navier-Stokes 

exact solution. However, that accuracy is lost if the viscous boundary layer, at tmax, is 

so thin that it spans only one or two vertical grid points in the finite difference mesh used 

subsequently to compute the numerical simulation for extended times. Consequently, a 

suitable compromise was made between minimizing round off errors in the asymptotic 

representations and maximizing the evolution time of the viscous boundary layer zone 

represented by the expansions. This study has shown (in Chapter 4) that viscous zones 

on the order of ten percent of the vortex core radius (corresponding to a dimensionless 

height of 0.02) can be resolved adequately by the numerical grid. That was the primary 

motivation for developing the asymptotic solutions.

Selection of t max is similar to establishing an infimum for the asymptotic solution 

which is simultaneously a supremum for the initial time representation of the numerical 

simulation. The minimum time required in the asymptotic solution can be estimated in
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terms of the desired initial boundary layer thickness for the numerical problem. If y* is 

a measure of the boundary layer thickness when the asymptotic solution is terminated, 

and the numerical computation is initiated, then in order to allow the computational grid 

to resolve the ground boundary region, y* must satisfy

10-1 r c < y* = erj* =  -^/tjRer)* , (5.78)

where 77* is the inner parameter at the edge of the ground boundary layer.

While Eqn. (5.78) gives the lower bound for t  required by the numerical solution, 

the upper bound on time is required from the truncation error limits on the asymptotic 

expansions. Since larger Reynolds numbers in this problem allow the expansion in terms 

of e to contain smaller truncation errors (at the same time level), the limitation is imposed 

on the time-series expansions. Hence, dimensionless time must satisfy

t <  1 , (5.79)

to assure accuracy in the time-series expansions.

Combining the above two conditions bounds t by:

(1(r l rc/T]*)2Re < t <  1. (5.80)

Because the first order vorticity field is a function of exp{—r}), rj* ~  10 can be the

nominal edge of the boundary layer, where the vorticity is zero to within computational

accuracy. With rc =  0.2, the numerics require

t > O(l0~ 6 Re) , (5.81)

which means that because large Reynolds numbers correspond to thin boundary layers, the 

required minimum asymptotic time must be larger to enable the viscous flow to develop
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far enough for a “thick” boundary layer to exist prior to applying numerics. Since t 

must be much smaller than 1, the method can only accommodate Reynolds numbers on 

the order of 105.

The fact that higher Reynolds number flows need finer grid resolution is also shown 

in Eqn. (5.81). For example, if  the grid resolution can accommodate 10-2 r c near the 

ground, Eqn. (5.81) becomes

t > O(l0~ 7 Re) , (5.82)

and then the asymptotic solution can be used for the case of Reynolds number as high as 

106. Therefore, as is always the case, the finer the grid, the higher the allowable Reynolds 

number. While this statement may sound trite, it is noted that a 10 fold increase in grid 

resolution in both directions would permit a 10 fold increase simulation Reynolds number. 

A B-747 simulation, which has a circulation Reynolds number at the order of 107, would 

require a 15,000x30,000 grid if the current type of grid was used.

It is also important to realize that the asymptotic analysis can be used to start a 

turbulent (high Reynolds number) vortex system since the boundary layer region evolves 

very quickly through a laminar stage before becoming turbulent.

To summarize, the asymptotically generated velocity field which constitutes the initial 

velocity distribution in the numerical scheme is a combination of solutions (5.2), (5.3), 

(5.4), (5.6) and (5.9), where term by term functional solutions to the various series 

expansions have been developed in this chapter. Small values of time, compared with 

the time scale of the problem, have been employed to permit truncation of the series. The
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asymptotic solution time level, selected to generate the initial numerical velocity field, 

depended on the circulation Reynolds number, but it was restricted to the maximum 

time allowable by the finite term approximations to the infinite series expansions. The 

asymptotic solutions were thus used to produce an initial velocity field whose local 

gradients could be accommodated by the numerical grid, but those series representations 

did not require a significant amount of computational overhead. Hence, the approach has 

enabled substantially higher Reynolds number flows to be investigated without employing 

the ultra-fine grids that would be required normally for flow initialization.

In order to show the behavior of the initial solutions developed in this chapter, line 

contours of the vorticity field near the ground plane have been plotted in Figures 5.3-5.5. 

The calculations for both the analytical solutions and the first numerical step solutions 

were performed on the 150x 300 grid developed in Chapter 4. Since the purpose of 

the asymptotic solutions is to provide an acceptable initial flow field for the numerical 

solutions of the vortex system, the outer vertical length scale was used as the y-direction 

variable in these figures. The circulation Reynolds number, Re =  1,000 and the initial 

vortex position xq =  1, yo =  2 (with the symmetry plane at x =  0) were used in these 

cases.

The vorticity contours produced from the asymptotic solution are shown after an 

initial dimensionless time of t=0.01 in Figure 5.3 and t=0.1 in Figure 5.4. It can be seen 

that at r=0.01, a strong but very thin ground boundary layer has been developed. That 

means that during the small time interval, the ground boundary layer has very strong 

velocity gradients within a thin layer. This illuminates the difficulty for a numerical 

grid in resolving the initial flow field numerically if the evolution time of the asymptotic
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solution is not long enough to produce a resolvable ground boundary layer. At the later 

time of f=0.1, the strength of the vorticity field has decreased and the thickness of the 

boundary layer has increased. With the current grid (150x 300), there are about ten grid 

points included in the ground boundary layer at r=0.1. Only two to three vertical grid 

points are included in the boundary layer at £=0.01, which is insufficient for the resolution 

by the numerical scheme near the ground. Numerical results, produced after terminating 

the asymptotic solution at £=0.1 (then providing those results as the initial conditions) 

and marching one dimensionless time step with A t  =  0.01, are shown in Figure 5.5, 

where no abrupt change can be seen in comparison with Figure 5.4. That shows that 

the numerical scheme can be implemented after the initial ground boundary layer has 

become thick enough for resolution by the numerical grid.

The velocity profiles at different lateral positions, produced by the asymptotic so

lutions at £=0.1, are shown in Figure 5.6 to check the flow field matching between the 

inner solutions and the outer solutions, with the same flow case and the grid as in Figure 

5.4. The composite velocity solutions for the ground boundary layer are switched to the 

outer solution at a vertical distance of y = 0.13, where rj =  6.5 for this flow case. Very 

smooth matching is shown in Figure 5.6.

It is also noted that in the asymptotic solution predictions, the separation point, 

where the ground vorticity £ =  0, can only occur as the lateral distance x —> oo. Since 

the asymptotic expansion technique cannot predict direct viscous interaction between 

the ground boundary and the vortex system, the separation phenomenon causing vortex 

rebound (which will be discussed in Chapter 7) cannot be predicted by this method.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.0
f l 2
f l l
fOl

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 2.5

V

Figure 5.1 Behavior of the first order similarity functions
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Figure 5.2 Behavior of the second order similarity functions
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Figure 5.3 Vorticity contours of the asymptotic solutions 

near the ground boundary layer at t=0.01, with Re= 1,000
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Figure 5.4 Vorticity contours of the asymptotic solutions 

near the ground boundary layer at t=0.1, with Re= 1,000
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Figure 5.5 Vorticity contours produced by the N-S numerical computation 

near the ground boundary layer after one time-step At=0.01, based 

upon the asymptotic initial flow field at t=0.1, with Re=l,000
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Figure 5.6 Velocity profiles of the asymptotic solutions near the 

ground boundary at different lateral positions for t=0.1, /?a=l,000
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Chapter 6 Validation of Turbulence Models 
for Turbulent Vortex Predictions

In this chapter, the utility of different turbulence models for simulating vortex dom

inated flows is investigated. Eddy viscosity and full Reynolds stress closure turbulence 

models in cylindrical coordinates have been tested. Studies have focused on the non

physical problem of an isolated vortex in an infinite medium for which the mean axial 

and radial velocities are zero and the mean tangential velocity distribution is assumed to 

vary with radius and time. As expected, this study has shown that neither algebraic nor 

k-e models are capable of handling the curvature effects and turbulent-non-turbulent in

terfaces associated with vortex cores. In addition, the study has shown that the Reynolds 

stress model results are in good agreement with the predictions of Donaldson (1972a) 

and the experimental results of Hoffmann and Joubert (1963). Therefore, the Reynolds 

stress closure model has been implemented for the present vortex/ground-plane interac

tion studies.

In the computations of all the turbulence model cases, the two-dimensional, ax- 

isymmetric problems were discretized using an implicit, forward-temporal difference, 

central-spatial difference scheme. A numerical grid was developed using the same expo

nential transformation in the radial direction to get clustered grid inside the vortex core 

and stretched the grid to infinity in the physical domain. After the multigrid test, 100 

grid points were used in the radial direction with 40 grid points inside the vortex core.
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The non-dimensional time marching step was chosen as 0.01. In all the test cases, the 

Reynolds number, based on the initial maximum swirling velocity and the core radius, 

was 10,000.

6.1 Description of the Test Problem

Donaldson (1972a) studied the decay of an isolated turbulent vortex in an infinite 

medium to evaluate his Reynolds stress transport turbulence model. That problem was 

used also in this study, because it required a minimum amount of computer resources 

while incorporating streamline curvature and core relaminarization effects. The test 

problem was run in cylindrical coordinates, even though the ground-plane interaction 

problem is not amenable to a cylindrical coordinate formulation.

Assuming the mean velocity components are U=W=0, and V=V(r,t), where U and W 

are the radial and axial mean velocity components and V is the azimuthal velocity, the 

azimuthal component of the Navier-Stokes equations for an incompressible, isothermal 

turbulent flow reduces to:

_  vd_  
dt  r dr

r 3 9(V /r)
“ 3 ^ ( r2uv)> <6 1 )rdx

where u,v,w are the fluctuating velocity components in the corresponding coordinate 

directions and uv is a time averaged Reynolds stress. Hence, the prototype turbulent 

vortex decay problem reduces to finding V=V(r,t) and uv =  uv (r, t), subject to initial 

conditions:

V (r>0) =  V(r), (6.2)

and

u v ( r ,0 ) = f ( r )  (6.3)

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with boundary conditions

and

with

lim | V (r, t ) / r | =  constant (6.4)
r —> 0

lim uv(r,t) =  0, (6.5)
r —> 0

lim V (r,t) =  0, (6 .6 )
r —> oo

lim uv(r, t) =  0. (6.7)
r —► oo

Depending on the turbulence model, the Reynolds stress initial and boundary con

ditions can be trivial. The initial mean velocity distribution, chosen for this study, was 

the laminar profile developed by Oseen (1911), which can be written for some arbitrary 

time t =  r2 /4r/, as

V (r,t =  rc/4i/) =  V(r, 0)
r c

1 -  e-<r/ rc)2 (6.8)
2irr

which is an instantaneous solution to the Navier-Stokes equations, when uv =  0. That 

solution includes a rigid rotating core, with a far-field circulation level of Too. If the 

vortex core radius, r*(t), is defined by:

V(r*,t) =  Vmax (t), (6.9)

the initial vortex core radius, r0, is imposed from Eqn. (6 .8 ) as r0 / r c =  7 , where 7  is a 

solution to the transcendental equation:

l + 2 7 2 = e T\  (6 .1 0 )
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and is approximately 1.122. The maximum initial velocity was designated 

Vo (=  Vmax(O)).

Since the simulation has been initialized with a laminar velocity profile, it was 

assumed that the initial Reynolds stress distribution was zero. When required, initial time 

averaged turbulent kinetic energy components were not set equal to zero. The assumed 

initial kinetic energy components were taken from Donaldson and Sullivan (1971) and 

were:

u2 ( r ,0) =  h ( f ) ( l  -  e - t 2i2̂ / ( 7 2 r2) , (6.11)

v2 (r,0) =  h(r) e- '*2*2, (6.12)

and w2 (r,0) =  |u2(r,0) +  v2(r,0) /2 , (6.13)

where h(r) is a function of dimensionless coordinate r (=  r / rD) which must be specified. 

They assumed h(r) was in the form cexp (—7 2r2) which causes the initial maximum 

kinetic energy to occur along the vortex axis. A slightly different form has been chosen 

in this study:

h(r) =  c r2e ^  , (6.14)

which causes the initial kinetic energy maximum to occur near the vortex core boundary 

(r =  1). Therefore, the initial kinetic energy distribution was assumed to be:

k (r ,0) =  | c e " 7 ¥
2 - 2

1 — e-7  1 . 0 ___2j2

72
(6.15)

All other initial conditions were for non-physical turbulence quantities and will be 

discussed when they are required by the particular turbulence model.

Now the evolution of the initial laminar mean velocity profile into a turbulent profile 

is not physical — even using the Reynolds stress transport model. Furthermore, the
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vortex-ground plane problem required a similar transition to turbulence, and the possibility 

was concerned that different prescribed initial turbulent kinetic energy distributions might 

produce different evolved mean velocity profiles. Tests were conducted with the Reynolds 

stress transport model for the isolated vortex to see if initial locations of the kinetic energy 

maximum (holding the maximum kinetic energy level at 0.26 percent) altered the evolved 

velocity profile. Tests were run with the initial kinetic energy peak located at r =  0,1,2 

and 3. As shown in Figure 6.1, those tests showed that both the mean velocity and 

Reynolds stress quantities were nearly identical after dimensionless times of 100 (100 

io/Vo). That time interval was also the typical time required for start-up transients to 

disappear, in agreement with Donaldson (1972a).

The insensitivity of the evolved turbulent distributions is due primarily to the low 

levels of initial turbulent energy quantities, in comparison with the mean flow. Even 

though changes in the mean velocity profiles were observable as time increased, those 

changes were due more to extraction of energy from the initial mean profiles than to 

variations in the initial distributions of turbulent quantities.

The discussion which follows is intended to summarize briefly the forms of the 

various turbulence models tested in this study. The formulation and, in some cases, 

optimization of turbulent model constants was not part of the study.

6.2 Zero-Equation Eddy Viscosity Model

The simplest turbulence model was to use ad hoc assumptions consistent with 

Prandtl’s original mixing length theory, so that

(6.16)
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where ut is an eddy viscosity, and er# is the mean strain rate component. The eddy 

viscosity was assumed related to a mixing length, /, through

Ragsdale (1961) used both Prandtl functions and von Karman similarity functions to 

model turbulence vortex systems with zero-equation models, but his predictions did not 

agree well with experiments. Here, it has been assumed that mixing length was a constant, 

related directly to the initial vortex core radius, i.e.

with rj = 0.1. Thus, it has been decided to take the trivial step of approximating a 

turbulent vortex as a more viscous laminar vortex. Later, a comparison of turbulent 

results with the prediction of a laminar vortex system in ground effect has shown that a 

simple algebraic eddy viscosity approximation, though obviously restrictive, may be as 

good as some of the more complicated eddy viscosity models.

6.3 One-Equation Eddy Viscosity Model

The turbulent kinetic energy equation can be derived by taking the inner product of 

the fluctuating momentum equations with the fluctuating velocity vector and averaging 

over a suitable time. For the present system, that equation can be simplified to:

H =  I2 M . (6.17)

(6.18)

(6.19)

where k =  ^uiu;, and e is the isotropic, turbulent dissipation and is the cylindrical

coordinate representation of the Cartesian tensor contraction e
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kinetic energy transport equation has been modeled as

dk _  1 d 
dt r dx

(  , am
A  ° k / d x

+  VtX g(V/r)l
dx

where the turbulent dissipation was approximated by

k3/2
e  =  c d  ,

(6.20)

(6 .21)

and <7k is a turbulent kinetic energy Prandtl number, taken to be unity. It has been 

assumed that the eddy viscosity is given by:

=  cu I k1/ 2vt =  c k (6.22)

with I still approximated from Eqn. (6.16), and constants Cd and ck both taken to be unity.

6.4 Two-Equation Eddy Viscosity Model

Using the standard k-e model of Launder and Spalding (1974), the governing equation 

for isotropic turbulent dissipation, e, simplifies to:

de e
k w F| c v / r ) '

l d_  
^  x dx r \  ( r j d x " C 2 k

(6.23)

where constants ci and C2 were taken to be Launder and Spalding’s values of 1.44 and 

1.92, respectively and the dissipation Prandtl number, a e, was assigned their value of 

1.3. In this case, the eddy viscosity was assumed given by

ut =  k 2 / e  , (6.24)

with c^=0.09.
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6.5 Reynolds S tress Transport Equations

The Cartesian tensor form of the Reynolds stress transport equations can be written 

employing index notation, utilizing the summation convention as:

Donaldson (1972a) has used invariant modeling to model the terms in the six equations, 

represented by Eqn. (6.24), for Reynolds stresses in cylindrical coordinates. The cylin

drical coordinate representations of the modeled Reynolds stress transport equations are 

long and can be found in Donaldson’s article.

Assuming length scale, A(t), varies with instantaneous vortex core radius, r*(t), 

defined in Eqn. (6.9), it was assumed that

UiUjUk
p dxi  dxj

1 d p u j d p u i

<9u; <9uj 

d x k <9xk
(6.25)

A = 0 .16r*(t) , (6.26)

and Donaldson’s scale factor M was defined by:

(6.27)

so that the following terms were modeled:

d r
(6.28)

T „W UV 
v 3 =  —f i M — (6.29)

d r  r
(6.30)

(6.31)
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J2 +  --- ~2---- i <6-39)

d w \ 2 1 /  d w \ 2 ( d w \ 2 w2
7 k )  + ^ { w )  + \ 7 h )  = A2 ’ (6,40)

, du dv  1 du dv du dv  uv uv uv
l h l h  + ^  + =  ’ (6-41)

where

A =  A / (C a +  C^ReA) 1/2

with

Constants C a and C# were assigned values of 2.5 and 0.125, respectively.
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6.6 Test Problem Results

Mean velocity profiles for the three eddy viscosity models and the Reynolds transport 

model are shown in Figure 6.2 for isolated vortex decay after time intervals of (a) 100 

To/Vo and (b) 200 r0/V0, where V0 was the initial maximum vortex core velocity. The 

Reynolds number for this problem was defined as the initial core Reynolds number, 

Re=Voro/j/=10,000. The Reynolds stress transport calculations agree with Donaldson 

(1972a), and with the experimental results of Hoffmann and Joubert (1963) for time 

equal to 200 r0/V0 (Figure 6.3). Hence, the simulation is relatively insensitive to the 

initial kinetic energy distribution, as mentioned previously.

While the test vortex cannot be produced in a laboratory, it is expected that the 

mean velocity profile history will be similar to physically realizable turbulent vortices. 

Two interrelated aspects of the velocity history are considered to be very important 

attributes, required from a successful turbulence model. The maximum swirl velocity 

should decrease more slowly with time than a laminar vortex with increased viscosity and 

the vortex core should dilate more slowly. Since rapid core dilation must be accompanied 

by a corresponding decrease in maximum swirl velocity to conserve angular momentum, 

failure to capture those effects will result in overly optimistic predictions for the rate of 

vortex decay. As can be seen in Figure 6.2, the eddy viscosity models have all predicted 

mean velocity histories which are considered to have excessive viscous diffusion. While 

these results were not surprising, it is worth noting that the zero-equation model performed 

about as well as all of the other non-Reynolds stress transport models. However, it 

was determined that a Reynolds stress transport model was necessary for simulating the
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aircraft wake-ground plane interaction problem, since excessive dissipation would result 

in underestimation of the importance of wake vortices near airports.

Some other interesting properties of the Reynolds stress transport model can be seen in 

Figure 6.3. Since there was a wake type axial flow in Hoffman and Joubert’s experiment 

(1963) and the computational prediction agrees with their experimental data so well, the 

agreement means means that at least for turbulent diffusion processes, the axial flow 

may not exert a significant influence. This may legitimize using two-dimensional models 

to calculate vortex wake decay, as long as three-dimensional effects, such as vortex 

breakdown and Crow (1970) instability, are not important. When compared with the 

laminar velocity profile, the Reynolds stress transport predictions show that inside the 

vortex core, the results are almost the same as the laminar case and the turbulent behavior 

appears in the shear layer, outside of the vortex core. The relaminarization inside the 

vortex core is thus exhibited using the Reynolds stress transport model prediction.
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Chapter 7 Influence of Reynolds Number

The unstratified, laminar and turbulent flow cases have been simulated over a 

range of circulation Reynolds numbers, to assess the influence of viscous effects on 

vortex trajectories and strengths near the ground. Invoking symmetry of the vortex 

pair (without cross wind) permits the computations to be restricted to the first quadrant 

(0 <  re <  oo, 0 <  y <  oo). Equations (3.41)-(3.44) for the laminar cases and equations 

(3.64)-(3.73) for the turbulent cases, with all the density departure terms set to zero, 

were used in the study reported in this chapter. The laminar cases also served as a 

validation for the Cartesian version of the computer code, beyond the cylindrical test 

problem, and good agreement was obtained. Ground rebound mechanisms were revealed 

by the “snapshots” of the vorticity contours from the computational simulations, which 

confirmed the scenario suggested by Harvey and Perry (1971). Problems with vortex 

hazard assessment have been addressed as well.

The upwind-flux-spliting, ADI scheme was used on the 150x300 grid, which was 

discussed in Chapter 4, with the non-dimensional time marching step At=0.01, for all the 

cases. The calculations were terminated at dimensionless time t=60, when the strengths 

of the vortex system were small compared with the original vortex system and the vortex 

cores had started to move out of the fine resolution grid region. For a typical B-747, this 

time interval is equivalent to one or two minutes.
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7.1 Laminar Results and Comparison of Trajectories 
with Experimental Results

Limited experimental data are available for numerical validation studies. The ex

periments of Liu and Smsky (1990) have been used as the principle test case for the 

behavior of a wake vortex system near the ground. Their vortex flows were produced by 

towing an NACA 0012 wing model in a water tank and the estimated circulation based 

Reynolds number (To/u) for their most documented flow experiment was 7,650. Their 

experiments did not investigate stratification and turbulence effects near a ground plane.

The same circulation Reynolds number was used in the present calculations for an 

unstratified validation test. Figure 7.1(a) represents the vortex trajectories y(t)) of 

the numerical simulation, along with the measured trajectory of Liu and Smsky (1990). 

The horizontal and vertical time histories, x(t)  and y(t), are shown in Figures 7.1(b) and 

(c), respectively. The agreement between the numerical simulation and the experiment 

for Re=7,650 is quite good.

In order to study Reynolds number effects on wake vortices near the ground, 

circulation Reynolds numbers of 1000 and 75,000 were also simulated (as laminar cases). 

Figure 7.2 shows the predicted trajectories, along with the horizontal and vertical motion 

histories of the primary vortex for these two cases. Time markers have been placed on 

the trajectory plots to facilitate comparison.

The higher Reynolds number vortex system traverses a longer path within the same 

computational time interval, when compared to the Reynolds number path. For the low 

Reynolds number cases, viscous effects weaken the main vortex system more rapidly, 

resulting in slower vortex motion in both the lateral and vertical directions. While the
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overall motion of the low Reynolds number case is more confined than that for the high 

Reynolds number case, the vortex rebound near the ground plane occurs earlier for low 

Reynolds numbers, because the thicker boundary layers, produced at the lower Reynolds 

numbers, create more extensive separation zones.

7.2 The Vortex Rebound Mechanism

The rebound mechanism can be explained using the instantaneous vorticity contours 

in Figures 7.3 (a) and (b). The separation point in the ground-plane boundary-layer can 

be seen clearly in Figure 7.3, at the location where C =  0. That separation causes opposite 

sign vorticity to be induced by the main vortex on the ground, thus forming a secondary 

vortex. This secondary vortex creates upward motion of the main vortex. Compared 

with the experimental observations (Figure 2.3), the rebound scenario shown here agrees 

with the experimental observations of Harvey and Perry (1971), which are becoming 

widely accepted. The complicated viscous process which occurs during vortex rebound 

disqualifies the inviscid explanations employed previously to explain the phenomenon. 

Moreover, it can be seen in the contours that, at least within the circulation Reynolds 

numbers of this study, neither the effect of finite vortex core size (Barker and Crow, 

1977) nor the viscous displacement effect of the no-slip ground boundary (Peace and 

Riley, 1983) are major factors during vortex rebound. In order to determine whether 

separation occurs at the low Reynolds number cases, which was a point of contention 

in Peace and Riley’s work (1983), a vortex Reynolds number case of 100 was tested. 

Even at that Reynolds number, ground boundary separation was found to occur, but the 

separation zone was very small. Since these very low Reynolds number flows are not 

relevant to the vortex hazard problem, those results have not been presented here.
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Details of this rebound mechanism cannot be resolved when a coarse grid is used at 

the early stage of the simulation. In addition, the accuracy of the streamfunction solver 

also influences resolution of the boundary layer separation zone. This may explain why 

an ad hoc ground boundary condition was used by Delisi, Robins and Fraser (1987) to 

get a proper vortex rebound, while Peace and Riley (1983) did not predict separation in 

some of their flow cases.

In the discussion here, only the vorticity contours for a circulation Reynolds number 

of 1000 have been shown. The reason for using this relatively low Reynolds number 

case as an example is because the higher Reynolds number cases have a very thin ground 

boundary layer and the separation zone detail cannot be seen clearly on the contour plots. 

It is also noted that the left hand side of the vorticity color contours were produced 

by reflecting the right hand plane color image into the left hand plane. That reflection 

reverses the sign of the vorticity contours represented in the left hand plane, but maitains 

an accurate shape representation using minimum computer resources.

7.3 The Vortex Hazard A ssessm ent

In order to assess the vortex hazard, some measure of hazard strength was required. 

However, since the computational domain is an unbounded quadrant, overall or global 

measures of circulation or velocity levels are of little value. It was decided finally 

that circulation and kinetic energy histories in the aircraft approach zone would be 

meaningful. The approach zone was defined somewhat arbitrarily as the area bounded 

by —2 < x < 2 and 0 < y <  3. Since the coordinates have been made dimensionless 

by the vortex half-span, an horizontal distance of four units is on the order of a runway 

width, and a three unit height is slightly larger than an airplane wing span. That cross
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section was considered to approximate the span of a typical runway entrance. The 

velocity components and vorticity were thus computed at each grid point within the right 

half of that area (0 <  x  <  2, 0 < y <  3) at each time level. Subsequently, zonal 

circulation, T(2x3), was calculated by integrating the vorticity over that half-area and

the instantaneous kinetic energy within the zone, E(2x3), was computed by a similar

(V+v2)integration of -—^— • Those histories are shown in Figure 7.4 for the extreme Reynolds 

number cases (/?e=1000 and 75,000). The experiments of Liu and Smsky (1990) did not 

report circulation and energy history data, precluding any comparison with experiments.

Figure 7.4 shows that the circulation history for a Reynolds number case of 75,000 

decays initially more slowly than the 1,000 Reynolds number case, then its decay rate 

exceeds the low Reynolds number case at later times. Although slower decay rates for 

higher Reynolds number cases are expected, the fact that the vortex moves out of the 

(2x3) rectangular domain causes the higher Reynolds number vortex to exhibit more 

rapid decay at the later time levels. The kinetic energy history in the region shows the 

same trend.

These “hazard history” results in the (2x3) region show how hypothetical and 

somewhat arbitrary methods for addressing the vortex hazard near a single runway become 

difficult to interpret and use. Since the encountering aircraft type most surely influences 

the hazard, neither a measure of the total strength of vortex wakes, nor a rational way 

to interpret vortex hazard exists in that regard.
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7.4 Turbulent Vortex Cases

The length scale, given by Eqn. (6.25), must be altered for the vortex-pair/ground- 

plane interaction problem, because only turbulent regions near the vortex core were 

considered in Eqn. (6.25). Turbulence regions near the ground must be included here as 

well and the logic used to introduce boundary layer length scales follows.

Near the ground, von Karman’s constant, k, can be used, where

This form is the limiting viscous layer length scale at the no-slip surface. In the zone 

containing the vortex pair, it is assumed that

where the right-hand vortex center is located at X(t), Y(t), and X is therefore a measure 

of the instantaneous vortex half-span. These two ideas can thus be incorporated into a 

continuous distribution:

which was used with Ca =  0.1 in this study. Prior to this modification, numerical testing 

had shown that excessive turbulent diffusion was produced when the turbulence length 

scale did not decrease as the vertical distance of the flow field approached the ground 

plane.

The initial conditions for the mean-flow variables have been developed in Chapter 

5 for vortex ground-plane simulations which avoid anomalous initial velocity gradients

(7.1)

A (Y ,t) =  CAX(t) (7.2)

A =  CAX[1 — exp(—«y/C AX)] , (7.3)
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near the ground. Since the unsteady boundary layer evolves through a laminar phase, the 

asymptotic procedures developed in that chapter apply equally to turbulent initialization.

Gaussian-type distributions were used for the initial turbulent kinetic energy profiles, 

with

and (Xq, Y0) is the initial position of the vortex.

Since details of the initial Reynolds stress profiles would not have much influence 

on the mean flow, as shown in the test problem in Chapter 6, the initial Reynolds stress 

components have been specified as:

Computations were started at the same location of the vortex pair as the laminar 

cases with the same grid discussed in Chapter 5. The maximum initial (dimensionless) 

turbulent kinetic energy employed here was ko=0.32.

The turbulent vorticity transport equation (3.73), for unstratified flows, was handled 

numerically in the same manner as the laminar study, using an alternating direction 

implicit (ADI) scheme with upwind flux-splitting. The additional Reynolds stress terms 

were treated as central differences. The Reynolds stress transport equations (3.64 to 3.67), 

also without the stratification effect terms, were solved using the same ADI scheme 

employed for vorticity transport.

(7.62)

where
(x — X0)2 +  (y — Y0)2 

r2 (7.63)

and uv =  0 .
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The modeled Reynolds stress transport equations do not satisfy automatically the 

realizability restrictions discussed by Schumann (1977) and Lumley (1983). That is, 

small negative values of u2,v 2, and w2 could be produced during initial time steps, 

which were due simply to numerical round off errors. In order to prevent those non- 

realizable quantities from propagating, the simple “clipping” procedure suggested by 

Deardorff (1973) was employed, whereby negative values of any of the u2 (1=1,2, or 3), 

were replaced with zeros.

Turbulent simulations were run at Reynolds numbers (To/v) of 1,000 and 75,000. As 

expected, for the Reynolds number of 1,000, the laminar and turbulent cases produced 

essentially identical results. At a Reynolds number of 75,000, there are differences 

between the laminar and turbulent predictions, as shown in Figures 7.5 through 7.7. 

While there is little difference initially (since the two flow cases start with the same mean 

velocity profiles), there are subtle changes in the trajectories at later times. It is noted that 

the higher Reynolds number turbulent vortices do not rebound vertically with the same 

magnitude as their laminar counterparts (at the same Reynolds number). However, the 

lateral motion behavior of the turbulent vortex is almost the same as for the laminar flow 

case. That means turbulent diffusion reduces the vortex rebound momentum significantly.

The circulation T(2x3) and kinetic energy E(2x3) histories are shown in Figure 7.6. It 

is noted that there is virtually no difference between the laminar and turbulent circulation 

histories, which reaffirms the inviscid nature of circulation behavior. There is a small, but 

noticable, relative decrease in turbulent kinetic energy with time. The additional decrease 

is due to the increased dissipation of positive and negative vorticity in the turbulent case.
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Referring to Figure 7.7, it is seen that the turbulent, mean tangential velocity profiles are 

attenuated more strongly after the passage of time than are their laminar counterparts.

The decreased vertical rebound momentum of the turbulent case is also shown in 

Figure 7.7. The vertical velocity profile at t=36 in the laminar case (Figure 7.7(a)) shows 

that the vortex has a strong upward motion which causes the positive peak velocity 

value to achieve even higher level than the maximum peak velocity at t=24, although 

the vorticity level is lower at t=36 than t=24. It has been noted that at t=24, the vortex 

core is near its motion trough, leaving the vertical motion (see Figure 7.5(c)) with a 

very small upward velocity component, while at t=36, the vortex has begun to rebound. 

This higher vertical velocity does not occur in the corresponding turbulent case (Figure 

7.7(b)), where the peak value at t=36 is slightly smaller than the value at t=24.

Figure 7.8 shows that at earlier time levels, the vortex cores dilate somewhat more 

rapidly for the turbulent case than for the laminar predictions. At later times, after the 

vortex is nearer to the ground plane, the turbulent vortex starts to dilate more slowly 

than the laminar case. This is caused by the negative viscosity effects produced by 

the Reynolds stress transport model. That shows that the Reynolds transport model can 

avoid the excessive viscous dissipation predicted by eddy-viscosity models, which is a 

very important consideration in realistic wake-vortex predictions.

The contours of turbulent kinetic energy, k, at dimensionless time t=16 and 26 are 

shown in Figure 7.9. These contours show that after the passage of time, lowered levels 

of kinetic energy are predicted in the central core region, when compared to the relatively 

higher turbulent kinetic energy levels found in the regions where vorticity changes sign. 

That means that the Reynolds stress transport model is able to predict relaminarization
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in the vortex core. The ground plane boundary layer separation regions can also be 

discerned in the contours.

In summary, it has been shown in this chapter that the numerical scheme employed 

here produces good results in comparison with the experimental results of Liu and Srnsky 

(1990). The vortex rebound phenomenon near the ground is captured by the numerical 

simulation and the rebound mechanism of the simulation agrees with the experimental 

observation of Harvey and Perry (1971). Reynolds numbers affects both the trajectories 

and strengths of the wake vortices near the ground. The vortex rebound momentum 

of turbulent vortex wakes is reduced in comparison with their laminar counterparts. 

Reynolds stress-transport models should be used in vortex wake calculations to avoid 

underestimation of wake vortex hazard. However, vortex hazard is difficult to quantify 

and only a hypothetical method to address the hazard is shown here.
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Figure 7.1 Comparison of computed vortex behavior with the experimental 

measurements of Liu and Srnsky (1990), (a) Vortex core trajectories, (b) Lateral 

vortex core position histories, (c) Vortex core elevation histories, at Re = 7,650
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Figure 7.2 Influence of Reynolds number on vortex behavior: (a) Vortex core 

trajectories, (b) Lateral core vortex position histories, (c) Vortex core elevation histories
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- 6.0 1.0 4.0
(a) Vorticity field at t=16 

Figure 7.3 Color contours of vorticity field with /?e=1,000, (a) t=16, (b) t=26

(Notice that in this figure and in all the symmetric cases in Chapters 7 and 8, the

left half of color contours of vorticity field is the mirror-reflection of the right

half. The sign of the left half part should be opposite to the right half part.)
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(b) Vorticity field at t =26
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Figure 7.4 Predicted variation of (a) Circulation T(2x3),

(b) Kinetic energy E(2x3), with time for different Re
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Figure 7.5 Comparison between laminar and turbulent vortex behavior 

near the ground (a) Vortex core trajectories, (b) Lateral vortex core 

position histories, (c) Vortex core elevation histories (/?e=75,000)
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Figure 7.6 Comparison between laminar and turbulent 

predicted variation of (a) T(2x3), (b) E(2x3)
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Figure 7.7 Vertical (or tangential) velocity profile histories in the plane of the primary 

vortex axis at different time steps for Re=75,000, (a) Laminar, (b) Turbulent (&o=0.32)
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(a) The turbulent kinetic energy distribution at t=16 

Figure 7.9 Color contour representation of the turbulent

kinetic energy distribution at (a) t=16, (b) t=26
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(b) The turbulent kinetic energy distribution at t =26
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Chapter 8 Stratification Effects

The numerical simulation including stratification was performed using the dimen- 

sionless form of Eqns. (3.40), (3.41) and (3.43) for the laminar cases and Eqns. (3.53), 

(3.64)-(3.73) for the turbulent cases. The computational scheme was easily modified to 

include stratification since the same grid was used (where the vertical symmetry plane ap

plies to both Chapter 7 and this chapter). The density departure equation (Eqn. 3.53), and 

density fluctuation equation (Eqn. 3.68), as well as density-velocity conrelation equations 

(Eqns. 3.69 and 3.70), could be implemented using the same procedures employed for 

the vorticity transport equation and the Reynolds stress equations. The physical meaning 

and the influence of the Brunt-Vaisala frequency, which is the parameter used to quantify 

stratification effects, is discussed. Different levels of stratification have been simulated 

for both laminar and turbulent flow cases and significant effects have been found.

8.1 Brunt-Vaisala Frequency

A parameter indicative of the degree of stratification in a fluid is the buoyancy driven 

oscillation frequency or the Brunt-Vaisala frequency. The Brunt-Vaisala frequency is the 

oscillation frequency that would occur for an hypothetical inviscid fluid element which 

has been displaced from its equilibrium position (Turner, 1973), i.e., the natural vertical 

frequency of a buoyancy driven oscillation. Thus, the Brunt-Vaisala frequency, N*, is

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



quantified through the vertical density gradient and the gravitational field acting on the 

atmosphere, and is in this study defined as

N ' 2 = STjT ■ (8.1)

It is noted that the dimensionless parameters, Fv and n, defined in Eqns. (3.78) 

and (3.80), respectively, are related to the Brunt-Vaisala frequency. In fact, N* can be 

expressed as

r 2 „ 2

N *2 = J rT 2 ’ (8-2)

if the characteristic scales introduced in Section 3.4 are used.

Stratification effects represent additional simulation difficulties because of the char

acteristic time introduced via Brunt-Vaisala frequency or density induced oscillations. If 

the dimensionless Brunt-Vaisala frequency N  = slN*/To(=  is much greater than 

unity, buoyancy effects are significant and the characteristic vortex motion time (sq/To) 

is large compared with the time interval over which density induced oscillations occur. 

That means that if the buoyancy effects are strong, a smaller time scale, determined by the 

buoyancy driven oscillation, must be used as a characteristic time scale to resolve buoy

ancy waves. On the other hand, if N  <C 1, the vortex motions occur with little influence 

due to stratification. The complication arising from these two competing characteristic 

times has been examined in detail by Hirsh (1985). For more realistic physical problems, 

Fv is typically on the order of unity and the stratified density gradient (through n) is not 

large enough to result in large values of N,  precluding N  >  1 cases. Consequently, a 

limiting test case is when the two time scales are comparable (N  ~  1).
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Simulations were run with N  =  1, but the density effects were so large that major 

vortices of opposite sign were generated very rapidly and the flow quickly became 

unstable numerically. As a result, smaller stratification strengths were considered in 

this study. Based upon the study of Schilling (1992), stratification levels represented by 

N  > 0.59 are not likely under realistic conditions.

8.2 Results and Discussion

8.2.1 Laminar Cases

Experimental data were not available for comparison with the simulated vortex flows 

in a stably stratified ambient environment with ground effect. Stratification effects were 

thus tested for a circulation-based Reynolds number of 1000, at dimensionless Brunt- 

Vaisala frequencies (n/Fv) of N = 0.05 and N = 0.3. The predicted results for this laminar 

flow case are displayed in Figures 8.1 and 8.2, along with the unstratified reference case 

(N = 0). The vortex trajectories, including lateral and vertical position histories, along 

with circulation strength T(2x3) and kinetic energy E(2x3) histories are displayed.

While the laminar flow simulations (Re = 1000) are less realistic, in terms of 

aircraft vortices, they are less ambiguous in terms of influences of turbulence models 

and numerical uncertainties. Furthermore, because of the thicker viscous regions at 

lower Reynolds numbers, the physics can be displayed more clearly for low Reynolds 

number simulation cases. Consequently, vortex rebound and stratification effects, derived 

from fundamental phenomena, can be discussed with more certainty for the low Reynolds 

number flow cases. To that end, stratification effects in the vicinity of the ground plane 

have altered vortex trajectories rather remarkably, as shown in Figure 8.1.
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Referring to Figure 8.1, it can be seen that the vortex appears literally to try to “fall 

back down hill” in both stratified cases, even though the initial descent and rebound 

trajectories coincide nominally with the unstratified case. The mechanism which is 

responsible for that effect can best be explained by comparing the computational flow 

visualization results from the unstratified case (N = 0) with the stratified case (N = 0.3).

Comparison between the vorticity distributions at selected time levels for an un

stratified flow (Figure 7.3) with a corresponding stratified flow (Figure 8.3) shows some 

significant effects. Other than the secondary vortex induced near the ground which is 

outboard from the main vortex, the stratified case exhibits another secondary vortex of 

opposite sign evolving inboard with respect to the main vortex. The latter vortex induces 

downward motion on the main vortex, producing the “down hill” or unwinding effect.

While the additional opposite sign vorticity reduces the circulation (see Figure 8.2), 

even to negative values for the later time levels, stratification does not change the 

maximum vorticity in the vortex core region significantly. That means the total vorticity 

strength is not changed by stratification effects, only the circulation zones have been 

redistributed.

The influence of stratification on vortex trajectories is most easily understood by 

looking at the density distribution histories. Figure 8.4 shows density departure contours 

(from Eqn. 3.40, via p00, given in Eqn. 3.6) at three different times. There, it can be seen 

that relatively higher density fluid is pulled from the ground plane around the primary 

vortex, where it tends simultaneously to compress the vortex and cause more rapid vortex 

deceleration due to increased inertia. While the vortex doesn’t actually roll back toward 

the ground by reversing itself like a wheel, the density distributions show that the body
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forces actually push the primary vortex back toward the ground plane and the lateral 

density variations even push the vortex toward the symmetry plane. The inhibition of 

rebound and lateral propagation of the vortex pair with inclusion of stratification effects 

was also shown in Delisi et al. (1987), where they found the more extreme results that 

no rebound occurred.

The creation of an inboard secondary vortex can be explained by the density departure 

increment in the lateral direction near the same region. As shown in the modified vorticity 

transport equation (Eqn. 8.1), the positive sign x-direction derivatives of density departure 

create negative rates of change of vorticity. Near the vortex core, these derivatives are 

almost zero and thus the core vorticity does not change under the influence of stratification. 

Clearly, strong density stratification can confine and then destroy the structural features 

of trailing line vortices rapidly.

8.2.2 TUrbuIent Cases

We have studied the influence of stratification on a vortex pair when the vortex 

Reynolds number was 75,000, with a peak turbulent kinetic energy level, ko, of 0.32, 

which are the same Reynolds number and turbulence level as the turbulence case in 

the previous chapter. The comparison between the stratified laminar case and stratified 

turbulent case is shown in Figures 8.5 and 8.6 and the comparison between the non

stratified turbulent case and stratified turbulent case is shown in Figures 8.7 and 8.8.

The (symmetric) trajectory of the vortex for a Brunt-Vaisala frequency, N, of 0.3 

is shown in Figure 8.5, along with a laminar prediction for the same case. It is noted 

that, although both lateral and vertical motion of the turbulent vortex system is also
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confined by stratification effects (see Figure 8.7) just as it was in the laminar cases (see 

Figure 8.1), the turbulent lateral motion occurs at a somewhat faster velocity than the 

laminar case, while the vertical vortex rebound is inhibited by turbulence. That behavior 

is consistent with physical processes in which turbulent fluctuations reduce the kinematic 

communication between the vortex system and its surroundings.

Figure 8.6 shows a comparison between the laminar and turbulent vertical velocity 

component profile histories, taken along the axis of the primary vortex, for the same 

stratified flow case represented in Figure 8.5. At the earlier time levels (t=12 and t=24), 

the velocity profiles are almost the same as those shown in Figure 7.7 and therefore are 

not replotted in Figure 8.6. The somewhat stronger influence of secondary vortex flow 

structures at the later time levels, near the vertical symmetry plane and outside of the 

primary vortex region (x>5), are apparent in the turbulent velocity profiles. Comparing 

corresponding velocity profiles with those of the unstratified cases in Figure 7.7, it can be 

seen that the stronger opposite sign vorticity occurs due to stratification in both laminar 

and turbulent flows.

The influence of stratification alone is shown in Figure 8.7, which compares the 

vortex trajectories for a turbulent system (Re=75,000) without stratification (N=0) to the 

stratified case (N=0.3). The significant influence of stratification is apparent, with the 

same trend as in the laminar cases (see Figure 8.1).

Finally, the measures of the circulation and kinetic energy histories (r(2x3 ) and 

E(2x3), respectively) have been compared in the primary computational domain for the 

stratified and unstratified turbulent vortex cases (Figure 8.8). As has been shown in 

Figure 8.2 for a laminar vortex system, the circulation level changes significantly for a
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stratified system, when compared with the unstratified case. However, the kinetic energy 

histories remain almost the same. Although not shown here, the overall vorticity content 

varies only slightly between the two cases.
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Figure 8.1 Influence of stratification on predicted (a) Vortex core trajectories, (b) Lateral 

vortex core position histories, and (c) Vortex core elevation histories, at /?£= 1,000
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Figure 8.2 Influence of stratification on predicted variation of (a) 

Circulation T(2x3), (b) Kinetic energy E(2x3), with time for R e - 1,000
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(a) Vorticity contours at t=16 

Figure 8.3 Vorticity contours at (a) t=16, (b) t=50, with

N=0.3, /?e=1,000 (color map is the same as for Figure 7.3)
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(b) Vorticity contours at t=50
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(a) Density departure contours as t=16 

Figure 8.4 Density departure contours at (a)

t=16, (b) t=26, (c) t=50, with N=0.3, /?e=l,000
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(b) Density departure contours at t=26
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(c) Density departure contours at t=50
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Figure 8.5 Comparison between laminar and turbulent vortex behavior near 
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Figure 8.6 Vertical (or tangential) velocity profile histories in the plane 

of the primary vortex axis at different time steps for a stratified ambient 

environment (Re=75,000, N=0.3), (a) Laminar, (b) Turbulent (ko=0.32)
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Figure 8.7 Influence of stratification on turbulent vortex behavior (a) Vortex 

trajectories, (b) Lateral vortex position histories, and (c) Vortex elevation histories
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Figure 8.8 Influence of stratification on turbulent vortex strength 

(a) Localized circulation T(2x3) and (b) Kinetic energy E(2x3)
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Chapter 9 Crosswind Effects

A preliminary study has been conducted to predict crosswind effects on vortex wake 

behavior near the ground. At this stage of the study, only laminar cases have been 

investigated. Since the number of grid points must be doubled to compensate for the loss 

of symmetry under crosswind conditions, turbulent cases need significantly larger amounts 

of storage (40M run-time memory vs. 15M for the laminar cases) and computational 

time (24 CPU hours on a Cray Y-MP for 6000 time steps vs. 12 hours for the laminar 

cases), which is beyond current resources available for this preliminary study. Rather, 

the asymmetric behavior of a viscous vortex wake and the computational modifications 

required by the cross-flow effects have been addressed in this chapter. It is important to 

recognize that stratification effects can be included along with crosswind effects with only 

moderate additional computational effort, but the resources required for these turbulent 

cases are formidable.

The whole upper half plane must be considered for crosswind simulations instead 

of using just the first quadrant because of the asymmetry brought in by cross flows. 

Furthermore, a moving grid must be employed to capture the vortex pair propagating 

with cross flow convection. In the following, a uniformly moving grid, with constant 

translational speed, £/<», which is the assumed uniform velocity of the cross wind outside 

of the crosswind boundary layer, is used to capture the crosswind flow field. The 

uniformly moving grid gives proper resolution within the period of vortex sustenance
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for typical atmospheric crosswind profiles. However, in Section 9.1 it can be proved that 

the vorticity-streamfunction formulation, under any type of time dependent translational 

coordinate motion, with velocity components Uoo(t) and is not affected by the

motion. Rather, the crosswind effects are included in the boundary conditions, as 

explained in Section 9.2.

A reflection mapping of the 150x300 grid from the right-half of the computational 

domain, which was employed in Chapters 7 and 8, has been used to extend the compu

tational domain into the whole upper-half space, resulting in a 300x300 grid. The same 

computational scheme has been used as the one in the symmetric cases, removing the 

symmetry boundary conditions on the center line of the grid. All of the cases included 

in the present study have been tested at a circulation Reynolds number of Re=1,000.

9.1 Formulation in Moving Coordinates

Appending the variables in the space-fixed coordinate system with a subscript,/, the 

following expressions relate the moving coordinate derivatives to their fixed coordinate 

counterparts:
d d

(9.1)

d d
(9.2)d y j dy  ’

(9.3)

Hence, Eqn. (4.1) becomes

(9.4)
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By defining the velocities in the moving coordinate system as

U =  U f  — Uoo , (9.5)

and

v  =  V f  -  Voo , (9.6)

where u j  and v f  are the velocity components in the space-fixed coordinates, the same 

form of equation as Eqn. (3.76) is obtained. The streamfunction equation, Eqn. (3.43), 

is also retained with

It is noted that this transformation is not transparent for primitive variable formula

tions. The additional terms produced by the translational acceleration will appear in the 

momentum equations. A conservative form of the Navier-Stokes equations in primitive 

variables in a moving frame of reference can be found in Kandil and Chuang (1990). 

When the cross-products are taken to develop the vorticity transport equation, the trans

lational acceleration terms, which are irrotational, become zero. The detailed derivation 

for arbitrary coordinate translations is presented in Appendix A.

(9.7)

and

(9.8)
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9.2 C ross Flow Profiles and the Boundary Conditions

Crosswind profiles were approximated as boundary-layer velocity distributions over 

flat planes. In laminar cases, the von Karman integral representation was used (Schlicht- 

ing 1979):

Uoo is the uniform velocity outside the boundary layer.

The previous section has shown that crosswind effects do not appear directly in the 

equations, but the boundary conditions must be altered to introduce the effects. In a 

coordinate system which is moving with velocity Uoo, the boundary conditions can be 

derived as:

At x  =  ± 0 0 :

(9.9)

where uc is the crosswind speed, S is the thickness of the crosswind boundary-layer and

U — UJ Uoo —  Uc t / o o  > v  —  0 (9.10)

and then

_ ^ [ 2 _ 6 ( | ) + 4 ( | ) 3] ( y < 6 )
0 (y > 6) ,

(9.11)

Cy <
(y >  <5) •

(9.12)

At y = 0 0 :

u =  Uf — Uoo =  0 , v = 0 (9.13)
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and

C — 0 1 Ip — (9.14)

At y =  0:

u =  —Uoo , v =  0 , (9.15)

and

C =
d2ij)

' W y=o
, i[> = 0 (9.16)

Using a Taylor series expansion,

/ I  -  / I _L ^r ’l2/=Aj/ — '0|y=O +  q
aA ? / +  -r -2  

,=0 ^2/ 9=0

and since

dy
— U — U qo ■>

9=0

the vorticity boundary condition on the ground plane can be written as:

(9.18)

C — , \2 1 y=&y U o o A y )  ■
(A 2/)

(9.19)

Thus, the crosswind effects are included in the boundary conditions, Eqns. (9.11), (9.12), 

(9.14) and (9.19).
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9.3 Results and Discussion

Trajectories of both the left and right hand vortices are shown in Figure 9.1, for 

/?e=l,000, 5=10, E/oo=0.1 (blowing from left to right in x-direction). That figure shows 

that the left (upstream) vortex motion is confined by crosswind effects. Its lateral shift, 

due to ground effect, is compensated by advecting with the cross wind so that the left 

vortex appears to have little lateral motion (and thus would stay above the same runway). 

The advecting effects translate the lateral motion of the right (downstream) vortex to 

a (hypothetical) parallel runway. In addition, the crosswind causes the right vortex to 

rebound higher than the left vortex. In Figure 9.2(b), it is noted that before vortex 

rebound happens, the two vortices have the same vertical descent history. When vortex 

rebound starts, the right vortex elevation history begins to deviate from that of the left 

vortex. Since in Chapter 7, it was shown that vortex rebound was caused by ground 

boundary layer separation, from Figure 9.2(b), it can be speculated that the crosswind 

influences ground boundary separation and thus alters the vortex rebound behavior of 

the two vortices.

The counterclockwise-vortex-system tilting behavior displayed, in Figure 9.1, can be 

explained using vorticity contours (Figure 9.3). In Figure 9.3(a), the induced boundary 

layer under the left (upstream) vortex is thinned by the cross wind because this part 

of the boundary layer has opposite sign vorticity from the crosswind boundary layer. 

Simultaneously, the boundary layer under the right vortex is thickened because it has the 

same sign vorticity as the cross wind. Hence, at later time levels, shown in Figure 9.3(b), 

the secondary vortex induced by the right vortex is stronger than that by the left vortex 

and thus the right vortex rebounds more than the left one.
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It is noted that this type of vortex tilting (the downstream vortex rebounding higher 

than the upstream vortex) only occurs when the crosswind shear is moderate or weak at 

the altitude of the vortex cores. When a stronger wind shear, with negative vorticity, is 

superimposed on the vortex pair, the upstream vortex (with the same sign vorticity as the 

crosswind) may have a higher elevation than the downstream vortex, due to the shearing 

rotation of the crosswind itself. Then the vortex system will tilt in the opposite sense. 

How the vortex system is going to tilt is case dependent. It depends on whether the 

crosswind effects due to the ground boundary layer separation are important or whether 

the wind shear effects rotating the plane of the vortex core dominate. This is a topic for 

future research. The work shown here addresses only the weak wind shear effects which 

can be found under some typical atmospheric conditions.

The influence of stratification on vortex trajectories with cross wind is shown in 

Figures 9.4 and 9.5, with a non-dimensional Brunt-Vaisala frequency of N=0.3 (and 

/?e=l,000, £=10, Uoo=0.1). Comparing those trajectories with Figures 9.1 and 9.2, 

it can be seen that the vortex falling back (toward the ground plane after rebound) 

phenomenon, caused by the body force effects, as discussed in the previous chapter, 

is present in this case, too. The secondary vorticity field, Figure 9.6, created by the 

density departure depicted in Figure 9.7, causes this downward motion of the vortex pair. 

The ground boundary layer under the right (downstream) vortex is still thickened by the 

crosswind effects in this case and thus the vortex pair tilts in the same way as the case 

without stratification effects. These results show that crosswind and stratification can 

have significant effects on the vortex wake system simultaneously.
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Figure 9.2 Comparison of the influence of crosswind effects on (a) Lateral 

vortex position histories, and (b) Elevation histories, /?e=1,000, 5=10, Uoo=0.1
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(a) Vorticity contours as t=12 

Figure 9.3 Color contours of vorticity field at (a) t=12, (b) t=24, /?e=l,000,6=10, Uoq=0.1
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(b) Vorticity contours as t=24
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Figure 9.4 Influence of stratification on vortex pair trajectories 

under crosswind effects at /?e=l,000, 5=10, £^=0.1
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Figure 9.5 Comparison of influence of stratification on (a) lateral vortex position histories,

(b) elevation histories, between left and right vortex, at /?e=l,000, 5=10, U0o=0.1
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Figure 9.6 Color contours of vorticity field with stratification

effects at t=50 , N=0.3, /?e=1,000, 6=10, Uoo=0.1
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Figure 9.7 Color contours of density departure

field at t=50 , N=0.3, /?e=1,000, 5=10, C/oo=0.1
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Chapter 10 Conclusions

This study has developed a two-dimensional, unsteady viscous numerical simulation 

of a vortex pair, which can include ground-plane interactions, stratification, crosswind and 

turbulence effects. The vorticity-streamfunction formulation was found to be an effective 

method, permitting the accommodation of Reynolds stress, crosswind and buoyancy 

effects in the vortex wake predictions. While accurate experimental vortex/ground-plane 

interaction data are very limited, excellent agreement between the laminar predictions 

from this study and corresponding experimental results of Liu and Srnsky (1990) were 

obtained.

Proper dimensional arguments were developed which justify the use of Boussinesq 

approximations for modeling stratification effects near the ground-plane boundary layer. 

A Reynolds stress transport model was found necessary to simulate turbulent wake 

vortices because the various eddy-viscosity turbulent approximations all overpredicted 

viscous dissipation and were unable to handle vortex core relaminarization. A two- 

parameter asymptotic series expansion technique was developed which could model the 

initial evolution of the unsteady ground-plane boundary layer accurately for both laminar 

and turbulent vortices (since the turbulent system must evolve through an initially laminar 

boundary-layer development). The fixed grid currently used has produced acceptable 

numerical results.
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The vortex rebound near the ground plane was found to be caused by ground 

boundary-layer separation, at least within the circulation Reynolds numbers of this study. 

The influence of Reynolds number has shown that lower circulation Reynolds number 

cases, which obviously have stronger viscous effects in the flow field, produce thicker 

ground boundary layers. Both the lateral and vertical vortex rebound motion, as well as 

its strength, are reduced more rapidly than for higher Reynolds number cases.

Density/temperature stratification can have very pronounced effects on predicted 

vortex trajectories at high Brunt-Vaisala frequencies. The effects can confine both the 

lateral and vertical motion of the vortex system after its rebound and then destroy the 

primary vortices. Therefore, at these admittedly high stratification levels, it has been 

shown that the organized primary vortex hazard can be alleviated by stratification effects 

within the immediate vicinity of airport runways.

Turbulent vortex predictions have shown that turbulence influences vortex trajectories, 

particularly the vertical rebound altitude, more strongly than it influences the rate of 

change in vortex strength. This trend is shown in both stratified and unstratified turbulent 

vortex cases. The influence of stratification has a similar effect on the primary vortex, 

as shown in the laminar cases. Furthermore, the way in which the predicted turbulent 

kinetic energy distributions are shifted via the Reynolds stress transport model is more 

consistent with physical intuition than the predictions using less complete models.

Crosswind effects cause the upstream primary vortex to rebound less strongly than 

the downstream vortex. The ground boundary-layer thickness beneath the upstream 

vortex is reduced while that beneath the downstream vortex is increased. The advection 

by crosswind confines the lateral motion of the upstream vortex and causes the other
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vortex to drift further downstream. Strong stratification still has significant effects on 

the vortex wake when weak cross flows are present.

It is noted that while the infinite physical domain in the vertical direction gives less 

uncertainty on the boundary conditions, it restricts the moving grid speed in crosswind 

cases using the vorticity-streamfunction formulation. Since the vertical motion of the 

vortex system near the ground is affected only within several wing spans, a finite domain 

approximation should be tested for the vertical bounds of the physical domain. Effects 

of strong shear cross flows could then be resolved properly if a modified moving grid 

was used.

While low Reynolds number (on the order of 102) flow cases should also be tested 

for the purpose of studying fundamental mechanisms for vortex/ground boundary-layer 

interaction, rather than for aircraft wake vortex predictions, high Reynolds number (on 

the order of 107) vortex wake behavior should be predicted. The Reynolds numbers that 

can be resolved using the current grid and computer resources remain approximately two 

orders of magnitude lower than those anticipated for realistic flight conditions associated 

with large commercial aircraft. Therefore, considerable effort should be devoted to 

defining the simulation limits for this numerical approach. The grid resolution problem 

for high Reynolds numbers should be considered and the possibility of using adaptive 

grid should be investigated in future research. Furthermore, the three dimensional effects 

of axial velocity deficit or excess must be addressed.

It is difficult to quantify vortex wake hazard. Differences between wake vortex 

safety criteria have been found (Critchley, 1991). No suitable theoretical description 

of the hazard is yet available. The ultimate goal of future research is to provide more
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rational vortex hazard prediction capabilities than those which have been used previously 

for airports.
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Appendix A: Development of Two- 
Dimensional Equations of Motion in Unsteady 
Reference of Frames

The dimensionless two-dimensional momentum equations in primitive variables are

and

in space fixed coordinates.

With the transformation from the space fixed coordinates to non-inertia, translational 

moving coordinates with moving velocity components U ^ t )  and VJ»(f):

Q d
d x f  dx '

d d

(A.3)

dyf  dy  ’
(A.4)

dt f ~ d t  Uoo{t)dx Voo{t)^ '  (A>5)

these equations become

+  (« / - +  ( . /  -  V . ) $ £  =  +  J - V * . , , (A.6)
d u f
dt ' v“/  dx ' ywj ’°°J dy dx  ' Re
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respectively. Since the thermodynamic pressure does not change with the motion of 

coordinates, that is,

P =  Pf  (A.8)

and the velocity components in the moving coordinates have the relation with these in 

the space fixed coordinates as

u =  u f  — Uoo and v = V f  — , (A.9)

Eqns. (A.6) and (A.7) can be rewritten as

du dUoo du du dp 1 2 , A inN
m+‘dr + “S  + ”a? = "& + i;v “’ (A10)

and

=  +  ca.11)dt dt dx  dy dy Re

In Eqns. (A. 10) and (A. 11), it can be seen that after the transformation, Eqns. (A.3)-(A.5), 

extra terms have been produced, representing the accelerations of the moving frames.

Then, if the cross product is applied to Eqns. (A.10) and (A.11), i.e., J j(A .l l)  -  

J^(A.IO), the extra acceleration terms will disappear and the following vorticity transport 

equation can be obtained:

§  +  +  v Ty  =  7 £ v 2 f  ’ (A'12)

where
. dv du

C =  T x - T y  ■ (A13>
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In deriving Eqn. (A. 12), the solenoidal relation of the velocity field in the moving 

coordinates has been used. Mathematically, it can be observed from Eqn. (A.9) that the 

spatial derivatives in the transformed coordinates are the same in the fixed coordinates and 

thus the solenoidal relation does not change. Physically, the incompressibility of the flow 

field cannot be changed by the moving frame of reference. Hence, the streamfunction 

equation, which is based on the solenoidal relation of the velocity field, is the same as 

Eqn. (3.43). Hence, the transparency the vorticity-streamfunction formulation in two- 

dimensional flow has been proved from above procedures.

This case can be considered as a special case of Speziale’s (1986) vorticity-velocity 

formulation in the non-inertia frame of reference.
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