Old Dominion University

ODU Digital Commons

Mechanical & Aerospace Engineering Theses &

Dissertations Mechanical & Aerospace Engineering

Spring 1994

Unsteady Flow Simulations About Moving Boundary
Configurations Using Dynamic Domain Decomposition
Techniques

Guan-Wei Yen
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds

6‘ Part of the Applied Mechanics Commons, Fluid Dynamics Commons, and the Structures and

Materials Commons

Recommended Citation

Yen, Guan-Wei. "Unsteady Flow Simulations About Moving Boundary Configurations Using Dynamic
Domain Decomposition Techniques" (1994). Doctor of Philosophy (PhD), dissertation, Mechanical &
Aerospace Engineering, Old Dominion University, DOI: 10.25777/zfx4-8p98
https://digitalcommons.odu.edu/mae_etds/296

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU
Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations
by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.


https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/295?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/224?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/224?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/296?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

UNSTEADY FLOW SIMULATIONS ABOUT
MOVING BOUNDARY CONFIGURATIONS USING
DYNAMIC DOMAIN DECOMPOSITION TECHNIQUES

by

Guan-Wei Yen

B.E., June 1984, Aeronautical Engineering Department
National Cheng-Kung University, Taiwan, R.O.C.

M.S. August 1989, Mechanical Engineering Department
Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY
AEROSPACE ENGINEERING
OLD DOMINION UNIVERSITY

May 1994
Approved by
Oktay Baysal (Director) Colin P. Britcher
"David S. Miller Osama A. Kandil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

Guan-Wei Yen
Old Dominion University, 1994
Director: Dr. Oktay Baysal

A computational method is developed to solve the coupled governing equations of
an unsteady flowfield and those of rigid-body dynamics in six degrees-of-freedom (6-
DOF). This method is capable of simulating the unsteady flowfields around multiple
component configurations with at least one of the components in relative motion with
respect to the others. Two of the important phenomena that such analyses can help us to
understand are the unsteady aerodynamic interference and the boundary-induced
component of such a flowfield. By hybridizing two dynamic domain decomposition |
techniques, the grid generation task is simplified, the computer memory requirement is
reduced, and the governing equations of the rigid-body dynamics are simplified with certain
assumptions. Three dimensional, unsteady Navier-Stokes equations are solved on each of
the subdomains by a fully-vectorized, finite-volume, upwind-biased, and approximately-
factored method. These equations are solved on the composite meshes of hybrid
subdomain grids that can move with respect to each other. Hence, the present method
combines the advantages of an efficient, geometrically conservative, minimally and
automatically dissipative algorithm with the advantages and flexibility of the domain
decomposition techniques. Several measures that reduce the numerical error are studied and
compared with the exact solution of a moving normal shock in a tube. This solution

compares very well with the analytic solution of the isentropic equations. It is concluded,
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that as a miminum measure, the connectivity of nonconservative overlapped scheme needs to
be second-order accurate for spatial and temporal discretizations, as well as for the moving
subdomain interpolations. Furthermore, the CFL numbers should be restricted to below
unity, if affordable, for flows with high flow gradients. The method is further scrutinized by
simulating the flow past a sinusoidally pitching airfoil, and the flow past a sinusoidally
pitching and plunging airfoil. The results of the former case are successfully compared
with the experimental data. The final two-dimensional case is the separation of a store from
an airfoil along a prescribed path. As the first three dimensional case, the flowfield past an
oscillating cylinder near a vertical wall is simulated. Prior to coupling it with the flowfield
equations, the 6-DOF trajectory method is validated by successfully comparing the path it
predicts with the one used in a captive trajectory testing. Finally, a rigid-body dynamics
method is used to predict the aerodynamically determined trajectory of a store dropped from
its initial position under a wing. The results of the present investigation contribute to the
understanding of the unsteady aerodynamic interference and the boundary-induced
component of such a flowfield. However, its main contribution is the newly proposed

computational method for flows involving relative boundary motions.
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Chapter 1

INTRODUCTION

Computational fluid dynamics (CFD) plays an increasingly important role in
aerospace applications, because the advances in computer hardware and software have
made it possible to solve complex flow problems using CFD. The objective of CFD is to
solve the system of differential equations that govern the flow field with discrete and/or
integral methods. Hence, efficient solvers which are capable of solving the governing
equations of fluid motion by integral, finite-difference, finite-volume and finite-element

techniques, have evolved.

An essential task of CFD algorithms is the construction of an adequate grid {mesh)
on which the governing equations can be solved in a finite form. A major difficulty in CFD
for a complex three-dimensional configuration is how to generate an appropriate grid. The
term complex configuration can be defined as any physical domain in which there are single
or multiple bodies of nonsmooth, joint or disjoint geometries. A few examples of complex
flow domains are the flow around a whole aircraft, a wing and a fuselage, a wing and a
nacelle, a store and a cavity, a complete stage of a turbomachine, an external-internal
nozzle, or a store inside/outside a cavity. Due to the complexities of these configurations,
constructing a single body fitted grid is either a difficult task or may result in a skewed
mesh, which in turn results in an erroneous solution. Body-.fitted and boundary
confirming curvilinear grids are desirable, because of the advantage of implementing the
surface boundary conditions accurately. Also, a proper surface oriented coordinate system

enables coordinate-related approximations to the equations of motions for arbitrary complex
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geometries. Hence, it becomes increasingly difficult to locally control the orthogonality,
volume variations, cell aspect ratios, and other grid measures, which affect the accuracy of
the solution as the geometric complexity increases. Other difficulties may arise when
clustering the grids for the regions where the flow variables and their gradients change
rapidly, or when one of the subcomponent has relative motion with respect to other
subcomponents. Several different approaches have been used by researchers to reduce this
complexity and ease the grid generation efforts: for example, dynamic domain
decomposition, unstructured grids, Lagrangian coordinate description, arbitrary

Lagrangian-Eulerian description, and grid adaptation.

1.1 Literature Survey

The following section lists some of the pioneering studies on overlapped and
degenerate zonal methods and their applications to some flow problems. Also, the
computational investigations on unsteady flows and moving boundaries are reviewed in
section 1.1.2. Different frame of reference descriptions, that is, Lagrangian, Eulerian, and

Arbitrary Lagrangian-Eulerian frames, will also be reviewed in section 1.1.2.

1.1.1 Domain Decomposition Techniques

There are three basic types of domain decomposition methods: multiblock, zonal (or
patched), and overlapped methods. A fourth method, the degenerate zonal method, can be
derived to have partially the features of the multiblock and partially those of zonal methods.
However, the current research is primarily focused on the overlapping method with some

additional effort to incorporate the degenerate zonal method.
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The overlapping method entails dividing the flow domain into regions that overlap
or share common physical and computational space [1]. Within the overlap region, the
grids communicate through data transferance by an interpolation procedure. This method
allows the subdomains to be non-disjoint so that one mesh may be embedded completely or
partially within another. This procedure permits each subdomain to be meshed
independently with no requirements of continuous grid lines across boundaries. Because
each subdomain grid is independent of another, the grid generation task is greatly reduced
for complicated flow regions. Each subdomain mesh can be created using different grid
generation techniques suitable for that particular domain. This is especially beneficial for

subdomains that require high grid densities.

There are several drawbacks of using the overlapped scheme [1]. However, with
careful treatment, most of the problems can be partially or completely alleviated. The
disadvantages are the following: (i) the technique requires an overlapped region between
subdomains that may not be always possible, as in the case of extremely small gap between
two solid surface, (ii) the accuracy of boundary data transferance depends on the
interpolation procedure, whether it is conservative or nonconservative, and (iii) the
accuracy and convergence speed of the solution indirectly depend on the degree of

overlapping of the grids relative to the size of the subdomains.

The degenerate zonal method is a relatively new technique, which is derived from
the convergence accelerating multigrid method. It has the simplicity and suitability in
refining the grid wherever necessary. It is required that only every n-h line normal to the
grid interface is contiguous. If n=2, then the line that is not contiguous bisects the distance
between the neighboring two contiguous lines. This concept is a natural extension from the
generation of coarse-fine grids necessary in the multigrid convergence acceleration
methods. The intergrid communication is very simple for this method. Details of these

methods will be discussed in Chapter 3.3.
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One of the earlier applications of grid overlapping methods was presented by Atta
[2]. He developed a method for constructing a two-dimensional grid system for a finite
difference method to solve the full potential equations and obtained a solution for transonic
flow about a configuration with multiple components. The computational model was a two
component configuration that consisted of an airfoil embedded in rectangular boundaries.
The results showed that the accuracy and convergence speed of an implicit approximate
factorization scheme depended on the extent of the overlap region and the size of each
subdomain. This technique was later extended to three-dimensional flows by Atta and
Vadyak [3]. Also, the method was applied to a wing-pylon-nacelle configuration. The
transfer of information between different subdomains within the overlap regions was done

by a trivariate interpolation polyromial based on a linear Taylor series expansion.

Steger et al. [4] developed a grid overlapping technique called the "CHIMERA"
scheme. This early study was restricted to the finite difference solution of two-
dimensional, linearized flows. Later, this method was extended for three-dimensional
Euler and Navier-Stokes [5-6] solution of complex flows. This scheme involves the
automatic connection of multiple, overlaid grids, and the use of different solution
procedures for different subdomain grids. In this scheme, a global grid covers the entire
flow domain, and one or more minor grid is then overlaid on the global grid to solve the
secondary features of the configuration, such as flaps, nacelles, or stores. The minor grids
can be fully or partially overlapped without requiring the grid that is subsequently excluded
from the flow solution in the global grid. The information transfers between the different
subdomains are communicated through trilinear interpolation within the overlap regions.
The overlapping scheme has been proven to be very flexible and successful on various
complex configurations. However, it was shown that some errors may arise when the high

flow gradient passes through the grid boundaries [7].
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Suhs [8] used the CHIMERA scheme to attack the three-dimensional cavity flow at
subsonic and supersonic speed. Despite the inappropriateness of the thin layer
approximation of Navier-Stokes equations for the unsteady cavity flow, this study further

exemplifies the versatility of the CHIMERA scheme for complex flow probiems.

Chesshire and Henshaw [9-11] have developed a technique for the generation of
curvilinear composite overlapped grids and the numerical solution of partial differential
equations on them. Continuity conditions through interpolations are imposed at the
overlapped boundaries. This code, CMPGRD, can generate composite two and three
dimensional grids with any number of component grids. These composite grids can have
second or higher order of interpolation accuracy; therefore, the overall accuracy can be
made about the same order as the discretization error. However, the higher order
interpolations require a larger overlapped region between subdomains and considerably
more calculations. The CMPGRD program is capable of automnatically generating the

sequence of coarser grids for a multigrid algorithm flow solver.

Baysal et al. [12-14] incorporated the multigrid scheme with the CHIMERA
method, and accommodated these modifications to a finite-volume flow solver. A steady-
state cylinder was placed next to a flat plate, with the overlapped and upwind, finite-volume
flow solver and the interference flowfield has been studied. The details of the modification
of CHIMERA and application cases are given in [1]. Then, the overlapped scheme has
been incorporated with other domain decomposition techniques, namely, the multiblock
and zonal methods, to optimize the strength of the hybrid domain decomposition methods
[15-21]). The computational simulations of a missile with fins and a sting, either inside or
outside a cavity, have been performed. The comparison of computational and experimental

results showed good agreement. The details of these application cases and modified

algorithms are given in [22].
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Krist, et al. [23] extended the multigrid method to refine the grids in certain higher
flow gradient regions. This technique is called the "degenerate zonal method" and it was
demonstrated for a delta wing flowfield. The shock that passed through the degenerate
zonal region had much better resolution than the portion outside of that region. However,
this method was only performed for static cases, because the residual number interpolation

between different grid levels were restricted to steady state solutions.

The overlapping method, which gives the most freedom for grid generation, uses
the nonconservative intergrid communication. Therefore, the degree of conservation for
the overlapped grids will be one of the topics to be investigated. A preliminary study was
done by Berger [24] on a general procedure, for deriving conservative interface conditions
that give weak solutions to the differential equation, if they converge on one and two
dimensional overlapped grids. The conservative interface condition can be derived using a
finite volume approach and balancing the spatial flux at the interface. An alternative to
conceiving the spatial flux across overlapped boundaries is to conserve the time flux, Q, of
the cell center at the boundaries. The time-flux conservation approach has been found to
maintain the conservative properties at the boundaries within truncation errors [25]. The
conservation of time flux is accomplished by interpolation to the cell centers of one grid
assuming a weighted variation of time flux with the cells of the other grids. However, to
find the cell volume weighted variations for three dimensional grids is a geometrically

complicated procedure.

1.2.2 Unsteady Problems with Moving Boundaries

Several approaches have successfully been applied for the moving boundary
problems. These can be classified as based on frame of reference (such as Eulerian and

Lagrangian frame of reference) and type of grid (such as structured and unstructured grid).
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The unstructured grid method [26] has successfully been employed in certain static
and unsteady cases. The unstructured grid approach discretizes the flowfield by triangular
or tetrahedral elements with nodes placed at the vertices. Discretizing the domain by such
elements gives flexibility in grid generation about complex geometries. Also, the
unstructured grid method is primarily used with finite-element or finite volume methods
and has made remarkable progress in the last decade. This method is one of the most
promising approaches that can resolve the problem of unsteady flowfield with complex
geometries. However, there are two disadvantages for the unstructured grids. First, this
method requires an extra amount of computer memory for the cell connectivity information.
Secondly, it is a difficult task to generate unstructured grids in the proximity of a solid
surface, where for example, clustering is used for viscous solutions. Also, for CFD
applications, the finite-difference and finite-volume methods for structured grids are more
mature and more efficient when compared to the finite-element method. Hence, at least for
the present time, the unstructured approach may become less desirable for the CFD

practitioners.

Lagrangian methods [27] have also been successfully demonstrated in certain cases.
These methods are characterized by a coordinate system that moves with the fluid. Hence,
each computational cell always contains the same fluid elements. These methods have
special value for moving boundary problems for three reasons: (1) they permit material
interfaces to be specially delineated and precisely followed; (2) they allow interface
boundary conditions to be easily applied; (3) the detailed structures embedded in the flow
can be zoned more finely than adjacent coarser structures [28]. These methods are not
widely used, perhaps, because the governing equations always form an initial value
problem. The two main problems with the Lagrangian methods are mesh tangling and
numerical inaccuracy due to highly irregular meshes. The first problem arises because a
mesh of fixed topology quickly becomes singular in flows undergoing large distortions.

With the help of rezoning and reconnection methods, both methods of reconstructing the
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mesh involve reapportioning the conservative variables among the affected computational
cells, and this represents a reappearance of the undesired convective flux characteristic of

Eulerian methods.

Eulerian methods [12] are characterized by a coordinate system that is either
stationary in the fixed reference frame or is moving in a certain prescribed manner to
accommodate the continually changing shape of the solution domain. The fluid travels
between different computational cells even when the grid moves, because grid movements
are not related to the motion of the fluid. The main advantage of this approach in contrast
to the Lagrangian methods, is that the fluid can undergo arbitrarily large distortions without
loss of accuracy. Also, these methods are much easier to formulate. Consequently, most
of the current CFD researchers are using the Eulerian methods to describe the flow motion.
However, the Eulerian approach has several negative numerical effects on the solution
accuracy [29]; (1) fluid particles are free to cross the control volume (or grid line),
therefore, convecting with them numerical mixing and diffusion across the cell interface;
(2) the numerical diffusion is only associated with the error resulting from approximating
the convective terms; (3) a contact/slip or shear layer is smeared increasingly with

corresponding increase time and distance.

In the Eulerian methods, the primitive or conserved variables are represented by
their global fixed coordinates; however, the same variables that are written in the
Lagrangian frame are represented by their local coordinates. As a result, density and
pressure regardless of the subdomain grid on which they are computed are always
represented by their unique and global reference coordinates, and the velocity vectors can
easily be transferred between the global frame and the individual local frames through
simple formulas (Chapters 2.3 and 2.5). Therefore, the data transfer between different
component grids with the Eulerian description is straightforward, and the local frames can

be chosen to be either inertial or non-inertial (dynamic). In the Lagrangian method, the data
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transfer process needs the information on the local grid speed to account for the relative
velocity of different components. Hence, the Eulerian methods are suitable for the dynamic

domain decomposition techniques (D3T), and can be easily applied to dynamic problems.

Dougherty et al. [30] performed computations for unsteady transonic flows, where
two objects were moved along prescribed paths. A two-dimensional, inviscid, unsteady
code was used to study the CHIMERA scheme for an application to this type of problem.
In this study, only the minor mesh moves with respect to the major global mesh. The
results indicate that allowing one mesh to move with respect to another does not adversely
affect the time accuracy of an unsteady flow. The results of the moving mesh scenario
show the importance of overlapped/embedded schemes. Dougherty and Kuan [31] later
extended this method to the three-dimensional analysis of an elliptic body near a flat plate,
where this elliptic body was moving along prescribed paths: a simple downward

translation, a pitch up, and a rotation.

Meakin and Suhs [32] extended the CHIMERA scheme for time accurate simulation
of multiple aerodynamic bodies with relative motion. This method featured the unsteady
CHIMERA technique and an implicit, approximately factored, finite difference scheme for
the time dependent, thin-layer Navier-Stokes equations. Also, a concept of "smart search”
has been introduced into the code [33] which can save CPU time for overlapped
reconnections. Several configurations were considered as test cases and two
configurations were used to demonstrate the modified method. The first case was a store
released from its original position below a wing. The second case was the separation of an
integrated space shuttle from its solid rocket booster. Initially, converged steady state
solutions for both configurations were obtained and used as the initial conditions for the
unsteady computations. In both cases, the released objects were moved along prescribed

paths. However, Meakin has further improved the method to complex configurations with
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aerodynamically determined motions [34-35]; namely, a finned store that separated from a

wing and pylon, and the tilt rotor motion of a V-22 aircraft configuration.

Another promising method for the unsteady flow problems with moving boundaries
is the unstructured grid approach. For example, Batina [26] resolved a moving airfoil with
unstructured dynamic meshes; Singh et al. [36] simulated the flowfield of a store separating
from a wing. However, because of the deformation of the dynamic meshes incurred in the
moving procedure, geometry conservation becomes a prerequisite in this approach, which
in turn requises extra computer time and memory. The Geometry Conservation Law
(GCL) was proposed by Thomas and Lombard [37] in 1978. Their contention was, if the
grid was changing, then a constraint on the way the metrics were differenced had to be
satisfied to prevent additional errors from being introduced into the solution. To improve
the method, a differential GCL was formulated that governs the spatial volume element
under an arbitrary mapping. The GCL was solved numerically along with the flow
conservation laws using conservative difference operators. Also, Vinokur [38] and
Obayashi [39] have further addressed this topic with the example that is described for non-

inertial frames of reference.

Tamura and Fujii [40] applied the conservation law to the discretization methods not

only in space but also in time. Comparisons of non-conservative methods, GCL method,

and GCL with time conservation modification, will be further explained in Section 2.5.

The present investigation is focused on the Eulerian frames of reference. Hence,
only a few example references with Lagrangian approaches will be highlighted in this
section. The Lagrangian formulation of the governing equations can be found in [27]. To
reduce the distortion of the mesh, it is necessary to introduce a new mesh and to transfer
information from the old mesh to the new one. The implementation of the continuous

rezoning process is referred to as Arbitrary-Lagrangian-Eulerian (ALE) method [41]. This
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method has been successfully applied to a two-dimensional store separation from a cavity

by Lohner [42].

Kandil et al. [43-44] derived the Euler and Navier-Stokes equations in relative
frame of reference. The new governing equations preserved the conservation form.
During the time-accurate stepping, the "Navier-displacement" equations were used to solve
the grid deformation sequentially. If only rigid-body motions are assumed to occur, the
proposed moving-frame of reference formulation eliminates the need for computing the grid
motion at each time step. This method can also be used for a single object with small

deformations (e.g. delta wing deformation) with accurate and efficient results.

Liou [29] proposed a modified version of Lagrangian description called the
"extended Lagrangian method." This method avoids the inaccuracy incurred due to
geometry and variable interpolations used by the previous Lagrangian methods. It
automatically adapts to flow features without resorting to clustering, thereby maintaining

rather uniform grid spacing throughout and for large time steps.

1.2 Background and Rationale

The present research focuses on the study of unsteady flowfields that involve
multiple component configurations with at least one of the components in relative motion
with respect to the others. Two of the important phenomena that such analyses can help to
understand are the unsteady aerodynamic interference and the boundary induced component
of the flowfield. Even though the majority of computational flow analyses performed to
this date have involved steady flows about stationary bodies, most of the physically
realistic flow problems are unsteady in characteristic. The unsteady flow physics, even
without the multi-body interference, is currently a topic of active research since it is not

understood as well as for steady flows. Also, the generated unsteady flowfield often
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behaves significantly differently due to the aerodynamic interference of such multiple
bodies. Typical examples of this unsteady flow include the periodic motion or random
vibration of aircraft wings, rotor/stator interaction in turbomachinery, relative motions of
propeller blades or moving flaps with respect to a complete aircraft, store separation from

aircraft, and the solid rocket booster separation from the space shuttle.

To simplify the analysis, the "steady flow past a stationary object" assumption is
often used in engineering calculations. Depending on the particular problem in question,
this may be a reasonable approach. However, it becomes not only difficult to choose the
assumed freestream flow velocity but it also renders unacceptable results, if the problem in
question involves a multicomponent configuration with at least one of the components

engaged in a motion different from the other components.

In setting up a problem of this ciass, there are three levels of assumptions one can

make for the freestream and solid-surface interaction:

(i) All components are engaged in the same rigid-body motion and by assigning the velocity
of this motion to the freestream one can assume all the objects to be stationary. Relative
motions of the components are assumed instantaneously frozen; i.e., this becomes an
animation if a series of these analyses is performed. Such computations provide insight
into only the static component of the inherent acrodynamic interference, in addition to other

underlying physical phenomena,

(i) All components are engaged in the same rigid-body motion, but this time the complete
computational grid wrapped around the configuration is assigned this motion during the
analyses. This requires unsteady and dynamic-grid calculations. The motion-induced flow
component can be captured with such calculations provided that the dominant contribution

is not due to the relative motion of a component.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12



(iif) Each component is assigned its own rigid-body motion and unsteady computations are
performed for these dynamic objects. However, the rigid-body motion of each component
is either known or assumed to be known so that they can be prescribed as given for the
computations. Such calculations require remeshing the computational domain as the
components move relative to each other or assigning each component its own grid, which

move with the component and communicate with the other component grids.

The analysis will become closer to the physics of the problem yet more complex as
the level of these assumptions is increased. Also, each level has its own apparent domain of
applicability. For the class of problems, where the rigid-body motion of each component is
neither known a priori nor can easily be guessed, but is determined by the generated
instantaneous flowfield, the aforementioned levels of assumptions may be rather
compromising. Necessity for a higher level of simulations has been recognized and

addressed by other investigations. This is the impetus of the present research effort.

The present investigation is focused on the dynamic domain decomposition
techniques, abbreviated herein as D3T. The three principle elements of D3T are: (i)
Division of the flow region into simpler subdomains within which grids are independently
or semi-independently generated using existing grid generation schemes. Hence, different
levels of governing equations or different solution methods can be used for different
subdomains. (ii) The subdivision of the subdomain's motion. (iii) D3T is a domain block-
processing scheme where only the data corresponding to particular subdomain is required
to reside in the core memory of the computer at one particular time. Thus, at least
theoretically, the block-processing technique permits the use of unlimited global grid sizes

and lends itself very efficiently to parallel processing.

With the assistance of D3T, the local origin of each subdomain can be chosen
arbitrarily and independently. Hence, the equations of rigid-body motion and moments of

inertia may be much simplified with a careful choice of the local origins. However, the
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14
most critical element of the D3T is the communication between different subdomains. The

communication or data transferance between subdomain boundaries is accomplished by

some type of interpolation method of either conservative or nonconservative nature.

1.3 Present Work

The objectives of the present investigation can be grouped into two categories, as
those for the computational methodology and those for the unsteady aerodynamics. These
objectives are met by modifying an existing CFD algorithm [1, 22, 45], which is capable of
obtaining unsteady solutions for flows around stationary multiple bodies. These objectives

are:

1. Developing dynamic domain decomposition techniques to decompose the flow

domain into simpler subdomains from existing methods for stationary objects [1].

2. Modifying an existing higher order accurate, implicit, approximately-factored,
upwind-biased, finite-volume method [45] which has previously been extended for

static domain decomposition techniques [22] to accommodate these dynamic domain

decomposition techniques.

3. Coupling a rigid-body-dynamics methodology to the present CFD method in order to
determine the trajectory of a flying or a falling rigid body.

4. Studying some of the numerical errors encountered in solving unsteady flows via
demonstrative problems: the flows past airfoils engaged in prescribed motions, quasi-
two-dimensional shock tube problems, and a 2-D store separating from an airfoil

along a prescribed path.
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5. Investigating the unsteady flowfield of interfering objects in motion through the

demonstrative example of a secant-ogive-cylinder oscillating near a vertical wall.

6. Investigating the interference flowfield of a store falling from a wing, where the

trajectory of the store motion is determined by the instantaneous aerodynamic loads.

The logical sequence of the dissertation is as follows. Chapter 2 conveys the basic
formulation of both fluid and rigid body dynamics. That is, the governing equations and
corresponding initial and boundary conditions, and their solution algorithms for both
formulations are discussed in this chapter. The dynamic domain decomposition techniques
(D?T) are described in Chapter 3. The characteristics of D3T are explained in this chapter.
Some of the important contributors to the numerical error of the present computational
algorithm are studied in Chapter 4. Several numerical experiments are performed to isolate
and identify some of the consequences of each one of these error components, then
demonstrate several suggested measures to control them. Four cases of unsteady airfoil
flows are demonstrated and discussed in Chapter 5. Chapter 6 provides the extension of
the method to three-dimensional multiple objects. The computed results for an oscillating
cylinder near a vertical wall are discussed in this chapter. Chapter 7 contains the extension
of the method to simulate a store separating from a wing. Details of the "on-line" D3T and
the trajectory predictions are also discussed by demonstrating them through this case.
Some conclusions and recommendations based on the demonstration cases are given in

Chapter 8.
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Chapter 2
GOVERNING EQUATIONS AND SOLUTION METHODS
2.1 Governing Equations of Fluid Flow

The unsteady, Reynolds-averaged, thin-layer Navier-Stokes equations of air flow are
written in conservation form and in time-dependent curvilinear coordinates [44],
am = gm(xl, X2, X3, t) (2°1)

3Q  E,  3E,  3(Es—Es) _ -
xtE et e @2

where Q = [p, puy, puy, pus, €; ]t/J 2.3)
1
En = = [PUn, puUp, + 0,€™p, pupUp, + :287p,
T 2.4)
pu3Um + asgmp ’ Um(et +p)_§§np ]t

(Bv)s = %[0 AE3tir, AEtua, A Tis, A’ (W Tie -Clk)]t (2.5)

The contravariant velocity expression is
Unp = akﬁm Up + atE_,m (2.6)

and the transformation Jacobian is defined by

. a(gl,§2,§3)

(X1, %2, X3)

. @)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The pressure is related to the conserved variables through the ideal gas law

p(vf +u3 +u§):|

2

P=(7'1)[et' (2.8)

The shear stresses are given by

Oug . O E™OET 9“—1] 29)

9Pty = =t [(akamaléf -Zagmaz | =

The expression for 9.™ty, and 9,&™1Ty3 are obtained analogous to Eq. (2.9) with the

subscript 1 replaced by 2 and 3, respectively. The heat flux term in Eq. (2.5) is given as

aT
&

&My = M”u;a@m

2.10
Re (y-1)Pr @10

In Eq. (2.2), the conserved variables of vector Q are normalized with the freestream
values of density, the local speed of sound and the molecular viscosity. The Sutherland
formula is used to determine the molecular viscosity. Reynolds stresses are modeled with a

modified Baldwin-Lomax turbulence model reported in [46-48].
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Also used in the non-dimensionalization is the reference length L.

2.2 Solution Method

In the present research, an upwind, finite volume method is used to solve the fluid
governing equations of the fluid flow. Some details of the finite volume method are given in

Appendix A.1.
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A single step temporal scheme [49] for advancing the solution of Eq. (2.2) is

d At 0 \% - 1
AQr = HAL 9 pgn m+——AQ™ 1+ﬁ[( ———v)Atz,At3] 2.12

Q 1+vaet Q 1+vatQ 1+v Q : 2 @12
where Q1 = Q(nAt) and AQR = Qu+1.Qn, The general time differencing formula Eq.
(2.12), with the appropriate choice of the parameters i1 and v, reproduce two and three level
implicit schemes as listed in Table (2.1). Applying Eq. (2.2) to integrate the time term of
Eq. 2.12 yields

n pAt n 2 at 3 )
8Q" = B (amn)+ By (A8, )+ 250y (1) 80 (B3 )+ 2 o e

+H.O.T.

Obviously, the spatial derivatives of Eq. (2.13) are nonlinear terms that would be difficult in
solving the algebraic equations for AQN. A time linearized equation with the same temporal

accuracy as Eq. (2.13) can be approximated if we use the Taylor series expansion

OER! 10%EP

n+l _ gr 950 20 =i 2 3 i
EM! = EP + 30 4Q+; o (AQ)* +d(Ar), (2.14)
or
AE! = ATAQ" +d(AP) (2.15)

oE.
where Aj is the Jacobian matrix —L. Likewise

aQ

dE;,

% ) AQ“+1‘}(At2) (2.16)

ap, =

If the approximations (2.15) and (2.16) are introduced into (2.14), we obtain
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A 2.17)
- t(_ _ER 2 wn v n—1 _l_ 2 3 3
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where Agi , Azéi denote upwind and central differences, respectively. Eq. (2.17) forms a

system of algebraic equations. The elements of the Jacobian matrix are banded and the
bandwidth depends on the grid size and choice of spatial differencing method. For
multidimensional flows, the left hand side is a very large sparse matrix with a large
bandwidth. Then, the exact inversion of the matrix is very costly due to the large number of
operations and computer memory required. An approximate factorization scheme (AF)
splits the implicit operator into a sequence of lower bandwidth Jacobian matrix. The
spatially-factored form of Eq. (2.17) which retains the temporal accuracy, conditionally, can

be obtained as follows:

{I ’ —I%[Aél (0aE:) ]n} 8 {I +%[A§2 (aQEz)]n}

x{I +%[A§3 (9qEs)- 425 (BQE3V)]n}AQ =RH.S.(2.12)+ 3(AD) -
Thus a spatially factored algorithm [49] for Eq. (2.17) but linear in AQY is
{1 + I“f—i[Aé, (aqu)]n} x {1 + 2 g (aQEz)]n}
X{I + 2203 (3q8s) - 42 (s )| }AQ
2.19)

_ At 2 n
= —m[AglE? + Angrzl + A§3Eg - A§3 (aQng) ]

\4 - 1
— _AQ1 _ 2 3 Ag3
+1+v Q +ﬁ[(p. 5 V)At . (IF +1)AP, AE; ]
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Denoting the right-hand-side of Eq. (2.19) as R.H.S., the left-hand-side may be rearranged
to facilitate the alternating-direction-implicit (ADI) algorithm,

{I+1£:%tA§1 (aQEl)]n}AQ“ = -(R.HS)" (2.20)
{ +%:A§2 (aQEz)]n}AQ* = AQ™ 2:21)
{1 + I”% Ags (9QE3) - 42 (3qEs )| }AQ = AQ*

(2.22)
Qn+1 = Qn + AQ

This scheme requires the solution of a 5*5 block tridiagonal system. It has the advantage
of being fully vectorizable. The last term of the Eq.(2.19) indicates the order of magnitude
of the leading truncated term, that is, the truncation error. The method is second-order
accurate in space. The temporal accuracy, however, depends on the magnitude of the
neglected terms in linearization and in approximate factorization ( represented by the
parameter If'), as well as the values of the free parameters pt and v. For u=1/2 and v=1, the
temporal truncation error becomes ﬁ[(lf + 1)At3] , then, this method is second-order
accurate temporally. This algorithm is implemented by modifying the general purpose CFD
code CFL3D [45] for improved time accuracy.

Roe's flux difference splitting [50] is used to construct the spatial fluxes for the
convective and pressure terms. Some details of this method are highlighted in Appendix
A.2. Also, to reduce the computational time, Pulliam's [51] diagonalization for the Roe's

flux difference splitting scheme, details of which are given in Appendix A.3, can be used.
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2.3 Governing Equations of Rigid Body Motion

The method described so far produces the solution of a flowfield around a static
body or a body engaged in a prescribed motion; that is, it can be represented by the
equations of fluid dynamics. To extend the method for a flow past a body engaged in a
motion which is not known a priori, the connection between the force field computed by the

fluid dynamics and the rigid-body kinematics needs to be established.

In order to be oriented for the frames of references, consider a fluid particle P in the
inertial domain XYZ with originat O. T denotes the position vector of P. The non-inertial
frame of reference xyz has it origin O' with R as the position vector of O' relative to the
origin of the global domain XYZ (Fig. 2.1). The XYZ system is fixed in space but the xyz

system translates and rotates relative to it [52]. Then the position vectors are related by
T =R+%, (2.23)

where X is the position vector of P relative to O'. Differentiating with respect to time, the

absolute velocity of P is

-

T=F=R+R®), +DXZ (2.24)

In order to explain the meaning of terms on the right side of Eq. (2.24), the point P' needs to
be defined. This can be a rigid grid point of the subdomain xyz, which is coincident with P
at the time of observation but fixed in the xyz system. Then R is the absolute velocity of
O, @ is the absolute rotation rate of the xyz system, and @ X X is the velocity of P' relative
to O' as viewed by a nonrotating observer. (X), is the velocity of P relative to O' as viewed

by an observer rotating with the xyz system. It should be noted that the (X); is zero for a

rigid-body motion.

Differentiating Eq. (2.24) once more with respect to time, the absolute acceleration

of P can be derived as
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1=V=R+OxZ+Dx@xF)+ @), +26 x (%), (2.25)

where R is the absolute acceleration of O'. The term & XX is similar in nature to the
tangential acceleration, whereas the term ® X (@ X X) represents a centripetal acceleration.
The term (X), is the acceleration of the point P relative to the xyz system, and the term

2@ X (X), is known as the Coriolis acceleration.

The general expression to describe the rotational motion (rotation equations) of a
rigid body can be written as

M =16 +a>x(ias), (2.26)

where the moment M, inertia I, and the angular velocity @ have the following components:

M = (M, My, M,)
227

0 = (wy, Oy, ©;)

A considerable simplification can be made in the general rotational equations of motion if
the Xyz coordinate axes are chosen to coincide with the principal axes and the local origin is
located at the center of mass. With this choice of body axes, all cross-products of inertia

vanish and moments of inertia are time independent, hence, Eq. (2.26) can be reduced to
M, = L0y + (1 — Iy Joy0,
My =L@y + (I — Iz)050, (2.28)

M, =I,®; +(Iyy — Ly )oy0,

These are known as the Euler's equations of rigid-body rotation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23
The translational equations of a rigid body are represented by a coordinate system

fixed on the body. The equations can be written as

F=mv= m(%:)r +m(B X V), (2.29)

where m is the mass of the rigid body.

2.4 Solution Method for Rigid Body Motion

The aerodynamic forces and moments are derived by integrating the instantaneous
surface pressure field and their moments applied at the local origin of the non-inertial frame

of reference:

F=mg-fp-dS,,, m=12and3, (2.30)
S

M = -j[(f-fcg)xdf:]. (2.31)

But, all the aerodynamic coefficients are obtained relative to the inertial frame of reference
adopted for the fluid dynamics equations. Hence, Egs. (2.30) and (2.31) need to be

transformed from the inertial XYZ system to the non-inertial xyz system.

By applying the general rotation equations of rigid-body dynamics, the trajectory (or
path) of a body motion can be determined as a function of the aerodynamic coefficients, its
weight and its inertial characteristics. Therefore, transformation relations are required
between the inertial and non-inertial frames of reference. Let 1j’ and rj represent the vector
quantities in the non-inertial and inertial frames of references, respectively, then the

transformation is 1j’ = ¢ij 1j, where cijj is the directional cosine tensor:
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cos(B)cos(Y) cos(B)sin(y) —sin(p)
-cos(B)sin(y) cos(a)cos(y)
sin(ct)cos(B) (2.32)

ol
I

+sin(o)sin(B)cos(y)  +sin(c)sin(B)sin(y)
sin(ct)sin(y) -sin(ot)cos(y)

cos(a)cos(B)

| +cos(a)sin(B)cos(Y) +cos(ax)sin(B)sin(y)

where @, B and vy are the Euler angles of the non-inertial frame with respect to the inertial

frame.

Let My, My, and M, be the moments represented in the body's principal axes, and
Mx, My, and Mz be the same moments but represented with respect to the fixed axes

(inertial frame), then the transformation relation can be expressed as follows:

M, Mx
My | = [Cy] | My (2:33)
M, Mz

A similar relation needs to be used for the force equations.

In order to update the velocity and position vectors of the body in time, Egs. (2.28)
are solved simultaneously to obtain the angular acceleration. Then, the angular acceleration
is integrated in time using a fourth order Runge-Kutta method to obtain the angular velocity
field. Using the obtained angular velocities, Egs. (2.29) may now be solved simultaneously
to obtain the translational accelerations. These accelerations are then integrated to give the
translational velocity field. However, the time integrals of w,, @y, and @, do not
correspond to any physical angles which might be used to give the orientation of the body.
Hence, the Euler angles for the new position are obtained by solving the next group of

differential equations simultaneously,
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&= [my sin(Y)+ @, cos(y)] sec(B)
B =y cos(y) - @,sin(y)

Y=o+ [coy sin(y)+ ©, cos(y)]tan(B) (2.34)

Hence, the angular velocity is integrated in time by using a fourth order Runge-Kutta

method to obtain the Euler angles.

Then, the velocities and angular velocities must be transformed back to the inertial

reference frame,

Oy |9
Wy | = [Cii] @,
@z o, (235)

A similar transformation needs to be performed for the velocity field. The new position

vector of the rigid body can be found by using Newton’s law of motion,
Rl = R+ mem - At

=n+l _ pn+l ._T,-—
i = Rty [cu] % 2.36)

where the velocity vector is

V= vtranslaﬁon + (T)X)‘c. (2.37)

All the variables shown in Egs. 2.36-2.37 are represented in the inertial frame of reference
XYZ

2.5 On Geometric Conservation Law

The integral form of a conservation law of Euler equations can be rewritten [38-39]

as
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2 Be.q®4r —
v,y QAV =y QAV + [ 2§y ENl-dSdt = 0 (2.38)

where V(t) is the cell volume at time t and - dS is a vector element of surface area with

outwardly normal. The flux E can be written as

E=@-v)Q=E,-vQ. (2.39)

where U and ¥ are flow particle and solid boundary speed, respectively. For the freestream
conditions Q.. and E;_, the geometric identities can be derived from Eq. (2.38) as follows:

Qu.[V(t2) = V()] = —Eq_ - [ f5(y - dSdt + Qu. [ 45,y -vdS dt. (2.40)

For a stationary grid, the first geometric identity can be obtained as

fsyi-dS=0. (2.41)

Substituting Eq.(2.41) simplifies (2.40),

= (2§  7.vdS
[V(t2)- V()] = :12 §S(t)n vdsS dt. 2.42)
This equation is essential for moving grids. To ensure the global conservation for

numerical solutions, the differential form of Eq. (2.42) needs to be satisfied:
ov

A
Ve

§S(t) V '. ﬁ d§.

W
I
N’

~N

To proceed with the surface integration on the right-hand side, the surface element velocity

V needs to be defined more clearly. Therefore, Eq. (2.24) will be reused here,

V=F=R+(X), +HxX. (2.24)

where Xyz system can be an inertial or a non-inertial frame. In the current derivation, P' is

assumed to be a grid point in a rigid grid, and P is a grid point in a deforming grid that is
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temporarily overlapped and identical to P’ grid (Fig. 2.1). The difference between P and P!
is the change of a cell in time. From Eqs.(2.24) and (2.43),

v _ ﬁ-(fsﬁ-d8)+(§><(fsi‘ﬁds)""(%ﬁ'(i)rds)

ot (2.44)

The first integral on the right hand side is zero due to Eq.(2.41). The second integral
represents the rigid rotation (P' with respect to xyz system) of grid and does not affect the
change of the cell volume. Therefore, Eq.(2.44) can be rewritten in the following differential
forms

Ve=(s%-7), , i=1, 2, and 3

g (2.45)

with the constraints

(s%), =0, i=1,2 and 3
3 (2.46)

Eq.(2.45) is the differential statement of the geometric conservation law (GCL).

Therefore, it can be concluded, that if there is no grid deformation (P always
coincides with P’ at any instant), then there is no need to consider the GCL equations. On
the contrary, if there is a grid deformation (P has relative motion with respect to P'), then
GCL needs to be evaluated. In the case of using, for example, the dynamic overlapped
grids, there is no grid deformation and, therefore, GCL equations are not needed. However,
when using dynamic unstructured grids [26, 36], grid cells are deformed and GCL needs to
be satisfied by solving Eq. (2.45).

2.6 Initial and Boundary Conditions

The choice of initial and boundary conditions directly affect the accuracy of CFD

methods. The initial conditions should correspond to the physical nature of the flow. In
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this dissertation, the initial conditions are chosen to be the freestream conditions or previous

computational results.

The boundary conditions are specified explicitly in spite of the employed implicit
CFD algorithm. The walls are considered to be impermeable and adiabatic. The pressure at

the solid surfaces is evaluated using the momentum equations of the fluid flow [43],

P _ov.(7-VA)-ph-3, 2.47)
Jn

where 2 is obtained from Eq.(2.25), and the velocities for the inviscid surfaces are set equal

to the contravariant velocities:

u1=U1 N U2=U2 N IJ3=U3 N Sﬂn=0 (2.48)

The velocities for the viscous surface are set equal to the velocity of the surface,

L=V, L=V, , U=V, , -@1:0. (2.49)

on
Finally, the density is calculated by employing the state equation.

The farfield boundary conditions are obtained by using the locally one-dimensional
characteristic boundary conditions. For each cell, the velocity normal to the boundary and
the speed of sound are calculated from the two locally one-dimensional Riemann invariants
[22, 53] given by:

RE=Ut—2_a . (2.50)

-1
The invariants are constant along the characteristics defined by:

+
(%) =Uxa . (2.51)
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The local normal velocity at the boundary is calculated by summing the two Riemann
invariants, and the speed of sound is obtained by subtracting the two. The appropriate
boundary conditions are specified after the magnitude of the contravariant Mach number

and the directions of the contravariant velocity at each cell are checked:

Mg >1; U<0 U] = Ujoo > U2 = Uz, Uz = U3, T=T., P =P - (2.52)
oy du, dug aT dp
M:(>1; U>0 —=0, —=%=0, —=0, —=0, —=0, 2.53
PEUS0 G0 0w Tt T % @39
M| <L U<0 11 =Ujeo , U2 = Voo, U3 =U3eo, T = Ty %=0. (2.54)
au1 aU2 8u3 dT
M l;U 0 —=O: _=0, _=0’ —=Oa = P> 2.55
g < > agl agl agl ag P=P ( )

For a supersonic inflow, all flow characteristic lines point toward the computational

domain. Hence, the inflow boundary conditions are set equal to the freestream (Eq. 2.52).

For supersonic outflow, all flow characteristic lines point out of the computational
domain. Hence, the outflow boundary conditions are obtained using a zeroth-order

extrapolation (Eq. 2.53).

Reflection boundary conditions are used on the symmetry plane of the two-

dimensional cases. For example, when the plane of symmetry is assumed in &1 direction,

then

B, =-u , 4,=U, , U =0, aég_‘ﬂ , -aiaé’; =0. (2.56)
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Table 2.1: Partial list of schemes contained in Eq. (2.12)

[ \4 Scheme .Truncation error
: 2
1 0 Euler, implicit of a? )
3
12 0 Trapezoidal, implicit o o )
: o ﬁ( A3 )
1 12 Three-point-backward, implicit
y
PP
A - X
X
Y N
i: @ Ol

Fig. 2.1: The position vectors of points P and P’ relative to a space-fixed inertial system
and a moving (non-inertial) system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

DYNAMIC DOMAIN DECOMPOSITION

This chapter illustrates the concept of extending static Domain Decomposition
Techniques (DDT) to Dynamic Domain Decomposition Techniques (D3T). Section 3.1
explains the basic concept of time dependent Jacobian transformation for coordinate
systems. Section 3.2 contains the criterion of choosing D3T and some characteristics of
D3T. The concepts and mathematic formulae of time-dependent degenerate zonal method
are given in Section 3.3. Several options of interacting overlapped grids method and flow
solver are described in Section 3.4. It can be optimized for the accuracy or efficiency.
Section 3.5 gives a simple flowchart that outlines the interaction of these computational

components.

3.1 Time-Dependent Coordinate Transformation

There are two apparent differences between a steady and an unsteady flow solution
algorithm. First, there is a converged solution (residual approaches zero) for a steady-state
case, which, of course, does not exist for an unsteady flow case. Secondly, in an unsteady
flow calculation, the time becomes an independent variable; in other words, the time

variable can not be ignored in the Jacobian transformation matrix. With the assumption
dt = drt, (3.1)

the Jacobian matrix for unsteady flow can be written as
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dx1 _ xlt xlgl
dx2 - xz‘c Xzél
dxs X3, xsgl

0 O d't
1

)(1‘22 X1§3 d& 32)
X2§2 x2§3 déz
x3§2 x3€3 d§3

Consequently, the grid speed appears in the contravariant velocity for a generalized

coordinate system. For example,

Un = 9 &Pu + 9,8™,

m, k=12, and 3, (3.3)

where the grid speed for the computational domain can be written as

oxJ

9 &" = -(—) - VE®, m,j=1, 2, and 3.

ot

(3.4)

i
The term (E;x_) is the grid speed for the physical domain, and it is a parameter of primary
T

importance for unsteady aerodynamic problems involving moving boundaries [54-56].

Because the time variable gets involved in the unsteady calculation equal to Eq.

(2.24), the individual component grid of the multicomponent configuration may contain

different grid speeds. Therefore, they need careful treatment for the communication

between different component grids [54].

3.2 Dynamic Domain Decomposition Techniques (D3T)

In deciding on the type of domain decomposition for a problem with static

boundaries, two major concerns are the geometry of the configuration and a prior

knowledge of the flowfield. A proper choice of the scheme requires a compromise, so that

generating each subdomain grid is an easy task, physical and intergrid boundary conditions
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can easily be implemented, the total number of cells is minimized, and proper resolution is

enforced where significant flow gradients occur.

In the case of dynamic objects, an additional concern is the type of motion each
nonstationary component of the configuration is engaged. Using D3T, one can resolve a
complex motion into its simple dynamic components and assign a subdomain grid for each
component of the motion. For example, a two-component configuration with each
component moving in 6-DOF, can have a composite of twelve subdomain grids, each of
which moving in a single DOF. There are two major differences between the present D3T
and static domain decomposition. First, each subdomain grid can be moving. This is
accounted for by the time-dependent curvilinear coordinate transformations, whereby the
grid velocities are also determined. These nonlinear equations are solved for the nonlinear
rigid-body dynamics and the flowfield around it. Secondly, the intergrid information
transfer is time dependent. That is, all the searches and the bookkeeping for the
interpolations or other modes of transfer are renewed and updated as functions of time.

The accuracy and the efficiency of this process are the important issues in developing D3T.

Since the governing equations are written in the space-fixed frame of reference, all
the primitive variables are absolute everywhere and at anytime regardless of the subdomain
grid on which they are computed. Therefore, they can be transferred from one subdomain

grid to the other regardless of the relative motion of these grids.

3.3 Degenerate Zonal Method

This is a relatively new DDT [23, 54-55], which is derived from the convergence
accelerating multigrid method. It has the simplicity and the suitability of refining the grid
wherever necessary. It is required that only every n-th line normal to the grid interface is

contiguous. If n=2, then the line that is not contiguous bisects the distance between the
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neighboring two contiguous lines. This concept is a natural extension from the generation
of coarse-fine grids necessary in the multigrid convergence acceleration methods. The
intergrid communication is very simple for this method. A schematic of the degenerate
zonal grid scheme, when all the grids are static, is shown in Fig. 3.1 for two dimensions.
This diagram represents a full refinement in both directions. The dashed lines define a finer
mesh embedded completely within a coarser mesh depicted by the solid lines. The open
circles are the cell-center locations of the finer embedded grid. Each of the grids is a
rectangularly-ordered set of points; in the sketch, a portion of the flowfield is covered both
by the embedded grid and a portion of the coarser grid. The grids are coupled together
during the solution process. The cell-center variables on a coarser grid cell that underlies a
finer embedded grid cell are replaced with a volume-weighted restriction of variables from
the four (2-D) or eight‘(S-D) finer grid cells, similar to the restriction operators used in a

global multigrid scheme.

For the embedded finer grid, the computation boundaries occur either at a physical
boundary or along an interior line of a coarser grid. Along such a boundary, two additional
lines of data corresponding to an analytical continuation of the finer grid cell centers are
constructed from interpolation (or prolongation) of the coarser grid primitive variables (Fig.
3.2). Since for most of the applications subdomain grids are nonuniform, the interpolation
formula is most commonly used for the prolongation, an inverse averaging formula is more
effective when more than two points are used for the interpolation. First, the flow
properties at coarse grid cell centers are interpolated to “pseudo-fine” cell centers in each &-
constant plane of a three-dimensional grid by the following inverse averaging on a four-
point stencil (Fig. 3.2a),

A BeE Pl () }4

N — 1=A
pd) = —T5E5

iEA [%1]

(3.5)
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Then, the flow properties of a fine grid cell center is obtained by interpolating the values of
three contiguous pseudo-fine centers in the E direction (Fig. 3.2b),

231[ qp(d) yrl
b

In general, none of the 4 or s values are equal to each other. A 2-D problem requires only

s = (3.6)

Eq. (3.5) and the pseudo-fine cell centers become the actual cell centers of the fine grid.

During the restriction procedure, the primitive variables of a coarse grid are replaced
from the nearest eight (3-D) finer grid cells using the following inverse averaging formula

based on the instantaneous relative distance (Fig. 3.3),

la[ qs (i /
bPA

When degenerate zonal grids are in relative motion, even every n-th grid line normal

qc = (3.7)

to the interface can no longer be contiguous. If the grid motion is modified at every time
step to ensure this contiguity, a fully conservative transfer of fluxes can be maintained as in
the static case. However, the resulting grid motion is described by a step-function. An
alternative method is developed in this study. This method does not restrict the grid
displacement to integer multiples of one spatial step. That is, it allows the displacement to
be any fraction of one spatial step. During the restriction procedure, primitive variables of
a coarse grid are replaced from the nearest eight (three-dimensional) finer grid cells with an
inverse averaging formula using the instantaneous relative distances. This formula is used
at every time step and it accounts for the nonuniform grids with non-contiguous normai

lines. The basic concept of information transfer during the prolongation process, that is,
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from the coarse grid to the boundary of the fine grid, is unchanged from its static

counterpart explained earlier.

3.4 Overlapped Grids Method

The details of static overlapped grids and the interaction of overlapped grids method
(MaGGiE) with the flow solver (CFL3D) are given in [1]. A brief summary, however, is
provided in Appendix B. The implementation of the overlapped grids method for complex
but static geometry problems are explained in [22]. This section is dedicated to extend the

overlapped grids method to moving boundary problems.

The computer programs of this study performing the D3T operations and solving
the governing equations are called MaGGiE and CFL3D, respectively. Three different
methods are possible for the interaction of MaGGiE and CFL3D. If the boundary motions
are forced and/or prescribed, the grid motions and their relative positions are known prior
to solving the flow equations. As the first method, MaGGiE is used as a preprocessor to
generate and store out-of-core a database of D3T information as a function of time with
appropriate discrete time intervals. CFL3D is marched in time with the corresponding D3T
information as input for a given time step. The second method is using CFL3D and
MaGGiE as different modules driven by the same main program. Therefore, all the
programs are on-line and the main driver calls upon the appropriate functions as necessary.
The first method, when applicable, requires significantly less computer run-time memory,
because it does not require the memory to run both of the programs. However, if the
boundary motions are determined from the instantaneous force and moment field as

integrated from the flowfield, only the second method can be used.

A third method is an extension of the second method in order to reduce the required

computer time. Note that the most computer time (CPU) consuming part of MaGGiE for
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D3T is where the cells on each side of an intergrid boundary are searched for appropriate
communications between the subdomains involved [12, 16]. Using the fact that the grid
motions are small per time step, a smarter searching logic can be build into MaGGiE to
reduce the time. The new search can be restricted to a specified proximity of the cells, to or
from which the information transfers are made in the previous time step [32]. Specifying
of the proximities is a compromise between a successful search and the computer time
required for each search. Further computer savings can be obtained by freezing the D3T

information for more than one time step. This, however, compromises the accuracy.

3.4 Flowchart for Moving Boundary Simulation

The computational method for the D3T consists of three components: (1) The solver
of the governing equations of the flowfield - CFL3D [45, 54]. (2) Dynamic domain
decomposition for subdomain grid connections and communications as they move relative
to each other - MaGGiE and/or degenerate zonal method [54-55]. (3) Force and moment
integrator or prescribed motion function to determine the paths or trajectories of rigid-body
components in 6-DOF [36]. The flowchart outlining the interaction of these computational

components is given in Fig. 3.4.
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Fig. 3.1: A typical stencil for coarse-fine grid communication in degenerate zonal grids.
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Fig. 3.2: A typical stencil for dynamic degenerate zonal grids during communication from
the coarse grid to the fine grid boundary (prolongation).
(a) two dimensional plane,
(b) one dimensional plane.
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Fig. 3.3: A typical stencil for dynamic degenerate zonal grids during communication from

the fine grid to the coarse grid (restriction).
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Chapter 4
ACCURACY AND ITS DEMONSTRATION

This chapter focuses on the numerical error studies and the methods of reducing
these errors. These numerical errors, which are caused by the CFD algorithm and rigid-
body dynamics, are discussed in Section 4.1. Then, a moving normal shock case inside a
tube problem is demonstrated and discussed in Section 4.2. Further study of numerical
error associated with moving overlapped grids are given in Section 4.3. Finally, the 6-
DOF trajectory prediction method is tested and compared with experimental data in Section
4.4.

4.1 Numerical Errors

The error of the computational algorithm to solve the fluid dynamics equations
consists of: (a) dissipation and dispersion components of the discretization (or truncation)
error, (b) approximate factorization error, (c) interpolation error of the domain
decomposition, (d) time-linearization error, and (e) round-off error. Some remarks are
made in this section on the first three sources of error as they impact the present solution

algorithm.

4.1.1 Dissipation and Dispersion Errors

Conventionally, the accuracy of a numerical scheme is assessed based on the exact

solution of the steady-state equation. Hence, only the dissipative error can be correctly
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identified. However, for unsteady equations, due to the effect of the numerical error, the
flow may propagate essentially in a dispersive medium. Since there is no converged
solution achieved by a time-accurate marching procedure of an unsteady equation, the
phase error due to the dispersion continues to accumulate. Therefore, the group velocity of
the motion may deviate significantly from its phase velocity [59-60]. Also, since there is
no accurate method to control its direction, the phase error may accumulate in a certain
direction. As reported in [58-60], the dispersion error is as important as the dissipation
error for unsteady flows. Therefore, the higher order accurate discretization should be
applied not only spatially but also temporally {61]. However, more than second-order
accuracy may be computationally expensive for three-dimensional and complex geometry

cases.

4.1.2 Factorization Error

Implicit numerical methods have been widely used because of their numerical
stability with larger time step sizes, but storing the coefficient matrix formed on the left-
hand side requires large computer memory. The most common way of reducing the
memory requirement is the approximate factorization of the coefficient matrix (Section 2.2),
which also has the advantage of rendering the efficiently solvable tridiagonal form.
However, this introduces an extra numerical error, which is of the same order as the
discretization error, into the discrete system, hence smearing the numerical solutions
further. For example, the order of magnitude of AQR in Eq. (2.19) is assumed to be
B(At) [49]. However, if the higher flow gradient has been met, then the order of AQR
may rise to 3(1) [48]. Consequently, the approximate factorization method may carry the
second-order temporal error. To minimize the factorization error for the discretized

equations, controlling the CFL number of each cell is suggested in several reports [58-60].
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For unsteady flows, it is suggested that the maximum CFL number should be restricted to

unity.

4.1.3 Interpolation Error

An interpolation error is often introduced by most of the domain decomposition
techniques. Both of the methods employed herein, namely, degenerate zonal and
overlapped methods, rely on such interpolations between subdomains. Considering the
overlapped grids, for example, the type of interpolation between the subdomains may be
chosen such that the overall accuracy is about the same order as the discretization error [9-
11]. To show this mathematically, consider an n-th order, one-dimensional, differential

equation,

d"E
— = RO® @4.1)
g

To solve this problem on a composite mesh that consists of two overlapped subdomains &

and k', for which the indices are i and j, respectively, the Nj-th order accurate discrete

system of equations can be written as follows:

(D,D. )%qi‘ =R; + ﬁ(A§N1+1) 4.2)

where (g;)* is the numerical solution in subdomain k. The N-th order interpolation to the
points in subdomain k from the points in subdomain &’ can be represented in the following
form:

qf = Saki¥ +v{age"), (4.3)
j
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where (gj)*' is the numerical solution in subdomain ' and & denotes the interpolation.

The goal, therefore, is to make N> as close to N; as possible.

It can be shown mathematically [9] that an interpolation formula with an overlap
width given by (0.25mN;+1) is N;-th order accurate, provided that the spatial step sizes
are constant in the overlap region and that they are small compared to the width of the
overlap region. Therefore, two sets of interpolation points and fringe points [62] are
needed to maintain the spatial second-order accuracy in solving a second-order differential

equation.

The temporal interpolation error for moving subdomain grids has not been fully
studied. Therefore, only a brief preliminary study is shown here. For most cases, a
second-order accurate method is deemed adequate enough to resolve the unsteady flow.

However, the temporal interpolation error is often accentuated by the high flow gradients.

This point may be illustrated through the one-dimensional example given below.
Two fringe points which belong to two different meshes (G; and G3) coincide and receive
data from a third mesh (G,) simultaneously. Even if there were perfect interpolations of
primitive variables to these two fringe points, the flow properties of these points may still
propagate in different directions in the generalized Eulerian coordinate system. What also
needs to be satisfied is the correct transfer of grid speeds from the subdomains. This can
be shown from Egs. (2.6) and (A.14); if the grids are moving, then, the eigenvalues

(characteristic wave directions) of these points are rewritten as
7\,1 =U = akémuk +8t§m
Ay =U+a,, =0y E"u +0,E™ +a., 4.4)

Az =U-a,= Bkémuk + 8@“‘ —a,

If the meshes G; and Gs have different grid speeds, then, let the eigenvalues in G and G3

be checked in here. The first eigenvalue of Eq. (4.4) is given as
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A =U=ugl; +E! (4.5)
and from Eq. (3.4) it can be applied to the special case
& = —xiEl, (4.6)
Then, substituting Eq. (4.6) into Eq. (4.5) yields
M=U=ugl -xEli = (u; - xbEL, (4.7)

Assuming this interpolation point has the same primitive variable u; and Jacobian matrix
&il =1, then, it can be concluded that the 2,(G,) = A(G;) because of X:(G,) # x4(G,).
Hence, the flow properties of this interpolation point which belongs to G; and G3 as well,

will propagate in two different directions, and this results in phase shift phenomena.

Another reason which may cause the small discrepancy is attributed to the
deficiency of the numerical scheme. Most Eulerian frame, upwind methods [50] based on
the Gudonov schemes (such as the Roe scheme used herein) are derived to solve the locally
for one-dimensional Riemann problem for the hyperbolic Euler equations. Hence, the
directions of numerical fluxes are assumed to be normal to the present cell surfaces.
However, if there are two non-similar grid topologies overlapped with each other, then the
flow properties in different meshes are most likely computed to propagate in different
characteristic directions. Although some researchers [63-64] are currently studying generic
multi-dimensional upwind methods, which may greatly reduce the numerical errors, a

mature generic multi-dimensional upwind method is not available at this time.

4.2 Moving Shock Preblem

A numerical experiment is performed to isolate and identify some of the

consequences of each one of these error components, then, to demonstrate a few suggested
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measures to control them. The round-off error cannot be isolated, but it is responsible for

almost the same amount of error in all the computations performed on a given computer.
Hence, it can be considered as a non-variable with respect to the numerical cases. The
classical problem of a moving normal shock inside a tube is studied for this purpose, since
there is a time-dependent exact solution for the shock amplitude (to check the dissipation
error) and shock speed (to check the dispersion error). Secondly, this proble;n has a large
gradient region in the unsteady flowfield which reveals the error very easily and clearly
[58, 65].

The upstream and downstream conditions of the normal shock are given in Fig.
4.1. Some of the computational details for the numerical cases are tabulated in Table 4.1.
Cases 4.A.1-4 are computed on single grids, whereas, Cases 4.A.5-7 are computed on
overlapped grids (Fig. 4.2). In Case 4.A.7, the smaller grid moves with the shock wave
and it is overlapped on a larger static Cartesian grid. All the computations are started at the
time when the shock reaches the axial position of x=0.4. The instantaneous pressure
distributions (snap shots) along the centerline of the tube after 0.6 nondimensional time
units are plotted in Fig. 4.3. At this moment, the exact values (obtained using the Rankine-
Hugoniot relations) of the upstream pressure, downstream pressure, and shock location are

3.214, 0.714, and 1.600, respectively.

Case 4.A.2 is run on a grid that is about 3 times finer than the grid of Case 4.A.1
with all other features being identical (grid refinement). Since their pressure distributions
are almost identical (Fig. 4.3a), it is concluded that the grid size of Case 4.A.1 (10,455
cells) is adequate to solve the current moving shock problems. Therefore, this grid is used
for the rest of the cases. The difference between Cases 4.A.3 and 4.A.1 is their temporal
accuracy; Case 4.A.3 is run first-order accurate in time by switching p=1 and v=0 in Egs.
(2.18). There is almost no amplitude error for both cases, but the shock location is

underpredicted in Case 4.A.3. Hence, second-order accuracy in time is deemed necessary
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for an acceptable dispersion error. In order to demonstrate the effect of using a CFL
number greater than unity when running Case 4.A.4, the global time step is increased such
that the maximum CFL number is about 6.0. From Fig. 4.3a, it can be seen that there is
almost no difference for the shock wave location. However, pressure oscillations prevent
an accurate prediction of the amplitude. This dissipation error continues to deteriorate the

solution as it progresses in time.

Cases 4.A.5 and 4.A.6 are computed on the composite grid shown in Fig. 4.2.
Their difference is the number of fringe point sets used for the bilinear interpolations
between the subdomain grids; in Case 4.A.5, two sets of fringe points are used to obtain
nearly second-order accuracy (Eg. 4.3), whereas, only one set of fringe points is used in
Case 4.A.6. It can be observed from Fig. 4.3b, that a smoother data transfer across the
subdomain interfaces occurs in Case 4.A.5, thus better preserving the pressure amplitude
within the overlapped subdomain, G;. However, this does not appear to have an
observable effect on the shock wave speed. It should be noted that a successful search for
two sets of fringe points may not always be possible for configurations where the gaps

between surfaces are small [12, 15].

A comparison of Cases 4.A.1, 4.A.5 and 4.A.7 are shown in Fig. 4.3¢ to
demonstrate the accuracy of using static overlapped grids (Case 4.A.5 vs. Case 4.A.1) and
kinematic overlapped grids (Case 4.A.7 vs. Case 4.A.1 and Case 4.A.5). All cases
display a good comparison in shock speed and amplitude to the exact solution, despite
some benign fluctuations at the overlap regions and at the immediate upstream of the
shock. Hence, it is concluded that the interpolation error with two sets of fringe points,
static or kinematic, is about the same order of magnitude as the discretization (dissipation

and dispersion) error of the scheme.

The pressure contours and velocity vectors of Case 4.A.3 are shown in Fig. 4.4.

In Fig. 4.4a, the computational shock wave behaves very close to the exact solution, which
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is a straight line wave front from the top of the tube to the bottom. However, it can be
observed from Fig. 4.4b that there is a pressure fluctuation area around the shock wave
crossing the overlap boundaries. This phenomenon can also be confirmed from the
velocity fluctuation in the normal direction (Fig. 4.4¢); the maximum normal velocity in the
overlap boundary is 0.3 as compared with the freestream Mach number of 1.25.
Theoretically, the normal moving shock inside a tube case should be a one-dimensional
problem. Therefore, the pressure and velocity fluctuations in the normal direction are due
to numerical errors. The source of this numerical error may be attributed to the differences
in grid sizes: a finer Cartesian mesh is embedded inside a coarser Cartesian mesh. With the
same grid topology but different grid sizes, the numerical slope for the shock wave that
jumps across the discontinuity has two different values (Fig. 4.5). Therefore, the higher
pressure (coarser mesh) pushes the flow into the lower pressure area (finer mesh), and
causes the flow property fluctuations in the normal direction, then, the shock is smeared.
However, the fluctuation is small and does not increase in time. Hence, this minor error is

deemed acceptable.

4.3 Two Dimensional Store Separation From An Airfoil

To conduct a further study of numerical errors associated with moving overlapped
grids, grids with different topologies are overlapped and moved in 3-DOF. The store
separation from an airfoil is designed for this purpose, because this is a time-dependent
phenomenon which can have large flow gradient regions with higher prescribed store
speeds. Most of all, with the non-similar grid topology meshes, type of interpolation error
can be detected in a careful designed case. Also, the comparison of second-order (4*4

block inversion) and diagonal inversion methods will be presented in this section.
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The geometry, freestream conditions, and velocity vectors of the airfoil and store
assembly are given in Fig. 4.6. The geometry of the airfoil is NACA-64A010, and the
store is idealized as ogive-cylinder-ogive store which is in the carriage position (0.7
diameter away from the airfoil). This wing and store assembly experience the freestream
Mach number 0.95 from the front, and the freestream temperature is 467.5°R. Some of the
computational details for the numerical cases are tabulated in Table 4.2. The composite
grid of Cases 4.B.1 and 4.B.2 consists of two meshes; a smaller O grid wrapped around
the store and overlapped on a C grid generated for the airfoil. The radius of the C grid is
10 chord length (85 diameters), and the radius of the O grid is approximately 3d. The
composite grid of Cases 4.B.3 and 4.B.4 also have an added Cartesian intermediate grid
(Fig. 4.7) between the C and O grids to enhance the interpolation of the overlapped
scheme. The size of the Cartesian intermediate grid is 24.7d*18.7d. The grid size of these
meshes are given in Table 4.2. For these four cases, the intentionally exaggerated
prescribed motion of the store is defined by the following equations:

x=vyt= 0.1xt
y=vyt=-0.3xt (4.8)

0=w,t= 0.1xt

Starting from initial freestream conditions, the computation is marched with pseudo
time steps to obtain a converged solution for a steady state flow. Then, the computation is
continued with physical time steps, that is, for a given time step, all the cells are advanced

using a constant time step value.

The pressure contours of the steady state solution of Case 4.B.1 are shown in Fig.
4.8. It should be noted that all the contour figures in this dissertation are generated by
PLOT3D’ [66] which is not capable of interpolating data across the overlap boundary.
Therefore, the discontinuous contour lines across the overlapped grids can be observed.

This problem is more pronounced if the cell centers of different subdomains in the overlap
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boundary are further away from each other. The steady state Cp distributions on the airfoil
and store are shown in Figs. 4.9. The steady state Cp distributions of Case 4.B.2 are
identical to Case 4.B.1, hence, the C, distributions for Case 4.B.2 are not be presented in
this report. In other words, there is no difference between Cases 4.B.1 and 2 at steady
state, and these results can also be confirmed by Pulliam's [51] mathematical prediction.
The instantaneous pressure contours of Cases 4.B.1 and 2 after four time units of
prescribed motion are presented in Figs. 4.10a and b. It is observed that the flow
structures of these two Cases are quite similar. The more detailed quantitative
representation of Cp distributions, are given in Figs. 4.11. It is noticed that these Cp
values on the airfoil (Fig. 4.11a) are almost identical, especially the shock's location and
amplitude are almost overlaid for these two cases. However, the Cp difference of upper
and lower surfaces of the store in Case 4.B.1 is smaller than Case 4.B.2, but the higher
flow gradient locations are still overlaid with each other. Consequently, it is demonstrated
that two time-accurate methods, which produce almost identical steady state solutions, may
have differences for the instants of their unsteady solutions. The reason that the higher
flow gradient locations still be the same for Figs. 4.10-4.11 may be attributed to the
location and position of the moving store. However, the position of the moving store is

decided by prescribed motion equations.

An intermediate Cartesian grid is added in Cases 4.B.3 and 4. Note that the fringe
points for meshes G2 (intermediate) and G3 (store) are very close to each other in the lower
surface of the airfoil (Fig. 4.12). The purpose of this design is to amplify the interpolation
error in the high flow gradient region. Shown in Fig. 4.13a are the steady state pressure
contours of Case 4.B.3, which are identical for both Cases 4.B.3 and 4. Despite the
additional grid, the Cp distributions on the airfoil and store surface are very similar for
Cases 4.B.1 and 3 (Fig. 4.9). Also, the Cp distributions of Cases 4.B.3 and 4 are
identical for the Cases 4.B.1 and 2. However, in the close up contours (Fig. 4.13b), one

may observe a slight mismatch of the shock waves that emit from the tail of the store, pass
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through the area of fringe points, and merge with the shock that emits from the lower tail of
the airfoil. These discrepancies are not observed in Cases 4.B.1 and 2 (Fig. 4.8), and the
only difference between Cases 4.B.1 and 3 is the intermediate mesh. Hence, this suggests
that these discrepancies are caused by the fringe points from non-similar grid topologies.
However, these discrepancies decrease during the pseudo-time marching to the steady state
solution. The pressure contours of Cases 4.B.3 and 4 after 4 time units of store motion are
shown in Figs. 4.14 and 4.15, respectively. It can be noticed that the pressure contours
for Cases 4.B.3 and 4 are still very similar to each other, however, the small mismatch of
the shock in Fig. 4.13b does not exist anymore. The reason may be attributed to the rigid-
body motion that moves the overlaid fringe points region away from the shock.
Consequently, the interpolation error is reduced. The instantaneous Cp comparison of
Cases 4.B.3 and 4 after 4 time units are shown in Fig. 4.16. Some minor Cp differences
can be seen in Fig. 4.16a. From the comparison of Fig. 4.16b, it can be noticed that the
diagonal inversion method still produces more Cp variation on the upper and lower surface

than the block inversion method.

4.4 Validation of Trajectory Prediction

The present 6-DOF trajectory method [36] is tested as follows. A three-
dimensional wing-store configuration (Fig. 4.6) reported in [67] has been wind-tunnel
tested during the separation of the store from the wing in the quasi-steady mode; that is, as
a sequence of steady-state measurements of the positions on a trajectory, which was
computed based on the steady measurements of the forces and moments. The experimental
configuration consists of a clipped delta wing with 45 degrees of leading edge sweep and a
NACA-64A010 airfoil section. Connected to this wing is an ogive-flat plate-ogive pylon,
which is located 0.7 diameter above an ogive-cylinder-ogive store when in carriage

position. Some of the parameters for the store dynamic are given in Table 4.3. Also, the
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freestream conditions are M., =1.2, p..=0.5564, and T.=430.6°R, respectively. The
experimentally measured forces and moments were also used by the present method as the
input and the trajectory were computed. Then, the present trajectory was compared with
the trajectory reported in [66] for the wind-tunnel tests (Fig. 4.17). The axis system used
in the above study is defined with the x-axis pointing forward, y-axis pointing upward, and
z-axis pointing outboard. Three of the translational components and two of the rotational
components compared very well. The trend of the third rotational component was also in
agreement; however, the magnitudes differed by a maximum of 3°. The discrepancies in
the results can be attributed to the fact that the ejector characteristic were not
computationally simulated. In the present case the ejector force was applied until the store
dropped to a certain specified distance, after which it was allowed to perform a 6-DOF

motion.
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Table 4.2: Computational details for a 2-D store separation from an airfoil.

Case Grid size Matrix inversion CPU/perstep | memory
method fper grid (us) (MW)
4B.1 7479+3201 4*4 block 43.8 0.6
4.B.2 7479+3201 diagonal 28.2 0.6
4.B.3 | 7479+3969+3201 4*4 block 53.7 0.8
4.B.4 | 7479+3969+3201 diagonal 39.3 0.8
Table 4.3: Parameters for store dynamics.
Eject force Mass Weight Ixx Iyy )
53416.71 Nt | 905.2 Kg 8880.0 Nt 27.13 488.28 488.28
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Fig. 4.1: Schematic for moving normal shock.
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G1 : global grid

G2 : overlapped grid.
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Fig. 4.4: Normal moving shock at t=0.7 for Case 4.A.3,
() pressure contours, (b) close up of shock corssing outer overlap boundary,
(c) velocity vectors of shock region crossing outer overlap boundary.
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Fig. 4.13: (a) Pressure contours at steady state for Case 4.B.3,
(b) close up of shock-interaction region.
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Chapter 5
UNSTEADY AIRFOIL FLOWS
5.1 Presentation of the Cases

In this chapter, D3T is demonstrated through a transonic flow past an airfoil, which

experiences a combined motion of pitching and plunging [55-56].

The demonstrative cases presented in this chapter are for an airfoil engaged in a
prescribed motion of pitching and plunging. The composite grid generated for these cases
is shown in Fig. 5.1. A stretched O-grid (117*29) is wrapped around the airfoil and
overlapped on a fine Cartesian grid (41*¥41). Then, the fine grid is embedded in a coarse
Cartesian grid (49*49), which is 24C by 24C. For convenience, the subdomain grids are
denoted as Gj, Gz, G3. The absolute frame of coordinates are defined in G; which is also
space fixed. G; and Gg are free to move relative to each other and G;. Grid G; is space-
fixed in order to accommodate a conceivably stationary component of a configuration; for
example, the aircraft in the case of store separation, or the ground in the case of low-
altitude flight. Also, G; is relatively coarser to cover the farfield with fewer cells.
Topologies of grids G, and Gz are nonsimilar. Grid G is needed for two reasons: first, it
is a relatively finer grid with cell sizes comparable to those of G; as needed by the
overlapping algorithm, hence a fine grid is used only where needed; secondly, grid G,
experiences only the plunge motion and the conservative information transfer between the

degenerate-zonally embedded G, and G is much easier than the overlapping algorithm.
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D3T is demonstrated through a transonic flow past an airfoil, which experiences a
combined motion of pitching and plunging. In order to establish the accuracy of the
method, however, three building block cases precede. The description of the

computational cases are given in Table 5.1.

5.2 Results and Discussion

The first case is the transonic flow past a sinusoidal pitching airfoil. This

prescribed motion is described by the following time function for the angle of attack,
a(t) = ag + oy sin(M..kt), (5.1)

where the amplitudes are 0,=4.86° and 0,=2.440. The reduced frequency is k=0.162
radians. Since an object with a simple geometry is engaged in a simple motion, this is a
good‘ benchmark case to consider in developing and testing all the time-dependent terms of
the governing equations for pitching. The flow domain is discretized by a single O-grid
which has a 24C diameter, where C is the airfoil chord. Shown in Table 5.2 are the
number of cells in this grid, computational time step size, number of computational steps
needed for one cycle of the motion, and microseconds of computer CPU time used to
simulate one cycle of the motion. Similar information for the other cases are also listed in

Table 5.2.

The same flow is simulated using D3T as the second case (Fig. 5.1). Grid Gj is
fixed to the airfoil, hence it is also pitched sinusoidally. However, grids G; and G are
fixed in space. The initial solution is obtained for the steady flow at =4.86° using local
time steps and the multigrid convergence acceleration. Then, the computations are
performed time accurately for three cycles. The results of the second and third cycles are

identical indicating that the periodic flow is captured. The solution for the first cycle is
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different than the following cycles, which indicates the onset of the boundary-motion-
induced flow. As expected, Case 5.2 requires more computer time than Case 5.1. The
extra time is mainly needed for the D3T connection and information transfer operations. A
small portion of this extra time is due to the decreased vector processing efficiency since the
subdomain grids of D3T (Case 5.2) have shorter data vector lengths than those of a single
global grid (Case 5.1).

There exist experimental surface pressure data [68] for a transonic flow past a

NACA-64A010, which goes through a cosine plunge motion described by,

X, = X, cos(2kt), (5.2)

where the amplitude is X3 ¢=0.02, and the reduced frequency is k=0.2 radians. The
quantity (2kt) is the reference angle. This flow is simulated here as Case 5.3 in order to
develop and test the time-dependent terms of the governing equations for plunging. The
composite grid for Case 5.3 is similar to that of Case 5.2. Grids G and Gg are fixed to the
airfoil, hence they plunge with the airfoil. Grid G; is still space-fixed. The local time steps
and the multigrid convergence accelerates, then the solution is obtained time accurately for
three cycles for the same reasons given for Case 5.2. The amplitude of this cosine

plunging is +0.02C. Some computational details for this case are given in Table 5.2.

Case 5.4 is the simulation of a transonic flow past an airfoil, which experiences a
combined motion of a constant-rate plunging and sinusoidal pitching, that is Eq. (5.1) with
@, = 0°. The upstream flow conditions are identical to those of Cases 5.1 and 5.2. The
rate of plunge, Mp, is determined as the vertical component of the freestream velocity

approaching at an angle of attack (Fig. 5.2),

M, = M..sin(0.,), (5.3)
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where 0t;=4.86°, which is equal to the value of o, (Eq. (5.5)) for Cases 5.1 and 5.2.
Therefore, the airfoil is plunged down 3.286 chord lengths during one cycle of the
sinusoidal pitching. The effect of constant-rate plunge in Case 5.4 is compensated by the
initial amplitude of the angle of attack (4.86°) in Cases 5.1 and 5.2. The flowfield of Case
5.4, therefore, differs from the flowfield of Cases 5.1 and 5.2 by only the plunge-motion-
induced flow component. All of the flows include the pitch-motion-induced flow

component.

The composite grid of Case 5.4 is identical to that of Case 5.2. Grid G, is again
space-fixed and grid Gj pitches sinusoidally. In addition, the assembly of grids G, and G3
plunges. The initial solution is obtained for the steady flow at a=0° using local time steps
and the multigrid convergence acceleration. Then the computations are performed time
accurately for two cycles (a=0°+2.44°, X3=0 to 6.56 C). Some computational
information for this case is given in Table 5.2. Since this case requires the largest number
of D3T operations, it is computationally the most expensive one. Case 5.1, naturally, does
not need any dynamic overlapped grid operations. Case 5.3 has static overlapped grid
operations and dynamic zonal grid operations. Case 5.4, however, has dynamic operations

for the zonal as well as overlapped grids.

The accuracy of D3T in simulating a flow past an oscillation airfoil is studied by
comparing the results of Cases 5.1 and 5.2, i.e. with and without using D3T, as well as
comparing with the experimental data. The instantaneous Mach number contours at
a=6.97°T (T indicates pitching up motion) of Cases 5.1 and 5.2 (Figs. 5.3-5.4) show
almost no detectable differences. The flow expands around the leading edge from the
stagnation point to form a supersonic pocket with a maximum Mach number of 1.45. The
supersonic pocket is terminated by a shock. The wake starts with a small separation region
on the upper surface close to the trailing edge and relatively lower Mach numbers are

visible in this region.
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Instantaneous surface pressure coefficients at angles of attack 6.57° 4, 5.11°4,
3.49° !, and 6.97° T for Case 5.1 and 5.2 are given in Fig. 5.5. The comparison is
favorable with the experimental data [69]. Also, the instantaneous surface pressure
coefficients at angles of attack 6.57° 1, 5.11°{, 3.49° 1, and 6.97° T for Case 5.4 are
given in Fig. 5.6 which can be a reference for Cases 5.1 and 5.2. The maximum and the
minimum C, values of all the instants are captured. Small discrepancies are observed in the
shock region. Variations of the lift coefficient with the angle of attack for Cases 5.1 and
5.2 are presented in Fig. 5.7a, and this type of figure for Case 5.4 is given in Fig. 5.7b.
This curve can be followed in a counterclockwise sense where the pitch-up and the pitch-
down are represented by the lower and the upper portions of the curve, respectively. The
CL values for o T and al are not equal to each other. This is due to the boundary-
motion-induced flow, which can only be captured by dynamic-body calculations. The
computed results agree well with each other and the experimental data. Some discrepancy,
however, is detected at higher angles of attack between the experiment and the
computations. This may be due to the boundary-motion-induced flow fluxes and the
numerical errors involved in their temporal and spatial representations across the
subdomain grid interfaces. The pitching moment coefficient is not given in this dissertation
due to the prior computational experience in [70]; it is anticipated that the present method
will not yield a good comparison for the pitching moment coefficient of oscillating airfoil

cases.

The flowfield of the cosine plunging airfoil at 320.1° reference angle
(X3=0.0153 T) are shown through its Mach number contours in Fig. 5.8. The leading and
trailing edge flows are almost symmetric with respect to the chord. - However, the flow
deviates from symmetry as the mid-chord is approached. The upper surface shock is closer
to the leading edge than the one on the lower surface. This is due to the boundary-motion-

induced flow which is gusting down on the upper surface as the airfoil moves up at this
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75
instant. The lift is positive for the plunge-down and negative for the plunge-up (Fig. 5.9).

The time derivative of Eq. 5.6 is a sine function and it is related to the boundary velocity.
Hence, the lift versus the time curve has the sine wave shape. A reference angle shift
(30.60 shift near 00 reference angle and 32.7° shift near 180° reference angle) is observed
between the forced motion and the lift values. This is due to the time lag between the
switching of the forced motion direction and its effect on the boundary-motion-induced
flow. This phenomenon is largely instigated by the inertia of the fluid particles resisting the
motion changes. Also, a finite amount of time is needed for the farfield to sense the

changes and adjust accordingly.

Shown in Fig. 5.10 are the instantaneous surface pressure coefficient distributions
for Case 5.3 at reference angles 45.8°, 116.6°, 183.3°, and 263.7°. Shock locations on
the upper and lower surfaces change with the motion. The upper surface shock is further
downstream than the lower surface shock for the plunge-down and it is further upstream
for the plunge-up. This can be explained with the help of Fig. 5.2. For example, a
plunge-down motion creates the effect of a positive angle of attack in the steady flow sense
(Figs. 5.10). Conversely, a plunge-up motion creates the effect of a negative angle of
attack (Figs. 5.8, 5.10a). This phenomenon is affected at reference angles where the
direction of the motion is changed, as a result of the initial reference angle shift (Fig.
5.10c). Computed Cp values agree well with the experimental values. Almost
consistently, however, the computed values slightly underpredict ahead of the shock and

overpredict downstream of the shocks.

The transonic flow past an oscillating and plunging airfoil is depicted in Fig. 5.11
through the instantaneous Mach number contours at & =2.11° T and X3=-0.544C. The
instantaneous effect of the plunge-down at Mp=0.0508 on the flow is somewhat similar to
a steady flow at 4.86° angle of attack. This can be observed by comparing Fig. 5.11 with

Figs. 5.3 or 5.4. Differences are observed on the upper surface half-chord downstream of
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the leading edge, which also leads to a small difference in the wake shapes. In comparing

Figs. 5.11 and 5.8, it can be seen, that the lower surface shock of the plunge motion does

not appear in the pitch-plunge motion.
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Table 5.1: Description of the unsteady airfoil cases.

Case | Airfoil M.. | Re. Motion Grid
5.1 | NACA-0012 [0.6 |4.8*106 Sinusoidal Pitch (Eq. 5.5) | Gs (no DDT)
5.2 |NACA-0012 (0.6 |4.8*106 Sinusoidal Pitch (Eq. 5.5) | G1, G2, G3
5.3 |NACA-64A10]0.8 |1.3*107 Cosine Plunge (Eq. 5.6) Gy, Gy, G3
Sinusoidal Pitch
(Eq. 5.5 with o, =0°)
(Eq.5.7)

Table 5.2: Computational details of the unsteady airfoil cases.

Case CPU time per CPU time Time step | Timesteps| Total
ta,,
step percell (LS) | percycle (—c') percycle | number
(min.) erid cells
5.1 18.0 14.6
5.2 22.2 17.9 0.01 6,464 7,475
54 30.6 24.7
5.3 26.7 10.5 0.005 3,142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77



Ll
R |

HQ

Fig. 5.1: Dynamic domain decomposition grid for an airfoil moving with two
degrees-of-freedom.
G : Global Cartesian grid
Gy : Fine Cartesian grid zonally embedded in G; for translational motion
G3 : O-grid overlapped on G for rotational motion.
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Fig. 5.2 Velocity diagram for an airfoil plunging down at a constant rate given by
Eqg. 5.7 (Case 5.4).
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Fig. 5.3: Mach number contours of a sinusoidally pitching NACA-0012 airfoil at
o =6.97T computed on a single O-grid (Case 5.1).

Fig. 5.4: Mach number contours of a sinusoidally pitching NACA-0012 airfoil at
o =6.97T computed on D3T grid (Case 5.2).
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Fig. 5.8: Mach number contours of a cosine plunging NACA-64A010 airfoil at 320,10

reference angle and x3 =0.0153 T computed on D3T grid (Case 5.3).
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Fig. 5.9: Lift coefficient versus the reference angle for one cycle of a cosine

plunging NACA-64A010 airfoil computed on D3T grid (Case 5.3).
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Fig. 5.11: Mach number contours of a sinusoidally pitching and constant-rate

plunging NACA-0012 airfoil at o =2.11° and Mp=0.0508 computed
on D3T grid (Case 5.4).
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Chapter 6

FLOW PAST AN OSCILLATING BODY OF REVOLUTION
NEAR A VERTICAL WALL

6.1 Presentation of the Cases

Some flowfields involve multiple bodies with at least one of the components in
relative motion with respect to the others. Due to the inherent dynamic interference, the
generated unsteady flowfield displays features which are significantly different than that
around a static body. With this motivation, this chapter presents the extension of the two-
dimensional D3T given in Chapter 5. This method aims at solving such three-
dimensional problems with a higher degree of accuracy. Time-dependent Jacobian
metrics are used to transform the moving physical domain to the computational domain.
As such, the method intends to achieve the following: (i) simulate the flowfield about
three-dimensional moving multiple bodies and their aerodynamic interference, (ii) reduce
the dispersion error which strongly affects the propagation of gasdynamic waves between
the objects, and (iii) reduce the phase error which accumulates with the numerical time

advancing procedure.

This time differencing formula (Eq. 2.12), with the appropriate choice of the
parameters W and v, produces first and second order time accurate implicit schemes [59-

60]. The three-point-backward formula, i.e. p=1 and v=0.5, is used for the present

computations.
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For the present applications, three-dimensional, overlapped and moving grids are
employed. The computational method is demonstrated by considering a secant-ogive-
cylinder (SOC) defined in Fig. 6.1a. The cylinder is placed 4 diameters (d) away from a
vertical wall in order to form a multiple body configuration and it is forced to pitch in a
plane (X-Y) parallel to the wall (Fig. 6.1b). Prior to presenting the demonstrative cases,
however, the adequacy of the grid shown in Fig. 6.1b needs to be established.
Unfortunately, accurate and reliable experimental data for the dynamic SOC (Fig. 6.1a)

could not be found for the validation.

Three cases are reported in the present thesis (Table 6.1). The cylinder is kept
stationary in the first case, so that a means of contrasting the dynamic effects is
established. The second and third cases are designed to investigate the unsteady
flowfields generated by the cylinder experiencing the prescribed pitching motion. This

forced motion is described by the following time function of ot
oft) = g + oysin(ke) 6.1)

To study the effect of the flow regime, the freestream is chosen to be subsonic in the

second case and it is supersonic in the third case.

The composite grid consists of two subdomains (Fig. 6.1b). The cylinder
subdomain is discretized by a C-O grid, which is 7 diameter , 30d long, and its local
origin is 4d away from the vertical wall. The wall subdomain is discretized by a stretched
Cartesian grid, which has a length, width, and height of 41d, 30d and 30d, respectively
(Fig. 6.1b). Then, the C-O grid is overlapped on the Cartesian grid. There are 70*31%21
points in the C-O grid and 65*40*58 points in the Cartesian grid (Fig. 6.1b). To study
the grid dependence of the solution, a much finer grid is also constructed with 97%41%28
points in the C-O grid and 88*54*78 points in the Cartesian grid (Table 6.2). As can be

discerned from Fig. 6.2, Case 6.1.b solution is sufficiently close to the one obtained on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89



the finer grid of Case 6.1.a, yet it is obtained at a much lower computational cost. Since
this cost difference would be prohibitive for the unsteady, dynamic cases, where the
calculations must be performed time accurately, Cases 6.2 and 6.3 are computed on the

grid with 196,370 cells.

Shown in Table 6.2 are some of the computational details. The normalized CPU
time (CPU per time step per cell) for Case 6.2 is greater than that of Case 6.1. Most of
this extra time is needed for the time-dependent D3T connectivity and information

transfer operations, and a small portion of it is for the rigid-body-motion computations.

In Case 6.2, the grid and the freestream flow conditions are identical to those of
Case 6.1, but the cylinder as well as its C-O grid are forced to pitch sinusoidally.
Therefore, the converged solution of Case 6.1 is used as the initial conditions for Case
6.2, then the computations are performed time accurately for two cycles. The solution for
the first cycle is discarded to reduce the effects of the numerical transients on the final
solution. In addition, some of this first cycle time is needed for the cyclic boundary-
motion-induced flow component to develop. That is, due to the inertia of a fluid particle,

its response to the rigid-body-motion requires small amount of lag time.

6.2 Results and Discussion

The converged solution for the steady flow past the static SOC (Case 6.1) is
obtained using local time steps with the global Courant number limited to unity. Shown
in Figs. 6.3a and 6.3b are the normalized pressure contours on the vertical wall and the
symmetry plane of the cylinder, respectively. It can be observed, that only minor
aerodynamic interference between the two objects is present with the maximum p' value

of -0.006 occurring on the wall. The subsonic flow is initially compressed on the top
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surface, then it gradually expands toward the tail of the cylinder. An expansion wave can

be seen on the bottom surface being terminated by a weak shock.

The normalized pressure contours of Case 6.2 at 7.5°T angle-of-attack are shown
in Figs. 6.4a and 6.4b. To facilitate some qualitative comparison between Figs. 6.3 and
6.4, they are plotted for the corresponding planes at the identical locations. The
maximum p' value of 0.05 can be observed on the wall (Fig. 6.4a), which is an order of
magnitude greater than that of the stationary cylinder at the same angle of attack. Also,
the gas dynamic compression and expansion regions are switched in their locations as
compared with Case 6.1. The shift in the contour locations (Fig. 6.4b) toward the far
field indicates the formation of a lower pressure zone between the two objects. This may
be attributed to the interference as well as the increased relative speed between the

moving cylinder and the flow [56-57].

The aerodynamic coefficients for Cases 6.1 and 6.2 are presented in Figs. 6.5a and
6.5b. Note that the definition of all the aerodynamic coefficients follow the right-hand-
rule. Cp and Cy are defined to be along and perpendicular to the cylinder axis,
respectively. Cpp is in the plane parallel to the vertical wall (X-Y), and Cry is in the X-
Z plane.

The computed aerodynamic coefficients are very close to zero for the static
cylinder in Case 6.1. However, for the dynamic cylinder in Case 6.2, Cj is always
greater than zero and displays peaks at the upper and lower extremes of « (Fig. 6.5a). Cn
does not appear to be proportional to ¢, but it rather displays sudden changes near the o
value at which the pitching motion transitions to the opposite direction. Note that as the
cylinder pitches up from 0° to 159, Cy remains negative, but suddenly changes its sign at
159, which corresponds to the peak value of C4. A similar phenomenon is observed

during the pitch-down motion.
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Cmp corresponds favorably to the cylinder's pitching motion (Fig. 6.5b). For
example, when the cylinder pitches up from -20 to 179, Cpp is always negative. This
indicates that the aerodynamic forces are assisting in raising the cylinder's nose up with
respect to oscillation center. The Cmy history displays only minor fluctuations
throughout the cycle and it only takes negative values. In other words, the cylinder’s

nose is constantly pushed in towards the vertical wall.

The same subdomain grids and connectivity information used for Case 6.2 are
also used for Case 6.3, where the freestream flow is supersonic. Again, computations are
performed time accurately for two cycles. Shown in Figs. 6.6a and 6.6b are the
instantaneous normalized pressure contours at 17.30 T which are plotted at exactly the
same planes as those for Cases 6.1 and 6.2. Shown in Fig. 6.6b is the cross section of a
three dimensional conical shock attached to the cylinder tip. The shock is weaker along
the upper surface and stronger along the lower surface of the cylinder. The flow expands
around the cylinder's base. Comparing Figs. 6.6a and 6.6b, it can be seen that the conical
shock generated at the nose of cylinder impinges on the vertical wall. The pressure
values on the wall are almost proportional to the strength of the shock about the cylinder,

that is, weaker above the cylinder and stronger below the cylinder.

The aerodynamic coefficients for Case 6.3 are shown in Fig. 6.7. Cj is always
positive with a maximum between 4° and 8° during the pitch-up motion. Cn remains
positive during the pitch-up motion, but suddenly becomes negative during the pitch-
down motion. The pitching moment corresponds favorably to the cylinder's pitch-up
motion. During the pitch-down motion, such a favorable correspondence is observed
from 12.5° to 17.5° and from -2.5° to 1.0°. Unlike the subsonic flow of Case 6.2, the
yawing moment is zero for the entire motion of Case 6.3. This is predominantly due to
the fact that the nose shock reflecting off the wall impinges on the sting and not on the

cylinder. Since the force calculations are performed for the cylinder only, and since the
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upstream is not affected by the downstream in inviscid, supersonic flows, the yawing

moment is not influenced by the interference occurring in Case 6.3.

Shown in Figs. 6.8a and 6.8b are the instantaneous normalized pressure contours
at 17.391 which are plotted at the same planes as those of Figs. 6.6a and 6.6b. They are
intended to show the differences in the response of the flow to the pitch-up and the pitch-

down motions of the cylinder.

Comparing Figs. 6.6b (pitch-up) and 6.8b (pitch-down), it can be observed that
the stronger shock located along the bottom surface during the pitch-up motion is
switched to the top surface during the pitch-down motion. The higher pressure values
along the bottom surface seen in Fig. 6.6b generate the positive normal force seen in Fig.
6.7. Conversely, the pitch-down motion (Fig. 6.8b) causes a negative normal force. The
shock interference between the two bodies can be observed from Figs. 6.6a and 6.8a.
During the pitch-up motion, the stronger shock is located along the bottom surface, which
in turn impinges on the vertical wall. Hence, the higher pressure values can be seen on
the lower portion of the wall in Fig. 6.6a. However, during the pitch-down motion, the
stronger shock is along the top surface, which causes the higher pressure values on the

upper portion of the vertical wall (Fig. 6.8a).
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Table 6.1: Description of the computational cases

Case Mode M. | o o k o(Hz)
6.1.a,6.1.b Static 0.7 0 0 0

6.2 Pitching 7.50 0.3 36.5

6.3 1.8 10.00 0.2 62.6

Table 6.2: Computational details
Case | Grid Size | CPU time per CPU time per | timestep | time steps
step per cell (us) cycle (hr.) (ms) percycle

6.1.a | 482,012 14.0 n/a n/a
6.1.b 04
6.2 | 196,370 164 46.8 52,360
6.3 70.0 78,540
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Fig. 6.1: (a) Geometric definition of the secant-ogive-cylinder (SOC).
(b) Composite grid for SOC near a vertical wall,
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Pressure Coefficlent

Distance, x

Fig. 6.2: A grid refinement study for Case 6.1. Pressure coefficient distributions along
the top and the side of the cylinder using a finer grid (Case 6.1.a) and the
regular grid (Case 6.1.b)
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Fig. 6.3: Normalized pressure contours for Case 6.1.b:
(a) on the wall (footprint),

(b) on the symmetry plane of the static cylinderat o =7.5° .
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Fig. 6.4: Normalized pressure contours for Case 6.2 during the pitch-up motion at
a=7.5T:
(a) on the wall (footprint),
(b) on the symmetry plane of the sinusoidally pitching cylinder.
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Fig. 6.5: Aerodynamic coefficients versus the angle-of-attack for one cycle of a
sinusoidally pitching cylinder for Case 6.2:
(a) force coefficients,
(b) moment coefficients.

Positive Cmp and Cy push the nose down and away from the wall, respectively.
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Fig. 6.6: Normalized pressure contours for Case 6.3 during the pitch-up motion at
a=17.3°T:
(a) on the wall (footprint),

(b) on the symmetry plane of the sinusoidally pitching cylinder.
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Fig. 6.7: Aerodynamic coefficients versus the angle-of-attack for one cycle of the
sinusoidally pitching cylinder for Case 6.3.
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(b)
Fig. 6.8: Normalized pressure contours for Case 6.3 during the pitch-down motion at
a=17.3°4:
(a) on the wall (footprint),

(b) on the symmetry plane of the sinusoidally pitching cylinder.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7
STORE SEPARATION FROM A WING
7.1 Presentation of the Case

The present wing/store (WS) configuration is simplified from the
wing/pylon/fin/store configuration reported in [17, 34]. It consists of a clipped delta wing
with a 45-degree leading edge sweep and a NACA-64A010 airfoil section and directly

below this wing is an ogive-cylinder-ogive store (Fig. 7.1).

The governing equations are simplified from the thin-layer Navier-Stokes
equations to the Euler equations in order to save the computational time and computer
memory via the inviscid grids. The grid is generated for the transonic (Mach number of
0.95) and inviscid flow. The boundary conditions in the wing root is using symmetry
plane. Two cases are demonstrated in this chapter. Case 7.2 consists of two subdomains
that contain approximately 0.36 million grid points, and that are interconnected through
grid overlapping (Fig. 7.2). The first grid is conformed to the wing and has a C-O
topology. This grid serves as the global grid and it extends 95 units (store diameter is
used as the unit length) upstream, 104 units downstream, and 45 units outboard of the
store nose. The second grid is an O-O grid about the store. Upstream, downstream and
radial outer boundaries are located at 4.0, 9.2, and 2.5 units from the nose of the store,
respectively. For Case 7.1, an intermediate Cartesian grid is added into the Case 7.2,
which increased the total number of grid points to 0.5 million. The purpose of this 3-grid

design is to study the effects of multiple sets of interpolation on the temporal error.
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The proper lines of communication between these two or three overlapped grids

are established using the overlapped scheme [13-22]. This procedure is carried out by the
computer code MaGGiE [13-22]. Due to extensive overlapping, care must be taken to
ensure that all points falling within body boundaries are removed from the computational
domain. The removal of these points creates three-dimensional hole boundaries in the
wing and store grids. Furthermore, around holes created for another body and the outer
boundaries of the overset grids, i.e., the store and the interface grids, intergrid
communication takes place through a trilinear interpolation of the required boundary
conditions from the solution of a neighboring grid. The points around hole boundaries
that receive this interpolated data of Case 7.2 are depicted in Fig. 7.3 for the wing and
store grids when the store is in the initial position. For this position, the domain
connectivity takes 4.5 seconds on a Cray Y-MP computer and results in 8,228 points
needing interpolation data for Case 7.2. However, it takes 20 seconds and results in

45,000 points needing interpolation data for Case 7.1.

As mentioned in Chapter 4.1.3, the grid speed is a factor which affects the
accuracy of overlapped scheme. Case 7.1 substantiates this fact. Although the overlaid
fringe points which belong to different meshes are not desirable [1], it is impossible to
avoid this difficulty in certain cases. Therefore, Case 7.1 is a demonstration of how the

temporal interpolation error affects the overlapped scheme.

7.2 Results and Discussicn

Table 7.1 contains some of the parameters related to the dynamics of the store
being dropped. An ejection force is added for the current drop case, because the initial

aerodynamic lift (Cy) turns out to be greater than the weight.
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Both cases are started from the initial freestream conditions and the computations
are marched with pseudo time steps to obtain a converged solution for a steady state flow.
The pressure contours for Cases 7.1 and 7.2 of the flowfield when the store is at its initial
position are presented in Figs. 7.4 and 7.5, respectively The freestream impinges on the
nose of the store and the leading edge of the wing, then it gradually expands to supersonic
speeds along their surfaces. Shocks are observed on all the surfaces near their trailing
edges. The stagnation points on the wing and store are shifted towards each other, and
behave like a channel flow. The upper surface shock of the store reflects from the lower
surface of the wing and merges with the shock originating at the lower surface of the
wing. Note that all the contours pass through the subdomain interfaces smoothly. Also,
it can be observed from Figs. 7.4 and 7.5, that there is almost no difference for these two

steady state contours.

The computations are continued with physical time steps, and the initial time step
(At) is 0.0002 with the corresponding maximum CFL number as 0.6. The pressure
contours of Case 7.1 after 5 time units are given in Fig. 7.6. It is noticed that the shock
emanating from the trailing edge of the wing passes the interpolation boundary, but then
it splits into two directions, which is obviously a numerical error in this case. However,
Case 7.2 does not have this type of error and can be continued for further simulation. The
only difference between Cases 7.1 and 7.2 is the intermediate subdomain grid, and both
cases have almost the same steady state solutions. Hence, it is concluded that the split
shock phenomenon of Case 7.1 is due to the temporal interpolation error, which is caused
by the discrepancy in the eigenvalues (Section 4.1.3 and Eq. (4.4)). It is pertinent to
highlight that the number of degrees of freedom in the present cases is greater than those
of the cases studied in Chapter 4 and, consequently, the differences of the characteristic

wave directions are more pronounced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105



106
The instantaneous pressure coefficient distributions on the store surface for Case

7.2 are shown in Fig. 7.7. They are plotted when the nondimensional time is zero and 46.
It can be seen that the pressure difference between the upper and lower surfaces after 46
time units of dropping (Fig. 7.7a) is much smaller than the initial difference (Figs. 7.7b).
This is mainly attributed to the pitching down (negative angle-of-attack) of the store that
results in elevated lower surface pressures. Also, the increasing clearance between the

store and wing produces less of an interference flow effect.

Comparing the four off-surface pressure contours of Case 7.2 (Figs. 7.5a, 7.8a, b,
and Fig. 7.9a), it can be observed that the interference shock that emits from the tail of the
store has a time-varying effect on the wing. In Fig. 7.8a (33 time units), the upper surface
shock of the store impinges on the lower surface of the wing, then reflects down and
merges with the shock originating at the lower surface of the wing. However, the
reflection and merged positions in Fig. 7.8a are closer than Fig. 7.5a. In Fig. 7.8b (69
time units), the upper surface shock of the store is almost overlaid with the shock
originating from the lower surface of the wing at the tail region, and both of them merge
immediately. The tail shock of the store in Fig. 7.9a (105 time units) merges with the
lower surface shock of the wing and does not impinge on the wing. Consequently, the

strongest interference can not be observed in Fig. 7.9.

The 6-DOF trajectory computed in Case 7.2 for the store's center of gravity is
shown in Figs. 7.10. The translational motion is mainly in the streamwise and downward
directions, but a small displacement also occurs toward the wing root. The store's nose
pitches down with a gradual yawing toward the wing root. The sideway motion and
rolling are not expected to be significant for this axisymmetric store despite some non-

symmetry of the wing flowfield in this direction (wing tip effect).

The force and moment coefficients (global frame of reference) computed for Case

7.2 are shown in Fig. 7.11. It can be noticed that the axial (Cx) and lift (Cy) forces are
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decreasing in time, hence, the downward and downstream accelerations are decreasing.

But, the outboard (Cy) force is increasing from negative value towards zero. Then, it may
be concluded that the inboard acceleration is decreasing. From Fig. 7.11b, the rolling
moment (Cmy) is constantly zero, the reason can be attributed to the symmetric geometry
of the store. The yawing moment (Cmy) gradually increases in time, and consequently,
the store nose tilts towards the outboard. The pitching moment (Cpyz) slightly decreases

first, but then it increases; however, the store is always pitched downward.

The three-dimensional unsteady simulation is very expensive and therefore
efficiency is also as important as accuracy. In order to reduce the computational work,
the diagonal inversion method is used in this case that can save approximately 35% CPU
time compared with the block inversion method. Also, the maximum CFL number of this
case has been increased up to 15 despite the associated time inaccuracies. This case

requires 46 hours on a Cray Y-MP.
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Table 7.1: Parameters for Store Dynamics

F 1eiect

w1l

m2

I31’01]

I3Ditch

Pyaw

1.456

0.243

35,636.250

653.822

11,770.313

11,770.313

1 normalized by p,a2d2.

2 normalized by p,d>.

3 normalized by p.d°.
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Fig. 7.4: Pressure contours for Case 7.1 at steady state,
(a) on the upper surface, (b) on the lower surface,
() off surface for the wing and store through the mid-span plane.
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Fig. 7.5: Pressure contours for Case 7.2 at the steady state.
(a) off surface for the wing and store through the mid-span plane,
(b) on the upper surface of the wing,
() on the lower surface of the wing.
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Fig. 7.8: Off surface pressure contours for Case 7.2 through the mid-span plane at
(a) 33 time units, (b) 69 time units.
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Fig. 7.9: Pressure contours for Case 7.2 at 105 time units,
(a) off surface for the wing and store through the mid-span plane.
(b) on the upper surface of the wing,
(c) on the lower surface of the wing.
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Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions on Accuracy Demonstration Cases

Initially, several error reducing measures were studied and compared with the exact
solution of a moving normal shock in a tube. It is concluded that at least a second-order
accurate method is needed not only spatially but also temporally. For decomposed
computational domains, second-order accuracy is also needed for the intergrid
interpolations. This is accomplished, for the present upwind-biased scheme on static and
dynamic overlapped grids, using two sets of fringe points. It is also concluded that, to
retain the numerical accuracy of unsteady computations, the CFL numbers should be

limited to unity, particularly when an alternating-direction-implicit method is used.

The diagonal inversion method is about 1.5 times faster than the block inversion
method, and an acceptable solution still can be obtained for unsteady flow with moderate
gradients. Hence, the diagonal inversion still has its value for a class of unsteady, moving

boundary problems.

The 6-DOF trajectory method is validated through a three-dimensional store
separated from a wing case. The computational data show good agreement with the
independently obtained results used for the experiments. However, it should be noted that
the experimental data provided in [67] is quasi-steady, and this should contribute to the

mild discrepancy in the predicated pitching angles.
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8.2 Conclusions on Unsteady Airfoil Cases

A method is developed to simulate computationally an unsteady flow past an object
engaged in a complex motion. The method employs a composite of subdomain grids,
where each subdomain grid can engage in a different type of motion. The composite grid
can be a hybrid of degenerate zonal and overlapped grids. The flow equations are solved
using the time dependent generalized coordinates in the absolute frame of reference. The

absolute values of the primitive variables are transferred across the grid interfaces.

D3T is demonstrated through three transonic flow simulations. The results compare
favorably with the experimental data as well as the computations without using D3T. The
extra work for the information transfer between subdomains and the reduced data vector
lengths due to D3T increase the CPU time by 23 to 70 percent over a single grid approach.
Numerical errors can be further reduced by; (1) a judicious hybridization of D3T, whereby
the weaknesses of each method are optimally avoided, (2) decreasing the time steps, (3)
refining the grids at the subdomain interfaces, and (4) more frequent updating of the

intergrid information.

Simulating the flowfield with the objects in motion, as opposed to a series of
solutions where the objects are frozen instantaneously (static), gives more accurate results,

captures the boundary-motion-induced flow component, and is more efficient.

8.3 Conclusions on Oscillating Cylinder Near a Vertical Wall Case

A three-dimensional method is developed to computationally simulate an unsteady
flow past multiple bodies engaged in a relative motion. The method employs a composite

of subdomain grids which are independently generated. The flow equations are solved
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using the time dependent, generalized coordinates in the absolute frame of reference. The

values of the primitive flow variables are directly transferred across the grid interfaces.

The D3T is demonstrated through the three-dimensional subsonic and supersonic
flow simulations of a cylinder pitching sinusoidally in the proximity of a vertical wall. An
advantage of D3T is that each subdomain and its local origin can be defined independently.
As such, this method has the capability to resolve the aerodynamics of various unsteady

problems involving the relative motion of multiple bodies.

The demonstrative results for a subsonic case indicate a strong interference between
a pitching cylinder and a static wall. For a supersonic case, the reflected shock wave does
not interact with the cylinder, but it impinges on its sting at the distance it is positioned
from the wall. The aerodynamic coefficients of the dynamic cylinder differ significantly
from those of the static cylinder. Therefore, it is concluded that performing a number of
sequential steady-state computations would not yield adequate results for an unsteady

flowfield around an object in relative motion near another object.

8.4 Conclusions on Three-Dimensional Store Separation From a Wing

The method is used to simulate the flowfield history and predict the
aerodynamically determined trajectory of a store dropped from its initial position under a
wing. The resuits indicate that the unsteady CFD algorithm, dynamic overlapped grids, and
the rigid-body-dynamics algorithm work well in concert to produce the unsteady solution

of a complex, three-dimensional problem involving a relative body motion.

The temporal interpolation error has been detected by a carefully designed case.

This type of error causes the phase shift which severely affects the numerical solution.
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However, there are no effective ways at the present time to reduce this error other than

avoiding the overlaying of fringe points of different subdomains.

There is no experimental data to validate these computational results. It should be
noted that a fair amount of interference motion (about 2.8 store diameters) is obtained.
Therefore, the computational results of the store trajectory should indicate that the unsteady
CFD algorithm, dynamic overlapped grids, and the rigid-body-dynamics algorithm work
well in concert to produce the unsteady solution of a complex, three-dimensional problem

involving relative body motion.

8.5 Recommendations for Futuore Work

The D3T has been demonstrated to be a very powerful CFD method. However,
there are several options that can further extend the capability of D3T. They are listed as

follows.

1. 'Smart search’ (Section 1.1.2) for connectivity can increase the efficiency of the moving

overlapped grid connections.

2. The current research is focused on rigid-body problems with non-deforming grids;
however, this assumption does not hold for aeroelasticity problems. Therefore, the
GCL (Section 2.5) can be incorporated into D3T for deforming grid problems in order

to resolve the aeroelasticity problems.

3. Grid adaptation method [36,71] can further optimize the point distributions for D3T,

hence, it should be incorporated..

4. Extend zonal grid method for moving boundary problems. Zonal grid method is a

conservative interpolation algorithm, however, it requires the common interface
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between connective subdomains. This method can broaden the options of D3T by

removing the restrictions of the degenerate zonal method.

5. Study conservative interpolation algorithms for overlapped grids. The current
overlapped grid method is nonconservative, hence, it allows loss or gain of numerical

fluxes across the overlap boundary. Hence, there is a need for a conservative feature.

6. Establish the parallel processing of for D3T. DDT’s have the feature of being easily
employed in parallel processing. Hence, the D3T also can be adopted to the parallel

processing with minimum effort and greatly increasing the efficiency.

7. More comprehensive studies of the temporal interpolation error associated with D3T are

needed.
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Appendix A
CFD Selution Method
A.1 Finite Velume Formulation

The reason that the equations of fluid flow are solved using finite volume method is
that this method begins with the integral equations, the solution obtained using this
formulation satisfies the integral conservation law of mas, momentum, and energy. Hence,
it retains good accuracy in the presence of flowfields with large flow gradients, such as

shocks and contact surfaces.

The governing equations are written in a finite-difference form. However, the
equations are solved with the finite-volume scheme the fluxes passing the face of each cell
are summed. Any appropriate pressure area terms acting on the faces are added. Then,
the result is equated to the time rate of change of the conserved quantity in each respective

cell volume. The state variable Qjj k is an approximation to the average state in the cell

[72] as

Quix = o lBS RS LA Qe 2.8 ey @

where AV is the cell volume.

The finite-volume differencing of the fluid flow equations (Eq. (2.2)) is formulated

by integrating them over a control volume

% fyQdV + §E - fids = 0 (A2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132



where V(1) is the cell volume and fi ds is a vector element of surface area with outwardly

normal fi. The flux E can be decomposed into the flux in the stationary frame Egt and

the contribution due to surface element velocity v as
E=Ey-7Q. (A3)

For Eulerian frames, V is equal to zero. Surface integrals are written as the sum of the
contributions from six faces of the hexahedron cell. Applying Eq. (2.2) to each cell of the

computational domain and the resulting semi-discrete finite-volume form is

) [(El)ii—é © )t + [(E2>j+i & 2(E2>j_§] + [(&)H;A; (E)] s

where A§ = An = A = 1 for computational domain. Also Qjj k represents the conserved

variables at the cell center and the fluxes are evaluated at the six cell surfaces.

A.2 Upwind Differencing and Flux Difference Splitting

The inviscid fluxes and the temporal term of the Euler equations form a hyperbolic
differential equation system. Upwind space discretization methods model the characteristic
nature of these equations in that information at each grid cell is obtained from directions
dictated by characteristic theory. The naturally dissipative nature of upwind schemes has
made them a prevailing alternative to the central difference scheme, for which artificial
dissipation terms are generally needed to overcome oscillations or instabilities arising in

regions of high gradients.

In this study, Roe's flux difference splitting is used to construct the upwind
differences for the convective and pressure terms. This method accounts for different

waves by which neighboring cells interact, including entropy and shear waves. The
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amplitude and propagation speed of these waves are determined by solving the approximate

Riemann variables. However, directions of these waves are assumed normal to the cell
surface which makes the scheme grid dependent. The Roe's scheme [50] seeks the exact
solution to this approximate equation and distinguishes between the influence of the
moving waves. For the initial condition, the one dimensional hyperbolic governing
equation can be approximated as

0Q - 0
§Q+A(QL,QR)-B%=O,

R (01 for& <0
Q(é’t—o)_{QR for £>0

(A.5)

During the time marching procedure, the conserved variables are updated subsequently.

The interface flux is written as the exact solution to an approximate Riemann problem

E 1= %[E(qL)+E(qR)—|AI(QR—QL)]H% : (A.6)

1
i+—
2
Matrix A is formed from matrix A evaluated at Roe-averaged variables. Hence
A = |a(@)] ¢ Q= QQL.Qx)

A monotone upwind-centered scheme for conservation laws (MUSCL) approach is used to
construct the interface flux (Eq. (A.6)). For the primitive variables q, the higher order

accurate differencing is defined by

0
(o
oyl
+
|
!

= q;+ {%[(1 -K)V+(1+ K)A]} (A7)

1

1+1

R - .1 -
(‘1 )i% = Qix { 4[(1+'<)V+(1 K)A]} (A.8)

where
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(A)=au-q » (V),=q~qq (A9
1, central difference
and  K=11{ ., third- order upwind - biased.

The flux limiting algorithm is employed at this scheme to capture the high flow gradients
without numerical oscillations. In this study, the minimum-modules limiter [73] is used to
maintain monotonicity, where

A, = max[0,min(A,sgnA_, BA_sgnA,)]sgnA,

A_ =max[0,min(A_sgnA,, BA,sgnA_)]sgnA_ (A.10)

3-x)
(1-x)

7~

B:

A.3 Approximate Diagonalization Inversion

Pulliam et al. [51] proposed a modification for the Roe's flux-difference split
scheme that allows spatial factors in each direction to be approximated with a diagonal

inversion. This results in a significant saving in the computational time and memory,

For hyperbolic flow governing equations, the flux Jacobian Aj has real eigenvalues

and a complete set of eigenvectors. Therefore, the Jacobian matrices can be linearized and

diagonalized as
A=2E _TAT = T(A+ + A')'r1 (A.11)
0Q
where
+
A= A; A (A.12)
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T and T-1 are the right eigenvectors of A and its inverse, respectively. The diagonal matrix

A is the matrix of eigenvalues of A, i.e.
A=diag(A;, Ay, A3, Ay, As5) (A.13)

where

Ov
ll,}\.z,lg = ——IJ_—él

Ay = (U_'*'f)l_'ﬂ (A.14)
(0- 3)|vE|

As 7

Il

where J is the Jacobian transformation matrix, a is the freestream sonic speed, and U is the
contravariant velocity normal to the cell interface. The spatial flux, for example in the one-

dimensional sweep as Eq. (2.20) can be approximated as
[I +hy8, A ]AQ** =Ty [1 +hySy AI]TE}AQ” +B(AL2) (A.15)

A

where h; = R
\%

With further decomposition, the sweep then becomes
Ta [I +h Gp AT +3HAT )](Tg}AQ**) =-T}(RH.S.). (A.16)
Due to the repeated eigenvalues ( Aj=A;=A3 ) , only three scalar tridiagonal LU

decompositions are required for each line. Then, the tridiagonal matrix equation can be

written as

i

(A.17)

_AF (Mi_}é’Qi—l)(T_l AQ“)i—l + [IA*(Mi+ %,Qi) -A (Mi_ %,Qi )](T‘IAQ** )

+A-(Mi+}é’Qi+l)(T—IAQ**)M = 'Til(R'H'S')’
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The matrix terms M and the state variables Q are evaluated at the cell interfaces and cell

center, respectively. The diagonalization of Roe's flux-difference splitting does affect the
time accuracy (the error term in Eq. (A.15) is ﬁ(Atz)) of the algorithm. It reduces the
scheme to, at most, first-order in time and gives time accurate shock calculations a
nonconservative feature [51], i.e., error in shock speeds and shock jumps. However, the
steady-state solution is fully conservative because the steady state equations (RHS) are
unmodified. Also, computational experiments have shown that the convergence and
stability limits of the diagonal algorithm are essentially identical to that of the unmodified
algorithms.
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Appendix B
Overlapped Grid Method

The overlapping scheme involves the automatic connection of multiple, overset
grids, and the use of different solution procedures for different subdomain grids. The
overlapping scheme is one in which a major grid covers the entire flow region, and minor
grids are then overset on the major grid to resolve secondary features of the configuration.
The minor grids are fully or partially overlapped without, requiring the mesh boundaries to
join in any special way. Communications between the major and minor grids occur within
the overlap regions. The overlapping method has been successfully demonstrated on many

geometries for inviscid and viscous flows.

To obtain a logical sequence of grid communications between overlapped grids, a
form of grid hierarchy is needed. An order of hierarchical form between the grids allows
the interaction of appropriate grids, simplifies the development of the data structure
required for this interaction, and limits the search to locate points in other grids for the
purpose of interpolation. Shown in Fig. B.1 is an example of such a hierarchical grid
arrangement. The basic algorithm of overlapping/embedding scheme [1] is highlighted as
follows: (1) establishing the proper lines of communication among the grids through
appropriate data structure; (2) constructing holes within grids (Fig. B.2); (3) identifying
points with holes and illegal zones (Fig. B.3); (4) locating points from which outer and
hole boundary values can be interpolated (Fig. B.4); (5) evaluating interpolation

parameters.
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The key process is the trilinear interpolation used in the intergrid communication of
conserved or primitive variables. A simple example is illustrated as follows. Given a
fringe cell in Gy, and the corresponding target cell in G141, a search is then conducted to
locate seven other cells in Gy, near the target cell. The objective is to form a hexahedron
that has the seven cell centers and target cell as the vertices, such that the hexahedron
includes the fringe cell of G;. The information is transferred from the eight cells, that
define the vertices of the interpolation cell of Gy, to the fringe cell of G; using trilinear

interpolation. The transformation/interpolation equation is written as

Q = a; + a8 + agn + af + askn + agkl + a;ml + agfnl (B.1)

where aj, i=1,....8 are coefficients depending on the values of Qj at the vertices of the unit

cube:

a = Q

a3 = -Q; +Q
a3 = -Q; + Qq
ag = -Q + Qs

as = Q1 -Q +Q3- Q4
a6 = Q1 - Q- Qs + Qg
a7 = Q1 -Q4-Qs+ Qg
ag =-Q +Q2-Q3 + Qs +Qs - Qs + Q7 - Qg .

(B.2)

The trilinear interpolation can only be used on cubes. Hence, each interpolation cell
containing a fringe cell at which a function value is to be interpolated is mapped to a unit

cube using an isoparametric mapping. The isoparametric equations mapping the

interpolation space to the physical space is given by

X =34, (B.3)
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The values for &, m, and { corresponding to the fringe cell are determined iteratively by
applying the Newton’s method of locating roots of a set of algebraic equations. The

system of algebraic equations (B.3) can be written in the following form,

X = G(& n, ¢) = G[E)
~ e B.4)
R = G(@) -X =
Newton’s method gives
ol — Eo _ [Mﬁj]-l f:(x, g)“ (B.5)
for each iteration, where
JF;
M;; = — (B.6)
1) agj

Overlapping/embedding method gives the most freedom for grid generation task,
however, there are several drawbacks of this method : (i) the technique requires an overlap
region between subdomains, which may not always be easily available; (ii) the accuracy of
boundary data transfers depends on the interpolation procedure, whether it be conservative
or nonconservative; (iii) the accuracy and convergence speed of the solution depend
indirectly on the degree of overlap of the grids relative to the size of the subdomains. It
should be noted that the overlapping scheme uses the nonconservative trilinear interpolation

approach for intergrid communication.
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Fig. B.1: Hierarchy ordering for intergrid communications.
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Fig. B.2: Sketch of an initial composite mesh hole boundary surface.
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Fig. B.3: Sketch of hole search method.
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Fig. B.4: Sketch of the hole and outer boundary of a composite mesh.
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