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ABSTRACT

A SUBSTRUCTURING TECHNIQUE WITH 
APPLICATION TO SPOT WELD PLACEMENT DESIGN

Yang Wang 
Old Dominion University, 2001 

Director: Dr. Gene Hou

It is quite common in the industry to use various interface methods, such as weld

ing, fasteners, bolts, adhesive bonding, etc., to join substructures together. The quality of 

the assembled structure is directly related to the type of the interface methods used in the 

manufacturing process. Thus, it is important to include the interface conditions as part of 

design variables in any design process. To this end, this work develops a reanalysis 

method that can efficiently analyze structures with variations on the interface conditions. 

This reanalysis method is based upon a new two-step substructuring technique. The first 

step performs substructural level analyses for each of the isolated substructures. Any com

mercially rated structural analysis code is allowed to be used in this step. The results of the 

first step are then used to form a reduced order matrix equation in terms of the interface 

reactions. Once the interface reactions are calculated, the displacements and stresses in 

each of the substructure can be conveniently calculated. In this proposed method, only the 

reduced order matrix equation in Step 2 is required to be resolved for structures with dif

ferent interface conditions.

The first part of the work will discuss the derivation and implementation aspects of 

the substructuring technique. Later, the technique is used to support a simple genetic 

algorithm for placement design optimization of spot welds. Assessment of the proposed 

method via numerical study is summarized at the end of the dissertation.
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1

CHAPTER 1 

INTRODUCTION

Natural history reveals to us that every live form on earth started from a very sim

ple, modest unit and gradually evolved into the current stage o f sophistication. In the engi

neering world, the manufacture of a civil structure or a machinery also starts from simple 

parts that are then assembled together to function as a whole unit. The interface methods 

such as fasteners, welding, lubrication, hydraulic joint, revolute joint, boss, etc., are devel

oped to secure proper assembly o f the final finished product. Obviously, the quality of the 

interface method will have a direct impact on the quality of the final product.

The same assembly concept also guides the development of the computational 

world. The methods of static condensation (substructuring) [1, 2], component mode syn

thesis [3,4], multibody dynamics [5, 6], domain decomposition [7] and multilevel design 

optimization [8] are few examples that solve complicated problems with less computer 

resources. In those methods, the computational domain is first divided into a set of smaller 

ones within which the computation is done independently from each other. The results are 

then reconciled with the aid of the interface conditions. Again, the interface conditions 

play an important role in the quality of the final solution.

Recent advances of the distributed computers have motivated researchers to revisit 

the domain decomposition methods. Farhat and his associates [9, 10] proposed the Finite 

Element Tearing and Interconnecting Method (FETI) which tears the computational 

domain into subdomains first and then interconnects them by introducing the Lagrange
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multipliers to enforce the displacement compatibility along the interfaces between the 

subdomains. The local subdomain equation is solved for the local displacements in terms 

of the interface Lagrange multipliers and the rigid body degrees of freedom, if the subdo

main is not completely constrained, i.e., floating. The global interface equation is 

expressed in terms of the Lagrange multipliers of every interface and the rigid body 

degrees of freedom of every floating subdomain. In developing methods for global/local 

analysis, Aminpour, Ranson, McCleary et al. [11-13] formulated a domain decomposition 

problem similar to the one developed by Farhat and his associates. In their method, how

ever, an independent interface field was introduced that creates a pair of compatibility con

ditions for each of those in the FETI method. Aminpour’s research emphasizes the 

construction of the interface elements, rather than the development of an iterative large- 

scale equation solver. Thus, Aminpour used a direct solver to find the solution of the glo

bal system equation which includes degrees of freedom associated with displacements, 

Lagrange multipliers and interface elements, but includes no rigid body degrees of free

dom. Later, both methods are included in the survey paper done by Park and Felippa [14], 

which collected and reviewed the variational principles that are associated with the formu

lation of partitioned structural systems. The variational principle used in Farhat’s study is 

called the two-field hybrid method, while the one used in Aminpour’s study is called the 

three-field hybrid method.

The global interface equation arising from the domain decomposition method is 

indefinite positive. Some researchers, such as Fish et al. [15, 16], studied numerical algo

rithms that can solve such an equation. Farhat et al. recased the interface equation as a 

minimization problem with respect to Lagrange multipliers, subjected to linear constraints
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describing the self-equilibrium conditions associated with rigid body movements. A pre

conditioned conjugate gradient method was introduced to solve the system equation itera

tively in a parallel computing environment. A similar solution algorithm is also used in the 

study of the FEU  method by Papadrakakis, et al. [17, 18].

The FETI method is classified as the dual Schur complement method, in contrast 

to the classical substructure method which is classified as the primal Schur complement 

method. Farhat and his associates have continuously revised and extended the early ver

sion of the FETI method to a variety of structural problems [19-22]. For example, a two- 

level FETI method was developed for the plate and shell problems [7] and the problems 

with linear multiple point constraints [23], in which the additional constraints are enforced 

throughout the preconditioned conjugated projected gradient iterations. A new procedure, 

as a part of the pre-conditioner, is introduced in the FETI method to smooth the jumps in 

the displacements along the interfaces [20, 24]. As a result, the FETI method can solve the 

geometric or material heterogeneous problems efficiently. Further, a re-orthogonalization 

[18, 25] is incorporated into the FETT method to handle the multiple right-hand sides 

appearing in sensitivity analysis and repeated reanalysis.

The concept of domain decomposition also leads to the development of reanalysis 

techniques in which the subdomain is subjected to design modification. A typical example 

is the work of Guan and Zhang [26] whose formulation for design modification of a sub- 

domain is similar to that of the FETI method.

In light of the importance of the interface conditions on the design and analysis, 

the first part of the dissertation will develop a substructuring that allows quick analysis of 

structures with modified interface conditions. This study is limited to those interface con-
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4

ditions that can be represented as linear multi-point constraints. Applications of this new 

technique can help to better the design by investigating alternative interface conditions. As 

an illustrative example, the new substructuring technique is used in the latter part of the 

dissertation to support the placement design of spot welds.

Most current work on the spot weld placement design is based upon the method of 

structural topology design [27-29]. The “stiffness” distribution in the candidates of spot 

welds or point connectors is considered as the design variable. The spot weld with “weak” 

stiffness is considered removable from the existing pattern. The current study will use the 

genetic algorithm in conjunction with the proposed substructuring technique to determine 

the spot weld placement.

The proposed reanalysis method is a direct solution-based method. In contrast to 

the iterative method, it can produce an exact solution. Furthermore, since the proposed 

method aims to aid the design engineers in real world applications, it is developed so that 

it can be interfaced with MSC/NASTRAN, a commercially rated finite element code, to 

produce the required result.

The rest of the dissertation is organized as follows. The new substructuring tech

nique that allows the modification of the interface conditions is presented in Chapter 2. 

Numerical verification of the proposed method for quick reanalysis is given in Chapters 3 

and 4. The application of the proposed method for spot-weld placement design is pre

sented in Chapter 5. It is followed by the concluding remarks given in Chapter 6.
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CHAPTER 2

SUBSTRUCTURING TECHNIQUE OF A STRUCTURAL SYSTEM  

W ITH GIVEN INTERFACE CONDITIONS

The structural system referred to here is an assembly of many substructures that 

are joined together by various interface conditions. The concept of “assembly” is in fact 

the same as “substructuring.” The former is a product of manufacturing convenience, 

while the latter is of computational concern. Assembly allows each substructure be fabri

cated by its own means, while substructuring allows each substructure analyzed separately 

from the rest of the system. The functionality and the response of the final product of a 

structural system are thus determined not only by the characteristics of individual sub

structure but also by the choice of interface conditions. This chapter will develop two sets 

of algebraic equations for substructuring analysis. These equations will lead to a reanaly

sis method for a structural system with given interface conditions, which can effectively 

support investigation of various alternatives of interface methods that are available to a 

designer.

Two sets of substructuring analysis equations are derived respectively, based upon 

the so called two-field hybrid formulation and the three-field hybrid formulation[ll]. The 

theorem of Lagrange multipliers is the key element in both derivations. This study will 

emphasize the interface conditions that are defined as linear multiple point constraints 

between substructures. The usual single point constraint that defines the boundary support 

condition is viewed as a special case of interface condition and it will not be included in
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6

this study.

2.1 Linear Multiple Point Constraints

Mathematically, a set of m linear multiple point constraints is defined by

Ax  =  c (2 .1.1)

where the dimensions of the displacement field, x,  and the constant c are n x l  and m x  1, 

respectively, and the rank of the constant m x n  matrix A  is m. A spot weld is a typical 

example of an interface condition that joins sheet metals together at a single point. Accu

rate finite element modeling of a spot weld is complicated and cumbersome[30-32]. Fortu

nately, a detailed model of a spot weld may not be needed in finding the global response of 

a structural system. In practice, a spot weld can be modeled as a rigid bar, a stiffness ele

ment or simple displacement compatibility condition. All of these methods can be repre

sented mathematically by Eq.(2.1.1).

Consider a spot weld as an example that will join node a and node b together, as 

shown in Fig. 2.1. Here, node a and node b belong to two separate substructures, P and Q, 

that are joined together through this special spot weld. Let the degrees of freedom of sub

structures P and Q be np and Hq , respectively. If the distance between this pair of the

nodes is ignored, the displacement compatibility condition requires that the displacements 

of nodes a and b be the same,

(2.1.2)
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P

a

Figure 2.1 A link between two nodes a and b

If the distance between the nodes can not be ignored, a rigid bar model can be introduced 

to model the displacement relationship between the ends of a rigid link as [33]

x bl  = x a l - ly x a6 + l zXaS

x b2 = x a2 -  l z Xa4 + lx x a6

x b3 = x a 3 ~ lx x a 5 + l y x a4 <2 L 3 >

Xa4 = x b4 

x a5 =  x b5 

x a6 = x b6

where lx , ly and L are the components of I in the x-, y-, and z-directions and I is the vec

tor from node a to node b. Moreover, the notations xal, xaZ, xa3, xa4, x a5, xa6 and

xbi> x b2’ xb3> xb& xb5> xb6 316 t îe components of displacement vectors x a and x b, respec

tively.
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Both Eqs. (2.1.2) and (2.1.3) can be rewritten in the form of Eq. (2.1.1), in which 

the 6 x  (rip + Hq) matrix A can be expressed as

A  = [o  ... 0  A a 0  . . .  0  - A b 0  . . .  o] (2.1.4)

where 0 is a 6 x  6 null matrix. A a and A b are 6 x 6  submatrices of A that correspond to 

the degrees of freedom associated with nodes a and b. For a simple displacement compati

bility model, A a and A b are identity matrices. For a rigid bar model, A b is an 6x6 identity

matrix and A a is expressed as

1 0 0 0 I - Iz y
0 1 0 - I 0 Iz X
0 0 1 I - I 0y X
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

The matrix equation of a structural system that is free of interface constraints is 

given as

K x  = f  (2.1.5)

The stiffness matrix K  is a collection of stiffness matrices Ki of substructures. Since the 

structural system is free of interface constraints, substructure Kt may be subjected to rigid 

body movement because of constraints deficiency. As a result, the stiffness matrix K  of 

the structural system in Eq. (2.1.5) may be singular.

Equation (2.1.5) can be expanded to incorporate the constraint equation of Eq.

(2.1.1) by introducing the Lagrange multipliers. In the two-field hybrid formulation, the
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constraint equation, Eq. (2.1.1), is treated as a whole and the expanded equation is given

as

TK  A f x l
'

/

A  0 1 A. J c
(2 .1.6)

which leads to a set of n + m equations of x  and X . For simplicity, a structural system 

made of two substructures is used as an example case to facilitate the discussion. The con

straint equation, Eq. (2.1.1), can then be reformulated as

P x p  + Q x Q =  c (2.1.7)

where the displacement vector, x,  is divided into subvectors, x p and Xq , and the con

straint coefficient matrix A  is also divided into two parts as

a  =  [ p  e ]  (2.1.8)

The matrices P and Q are associated with two distinct substructures of the structural sys

tem. Accordingly, the stiffness matrix K  can also be rewritten as

K  =
K p  0

0 K Q_
(2.1.9)

The size of K p is then np x  np and that of K q is Hq XUq . The vectors x p and Xq are 

np x  1 and Hq x 1, respectively. The sizes of matrices P  and Q of matrix A  are m x n p 

and m x  , respectively, where m  is the number of constraints. With the definitions of

Eqs.(2.1.7) to (2.1.9), Eq.(2.1.6) can be explicitly written in terms of substructures P and 

Q as
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K p  0  P

0 K Q &  

P  Q  0

■>

Xp f  P

XQ fa  ■

X C

(2.1.10)

where substructures P and Q are subjected to applied loads f p and f  q, respectively. The 

unknowns of the formulation are x p , Xq and X .

In the three-field hybrid formulation, Equation (2.1.7) is further divided into two 

independent sets as

(2 .1.11)PXp = u

Q x n =  c - u (2.1.12)

where u is the unknown vector.

As a result of the theorem of Lagrange multipliers, the three-field hybrid formula

tion produces an expanded system equation as

K p  0
TP 0 Xp

' f p

o 0
T

Q * X Q
x n

- - f  Q ■

P  0 0 0 P u

_ 0  Q 0 0 X Q c — u

(2.1.13)

and

X*p "i" — 0 (2.1.14)

Equations (2.1.13) and (2.1.14) establish a set of n + 3m equations that can be solved for
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Xp,  Xq , u , Xp and Xq . Equation(2.1.13) is very similar to Eq.(2.1.10), though the

former expands the Lagrange multipliers from X to Xp and Xq . Equations (2.1.7) and

(2.1.14) are the compatibility conditions of the displacements and the equilibrium condi

tions of the reactions at the interface constraints, respectively.

Note that the coefficient matrices of Eqs. (2.1.10) and (2.1.13) are indefinite. Solv

ing them directly requires special solution algorithms. Further, those two equations are not 

favorable for reanalysis, as the matrices, P  and Q, which define the constraint conditions, 

are embedded in the coefficient matrices. Any modification in P or Q will result in a com

plete new analysis of those two expanded equations.

The alternative approaches discussed in the following sections will reformulate 

Eqs. (2.1.10) and (2.1.13) into a set of reduced-order equations that are in terms of the 

interface reactions (i.e. Lagrange multipliers). Once the interface reactions are solved, the 

displacement field of each substructure can be calculated. The displacement field of the 

entire structural system can thus be found as a union of substructural displacements.

Two cases are considered here. In the first case, both substructures are assumed to 

be free of rigid body motion, whereas in the second case, one of the substructures is under

going rigid body motion. Examples of these cases are shown in Figures 2.2 and 2.3. A 

substructure with rigid body degrees of freedom is sometimes called “floating” in the liter

ature [9].
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Figure 2.2 A constrained substructure welded to another constrained substructure

Figure 2.3 A constrained substructure welded to another floating substructure 

2.2 Symmetric. Two-field Hybrid Formulation

In this section, the derivation will start with Eq. (2.1.10) which is derived based 

upon the two-field hybrid formulation. The end result of the derivation is a set of symmet

ric equations of the interface Lagrange multipliers. The first part of the section will deal 

with the case with constrained substructures, as shown in Fig. 2.2, and the later part of the 

section will consider the case with a floating substructure, as shown in Fig. 2.3.
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2.2.1 Case with Constrained Substructures

Since substructures P and Q are fully constrained, K p and K q are positive defi

nite. As a result, K, a collection of disjointed K p and K q as defined by Eq. (2.1.9), is pos

itive definite. Since K  is non-singular, one can then rewrite Eq.(2.1.6) as

Kx  =  f - A TX (2.2.1)

and

Ax — C (2.2.2)

Equation (2.2.1) provides a mean to express x  in terms of X as

—1 —1 Tx  =  K  f - K  A X

or

f
X = X J + X X  (2.2.3)

where is the displacement vector resulted from the applied load as 

f
Kx J = f  (2.2.4)

and X  is an n x  m matrix resulted from the constraint matrix A as

KX = - A T (2.2.5)

Substituting the expression o fx  in Eq. (2.2.3) to the compatibility condition of Eq. (2.2.2) 

reveals a set of m equations solved for X as
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( A X ) X  -  c  -  A x - f  (2.2.6)

where the leading coefficient is symmetric and positive definite.

The solutions of Eqs. (2.2.4) and (2.2.5) can be conveniently obtained. Since all of 

them share the same leading coefficient matrix, the factorization is done once for all. The 

major computation involved in solving Eqs. (2.2.4) and (2.2.5) is limited to backward sub

stitutions. Furthermore, since AT is a disjointed block matrix, Eqs. (2.2.4) and (2.2.5) can 

be decomposed into substructural level as

K j X fi =  f t  i = P o v Q  (2.2.7)

and

K iX i =  - A  7  i  = P  or Q (2.2.8)

In a similar fashion, Eq.(2.2.6) can also be expressed in terms of substructural 

matrices as

(.P X p  + Q X q )X  =  c - P x p f  - Q x q  (2.2.9)

In reanalysis of the new structural system with a modified constraint matrix, Eq. 

(2.2.9) needs to be reformed and resolved and Eq. (2.2.8) needs to be resolved only for 

those substructures that are connected to the modified A t . The latter computation can be

efficiently done as the dimension of Eq. (2.2.8) is limited to the substructural level and the 

solution of it involves only backward substitutions.
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2.2.2 Case with One Floating Substructure

If one or more than one of the substructures in the structural system is floating, the 

associated substructural stiffness matrix is singular and, as a result, the stiffness matrix K  

in Eq. (2.1.10) is singular. Treating such singularity is thus the emphasis of this presenta

tion. The plan of derivation is to impose enough number of constraints, selected from the 

given constraint set, onto the floating substructure to eliminate the singularity. In this way, 

the approach presented in the previous section can be easily extended to the case with 

floating substructures.

Assume that substructure Q is floating and its stiffness matrix, K q is singular with

a rank deficiency of q. The first step in the derivation is to decompose the constraint equa

tion, Eq. (2.1.1), into two parts:

P ^ p  + Q ^ Q  = c l (2.2.10)

^ 2"^P  ^ 2 ^ Q ~  C2 (2.2.11)

The first part, associated with subscript 1, is made of q independent equations selected 

from Eq. (2.1.1) or Eq. (2.1.7). The rest of the equations in Eq. (2.1.7) are listed in the sec

ond part, denoted with subscript 2. The dimensions of matrices, , P2, Q { and Q2, are

qxr i p ,  (m — q) x . np , qxr iQ and ( m - ^ ) x n g ,  respectively. The rank of Q x has to be q. 

Equation (2.1.10) can then expanded as
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Kp 0 T
p i P 2

0 k q
T

Q i q 2

P l Q i 0 0

P2 q 2 0 0

\XP } ' f  p'

* to f Q

*1
► —  * f

c l

-C2-

(2 .2 .12)

and subsequently, reorganized as

K x + A T\ 0 = f

A x  =  c,

(2.2.13)

(2.2.14)

where the non-singular matrix K  and other related quantities are defined as

K p o -a ►—
*

K  =
0 K q Q i T

/ l 1

O

X p f p '
x  =  -

X Q /  = ' f  Q

k . ~ c l  -

A = [p2 q 2 o]

Equations (2.2.13) and (2.2.14) are in the same form of those presented by Eqs. (2.2.1) and

(2.2.2). Equations similar to Eqs. (2.2.3) to (2.2.5) can be employed here to solve the 

structural system equation of Eq. (2.2.12) on the substructural level as

K x f  = f (2.2.15)
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  —T
K X  =  - A

where x* and X  are defined as

(2.2.16)

x f

— _

x j JLp

x  f
XQ

and X  = X  K
r

>> >—•
A A
A 1 .

(2.2.17)

The results of the last two equations help to reformulate Eq. (2.2.14) as the one solved for 

m —q interface reactions as

( A X ) \ 2 =  c 2- A x f (2.2.18)

that gives the solution of x  as

x  =  x ^  + X X 0 (2.2.19)

Again, the leading coefficient of Eq. (2.2.18) is symmetric and positive definite.

Next, one can proceed to solve Eqs. (2.2.15) and (2.2.16) on substructural level. 

Note that only the solution procedure of Eq. (2.2.15) will be discussed here. Since Eq. 

(2.2.16) is identical to Eq. (2.2.15) in its form, it can be solved by the same procedure. 

To start the discussion, rewrite Eq. (2.2.15) in the substructural level as
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K p 0
T

p i
x p ' f p '

0
k q

T
Q i

*

X Q
► ZZ •< f Q

_P l Q i 0 k/J - c i -

(2 .2 .20)

which can be divided into the following two equations,

K o  Q i
\ x  7 1 XQ

<*
f  Q

i
oi

k7l c l ~ P l x p f

(2 .2 .21)

W + , i V  = f p (2 .2.22)

It is easy to see that the solution to Eq.(2.2.22) is a function of x / . Specifically, it can be 

given as

x p f  = X p f  + X p Pl \ /  (2.2.23)

f Pwhere x p and X p 1 are the solutions of the following matrix equations

/
K P X P = f l (2.2.24)

P i TK p X p  =  - P XL (2.2.25)

Since K p is a non-singular matrix, Eqs. (2.2.24) and (2.2.25) can be solved without diffi

culties. As for Eq.(2.2.21), it can be rewritten in the following form as
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k q  Q i 

Q i  o

/
Q

X f
\ f Q \ _ 0

. c i J p i

f (2.2.26)

Similar to the solution of Eq.(2.2.22), the solution of Eq.(2.2.26) can be written in terms of 

/x p as

or

with

' / I Ol

V.

P,
Q< ► 3  • Q

► + to

V . \ f a

/

i  i  f a  A p i f  
1 — 1 1 X P

K q  Q ,  

Qi  o

f a ]
Q f Q

jC

J Q
► =  -

- c l

k q Q i T X q '
0

>

1
O

V . L'lJ

(2.2.27)

(2.2.28)

(2.2.29)

(2.2.30)

Substituting Eq.(2.2.23) into Eq.(2.2.28) to replace x p* by X / o n e  can establish an equa

tion of X ^  as
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x /  =  x / q + A  * 1{x /  + x f lx / ^

or

[ l - \ * lX p Piy , /  = x / Q + A  l Pl X p f  (2.2.31)

Once\ /  is solved by Eq. (2.2.31), x p^ can be solved by Eq. (2.2.23), and finally Xq by 

Eq. (2.2.27).

Note that Eqs. (2.2.29) and (2.2.30) are solved for a loaded singular substructure Q

f  Psubjected to multiple point constraints, Q = c { and Q {X q 1 = —P x, respectively. 

Since the rank of Q { is q, the leading coefficient matrix in Eqs. (2.2.29) and (2.2.30) is not

singular. Thus, unique solutions are ensured. Many commercially rated finite element 

analysis packages may be used to solve Eqs. (2.2.29) and (2.2.30) with described multiple 

point constraints. However, some of them may not provide the values of the constraint 

reactions as output for the multiple point constraint. Thus, an alternative method that relies 

on only single point constraints becomes desirable. Again, since Eqs. (2.2.29) and (2.2.30) 

are in the same form, only Eq. (2.2.29) is used here to facilitate the discussion of this alter

native procedure. Furthermore, to simplify the discussion, all subscripts and superscripts 

are dropped off from the following derivation. Thus, the focused problem for a floating 

substructure is

TKQ f x l \ = [ f \
a  o _ 1 A .  J 1 c  J
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The key step here is to identify a  q x q  submatrix Q x of Q  so that the rank of Q x

is q. This is certainly possible, because the rank Q is q. Thus, the constraint Qx  = c can 

be rewritten as

Q \ x i  +  Q-2x 2 ~  Cl

and Eq. (2.2.32) can do the same as

^ 1 1  k 12

* 2 1  K 2 2  Q i

(2.2.33)

Q \  0-2 ®

'  •<

X 1 f i

x 2
► —  «

f  2

X c

(2.2.34)

where /CH is a q x  q matrix and Xj is a q  x  1 vector. The first two lines of equations in 

Eq. (2.2.34) can be explicitly written as

* 1 1 * 1 2 4 *1 * =  -

/

T
Q i

* 2 1 * 2 2 X 2 f  2 T
_q 2 _

X (2.2.35)

Consider the solution vector of the above equation, ( x t, x 2) be represented as a combi

nation of three types of vectors. Each type is obtained by specifying values at the degree of 

freedom corresponding to . In obtaining the first type of vectors, the x x is specified as a

qx-q  identity matrix. The associated solution is denoted as . In obtaining the second 

type of vectors, the Jtj is fully constrained and the structure is subjected to a. set of applied 

load of Q2 . It will produce a set of displacement solutions of X q and reactions R q . In 

obtaining the third type of vectors, the is again fully constrained but the structure is
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subjected to an applied load of / 2- Its solutions include the displacement, Xp  and the reac

tion, rjr. Specifically, these three types of vectors are the solutions of the following three 

equations

(2.2.36)* 1 1 * 1 2 I * /

* 2 1 * 2 2 X I_ 0

* 1 1 * 1 2 0 ~ r q ~

* 2 1 * 2 2 .x a 7 Q 2
(2.2.37)

* 1 1  * 1 2

* 2 1  * 2 2

0
x f

r f

f l
(2.2.38)

With sufficient single point constraints, Eqs. (2.2.36 - 38) are now solvable. Each of the 

column vectors in X t of Eq. (2.2.36) corresponds to a rigid body displacement that is

resulted from a solution with q — 1 constrained degrees of freedom. Some finite element 

analysis codes may have difficulty to solve Eq. (2.2.36). An alternative is to solve Eq. 

(2.2.36) with excessive constraints. These excessive constraints are then viewed as the 

change in the coefficient matrix of Eq. (2.2.36). Thus, the Sherman-Morrison equation 

[34] can then be applied to nullify the effect of such change on the solution so as to 

recover the original rigid body displacements. The application of the Sherman-Morrison 

equation for such purpose is discussed in the Appendix.

Next, the displacement vector of Eq. (2.2.33) can be expressed in terms of the rigid 

body movement, X j, and the constraint reactions, X as
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which gives a nontrivial equation

Xry =  XjX-^  +  X q X. +  x  j? (2.2.39)

The first term in the above expression is due to rigid body movement controlled by , 

whereas the second term is due to constraint reactions applied at the degrees of freedom of 

* 1-

In conjunction with the constraint equation, Eq. (2.2.33), Eq. (2.2.39) yields an 

equation of x  t in terms of X as

CQ[ Q o ^ i ) *  i =  Q 2 X q X  (2.2.40)

The unknown X in Eqs. (2.2.39 - 40) can be obtained by investigating the force balance on 

the right-hand side of Eqs. (2.2.35 - 38).

A
T

Qi x = ~R i + ~ r q + rf
f  2 Tq 2 0 _-Q 2T_ f  2

The first row of the above equation gives q equations of X as

( R q - Q ^ )  X = R [ + r f - f l (2.2.41)

Once X is solved, Xj can be calculated by Eq. (2.2.40) and subsequently, x 2 can be calcu

lated by Eq. (2.2.39). Any modification in the constraint conditions requires complete
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reanalysis of Eqs. (2.2.37), (2.2.40) and (2.2.41), which can be done efficiently, however 

Eqs. (2.2.36-38) can be solved by any commercially rated finite element codes with multi

ple right-hand sides. Solutions of Eqs. (2.2.40 - 41) can be calculated very efficiently as 

well, as their sizes are limited to be less than six.

2.3 Non-symmetric. Three-field Hybrid Formulation

The presentation begins with Eqs. (2.1.13 - 14), which are the results of the three- 

field hybrid formulation. Most of the equations derived here are non-symmetric in nature. 

Again, the presentation here is grouped into two sections. The first section does not con

sider the floating substructure and the second section does.

2.3.1 Case with Constrained Substructures

The first two rows of Eq. (2.1.13) states that the substructural displacements, x p 

and Xq are functions of Xp and Xq , respectively.

1o0-
I*

*

■'I

XP
► ”  « f  P

T
P  0

«

-

X p

0
X Q f Q

T
0 Q \ X q

Since K p and K q are non-singular, Eq. (2.3.1) can be simplified as
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X p
<

t

*s
1 - 1  T  Kp P  0

■*
Xp

>

XQ t to
1

to

—1 T
0  Kq t

>> to v.

Using the definitions given in Eqs. (2.2.7) and (2.2.8), one has the substructural displace

ments as

X p  — X p  X p X p  (2.3.2)

X q  =  X q  +  XqXq (2.3.3)

Substituting Eqs. (2.3.2 - 3) into Eq. (2.1.7), yields m equations of Xp and Xq as

P X p Xp  +  Q X q X q  -  C- P x p f  -  Q X q  (2.3.4)

This equation can be combined with Eq. (2.1.14) to form a set of 2m equations for solving 

Xp and Xq . Once Xp and Xq are found, the substructural displacements, x p and Xq , can 

be easily obtained through Eqs. (2.3.2 - 3). Note that the symmetric equation, Eq. (2.2.9), 

can be recovered from the non-symmetric one, Eq. (2.3.4), by realizing that Xp and Xq

are in fact related to X in the following manner

Similar to the case presented in Section 2.2, any modification in the constraint con

ditions will result in a complete reanalysis of Eqs. (2.2.8) and (2.3.4). However, Eq. 

(2.2.8) can be solved efficiently, because it is a substructural level equation and most of the 

computation involves only backward substitutions.
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2.3.2 Case with a Floating Substructure

The key element of the procedure presented here is to impose a selected subset of 

the constraint conditions onto the floating substructure so as to eliminate its singularity.

Assume the floating substructure Q is with q rank deficiency. The constraint set of 

Eq. (2.1.12) is divided into two subsets,

Q l X Q =  C1 " W1

Q 2 X Q  ~  C2 ~ U2

(2.3.5)

(2.3.6)

where Q { is a q x q matrix with rank q. Accordingly, the associated constraint condition 

of Eq. (2.1.11) can also be divided as

P̂ Xp = Ul (2.3.7)

P  syX p  — (2.3.8)

It is understandable that the matrix Kq is no longer singular when it is imposed by the 

constraint Eq. (2.3.5). Thus, one has a solvable equation made of K q  which is defined as

* e  = k q Q i

Q i  o

with the help of the above definitions. Equation (2.1.13) can be written as
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K p 0
TP 0 X P / P

0 0
-  T  
0 2 « X Q * i: * f Q (2.3.9)

P 0 0 0 u

0 0 2 0 0 X Qz c 9 — w9

where Q2 , x Q and f Q are defined as

-  T 
0 2  — Q i

o
XQ =

Q
f Q  =

f ,Q

c l ~ u l

where matrix 0 has q rows of zeros.

Since both K p  and K q  are not singular, the derivation presented in Section 2.3.1 

can be followed here. However, one difference remains that deserves special attention. 

The difference is in f  q . The f  q in Eq. (2.3.9) includes unknown u x, whereas the f  q in 

Eq. (2.1.13) does not. The unknown u t is related to x p , as defined by Eq. (2.3.7), which 

is further related to Xp as defined by Eq. (2.3.2). Thus, the solution, Xq  of Eq. (2.3.9) can 

be expressed in terms of Xp and \q^ . More specifically, the second row of Eq. (2.3.9) is

given as

_  _ _ T
K QXQ ~ f Q - Q - 2  ^ Q2 (2.3.10)

where f  q  can be expanded as
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f  Q - A to
J r

OJ 0

c l ~ u l C1 p l_

f Q

Ioi

c l LfiJ
( Xpf  + X p k p )

f a< ► — 0

Cl - P l Xp ^ P , X p
A.,

The solution of Eq. (2.3.10) can be explicitly given as

Q

Qx

/ Q

c l ~ P l XP
f to

i H- 0

P 1X P J
* - p - ( K q  1Q i ) > - q 2

'

K q ~1. f Q

c l
- K q  l . 0

I p l \
ix f  K  - 1 XP ~ k Q

0

p l
X p k p - K Q  [ Q 2 T X Q:

a

a
+

R R
X p X p  + X

Q i
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/
x a  + X $ ( x P + X PX p ) + X y'k Qx 

r a  +  ^ p ( x  P ^  +  x p X p )  +

(2.3.11)

Y Qi

The terms in the right-hand side of the above equation, with subscript a , 3 , and y , 

respectively, can be obtained by solving the following equations based upon the procedure 

described by Eqs. (2.2.32 - 41).

K , *cc< f Q ► (2.3.12)
r CL c l

K Q

K Q

1
o

1

r ’ lJ

_ - Q i

f i Y.

©
i

(2.3.13)

(2.3.14)

Note that Eqs. (2.3.12) and (2.3.13) are identical to Eqs. (2.2.29) and (2.2.30), respec

tively.

Finally, q equations can be drawn from the second row of Eq. (2.3.11) to relate 

to Xp and Xq  ̂. As for the first row of Eq. (2.3.11), it can be combined with the con

straint equation, Eq. (2.2.11) to form a set of m — q equations of Xp and Xq  ̂ as

(.p2t + QiXfJXp't-p+ e 2r V e 2

a (2.3.15)
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Along with m equations of Eq. (2.1.14), one can then establish 2m equations to solve Xp 

and Xq . Once Xp and Xq are found, x p and Xq can be calculated by insing Eq. (2.3.2) 

and the first row of Eq. (2.3.11), respectively.
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CHAPTER 3 

NUMERICAL VERIFICATION

This chapter serves several purposes. It will verify the substructuring equations, 

compare the two-field and three-field hybrid formulations, and demonstrate the applica

tion of the commercial finite element code, MSC/NASTRAN, for substructural level anal

ysis. The substructures discussed in the examples are all connected through spot welds. 

The associated interface conditions of a spot weld are mathematically represented by the 

displacement compatibility conditions. The chapter is organized as follows.

The computational procedure of the substructuring analysis is first summarized in 

Section 3.1. A simple example is then presented in Section 3.2 to demonstrate the step-by- 

step computation using the software, Matlab [35]. Section 3.3 presents three examples 

which use MSC/NASTRAN to solve substructural level problems. It is observed in this 

study that the numerical values of the MSC/NASTRAN output data that will be read later 

to form the coefficient matrices are printed with limited numbers of digits. This truncation 

error will be carried over in matrix formulation. Particularly, it will make the symmetrical 

reduced-order matrix nonsymmetrical. Thus, only non-symmetrical formulation will be 

used in Chapter 4 where various interface topologies are studied.

The interface constraint equation that models a spot weld is given by Eq. (2.1.1) 

representing a simple six multipoint constraint with c =0 and

A x  =  c
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A  = [o  ... 0 /  0 ... 0 - / 0  ... o]

where /  is a 6x6 identity matrix. The relative locations of / ’s in matrix A are correspond

ing to the nodal numbers of nodes a and b in their respective substructures. This simple 

form of representation simplifies some of the computation process discussed in Chapter 2. 

For example, matrices P  and Q are made of / ’s and - / ’s in Eq. (2.2.9). Particularly, the 

q x q  submatrix Q L in Eq. (2.2.20) is an /  matrix as well. Thus, the additional constraints

that are imposed to the floating substructure in Eq. (2.2.33) and Eq. (2.3.5) are no longer 

multipoint and non-homogeneous. Instead, they become single point and homogeneous as

Any commercially rated finite element analysis code can be used directly to solve Eqs. 

(2.2.29 - 30) or (2.3.12 - 14) without resorting to the process described by Eqs. (2.2.32 - 

2.2.41).

3.1 Substructuring Analysis Procedure

The substructuring analysis procedure discussed above follows closely the idea of 

“tearing and interconnection.” That is, the procedure removes all interface constraints first 

and then assembles the substructures later with any given interface conditions. Specifi

cally, the substructuring analysis procedure is made of three major steps. The first step is a 

pre-processor to find the displacements on the substructural level. This step in fact is a 

“tearing” step. The second step is to form the reduced order matrix equation for the assem

bled structure and solve it for the interface reactions. This step is the “interconnecting”
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step. Then, the final step is a post-processor that processes the displacements and stresses 

fields on the substructural level. Since Step 1 involves independent analyses on the sub

structural level, it can be done with any existing analysis package. Once Step 1 is com

pleted, Step 2 can be repeated for different interface conditions. Thus, Step 2 is really the 

core of the proposed substructuring analysis procedure.

The substructuring analysis technique can be a valid tool to support any iterative 

design process that considers the interface conditions as design variables. However, it 

would be beneficial to have the pre-processor part of the technique completed for all the 

possible interface conditions before the iterative design starts. In this way, the I/O opera

tions between the proprietary finite element code called for substructural analysis and the 

optimization code for design modification can be eliminated. To this end, one needs to 

revisit and restructure the computational procedure done in Step 1.

In Step I, one needs to solve the substructural matrix equations in the forms of 

Eqs. (2.2.7 - 8), due to the external loads and part of the constraint equations that are asso

ciated with the substructure:

K {x {  =  f t i = P or Q (3.1.1)

K iX i = - A tT  i — P or Q (3.1.2)

The matrix Kt is non-singular, if the substructure is fully constrained. Otherwise, K i is

expanded with sufficient number of interface conditions so as to maintain non-singular. 

Thus, the explicit constraint conditions must be known in advance in order to form the 

right-hand sides for a constrained or floating substructure and the expanded K t matrix in
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Eq.(3.1.2) for a floating substructure. Consequently, Eq. (3.1.2) and the expanded K L need

to be re-formed and re-solved at each time when the constraint set is redefined. Two possi

ble remedial measures are proposed here to relax such pre-requisition.

The first measure is to have all possible constraints that are to be considered in the 

design process included in Eq. (3.1.2). Only a subset of them will later be used in Step 2 to 

study the effect of a particular choice of interface conditions on the performance of the 

entire structure. The adversary effect of this approach is the requirement of a great deal of 

computer memory to store the expanded solutions of Eq. (3.1.2).

The second measure is to impose enough single point constraints to remove the 

singularity of the floating substructure. The set of the single point constraints is arbitrarily 

selected without reference to the real interface conditions. Equations (3.1.1-2) can then be 

solved for the displacements of this constrained floating substructure. Once the constraint 

set is specified at the beginning of Step 2, one can then proceed to modify the substruc

tural level displacements by imposing the desirable constraints and removing the effects 

of the arbitrarily selected constraints. Since only an order of q constraints is involved in 

the process, the Sherman-Morrison formula will be used for this purpose. The detailed 

process is discussed in the Appendix.

3.2 MATLAB Example

A simple example is offered here to verify the computational procedure described 

in Chapter 2. Only those involved floating substructures will be discussed. The example 

problem is made of two substructures, P and Q, as shown in Fig. 3.1, Both substructures
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are discretized into nine nodes and eight CST elements. Each node has two degrees of 

freedom. Nodes 7, 8, and 9 of Substructure P are respectively welded to nodes 1, 2, and 3 

of Substructure Q. Substructure P is constrained at three nodes along one of the edges, 

while Substructure Q is a floating substructure. A load of 10 units is applied at the center 

of Substructure P. No load is applied to Substructure Q.

£

3

?

1

Figure 3.1 A structure with two substructures welded together

The thickness of the plate is of 1. unit. The values of the Young’s modulus and the 

Poisson’s ratio are assigned to be 3. and 0.3333. The matrix Kp is a 12x12, non-singular

matrix and the matrix K Q is an 18x18, singular matrix. They are given, respectively, as:

-3 .9 -1.1249 1.875 1.1249 0 0 1.0125 03625 0 0 0 0
-1.1249 -6.2999 1.1249 5.6249 0 0 0.5624 0.3375 0 0 0 0

1.875 1.1249 -7 .8 -2.2499 1.875 1.1249 0 -1.1249 2.0249 1.1249 0 0
1.1249 5.6249 -2 .2499 -12.5998 1.1249 5.6249 -1 .1249 0 1.1249 0.675 0 0

0 0 1.875 1.1249 -3 .9 -1 .1249 0 0 0 -1.1249 1.0125 0.5624
0 0 1.1249 5.6249 -1.1249 -6 .2999 0 0 -1.1249 0 0.5625 0.3375

1.0125 0.5624 0 -1.1249 0 0 -1 .95 0 0.9375 0.5625 0 0
0.5625 0.3375 -1.1249 0 0 0 0 -3.1499 0.5624 2.8124 0 0

0 0 2.0249 1.1249 0 -1 .1249 0.9375 0.5624 -3 .9 -1.1249 0.9375 0.5625
0 0 1.1249 0.6750 -1.1249 0 0.5625 2.8124 -1.1249 -6.2999 0.5624 2.8124
0 0 0 0 1.0125 0.5625 0 0 0.9375 03624 -1 .9 5 -1.1249
0 0 0 0 0.5624 0 3 3 7 5 0 0 0.5625 2.8124 -1 .1249 -3.1499
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The load vector, f  q, is zero and the load vector, f p, has only one non-zero compo

nent with a value of 10. The three spot welds that connect these two substructures repre

sent a set of 6 interface conditions, two for each of the spot welds. Vector c in the interface 

conditions, Eq. (2.1.7) is zero and the dimensions of the associated coefficient matrices, P 

and Q, are 6 x 12 and 6 x 18, respectively. Matrices, P  and Q, are explicitly given as

P  =

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0  1 0 0  
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

and

Q =

- I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0

3.2.1 Exact Solution

For the sake of comparison, one can form and solve the augmented equation of Eq. 

(2.1.10) for the substructural displacements, x p and Xq , and the interface Lagrange multi

pliers, X ,. This augmented equation has a dimension of 36x36 and its solutions are
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X  n =

-1 .989
-0 .2865
-3 .0266

0.139
-2.1171
0.2219

-2 .5942
0.1167
-2 .674
0.0207

-2 .4565
0.0392

=Q

-2 .5942
0.1167
-2 .6 7 4
0.0207

-2 .4565
0.0392

-2 .6145
-0 .0306
-2.6029
-0 .0509
-2 .5265
-0 .0466
-2 .6158
-0 .1072

-2 .5 9
-0 .1167
-2 .5367
-0 .1169

and

X =

-0.2321
-0.3759
0.4642
0.4540

-0.2321
-0.0781

3.2.2 Solution Based on Two-field Hybrid Formulation

Let the first three constraint equations be selected for the purpose of removing the 

singularity of the floating substructure Q. Thus, submatrices P {, P2, Q x and Q2 in Eqs. 

(2.2.10 - 11) are defined as

p i =
o o o o o o i o o o o o  
o o o o o o o i o o o o
0 0 0 0 0 0 0 0 1 0 0 0

(3.2.1)
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P 2 =
0 0 0 0 0 0 0 0 0 1 0 0  
O O O O O O O O O O  1 0  
0 0 0 0 0 0 0 0 0 0 0  1

(3.2.2)

-I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (3.2.3)
0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Qo =
0 0 0 -I 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 (3.2.4)
0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

With these submatrices, one can form two sets of equations, Eqs. (2.2.15-16) that include 

a 33 x 33, non-singular matrix K  and a 3 x  33 constraint matrix, A . Both equations, Eq. 

(2.2.15) and Eq.(2.2.16) can be solved on the substructural level. Let Eq. (2.2.15) be 

solved first.

Since Substructure P is fully constrained, the solutions of Eqs. (2.2.24-25) can be 

easily obtained, as K p is non-singular, as

/

-1.9648
-0.2835
-3.0498
0.1373

-2.0995
0.2334

-2.5035
0.208

-2.7436
-0.0113
-2.3361
-0.0156
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0.5972 0.8664 0.2276
0.3404 1.4461 0.0329
0.2503 -0.0208 0.2744
0.2521 1.4409 -0.0147
-0 .0 6 5 -0.8801 0.281
0.259 1.5457 -0.0925
1.3042 1.1353 0.4234
1.1353 4.0428 -0.0035
0.4234 -0 .0035 0.6406
1.1267 3.8179 -0.0718

-0 .0 8 0 3 -1 .1117 0.4462
1.1264 3.8137 -0.0688

p
Note that since P { is a 3 x  12 matrix, the solution of Eq.(2.2.25), X P 1, is a 12 x 3 

matrix.

Next, to solve the part with Substructure Q, one needs to augment K q with con

straint .Thus, dimension of the leading coefficient matrix in Eqs. (2.2.29-30) is

enlarged to 21 x 21. Equation. (2.2.29) gives solutions, Xq Q = ^ / Q = 0 because on its 

right-hand side, / q = = 0 .  On the other hand, Eq. (2.2.30) gives 12 solution vectors,

because its right-hand side is a 21 x  12 rectangular matrix. Note that only columns 7 to 9 

of this solution matrix will be non-zero. This is because P i , the submatrix on the right-

hand side of Eq. (2.2.30), has non-zero components in its 7th to 9th columns. Finally, the 

solution of Eq. (2.2.30) is obtained:
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p n
Q

l A

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 - 1 0 2 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1.6667 I -1.6667 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1.6667 1 -1.6667 0 0 0
0 0 0 0 0 0 - 1 0 2 0 0 0
0 0 0 0 0 0 1.6667 I -1.6667 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 3.3333 I -3.3333 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 3.3333 1 -3.3333 0 0 0
0 0 0 0 0 0 - 1 0 2 0 0 0
0 0 0 0 0 0 3.3333 1 --3.3333 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

p
It is worthwhile mentioning that, the non-zero components in X q 1 are corre

sponding to the rigid body movement of Substructure Q. They are evidenced by the zero

p
reactions in A t 1. These results produces a zero right-hand side of Eq. (2.2.31) which 

gives a zero value to its solution, X / . As a result of Eq. (2.2.23), = x j . Finally, the

substructural solution of Substructure Q, as given by Eqs.(2.2.26-28), is expressed as
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r

-2 .5035  
0.208 

-2 .7436  
0.208 

-2.9838  
0.208 

-2 .5035  
0.6082 

-2 .7436 „
0.6082 

-2.9838  
0.6082 

-2 .5035
1.0084 

-2 .7436
1.0084 

-2.9838
1.0084

A similar procedure can be followed to obtain the solution of Eq. (2.2.16).

Since the right-hand side of Eq.(2.2.16) is a 33 x  3 rectangular matrix, it is expected that

A A Aits solution should be 33 x  3 . Particularly, matrices, X p , X q , and should be 

12 x 3 , 18x3  and 3 x 3 ,  respectively, as

-0 .0227 0.0676 -0.0231  
-0 .0036 0.007 -0.0037  
0.0219 -0 .0648  0.0224 
0.0014 -0 .0052  0.0014  

-0 .0362 0.0175 -0.0369  
0.0234 0.087 0.0239

-0.0086 0.3771 -0.0089  
-0.2248 0.0306 -0.2291  
-0.0683 -0 .4117  -0.0653  
0.1311 0.0764 0.1261 

-0 .0822 0.4622 -0 .3102  
0.1303 -0 .1580  0.5251
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Q

-0 .0086 0.3771 -0.0089
-0 .2248 0.0306 -0.2291
-0.0683 -0.4117 -0.0653
-0 .6248 -0.2038 -0.6282
-0.3623 -2.8749 -0 3 1 4 4
-0 .6239 -0.1621 -0.9847
0 3 1 8 7 0.8175 0.2629

-0 .1347 2.5647 -0.2253
-0 .0708 -0.7531 0.0243
-0.1351 2.6588 -0.2471
-0 .3625 -2.5685 -0.3296
-0 .1352 2.6421 -0.2538
0 3193 0.8144 0.2926
03493 5.4069 0.2478

-0.0711 -0.8035 0.0071
0.3495 5.4439 0.2603

-0 .3623 -2.5286 -0.3162
0.3495 5.4446 0.2605

o i o
-1 0 -1 
0 - 2  0

Once Eqs.(2.2.15-16) are solved, one can construct the leading coefficient matrix and the 

right-hand side of Eq.(2.2.18) as

A X  =
0.7559 0.23101 0.7542 
0.2801 3 .3372 0.0041 
0.7542 0.0(041 1.5098

c ^ —A x ^

which gives a solution as

0-2192
-0*6476
0-2236

~k.ry — '
0.4540 

-0 .2321  
I -0 .0781

The Lagrange multipliers of the first three interface constraints and the final substructural 

displacements are thus obtained as the solu-tion of Eq. (2.2.19) as
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f -0.2321  
=  i  -0 3 7 5 9  K 

L 0.4642 .

r

-2 .5942  
0.1167 

-2 .6740  
0.0207 

-2 .4565  
0.0392  

-2 .6145  
-0 .0306  
-2 .6029  „
-0 .0509  
-2 .5265  
-0 .0466  
-2 .6158  
-0 .1072  
-2 .5900  
-0 .1167  
-2 .5367  
-0 .1169

which are identical to the exact solution up to four digits after decimal points.

3.2.3 Solution Based on Three-field Hybrid Formulation

One can start the computation by analyzing the constrained substructure P first. 

Following Eqs. (2.3.1-2) gives

-1.9890  
-0.2865  
-3.0266  
0.1390 

-2.1171  
0.2219 

-2.5942  
0.1167 

-2.6740  
0.0207 

-2.4565  
0.0392

=
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-1.9548
-0.2835
-3.0498
0.1373

-2.0995

0.208 
-2 .7436  
- 0 .0 113 
-2.3361  
-0 .0156

0.5972 0.8664 0.2276 0.8437 -0 .0744 0.8432
0.3404 1.4461 0.0329 1.4424 -0 .2677 1.4424
0.2503 -0.0208 0.2744 0.0011 0.2336 0.0016
0.2521 1.4409 -0.0147 1.4423 -0 .2867 1.4423
-0 .065 -0.8801 0.281 -0.9163 0.6444 -0 .917
0.259 1.5457 -0.0925 1.5691 -0 .3 5 7 1.5696
1.3042 1.1353 0.4234 1.1267 -0 .0803 1.1264
1.1353 4.0428 -0.0035 3.8179 -1 .1117 3.8137
0.4234 -0.0035 0.6406 -0.0718 0.4462 -0.0688
1.1267 3.8179 -0.0718 3.949 -1 .1939 3.944

-0.0803 -1.1117 0.4462 -1.1939 1.4349 -1.4219
1.1264 3.8137 -0.0688 3.9440 -1 .4219 4.3388

f Pwhere Xp is the same as that in Eq. (3.1.1). However, X p here, is an expansion of X F 1

in Eq.(3.2.5). This is because the right-hand side of Eq.(2.3.1) is P  rather than in Eq. 

(2.2.25).

As for the floating substructure, Q, the solutions of Eqs.(2.3.12-14) are sought 

first, where Q { is defined by Eq. (3.2.3). Since the right-hand side of Eq.(2.3.12) is zero, it

gives zero values to x a and ra . Other solutions of Eqs. (2.3.13 - 14) are given as
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-1 0 0
0 -1 0
0 0 - I
0 1 0

-1 0 2
0 1 0
I 0 0

1.6667 1 -1 .6667
0 0 1

1.6667 1 -1 .6667
-1 0 2

1.6667 1 -1 .6667
1 0 1

3.3333 1 -3 3 3 3 3
0 0 1

3.3333 1 -3.3333
-1 0 2

3.3333 I -3.3333

_ 13 0.1799 0.0777 -0.191  
=  10 0.0844 0.0444 -0 .0822

-0.1876 -0 .0777  0.2309

0 0 0
0 0 0
0 0 0

0.3999 0.2344 0.3991
0.2344 1.6745 0.1927
0.3391 0.1927 0.7556

-0.2273 -0 .4404 -0 .2718
0.0092 -1 .2194 0.0902
0.0025 0.3414 -0 .0895
0.0097 -1.3136 0.112
0.2346 1.3681 0.208
0.0098 -1.2969 0.1187

-0.2279 -0.4373 -0 .3015
-0.3752 -2.7471 -0 .2889
0.0029 0.3918 -0 .0724

-0.3755 -2.7841 -0 .3014
0.2343 1.3282 0.1945

-0.3755 -2 .7849 -0 .3016

0 I 0 
-1 0 -I 
0 - 2  0

As discussed before, is in fact corresponding to the rigid body movement and
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the associated reactions, R p , are almost zero. The above solution values can simplify the 

second row of Eq.(2.3.11) as Xq  ̂ = R^Xq  ̂. This particular equation can then be com

bined with Eqs. (2.3.15) and (2.1.14) to form a 12x12 non-symmetric matrix equation to 

solve for Xp and Xq . Numerically, the leading 12x12 coefficient matrix is given as

0 0 0 0 0 0 1 0 0 0 -1 0
0 0 0 0 0 0 0 I 0 1 0 1
0 0 0 0 0 0 0 0 1 0 2 0

0.0086 0.2248 0.0683 -0 .1311  0.0822 -0.1303 0 0 0 0.3999 0.2344 0.3991
-0.3771 -0.0306 0.4117 -0 .0 7 6 4  -0 .4622 0.158 0 0 0 0.2344 1.6745 0.1927
0.0089 0.2291 0.0653 -0 .1261  0.3102 -0.5251 0  0 0 0.3991 0.1927 0.7556

1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 I 0 0 0 0
0 0 I 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 I 0 0
0 0 0 0 I 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

where the equation, XQ ̂ = R rXQ̂  Eq. (2.3.15) andEq. (2.1.14) occupy rows 1-3, rows 4- 

6 and rows 7-12, respectively. And the right-hand side is simplified as

T
[o 0 0 -0.2192 0.6476 -0.2236 0 0 0 0 0 o]

Its solution gives the interface reactions as

X
Q

-0 .2321
-0.3759
0.4642
0.4540

-0.2321
-0.0781
0.2321
0.3759

-0 .4642
-0 .4540
0.2321
0.0781

where the subscripts, P and Q indicate the associated substructures. Once the complete
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interface reactions are found, the substructural displacements, x p and Xq , can be obtained 

by Eq.(2.3.2) and the first row of Eq.(2.3.11) as

X r ,  =  i

-1 .989
-0 .2865
-3 .0266

0.139
-2.1171
0.2219

-2 .5942
0.1167
-2 .674
0.0207

-2.4565
0.0392

X Q =

-2 .5942
0.1167

-2 .6740
0.0207

-2.4565
0.0392

-2.6145
-0.0306
-2.6029
-0.0509
-2 .5265
-0 .0466
-2.6158
-0 .1072
-2 .5900
-0 .1167
-2 .5367
-0.1169

Again, they are identical to the exact solution.

3.3 Application of MSC/NASTRAN for Substructuring Analysis

Two substructuring analysis techniques have been presented earlier and verified
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by examples using MAXLAB. Both methods result in a set of reduced order matrix equa

tions in terms of interface reactions, though one set is symmetric and the other is non-sym- 

metric. Three examples are presented here to assess the practical values of these 

techniques when the entire substructural level analyses are conducted by using the propri

etary finite element analysis code, MSC/NASTRAN.

3.3.1 A Support Bracket

The first example is a simplified model of a support bracket, as shown in Fig. 3.2. 

An external moment is applied at the top end of Substructure 1. The support bracket is dis

cretized into 3,478 CQUAD elements with 3,702 nodes. The structure is made of three 

substructures, all of which are fully constrained. Since no floating substructure is 

included, the substructuring technique that is based upon the two-field hybrid formulation 

will be used here. The problem of concern involves 78 spot welds connecting Substruc

tures 2 and 3. These 78 interface points are represented by 468 interface constraints. The 

substructuring technique will remove the entire set of interface constraints first and use 

MSC/NASTRAN to analyze the isolated substructures. The results are then collected to 

form a symmetric, reduced order matrix equation that is solved for the interface reactions. 

Later, these reactions can be used to recover the displacements of the welded structure.

To investigate the accuracy of and the efficiency of the proposed substructuring 

technique, an MSC/NASTRAN run is set up in which the spot welds are modeled by 

MPC’s. In fact, this MSC/NASTRAN ran will analyze the support bracket twice. One is in 

the form of ‘subcase’ in which it will reclaim all the MPCs. In this subcase run, the stiff-
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ness matrix of the structure will not be formed and solved from scratch and thus it repre

sents the most convenient and efficient reanalysis method that NASTRAN can provide.

Figure 3.2 The Support Bracket

The calculated displacement vectors at the point where the external load is applied
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are listed in Table 3.1. Note that the displacement vectors are not exactly the same but in a 

good agreement. The deviation in them is expected, as the numerical values, taken from 

MSC/NASTRAN output and directly used to form the reduced order matrix equation, are 

subjected truncation errors. These errors are inevitable because MSC/NASTRAN prints 

its output with limited significant digits.

Table 3.1 Support Bracket: Comparison of Displacements

Degree of 
Freedom Reanalysis NASTRAN

u 0.0 0.0

V 0.0 0.0

w 0.0 0.0

e* 0.2942e-02 0.2944e-02

0y -0.5368e-03 -0.5373e-03

0. 0.8497e-03 0.8504e-03

The CPU times required for various analysis procedures are summarized in Table

3.2 in seconds. All the results are counted as run in SPARC5. Although the reduced order 

matrix equation used in this example is in a symmetric form, it is resolved by a full-matrix 

solver so as to demonstrate the influence of an equation solver on computational effi

ciency. Furthermore, it should be noted that the CPU time in the “reanalysis” column does 

not include the computational time MSC/NASTRAN takes for substructural level analy

ses.
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Table 3.2 Support Bracket: CPU Time Comparison in Seconds

Method Reanalysis NASTRAN

Full Analysis — 363.5

Subcase Analysis — 280.6

Sym. Solver 18.7 --

Full Solver 78.5 --

This example certainly demonstrates the validity of using MSC/NASTRAN to 

support the proposed substructuring technique.

3.3.2 Plate Example

The plate example is shown in Fig. 3.3, which has two flat plates being welded 

together through 10 spot welds. One of the plates is fully constrained, while the other is 

floating. The circles in the figures indicate the locations of spot welds. Further, a different 

pattern of dark marks in the circle matches a pair of nodes for spot welding. A force vector 

of (100, -200,-100) is applied at the center, node 25, of each plate.

This example is used mainly to study the accuracy of the matrix equations assem

bled by taking the data from MSC/NASTRAN output. To this end, the values of the inter

face reactions that are the direct solution of the reduced matrix equation are investigated.
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Plate 1 Plate 2
35 42 49 2&-T- 35 -,-42. 49

22--L29.20 43 43

X
0  and® indicate the MPC connection 

between two parts

Figure 3.3 Plate Example

Table 3.3 first lists the benchmark values, those output from the MSC/NASTRAN 

analysis done for the entire structure. The six components of the interface reaction forces 

and moments are listed in the table under the columns of T x, T  , T_, M x , My, and M T.

These values are then compared with those obtained from the substructuring techniques. 

The results are listed in Table 3.4. The particular substructuring technique used here is 

derived from the two-filed hybrid formulation, which results in a symmetric reduced order 

equation. Therefore, a symmetric equation solver is used here to solve the reduced order 

equation for the interface reactions. Comparing the values in Table 3.4 with those in Table

3.3 reveals differences in the forces of T^ and T . The source of errors can be traced back

to the leading coefficient matrix o f the reduced order equation, Eq. (2.2.18), which is in 

fact, with small but noticeable deviation from symmetry. The entities in the coefficient
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matrix involve the displacements and reactions of the substructural level solutions that are 

read from the MSC/NASTRAN output files. The truncation errors inherited in these data, 

because of the limited digits allowed in printouts, deteriorate the symmetry nature of the 

final equation, even if it is a small deviation. To further support this argument, the same 

equation is resolved by a full matrix solver. The results are listed in Table 3.5 that yields 

now accurate reactions up to the second digit after the decimal point. Finally, the same 

problem is solved by, again, the second substructuring technique from the three-field 

hybrid formulation. The results are listed in Table 3.6. In this case, the leading coefficient 

matrix of the reduced order matrix equation is non-symmetric. Therefore, the impact of 

the aforementioned truncation errors is less significant. This is evidenced by the fact that 

the last two tables show essentially the same results.

Table 3.3 Interface Reactions from MSC/NASTRAN

Node Tr Ty Tz My M,

31 -2.215810E+0 3.170817E-3 -1.94639 lE + l -I.873975E+-2 -1.843592E+1 0.0

32 2.148071E+1 2.507163E+0 3.315654E+1 -2.627753E+2 -3.957788E-6 0.0

33 1.957743E+1 -3.589344E+1 -1.946329E+1 -1.873966E+2 1.843527E+1 0.0

34 -8.895793E-1 -6.494632E+1 -3.986024E+1 -1.248835E+2 1.195565E+2 0.0

37 -5.014096E-1 -1.033760E+1 -4.036022E+0 -1.836389E+1 -6.804119E+1 0.0

38 9.306668E-1 -8.158117E+0 -6.071582E-1 2.035781 E+0 -7.829800E+0 0.0

39 4.295319E+0 -1.922836E+1 -5.223498E+0 -7.459805E+0 1.I28348E-5 0.0

40 1.825372E+1 -1.657729E+l -6.079196E-1 2.036660E+O 7.830832E+0 0.0

41 1.757577E+1 -2.516278E+1 -4.035078E+0 -1.836526E+1 6.804214E+1 0.0
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Table 3.4 Interface Reactions from the Symmetric Equation with a Symmetric Solver

Node Tx TLy t . Mx My Mz

31 -6.13117E+0 I.07805E+1 -I.94517E+1 -1.87360E+2 -1.83886E+1 O.OOOOOOE+O

32 3.11995E+1 3.72358E+I 3.31620E+1 -2.62731E+2 3.70023E-02 0.000000E+0

33 3.87658E+1 2.34172E+1 -1.94281E+l -1.87339E+2 1.84259E+1 0.000000E+0

34 -7.62135E+0 -1.47343E+1 -3.98806E+1 -1.24882E+2 1.19520E+2 O.OOOOOOE+O

37 1.53452E+1 -1.31312E+1 -4.00261 E+0 -1.8400IE+1 -6.80738E+1 O.OOOOOOE+O

38 4.85186E+0 -1.73654E+1 -6.19374E-1 2.05079E+0 -7.89199E+0 O.OOOOOOE+O

39 2.54953E+1 -2.99758E+1 -5.24282E+0 -7.43984E+0 -1.750O2E-2 O.OOOOOOE+O

40 4.65137E+1 -1.04649E+2 -6.30102E-1 2.07239E+0 7.86245E+0 O.OOOOOOE+O

41 -6.64946E+1 -6.98974E+1 -4.01386E+0 -1.83841E+1 6.80617E+1 0.000000E+0

Table 3.5 Interface Reactions from the Symmetric Equation with a Full Matrix Solver

Node TLX Ty T, Mx My M,

31 -2.21541E+0 3.17641E-3 -1.94592E+1 -1.87370E+2 -1.83985E+I O.OOOOOOE+O

32 2.14805E+1 2.50721E+0 3.31632E+1 -2.62731E+2 3.30232E-2 O.OOOOOOE+O

33 1.95777E+1 -3.58935E+1 -1.94280E+1 -1.87338E+2 1.84195E+1 O.OOOOOOE+O

34 -8.89715E-1 -6.49465E+1 -3.98822E+1 -1.24883E+2 1.19517E+2 O.OOOOOOE+O

37 -5.01798E-1 -1.03375E+1 -4.01467E+0 -1.83843E+1 -6.80594E+1 O.OOOOOOE+O

38 9.31285E-1 -8.15824E+0 -6.09123E-1 2.04087E+0 -7.87860E+0 0.000000E+0

39 4.29493E+0 -1.92283E+l -5.24329E+0 -7.43958E+0 -1.84850E-2 O.OOOOOOE+O

40 1.82534E+I -1.65772E+1 -6.30538E-1 2.07305E+0 7.86304E+0 O.OOOOOOE+O

41 1.75758E+1 -2.51626E+1 -4.01332E+0 -1.83848E+1 6.80621E+1 O.OOOOOOE+O
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Table 3.6 Interface Reactions from the Non-symmetric Equation with a Full Matrix Solver

Node Tx Tly r. My Mz

31 -2.21541E+0 3.17638E-3 -1.94602E+1 -1.87392E+2 -1.84007E+1 0.0

32 2.14805E+1 2.5072 IE+0 3.31625E+1 -2.62756E+2 -3.27715E-2 0.0

33 1.95777E+1 -3.58935E+1 -1.94289E+1 -1.87361E+2 1.842I6E+1 0.0

34 -8.897 L5E-1 -6.49465E+I -3.98834E+1 -1.24908E+2 1.19524E+2 0.0

37 -5.01798E-1 -1.03375E+I -4 .01480E+0 -1.83877E+1 -6.80682E+1 0.0
3S 9.31285E-1 -8.15824E+0 -6.08999E-1 2.04395E+0 -7.88027E+0 0.0

39 4.29493E+0 -1.92283E+1 -5.24334E+0 -7.43878E+0 -1.841 UE-2 0.0

40 1.82534E+1 -1.65772E+1 -6.30537E-1 2.07402E+0 7.86380E+0 0.0

41 1.75758E+1 -2.51626E+1 -4.01369E+0 -1.83888E+1 6.80691E+1 0.0

The example shows that, in the presence of floating substructures, the truncation 

errors in the output of MSC/NASTRAN can damage the symmetric nature of the reduced 

order equation. Therefore, the non-symmetric substructuring technique derived from the 

three-field hybrid formulation will be used in the future studies that rely on MSC/NAS

TRAN for substructural level analyses.

3.3.3 A B Pillar-Rock Joint

The B Pillar-Rock Joint is made of 4 substructures, as shown in Figs. 3.4 - 6. Three 

of them are fully constrained, while one of them is a floating substructure which will 

undergo rigid body motion once the spot welds are removed. The substructures are held 

together by 53 spot welds placed along the edges of the substructures. The structural sam

ple is discretized into 1,556 CQUAD and 129 CTRIA elements with 1,863 nodes. The size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

of the problem is relatively smaller than the example of the support bracket. However, this 

example problem is more complicated, because 10 of the 53 spot welds weld three sub

structures together at the same node. Such a spot weld is called “cross point” in Reference 

11. The standard substructuring technique introduced earlier can be modified and 

extended to this particular example structure. The detailed discussion of such modifica

tions can be found later in Chapter 4.

Figure 3.4 The B Pillar-Rock Joint
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Figure 3.5 Substructures of the B-Pillar-Rock Joint (view 1)

Figure 3.6 Substructures of the B-Pillar-Rock Joint (view 2)

The procedure given in the support bracket example will be repeated here to study
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the efficiency and accuracy of the substructuring technique. However, because the pres

ence of a floating substructure, the non-symmetric matrix equation derived from the three- 

field hybrid formulation will be used here. Again, the substructuring analyses are con

ducted by MSC/NASTRAN. The results of Table 3.7 show that the displacements calcu

lated by the substructuring technique at the force application point are in an excellent 

agreement with those calculated by MSC/NASTRAN. Table 3.8 compares the CPU time 

taken by the substructuring technique to that of MSC/NASTRAN. A moderate 50% gain 

is observed in this example problem.

Table 3.7 B Pillar-Rock Joint: Comparison of Displacements

Degree of 
Freedom Reanalysis NASTRAN

u -0.7258e-3 -0.7259e-3

V -0.1345e-l -0.1345e-l

w -0.1953e-2 -0.1953e-2

0 ,
0.5935e-4 0.5935e-4

0y -0.5959e-5 -0.5960e-5

e . 0.3960e-4 0.3960e-4

Table 3.8 B Pillar-Rock Joint: CPU Time Comparison in Seconds

Method Reanalysis NASTRAN

Full Analysis -- 115.7

Subcase Analysis -- 81.1

Full Solver 40.4 —
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CHAPTER 4

GENERALIZATION OF THE SUBSTRUCTURING TECHNIQUE

The proposed substructuring technique will be extended here to general examples 

so as to demonstrate its applicability in a more realistic industrial environment. The finite 

element code of MSC/NASTRAN is used for the necessary substructuring calculation. In 

case of a floating substructure, some remedial steps, as stated in Chapter 2, are needed to 

resolve the difficulty of singularity.

The first example serves to verify the proposed substructuring technique. The 

structural problems presented in the next four examples involve more than one floating 

substructure. The two floating substructures shown in Examples 2 to 3 are connected to 

each other in two different topologies. The floating substructure in Example 4 are welded 

to the constrained substructures through the same point. That creates a “cross point” phe

nomenon [11]. Example 5 studies a case with 5 floating substructures. Finally, Example 6 

investigates the case in which the applied load is distributed to the connected substructures 

through connecting rigid links.

The numerical solutions obtained by the proposed substructuring technique are 

compared with those obtained by directly applying MSC/NASTRAN to the entire struc

tures. For the purpose of comparison, the displacements of the first substructure are tabu

lated and reported at the node where the external load is applied. The agreeable results will 

demonstrate the validity of the proposed substructuring technique for general applications.
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4.1 Example 1

Example 1 is made of one floating and one constrained substructure as shown in 

Fig. 4.1(a). The substructures are subjected to external loads and connected through 10 

spot welds, as shown in Fig. 4.1(b). The results of the displacements at the loaded node of 

the constrained substructure are listed in Table 4.1, along with those obtained by MSC/ 

NASTRAN.
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Table 4.1 Nodal Displacements of Example 1

Degree of 
Freedom Reanalysis NASTRAN

u -0.25034E-04 -0.2504E-04

V 0.4405E-13 0.1274E-16

w 0.6648E-02 0.6648E-02

0 x
0.7226E-11 -0.7188E-16

e>' -0.2182E-02 -0.2182E-02

0 . 0.0 0.0
-

4.2 Example 2

Example 2 is made of two floating and one constrained substructure, as shown in 

Fig. 4.2(a). The floating Substructure 2 is welded to the constrained one through 5 spot 

welds, while the floating Substructure 3 is welded to the same one through 10, as shown in 

Fig. 4.2(b). However, there are no spot welds between the floating substructures. The side 

view of the structure in Fig. 4.2(c) reveals such welding situation. It is a straightforward 

matter to apply the proposed substructuring technique to Example 2. In this case, the 

reduced order matrix equation is 180 x 180 for 180 unknown interface reactions. The dis

placement results of this example are listed in Table 4.2.
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O  nodes along vertical surface 

  spot welds

(c) A Side-view of Example 2 

Figure 4.2 Structure of Example 2 (Continued)

Table 4.2 Nodal Displacements of Example 2

Degree of 
Freedom Reanalysis NASTRAN

u -0.2410E-04 -0.2410E-04

V 0.2807E-11 -0.3449E-16

w 0.6077E-02 0.6077E-02

e* -0.565 IE-11 -0.1719E-15

0 y
-0.2015E-02 -0.2015E-02

0 . 0.0 0.0
••
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4.3 Example 3

Example 3 has the same substructure arrangement as that of Example 2. However, 

its welding pattern is different from that of Example 2. The floating Substructure 2 is 

welded to the constrained one through 5 spot welds, and the floating Substructure 3 is not 

directly welded to the constrained one. Rather, these two floating substructures are welded 

together through 10 spot welds. The side-view of Example 3, Fig. 4.3, reveals the detailed 

welding pattern.

o nodes along vertical surface 

  spot welds

Figure 4.3 Welding Pattern of Example 3

Example 3 has the same arrangement of substructures as shown in Fig. 4.4, where 

one of the floating substructures is welded to the constrained one and the second floating
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substructure is welded to the first floating one. Again, one can use the standard substruc

turing technique twice in sequential steps to analyze the entire structure. The standard sub- 

structuring technique is first applied to weld a floating substructure to the constrained one 

that results in a new constrained substructure. The second floating structure is then welded 

to the new constrained one to complete the assembly process. The computational steps are 

shown in Fig. 4.5. The displacements at the loading point are listed in Table 4.3.

Figure 4.4 Interconnection between Two Floating Substructures and One Constrained one
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(a) Connecting the First Floating Substructure to the Constrained One

12

(b) Connecting the Second Floating Substructure to the Newly Formed Substructure 

Figure 4.5 An Interconnection Pattern between Multiple Substructures
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Table 4.3 Nodal Displacements of Example 3

Degree of 
Freedom Reanalysis NASTRAN

u -0.2343E-04 -0.2343E-04

V 0.3649E-12 -0.2721E-15

w 0.6079E-02 0.6079E-02

0 ,
0.1652E-11 0.1223E-15

-0.2016E-02 -0.2016E-02

0 .•c 0.0 0.0

Another possible arrangement of two floating and one constrained substructures is 

shown in Fig. 4.6(a). In this case, the two floating substructures are welded not only to the 

constrained substructure but also between themselves. One may “weld” the two floating 

substructures to the constrained one first by using the standard substructuring technique as 

Example 2 does. One can then “weld” the new constrained substructure to itself by reap

plying the standard substructuring technique. Figures 4.6(b) and (c) demonstrate these two 

steps. Only the spot welds between the floating substructures and the constrained one are 

involved in the first step, while only the spot welds between the floating substructures are 

involved in the last step.
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(a) The Floating Substructures Connected to the Constrained One

(b) The Floating Substructure Connected to the Constrained One Individually
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(c) Connection in a Constrained Structure 

Figure 4.6 Another Interconnection Pattern between Multiple Substructures 

Note that the two-step substructuring application in the two cases mentioned in 

Example 3 may lay the ground work for the development of more general multi-level sub

structuring technique that can solve any complex structure problems. However, in its cur

rent form, the multi-level application will be a computational intensive endeavor. This is 

because it involves repeated applications of the standard substructuring technique to gen

erate each of the substructural level displacements for the newly created substructure.

4.4 Example 4

The topology of the fourth structural example is shown in Fig. 4.7(a) which is 

made of one floating and two constrained substructures. The welding pattern is shown in 

Figs. 4.7(b) and 4.7(c). Note that the three substructures are welded together through 15
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spot welds. Ten of them weld these three substructures together at the same spots. That is, 

these spot welds represent “cross-point” constraints. Mathematically, these spot welds are 

expressed as a set of multiple point constraints as

P x p  =  Q x q  =  R x r

where subscripts P, Q and R  indicate the association of their respective substructure. In 

the three-field hybrid formulation, the above equation gives three sets of constraints, simi

lar to Eqs. (2.1.11-12) as

P X p  =  u  

Q X q  =  u

R x r  =  u

where the function u is not yet determined. Equations similar to Eq. (2.1.13) are still valid 

in this case. Nevertheless, the balance equation of interaction forces at a simple spot weld 

point, Eq.(2.1.14), needs some modifications for a cross point as

"Kp + A,q  + X R  — 0

Thus, with minor modification, the standard substructuring technique presented in Chap

ter 2 can be extended here for Example 4 with cross points. The sample displacement 

results at the loading point are listed in Table 4.4 that validate the procedure.
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o nodes along vertical surface 

 spot welds

(c) A Side-view of Example 4 

Figure 4.7 Structure of Example 4 (Continued)

Table 4.4 Nodal Displacements of Example 4

Degree of 
Freedom Reanalysis NASTRAN

u -0.8171E-05 -0.8171E-05

V -0.1706E-11 -0.2512E-18

w -0.6277E-03 -0.6277E-03

e* 0.7245E-11 0.1257E-16

0 r
0.9022E-04 0.9022E-04

Qz 0.0 0.0
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4.5 Example 5

This example structure is made of seven substructures, five of which are the float

ing substructures. The topologies of these substructures are shown in Figs. 4.8(a) and (b). 

The welded structure of Example 5 is similar to that shown in Fig 4.7(a). Nevertheless, its 

welding pattern, revealed in Fig. 4.8(b), is different from that of Example 4. However, the 

floating substructures are not welded to each other. Further, there are no cross points in 

this example. Since the floating substructures are not interconnected in this example, this 

is not a multi-level problem. The standard substructuring technique can be applied here 

just once to weld all of the floating substructures to the constrained one so as to form the 

desired structure. Again, the displacements at the loading point are listed in Table 4.5 to 

demonstrate the validity of the procedure.
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\ wo nodes along vertical

 spot welds

(c) A Side-view of Example 5 

Figure 4.8 Structure of Example 5 (Continued)

Table 4.5 Nodal Displacements of Example 5

Degree of 
Freedom Reanalysis NASTRAN

u -0.376IE-04 -0.376 IE-04

V -0.1839E-10 0.2032E-18

w -0.1920E-02 -0.1920E-02

0 , 0.1067E-09 -0.6436E-16

0 y
0.2127E-03 0.2127E-03

e.. 0.0 0.0
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4.6 Example 6

It is a common practice in the industry to distribute the applied force to the sub

structures through rigid links. The rigid links thus represent an additional set of interface 

conditions between substructures besides the weld joints. Example 6 simulates such an 

application. One floating and one constrained substructure are connected through 6 spot 

welds, as shown in Fig. 4.9 (a). Further, a force is applied at Point A that is connected to 

the substructures at Points B and C through respective rigid links, as shown in Fig. 4.9(b).

If Point A is specified as independent, the displacements or the degrees of freedom 

of Point B and C are thus functions of that of Point A. Mathematically, the relations 

between the displacements o f these points can be expressed as multipoint constraints, as

where A B and A c  are defined by Eq. (2.1.3).

The last two constraint equations are in the same form as those in the three-field 

hybrid formulation, Eqs.(2.1.11-12). Thus, the standard substructuring technique derived 

previously based upon the three-field hybrid formulation can be easily extended here to 

treat the rigid link problem. A  minor modification, however, is needed to include the 

applied force P in the force balance equation at Point A, Eq. (2.1.14), as

The displacement results of this example is selectively presented in Table 4.6. Again, the 

good agreement in their magnitudes verifies the computational procedure.

A BXB = X A (4.6.1)

(4.6.2)

XB + X q  + P  — 0 (4.6.3)
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Table 4.6 Nodal Displacements o f Example 6

Degree of 
Freedom Reanalysis NASTRAN

u 0.2594E-04 0.2594E-04

V 0.1426E-04 0.1426E-04

w -0.6349E-04 -0.6349E-04

0x -0.4204E-04 -0.4204E-04

0.0 0.0

0. 0.6420E-04 0.6420E-04
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CHAPTERS

APPLICATION OF SUBSTRUCTURING TECHNIQUE 

FOR OPTIMUM PLACEMENT OF SPOT WELDS

Spot welding is a kind of solid resistance welding. Due to the extensive application 

of the spot weld in the automotive industry, the quality and strength o f the spot welds 

become one of the primary parameters that governs the safety and reliability of automo

biles [36]. Thus, a better understanding o f spot weld behavior becomes a high priority 

issue. Much research has been done to address this issue [37-41]. To continue the effort, 

this chapter will investigate an optimization strategy to place the spot welds. It is noted 

that different spot weld placement results in different interface conditions. Thus, the sub

structuring technique presented previously can be conveniently used in this optimization 

strategy for repeated reanalysis of the same structure with different interface conditions.

To begin this placement design problem, N number of possible locations to place 

spot welds are specified along the interfaces of the structure. This set o f design candidates 

for the spot welds constitutes the design space. For each of the candidate positions in the 

design space, there are two possible choices, either to place a spot weld or not. Therefore, 

the total number of possible arrangements for placing the spot welds is 2N. This is a typi

cal design optimization problem with discrete design variables. The simple genetic algo

rithm is employed here to solve this type of applications. The substructuring technique is 

used here to support the genetic algorithm in evaluating the performance of the structure
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with any given spot weld pattern. Figure 5.1 shows the major steps of the proposed 

approach.

No
CONVERGENCE

Yes

STOP

GENETIC ALGORITHM 
Better designs

INITIAL DESIGN POPULATION 
Generated randomly

SUBSTRUCTURING TECHNIQUE 
New placement of spot welds

INPUT/PRE-PROCESSOR 
Data for possible placements of spot welds 
Substructural Displacement output from 
MSC/NASTRAN

Figure 5.1 Major Steps in Optimization Process
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5.1 Introduction to Genetic Algorithm

The genetic algorithm is a probabilistic numerical search procedure that produces 

a set of better designs including the optimum. It was developed originally to improve pro

gramming structure and program performance. This concept resulted from work by Hol

land in 1970 and has since been applied to many engineering design optimization 

problems[42-52]. It is computationally simple but powerful in their search for improve

ment. The nature of the genetic algorithm is the combination of the Darwin theory of the 

survival of the fittest. It considers the best or better characteristics among the old popula

tion and creates better offsprings. The genetic algorithm follows the natural selection and 

reproduction processes, which are displayed in biological populations to produce better 

designs. The genetic algorithm starts with a set of randomly generated designs, called the 

initial population of design. Then each design is evaluated and ranked, based on certain 

criteria. The designs in this population are selected, with the favor given to the superior 

individual. These selected designs undergo the reproduction operations and produce a new 

set of designs. The designs in the new population are evaluated and ranked again and then 

the convergence is checked. If the convergent criterion are not satisfied, the designs in the 

population go through the cycle of selection, reproduction, evaluation, and convergence 

checking again until the convergence is satisfied. In short, the genetic algorithm uses five 

operations, evaluation, ranking, selection, reproduction, and convergence, to simulate the 

search and reproduction of the population in the biological environment. Evaluation is to 

evaluate the performance of each design in the current population and it is performed by
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the analysis package supplied by the users. The performance of each design is represented 

by the objective value, Obj, defined by the optimization problem. Ranking is to reorganize 

all designs in the current population according to their fitness values. Suppose the size of a 

population is N. Then the fitness value of each design candidate is defined as

where (F T )(- is the normalized fitness values of design string i in the population, and 

(Obj); is the objective function value of it. Selection is to select the designs from the cur

rent population for reproduction of the population of the next generation. The individual 

with higher fitness value has a higher possibility of contributing one or more offspring in 

the next set of generation. Reproduction is to reproduce a new set of population using the 

basic genetic manipulations: cross-over, mutation, and permutation, (see Fig.5.2)

i = 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

CROSSOVER

Parent 1 

1 0  0 / 1 0 1 / 1 1 1 0

Crossover location

Child 1

1 0 0 / 0 1 1 / 1 1 1 0

Parent 2

0 1 1 /0  1 1 / 0 0  11ll

Child 2 

0 1 1 / 1 0  1 / 0 0 1  1

MUTATION

Before mutation

Mutation location

After mutation

0 1 1 0 0 1 1 0

0 1 1 1 0  1 1 0

PERMUTATION

Before mutation

Permutation location

After permutation

0 1 1 1 0 1 0 0 1  

A A

0 0 0 1 0 1 1 1 1

Figure 5.2 Three Basic Genetic Manipulations in Genetic Algorithm
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Cross-over is a mating process in biological terms; it produces two child designs from two 

parent designs. In this operation, the parent strings are split and exchanged to each other to 

produce child designs. The split position between two bits is called the cross-over point 

and it is determined randomly. A two-point cross-over example is shown in Fig. 5.2 where 

two cross-over points are identified and the parts of two parent strings are exchanged. The 

probability of cross-over operation is determined by a parameter called “probability of 

cross-over.” Mutation is modeled after the sudden change that can occur in chromosomes 

in biology. If a bit from a string is chosen for mutation, its value is changed randomly to 

produce a new string. In the example of mutation in Fig. 5.2, the fourth bit in the string is 

chosen and its value is changed. The possibility of the mutation is determined by a param

eter called “probability of mutation.” Permutation is a random operation that produces a 

child string from one parent string. Two bits of the parent string are chosen randomly and 

the order of bits between these two bits is then reversed to produce the child string. In the 

example in Fig. 5.2, the second and the second from the last bits are chosen as permutation 

locations and the order of the bits between them are reversed to produce a new string. The 

probability of permutation is also controlled by a parameter called “probability of permu

tation.” Convergence criterion is set to preserve the best design in each population for cer

tain number of iterations. If the design does not improve for a certain predetermined 

number of consecutive generations, then the global optimum may be reached and the algo

rithm stops.

The genetic algorithm ranks the performance of individual design by evaluating a 

single valued objective function. Therefore, the genetic algorithm can be conveniently 

applied to an unconstrained optimization problem. To solve the constrained optimization
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problem; however, the problem must be converted into an equivalent unconstrained mini

mization by using the penalty function method [53]. For example, a typical constrained 

minimization problem can be stated as

Minimize f ( d )  (5.1.2)

Subject to S i ( d )  < 0  * = 1,2,..., k (5.1.3)

h j ( d )  = 0 y = l ,. . . ,/  (5.1.4)

w here/is the objective function, d  is the design variable, and g and h are the inequality 

and equality constraints, respectively. This problem can be converted to an unconstrained 

minimization problem by using a penalty function. With an exterior penalty function, this 

problem can be redefined as

k I
Minimize F { d )  =  f ( d )  + r  ^  ( g t +  \g -|) +  ^ {h j )~

i = 1  7 = 1

(5.1.5)

where r and 5 are the penalty coefficients that are used to penalize those designs that vio

late the constraints. The single-valued objective function, F, that incorporates the impact 

of the objective as well as the constraints can be used to rank the designs in a population.

The performance of the genetic algorithm depends primarily on input parameters, 

such as the population size, the convergence criterion, and the probability values for cross

over, mutation, and permutation. These input parameters not only effect the final search 

results but also the efficiency of obtaining such results. Some general guidelines of adjust

ing genetic algorithm parameters are given in the literature [54].
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• A large population size usually leads to the final solution with reduced 

number of generations.

• The appropriate size of the population is more effected by the number of 

design variables and the sensitivities of the objective function to the indi

vidual design variable.

• A population with smaller size requires larger probabilities of genetic 

manipulations than that with larger size in order to converge to the best 

possible solution.

Although the genetic algorithm is simple to implement, the major obstacle of a 

genetic algorithm application is its requirement of a very large number of design evalua

tions. To improve the efficiency of the genetic algorithm, different strategies are exploited 

by different authors [44, 54, 55]. Among them are elitist strategy, multi-point crossover, 

and gradual increase of penalty parameters [55].

Elitist strategy is implemented by replacing the worst individual in the next gener

ation by the best individual from the previous generation. This strategy guarantees the sur

vival of the best individual in a generation and ensures the continuous increase of 

maximum fitness value generation after generation. The stable increase of the maximum 

and average fitness values can be expected and the optimum fitness value is also expected 

to be higher than that without using the strategy.

Multi-point cross-over selects several cross-over points in the cross-over opera

tion. Multiple crossing sites may produce even better results. However, the optimum num

ber of cross-over points is not yet determined.The multi-point crossover accelerates the 

exchanges of genes between strings .Two-point crossover, proved to be the most reliable,
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stable, and efficient, is used in this study.

The genetic algorithm is an unconditional optimization algorithm. To use a genetic 

algorithm to solve constrained optimization problems, the penalty function approach is 

usually used to transform a constrained problem into an unconstrained one. In many 

genetic algorithm applications, the penalty parameter remains as a constant in the design 

optimization process. Using a constant penalty parameter makes the observation of design 

improvements easier. However, it is difficult to assign a proper value to the penalty param

eter. When the value is too large, the infeasible designs will be eliminated rapidly and it 

may result in a premature convergence. On the other hand, if the value is too small, the 

final solution would end up in the infeasible domain. To avoid this dilemma, the penalty 

parameter can be given an initial value at the beginning and increased gradually until it 

reaches certain generation, then remains unchanged for the rest of the generations.This 

penalty increasing strategy gradually leads the solutions from an infeasible region to a fea

sible region and can prevent a premature convergence.

In this study, the elitist strategy and the two-point cross-over are employed to 

improve the efficiency of the genetic algorithm. The elitist strategy used here is a variation 

of the one described in the literature. The entire population in the current generation 

directly descend to the next generation except the worst ones that are to be replaced by the 

newly produced designs. In this way, not only the best design of the current generation is 

survived in the process but also a group of near best designs. Further, this elitist strategy 

limits the number of designs to be reproduced.
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5.2 Numerical Implementation

The most difficult task of the proposed approach for the spot weld placement opti

mization is to construct a proper formulation that can measure the quality o f a pattern of 

placement. This study focuses on three performance criteria: maximizing the rigidity of 

the welding structure, minimizing the number of spot welds, and maximizing the durabil

ity of the spot welds. Since there are direct relations between the durability of the spot 

welds and the static loads and local stresses at the spot welds, the last performance criteria 

is further specified as to maintaining a satisfactory load and stress level in spot welds. 

These criteria are combined into a single objective function with penalty coefficients 

being assigned to each of them. This objective function of each design is used as a guide

line to perform genetic evolution and eventually leads to better designs of the problem.

Two examples are presented here to validate the proposed computational proce

dure. The design variables in the examples are the patterns of spot welds. Each design 

variable is represented as a string of integers (with value of 1 or 2). In the beginning, a 

number of candidate locations at which the spot welds to be placed are determined. The 

length of the individual string is equal to the total number of these candidate locations. 

Each integer in the string corresponds to a candidate spot. Value 1 indicates that the candi

date location is not selected for a spot weld, while value 2 indicates that the candidate 

location is. If the total number of the candidate locations are N, then the search space for

the genetic algorithm contains 2N possible placement patterns of spot welds.

The performance criteria, which are the number of spot welds, the rigidity of the
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welded structure and the load and the stress at spot welds, can be mathematically formu

lated as a constrained design optimization problem

Min N  (5.2.1)

Subject to: b  <  &q (5.2.2)

a i < a Q / = 1 to iV (5.2.3)

where N  is the number of spot welds, at- is a measurement of the state of internal forces at 

spot weld i, and b represents the compliance of the structure.

In the above problem formulation, the objective, Eq. (5.2.1), is to minimize the 

number of spot welds in order to reduce the manufacturing cost of the structure. The com

pliance constraints, Eq. (5.2.2), ensures the rigidity of the welded structure. The compli

ance is calculated as the work done by the external forces. A higher compliance indicates 

a lower rigidity of the structure.The loading constraints, Eq. (5.2.3), prevent the spot 

welds from being overloaded. The state of stresses in a spot weld is the most direct way to 

indicate the durability of the spot welds. However, for simplicity, the internal forces at the 

spot welds, which are proportional to the stresses, are direcdy used to measure the strength 

of spot welds in this study. A more sophisticated method for calculating the strength of 

spot welds can be found in Refs. [30-32].

The upper bound of loading, a0, in Eq.(5.2.3), is an input value specified by the 

designer. The upper bound of compliance, b0 in Eq.(5.2.2), is defined as the compliance of 

the welded structure with all of its candidate spot welds selected. Thus, the constraint of 

Eq.(5.2.2) is expected to be violated because b0 has the least value among all possible spot 

weld placement patterns.
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Since the genetic algorithm can be applied to only an unconstrained optimization 

problem, the above constrained problem has to be converted into an unconstrained prob

lem. By using the exterior penalty function method, a composite function is introduced to 

represent Eqs. (5.2.1 - 3) as

where the first term in the denominator is associated with the number of the spot welds 

and the other terms are associated with the constraints defined by Eqs.(5.2.2-3). The coef

ficients a  and (3 are the weights for the constraints and S and W  are the measurements of 

violations. More specifically, S is defined as

N

s =  ^  +  ( 5 -2 ‘5 )

i = 1

which yields a positive value if the reaction force on any of the spot welds is greater than 

the desired bound. W  is defined as

which again generates a positive value when the compliance is greater than the given 

value. With the above definition, maximization of F in Eq.(5.2.4) results in a reduction in 

the number of the spot welds N  and a reduction in the amount of the violations in S and W. 

Value 1 is added to each of the terms in the denominator to prevent a possible zero from 

appearing in the denominator.

Max F  = 1 (5.2.4)
( N  + l ) ( a S +  l ) ( p w +  1)

(5.2.6)
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5.3 Example of A Support Bracketrv

A simple model of the support bracketry is used here. As- shown in Fig. 3.2, three 

substructures are welded together to assemble the structure. In thais study, only the spot 

welds along two edges of the middle substructure are selected as Che design variables. That 

amounts to 78 candidate locations. A moment vector is applied ait the upper end of Sub

structure 1. And the entire structure is fully constrained at both ends of Substructure 3.

Three different cases are studied here with different weighting coefficients used in 

Eq. (5.2.4).

o b j  =  1 0 0 0 /{ N  +  r /2 0 0  +  m /1 0 0  +  W / 2 )  (5.3.1)

o b j  =  1 0 0 0 / ( N  +  r /2 0 0  +  m /1 0 0  +  A W )  (5.3.2)

o b j  =  1 0 0 0 /(W  +  r /2 0 0  +  m / 100 +  5 +  W / 2  ) (5.3.3)

where W is defined as in Eq. (5.2.6) with b0 as the compliance orf the full pattern of spot 

welds and r and m are defined as in Eq. (5.2.5) for internal reaction force and moment,

respectively. The reaction force is represented as ^3 (0  2 + 0-,2) -+ 032 and the reaction

2"" 2 ^04 + 05 + 06“ , where 0 1, 02 , and ®3 are the reaction forces 

along x-, y-, and z- direction, and 04 , 05 , and 06 are the reaction moments. Both rQ and 

mQ are chosen as 200. The quantity of s is defined in a form simil ar to Eq. (5.2.5) to repre

sent stress amount in the welded structure and s0 is taken as 30.

Thus, the objective function, Eq. (5.3.1), requires that the structure’s rigidity be
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maintained, while the internal loads at each spot weld should be under a limit in the first 

case. More weight is given to the compliance term in the second case, which has Eq. 

(5.3.2) as the objective function, to reflect the purpose of designing a high rigid structure. 

In the third case with the objective function, Eq. (5.3.3), the constraint on the local stress 

of the parent structure is added to the objective function. The design object in this case is 

to reduce the stress concentration in five areas as indicated by comers A, B C, D, and E in 

Fig. 5.3, while satisfying the same constraints as those in the first case.

The performance of the genetic algorithm is sensitive to the input values of several 

parameters. These parameters include the size of the population and the probabilities for 

various genetic manipulations. The size of the population is the number of individual 

designs in one generation. In general, the process with a large population size has a better 

chance to obtain a global optimal design than the one with a smaller population size. How

ever, increasing the size of population implies more function evaluations. That results in 

more computational time. Thus, selection of an appropriate population size is important. 

Here, the size of the population is approximately assigned to be three times the number of 

the string length, which is the number of possible locations for spot welds. The probabili

ties are set at 100 percent for cross-over and permutation, and at 30 percent for mutation. 

The process is considered converged, if the merit function is not improved in 15 consecu

tive iterations.

The process converged after 24,739 evaluations in the first case. The best design 

has 40 spot welds. The best design in the second case is obtained after 41,497 function 

evaluations and it has 64 spot welds. The optimal design for the third case is obtained after 

20,749 function evaluations, and it has 41 spot welds. Table 5.1 summarizes the spot weld
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numbers, the compliances and the maximum stresses of the best designs o f these three 

optimization cases. It clearly demonstrates the effects of the weight coefficients on the 

optimal design. The compliance of the optimal design in the second case is significantly 

lower than those in other cases because of the heavy weight put on the compliance in the 

second case. And the maximum stress value of the optimal design in the third case is lower 

than those in others. This is because of the presence of the stress constraint. The spot weld 

placements in the best designs of these three cases are shown in Figs. 5.4 to 6. In these fig

ures, an open circle represents an un-selected candidate spot weld location and a solid cir

cle represents a selected candidate spot weld location. The square box indicates that two 

separated spot welds connect two nodes in one substructure to one node in the other.

The internal forces at the spot welds of the optimal designs for three cases are 

shown in the forms of nodal reaction forces and bending moments in Figs. 5.7 to 14. In 

these figures, the magnitudes of the reaction force or moment at each spot weld are pre

sented. The horizontal line in each chart indicates the limitation set on the force or 

moment. Through these figures, it is observed that the force and moment at the spot welds 

of the optimal designs in the first and the third cases are much better than those in the sec

ond case. Again, this observation is also correlated to the design intention set for each 

case.

The stress contours on Substructure 2 of the optimal designs of three cases are 

shown in Figs. 5.15 to 18. Table 5.2 shows the maximum stresses in the five interested 

areas of the best designs for these cases. As expected, it reveals that the stress distribution 

of the optimal design in the third case is better than those in others.
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Table 5.1 Results of Three Optimal Designs

Case No. of 
Welds Compliance Max. Stress CPU

Time(hrs)
No. of 

Analysis

Full 78 538.20 40.5 — —

1 40 645.69 46.6 26.99 24,739

2 64 561.74 41.9 77.24 41,497

3 41 612.93 40.7 27.7 20,749

Table 5.2 Stress Values of Three Optimal Designs

Area Full Welds Case 1 Case 2 Case 3

A 40.5375 46.6156 41.9817 40.6963

B 39.8773 32.1484 40.5100 31.8625

C 38.3124 36.7595 39.9963 34.4076

D 34.8796 37.0738 38.0927 35.2582

E 39.0203 42.4986 40.9731 40.7313
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Figure 5.3 Five Areas of Stress Concentration

Figure 5.4 Optimal Design Pattern of Spot Welds (Case 1)
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Figure 5.5 Optimal Design Pattern of Spot Welds (Case 2)

Figure 5.6 Optimal Design Pattern of Spot Welds (Case 3)
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Figure 5.7 Reaction Forces at Spot Welds for Full Pattern
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Figure 5.8 Reaction Moments at Spot Welds for Full Pattern
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Figure 5.9 Reaction Forces at Spot Welds for Optimal Design (Case 1)
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Figure 5.10 Reaction Moments at Spot Welds for Optimal Design (Case 1)
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Figure 5.11 Reaction forces at Spot Welds for Optimal Design (Case 2)
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Figure 5.12 Reaction Moments at Spot Welds for Optimal Design (Case 2)
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Figure 5.13 Reaction Forces at Spot Welds for Optimal Design (Case 3)
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Figure 5.14 Reaction Moments at Spot Welds for Optimal Design (Case 3)
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Figure 5.15 Stress Contour of Part 2 for Full Pattern

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

Figure 5.16 Stress Contour of Part 2 for Optimal Design (Case 1)
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Figure 5.17 Stress Contour of Part 2 for Optimal Design (Case 2)
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Figure 5.18 Stress Contour of Part 2 for Optimal D esign  (Case 3)
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5.4 Example of A B Pillar-to-Rock Joint

The structure of the B pillar-to-Rock Joint is used here as an example. As shown in 

Figs. 3.4 to 6, four substructures are spot welded together to assemble this structure. The 

substructures A, B, and C are fully constrained along their ends, and D is a floating sub

structure that is connected to the rest by spot welds. In total there are totally 53 candidate 

locations for spot welding. Ten of them are the ones where three substructures are welded 

together. A moment load is applied at the open end of Substructure D. The problem for

mulation is similar to that defined in Eqs.(5.2.4 through 6), except that the stress con

straints are not included in this study.

In this study, the effects of the genetic algorithm parameters are tested in more 

detail and a variation of the elitist strategy is also investigated. Two objective functions are 

used for this model example. First, the following objective function is used.

o b j  =  1 0 0 / ( W + ( 1 0 r + l )  +  ( 1 0 m + l )  +  ( l ( ) V + l ) )

(5.4.1)

where each term is defined as that in Eq. (5.3.1) and the limitation rQ is set as 0.7 and mQ 

is 0.6, and b0 is 4.136E-4, the compliance of the case with full placement of spot welds.

The genetic algorithm is run with three different sets of parameters. In the first 

case, the population size (PS) is set to be 200 and the probabilities of cross-over, permuta

tion, and mutation are set as 100%, 100%, and 30%, respectively. In the second case, pop

ulation size is 50 with the probabilities of cross-over (PC), permutation (PPM) and
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mutation (PM) at 95%, 95%, and 10%, respectively. In the third case, the probability of 

mutation is reduced to 1%, while the other parameters remain the same as those in case 

two. In both cases two and three, a variation of the elitist strategy is applied. The entire 

population in the current generation are directly descended to the next generation except 

the worst eight designs that are replaced by the newly produced individuals. Table 5.3 lists 

the parameters used in the above three optimization cases.

Table 5.3 Parameters Used in the First Three Cases of Example 2

Case PS PC(%) PPM(%) PM(%) Elitist
Strategy

1 200 100 100 30 No

2 50 95 95 10 Yes

3 50 95 95 1 Yes

All three cases generate the same best design, which has 50 spot welds. The spot 

weld locations in the optimal design are shown in Figs. 5.19 to 24 for each substructure. A 

solid circle in these figures represents a spot weld location, while an open circle represents 

an unselected location.

The internal reactions at the spot welds are represented in terms of reaction forces 

and bending moments at the spot welds. The bar charts in Figs. 5.25-28 depict the values 

of the reaction forces and moments at the spot welds for the full weld pattern and the opti

mal one. By comparing Fig. 5.25 with Fig. 5.27 and Fig. 5.26 with Fig. 5.28, it is observed 

that the removing three spot welds does not alter the distribution of the interface reaction. 

This indicates that the optimal design pattern is better than the original pattern since it has
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fewer spot welds but achieves similar internal load distribution.

The numbers of genetic generations and analyses of these three cases are listed in 

Table 5.4 for comparison. Their convergence histories are plotted in Figs. 5.29 to 31. The 

results show that a genetic algorithm with a large population size can converge faster than 

the one with a smaller population size. Further, the results also show the effect of the elit

ist strategy on the quality of the converged design. The elitist strategy not only reduces the 

number of analyses to reach an optimum, but also improves the quality of the top best 

designs.

Table 5.4 Numbers of Genetic Generations and Analysis for Three Cases

Case
No. of 

Genetic 
Generations

No. of 
Analysis

1 120 23,880

2 219 1,794

3 167 1,378

To further investigate the effects of genetic parameters, four more optimization 

runs are conducted with a new objective function, Eq. (5.4.2), in which the weighting 

coefficient of W is reduced by a factor of 10.

o b j  = l Q 0 / ( N  + ( r +  1) +  ( 1 0 m +  1) + ( 1 0 5 W +  1))

(5.4.2)

where r, m, and W  are defined the same as those in the previous example. The parameters 

used in these four cases are listed in Table 5.5. This time, each case generates a different
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optimal design from others. The value of the objective function, the numbers of genetic 

iterations and analysis are listed in Table 5.6. The converged histories are shown in Figs. 

5.32 to 35.

Table 5.5 Parameters Used in the Second Four Cases of Example 2

Case PS PC(%) PPM(%) PM(%) Elitist
Strategy

4 200 100 100 30 No

5 30 95 95 10 No

6 50 95 95 10 Yes

7 50 95 95 1 Yes

Table 5.6 Comparison of Results of the Last Four Cases of Example 2

Case Objective No. of Spot 
Welds

No. of 
Genetic 

Generations

No. of 
Analysis

4 0.9331394 37 103 20497

5 0.9326778 38 314 2534

6 0.9496170 35 347 2818

7 0.9522028 34 353 2866

These results again confirm the conclusions drawn from the previous study. These 

conclusions include the following.

• A genetic problem with a larger population size can reach the converged 

solution with a fewer number of genetic generations.
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• The elitist strategy used here not only improves the efficiency of the algo

rithm but also helps the algorithm to retain high quality designs.

• Small value possibility of mutation may have negative effect on the quality 

of the best designs in the final generation. This is realized by inspecting 

Fig.5.31 which shows little difference in the objectives between the best 

design and the averaged value of the design population.

Figure 5.19 Optimal Design Pattern of Spot Welds (Case 1, Part A)
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Figure 5.20 Optimal Design Pattern of Spot Welds (Case 1, Part B)

Figure 5.21 Optimal Design Pattern of Spot Welds (Case 1, Part C, View 1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

Figure 5.22 Optimal Design Pattern of Spot Welds (Case 1, Part C, View 2)

Figure 5.23 Optimal Design Pattern of Spot Welds (Case 1, Part D, View 1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

Figure 5.24 Optimal Design Pattern of Spot Welds (Case 1, Part D, View 2)
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Figure 5.25 Reaction Forces at Spot Welds for Full Pattern
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Figure 5.26 Reaction Moments at Spot Welds for Full Pattern
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Figure 5.27 Reaction Forces at Spot Welds for Optimal Design
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Figure 5.28 Reaction Moments at Spot Welds for Optimal Design
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CHAPTER 6  

CONCLUDING REMARKS

This dissertation effort centers on one objective: to develop a design methodology 

that can consider the interface conditions as design variables. To achieve this goal, a sub

structuring technique is first established. This substructuring technique explicitly includes 

the interface conditions as part of its matrix equations so as to facilitate a direct relation 

between the structural responses and the interface conditions. This substructuring tech

nique is later extended to perform reanalysis of structures with modified interface condi

tions. The new reanalysis technique will move the terms associated with interface 

conditions to the right-hand side. As a result, it allows any finite element code to be used 

as a preprocessor for substructural level analyses. The core of the computation of this 

reanalysis method is then reduced to solve a reduced order matrix equation for the inter

face reactions. Several numerical examples are presented in this work to validate and eval

uate the methods. The lessons learned from this numerical study are:

1) The substructural level analysis part of the method can be done very efficiently, 

because all calculations done for one individual substructure share the same left-hand side 

coefficient matrix. However, it may require a great deal of computer memory to store the 

multiple outputs that will be used later to form the reduced order matrix equations.

2) Either the two-field or three-field hybrid formulations can be used to develop 

the algorithm for the substructuring technique. The former produces a symmetric reduced 

order equation, while the latter yields a non-symmetric reduced order equation. Solving
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symmetric equations is certainly more advantageous in terms of computational efficiency.

3) The reanalysis can take advantage of any black-box finite element code as the 

pre-processor for substructural level analysis. Nevertheless, the printout of such analyses 

should provide enough significant digits so as to maintain the accuracy of the overall anal

ysis. Particularly, if enough accuracy of the printout can be secured, the symmetric 

reduced order equation can then be used for reanalysis.

4) The reanalysis technique presented here is more computationally efficient than 

the “subcase” reanalysis of MSC/NASTRAN. However, this comparison does not include 

the computational time required for pre-processing. Nevertheless, the saving increases 

with increasing number of reanalyses.

5) The presence of floating substructures, “cross-point” interface constraints and 

multi-level connection will slow done the computational speed of the reanalysis tech

nique.

In the second part of the research, the substructuring technique is used, in conjunc

tion with the genetic algorithm, to form an automatic design method that treats the inter

face conditions as the design variables. Particularly, a placement problem of spot welds is 

used to facilitate the presentation of the design method. The spot welds between substruc

tures are modeled as multiple point constraints. The on-or-off choice of a spot weld is con

sidered as a design variable. The substructuring technique here serves as a reanalysis tool 

to evaluate the structural performance of any given spot weld pattern.

The method does produce improved designs with a reasonable effort. Neverthe

less, the most difficult part of this design method for spot weld placement is casting the 

design problem into an unconstrained minimization formulation. There is no proper guide-
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line available so far to select the weighting coefficients that can measure the relative 

importance of each of the design criteria. Other difficulties encountered are associated 

with the simple genetic algorithm, which include the selection of algorithm parameters 

and the lengthy computation time. The elitist strategy tested in this study has shown that it 

can stabilize the genetic algorithm and improve its efficiency in search of the optimal 

solution. Further improvement may be possible through computation parallelization and 

the use of symmetric formulation in the substructuring analysis.
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APPENDIX

In the presence of a floating substructure, it is required to solve matrix equations in 

the following form, as stated by Eqs. (2.2.29-30) and Eqs. (2.3.12-14),

K *x*  =  / *  (A.l)

The matrices, K * , is defined as

T
K Q (A.2)
IQ o

and the solution, x *, and the load, /* ,  can be varied. However, for the purpose of discus

sion, x* and f *  are defined as x * T = [xT, >.r ] and f * T = [f T, cT] . Although K  in 

Eq. (A.2) is singular, the enforcement of constraints, Q x — c , enables the leading coeffi

cient matrix, AT*, to become non-singular. The procedure presented in the later part of 

Section 2.2.2 is one of the possible solutions to solve Eq. (A .l). The procedure requires, 

however, a prior knowledge of the constraint set, Qx  = c . This will make the proposed 

substructuring technique difficult to be used for design applications, as the interface con

straint set is usually not available before hand in the design process. A modified approach 

is presented here that can alleviate such difficulty.

The first step of the approach is to impose a pre-determined set of q single point 

constraints onto the floating substructure. Consequently, the singular K  matrix in Eq. (A.2) 

is replaced by a non-singular one, K {, as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136

K  =
0  0

(A.3)

The new solution of Eq. (A.l) now becomes

K x  = f

where x  can be obtained as

x  =  XX + x f  

where X  and x f  are the solutions given by

KtX  = - Q T

(A.4)

(A.5)

(A.6)

and

K , x f  = f (A.7)

The solution, x , of Eq. (A.4) is not x*  of Eq. (A.l), though it can be modified to recover 

x* by the Sherman and Marrison’s formula [34].

The difference between K* and K  can be obtained as 

AK  =  K - K *

T T TK  I Q k q q l

I  0 0 0 / 0

_Q 0 0 Q 0  0

The I qxq in the first matrix on the right hand side is pertaining to the q constraints of con

cern.
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whereas / ?x? in the second matrix on the right-hand side represents a dummy equation to

equal K* to K  in size,

X *  =  0

The core of AK  can be abbreviated as a 2q x  2q matrix

AK  = 0  /

/  - I

which can be decomposed as

A K  = U V

For example, columns of U  and V  can be expanded based upon the eigenvalue and eigen

vectors of a typical submatrix of AK

A K 0 1 
1 -1

The desirable solution, x * , can then be obtained by modifying the obtained solution, x , as

x *  =  W s +  x (A. 8)

where W  and s are the solutions of the following equations, respectively,

K W  = U (A.9)

and

(.I - U TW) s  =  U Tx (A. 10)

Equation (A.9) is in the same form as Eq. (A.4), which can be solved by Eqs. (A.5-
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7). Since X  is readily available, the additional computation involves only

K j X J =  u  (A .ll)

for each column, u,  o f U. The solution of Eq. (A. 10) can be easily solved, because its lead

ing coefficient matrix is symmetric and its size is limited to 2 q x 2 q .

In the current method, MSC/NASTRAN can be employed to solve Eqs. (A.6-7 and 

A .ll)  in a substructural level analysis with a pre-determined set of single point con

straints. Once the specific set of the interface constraints is determined, one can construct

the desirable X  in Eq. (A. 6). Consequently, one can form Eq. (A. 10), solve for s and con

struct the needed solution x* through Eq. (A.8).

In a summary, the substructural level analysis of the current method can be carried 

out without knowing specific interface conditions in advance. However, the method needs 

to solve additional 2q equations in the substructural level analysis.
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