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ABSTRACT  
SIMULATION OF ACTIVE CONTROL OF 

ASYMM ETRIC FLOWS AROUND SLENDER POINTED
FOREBODIES

Hazem Sharaf El-Din Hafez Sharaf El-Din 
Old Dominion University, December 1994 

Dirctor: Dr. Osama A. Kandil

At high angles of attack, the flowfield over slender forebodies becomes asymmetric 

with substantial side force, which may exceed the available control capability. The un­

steady compressible Navier-Stokes equations are used to investigate the effectiveness 

of different active control methods to alleviate and possibly eliminate the flow asym­

metry and the subsequent side force. Although the research work focuses on active 

control methods, a passive control method has been investigated. The implicit, Roe 

flux-difference splitting, finite volume scheme is used for the numerical computations. 

Both locally-conical and three-dimensional solutions of the Navier-Stokes equations 

are obtained.

The asymmetric flow over five-degree semi-apex angle cone is used as a reference 

case to which the different control methods are applied and compared. For the pas­

sive control method, the side-strakes control is investigated. The parametric study 

includes the control effectiveness of the strake span length.

For the active control methods, flow injection in the normal and tangential direc­

tions to the body surface has been investigated. Both uniform and pressure-sensitive 

mass flow injection are applied, and the effects of mass flow rate, injection angle and 

injection length have also been studied. Injection, with a parabolic profile, is applied 

from the cone sides tangent to its surface. Surface-heating, where temperature of the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



cone surface is increased, is also investigated. The effectiveness of a hybrid method 

of flow control which combines injection with surface heating has been studied. The 

cone spinning and rotary oscillation around its axis are applied as an active control 

method. The computational applications include the effects of uniform spinning rates 

and periodic rotary oscillations at different amplitudes and frequencies on the flow 

asymmetry.

r  ■
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the last two decades, there has been an increasing interest in high angle-of-attack 

(AOA) aerodynamics due to its importance in the design of modern fighter aircraft, 

missiles, and the aerospace vehicles such as aerospace plane. For modern fighter 

aircraft, flight at high AOA is an inherent part of both offensive and defensive ma­

neuvering. Maximum lift in modern aircraft is obtained at 25° to 35° AOA while 

during maneuvering AOA may reach 60° or more. On the other hand, there is a 

tendency toward high AOA in missile design because of the need for high maneuver­

ability, and specific requirements on flight behavior.

The flow structure over a slender body changes with increases in AOA. Four 

main flow patterns can be observed as the AOA increases from 0° to 90°, as shown in 

Fig. 1.1. At low AOA, the axial flow component dominates, and the flow is attached. 

Meanwhile a thick viscous layer will be generated on the leeside. At intermediate 

AOA, the crossflow separates and rolls up into a symmetric vortex pair. With further 

increases in the AOA, the vortex pair becomes asymmetric. Shedding and unsteady 

vortices will result at higher AOA. At AOA near 90°, the axial-flow component has 

less and less influence and the leeside flow resembles the wake of a two dimensional 

cylinder normal to the flow [2 ].

■
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Figure 1.1: Flow structures at different angles of attack, Ref. [1].
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It was shown [3] that the side forces, which arise due to the flow asymmetry 

at zero side-slip, can exceed the control capacity available at high AOA of attack. 

This problem can be overcome by introducing new control methodology to control, 

suppress, alleviate or eliminate the flow asymmetry and consequently the side forces.

In the past, most of the effort was concerned with developing passive control 

methods. Passive control methods deal mainly with geometric perturbation, such as 

nose bluntness, strakes, and boundary layer trips. These methods have proven to 

be effective within certain AOA ranges. Such control methods introduce changes in 

the geometry of the missile or aircraft which may be unfavorable from other design 

aspects, i.e. reduction in storage space. Another disadvantage of the passive control 

methods is their effect on the directional stability of missiles [4].

Recently, research has started to focus on new approaches to the flow-asymmetry 

control problem. Active control methods include injection or blowing in different 

directions, nose spinning or rotation, and surface heating. These methods have the 

advantage that they can be adaptive compared to the passive methods. On the other 

hand, their main disadvantage is that they require some sort of energy to make them 

effective.

1.2 The Scope of the Study

In the present study, the unsteady compressible Navier-Stokes equations are used 

to investigate the effectiveness of different control methods to alleviate and possibly 

eliminate the side forces and the flow asymmetry that arise at high AOA. Pointed 

slender bodies are commonly used to represent aerodynamic components of both 

missiles and aircraft. The cone, which is used extensively in the present research, 

has a simple geometry which simplifies some of the computational effort, however, 

it has a very complicated three-dimensional separated flowfield. Also, the cone is
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used widely as a basic shape for ballistic re-entry vehicles. Flow around isolated 

aerodynamic components has been used to study the vortex dynamics and the flow 

asymmetry.

Several methods of flow asymmetry control are presented. These methods can 

be divided into two categories: passive and active. Passive control methods that are 

presented here, are concerned mainly with the use of strakes to prevent interactions 

between the forebody vortices. In the study of the effect of active control methods, 

blowing—both normal and tangential—surface heating, spinning and rotary oscilla­

tions are presented.

To avoid the large computational resources required for the solution of the three- 

dimensional problems, the locally-conical-flow assumption has been used in most of 

the cases studied in the present dissertation. With such an assumption, the problem 

solution reduces to that of a two-dimensional flow problem which represents a saving 

in the computational time and storage by an order of magnitude. Thus, the dynamic 

behavior of the flow asymmetry and the effectiveness of different control methods 

can be studied efficiently. This methodology allows us to investigate more control 

methods and cases than would be feasible with three-dimensional approach.

In Chap. 2, a literature survey which covers the onset of asymmetric flow and the 

different control techniques is presented. This chapter covers both experimental and 

computational research and focuses on the most recent publications.

Chapter 3 presents the mathematical formulation of the unsteady compressible 

three-dimensional Navier-Stokes equations. The conical form of the Navier-Stokes 

equations are derived and the various approximation levels are discussed. In Chap. 4, 

the computational scheme which is used to solve the Navier-Stokes equations, is 

discussed. The implicit, upwind, finite-volume, flux difference-splitting scheme is 

described. At the end of this chapter, the boundary and initial conditions for the 

different problems are discussed.

.........
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The computational results are presented and discussed in Chapters 5, 6 , 7 and 8 . 

In Chap. 5, the results of the passive control methods are presented. The effect 

of strake span is addressed in this chapter. Chapter 6  discusses the effect of both 

normal and tangential injection as an active method to control flow asymmetry. 

Surface heating as a flow disturbance-damping factor is addressed in this chapter. 

Spinning and rotary oscillations are presented as means to suppress flow asymmetry 

in chapter 7. In Chap. 5, 6  and 7, the locally-conical flow assumption is used while 

in Chap. 8 , three-dimensional effects are studied with applications to flow-injection 

control over a three-dimensional configuration. Concluding remarks for the present 

study and suggestions for future work are presented in Chap. 9.
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CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

Conventional control methods have limited the effective AOA range which limits 

aircraft maneuverability. Exceeding this range without providing the aircraft with 

an additional control technique may result in unrecoverable flight modes such as 

spin. Flying at high AOA usually leads to asymmetric flow on the forebody and 

hence unfavorable side forces and yawing moments.

The interest in the study of asymmetric flow, and the side force and yawing 

moment has increased in the last decade due to the need to increase the flight envelope 

of fighter aircraft and the rockets. The non-conventional control methods include 

forebody fixed and movable strakes, trips, and normal and tangential blowing. In 

this chapter, a literature survey of the topics related to the subject of our study 

is presented. First, origins of flow asymmetry are discussed and the effect of the 

different parameters (Mach number and Reynolds number) on the flow asymmetry is 

presented. Computational and experimental work on asymmetric flow over cones is 

presented. The literature is surveyed concerning passive and active control methods 

and covers both computational and experimental work with emphasis on the most 

recent publications. A discussion of the advantages and disadvantages of the different 

methods is included.
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2.2 Flow Asym m etry

2.2.1 Experimental

Pictures of the flowfield over a tangent-ogive forebody produced by Fiechter [5] 

showed clearly the different patterns of the flowfield with increasing AOA. At low 

AOA, an attached flow dominated by the axial flow component is observed. At 

medium ranges of AOA, a symmetrical pair of vortices on the leeward side of the 

body is observed. With the increase of the AOA, the vortices become asymmetric and 

vortex shedding and unsteadiness show up at higher AOA. As the AOA approaches 

90°, the flow resembles that of the wake over a circular cylinder. While Fiechter’s 

experiment was conducted with very low Mach number and Reynolds number, sim­

ilar observations were made at a Mach number of 0.6 and a Reynolds number of

4.3 x 105 [6 ].

Letko in 1953 [7] made the first measurement of the side force at zero side slip for 

an aircraft configuration, while Dunn in 1954 [8 ] reported the existence of side forces 

on a missile configuration. There was not much interest in the 1950’s and 1960’s in 

the side force phenomena. Starting in 1970, there has been an increasing interest in 

that phenomena due to the need of higher maneuverability and flight at high AOA 

for both aircraft and missiles. The study of the side force on ogive-cylinder bodies 

at high AOA and subsonic to transonic Mach number was investigated by Pick in 

1971 [9]. The direction of the side force which started to appear at an AOA of 20°, 

was unpredictable and the peak in the side force was between 35° and 40°.

Keener and Chapman [10] investigated the side force at zero sideslip on several 

symmetric forebodies in the AOA range of 0° to 90° and the Mach number range 

of 0.1 to 0.7. In their conclusion, they pointed out that sharp noses are more likely 

to introduce side forces when compared to blunt noses and the direction of vortex 

asymmetry was found to depend on small imperfections in the body surface.
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The effects of Reynolds number on the magnitude of the side force was studied 

for the flow over a tangent-ogive forebody [1,11]. These experiments were conducted 

in the AOA range of 36° to 8 8 °, Mach number of 0.2 and Reynolds numbers based 

on the diameter range of 0.4 x 106 to 3.7 x 106. The maximum side force was as 

large as the normal force and the side force showed up only at Reynolds number 

above 2 x 106. Mach number effects were studied by Wardlaw and Morrison [12] for 

the flow over cones, tangent-ogives and paraboloids. The side force was found to 

decrease with increasing subsonic cross-flow Mach number (above 0.4) and became 

insignificant at supersonic cross-flow Mach numbers.

Two types of asymmetric flow were recognized, depending on the origin of the 

asymmetry. The first was concerned with aft body asymmetric vortices and usually 

occurred at low AOA if the body was long enough. The induced side force due 

to this type of asymmetry was insignificant compared to the second type, nose- 

induced asymmetry, in which the magnitude of the side force can exceed that of the 

normal force [13]. The aft body asymmetry is associated with loss of lift while the 

nose-induced asymmetry is often associated with increases in lift. The nose-induced 

asymmetry dominates the flowfield when the relative incidence—the ratio between 

the AOA and the nose angle—exceeds a certain value, which depends mainly on the 

forebody shape.

2.2.2 Computational

Degani et al. [14-18] determined that in the absence of spatial disturbances, numerical 

solutions for flowfields around bodies did not become asymmetric, in contrast with 

experimental observations. The introduction of some sort of spatial disturbance, 

e.g. a small asymmetry in the body shape, changed the symmetric flowfield into 

an asymmetric one, but the flow regained its symmetry as soon as the geometric 

disturbance was removed. They also concluded that the level of asymmetry was a
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function of the spatial disturbance location. Convective stability theory, where all 

the disturbances are carried away unless the disturbance is maintained for all times, 

is used to explain that situation compared to the absolute instability where any 

disturbance will grow in time. On the other hand, Kandil et al. [19-21] and Wong [2 2 ] 

numerically applied a 2 ° side slip transient disturbance on a cone and the resultant 

asymmetric solution was found to be persistent, upon removing the source of the 

disturbance. Also, they found at the physical conditions considered, the asymmetric 

solution thus obtained was unique irrespective of the disturbance source. For three- 

dimensional solutions [23], the disturbance required for the asymmetry was larger 

but the asymmetry was persistent upon removing the source of disturbance. Siclari 

et al. [24,25] obtained naturally occurring asymmetric, conical, steady solutions for 

cones at supersonic Mach numbers. The conical-flow solution was used as the initial 

conditions for the three-dimensional problem in which the asymmetry remained.

2.2.3 Asymmetric flow over cones

While the cones represent the simplest body form, the flowfield over them is complex 

with three-dimensional separation. Such features have made the cone the choice of 

many researchers as a representation for forebodies of aircraft, and missiles. The 

three-dimensional separation of the flow over cones, into a symmetric or asymmetric 

pair of vortices, was reviewed by Rainbird et al. [26]. The effect of the ratio between 

the AOA and the nose semi-angle was determined to be |  for the symmetric vortices. 

The differences in the flowfield structures between the sharp and blunt cones with 

semi-apex angles of 5.6° were studied in 1972 by Stetson [27]. Those experiments 

were conducted at a very high Mach number of 14.2 and a Reynolds number of 

0.62 x 106. The sharp cone separation started at the nose and for the blunt nose, the 

separation started relatively downstream and moved in the upstream direction with 

increases in the AOA. The difference can be viewed as the difference in the origin of 

asymmetry which has been described in the previous section.
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The steady Navier-Stokes equations, while neglecting the streamwise derivative 

terms for the flow over the downstream part of the cone, were solved by Lubard and 

Helliwell [28]. The AOA considered was 8 ° and hence while separation appeared, the 

flow retained its symmetry. On the other hand, McRae and Hussaini [29] solved the 

conical form of the Navier-Stokes equations utilizing Cross’s conclusion [30] that the 

viscous layer growth on the lee side is essentially conical. The solution covers only 

half of the cone, assuming symmetric boundary conditions. This case was for flow 

with a Mach number of 1.8, a Reynolds number of 29.4 x 106, and AOA of 12.5° and 

24°, and 5° semi-apex angle cone.

Kandil et al. solved the conical form of the Navier-Stokes equations [19,20,31] 

and the three-dimensional Navier-Stokes equations [32] for the supersonic flow over 

a cone. The onset of asymmetry was found to be unique irrespective of the source of 

the disturbance—numerical or physical. The results of this research were presented 

in more detail in Ref. 22. Siclari et al. [24,25] solved the flow over cones with different 

cross sections at AOA of 20° using the conical form of the Navier-Stokes equations. 

The asymmetric flow appeared at a/0c = 4.0, where a  is the AOA and 6C is the 

semi-apex angle of the cone. Thomas [33], using the CFL3D code solved the conical 

form of Navier-Stokes equations and found out that a fine grid was needed for the 

numerical disturbance to grow into an asymmetric solution. Recently, Dusing and 

Orkwis, using the conical Navier-Stokes equations [34], verified the results obtained 

previously by [24,32] for the flow over a 5° semi-apex angle cone.

For more information regarding the flow asymmetry and its origin, the reader is 

advised to consult Chap. 2 in Ref. 22, the book by Rom [35], conference proceed­

ings [36-43] as well as numerous review articles [2,4,44-50]

i .  •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

2.3 Passive Control Methods

2.3.1 Strnkes and fins

2.3.1.1 Fins or single strakes

Using a fin or a single strake placed on the lee-side of the plane of geometric symmetry 

reduces the interaction between the flows on the two sides of the body, and the 

perturbation imposed at the apex, which causes the asymmetry, is not allowed to be 

amplified.

The effect of the fin on the flow asymmetry has been discussed by Stahl [51]. 

The study covered the AOA range from 15° to 50° for flow over an 8 ° semi-apex 

angle cone with a Reynolds number, based on the diameter, of 7800 and freestream 

velocity of 0.14 m/s.  Different fins were used with the ratio of fin height to the cone 

radius equal to 1.25, 1.0, 0.75 and 0.5. While the onset of asymmetry of the lee-side 

flows was observed at an AOA of 35° for the no-fin configuration, no asymmetry was 

observed for the AOA range considered with the fin height of 1.25r, where r was the 

local radius of the cone.

Ng [52] studied the effect of a single strake on the forebody vortex asymmetry 

over a 4.0 caliber tangent-ogive forebody, with the length of strake as 8 % of the 

body and strake base height as |  of the local forebody diameter. The experiment 

was conducted at a Reynolds number of 2.8 x 104 per unit length and freestream 

velocity of 4 in/sec. While the asymmetry showed up at an AOA of 30° with no- 

strake configuration, the level of the asymmetry is reduced significantly but not 

eliminated by the strake configuration.

Numerical solutions for the case of asymmetric flow control using fins over circular, 

elliptic and diamond cross section forbodies were investigated by Kandil et al. [53]

IP-        ’
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in 1990. Using conical solutions, they found that at an AOA of 25°, a fin of length 

equal to 1.5 thus the length of the minor axis was required to render the flow to be 

symmetric for the diamond shape while that length was found to be 2 . 0  of the length 

of the minor axis for the elliptic shape.

Computationally and experimentally, Degani [17] studied the effect of splitter 

plates, i.e. fins, for the flow over ogive cylinders with a Mach number of 0.2, Reynolds 

number based on the diameter of 26,000 and an AOA of 40°. In the experiments, the 

ratio of the total body length to the diameter of the body was 15.0 with 3.5 (the ratio 

of body length to its diameter) tangent-ogive as forebody, while in the computations, 

the afterbody length was decreased to 7.0 diameters. The computational results were 

compared qualitatively with experimental surface pressure and smoke visualization. 

Both experimental and numerical results show that the fin presence in the leeward 

plane of symmetry suppressed the disturbances and left the two primary vortices 

symmetric. In the experimental configuration, the splitter plate extended to the 

wind tunnel wall preventing any type of interactions between the primary vortices.

2.3.1.2 Double strokes

In 1972, Coe et al. [54] investigated the effect of strakes for flows over a cone, a 

tangent ogive and a paraboloid of revolution where Reynolds number based on the 

diameter ranged from 0.15 x 106 to 0.35 x 106 and an AOA range of 0° to 75°. The 

two strakes, placed in the horizontal plane at zero AOA, were effective in extending 

the symmetric flow to higher AOA.

Modi et al. [55,56] investigated the effect of delta double strakes when added to a 

circular cylinder with conical-shaped forebodies. Their experiments were conducted 

for the AOA range from 0° to 50° with different values for the roll angle and strake 

length. They found out that the side force was minimum for the case with a rolling

ii~r- '
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angle of 90°—double strake action was similar to that of the fin or single strake 

placed in the lee-side.

Rao and Sharma [57] studied the effect of a deployable strake on one of the 

lower facets of a diamond cross section forebody in a low-speed wind tunnel. This 

method of control was found to be effective up to an AOA of 70°. This experiment 

was conducted at low Mach number with Reynolds number based on the length of

0.5 x 106 and an AOA range of 0° to 70°. A similar principle was applied by Murri 

et al. [58] on an F-18 High Alpha Research Vehicle (HARV). These experiments 

included wind tunnel as well as flight tests.

Kandil et al. [20] investigated numerically the effect of double symmetric strakes 

using the thin-layer and full Navier-Stokes equations. They considered both sharp 

and rounded strakes and both thin and thick strakes. The flow parameters were 

taken as a Mach number of 1.8, Reynolds number of 10s and AOA of 20°, and 30°. 

Without strakes, steady asymmetry showed up at AOA of 20° while with strakes, 

symmetric solutions were obtained for AOA up to 30°.

While the nose strakes and fins are found to be quite effective in alleviating the 

side force, they have some disadvantages which can be summarized as [59]

1. Their optimum size, shape and location appear to be critically dependent on 

the forebody geometry.

2. If the strakes are relatively large, they may contribute pitching instability.

3. Adverse interference of the strake vortices with downstream components, such 

as air intakes and tail controls, is possible.

4. Nose strakes may become a source of disturbance to radar operation.

•   ~
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2.3.2 Trips

Trips were employed in the 1960’s as a means of vortex-wake suppression on cylinders 

with two-dimensional flows [60]. The cylinder boundary layers are forced to separate 

at varying peripheral locations along the cylinder length, and the vortex formation is 

disrupted. In 1971, Pick [9] found that the side forces decreased by up to 80% of the 

initial value when a boundary layer trip was installed on the windward side of the 

ogive cylinder body, over a Mach number range from 0.5 to 1.1 and an AOA range 

from 15° to 42°.

Applying the same principle, Rao [59] in 1979 investigated the effect of the he­

lical trips in alleviating the side force compared to the straight trips that had been 

employed by Brown [61] in 1965. In this experiment with a Mach number of 0.3, 

Reynolds number based on the length of 6.2 x 106 and AOA range of 0° to 55°, he 

found out that the helical trips are highly effective in alleviating the side force. On 

the other hand, straight trips were not as effective.

The main advantage of trips over the strakes is that while the strakes generate 

their own vortices, the trips affect the existing boundary layer without introducing 

vortices into the flowfield. Moreover, with trips the body weight is not increased.

2.3.3 Nose Geometry

The bluntness ratio is the ratio between the nose radius and the maximum body 

radius—base radius. The effect of the nose bluntness was first investigated by Pick 

in 1971 [9 ] who found that the bluntness of ogive-cylinder bodies reduced the side 

force. On the other hand, Keener and Chapman [10] found that while small bluntness 

reduced the side force, large bluntness did not eliminate the side force. In the same 

paper, nose booms were found to be effective in reducing the side force.

few- •
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Kruse et al. in an extensive report [62], investigated the effect of the nose ge­

ometry on flow asymmetry for AOA up to 58°, Mach number up to 2 and Reynolds 

number of 0.32 x 106. The fineness ratios of the tangent-ogive forebodies varied 

from 0.5 to 3.5 and bluntness ratios varied from 8  to 50 percent. They found out 

that bluntness produced mixed effects on the side forces, depending on the forebody 

fineness ratio, AOA and the degree of bluntness. For a forebody with fineness ra­

tio of 3.5, bluntness reduced the side force while a forebody with fineness ratio of 

2.5, behaves such that bluntness increased the side forces. The results obtained by 

Baysal et al. [63] for the flow over a blunt-nose-cylinder at high angles of attack were 

compared fairly to the experiments and the asymmetric flow was not captured due 

to the body bluntness.

Moskovitz et al. [64-66] discussed the effects of surface perturbations, bluntness 

and roughness on the flow around slender bodies at high AOA. The experiments 

were conducted on a cone cylinder configuration with a 1 0 ° semi-apex angle cone 

and a 3.0 caliber tangent ogive model, with Reynolds numbers of 24,000 and 84,000, 

AOA ranged from 30° to 60°, at very low Mach numbers. Their conclusions can be 

summarized as:

1. The flow asymmetry may be reversed due to local surface perturbations if they 

are large enough.

2. Nose bluntness reduced the side forces by decreasing the asymmetry of the 

flowfield.

3. The maximum level of asymmetry with respect to AOA was independent of tip 

bluntness.

4. Elliptical tips resulted in large side force even at moderate AOA.
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Kandil, Wong and Liu [53] investigated the effect of the cross section shape of 

the forebody on flow asymmetry. It was found out that for the same flow conditions, 

circular and elliptic cross sections are more likely to produce strong asymmetric flow 

compared to a diamond shapes.

2.4 Active Control Methods

2.4-1 Blowing and suction 

2-4-1-1 Experimental

Blowing and suction were applied as a method for vortex control for the first time in 

1978 by Sharir et al. [67]. In this paper, they applied the injection at two stations, 

one close to the nose while the other was further downstream. Three pairs of ports 

at each location were used at ±30°, ±60° and ±120°, measured from the leeward 

plane of geometric symmetry. The experiments were conducted in a subsonic wind 

tunnel with a flow speed of 20 m/sec  for a Reynolds number of 1.08 x 105, based 

on the diameter and utilized three types of forebodies—a pointed cone, a blunt cone 

and a blunt ogive.

In their conclusions, they pointed out some important observations for vortex 

control using injection which can be summarized as follows:

1. It is possible to reduce the side forces or even change their direction by using 

symmetric blowing.

2 . Injection is ineffective for AOA higher that 52°.

3. The mass flow rate required for jets needed to affect the side force was very 

small.

k'_' •
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4. The effect of increasing the mass flow rate above the minimum required to 

affect the side force was insignificant.

5. Blowing had no effect on the angle of onset of asymmetry.

Peake, in two papers [68,69], discussed the effect of normal injection on the flow 

asymmetry and side force over a 5° semi-angle cone and 16° semi-angle tangent ogive. 

They correlated the onset of asymmetric flow with the ratio a/6c, where 9C was the 

semi-angle of the body at the nose. They found that:

1 . blowing on one side of the leeward meridian, from a single jet placed between 

the primary and secondary vortices, reduced or reversed the side force,

2 . normal blowing was more effective than upstream or downstream tangential 

blowing,

3. asymmetric blowing was more effective than symmetric blowing and

4. the mass flow rate required for effective control was relatively small considering 

its amplified effect on the flowfield.

Almosnino and Rom [70,71] extended the Sharir et al. [67] study. Their experi­

ments were conducted in both subsonic and transonic wind tunnels covering the Mach 

number ranged from 0.1 to 1.1, AOA from —10° to 90° and the Reynolds number 

range from 0.6 x 105 to 0.5 x 106. The experiments were performed on a cone-cylinder 

configuration. Their conclusions were in agreement with those of Sharir et al. [67]. 

In addition, they concluded that with increased Mach number, the mass flow rate 

required to control the flowfield increased.

In the above mentioned five papers, injection was applied normal to the body 

surface. Wood and Roberts [72,73] applied tangential blowing on the leading edge
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of a 60° delta wing. The experiment was conducted at low Mach number (about

0.2) and AOA up to 60°. The tangential leading-edge mass injection was capable of 

extending the regime of stable, controlled vortical flow over the upper surface of the 

delta wing by approximately 30° AOA.

Starting from 1989, many papers have been published discussing the different 

aspects of controlling the forebody vortical flow using injection. Most of these papers 

have been experimental and concentrated on the subsonic flow regime. Williams, El- 

Khabiry and Papazian [74] conducted an experiment, in a low speed wind tunnel on 

a 20° angle-cone and a cylindrical afterbody. The experiment was performed at a 

Reynolds number of 2100 and a very low Mach number of 0.01. The results indicated 

that the unsteady base bleed was effective in controlling the asymmetric system of 

vortices.

Ng and Malcolm [75] investigated the effect of blowing type. They applied blowing 

from localized jets and from a slot. In addition, they investigated surface suction. 

The blowing they used was forward and aft. The experiment was performed with 

a Mach number of 0.025 and AOA of 45°, 50° and 60°. All the methods applied 

were found to be effective. In their experiments, the main purpose was to show the 

effectiveness of the various methods as means of control to produce yaw moment and 

therefore not eliminate or alleviate the side force.

Tangential [76] and oplique blowing [77] was investigated on a 1/8 scale X-29 

forebody model. The optimum angle for blowing was found to be 60°. In the two 

papers the effect of the blowing was to increase the level of asymmetry and to produce 

a yawing moment. The ability of tangential blowing to create side forces, yawing 

and rolling moments in a controllable manner was investigated on a model which is 

a combination of a delta wing and a forebody with a cylindrical pointed ogive-nose 

which blends smoothly with the delta wing. Tangential blowing was found to be 

more effective when applied on the forebody rather than when applied on the delta 

wing [78].
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Lanser and Meyn [79] conducted an experiment for the flow over full-scale F/A-18 

aircraft at a Mach number of 0.15, and Reynolds numbers of 4.5 x 106 to 12 x 106, 

in the AOA range of 25° to 50° and f3 =  0° to ±15°, where /3 is the side slip angle in 

degrees. They used two methods for the aft injection—a circular jet and a tangential 

slot. The significance of injection was influenced by the jet or slot location and size. 

The slot lengths of 16 and 32 inches were found to be more effective than those of 

8  and 48 inches and blowing slightly downstream was more effective than blowing 

too close to the nose. In most cases, the injection produced the desired yawing 

moments. In another paper [80], Lanser and James verified the experimental results 

using computational fluid dynamics (CFD).

Cornelius and Lucius [81] investigated the ability of injection to produce side 

forces over an elliptic forebody with and without strake. The strakes effect was 

found to damp the instability that grows due to injection. The experiment was 

conducted at low Mach number. The effect of injection on a 1/8-scale X-29 forebody 

model was investigated by Cornelius et al. [82] at a Mach number of 0.3, Reynolds 

number based on the length of 1.25 x 1 0 6 and the AOA ranged from 31° to 50°. Their 

main interest was to produce controllable side forces rather than eliminating the side 

forces that arise at high AOA.

Several recent papers [83-86] have investigated experimentally the effects of slot 

size, location and injection rate. Crowther [83] found out that increasing the slot 

angle, increases the yawing moment and side force. Kramer et al. [87], who investi­

gated the blowing over an F/  A-18 using jet and slot techniques, concluded that both 

techniques were effective in producing large yaw control power at high AOA. He also 

pointed out the importance of jet and slot location. An experimental investigation 

of forebody vortex control of the flow over an F/A-18 and an F-16 was conducted 

by Kramer and Smith [87]. They applied both jet and slot blowing close to the air­

craft nose. The two methods were found to be effective for AOA over 30°. Ross [8 8 ] 

studied the effect of nose jets on the flow over 3.5 tangent-ogive with AOA ranged
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from 0° to 60°. Ross found out that normal injection was less effective compared to 

forward blowing.

2.4-1 -2 Computational

Tavella, Schiff and Cummings [89] investigated computationally the control of fore­

body vortices over F-18 aircraft. They solved the problem using thin-layer Navier- 

Stokes equations on a multi-block grid. Tangential injection was applied through a 

thin slot located on each side of the fuselage forebody. Blowing was applied either 

symmetrically or antisymmetrically. The flow conditions were, Reynolds number of

11.52 x 106, Mach number of 0.2 and AOA of 30°. With no blowing, the solution ob­

tained was a symmetric solution while with blowing the solution became asymmetric 

only in the case of antisymmetric blowing. They concluded that the effect of sym­

metric blowing was negligible. This contradicts the conclusions of Sharir et al. [67] in 

which symmetric and antisymmetric blowing had a significant effect on the flowfield 

structure. The main difference between the two cases is that in Ref. 67, the initial 

solution was asymmetric while in Ref. 89 the initial solution was symmetric. This 

problem was expanded in 1992 [90] to study the effect of varying the jet width and 

jet exit velocity for a fixed slot location. They found that the effective control factor 

was the mass flow rate rather than the jet width.

The solution of the above problem for an X-29 aircraft was done by Rosen and 

Davis [91] at AOA of 40°, Mach number of 0.3 and Reynolds number per unit length 

of 1 . 6  x 106. The initial solution, with no blowing, was asymmetric. Asymmetric 

forward and aft blowing increased the level of asymmetry while symmetric aft blowing 

reduced the vortical flow asymmetry.

Expanding Tavella and Schiff results [89], Font and Tavella solved the problem 

over a tangent ogive cylinder at AOA of 10°, 30° and 45°, at a Reynolds number of 

52,000 and a Mach number of 0.2, using thin-layer Navier-Stokes equations keeping

..........
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only the viscous terms in the direction normal to the body surface. They used a 

7-zone grid with 324,000 points, with tangential blowing applied from a slot near 

the nose of the body. They found that large side forces may be produced due to 

the injection and the side forces do not always increase with increases in the jet 

momentum coefficient.

Using a similar approach, Celik and Roberts [92] investigated the same problem 

over a cylindrical body with a pointed ogive nose with and without wings, covering 

the AOA range from 20° to 55° at the very low Mach number of 0.025. Their main 

interest again was to explore the concept of tangential blowing to create lateral 

control on a missile-like body with a tangent ogive head at high AOA. They found 

that tangential blowing resulted in large side forces and yawing moments. Also, they 

studied the effect of the blowing slot location.

The effect of tangential injection through a slot on the tangent-ogive cylinder 

configuration at a Mach number of 0.2, a Reynolds number of 52,000 and an AOA 

of 30° was investigated by Font [93]. It was found that such blowing was capable 

of producing significant side forces. In his conclusions, he described the mechanisms 

that produced side force to be

1 . a centrifugal force component created at the wall due to the curvature of the 

surface,

2 . vorticity added to the flowfield nearby the slot region, and

3. a change in the nose vortices position due to a change in the separation location 

as a result of the injection.

Kandil et al. [21,94] investigated the effect of both normal and tangential injection, 

on the flow over a cone at a Mach number of 1.8, and a Reynolds number of 10s, 

over the AOA range of 20° to 30°. Both uniform injection and pressure-dependent
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injection were applied and found to be effective. The effect of the mass-flow rate and 

effective injection angle were investigated. The pressure-dependent injection was 

found to be independent of the initial shape of the vortex asymmetry and capable 

of eliminating the side force at certain AOA. Details of this research are presented 

in Chap. 6 . The three-dimensional problem with Reynolds number of 6  x 106, Mach 

number of 1.4 and AOA of 40° for a flow over 5° semi-apex angle cone was solved 

using the thin-layer Navier-Stokes equations [95, 96]. Both normal and injection 

control were found to be effective and the influence of the injection effective length 

and mass flow rate were investigated.

Gee et al. [97-99] studied the concept of forebody flow control using tangential 

slot blowing on an F-18 aircraft. The Reynolds-averaged, thin-layer Navier-Stokes 

equations were solved numerically using the F3D code which uses an implicit, finite 

difference algorithm with flux splitting and the Baldwin-Lomax turbulence model. 

The physical conditions at which the problem was solved were a Mach number of

0.243, AOA of 30.3°, /? =  —4.5° and Reynolds number of 1 1  x 106. The initial solution 

was asymmetric due to side slip with no blowing. The effect of the blowing and side 

slip were discussed as a means to generate side forces and yawing moments.

2.4-2 Spinning and rotary oscillations

Many ballistic missiles are given some spin for stabilization purposes. Also, some 

satellites spin continuously due to mission requirements. Such applications have 

created an early interest in the study of spinning bodies. Swanson [100] presented 

an overview of the research up to 1961. Since then, several papers [101-103] stud­

ied, analytically, experimentally and numerically, the Magnus force for the flow over 

spinning cones. The asymmetric viscous displacement, as a result of spinning, was 

found to be a major contribution to Magnus force [104]. Four significant sources 

were identified [105] as being due to the spin-boundary-layer interaction. They are
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displacement thickness, centrifugal pressure differences, cross-flow wall-shear stresses 

and primary-flow wall-shear flow stresses. In the last decade, there has been an in­

terest in the experimental [106-108] and numerical [109,110] study of the spinning 

bodies without focusing on their effect upon the side force.

Kruse [111] was the first to consider experimentally the influence of spin rate 

on side force for the flow over a 10° semi-apex angle cone with a Reynolds number 

based on the diameter of 106 and a Mach number of 0.6. The shape of the side force 

curve was not a strong function of spin rate, but the peak to peak value of the side 

force decreased significantly with increases in the spin rate. Fidler [112] investigated 

the effect of rotating the nose, the nose tip, and a surface band just aft of the nose. 

The vortex structures and associated side forces and moments were cyclically altered 

in a repeatable fashion. As the spin increased, the peak-to-peak variations in the 

side force decreased. Small rotatable tip-strakes were employed on an F/A-18 aircraft 

model to investigate the capability of this technique in producing controllable yawing 

moments and side forces [113]. The rotatable strakes were effective in controlling the 

separation points and hence the yawing moments.

Kandil et al. [114] studied numerically the effect of spinning and rotary oscillations 

as a method to alleviate the asymmetry of the flowfield over a cone at a Mach 

number of 1.8, Reynolds number of 105 and AOA of 20°. They found out that rotary 

oscillations were more effective than uniform spinning and rotary oscillation does 

not require any particular initial shape for the vortex asymmetry. The details of this 

research are presented in Chap. 7.

The reader can refer to several review papers covering different aspects of the 

passive and active control methods for side force alleviation and vortex asymmetry 

control [2,115-121].

r ;;. -
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CHAPTER 3

MATHEMATICAL FORMULATION

3.1 Introduction

With the introduction of computers four decades ago, a new scientific era began 

which depends heavily on numerical techniques and their computer implementations. 

Aerodynamics and fluid dynamics were no exception. Computational aerodynamics 

and computational fluid dynamics (CFD) started to develop at that time.

Historical progress in CFD was related to the advancement of computers, in terms 

of memory and speed. With the continuous increases in both, computational fluid 

dynamics passed through different stages, each representing a successively refined 

approximation to the full Navier-Stokes equations. Those stages can be summa­

rized as [1 2 2 ], linearized inviscid equations, nonlinear inviscid equations, parabo­

lized Navier-Stokes equations, thin-layer Navier-Stokes equations, Reynolds averaged 

Navier-Stokes equations and full Navier-Stokes equations.

Only recently, has investigating problems such as asymmetric flow control become 

feasible. That is due to the advancement in the computational resources. Highly 

vortical flows cannot be solved accurately without the use of Navier-Stokes equations. 

While Euler equations tend to give the same solutions as Navier-Stokes equations in 

the region of the primary vortices, the location of secondary and tertiary vortices

■
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and the boundary-layer flow can only be predicted correctly using Navier-Stokes 

equations.

In this chapter, the three-dimensional full Navier-Stokes equations are presented 

in a fixed frame of reference followed by presentation of the different approximations 

that are used for the different applications. It should be noted here that applying 

the different control methods is a disturbance which may result in turbulent flow. 

Meanwhile, no turbulence models were considered in the present study because of 

the lack in the models that can simulate the highly vortical turbulent flow accurately.

3.2 Three-Dimensional Navier-Stokes Equations

Using tensor or indicial notation, the conservative form of non-dimensional unsteady 

compressible Navier-Stokes equations in Cartesian coordinates (xj, x2, x3) is given

by Qa d[Ej — EVj)

where the flowfield vector q is given by

q =  [/>, puupui, pu3, pef (3.2)

and the inviscid flux vectors can be expressed as 

Ej = puj, puiUj +  Sj!p, pu2Uj + Sj2p, pu3Uj +  Sj3p, puj I e +  ^
t

P' , j  — 1 , 2 ,3  

(3.3)

where %  is the Kronecker delta function, and the viscous fluxes can be written in 

the form

(Ev) .  = [0, Tji, Tj2 , 7̂ 3, umTjm -  qtf , j  =  1,2,3, m  =  1,2,3 (3.4)

The flow variables in the above equations are in their non-dimensional forms where 

freestream parameters are used as reference values. The reference parameters used
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are L, a^ , L ja^ , and p ^  for the length, velocity, time, density and molecular 

viscosity, respectively. The pressure is non-dimensionalized by PooC ,̂, and is related 

to the total energy for an ideal gas by the equation

P = {7 -  1 )P e “  \  (ui +  ul +  u§)] (3.5)

where 7  is the ratio of specific heats and is assumed to be constant (1.4). The 

Cartesian coordinates are non-dimensionalized using characteristic length, L, while 

time is non-dimensionalized using A/ctoo-

In Eq. 3.4, the r ’s represent the Cartesian components of shear stress tensor for

a Newtonian fluid satisfying Stokes hypothesis. Also, in Eq. 3.4, the term u m Tjm

represents the shear dissipation power components and qj represents the heat flux 

components. The Cartesian components of shear stress tensor are given by

<3-6>

and the shear dissipation power and the heat flux components are given by

“mTjm=!~ a r Um { d i + i h j  ~  (3-?)

”  =  1' 2’3 (38)

Sutherland’s law is used to calculate the viscosity—p

-1 -  (  1 “b ^
P = T » ( j £ )  (3.9)

where T  is the non-dimensional temperature and c is the Sutherland’s constant, 

c «  0.4317. The Prandtl number, PT is chosen to be 0.72 throughout the present 

work.

The freestream Reynolds number, Re, is defined using the equation

Re = (3.10)
ftoo
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and the characteristic length, L, is chosen as the length or diameter of the body for 

the particular three-dimensional applications. The values of all the freestream flow 

quantities, which are used as the initial conditions for all applications, are given as 

follows

uioo = Moo cos a cos f3

U2oo =  Moo sin /?

U300 =  Moo sin a cos /3 
1 M 2

= (3-n > 
1

poo —
7

0CO =  V U loo +  U2oo +  W
2
3oo

  OO
OO Cl 00

To complete the mathematical model for any flow problem using the Navier- 

Stokes equations, initial and boundary conditions for the corresponding application 

should be provided. The complete discussion of initial and boundary conditions will 

be presented in Chap. 4.

3.3 Conical Flow Assumptions

3.3.1 Global conical flow assumption

The assumptions necessary for such global conical equations to be valid can be sum­

marized as following [123]

• The fluid is a homogeneous, nonconducting ideal gas. This assumption is nec­

essary for the Navier-Stokes equations as well.
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• The Reynolds number is infinite.

• The Peclet number, pUooCpL/k, is infinite.

• The flowfield is conically self-similar.

Strict applications of these assumptions will limit their applicability to supersonic, in­

viscid flow over a conically self-similar geometry. In practical situations the Reynolds 

number and Peclet number will not be infinite.

Following the same notation as in Sec. 3.2, the conservative form of the Euler 

equations can be written as

dq dEi
a f + & J  =  0  ' J =  1 ' 2 ’ 3  (3-12)

where q and Ej are defined in Eqs 3.2 and 3.3, respectively.

A flow is considered to be conically self-similar if no length scale exists in the 

radial direction. Transforming Eq. 3.12 to a conical coordinate system using the 

relations

rii = yjx\ + xj + xl

V2 = ~  (3-13)Xl
XZ

T)3 =  —Xl

and using the conical assumption

dq

we can write Eq. 3.12 as

- 0  (3.14)

’ j ' = 2 ' 3  (3-i5)

where

K = y/l + rl2 + V 3 (3-16)
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i

9]F  =  /jui , /mx + p, puiu2, puiu3, pu +

ut = u i+  p2 u2  + P3 U3  

«,■ =  «j -  1 , J =  2 ,3

where ttj is the velocity component in the conical coordinate 77j.

. J = 2 ,3

(3.17)

(3.18)

(3.19)

Examining the above equations, we can see that while we have velocity compo­

nents in the three directions, the derivative with respect to 771 is absent from the 

equations. This result is quite similar to that for the axisymmetric approximation.

3.3.2 Locally conical flow assumption

As mentioned in the previous section, physical flow problems have finite values for 

both Reynolds number and Peclet number. Many experimental flows at supersonic 

speeds demonstrate approximate self-similarity. The existence of a length scale in the 

conical Navier-Stokes equations prevents the self similarity. Meanwhile, the equations 

can be thought of as locally conical, where the local Reynolds number is calculated at 

the location corresponding to the conical solution. Several computations using locally 

conical flow assumptions show only small differences with experimental work [29,124]. 

In this subsection, the locally conical Navier-Stokes equations are presented, with a 

brief discussion of their limitations.

For supersonic flows, the three-dimensional equations in Cartesian coordinates, 

that were presented in Sec. 3.2, are transformed into the conical flow equations using

771 =  Xi
x2

V 2 = Xi
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X3
m = —Xi (3 .2 0 )

Then, the conical form of Navier -Stokes equation is written as 

dq ~  Fvj)
v , m +

where the inviscid fluxes are

+ 2 (Ei — Ev i) — 0 , j  =  2,3 (3.21)

Fj = Ej -  VjEi

~ V j

and the viscous fluxes are

p u j , p u i U j ,  p u 2Uj + S2j ,  p u 3Uj + 63j ,  p u j  + -

pU!, pul +  p, pu\u2, puiu3, pu\ ( e -f- ~ , j  =  2,3 (3.22)

Fvj — Evj TjjEvi

=  [0) T il l T?2) T/3i u m.Tjm 9j]

V j ^ l l i  1*12, Tl3i 'U‘m T \m  ^l] (3.23)

The equations of the shear stress and the thermal dissipation terms are obtained by 

enforcing the conical flow condition, i.e. d/drji is zero.

Similar to Eq. 3.15, Eq. 3.21 is a two-dimensional equation with source terms. The 

computational resources required to solve Eq. 3.21 are one order of magnitude less 

than the resources required for three-dimensional Navier-Stokes equations solution.
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CHAPTER 4

COMPUTATIONAL METHODS

4.1 Introduction

Navier-Stokes equations are of mixed type depending on flow features. If the flow 

is supersonic, the equations are of hyperbolic type, while if the flow is subsonic, 

the equations are parabolic or elliptic. According to the theory of characteristics, 

physical disturbances propagate along the characteristics. This is a typical feature 

of hyperbolic equations where perturbations propagate in certain directions.

Central difference schemes do not distinguish between upstream and downstream 

influences. In addition to that, central difference schemes generate oscillations in 

the vicinity of discontinuities such as shocks. Artificial dissipation must be used 

to damp these oscillations. On the other hand, upwind schemes, which have been 

used since 1952 [125], are sensitive to the direction of propagation of disturbances 

and they prevent the creation of unwanted oscillations at shock locations. The above 

statements are true only for those upwind schemes that take into account the physical 

nature of the equations.

In most schemes, the inviscid fluxes are treated independently in each direction 

and summed for multidimensional applications. It has also been proved [126] that the 

upwind schemes are equivalent to central difference schemes with artificial viscosities 

that are direction dependent.
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In this chapter, the transformations of the governing equations from the physical 

domain into the computational domain are presented for the different approximation 

levels, starting with the full Navier-Stokes equations. A discussion of the implicit 

upwind schemes is presented with emphasis on the flux-difference splitting scheme of 

Roe. Finally, the initial and boundary conditions for conical and three-dimensional 

Navier-Stokes equations are presented for both static and dynamic grids.

4.2 Governing Equations in Computational Domain 

4-2.1 Three-Dimensional Navier-Stokes equations

The three dimensional Navier-Stokes equations are transformed from the physical 

Cartesian domain (x ,y ,z ) into computational domain £2,£3) using the relations

£TO =  £m(x ,y ,z , t)  ,m  = 1,2,3 

r  = t (4.1)

It should be noted that the computational domain is time dependent which permits

the implementation of dynamic grids and allows us to simulate different unsteady

motions such as plunging and pitching. The details of the derivation of metrics can 

be found in several references including [127].

Using the chain rule, one can write

C„ =  J  cofactorial (j"jJ (4.2)

C =-(*.'), 4“ M

where

j  = (4.4)
d(x1,x 2,x 3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

Then, the three-dimensional Navier-Stokes equations in the Cartesian coordinate 

system given by, Eq. 3.1 are transformed to the form

dq & (Lm ~f t + A d(m ,m =  1.2.3 (4.5)

where the flowfield vector q is given by

q = J~lq = J - 1 [p, pul7 pu2, pu3, pef (4.6)

and the inviscid flux vectors can be expressed as

= J -1 [pUm, pu,U „ + O ,  + Q p , p u 3Um + ( " p ,  U„ (pe + p) -  (;>]*

(4.7)

and the viscous fluxes can be written in the form

& m =  J ’ ' (("£»„)

=  ,J =  1,2,3 (4.8)

The contravariant velocity in the curvilinear coordinate system is given by

Um = C * j  + t?  , i  =  1,2,3 (4.9)

and the shear stress tensor and heat transfer vector are transformed to

_  pMpo ( d U  duj d im dm 2  d jm duk \
Tjl ~  Re { dx, d(™ +  dXj d im 3 dxk d i r )

pM0o dim dT , .
qj (7 - i )prRe dxj d im 1 ' ;

^.2.2 Thin-Layer Navier-Stokes Equations

Solving the full Navier-Stokes equations for three-dimensional configurations at high 

Reynolds number requires substantial computational resources in terms of memory
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and speed. A possible simplification to the full Navier-Stokes equations is the thin- 

layer Navier-Stokes equations. In the generalized curvilinear coordinate system, the 

body coordinate is given as a surface of constant generalized coordinate lines. The 

thin-layer approximation retains only the derivative in the direction normal to the 

wall for the viscous terms. In such a case, the cross-derivatives are dropped and the 

computational resources required for the viscous part of the equations are reduced 

to one third. In fact, the reduction is more than this, since no fine grid resolution is 

required in the other two directions.

The thin-layer Navier-Stokes equations can be considered as an intermediate step 

between full Navier-Stokes equations and the boundary layer equations. In these 

equations, the approximations are justified by order of magnitude analysis similar to 

the boundary layer. On the other hand, the pressure in thin-layer equations can vary 

in the normal direction unlike the boundary layer approximation. The thin-layer 

equations in their most general form include all three viscous flux terms but drops 

all cross-derivative terms.

The thin-layer equations can be written as 

da dEm 9 (Evt)
’ m = l ’ 2 - 3  (4-l2 )

where n is a summation index. If we consider the case of only one viscous direction 

then n takes the value of this direction. If the viscous terms are to be considered in 

more than one direction, then n takes the values of all the directions to be considered. 

As expected the inviscid fluxes remain unchanged as given by Eq. 4.7. The viscous 

fluxes are expressed as

(Evt) n = J~ 1 [0, Qr.-x, £ . r j2, £ . r j3, =  1,2,3 (4.13)

The thin-layer equations have fewer terms than the full Navier-Stokes equations, 

which means a reduction in required memory and time. Comparisons between the full
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Navier-Stokes equations and the thin-layer equations have indicated little difference 

in results at high Reynolds number [128]. All of the three-dimensional applications in 

the present work use the thin-layer Navier-Stokes equations considering the viscous 

terms in the three directions and neglecting the cross-derivatives.

4.2.3 Locally-Conical Navier-Stokes Equations

Similar to full and thin-layer Navier-Stokes equations, the conical flow equations 

can be transformed into the computational domain. Unsteady conical Navier-Stokes 

equations are not self-similar but the equations can be solved at a fixed location 

and the solution is said to be a locally-conical solution. Instead of using the conical 

Navier-Stokes equations, the three-dimensional Navier-Stokes equations are used to 

produce locally-conical flow solutions. This can be achieved by setting the conserved 

components of the flowfield, q, equal at two planes in close proximity to each other, 

where one of the two planes is located at the required axial station. All of the 

locally-conical solutions in the present work were obtained following this method.

4.3 Implicit Upwind Schemes

The unsteady Navier-Stokes equations are of mixed type. They are hyperbolic- 

parabolic in time, and hyperbolic-elliptic in space. To take advantage of this fact, 

time-accurate marching is used for unsteady or time-dependent applications and 

pseudo-time is used for steady-state cases. Upwind schemes can be classified as 

explicit and implicit schemes. The explicit schemes are easier to implement, require 

less memory and computational time than are required by the implicit schemes. On 

the other hand, implicit methods are frequently unconditionally stable. Choosing 

large time steps can more than compensate for the extra work per time step. Even 

though there are no stability restrictions on the time step, the time step is usually
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chosen to be a small value in order to satisfy the accuracy requirements since the 

error grows with increases in the size of the time step. It should be mentioned here 

that although the explicit schemes are more suitable for parallel computers, there has 

been continuous progress in parallel computer implementation of implicit schemes as 

well. Throughout this research work, the implicit upwind scheme has been used.

4.3.1 Finite-Volume Formulation

The governing equations in curvilinear coordinates are integrated over the computa­

tional domain (f1, f 2, f3)

where

dV = dix di2 df3 (4.15)

Using the divergence theorem, Eq. 4.14 can be written in the form

/// mdv + JJs m ~ ‘" dS = 0 (416)
where n is the outward unit vector normal to the surface S, bounding volume V.

Equation 4.16 is the integral form of the Navier-Stokes equations. The integral form 

is valid everywhere in the computational domain, while the differential form of the 

equations is valid only in smooth regions.

Equation 4.16 is applied at each cell assuming the flow quantities are cell averaged 

values. The hexahedral cells in the physical domain are mapped into unit cubes in 

the computational domain. The integral form, given by Eq. 4.16, is determined as
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Where i,j ,  k denote the value at the cell centroid, while i +  | ,  i — | ,  j  +  | ,  j  — |,  

fc + |  and k — |  denote the values at the cell interface. The term j  represents the 

cell volume.

Using Euler implicit time integration [129], Eq. 4.17 can be written as

-n + 1  _  »n

- I a T  = *(«*+ )
(4.18)

where

ii (,-*«) = -  [% (4"+' -  t;+') + (£j« -  4”«) +

%  (4 “ + 1  -  i® -1)] (4.19)

A Taylor series expansion was used to linearize the inviscid and viscous fluxes at time 

level n +  1 in Eq. 4.18

1

J A t  

1

Aq +

JA t + {Si

>£m I ------- —------- j Aq +  6̂ m \ Em — EmvJ = 0

' d (Em -  Emv) \ r'

(4.20)

8q
Aq — , 771 — 1,2, 3

(4.21)

where I is the identity matrix and Ŝ m is the spatial difference operator in the 

direction.

To avoid the penalty of solving Eq. 4.21 directly, which requires the solution of 

a 5  x 5  banded block matrix equation, the approximate factorization method was 

used. Then, the left hand side of Eq. 4.21 is written in the form

I  -f- JAtS^i
' d E\ dEv i

I  -f- J  At

dq dq
dEz dEvz

I  -f- J  A t  5£2 fdE2 dEv 2
A A Adq dq

Aq = - J A t ( R n - R nv)
dq dq

and the solution is obtained by solving three one-dimensional problems

'dEi dEv i

(4.22)

I  JAt6^i A A A Adq dq
Aq1 =  — JA t (Rn — R™)

P<i.-
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I  ~\- JAt8(2 

I  -f- JAt6^3

dE 2 dE v2 
dq dq  , 

dE 3 dE v3\

Aq" =  Aq' 

A  qn =  Aq" (4.23)
dq dq

Solution of a block tri- or penta-diagonal set of equations depending on the spatial 

accuracy of the left hand side operator is required to solve Eq. 4.23.

The Monotone Upstream-centered Scheme for Conservative Laws (MUSCL) [129] 

was used to difference the inviscid fluxes. A mid-mode Flux limiter was used to 

eliminate oscillations in the shock regions. The viscous fluxes were evaluated at the 

cell faces with the first derivative terms centrally differenced. For the thin-layer, only 

the the normal derivatives were retained, while in the full Navier-Stokes, all viscous 

terms were retained [130].

4-3.2 Flux-Difference Splitting Scheme

The idea of flux vector splitting according to the signs of the eigenvalues has been 

introduced by Steger and Warming [131]. The Jacobian of the split fluxes obtained 

using Steger and Warming flux vector splitting are not continuously differentiable. 

At sonic velocities and stagnation points, the Jacobian of the split fluxes have dis­

continuous slope. By expressing the split fluxes as a polynomial function of Mach 

number with the lowest possible order, van Leer devised a better flux splitting to 

alleviate this problem. In both cases however, the stagnation enthalpy of steady flow 

problems is not necessarily constant. Hanel et al. [132] have ensured constancy of 

stagnation enthalpy for such flows in van Leer splitting by introducing higher order 

polynomial.

On the other hand, in Godunov-type schemes [133], the solution is considered to 

be piecewise constant over each cell, at certain time levels and the solution at the next 

time level is obtained from the wave interactions originating at the boundaries. The
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new piecewise constant solution at the new time level is obtained by averaging the 

fluid states over each cell. In this way, Godunov-type schemes require solving non­

linear algebraic equations, and are is time consuming. Several approximate Riemann 

solvers have been employed including Roe [134], Osher [135] and others.

A complete review of the flux splitting methods can be found in Ref. 129. In the 

rest of this subsection, we will present, in some detail, the flux-difference splitting 

scheme of Roe, which is used in the present work.

Roe flux-difference splitting is based on a characteristics decomposition of the 

flux differences, taking into consideration the conservation properties of the scheme. 

Consider the one-dimensional equation where E  is the linear function of q:

dq dE ,
i + s r r *  (4-24)

Using the chain rule, this equation can be written as

I =  ° <4-25>

where A  =  The exact solution of the Riemann problem can be written in terms 

of the flux differences as
3

Er - E l = Y :  a^k^k  (4.26)
k=1

where a* represents the strength of the wave, and Ak and e* are the eigenvalues 

and eigenvectors of the Jacobian matrix A, respectively. As shown in Ref. 134, the 

interface flux can be determined using

1 /  A 3
Ei+i  (qL, qn) — -z \ El + Er — ^2  akh^k

1 \  *=i
(4.27)

Now, consider the case of Euler equations, where E  is not a linear function of q, 

Roe [134] suggested the following form

l  + = ° <4-28)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

where A  is the Roe-average matrix and is constructed such that it satisfies the fol­

lowing conditions:

1. It constitutes a linear mapping from the vector space q to the vector space E.

2. As qt -+qR -^ q, A (qh qR) -* A(?)

3. For any qL, qR; A  (®, qR) X (qL -  qR) -  EL -  ER

4. The eigenvectors of A are linearly independent.

Then, the flux difference between the left and right states and the interface fluxes 

can be written as

ER — El = A (qR — qL)

Ei+1  {qR - q L) = ]r [(El + ER) ~ \A\ (qR -  ?£,)]. .

(4.29)

(4.30)

For three-dimensional flows, the above equation can be written as

(Em (?*.& ))i+i  =  \  [(■&»* -  EmL) -  \A\ (qR -  qL)]i+L ,m  = 1,2,3 (4.31)

where j,k (spatial counters) and n (time level counter) are kept constant. The last 

term of the above equation can be expressed as

\A\ {qR -  qi) =  |A|Ag

a 4

u4 a 4  +  {™a5  +  a 6 

u2 a 4  +  + a 7

u3a 4 +  ££<*5 + a 8

H a 4 -\- u m a 3 +  Uxo:6 +  u 2a 7 +  u 3a 8 —

(4.32)

where

a i = v e
(4.33)

Ju->.
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0 1 2  =  2S2

° 2 2a2

v e
|«ro + c\ (Ap +  paAum)

\um -  c\ ( A p - p a A u m)

<24 =  a : +  a2 +  <23

a 5+ j  —
V C

a 5 =  a (a2 — “3)

|^m| (p A l t j  i j  ~  1 , 2 , 3

The ~  superscripts denote Roe-averaged values where

P  =  y / P L P R
UjL +  U j R j P L P R  

t t j  — ^
1 +  y / P L P R  

ft _  Hl +  HrtJPlPr 
1 +  yJPLPR

H

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

a = ( 7 - 1 ) H
u\ +  u\ + u\

(4.39)

4.4 Boundary and Initial Conditions

4-4-1 Initial Conditions

All the numerical solutions of steady flow problems are obtained by impulsively 

started initial conditions, i.e. the body under consideration is suddenly placed in the 

freest ream at the specified conditions of the problem. For unsteady flow problems, the 

solutions obtained from the pseudo time-stepping calculations corresponding to the 

same flow conditions are used as initial conditions in order to save the computational 

cost of the transient state.
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4 - 4 Surface Boundary Conditions

The surface boundary conditions are determined explicitly. Viscous wall boundary 

conditions are used, i.e. no slip and no penetration conditions are enforced

u =  us (4.40)

where u is the Cartesian velocity vector and us is the body surface velocity vector. 

For stationary bodies us =  0, while for moving bodies u 3 is the relative velocity 

of the fluid with respect to the body, which is set to zero. The relative velocity is 

determined from the physical motion of the body. The normal pressure gradient is 

set equal to zero for stationary bodies. For moving bodies in rotational motions, the 

normal pressure gradient is given by

dp—  = -p a s.h (4.41)

where as is the acceleration of the body surface defined as

as =  ui x (w x f) +  w x f  (4.42)

where w x (w x r) is the centripetal acceleration, w x r  is the tangential acceleration

and uj is the time derivative of the angular velocity vector ui and f  is the position

vector of the point under consideration.

For temperature, adiabatic and isothermal boundary conditions are used, depend­

ing on the physical circumstances of the problem.

4-4-3 Far-Field Boundary Conditions

For locally-conical flow problems, freestream boundary conditions were used. This 

choice is justified by the fact that the bow shock was found to be included entirely in 

the computational domain and its location was far from the far-field boundary. The
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flow outside the bow shock was entirely supersonic and, as a result disturbances will 

not reach the far-field boundary.

For three-dimensional problems, a non-reflecting boundary condition based on the 

theory of characteristics, as well as freestream boundary condition was applied. They 

were found to be equivalent for the cases considered. That was due to the size of the 

computational domain, which was taken to be 21r, where r was the local radius of 

the cone. In the characteristics boundary condition [127,136], the eigenvalues of the 

Jacobian matrix of the Euler equations were determined and found to be itn, un + a 

and un — a for one-dimensional flow. For the three-dimensional Euler equations, the 

characteristic variables are un, un, un, un +  a and un — a. These equations, along 

with the Riemann invariants, were used to impose the boundary condition.

4-4’4 Zonal Boundary Conditions

For multi-block cases, a zonal boundary condition was used at the block interfaces. 

Since for all the multi-block cases presented, the lines of the blocks at the interface are 

one to one, there was no need for interpolations and simple continuation boundary 

conditions were used. In such case, the “ghost cells” needed to calculate boundary 

conditions at the interface of a certain block were taken from the neighboring block 

on the interface.

The computer code which has been described in this chapter is FTNS3D [20,130] 

which is a modified version of CFL3D [137-140]. This code has been validated and 

its results were compared to the experimental results for both steady [22,137-141] 

and unsteady problems [142-145].
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CHAPTER 5

PASSIVE CONTROL USING 
SIDE-STRAKES

5.1 Introduction

Side forces arise when slender bodies are placed at high relative incidence. The side 

force magnitude and direction at zero side slip for certain configurations and flow 

conditions may exceed the normal force [1,146]. Also, the vortex-induced asymmetric 

force and yawing moment may switch suddenly from one side to the other, as a result 

of vehicle roll. These factors should be considered carefully during the design process. 

This is not a simple task since the asymmetric loads cannot be predicted accurately 

and many parameters affect the side-force magnitude. These relatively large forces 

represent a hazard to aircraft safety and a problem for missile control and accuracy.

Both passive and active control methods have been employed to alleviate and 

possibly eliminate the side-force. Passive control methods are those methods that do 

not require energy for operation. They include nose bluntness, fins, side strakes and 

straight or helical trips. In this chapter, which is an extension of Ref. 22, passive 

control using side strakes will be presented in terms of effect of the side-strake span 

length, at different AOA, on control. A reference case for the asymmetric flow is 

presented in the next section. This case is used in this chapter and the following 

chapters to evaluate the effectiveness of the different control methods.
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To avoid the relatively expensive three-dimensional Navier-Stokes equations so­

lution, the locally-conical flow assumption is used in this chapter. The sharp cone 

is the simplest aerodynamic component and apart from the base and viscous effects, 

the flow will be globally conical for steady cases. At high Reynolds number, the 

locally-conical flow assumption is valid for supersonic flows—both steady and un­

steady [29,147]. The three-dimensional Navier-Stokes equations are not self-similar. 

The solution is obtained by enforcing the solution to be equal at two planes lo­

cated at x = 1.0 and x =  0.95. The locally-conical flow assumption reduces both 

the memory and time required for the solution, by almost an order of magnitude 

compared to the solution of the three-dimensional Navier-Stokes equations. Most 

of the asymmetric flow characteristics can be obtained from the locally-conical flow 

solutions [20,22,32,53,128].

The implicit, upwind, Roe flux-difference splitting, finite-volume scheme is used 

to solve the unsteady, compressible, full Navier-Stokes equations. The smooth flux 

limiters are used to eliminate the oscillations which show up at large flow gradient 

locations. The computational scheme is coded in the computer program “FTNS3D” 

which is a modified version of “CFL3D” where the cross derivatives and the implicit 

terms are added. For the locally-conical flow solutions, an axial station of x\ =  1.0 

is selected and the variables of the flowfleld are forced to be equal between this axial 

station and another axial station in close proximity to x\ =  1.0. This ensures that 

the flow variables are locally independent of the axial direction at x\ =  1.0 [128]. 

The computations were carried out on the Cray YMP at NASA Langley Research 

Center and the Cray C-90 at NASA Ames Research Center.

5.2 Asymm etric Flow, Reference Case

The locally-conical flow over a cone of 5° semi apex angle at a freestream Mach 

number of 1.8 and a Reynolds number of 10s is considered to be the test case (in
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which many of the control methods are to be applied in this chapter and the next 

chapters). The grid has been generated using the modified Joukowski transformation 

with a geometric series for grid clustering in the normal direction. The computational 

grid (shown in Fig. 5.1) was 241 x 81 in the wrap-around and normal directions, 

respectively. The minimum spacing between grid lines in the normal direction was 

10-4 and the grid was distributed uniformly in the circumferential direction. The 

effect of minimum spacing, grid density and computational domain size for the shown 

configuration were investigated by Wong [22].

In this case, the boundary conditions used are the no-slip and no-penetration 

boundary condition at the wall, and the freestream boundary condition at the far- 

field boundary. This is justified since the computational domain is extended to 21r, 

where r is the local radius of the cone. Hence, the domain is large enough to capture 

the bow shock as part of the solution.

The residual, lift coefficient, and side force coefficient are shown in Fig. 5.2. 

Examining these figures closely, one can see that the residual drops four orders of 

magnitude after 1200 time steps. Thereafter, it starts to increase, then it drops again 

to the machine zero (ten orders of magnitude) after 7500 time steps. If we examine 

the history of side-force in a similar manner, we see that up to 1200 time steps, the 

side force is almost zero and the flowfield is symmetric. After 1200 time steps, the 

side force starts to grow and reaches its steady state value which is about —6.5 x 10-4 

at about 2500 time steps. A slight increase in the lift coefficient is observed when 

the asymmetry appears, as shown in Fig. 5.2.

The onset of asymmetry in wind tunnel tests and real flights is due to the dis­

turbances that grow both spatially and temporally. Such a disturbance can be due 

to imperfections in the wind tunnel models, wind tunnel wall effects or sudden (even 

slight) changes in freestream direction. Computationally, these disturbances can be 

simulated either

«»■ •
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• by using a physical disturbance, such as imposing a side-slip for a short period 

of time, or

• (in the present solution), by having the machine round-off error act as a random 

source of disturbances to the flowfield.

Kandil and his co-authors [20,32,53,128] showed that the steady asymmetric flow 

that arises from the physical conditions mentioned above is unique, irrespective of 

the disturbance source level or type.

The asymmetry level can be realized by examining Fig. 5.3, which shows the 

surface pressure coefficient versus 6 , which is the azimuthal angle measured from the 

plane of geometric symmetry at the wind ward side. The suction pressure on the left 

side (vortex closer to the body) is higher (more negative) than the suction pressure 

on the right side.

Figure 5.4 shows the total pressure loss contours, the crossflow velocity vectors 

and the crossflow streamlines around the circular cone section. The difference in the 

level of the separation point between the left and right sides can be identified from 

the total pressure loss contours and the crossflow velocity vectors. The side with the 

lower separation point is the one with higher vortex structure. The total pressure 

loss is determined using the equation

flow, is the interaction between the vortices from the left and right sides on the lee
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5.3 Side-Strakes

One of the main factors that allows disturbances to grow, resulting in asymmetric

ward side of the forebody. That might result in an asymmetry of the separation
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points on the right and left sides of the forebody, and consequently, the asymmetry 

extends to the whole flowfield. Considering these facts, side-strakes have two primary 

effects 5.5

1. The horizontal distance between the vortices on the lee-ward side of the fore- 

body increases by the span length of the side-strakes span and so is the hori­

zontal distance between the primary vortices. This means that the interaction 

between vortices is reduced.

2. The separation points, in this case, are usually located at the side-strake tips 

which means that the locations of the separation points on the right and left 

sides are enforced to be symmetric.

In this section, we investigate the effect of side-strakes and their span lengths in 

alleviating or eliminating the side-forces. The grid used in all the computational ap­

plications is 161 x 81 in the wrap-around and normal directions, respectively. The grid 

is generated using a hyperbolic grid generator with a transfinite grid interpolation 

to cluster the grid in the strake regions. Similar to the previous case, the minimum 

spacing in the normal direction is 10-4 and the grid extends far enough (21r) for the 

freestream boundary condition to be applicable. The boundary conditions are the 

same as the previous case.

5.3.1 Side-strakes of span length h =  0.35r

Figure 5.6 shows the grid used with the sharp-edged strakes, of span length 0.35r. 

Figure 5.7 shows the surface pressure coefficient of the flow over a circular cone at 

AO A of 30°. The figure shows a jump in the surface pressure at 6  — ±90° due to the 

existence of side strakes. The symmetry in the surface pressure coefficient over the 

body is an indication of zero side force and the symmetry of the flowfield. The total
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pressure loss contours, velocity vectors and streamlines shown in Fig. 5.8 indicate 

the symmetry of the flowfield at the specified AO A, a =  30°.

Figures 5.9 and 5.10 are corresponding to Figs. 5.7 and 5.8 for a = 40°. With 

the increase in the AOA, the lee ward side vortices are closer to each other, and 

simultaneously the surface pressure coefficient and the flowfield are both symmetric. 

We can see in Fig. 5.11 that the flowfield begins to exhibit asymmetry when a 

increases to 50°.

5.3.2 Side-strakes of span length h =  QAr

The cases presented here are similar to those of the previous subsection with the 

exception that the strake span length h has been increased to 0.4r and the AOA 

considered are a = 40° and 50°. The grid used was the same density as that of 

the previous case. Figure 5.13 shows the convergence history of the residual, lift 

coefficient and the side-force coefficient for the flow at a — 40°. From the side- 

force coefficient history, we can see that the side force is not zero. However, the 

side-force is about 0.16% of that of Fig. 5.2 where the AOA, a = 20° with no side- 

strakes. The difference in the lift coefficients in Fig. 5.13 and Fig. 5.2 is due to two 

factors: the first is the difference in the AOA and the second is the effect of the 

side-strakes (acting as small wings) in increasing the lift. Figures 5.14 and 5.15 show 

the surface pressure coefficient, total pressure loss contours, crossflow velocity vectors 

and crossflow streamlines for the present case.

When the AOA is increased to 50°, the side-force, Fig. 5.16, oscillates between 

±0.23 x 10-4, which corresponds to about 3.5% of the side-force shown in Fig. 5.2. 

This high frequency oscillation does not produce significant asymmetry since the 

average is zero (see Figs. 5.17 and 5.18). The surface pressure coefficient is almost 

symmetric. There is a slight asymmetry that can be observed in total pressure loss 

contours.

sr---------- -
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5.3.3 Side-strakes of span length h — 0.5r

Now, extending the side-strake span length to 0.5r, with a  =  50°, Fig. 5.19 shows that 

the side-force coefficient oscillates between ±0.35 x 10-4, which is a larger amplitude 

than the corresponding case with h =  0.4r. The degree of asymmetry in the present 

case is greater and the frequency is lower, as shown in Fig. 5.20, compared to previous 

case. This gives an indication of the limitations of the side-strakes as a method to 

eliminate the side forces. The level of the asymmetry is also shown clearly in Fig. 5.21.

5.4 Summary

In this chapter, several computational cases were presented to investigate the effects 

of the side-strakes and their span lengths in reducing the side-forces that arise at high 

AOA due to flow asymmetry. These cases covered an AOA range from 30° to 50° and 

the side-strake span length range from 0.35r to 0.5r. The side-strakes were found to 

be effective in eliminating or reducing the side force and the flow asymmetry, up to 

a high AOA. Also, the side strakes acted as small wings to the body and hence, an 

increase in the lift coefficient was observed. The effect of increasing the span length 

of the side-strake was to enhance the flow stability and hence, damped the unwanted 

oscillations that result in flowfield asymmetries and side forces. While a minimum 

side-strake span length was found to be effective in certain AOA range, increasing 

the span length was not of much effect on the flow asymmetry at higher AOA.
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Figure 5.1: Grid over circular cross section of the cone, 241 x 81 points
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Figure 5.2: Residual, lift coefficient and side-force coefficient history of steady asym­
metric flow for a circular cone at a  =  20°, Moo — 1*8, Re =  10s.
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Figure 5.3: Surface pressure coefficient for steady asymmetric flow around a circular 
cone at a = 20°, M =  1.8, Re =  10s.
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Figure 5.4: Total pressure loss contours, cross-flow velocity vectors and cross-flow 
streamlines for flow around a circular cone at a  =  20°, = 1.8, Re = 105.
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Asymmetric Vortical Flow Side-Strake Configuration

Figure 5.5: Side-strake effect on flow asymmetry
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Figure 5.6: Grid over circular cross section of the cone, 161 x 81 points, h =  0.35r.
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Figure 5.7: Surface pressure coefficient for flow around a circular cone at a  =  
Moo =  1.8, Re =  10s, h = 0.35r.
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Figure 5.8: Total pressure loss contours, cross-flow velocity vectors and cross-flow 
streamlines for flow around a circular cone at a  =  30°, M<*, =  1.8, Re =  105, 
h = 0.35r.
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Figure 5.9: Surface pressure coefficient for flow around a circular cone at a 
Moo = 1.8, R e = 10s, h = 0.35r.
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Figure 5.10: Total pressure loss contours, cross-flow velocity vectors and cross-flow 
streamlines for flow around a circular cone at a  =  40°, M ,«> =  1.8, Re =  10s, 
h = 0.35r.
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Figure 5.11: Total pressure loss contours, cross-flow velocity vectors and cross-flow 
streamlines for flow around a circular cone at a  =  50°, M,«, =  1.8, Re =  105, 
h =  0.35r.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.0025

-p.oooo

•0.0025

•0.0050

•0.0075

-0.0100

75002500 5000 
No. o f Iterations

Figure 5.13: Continued

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.50

0.25

0.00

-0.25

150-150 -50 100-100

Figure 5.14: Surface pressure coefficient for flow around a circular cone at a  
Moo = 1.8, Re =  10s, h =  0.4r.
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Figure 5.15: Total pressure loss contours, cross-flow velocity vectors and cross-flow 
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Figure 5.16: Residual, lift coefficient and side-force coefficient history of flow around 
circular cone at a  =  50°, M00 = 1.8, R e =  105, h = 0.4r.
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Figure 5.18: Total pressure loss contours, cross-flow velocity vectors and cross-flow 
streamlines for flow around a circular cone at a =  50°, M ^  =  1.8, Re = 105,h  = 0.4r.
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Figure 5.19: Residual, lift coefficient and side-force coefficient history of flow around 
circular cone at a  =  50°, M , =  1.8, Re =  105, h =  0.5r.
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Figure 5.20: Surface pressure coefficient for flow around a circular cone at a 
M00 =  1.8, Re =  105, h = Q.5r.
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Figure 5.21: Total pressure loss contours, cross-flow velocity vectors and cross-flow 
streamlines for flow around a circular cone at a =  50°, =  1.8, Re =  10s, h =  0.5r.
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CHAPTER 6

ACTIVE CONTROL USING 
INJECTION AND HEATING

6.1 Introduction

When the asymmetry becomes detectable with increases in the AOA, the pressure 

distribution over the body surface becomes asymmetric and the suction pressure 

on one side of the body is larger than the other side. Passive control methods, in 

most cases, are applied equally on both sides and while these methods are effective in 

delaying the onset of asymmetry, they are not as effective in alleviating or eliminating 

the asymmetry, once it starts to appear. Meanwhile, active control methods can be 

applied whenever the asymmetry starts to appear.

The effect of asymmetric injection from the body surface is to add, in an uneven 

way, momentum to the flowfield. Also, the velocity at the body surface is no longer 

zero, which has a direct effect on the surface pressure and hence, on the side force 6.1. 

On the other hand, heating is a stabilizing factor, since the viscosity increases with 

temperature and hence, the disturbances that lead to the asymmetry die out.
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In this chapter, the effect of two active control methods—injection and surface 

heating— is investigated. Injection control is applied in both the normal and tan­

gential directions to the 5° semi-apex angle cone surface. Next, the surface heating 

control method is presented and followed by the use of hybrid injection-heating con­

trol. This part of the dissertation has been published in Refs. 21,94.

The asymmetric flow reference case, which was presented in Sec. 5.2, is used to 

evaluate and investigate the effects of the various active control methods presented in 

this chapter. In all the cases, the grid used is the same one used in the reference case 

which is shown in Fig. 5.1. The initial solution used in this chapter is the solution 

obtained and described in Sec. 5.2.

6.2 Normal Injection Control

Injection is applied on the cone surface in the radial direction of the cone axis, 

i.e. normal to the circumference of the circular section of the cone. The mass 

flow rate per unit area, rh, (the nondimensional mass flow rate per unit area) is 

taken to be constant, and the injection is applied to the side of the cone with lower 

surface pressure. The choice of injection location is motivated by the vortex structure 

indicated in Fig. 5.3. The injection location is chosen to be on the side with the lower 

vortex location relative to the cone surface. The injection is expected to raise the 

vortex on that side and equalize the surface pressure to that on the other side, and 

hence alleviate or eliminate the side force.

6.2.1 Constant injection rate

In this section, the mass injection rate, rh, is chosen to be constant, rh is the 

nondimensional mass flow rate per unit area. Three values of rh (rh =  0.01, 0.02 and
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0.03) are applied to investigate the effect of the mass injected. Also for m =  0.02, the 

effect of the injection effective angle (the angle measured from the plane of geometric 

symmetry on the leeward side in the clockwise direction) is investigated.

The mass flow rate per unit area is taken to be constant (m =  0.01) over the 

effective injection angle which extends from 0° to —67.5°. Figure 6.2 shows the effect 

of injection, for m =  0.01, on the side force and lift coefficient when applied after 

12,000 iterations. The level of the side force is decreased from —6.5 x 10-4 to about 

—3.8 x 10-4. Simultaneously, the lift coefficient has experienced a relatively small 

drop of about 8%. Figure 6.3 shows the surface pressure coefficient for the same 

case. Comparing Fig. 6.3 with Fig. 5.3, we can see that the difference in the surface 

pressure on the two sides of the cone has decreased due to the constant injection 

on the left side of the cone. In Fig. 6.4, the total pressure loss contours, cross- 

flow velocity vectors and cross-flow streamlines are presented. Since the velocity is 

no longer zero at all the points on the body surface on the left side, some of the 

streamlines originate from the injection port locations, since this part of the surface 

is not a stream surface. The height of the vortex on the right side of the cone (where 

no injection occurs) is decreased and the vortex on the other side has diffused, due 

to the injection.

6.2.1.1 Effect of injection rate

The mass flow rate per unit area, rh, is increased to 0.02, i.e. double the previous 

case. In Figs 6.5, 6.6 and 6.7, the results are shown for this case. The higher injection 

is, as expected, more effective compared to the case with m =  0.01. The distance 

between the primary vortex on the right side and the body surface has decreased 

while the vortex on the left side is diffused more than the diffusion in the previous 

case. The side force coefficient history shows that the side force in this case is smaller

F ~  ■' “ .........  '
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(almost zero) compared to that of the previous case and the reference case with no 

control. Also, the lift coefficient has decreased more than for the previous case.

The last three figures in this subsection, Figs. 6.8, 6.9 and 6.10 show the results 

of the case with m =  0.03. The effect of the injection is more pronounced and the 

observations of the last two cases are still valid. However, since the injection level 

is relatively high, the primary vortex on the right side is also raised above the body 

surface and the left-side vortex is entirely diffused. The lift coefficient drops to a level 

lower than that of the cases of m =  0.01 and m = 0.02, and the side force coefficient 

drops to almost a zero level.

6.2.1.2 Effect of effective injection angle

The effect of the effective injection angle, 0,-, is investigated in this subsection. Three 

values of 0,- are chosen to study such an effect. The injection is applied from the cone 

surface at all the points within 0,- range. In these three cases, while fixing the mass 

flow rate rh =  0.02, the effective injection angle has been chosen to be 0,- =  0° to 

—45°, —67.5°, —90°. The results of the cases of 0,- = 0° to —45° and 90° are shown 

in Figs. 6.11-6.16.

While increasing the magnitude of the effective angle of injection, 0,-, from 67.5° 

to 90°, little effect is observed on the final level of the side force. The results with 

0,- = —45°, are surprising with the side force changing its sign and a new vortex 

structure appearing. This indicates that the mass flow rate is not the only factor but 

also the effective angle of the injection is an important parameter.
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6.2.2 Variable injection rate

The results obtained in the last subsection in which a zero side force has been obtained 

while the flowfield is still asymmetric around the body, prompted an investigation 

searching for an optimum solution. The “optimum solution” was to devise some 

way to allow the flowfield to become symmetric or to eliminate the surface pressure 

difference between corresponding points on the two-sides of the body surface. There­

fore, the idea of using a variable, m, was considered and is applied in this section to 

examine such a possibility.

In this case, the circumferential range of injection ports is extended to cover a 

symmetric range of 0,- =  —67.5° to 67.5°. Moreover, the injected mass-flow rate per 

unit area, rh, is made proportional to the difference in the surface pressure between 

corresponding points on the right and left sides of the body (within 0 =  —67.5° to 

67.5°). The maximum injected mass-flow rate per unit area, rnmax, which corresponds 

to the maximum pressure difference is restricted to rhmax =  0.03. Practically, this 

control method can be achieved by sensing the pressure difference between the right 

and left ports, and using it as a feedback control in order to inject a mass-flow rate 

proportional to that pressure difference. This case has been run in a time accurate 

form with A t  =  0.001. To examine the time step effect, this case was run with 

smaller A t and similar results were obtained.

Figure 6.17 shows the lift coefficient and the side-force coefficient versus the num­

ber of iterations. The iteration and time-accurate stepping history of Fig. 6.17 can 

be described as follows:

1. No control is applied until the 12,000 iteration step. Up to that point, pseudo 

time marching was used. Steady asymmetry evolves at the 2000th iteration 

step, and the residual reached machine zero at the 10,000th iteration step.
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2. Time accurate solutions were used for 3,000 time steps with A t  =  0.001. No 

change in the solution was observed.

3. While keeping the AOA, a, fixed at 20°, the injection control method was 

applied for 6,000 time steps through which the asymmetric solution has been 

changed into a symmetric one.

4. The AOA was increased 2° after each 6000 time steps, until a = 30°.

The corresponding history of the side force shows that the side force becomes 

zero at the end of 21,000 time steps. Snapshots of the evolution of the symmetric 

controlled flow solution at a = 20°, in terms of the total pressure loss contours and 

velocity vectors are given in Figures 6.18 and 6.19. The vortical flow is rendered 

symmetric using the present method.

Snapshots of the total pressure loss contours and velocity vectors at different 

AOA (a =  22°, 24°, 26° and 28°) are given in Figs. 6.20 and 6.21. When the AOA 

reaches 30°, normal injection control was incapable of achieving flow asymmetry. It is 

interesting to study the snapshots of the total pressure loss contours at different AOA. 

Moreover, it is noticed that the primary vortices grow in size in the normal direction 

and their inner boundaries approach each other. At a = 28°, the inner boundaries 

of the primary vortices touch each other, and thereafter at a  =  30°, the primary 

vortices from the right and left sides become asymmetric. The asymmetric response 

of the primary vortices at a =  30° is believed to be due to a strong instability arising 

as a result of the strong interaction between the inner shear layers of the primary 

vortices.

At a  =  30°, the injected mass-flow rate in the normal direction to the body 

surface rh is increased to 0.05, 0.06 and 0.07, in order to recover the flow symmetry. 

Figure 6.22 shows the results of these tests. Both the total pressure loss contours 

and the surface pressure coefficient curves show that the flow is asymmetric and
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the side force does not vanish. It is also observed that the flow asymmetry changes 

from the right side to the left, as does the side force. Therefore, it is apparent that 

normal-injection control loses its effectiveness when the AOA approaches 30° for the 

conditions considered.

6.3 Tangential Injection Control

In this case, the circular section of the lower portion of the cone has a radius larger 

than that of the upper portion. The lower local radius is 1.05 that of the upper 

one. Flow is injected from the lip of the lower portion in the direction tangent to 

the surface of the upper portion. The maximum mass flow rate, rhmax is taken to be 

0.2 and the velocity profile at the lip exit is assumed to be parabolic. Figure 6.23 

shows the grid used for the thin layer computations. Three grid blocks are used for 

the present computation. The first block is 121 x 19 x 2, the second is 121 x 63 x 2 

and the third is 121 x 63 x 2 all in the circumferential, normal and axial directions, 

respectively. Injection is applied asymmetrically, i.e. the injection is applied on 

one of the two sides at each time step, depending on the surface pressure difference 

between corresponding points on the left and right sides of the cone—similar to the 

normal injection case.

Since the geometric configuration has changed from that of the reference case, 

the solution for the present case is summarized as follows:

1. No control is applied until the 12,000th iteration step. Up to this point, pseudo 

time marching is used. Steady asymmetric flow is observed at the 2000th 

iteration step and the residual reaches machine zero at the 10,000th iteration 

step. The level of asymmetry is higher than the reference case and the side 

force coefficient has a value of 14.0 x 10-4 at steady state.
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2. Time accurate solutions were used for 3,000 time steps with A t =  0.001. No 

changes in the solution were observed.

3. While keeping the AOA, a, fixed at 20°, the injection control method was 

applied for 5,000 time steps with rhmax =  0.05, which reduced the level of 

asymmetry by about 7%.

4. Increasing the injection level rhmax to 0.1 for 4000 time steps reduced the side 

force by almost another 7%. Again, the increase in mmax to 0.15 proved to be 

insufficient to reduce the side force substantially.

5. Then, rhmax was increased to 0.2 which was found to be the optimum value for 

the injection to reduce the side force to about 7% of its original value. Up to 

this point the AOA was maintained at 20°.

6. The AOA was increased by 1° each 2000 time steps, until a =  31°.

Figures 6.24 and 6.25 show the total pressure loss contours and velocity vectors 

at different AOA. With the increase in the AOA, the sizes of the primary vortices 

increased and when the two vortices began to overlay, an instability started to grow 

and the flow lost its symmetry.

6.4 Surface Heating Control

By heating the surface of the body, the temperature of the flowfield near the body 

was increased and hence, viscosity was increased according to Sutherland’s law. The 

increase in the viscosity acted as a damping factor to disturbances in the flowfield. 

To utilize such an idea for flow control, isothermal boundary conditions were used 

on the body surface, replacing the adiabatic boundary condition that had been used 

in all the cases mentioned earlier.
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Figure 6.26 shows the lift and side force coefficients versus the number of iterations 

for the case where the left side of the body (—180° < Oh < 0°) surface was heated 

to 5 times the freestream temperature, T ^, starting at the 12001 iteration step for 

6000 iteration steps. Then, the left-side temperature was raised to Again,

the initial solution for the present case is the reference case obtained in section 5.2. 

The new boundary condition was applied while keeping the AOA constant at 20°. 

The side-force curve shows that the side force decreases as the temperature increases 

until it vanishes. Although the side force is zero, the vortical flow is still asymmetric. 

Lower values of heating were ineffective in alleviating the side forces.

6.5 Hybrid Heating-Injection Control

In the hybrid control method, two or more control methods are applied simultane­

ously to extend their range of effectiveness. Since both surface heating control and 

normal injection control are found to be effective within certain AOA ranges, hybrid 

heating-injection control was applied to extend the symmetric-flow AOA range.

In this case, surface heating control was followed by normal-injection control. 

Figures 6.28, and 6.29 show the results of this study. The control process is applied 

as follows. First, the whole surface is heated to Ts =  5Too and the heating starts at 

a  =  20°, where the number of iterations was 12,000. Next, the AOA was increased 

4° and the symmetric flow was recovered after 18,000 iterations. Then, the AOA 

was increased 2° after each 1,000 iterations, until an AOA of 38° is achieved. Flow 

symmetry has been recovered continuously until the AOA reached 36°, where a slight 

flow asymmetry appeared in the solution. At a  =  38°, the flow asymmetry became 

stronger and heating control was ineffective for Ts = 5Too-

At a =  38°, normal-injection control was applied with rhmax =  0.05 and 0,- =  

—67.5° to 67.5°. The AOA was then increased in 2° increments after each 3,000
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iterations. The history of the residual and the side force coefficient is shown in 

Fig. 6.28. Figure 6.29 shows snapshots of the total pressure loss contours and surface 

pressure coefficient curves at a  =  38°, 40° and 42°. Although the total pressure 

loss contours show asymmetric flows, the surface pressure coefficient curves show 

symmetry resulting in zero side forces. Thus it is concluded that a hybrid control 

of heating and normal injection is very effective in eliminating the side force at very 

high AOA.

6.6 S u m m ary

In this chapter, the effectiveness of the different active control methods on the flow 

asymmetry was investigated. Uniform injection was effective in eliminating the side 

force at the angle of attack considered (a =  20°), but the flowfield was found to be 

sensitive to the effective injection angle and the mass flow rate. Normal injection 

was found to be effective in eliminating the side force when a constant mass flow rate 

(per unit area) was used. When the pressure difference between the right and left 

sides of the cone was used as a means to determine the injection location, not only 

the side force vanished but the flowfield became symmetric. Tangential injection was 

found to have a similar effect to that of normal injection, but with lower mass flow 

rates. Injection control lost its effectiveness when the AOA exceeded 30°. Surface 

heating control was found to be effective in an AOA range larger than that of the 

injection. Surface heating followed by normal injection was found to be the most 

effective control method for AOA up to 42°.
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Figure 6.2: Lift coefficient and side-force coefficient history for a circular cone with 
normal injection control at a  =  20°, =  1.8, Re =  10s, m = 0.01, 9{ =  —67.5° —>
0°.
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Figure 6.3: Surface pressure coefficient for flow around a circular cone with normal 
injection control at a  =  20°, M ^ = 1.8, Re =  10s, rh — 0.01, 0,- = —67.5° —> 0°.
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Figure 6.4: Total pressure loss contours, cross-flow velocity vectors, and cross-flow 
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R e =  10s m =  0.01, Oi =  -67.5° -> 0°.
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Figure 6.9: Surface pressure coefficient for flow around a circular cone with normal 
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Figure 6.12: Surface pressure coefficient for flow around a circular cone with normal 
injection control at a  =  20°, =  1.8, Re =  10s, m  =  0.03, 0,- =  —45° —> 0°.
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CHAPTER 7

ACTIVE CONTROL USING 
SPINNING AND ROTARY 

OSCILLATIONS

7.1 Introduction

In this chapter, the effectiveness of spinning and rotary oscillations as active control 

methods to eliminate or alleviate the side forces for a 5° semi-apex angle circular cone 

is investigated. The grid is spinning or oscillating rigidly with the cone, according 

to its motion, and the kinematical and dynamical boundary conditions are modified 

accordingly. For uniform spinning, the surface speed is constant and assumed to 

have values of ±0.06, ±0.2 and 0.6, while for rotary oscillation, the surface speed is 

sinusoidal with amplitudes of 0.06, 0.2 and 0.5, which cover a circumferential angle 

of 45°, 90° and 375°. Similar to Chap. 6, the reference case presented in Sec. 5.2 and 

its solution, Figs. 5.2, 5.3 and 5.4, will be used throughout this chapter. Starting 

from that solution which is pseudo time, a time accurate solution for the steady case 

of the flow over a 5° semi-apex angle cone was obtained by running the code in a 

time accurate fashion for 1,000 iterations with A t =  0.001.
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7.2 Spinning Motion

The asymmetric solution which is shown in the Figs. 5.3 and 5.4, was used as the 

initial solution for the spinning cases. By spinning the cone in the counter-clockwise 

direction, the velocity of the boundary-layer flow on the right-hand side of the cone 

was enhanced in terms of resisting flow separation; Conversely the speed of the 

boundary-layer flow on the left-hand side of the cone was retarded, producing early 

flow separation 7.1. Moreover, the spinning motion adds either positive or negative 

vorticity to the flowfield. Hence, by selecting the appropriate spinning rate, the 

asymmetric vortices can be rendered symmetric. The second effect of spinning is to 

increase the pressure gradient normal to the body (jfc\COne = pw2 rcone)- For small 

values of u>, the effect on the pressure gradient will not be pronounced. However, 

for large values of ui, the effect on the pressure will be significant. Also, for nonzero 

AOA, the magnus effect will contribute to the side force -either positive or negative 

depending on the spinning direction. In addition, experimental data [62, 111, 112] 

has shown that spinning produces an oscillatory side-force response. If the mean side 

force is zero, then the average side force will be zero. In this section, we present the 

effect of uniform spinning at surface velocities of ±0.06 and ±0.2, which correspond 

to ±2,292 rpm and ±7,639 rpm, respectively, for a cone of unit length.

7.2.1 Uniform spinning at ±0.06

Figures 7.2 and 7.3 show the results for uniform counter-clockwise (CCW) spinning 

at Vs =  0.06, where Vs is the surface velocity, and Figs. 7.4 and 7.5 show the results 

for uniform clockwise (CW) spinning at Vs =  —0.06. All spinning cases were started 

at time step 13,001 and the solutions were obtained using At =  0.001. With the 

present surface speed of 0.06, the cone rotated one revolution in 9.163 dimensionless 

time units, which corresponded to 9,163 time steps. Figure 7.2 shows the side force 

and lift coefficients versus the number of time steps. It is observed that the force
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coefficients reach a periodic response very quickly and the period of oscillation is 9.163 

dimensionless time, which is of course equal to the time required to rotate the cone 

one revolution. The side-force curve oscillates between —6.9 x 10~4 and —5.3 x 10-4 

with a mean value of —6.1 x 10-4. The magnitude of the mean side-force coefficient 

is less than the magnitude of the side-force coefficient without spinning, which was 

equal to —6.5 x 10~4. Thus, the CCW spinning reduces the magnitude of the side 

force on the average. The lift coefficient curve shows a small-amplitude periodic 

response. In Fig. 7.3, snapshots of the total pressure loss contours, surface pressure 

coefficient and streamlines are shown at five instants, covering one cycle of periodic 

side-force response. They are marked by the numbers 1,2,3,4 and 5 on Figs. 7.2 

and 7.3. The snapshots show that the right and left vortex heights, lateral positions, 

strengthens and separation points oscillate slightly. Consequently, the corresponding 

surface pressures oscillate slightly too. CCW spinning delays flow separation on the 

right side and expedites flow separation on the left side.

With the CW spinning of -0.06, the side-force and lift coefficient curves of Fig. 7.4 

show that their periodic response is also reached very quickly. The side-force coef­

ficient curve oscillates between —7.7 x 10-4 and —5.5 x 10-4 with a mean value of 

—6.6 x 10-4. The magnitude of the mean value is slightly higher than the magnitude 

of the side-force coefficient without spinning. Thus, the CW spinning does not reduce 

the mean value of the side force. Figure 7.5 shows snapshots of the total pressure 

loss contours, surface pressure coefficient and streamlines at four instants during one 

cycle of periodic response. The CW spinning increases flow separation on the right 

side and delays flow separation on the left side. Comparisons of the snapshots of 

Fig. 7.5 with the corresponding snapshots of Fig. 7.3, show that the vortex on the 

right-hand side of Fig. 7.5 (snapshot 1) moves more to the right, while the vortex on 

the right-hand side of Fig. 7.3 (snapshot 1) moves more to the left. Similar motions 

are observed for the vortex on the left side of Figs. 7.5 and 7.3 (snapshots 1). Hence, 

the side force at point 1 of the CW spinning is higher in magnitude than the side 

force at point 1 of the CCW spinning.

ifa- -
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7.2.2 Uniform spinning at ±0.2

Next, uniform spinning was increased to 0.2. The results of CCW spinning are shown 

in Figs. 7.6 and 7.7, and the results of the CW spinning are shown in Figs. 7.8 and 7.9. 

With the surface speed of 0.2, the cone rotates one revolution in 2.749 dimensionless 

time, which corresponds to 2,749 time steps. Figure 7.6 shows that the side-force and 

lift coefficients curves reach a periodic response very quickly and the period of oscil­

lation is 2.749 dimensionless time. The side-force coefficient curve oscillates between 

—8.9 x 10-4 and —0.5 x 10-4 with a mean value of —4.7 x 10-4. The magnitude of the 

mean side-force coefficient is substantially lower than the magnitude of the side-force 

coefficient without spinning. Thus, high CCW spinning reduced the mean value of 

the side force. It should be noticed that the amplitude and frequency of oscillation 

of the lift coefficient curve were higher than those of Fig. 7.2. Four snapshots of 

the total pressure loss contours, surface pressure coefficient, and streamlines, during 

one cycle of the periodic side force coefficient are shown in Fig. 7.7. It is noted that 

the CCW spinning increases the flow separation substantially on the left side, and 

delays flow separation on the right side. Also, the right-hand vortex moves further 

downward and leftward, compared to similar motions in Fig. 7.3.

Figure 7.8 shows the periodic responses of the side force and lift coefficients for the 

CW spinning with surface velocity of -0.2. The side force coefficient curve oscillates 

between —10.2 x 10-4 and —2.1 x 10-4 with a mean value of 6.15 x 10-4. The 

magnitude of the mean side force coefficient is lower than the magnitude of side force 

coefficient without spinning, but it is substantially higher than the mean value of 

the CCW spinning of Fig. 7.6. Snapshots of the total pressure loss contours, surface 

pressure coefficient, and streamlines at point 1 during one cycle of the periodic side 

force coefficient, are shown in Fig. 7.9. The CW spinning is observed to increase the 

flow separation on the right side and the left-hand vortex moves more to the right.
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7.2.3 Uniform spinning at 0.6

In this case, uniform spinning was increased to 0.6 and the results are shown in 

Figs. 7.10 and 7.11. With a surface speed of 0.6, the cone rotates one revolution in 

0.916 dimensionless time. The side-force coefficient curve shows the periodic response 

which oscillates between —50 x 10-4 and +38 x 10-4 with a mean value of 6 x 

10~4. With this high value of CCW spinning, the side-force coefficient is oscillating 

between positive and negative values and the vortices on the left and right sides 

are changing heights periodically. It is noticed that the boundary layer at certain 

instances detaches to form a free-shear-layer band around the body, as shown in 

Fig. 7.11. Although the mean value of the side force is not zero, this test indicated 

the existence of a certain CCW spinning value at which the mean side force will be 

zero.

7.3 R otary Oscillating Motion

In this section, the effect of periodic rotary oscillation of the cone on the flow asym­

metry and the side force is investigated. The form of the surface speed is given

by

V3 = VS cos (7.1)

where is the surface-speed amplitude and r  is the period of oscillation. Substitut­

ing 7.1 into the relation

f - £  <7-2)

and integrating the result with respect to time, the angular motion 9 is obtained in 

the form

6  = 8 a sin (y~ ^j (7-3)

where

=  <7'4)

fz~-   ' ' "--------
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By specifying Vs and r , one can obtain the amplitude of the angular motion, 0a, for 

a particular value of cone radius, rc. In the next subsections, present the results for 

different values of Vs and t  of the periodic rotary oscillation are presented.

7.3.1 Rotary oscillation Vs =  0.06, r  =  7.2, 0a =  45°

The corresponding frequency of this motion is 0.873. The results of this case are given 

in Figs. 7.12 and 7.13. The period of the side-force coefficient response is observed 

to be 7.2 which is the same as that of the motion. The side-force coefficient curve 

oscillates between —7.7 x 10-4 and —5.4 x 10~4, with a mean value of —6.55 x 10~4, 

which is between the mean values of CCW and CW uniform spinning cases of Figs. 7.3 

and 7.5. Hence, these values of Vs, r  and 6 a do not reduce the mean value of side 

forces.

7.3.2 Rotary oscillation Vs =  0.2, r  =  4.3, 6a =  90°

The corresponding frequency of this motion is 1.461. The results of this case are 

given in Figs. 7.14 and 7.15. The period of the side-force coefficient response is 4.3 

which is the same frequency as that of the motion. The side-force coefficient oscillates 

between —10.5 x 10-4 and —2 x 10-4 with a mean value of —6.25 x 10-4. This mean 

value of the side-force coefficient is higher than that obtained in the case of CCW 

uniform spinning of Fig. 7.6 7.7. Hence, these values of 14, t and 0a do not reduce 

the mean value of side force.

7.3.3 Rotary oscillation Vs =  0.5, r  =  7.2, 0a =  375°

The corresponding frequency of this motion is 0.873 which is the same as that of 

the case of Fig. 7.12 and 7.13. However, the amplitudes of the surface velocity and
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angular motion are one order of magnitude higher than those of the case of Fig. 7.12. 

The results of this case are given in Figs. 7.16 and 7.17. Although the side force 

coefficient response is periodic with the same period as that of the motion, there are 

several peaks within each period. The side-force coefficient changes sign from positive 

to negative, and the mean value of the side-force coefficient is zero. This shows that 

VJ,, t  and 6 a for the rotary oscillation produce a zero value for the side-force coefficient 

on the average. It should be emphasized here that both the amplitude of the surface 

velocity and angular motion are one order of magnitude higher than that of the case 

of Fig. 7.12.

7.3.4 Rotary oscillation Vs — 0.5, r  =  4.3, 9a =  225°

The corresponding frequency of this motion is 1.461 which is the same as that of 

the case of Figs. 7.14 and 7.15. However, the amplitudes of the surface velocity and 

angular motions are 2.5 times those for the case shown in Figs. 7.14 and 7.15. The 

results of this case are given in Figs. 7.18 and 7.19. The same features for the side 

force coefficient that were observed in Figs. 7.16 and 7.17 are shown. The mean 

value of side-force coefficient is —1.5 x 10-4 which is better than that of any of the 

uniform spinning cases. However it is higher than that of the previous case. The only 

difference between this case and the previous case is the period of oscillation and the 

amplitude of angular motion. Although the magnitude of the side-force coefficient 

is higher than that of the case of Fig. 7.16, the peak values of side-force coefficient 

for the present case are substantially lower than those of the previous case. It seems 

that the best side-force coefficient response (zero mean and small amplitude) can be 

achieved by using the higher 9a and the lower r  of the present case and the previous 

case.

hi- ■ “ .............
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7.4 Summary

In this chapter, the effectiveness of uniform spinning and rotary oscillations as active 

control methods for alleviating the flow asymmetry and the associated side forces 

were investigated. It was shown that a large counterclockwise spinning rate was 

effective in substantially reducing the side force on the average for the given initial 

case of asymmetric flow. The CCW spinning increased flow separation on the left 

side and delayed it on the right side, which produced equal positive and negative 

side forces within each cycle of the side-force response. The rotary oscillation with 

large surface-velocity amplitude, large angular-motion amplitude and a small period 

of oscillation was much more effective than uniform spinning for the same surface 

velocity, since it eliminated the mean side force. Moreover, the effectiveness of the 

rotary oscillation control did not require a particular initial shape for the vortex 

asymmetry.
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Figure 7.10: Side-force coefficient history, V, =  0.6 CCW spinning, r  =  0.916, a  =  

20°, Moo =  1.8, Re = 10s.
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CHAPTER 8

THREE DIMENSIONAL ACTIVE 
CONTROL USING INJECTION

8.1 Introduction

While solving the conical form of Navier-Stokes equations can be used to investi­

gate the effectiveness of the various control methods qualitatively and in an efficient 

manner, the solution of the three-dimensional Navier-Stokes equations is required to 

obtain more accurate quantitative results concerning the performance of the differ­

ent control methods. In this chapter, the solution of the thin-layer Navier-Stokes 

equations for controlling the flow asymmetry over a 5° semi-apex angle cone, using 

injection from the cone surface is presented.

8.2 Reference Case

Similar to the procedure used to study the different control methods in the previous 

chapters for the conical flow approach, a reference case for the three-dimensional 

asymmetry is presented in this section for the flow over a 5° semi-apex angle cone of 

unit length. The grid in the cross-flow planes has been generated using a modified 

Joukowski transformation with a geometric series for grid clustering in the normal 

direction. Also, a geometric series is used to cluster the grid in the axial direction

fee.-
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close to the nose. The grid used was 161 x 55 x 65 in the wrap-around, normal and 

axial directions respectively and it is shown in Fig. 8.1.

For the present grid system, the applied boundary conditions were:

1. no slip and no penetration boundary conditions at the wall,

2. freestream boundary conditions at the far-field boundary. This is justified since 

the computational domain is extended to 21rc, where rc is the local cone radius. 

Hence, the domain is large enough to capture the conical shock and the flow is 

entirely supersonic at the far-field boundary, and

3. extrapolation boundary conditions at the inflow and outflow boundaries of the 

computational domain.

While numerical disturbances are sufficient to simulate the wind tunnel and real 

flight disturbances in producing asymmetries in the flowfield for conical flow cases, 

such disturbances are insufficient for the three-dimensional solutions of the thin- 

layer Navier-Stokes equation due to the three-dimensional relieving effect. The dis­

turbances in such cases must be applied physically, such as a transient short-time 

side-slip disturbance. For the cases under consideration, a side-slip disturbance of 

10° for 300 iteration steps was applied. Next, the disturbance is removed and the 

asymmetry persisted.

In Fig. 8.2, the surface pressure coefficient is shown at ten different axial locations 

along the cone length, while Fig. 8.3 shows the total pressure loss contours at the same 

axial locations. From these figures, as well as Fig. 8.4, which is a three-dimensional 

view of stagnation pressure contours at different axial stations, one can see that 

the flowfield is highly asymmetric. Also, It is observed that the vortex structure is 

changing in the axial direction and hence the side forces is changing from positive 

to negative along the cone length. Examining the figures at different axial locations,
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one can conclude that the asymmetry grows spatially in the axial direction. This 

is in agreement with both experimental and computational results relating onset of 

asymmetry with small disturbances starting at the slender body nose and growing 

in the aft direction. Since the current solution is steady, the vortex shedding is a 

spatial one.

The fact that the flow asymmetry is not one-side biased constrains the choice of 

the applicable control method. Uniform injection would be of limited effectiveness, 

since either it will be applied in a symmetric or antisymmetric way and the two 

methods will not be effective along the cone length. Hence, a variable injection mass 

flow rate per unit area approach, similar to that used in the conical flow solution in 

Chap. 6, was considered.

8.3 Normal Injection

In this section, several cases are presented to investigate the effect of normal injection 

on the flow asymmetry over a sharp cone, which was presented in the last section. 

The cases were chosen to investigate the effect of mass flow rate per unit area, and 

the effective length /,• at which the injection was applied, measured from the cone 

apex. The effective length, was chosen to start at the nose because that was where 

the disturbance producing asymmetry was initiated.

8.3.1 Normal injection, li — 0.1, rhmax — 0.05

The reference case solution was used as the initial condition for the case under con­

sideration, in which U was chosen to be 0.1. The effective angle of the injection, 

9i extends from —67.5° to 67.5°, where 0; is measured from the leeward side of the 

geometric plane of symmetry.
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Figures 8.5, 8.6 and 8.7 show the surface pressure coefficient at different axial 

stations, the total pressure loss contours at different axial stations and the stag­

nation pressure contours over cone, respectively. Comparing these figures with the 

corresponding figures of the reference case, the following can be observed:

• The asymmetry has been eliminated over about 70% of the cone length, and 

has been reduced significantly over the remaining 30% of the cone length.

• Both the surface pressure coefficient and the total pressure loss contours show 

small regions of asymmetry that grow along the cone length.

These observations show that the level or area of injection used is insufficient to 

eliminate the asymmetry over the entire cone length.

8.3.2 Normal injection, l{ =  0.15, rhmax =  0.05

The results of this case in which the /,• is increased to 0.15, are shown in Figs. 8.8, 8.9 

and 8.10. Comparing these results with the results of the previous case in which 

U =  0.1, one can see that the flowfield was symmetric up to about 80% of the cone 

length. However, asymmetry is observed in the region near the trailing edge.

8.3.3 Normal injection, U =  0.26, rnmax — 0.05

Increasing the effective length of the injection to 0.26 eliminated the flow asymmetry 

over the entire cone length. The results of this case are shown in Figs. 8.11, 8.12 

and 8.13. No asymmetry in the flowfield or the surface pressure can be observed.
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8.3.4 Normal injection, li =  0.26, rhmax =  0.03

To study the effect of the injection mass flow rate, the previous case with U =  0.26 

and rhmax =  0.05 was repeated with m max =  0.03. The results of this case are shown 

in Figs. 8.14, 8.15 and 8.16. Not much difference can be observed between the two 

cases. This is in agreement with the experimental results of Ref. 67. It is concluded 

that the injection area is an important parameter in the injection control method.

8.4 Tangential Injection, k =  0.1, rhmax =  0.05

This case is similar to the normal injection case, the direction of the injection is 

tangent to the body surface, towards the leeward plane of geometric symmetry. 

The initial condition for this case was the solution of the reference case obtained 

in Sec. 8.2. The effective angle of injection is chosen to extend from —67.5° to 67.5°, 

and the maximum mass flow rate per unit area was taken to be 0.05, while the effec­

tive length of injection was 0.1. The results of this case are shown in Figs. 8.17, 8.18 

and 8.19. The figures show that the flow has recovered its symmetry and there is no 

sign of any significant asymmetry.

Comparing these figures with the equivalent figures for the normal injection case 

(Figs. 8.5, 8.6) and 8.7, we can conclude that tangential injection is more effective in 

eliminating the side force for the same flow conditions.

8.5 Summary

In this chapter, the three-dimensional thin-layer Navier-Stokes equations were solved 

for the flow over a cone. A reference case, asymmetric solution, was obtained using 

a transient short-time side-slip disturbance. The resulting asymmetry was found to
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be persistent upon removing the side-slip disturbance. Both normal and tangential 

injection were investigated. Prescribed effective injection lengths were required to 

recover the symmetry of the flowfield. The effect of the injection mass flow rate was 

also investigated. The tangential injection was found to be more effective, compared 

to the normal injection, when the effective injection angle, effective injection length, 

and maximum mass flow rate were kept constants.

I f
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Figure 8.1: Three-dimensional grid over cone, 161 x 55 x 65
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Figure 8.2: Surface pressure coefficient at different axial stations for flow around a 
circular cone at a = 40°, M =  1.4, Re =  6 x 106.
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Figure 8.4: Stagnation pressure contours at different axial stations
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Figure 8.7: Stagnation pressure at different axial stations
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Figure 8.10: Stagnation pressure contours at different axial stations
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Figure 8.13: Stagnation pressure at different axial stations
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Figure 8.16: Stagnation pressure contours at different axial stations
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Figure 8.19: Stagnation pressure at different axial stations



CHAPTER 9

CONCLUSIONS AND  
RECOMMENDATIONS

The main objective of the present research work was to investigate the effective­

ness of several control methods, with emphasis on active control methods, to alle­

viate and possibly eliminate the side force and the flow asymmetry that arise with 

increased AO A on symmetric bodies. In order to achieve comparisons among the 

different control methods, the physical flow conditions were confined to the specific 

conditions: M = 1.8 and Re =  10s for the conical flow problems, and =  1.4 

and R e =  6 x 106 for the three-dimensional flow problems. In this chapter, the main 

findings of the present research are presented followed by recommendations for future 

computational and experimental work.

9.1 Conclusions

Throughout the present research work, several control methods—both passive and 

active—were investigated in order to evaluate their effectiveness in alleviating asym­

metric side forces and recovering the flow symmetry. The asymmetry of the flowfield 

was found to be unique and independent of the type or the level of the disturbance 

which is in agreement with Ref. 22. All the control methods were applied for the
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steady flow asymmetry that occurs on the leeward side of the cone at a  =  20° for 

the conical cases and a =  40° for the three-dimensional cases.

The control methods included: finite length side-strakes, normal and tangential 

injection, surface heating, spinning and rotary oscillations. The effects of side-strakes 

and their span lengths in reducing the side forces was investigated. The cases con­

sidered, covered an AOA range from 30° to 50° and the side-strake span length range 

from 0.35r to 0.5r. The side-strakes were found to be effective in eliminating the side 

force and the flow asymmetry up to high AOA. Also, the side-strakes acted as small 

wings on the body and hence, an increase in lift was observed. The effect of increas­

ing the span length of the side-strake was to enhance flow stability by increasing the 

lateral distance between the right and left vortices, and hence, they prevented the 

interaction of the vortices. Also, it can be concluded from the results, presented in 

this chapter, that the symmetry in the locations of the separation points is another 

effect of the side-strakes.

Uniform normal injection is an effective tool for eliminating the side force only 

when a proper choice of location and injection level is made. It should also be 

mentioned that while the side force was eliminated using this approach, the flowfield 

was asymmetric due to the antisymmetric injection. On the other hand, the pressure- 

sensitive mass injection technique that was suggested and applied in Chap. 6, has 

proved to be effective, not only in eliminating the side force but also in recovering 

the flowfield symmetry. This technique is effective for AOA up to 30°. The three- 

dimensional results of the normal and tangential injection for the flow over a cone 

qualitatively verified the results of the conical flow solutions. Injection was applied 

close to the nose and the influence of the effective injection length was investigated. 

A minimum length was required to eliminate flow asymmetry over the entire cone 

length. The mass flow rate was not a prime factor as long as it exceeded a certain 

minimum value.

hu- ■
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Surface heating proved to be effective in AOA range larger than that of injection. 

Surface heating followed by normal injection was found to be the most effective 

method with AOA range up to 40°. It should be mentioned here that the body 

surface temperature values required to control the flow asymmetry were higher than 

what can be applied practically.

The effect of spinning and rotary oscillation was different from the other control 

methods. The resulting side force oscillated and when the average of these oscillations 

approached zero (or at least was less than the original side force), then the level of 

asymmetry was reduced on the average. Large uniform spinning rates were effective 

in reducing the average side force substantially for the given initial case of asymmetric 

flow. Rotary oscillations with large surface-velocity amplitudes, large angular-motion 

amplitudes and small periods of oscillation were much more effective than uniform 

spinning for the same surface velocity, because it eliminated the mean side force. 

Moreover, the effectiveness of rotary oscillation control did not require a prescribed 

initial shape for the vortex asymmetry.

9.2 Recommendations for Future Work

9.2.1 Computational methods and grid refinement

In the present study, a scheme which was first order in time and second order in 

space was used. While this is acceptable when the time step is small enough, some 

applications require that relatively long time intervals be resolved completely and 

hence, schemes which are second order accurate in time are needed to study more 

efficiently and accurately the onset of asymmetry, as well as the effect of the different 

control methods.
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To capture the asymmetric flow, a very fine grid should be used. Adaptive grids 

represent a step that will make it possible, within the present computational re­

sources, to get a better understanding of the flow asymmetry and better grounds to 

attack this problem. With advances in computational resources and programming 

languages, better use and implementation of computational algorithms as well as the 

use of finer grids required to obtain better resolution of the problem will be feasible. 

Another method which can be used to avoid the use of very fine grids is the “vortic- 

ity refinement” [148-150] in which a term is added to the momentum conservation 

equations. This term depends only on local variables and is zero outside vortical 

regions.

9.2.2 Passive control methods

While many research studies have been conducted in recent years to investigate the 

effect of fins and side strakes, very little work has been done to investigate their 

problems accurately—directional instability and interference with radar operations. 

The next step in passive control investigations should be concerned with their ap­

plications in real configurations. The effects of strake length, width and shape need 

to be investigated computationally. Grid clustering in more than one direction is 

needed for the study of the finite-length strakes and their effect on flow asymme­

try, hence, multi-block grids are recommended. Using multi-block grids increases 

the time requirement, especially where one-to-one patching along interfaces is not 

feasible.

Helical trips, while being tested and experimentally proven to be an effective 

asymmetry-suppression method, were not investigated numerically. Several parame­

ters should be considered in such a study including trip shapes, width and location.
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9.2.3 Active control methods

The application of different active control methods, presented in this research work, 

on real aircraft and missiles configurations should be considered. Energy assessment 

for the active methods should be evaluated and practical methods of implementation 

should be considered. Spinning and rotary oscillations need to be investigated fur­

ther using three-dimensional configurations. This requires the use of time accurate 

marching with reasonable time steps in order to resolve the problem accurately and 

also the use of fine grids are required to capture the asymmetry. That was beyond 

the available computational resources. Local surface heating should be considered 

within practical limitations. Other active control methods such as suction and coning 

motion that are not included in the present research should also be considered.

Not much work has been done in the hybrid control methods because of the 

complexity of the problem. Hybrid passive-active control methods are promising but 

have not been investigated. Such methods include side-strakes or fins with normal 

or tangential blowing. Spinning and rotary oscillations for configurations with side 

strakes and fins need to be investigated.

No detailed experimental measurements for the different control methods were 

available during the course of this study. Detailed experimental investigations are 

needed to validate the numerical methods. In fact, most of the experimental work 

that has attacked the problem of asymmetric flow deals mainly with the side force 

response with the changes of the AOA, while surface pressure measurements are 

needed for quantitative codes validations.
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