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ABSTRACT

OPTIMAL CONTROL OF A LARGE SPACE TELESCOPE 
USING AN ANNULAR MOMENTUM CONTROL DEVICE

Arun Anant Nadkarni 
Old Dominion University, 1977 

Director: Dr. W. J. Breedlove, Jr.

Application of a new development in the field of momentum storage 
devices, the Annular Momentum Control Device (AMCD), to the twin pro­
blems of large angle maneuvers and fine pointing control is considered. 
The basic concept of the AMCD consists of a spinning rim, with no central 
hub area, suspended by a minimum of three magnetic bearings, and driven 
by a noncontacting electromagnetic spin motor. The dissertation con­

siders in detail the design of an optimal controller to achieve both 
the large angle maneuvers and the fine pointing control of a Large 
Space Telescope (LST) with a single configuration, consisting of a 
single AMCD mounted in a single gimbal.

The problem of designing an optimal controller is accomplished 

in two parts: (1) an optimal controller for generating the open-loop,
control law for the nonlinear maneuvering problem was designed using 
a modified Gradient technique with penalty functions, and (2) an optimal 
stochastic controller for generating the constant gain, state estimate 
feedback control law for the stochastic linear fine pointing problem 
was designed using the Newton-Kleinman iterative procedure.

The open-loop, optimal control law for the high order (15)
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maneuvering problem was derived iteratively incorporating "hard" 

constraints on the magnitudes of the state and control variables. A 
general, readily available, user oriented computer program was developed 
to derive the open-loop, optimal control law history using this procedure 

for a general, high order (up to 25), nonlinear system. The program 
was used to achieve the design objective of deriving the open-loop, 

optimal control law to retarget the LST from one stellar target to 

another with a minimum expenditure of energy. A specific example 
problem involving a maneuver of the LST through a prescribed reorien­
tation ( - 20°) was solved. It was shown that the convergence of the 

iterative procedure to a local minima was highly dependent on 1) the 

initial control history chosen, 2) the initial choice of weighting 
matrices, and 3) the choice of the elements of these weighting matrices 

during the convergence.
The fine pointing stochastic linear problem was shown to be 

uncontrollable. The optimal state estimate feedback control law for 
the fine pointing controller was derived using Linear-Quadratic-Gaussian 

(LQG) optimal regulator theory. Structurally, this controller consists 
of an optimal regulator and a Kalman-Bucy filter, Existing techniques 

to conipute the initial stabilizing gains and iterative procedures to 
solve the algebraic Riccati equation were extended to the present 

problem which is uncontrollable, This extension was-made by modifying 

the state equations in order to make the regulator problem stabilizable. 
It was shown that initial errors in the states can be nulled satisfac­
torily by the optimal regulator designed. The performance of the fine
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pointing controller was investigated by performing a linear covariance 
analysis to obtain the RMS pointing errors. The analysis indicated 

that fine pointing accuracies of less than 1 arcsecond can be achieved.
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Notation and Abbreviations
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A Coefficient matrix premultiplying the state

vector x in the linear state equation,
B Coefficient matrix premultiplying the control

vector u in the linear state equation,
C Coefficient matrix premultiplying the state

vector x in the linear measurement equation,

E Expected value of,

F Force vector,
f Right hand side of the nonlinear state

equation,
G Optimal controller gain matrix; also, weighting

matrix for terminal deviation,
g Control variable inequality constraints; also,

nonlinear measurement equation,

H Optimal filter gain matrix; also, Heaviside
function; also Angular Momentum vector,

h State variable inequality constraint,
I Inertia matrix; also, identity matrix,
J Performance index or cost function,
J, Cost function for the deterministic problem,d
J Cost function for the stochastic problem,s
AJ Decrease in J,
Kq Time Varying Riccati matrix,

K Constant value of K ,o
K Spring constant for axial bearings&
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Symbols

K* Damping constant for axial bearings
3.

K Weighting constants of Heaviside functions
to penalize control constraints,
Spring constant for radial bearings

Damping constant for radial bearings,
K Weighting control constraints, state con-
s straints,

2Defined as = 1.5 r (App, B)
K-: Defined as - 1,5 r^ Ki (App. B)

a a

Distance of the center of mass of gimbal
0 from 0 8 8s

m Mass; also, order of the control vector u,

N Terminal state manifold for the target set;
also, covariance intensity matrix,

n Order of the state vector x; also, white noise
vector,

o Origin of the coordinate frame,

Q Weighting matrix for integral state penalty,
R Weighting matrix for integral control penalty,
r Order of the output vector y or the measure­

ment yector z; also, distance 0 0 (Fig. 14),gs g
T, t^ Final time,
Tg Gimbal torquer torque,
Ts Spin torque,
t Independent variable, time,

u Control vector of dimension m,
v Actuator control voltages,
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Symbols

y
z

Coordinate Frames

State vector of dimension n; also, inertial 
motion of the subscripted body,
Reduced state vector used for controller 
design, Eqn. (134),
Output vector of dimension r,

Measurement vector of dimension r,

0 X Y Z a a a a

0 X Y Z g a g g

0 X Y Z gs gs gs gs

A nonrotating frame centered at the center 
of mass of the rim,
A body fixed frame centered at the center 
of mass of the gimbal ring,
A reference frame centered at the center of
mass of LST-gimbal and parallel to 0 X Y Zg g g g

Greek Symbols 
a

e o -  6 1

A constant, = 2 for minimum time problem, = 0 
for minimum energy problem,

The angle by which bearing station 1 is offset
from 0 Y , g g
Defined as (60°- f^),
Defined as (60°+ 3^),
Angle defined in Appendix B, C,

Angle defined as 0 “ 3,; also, impulse
81function,

Defined as (60°- <5̂ ) ,
Defined as (60°+ 6^),

Relative displacement vector between gimbal
ring and rim, = x - x ,6 a g’
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Greek Symbols
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n

0
0
x

T

<f>

X
to

Modified state vector of equation (101),

Actuator noise vector in the control 
voltages v,
Covariance intensity matrix of 0,
Measurement noise vector; also, Euler angles,
Costate vector (Lagrange multipliers) of 
dimension n>
Covariance intensity matrix of £>
Plant noise vector (actuator noise, distur­
bance etc.),

Covariance intensity matrix of the initial
state x , o’
Torque vector,
Functional form of integral penalty of cost 
function,

Modified state vector of equation (108), 
Angular velocity vector.

Special Symbol 

[w]

Superscripts

Cross product matrix of form defined in 
equation (2),

Differentiation with respect to time, 

Average value,
Optimal estimate
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Subscripts
a Axial or rim

g Gimbal
gs LST-gimbal
o Nominal value or steady state value

r radial
sat Saturation value
f Final value

Abbreviations
AMCD Annular Momentum Control Device

C-G Conjugate Gradient
DFP Davidon-Fletcher-Powell

LQG Linear-Quadratic-Gaussian

LQ Linear-Quadratic (regulator problem)
LG Linear-Gaussian (estimator problem)
MMS Minimum-mean-squared

RMS Root-mean-squared
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Chapter 1 
INTRODUCTION AND SUMMARY

From a comparatively early stage in the history of the "space 

age," the concept of using stored angular momentum for the purpose of 
controlling the attitude of artificial satellites has been applied 
almost universally. This concept has proven advantageous when extreme 

pointing precision is required and when either environmental contami­
nation or excessive fuel use prohibit reaction jet usage. Applications 
of (the stored angular momentum) concept include spinning spacecraft 
(e.g., TIROS), dual-spin spacecraft (e.g., 0S0), momentum wheel 
stabilized spacecraft (e.g., ITOS), reaction wheel stabilized space­

craft (e.g., 0A0), and the control moment gyro (CMG) system, (e.g., 

SKYLAB). Many other concepts for stabilization and attitude control 
of spacecraft have been suggested, such as chemical thrusters, cold 
gas jets, magnetic torquers, electric ion engines, reaction spheres, 

gravity gradient and reaction booms stabilization, solar pressure 

panels, and aerodynamic surfaces.
Most of the "active" stabilization methods mentioned above, 

i.e. those using power or fuel (e.g., chemical thrusters, cold gas 
jets, etc) impose a payload penalty on the spacecraft due to the 
weight of fuel carried aboard. In addition, after the expenditure of 
this fuel, there is no means of either stabilizing or controlling the 
spacecraft attitude. The method of employing aerodynamic surfaces for 
attitude control suffers from the obvious limitations that it can only
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2

be used for very low-orbit satellites. The method of gravity gradient 
stabilization, although a very tempting candidate, can produce only 

limited pointing accuracies. This, along with the incessant oscilla­

tions of the spacecraft, rule out this method for all spacecraft, but 

those requiring very crude stabilization.
The major disadvantages of the "active" control and stabilization 

methods indicate that the- only viable method of attitude stabilization 
of spacecraft - which are required to operate for a long duration of 
time or which require stringent limitations on the attitude history - 
should utilize the concept of stored angular momentum.

It may seem that all satellites may be inertially stabilized 

using the simple technique of spin stabilization by imparting a nominal 
spin to the satellite. This method proves quite satisfactory for many 
scientific and meteorological satellites. Almost all textbooks on 

classical mechanics discuss the stability of a rigid body nominally 

rotating about a principal axis. Classical stability theorems show 
that rotation of a rigid body about the axis of maximum or minimum 

moment of inertia are stable while rotation about the axis of inter­
mediate moment of inertia is unstable. On the basis of this widely 
accepted stability criteria, Explorer I was spin "stabilized" by 
spinning it about its "long axis" i.e. its axis of minimum moment of 
inertia. The unfortunate instability and subsequent tumbling of 
Explorer I in orbit brought to light a fundamental error made in the 
design process in which the effect of energy dissipation on the above 

stability criteria was ignored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

A theorem due to Liapunov [l] states that, if the potential 

energy of a conservative holonomic system has a maximum (or has no 

minimum) in an equilibrium position, then that equilibrium position 
is unstable. This theorem can be extended to nonconservative systems 

to prove that if damping is present, then the equilibrium position 
remains unstable. It can also be shown that the equilibrium position 
is unstable, even in the presence of gyroscopic stabilizing forces, 
when dissipative forces are present [l]. It can be proven using the 
above theorems that pure spin about a principal axis of minimum moment 
of inertia for a freely rotating rigid body represents an unstable 

-equilibrium state. In addition, pure spin about the principal axis 
of maximum moment of inertia represents a stable equilibrium state [2].

In view of the above realization, it became mandatory that any 
satellite, intended to be stabilized by this simple technique, be spun 

about its axis of maximum moment of inertia. This may not always be 
practical. This undesirable constraint, along with the need to provide 

specific acceleration environments such as 1) an unaccelerated (zero g) 

laboratory area for instrument packages or 2) an artificial gravity 
environment for the crew members of manned spacecraft, led to a new 
concept, viz., dual-spin (or multi-spin) spacecraft. The concept of 
dual-spin spacecraft was discussed by Landon and Stewart [3] and 
Iorillo [4], A stability analysis for dual-spin spacecraft has been 
presented by Likins [5] and Mingori [6], in which Routh and Floquet 
analyses were made utilizing some specific types of energy dissipation 

mechanisms. The stability criterion was obtained through an
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approximate energy-sink analysis in a compact form. In 1955, 
Stuhlinger [7] discussed the use of reaction wheels for attitude 
control. Methods using stored angular momentum also have major dis­

advantages as well as advantages as pointed out e.g., by Anderson and 
Groom, [8]. Thus, spinning a spacecraft (or portion of it, as in 
dual-spin satellites) to achieve attitude stability is simple and 

reliable, yet the spacecraft itself cannot be utilized fully because 

of its rotation. Also, any momentum axis reorientation maneuvers 
require external torques for momentum precession and the artificial 
gravity produced may run counter to payload requirements for zero 
gravity. Stabilizing the spacecraft by utilizing a momentum wheel 
which provides gyroscopic stiffness equivalent to spinning the vehicle 

itself allows a nonspinning spacecraft and permits arbitrary orienta­

tions about the roll axis for the purpose of pointing onboard 
experiments. However, this technique does not overcome the inability 
to reorient or maneuver the spacecraft about all three axes without 

external torques since the spin axis of the momentum wheel is fixed 
with respect to the spacecraft. The use of three reaction wheels 

aligned with the spacecraft axes allows complete spacecraft active 
attitude control. However, reaction wheel momentum must be limited 
to relatively low amounts because of an excessive requirement for 

power when directly producing a torque on a rapidly spinning flywheel. 
The limitation on reaction-wheel momentum can be overcome by using a 
control moment gyro (CMG) system, which uses constant speed wheels and 

developes precession torques through controlled slewing of gimballed
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flywheels. However, to achieve the smooth low-level torques 
necessary for fine pointing requires precise control of very low 
gimbal slew rates. These low rates are inherently limited by the 

requirement for high servo stiffness and thus, high friction torque. 
These difficulties cannot be overcome unless extreme mechanical 

precision and resultant high costs are involved.
A new development in the field of momentum storage devices, the 

Annular Momentum Control Device (AMCD) [ 9 ] was recently formulated 
and patented at the NASA Langley Research Center. The basic concept 
consists of a spinning rim, with no central hub area, suspended by a 
minimum of three magnetic bearings, and driven by a noncontacting 
electromagnetic spin motor, Figure 1. A detailed description of the 

AMCD is given in reference [ 8]» Thus, this spin assembly configura­
tion design is based on space usage (vacuum and zero gravity) rather 
than of conventional terrestrial design of using shaft driven steel 

flywheels with ball bearings.
The major advantages of this device used as a momentum storage 

unit, are described in detail in reference [8 ], and are as follows: 
"1) The rotating element (spinning rim) approaches a thin 

rim which is the optimum shape for a given stress- 
limited material when maximizing momentum for a 

given mass of material and for a given maximum radius.

2) The thin rim configuration allows a unidirectional 
filament layup of composites; thus, allowing the 
maximum usage of these high strength-weight materials.
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Magnetic Bearings

Rim

Figure 1. Annular Momentum Control Device Concept
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3) The configuration allows, where possible and desirable 

the use of a large rim diameter with the inherent addi 

tional increase in momentum-mass (H/m) ratio.
4) The noncontacting magnetic bearings and drive motor 

eliminate mechanical friction and wear and should 
yield a device reliability equal to that of the solid 

state circuits.
5) The isolation of the rotating rim from the spacecraft 

affords an effective control over the transmittal
of rim vibration to the spacecraft when active 
magnetic bearings with no permanent magnetism are used

6) The magnetic bearings also provide the capability for 
directly producing torques on the spacecraft with no 
mechanical or electrical breakout torques involved.

7) For the "passive" mode of spacecraft control (when 
compared with single-spin, dual-spin, or gyrostat 
control), much improved precessional damping can be 

shown theoretically.
8) For the "passive" mode of spacecraft control, smaller 

attitude errors caused by environmental torques will 

result.from the higher momentum allowed by the AMCD 

for a given momentum storage weight.
9) For the "active" mode of spacecraft control, extreme 

precision fine pointing is projected since extremely 

low spacecraft control torques can be easily generated

of the copyright owner. Further reproduction prohibited without permission.



8

with the magnetic bearings used as spacecraft torquers 

driven by spacecraft attitude sensors.

10) The configuration of spinning rim, with no central hub 
area, also allows the mounting of this unit outside 
the spacecraft, thus releasing the much needed 
payload space within the spacecraft," Figures 2 and 3.

The purpose of this dissertation is to design an optimal 

controller, using the AMCD concept, to provide fine pointing control 
and the capability for large angle maneuvers for a spacecraft such as 
the Large Space Telescope (LST). These maneuvers can be accomplished 
in a variety of ways by using one or more AMCD’s [8]. A particular 

potential configuration, utilizing a single AMCD mounted in a single 
gimbal is considered in this dissertation. The configuration is shown 
in Figure 3. This particular configuration was chosen since both 
fine pointing control and large angle maneuvers can be achieved 

effectively with a single configuration. In addition, utilizing a 
single gimbal results in a considerable savings in weight, which 
would otherwise be added with the addition of each outer gimbal. The 
mounting of the gimbal on extended arm as shown also makes it very 
convenient to be stowed at the end of the circular face of the space­

craft at the time of launching and deployed after insertion in the 

proper orbit.
The design of the optimal controller is accomplished in two

parts:
1) An open-loop optimal controller for the large angle
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Figure 2. Fine Pointing AMCD Application
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Pointing Axis

LST

AMCD Support Housing 
(Gimbal Ring)

\Gimbal Torquers

Figure 3. Single Gimbal AMCD Application
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maneuvers is designed by using a numerical first-order 
gradient method incorporating penalty functions extended 

to function space,
2) A linear, time-invariant, stochastic, dynamic compensator 

for fine pointing control is designed by cascading a 

Kalman-Bucy filter design with an optimal regulator 
design produced independently.

In the design of the optimal controller for large angle 

maneuvers, the design objective is to derive the open-loop time 
history of the control forces and torques, which will retarget the 
LST from the given initial target to the next known target, with

a minimum expenditure'..of energy.. - Thus, the performance criterion
$

to be minimized for this mission includes an integral penalty on the 
power used (assumed to be proportional to the square of the control 
used) and a term to penalize the terminal deviation from the desired 

final target state manifold.
The presence of "hard" constraints on the magnitudes of both 

the state and the control variables are accounted for in this design.
In the design of the optimal stochastic controller for fine 

pointing, the design objective is to derive the control forces and 

torques as a closed-loop state feedback function, which will nullify 

the pointing errors with a:.minimum:.expenditure of energy.' The 
performance criterion to be minimized, therefore, is the integral 
penalty on the power used (assumed proportional to the square of the 

control used).
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The design allows for the presence of uncertain and unknown 
errors in actuator voltages (used to control the forces and torques) 

and in the measurement of states by instruments such as star trackers, 

rate gyros, proximity sensors, etc.

In Chapter 2, a detailed qualitative analysis of the motion of 

the LST-Gimbal-Spinning rim is done. The general equations of motion 

for the rigid bodies (LST-gimbal and the rim) are derived under the 

following assumptions;
1) The spacecraft momentum is limited to a small fraction 

(<1%) of the AMCD momentum; hence, the planes of the spinning rim and 
the gimbal ring remain nearly fixed in inertial space. Thus, small 
angle approximations can be made in terms involving the transverse 

angles,
2) The LST can rotate relative to the gimbal only about the 

gimbal torquer axis. This eliminates some of the terms containing the 

products of inertia,
3) Except for the relative motion about the torquer axis, the 

LST and the gimbal rotate as a single rigid body, i.e., both the 
bodies have the same angular velocities about the other two axes.

The general optimization problem for both the nonlinear case 

and the stochastic linear case is formulated in Chapter 3. A critical 
suryey of the various numerical techniques available for the nonlinear 

problem is presented in Appendix L and the reasons for selecting the 

modified Gradient technique (in function space) with penalty functions
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are pointed out. The iterative procedure to derive the optimal, 

open loop control law is outlined in sec. 3.1. The general stochastic 
Linear-Quadratic-Gaussian control problem is formulated in sec. 3.2.
The problem is decoupled into two simpler problems, the Optimal Regu­
lator and Estimator problems,utilizing the Separation Theorem presented 

in sec. 3.3. The solution of the Optimal Regulator problem is 

presented in sec. 3.4. Existing techniques to solve the resulting 
algebraic Riccati equation are discussed and extension of these 
techniques to the present;: problem, which is uncontrollable, is 
discussed by indicating the modifications of the state equations 
required to make the problem stabilizable. The solution of the optimal 

estimator (Kalman-Bucy filter) is presented in sec. 3.5 and the cas­
cading of the Regulator and the Estimator is indicated in sec. 3.6. 

Finally, a linear covariance analysis required to evaluate the per­
formance of the linear controller is outlined in sec. 3.7.

The final form of the equations of motion for the large angle 
maneuver case is presented in sec. 4.1 and the explicit form of the 
"hard" constraints on the state and the control variables are formu­
lated in sec. 4.3. A specific example maneuver problem involving a 
reorientation of - 20° is solved and the numerical results are 
discussed in sec. 4.3.

The final form of the equations of motion for the fine pointing 

case is presented in sec. 5.1. A specific example fine pointing 

problem is solved and the numerical results are discussed in sec. 5.2.
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The computed open-loop, control law as applied to the LST-AMCD 

configuration considered here is capable of providing minimum energy 
large angle maneuvers to reorient the LST through approximately 20°.
The computed linear state estimate feedback control law is capable of 

nulling the initial errors in the angles and the rates in about 6-8 
seconds, again using minimum energy.

Computation of these optimal control laws was found to be very 
expensive in terms of computer time and difficult in terms of implemen­
tation. Hence, a more simplified procedure for the design of the sub- 

optimal controllers for practical implementation is Outlined in Chapter 

6.
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Chapter 2 

DYNAMICAL SYSTEM MODEL

2.1 Qualitative Study of Spacecraft Motions and Control.- The spacecraft 
configuration consists of a single AMCD, suspended in a single gimbal. 
The gimbal in turn is mounted on an extendable yoke from the LST as 
shown in Figure 3. The coarse pointing or the large angle maneuver­
ing of the LST is produced in an analogous manner to an Earth based 
telescope. Changes in the azimuth angle are generated by varying 

the spin rate of the spinning rim through controlling the electro­
magnetic spin motor. Changes in the elevation angle are generated 
by producing internal reactive torques between the AMCD and the 

spacecraft with the gimbal torquers. If the spacecraft angular 

momentum is limited to a small fraction of the AMCD angular 
momentum, then it can be seen that the momentum vector of the AMCD 

is nearly fixed in inertial space and the LST moves in a fashion 
similar to that of an Earth based telescope when subjected to the 
above controls. When the LST pointing axis is approximately aligned 
with the target, the gimbal torquer is locked and fine pointing 
is accomplished by torquing the gimbal ring (and hence the LST 
which is now locked with the ring) in the air gaps using electro­
magnetic actuators in the magnetic bearings against the AMCD 

momentum.
Tremendous simplification in the analysis can be achieved by 

noting that two of the bodies, viz., the gimbal ring and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

spinning rim are physically separated by magnetic actuator gaps.
This allows the development of the equations of motion in two 

phases considering the gimbal ring (with the LST) and the spinning 

rim as two rigid bodies. After deriving the equations of motion 

for each body, the equations are coupled via the common magnetic 
forces and torques taken to be "external" for each body.
Accordingly, consider the LST-gimbal as one body, with an additional 

degree of freedom in rotation about the gimbal torquer axis, and the 
spinning rim as the second body. No flexibility effects are con­
sidered. Now, the "external" forces and torques exerted by the 
axial and radial magnetic bearing actuators, the gimbal torquer 

and the spin torquer, impart translational accelerations to the 

centers of mass of both the bodies. In addition, since these 
forces do not pass through the mass centers of either body, both 
bodies would rotate. As examples of possible motions, consider 
first a pure spin, maneuver about the AMCD spin axis and then a pure 

pitch maneuver about the torquer axis.
To perform a pure spin torquer maneuver as shown in Figure 

4a, the spin torquer controls the spin rate of the rim to impart 
a spin rate to the gimbal ring. The LST/AMCD/gimbal system center 
of mass is unaffected since this applied torque is internal. The 
resulting rotation of the LSTr-gimbal is shown by the dotted lines 
in Figure 4a. Since the AMCD radial servos generate control forces 

to keep the rim centered in the gaps, a translational acceleration 
is imparted to the rim.
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a) pure spin torquer maneuver
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b) pure gimbal torquer maneuver 

Figure 4. Examples of Possible LST-AMCD Maneuvers
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Similarly, to perform a pure gimbal torquer maneuver (about 

the torquer axis) as shown in Figure 4b, the gimbal torquer torques 

the LST (and hence the gimbal ring) to impart a pitch rate on the 
LST. The resulting rotation of the LST-gimbal is shown by dotted 

lines in Figure 4b. Again, the AMCD servos (both axial and radial) 

generate control forces to center the rim in the gaps and a trans­
lational acceleration is imparted to the rim. In actual maneuvers, 
both the spin torquer and gimbal torquer maneuvers are performed 
simultaneously and so, the resulting motion will be extremely 

complex.
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2.2 Formulation of the Dynamical System Model
General Equations of Motion.- The differential equations of motion 

for a system of rigid bodies can be derived using either the 
vectorial approach of Newton's Laws or the analytical approach 

embodied in the methods of Lagrange and Hamilton. In the second 
approach the equations of motion are derived from Lagrange's 
equations after formulating expressions for the system kinetic 
energy, the system potential energy, and any nonconservative gen­
eralized forces. Both approaches have been utilized leading to 
equivalent results for the systems dynamics model. Only the 
vectorial approach is presented here. Thus, the equations of motion 
for the system are derived using Euler’s equations for the rota­

tional motion of the bodies and the Newton's laws for the
translational motion of the mass center of each body.

The translational equations of motion for the center of mass 

of a rigid body are given in vector form as

%  - Fb (1>
where subscript b refers to the body under consideration.

The rotational equations of motion of a rigid body with 
reference to a body fixed frame with origin at the center of mass 

of that body can be expressed in vector-matrix form as follows:

+ (2)

In the above equation, the notation of references [l, 10]was 

utilized where
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and is a vector of torque components along the body axes.

Equations (1) and (2) represent complete equations of motion, 

translational and rotational, of a rigid body. These two vector- 
matrix equations can be solved independently if and only if the 
forces are not functions of the angular motion and the torques 

are not functions of the center of mass position and velocity. 

However, in the present case, the electromagnetic forces are 
functions of the relative orientation of the gimbal and the 
spinning rim. Hence, the translational and rotational equations 
of motion cannot be solved independently of each other.

The equations of motion can now be written for each of the 
two bodies under consideration, viz., the LST-gimbal (gs) and the 
spinning rim (a), based on equation (1) and equation (2).
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Pointing Axis
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Figure 5. LST-AMCD Axis System
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2.3 Coordinate Frames.- Two "body" frames are introduced, one for the

LST-gimbal assembly CO , X , Y , Z ) and the other for thegs gs gs gs
spinning rim (0 , X Y , Z ). The origins of these frames, 03 3 3 cl gS

and 0a, are taken at the center of mass of the respective body as
shown in Figure 5. The X^g axis is taken nominally parallel to
the nominal spin axis of the AMCD. The Ygg axis is parallel to
the gimbal torquer axis and the Z axis completes the right-

handed frame tnote that this frame is not fixed to either the LST

or the gimbal). The Euler angles 0 , 0 ,  and 0 as generated
gl g2 g3

by an XYZ rotation sequence locate the 0gg frame with respect to
its nominal orientation. Note that the 0 axes frame is always8s
parallel to the frame 0 which is a body fixed frame in the gimbal

ring. The additional degree of freedom in rotation for the LST
with respect to the gimbal torquer axis is given by the angle 0,
which is the angle made by the LST pointing axis with the X^g
axis. The composite LST-gimbal body thus has seven degrees of

freedom represented by the generalized coordinates ^gS> ^gs’ ^gs’
0 , 0  , 0  , and 0. The first six variables locate the center
gl g2 g3
of mass 0gg of this body and the orientation of a frame parallel 
to a gimbal fixed frame. The last variable 0 describes the 

relative motion of the LST with respect to the gimbal.
The X& axis coincides with the spin axis of the rim. The 

Y axis is nominally coincident with the gimbal torquer axis and3'
the Z axis completes the right-handed frame. The Euler angles3
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0 , 0 ,  and 0 as generated by an XYZ rotation sequence locate 
al a2 a3
the frame with respect to its nominal position. This non­

spinning frame has the advantage that the transverse moments of
inertia of the spinning rim are time invariant due to axial symmetry

as they would be in a strictly body fixed (spinning) frame.
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2.4 Equations of Motion for the Spinning Rim.- The coincidence of the 

body axes, 0 , with the principal axes of the rim eliminates the
SL

products of inertia terms in equation (2) and the equations simplify
considerably. Thus, those equations become:

H = I (u> + w ), (3a)x xx o x' * a
H = I to , (3b)y yya y
H = I to , (3c)z zz za

where tOQ is the nominal spin frequency of the rim, and the
subscript "a" refers to the rim inertias. Neglecting the products
of to , to , and to (<0.05 rad/sec) which are small compared to to x y z o
(200 rad/sec), the equations of motion for the rim reduce to the 
following form in the nonspinning reference frame:

(4a)

(4b)

(4c)

where H = I to o xx o a
The body rates to , to , to may be expressed in terms of

Si Si SL. X . y z
the Euler rates 0 , 0 , 0  as shown in Appendix A. Since 

al a2 a3 Q
the angles 0 and 0 are small (.<0.3 ), the transformation 

a2 a3
equations become 0 ~ to , 0 ~ to , 0 ~ to and the rotational^ a, a a„ a a- a1 x 2 y 3 z

IXXa

*K
•3 = TaX

I
yya

•
(0ay

+ H to o az
=  Tay

Izza
•
toaz

- H to o ay
= Taz

equations of motion of the rim are given by
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I 6. = T (5a)xx a, a ,a 1 x
i e + h e = t  , (5b)
yya a2 ° a3 ay

-1., \  - Ho \  " V  ’ <5c>a 3 2 z

The translational accelerations of the center of mass of the rim

are given by the vector equation

m x *= F (6)a a a
where F are the electromagnetic forces exerted on the rim by thecL
bearing stations located in the gimbal ring.

Equations (5) and (6) describe the motion of the spinning 
rim under the assumptions stated above.
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2.5 Equations of Motion for the LST-Gimbal Body.- Some simplification can

be made in equation (2) for describing the motion of the LST-gimbal.

First of all, since the LST can rotate relative to the gimbal only
about the gimbal torquer axis (which is parallel to the body-fixed

Ygg axis), it can be seen that of the terms containing products of
inertia in equation (2), only those terms containing I need bexz
retained. Secondly, since the reference coordinate frame is oriented
such that its Y Z plane coincides nominally with Y Z plane gs gs r J a a
of the spinning rim and does not deviate much from it (because of the
magnitude limits on gaps), small angle approximations can be made in

terms involving products of 9 ,9 . The LST itself may rotateg2 S3
relative to the gimbal plane through a large angle 9. Thirdly, it

is observed that the LST and gimbal rotate as a single rigid body
about the X and Z axes, but as two different rigid bodies gs gs »
about the Y axis. This latter rotation can be considered to gs
occur about their common center of mass 0 . Fourthly, the offsetgs
of the center of mass of the LST-gimbal from the center of the 
gimbal ring produces an additional torque due to the forces acting 
on the gimbal ring at the magnetic bearing stations.

From the above observations and, after substituting for the 
body rates in terms of Euler rates from Appendix A, the equations 
of motion for the LST-gimbal simplify to the following form:

• • M

I 9 - I 9 = t , (7a)xx g. xz g_ x gs 61 gs 3

I ' 9 = T , (7b)
yyg g2 y
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X 0 - 1  e = T ,  . (7c)zz g_ xz g, ' z ----gs s3 gs &1
• •

I " 0 « x , C7d)yys §

where the subscript gs refers to the combined LST-gimbal body 

and the primed inertia terms are the moments of inertia trans­

ferred to the composite center of mass 0 .gs
The translational equations of motion for the combined body 

are given by
m x = F = - F , (8)gs gs gs a

The LST-gimbal system has seven degrees of freedom represented

by the generalized coordinates X , Y , Z ,0 ,0 ,0 and 0.gs gs gs g^ 83
The first six coordinates locate the center of mass 0 _ of the8s
LST-gimbal combination and describe the orientation of that body 

with respect to inertial space. The last variable specifies the
LST orientation relative to the gimbal. Equations (5), (6), (7),
and (8) completely describe the motion of the trtro bodies, spinning 
rim and LST-gimbal, in inertial space, as subject to the assumptions. 
The total system thus has thirteen degrees of freedom.

These general nonlinear equations of motion can be written 
in a standard first order form, viz.,

x(t) = f(x(t), u(t)) with x(tQ) = x q . (9) 
where x is an n-state vector and u is an m-control vector 

containing the electromagnetic control forces and torques. It may 

be that the state vector x is not directly measurable so an
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r-measurement Vector

y(t) = g(_x(t)) (10)
is introduced.

It is pointed out here that the external torques on the 

LST-gimbal body, such as the gravity gradient torques, were 
neglected in the equations of motion, since they were found to 
be an order of magnitude less than the control torques involved.
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2.6 Reduction in the Order of the Equations.- It is seen from the

detailed discussion and derivation of the equations of motion in 
previous sections, that the motion of the complete system (LST- 

gimbal-spinning rim) is described by thirteen second-order nonlinear 
differential equations. It is also noted that, for the purpose of 
simplification of the derivation only, the system was considered to 

be made up of two bodies (LST-gimbal and spinning rim) with the 
magnetic forces exerted by the bearing stations being considered 
as the external forces, acting on each of the two bodies. However, 
the complete system of LST-gimbal spinning rim has a net resultant 

force and torque of zero magnitude since these interbody magnetic 
forces are equal and opposite and all orbital and environmental 

torques are neglected. The center of mass of the complete system 
therefore is unaccelerated. Hence, the translational motion of 

the two individual bodies considered is not independent of each 
other. The motion of only one body need be considered since the 
motion of the other can be calculated from the knowledge of this 

motion. Thus, it is possible to reduce the number of equations by 
three, and, only ten second-order nonlinear equations are considered 
for integration. This results in a significant saving in the 

computer core requirements and computational time requirements.
In view of the above observation, the differences in the 

inertial positions and velocities of the center of the spinning 

rim from those of the center of the gimbal ring are considered 

as the state variables. This facilitates the computation of the
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magnetic gaps, since these gaps are functions of the differences

in the inertial positions of the ring and the rim. The magnetic

forces generated by the bearing stations are derived as the functions

of these differential positions and the velocities (Appendix C).
Large Angle Maneuver Controller Design.- A preliminary analysis of
the linearized version of equation(9) indicated the presence of
five negative eigenvalues of large magnitude. These eigenvalues
were found to be associated with the three degrees of ■freedomi.in

translational and two degrees of freedom of the rim in transverse
rotation, i.e., in the 0 and 0 directions. The two eigenvalues

a2 a3
associated with the transverse rotational motion of the rim were 

found to be of highest magnitude being equal to twice the nominal 

spin frequency of the rim.
The existence of these large (negatiye) eigenvalues 

necessitated the choice of computational interval for integration 
of the nonlinear equations to be 0.001 sec in order that the 
solution did not diverge. This extremely small integration interval, 

together with a high order of nonlinear system equations to be 
solved (n = 21 x 21 for adjoint system), made it impossible to 
get any appreciable maneuvers in reasonable computer times. Hence, 

a standard technique of increasing the step size for integration 

was applied as discussed below.
Since the largest eigenvalues were associated with the large 

linear acceleration of the system and the large rotational •
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acceleration of the spinning rim, these second order acceleration

components were eliminated by defining the mass and the moments of

inertia of the spinning rim to be identically equal to zero. This
has the effect of instant transfer of velocities (both linear and
angular) to the rim, i.e., with (theoretical) infinite accelerations.
The resulting equations for velocities were solved. In case of
angular velocities, however, the substitution of zero inertia

• •resulted in a pair of simultaneous equations for 0 , 0 , the
a2 a3

transverse angular velocities. The solution of these simultaneous 

equations was necessary to obtain individual angular velocities.
The modified system, with the five high acceleration compo­

nents of the rim thus removed, was again analyzed. The eigenvalues 

of the modified system were compared with those of reference [8] and 
also with another program developed independently at Langley 

Research Center in order to have a check on the system. The 
eigenvalue plots of this system duplicated all the eigenvalues of 

small magnitude of the original system, the large eigenvalues 
being eliminated. The time histories of the states (position and 
angles) were plotted for both the original system and the new 
modified system without the high acceleration components. The 
values of the states matched within 2 percent of each other. Thus, 

the modified system of equations were used for calculating the time 
responses of the nonlinear equations of Chapter 4 with a tenfold 
increase in the step size used for integration (0.01 sec).

Thus, in the final form, fifteen nonlinear, coupled, first
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order, ordinary differential equations of motion are utilized in 

the integration of the system equations and the adjoint equations 
for the nonlinear optimization problem.
Optimal Fine Pointing Controller Design.- As was pointed out in
section 2.1, after the LST pointing axis is approximately aligned
with the given stellar target, the gimbal torquer is locked and

fine pointing control is accomplished by torquing the'gimbal ring

in the gaps against the AMCD momentum vector. Since the torquer is

now locked, both LST and gimbal ring now rotate as a single rigid

body and hence the system now has only nine degrees of freedom.

It is also to be noted that application of any spin torque
(which is small in magnitude for the fine pointing problem) along

the X axis makes the spinning rim spin up while exerting an equal
and opposite reactive torque on the LST-gimbal body. While the

resulting small motion of the LST-gimbal is of interest from the
viewpoint of accuracy of the pointing, the small spin up of the
rim is of no direct interest to the problem. Thus, the angular
motion of the spinning rim about the spin axis is ignored in this

case. This reduces the number of degrees of freedom of interest

to eight in the fine pointing problem.
However, as is discussed in Section 3.4, in detail, it turns

out that inclusion of angles 0 , 0  in the state vector, makes
a2 a3

the pair of coefficient matrices A,B uncontrollable, giving rise

to subsequent difficulty in the convergence of the solution of
the Riccati equation. For computation of the optimal control 
gains, therefore, these two angles are dropped from the state
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vector. However, these angles are considered in the optimal 

estimator (observer) problem and the complete LQG controller 
design.

Thus in the final form, fourteen nonlinear, first order, 
ordinary differential equations are used to derive the linearized 

model about the target pointing angles and the target (zero) 
velocities. The derivation of the linearized model is outlined 
in Sec. 2.8 and the complete analysis of the stochastic Linear- 
Quadratic-Gaussian Control System is presented in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.7 Control Forces and Torques.- The external forces*and torques on

each of the two bodies (LST-gimbal and spinning rim) as indicated
6in deriving the equations of motion for the two bodies (Sec. 2.4, 

2.5) are the interacting magnetic forces and torques due to the 
magnetic bearing stations. In practice,, the three bearing stations 
each generate an axial force and a radial force at the station and 
an electromagnetic spin motor generates a tangential force on the 

rim, thus providing the spin axis torque. Finally, the gimbal 
torquer motor generates the torque which torques the LST against 

the (inertially stable) gimbal to move it relative to the gimbal 

ring (when the gimbal is not locked). Thus, there are eight control 
variables, six forces (three axial and three radial, one at each 

bearing station), a spin torque and a gimbal torque.
The magnetic forces generated by the bearing stations are 

made up of 1) "passive" forces, i.e., the centering forces gener­
ated by assuming a spring-dashpot system for bearings, and 2) 
"active" forces, i.e., the additional forces generated by command 

inputs to the servo-loops of the electromagnets.
In the design of the controller for LST fine pointing, it is 

desired to align the LST pointing axis with the target as accurately 

as possible. This is done by forcing and torquing the LST-gimbal 
(locked) combination within the gaps against the momentum of the 
spinning rim. In this case, both types of forces mentioned above 

are collected together in the control vector. The optimal closed
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loop feedback control law obtained aligns the pointing axis with 

the target
In the design of the controller for large angle maneuvers, 

however, the main concern is that of retargeting the telescope from 
one target to another through a large angle. In this case, the 

centering "passive" forces and torques were separated from the 
"active" control forces and torques. These "passive" forces and 
torques were expressed in terms of the states (Appendix B and C). 
The control vector now consists of the spin torque, the gimbal 
torque and the "active" forces at the bearing stations required 
to center the rim in the gaps, to nullify the motion due to the 

maneuvering of the gimbal.
The derivation of the control forces and torques expressions 

is outlined in Appendix D, The derivation of the passive forces 
and torques in terms of the states is summarixed in Appendices B,

C, D, and E,
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2.8 Linearization for the Fine Pointing Case.- The linearized pertur­

bation model for the fine pointing is derived from the general 

nonlinear equations (9) and (10). The linearization is accomplished 
by expanding f and g about the nominal (or desired) values of 

xQ(t), uq (t) in a Taylor series expansion and dropping the higher 
order terms (second order and higher) in this expansion. In the 
present case, the linearization is to he performed about a set of
desired constant target angles 0 = (0 0 , 0 ) and aboutg
the nominal constant spin frequency of the rim (w = w ). This

o
is adopted as the reference solution for the expansion and is an 

equilibrium state of the motion. The linearized perturbation model 

can therefore be written as:

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t)

with x(t ) = x o o (11)
(12)

where

a A 6f 
A =  &  +:

r. A 6f 
B 6u

u
Xouo

Sx X

In the present case, the linearization is performed as indicated
before, about the equilibrium state of the target angles 0 ,

o
about the nominal spin frequency of the rim (0o, and about the 
central position of the rim in the gaps. Hence, the elements of 
the coefficient matrices A, B, and C are time-invariant and the 

analysis is considerably simplified. Also, the linearization is 
performed about the equilibrium position of the states, which 
can be taken to be the zero state without loss of generality.
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Chapter 3 
DESCRIPTION OF THE OPTIMAL 
CONTROLLER DESIGN METHODS

With the development of the mathematical model described in 

section 2.2 completed at this stage, it is now possible to describe 
the optimal controller design techniques utilized for (1) the fine 
pointing (linear) case, and (2) the large angle maneuvers (nonlinear) 
case for the LST/AMCD.
3.1 Optimal Control for the Large Angle Maneuver Case by a Modified 

Gradient Technique Using Penalty Functions.- This section is con­
cerned with the formal design of an optimal controller for the case 
of large angle maneuvers of the LST/AMCD. The design objective here 

is to find the optimal open-loop control law to retarget the LST 
(i.e., the pointing axis of the LST) from one stellar object, after 
completing the necessary observations of this object, to another 
stellar object which may not be in the vicinity of the first. The 

performance index to be minimized here is the final pointing error 
and energy usage. Since the power used by the spin and the torquer 

motors is proportional to the square of the magnitudes of the 
torques provided by these motors, the time integral of the square 
of the torques can suitably be taken as a measure of the perfor­

mance index to be minimized along with the final pointing errors.

The nonlinear, coupled, second order differential equations of motion 
for this case are of the form given in section 2.5.
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Additionally, there are "hard" constraints on the 
magnitude of the control vector u and the state vector x 
which cannot be exceeded in any case. This is due to the fact 

that there are physical limits on the magnetic gaps and the 
value of the forces and torques provided by the actuators.
Since the problem as stated cannot be solved in closed form, 

an iterative numerical method must be utilized. This method, 

a modified gradient procedure, incorporates the "hard" con­
straints as penalty terms in the performance index ("cost") 

and an additional differential equation. This iterative 

numerical procedure, when convergence is achieved, provides an 
open loop control law as a function of time, to minimize the 
modified performance index (including the penalty terms),

An extensive critical analysis of many available techniques 
and variations was made in arriving at the conclusion that the 
modified gradient method using penalty functions was the best 

technique in this case. This critical review of existing tech­

niques is presented in Appendix L.
In the modified gradient method, the given inequality 

constraint on the control variables is converted to an equality 

constraint (either differential equation or algebraic equation), 

This technique is similar to the penalty function technique of 
Kelley [11,12] and was apparently first proposed by Valentine

[13] and extended by Berkovitz I14], The constraint is then 
included in the integral penalty term, A slightly different
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approach is needed to handle state inequality constraints. An 

additional differential equation defines a new state variable 

with the help of the Heaviside step function. The value 

of the new variable at t-t^ is a measure of the penetration of 
the state variable inequality constraint. The method is des­

cribed by Sage [15] and is outlined in detail below.
The design problem may be posed as one of minimizing the 

performance index (cost function)

J = 0 [x(tf), tf] + V <j) [x(t), u(t), t] dt (13)
to

for the system
x = f(x(t), u(t), t), x(t ) = x where x is an n-vector

(14)
with the terminal manifold

N(x(tf), tf) = 0 (15)

by proper choice of control u(t).
The control inequality constraints are

g^xtt), u(t), t) > 0 i = 1, 2, . . . r, (16)

and the state inequality constraints are

h^Cx(t), t) > 0 i = 1, 2, . . .  s. (17)

The control constraints are incorporated into the performance 
index by converting these inequalities into equivalent equality 
constraints with Heaviside step functions'defined as'follows:
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f 0 > %  > 9 
i} = U c , s± <f oH(g±) = \ CIS)

'i
where are arbitrary constraints.
The constraintsocan then be included inside the performance 

index as a penalty term as

r'f r
J'= • • • + \ 2  .|gi(x,u,t) |2 H(gi) dt- (19)

to
A slightly different treatment is necessary to incorporate 

the state constraints. The procedure based on a modification of 
the method of Kelley [11] by McGill [16] is as follows.

The state constraint equation is replaced by the additional 

differential equation

Xn+1 = fn+l = H(hi)
i=l (20)

with x ,. (t ) = x ,. (tr) = 0 ,n+1 o' n+1 f7
or equations

xn+l = lhl<x-t>|2 H<hl>> («„) - (t£) - 0

xn+2 = H<h2>* xn+2 (to> = Xttf2 (tf> ' 0

xn+s = I V x ’t>|2 H<hs>> xn+s (to> ' xn+s (tf} ' °' <21)
The Heaviside step functions are defined as

H(h±) ^ 0 , h. £ 0
1 (22) K , h. < 0s. 1
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where K are arbitrary constants.s.x
In the present problem, the constraints are proposed to be
replaced by only one differential equation, to keep the total
system to the lowest possible order, as the order of the ori­

ginal problem itself is high (n=15).

Since the violation of these equations is almost certain 

to occur during the trajectory, the final values of the.x’s-are 
included in the performance index as penalty function. The 
final reformulated cost function to be minimized is

The form of <J> is generally chosen to be a quadratic 
function of state and control variables as follows

J = [NTGN + |xn+1 (tf)|2 K j  + [<j>(x,u,t) + (23)
to

£|g.(x,u,t)|2 H(g±)] dt
i=l

for the modified unconstrained system
x (t) = f(x,u,t) (24)

with x(t ) = x , and o o

(25)

with x

<P ~ k (x Qx + u Ru + a) (26)

where Q > 0, R > 0, and
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0 for minimum energy problem
a

2 for minimum time problem.
The Hamiltonian for the above system is defined as

H(x,u,A.,t) = <j)(x,u,t) + ^T(t) f(x,u,t) . (27)
The adjoint equation and the terminal condition is

(28)

and A(tf) = 30[x(tf), tf]/3x(tf) . (29)

From the Maximum Principle, the condition for optimality is

(3())

Since the initial guess of uq will, in general, not be 

optimal, this condition will not be satisfied.
The given system (24, 25) is integrated forward (in time) 

with the initial guess, uQ and the adjoint system (28) 
is solved backward (in time) utilizing the terminal conditions 
( 29 ). To achieve the largest decrease in the performance

index J, the correction Au is directed opposite to the gra­
dient of the Hamiltonian and is proportional to it. Thus,

and the new corrected control history is computed for the next 

iteration.
The constant K is calculated as follows. The improvement 

in the cost function is given by [15],

Au(t) = - K (31)
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(32, 
to

where
negative sign indicates the decrease in the cost function. Sub­
stituting for Au,

<33>
to

and

to

The value of the integral in the denominator is calculated 
while computing 3H/3u. A reasonable value of Aj, say 10 percent, is 
assumed and the corresponding value of K is computed. As-the solution 
approaches the minimum value of the cost function, it may be necessary 

to decrease the value of Aj. This is done automatically in the pro­
gram by halving the previous value of AJ when an increase in the cost 
function is encountered at any iteration. The iterative procedure is 
repeated until one of the following convergence criteria is met during 

the N+lst iteration:
1) > J^. In this case, further study may be required by

reducing the step size K appropriately,
2) Au^ < 0.01 u^, i.e., the correction vector is less than 1

percent (or any other suitable factor) of the control vector.
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3.2 A Steady State Stochastic LQG Controller for the Fine Pointing 

Case.- This section is concerned with the design of an optimal 
controller for the fine pointing case. The design is accomplished 

in the following manner:
a) Solve the steady-state linear quadratic (LQ) 

optimal regulator problem to get the deter­
ministic optimal gains matrix,

b) Solve the steady-state linear Gaussian (LG) 
optimal estimator or filting problem to get 
the minimum mean square (MMS) estimate of the 

state vector,
c) Solve the steady-state stochastic linear 

quadratic Gaussian (LQG) control problem by 

cascading the deterministic control of step 

(a) and stochastic estimator step (b)
d) Calculate the covariance or RMS error matrix 

to get the accuracy of the design.
Deterministic Fine Pointing Controller Design Problem.- The 
design objective in this case is to keep the actual states x(t) 
(i.e., magnetic actuator gaps, LST pointing angles) "near" their 
ideal desired values ^(t) for all t e[t0 , t]. The linearized 
perturbation model for this case was described in Section 2.8.

The design problem can be stated as one of determining the 
control vector u(x(t), t) so as to minimize
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Jd = h NTGN +  h  (a + xTQx + u TRu ) dt (35)
to

for the system with the differential constraints

x(t) = A„x(t) + B.u(t) (36)
with x(t ) = x and, o o ’

y(t) = Cx(t) . (37)

The practical disadvantage of the deterministic system 

given above is that it requires exact measurement of all of the 
state variables. This cannot always be achieved. Even if, in 
the ideal situation, one could measure all the state variables, 
one has to use physical sensors to carry out these measurements 
and this introduces a certain degree of uncertainty in the 
measurements. This uncertainty in measurement must somehow be 
taken into account. In addition, although the deterministic 
approach admits■' errors in the plant modeling (necessitating 
feedback) it did not explicitly take into account errors intro­
duced by actuators and disturbance inputs that are not generated 
by the control system, and are almost always acting upon the 

physical process. Also, if one cannot measure the state 
yariables exactly (due to actuator noise), one can no longer 

assume the initial state of the plant xCtQ) = xQ.

It is common engineering practice to use a probabilistic 
approach to the modeling and implications of physical
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uncertainties. The reason is that a probabilistic approach is 

characterized by the existence of an extensive mathematical 
theory which has been already developed. In the design of 
dynamical system, therefore, the continuous existence in time 

of plant disturbances, sensor errors and initial state estimate 
errors are modeled by representing these uncertainties ("noise") 
by means of random processes, more particularly by means of 

"white" noise, A random process modeled as a continuous time 

white noise views the uncertainty as the most unpredictable one. 
This prevents the designer from "second guessing" the future 
values of noise from past measurements. This "guessing" not 

only required tremendous online computational effort (as in 

Monte-Carlo Techniques), but also might give the designer a 
"wrong" estimate of the noise since in practical design situations 
the random processes are almost always uncorrelated.

Two useful statistical parameters, characterizing 
continuous time white noise n(t) (which is a Gaussian process) 
are its mean., and covariance. The mean value, n(t) and the 
covariance are defined as;

E |n(t)}-= n(t) = 0 for all t (for white noise) 

cov [n(t); n(x)J = E |n(t) nT(x) } = N(t) 6(t-x)
where

N(t) = NT(t) Z 0 

where N(t) is called the covariance intensity matrix of the
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vector valued white noise n(t). If N(t) = N = constant, the 

noise is called stationary white noise.
With the brief qualitative treatment of the white noise 

given above, it is now possible to give the quantitative 
description of noises involved. Accordingly, the initial state 

uncertainty, the plant noise uncertainty and the measurement 

uncertainty are modeled as follows:
1) The initial state vector is assumed to be Gaussian 

with the known mean x and covariance matrix, £  , i.e.,

E )x ( A x ;  cov [x ;x ]A E ) o =  o’ o’ o — (x -x )(x -x )T[ = X  ; o o o o \ o’

and Z 0 - z l >  0

where E is the expected value operator and the sign 
implies that E Q must be positive semi-definite.

2) The plant driving noise (due to disturbance inputs 
and the actuator errors) £(t) is assumed to white, Gaussian 

with zero mean and known covariance matrix, i.e.,

e j^t) j = 0 for a11 t > ^  cov £Ct)]
AE<£(t) £T(t)( A H(t) 6(t-T); and 

TE(t) = E (t) >_ 0, for all t t

3) The measurement noise (due to sensor errors) 0(t)

is assumed white, Gaussian, with zero mean and known covariance 

matrix, i.e.,
E I 0(t) |= 0; cov [0(t); 0(t)] A
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E | 0(.t) 0T(x)}= 0(t) <5(t-x); and 
0(t) = 0TCt) > 0 for all t > tQ.

Furthermore, it is also assumed that the random processes 
xQ, X. Gt), and 0 Ct) are mutually independent. This assumption 

is reasonable in most physical processes. The matrices 2 0>
S(.t), and 0Ct) are the intensity matrices of the respective 

white noises.
It is now appropriate to incorporate the uncertainties 

Gnoises) defined above in the deterministic; controller design 

problem statement as presented before. It is first necessary 
to incorporate the uncertainty in the nonlinear model as 

follows;

x(t) =» f(x(t),u(t)) + get), x(tQ) = E | x o | (38) 

y(t) p= g(x(t)) (39)
z(t) = yGt) + 0(t) = gCx(t)) + 0 (t) (40)

A repetition of the procedure involving a Taylor series
expansion about x q Ct), uQ (t), and yQ(t) outlined before, is
now applied to the stochastic nonlinear model ( 38 ) - ( 40 ).
The assumption (without loss of generality) that the equilibrium

trajectories xQ(t), uQGt), yQGt) are zero, yields the
following linearized, time invariant perturbation stochastic

model of the system.
x(t) = A xGt) + B u(t) + £Gt) (41)

z(t)=C x(t) + 9(t) (42)
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It is noted here that the design objective for the

deterministic problem was to determine a commanded control
history u(t) so that the state deviation vector <$x(t) = x(t) -
x Ct) ( = x(t), if x (t) A 0) is small for t e[t ,t_] and the O ' ' ? Q' ' =  ' o f

still the same, except that now x(t), u(t) etc. are random 
processes. This results in the performance index being a scalar­
valued random variable. To formulate a meaningful problem, 

however, one needs to minimize a nonrandom scalar. Since the 
cost functional (i.e., performance index) in the stochastic pro­

blem formulated above is random, a natural criterion is to 

minimize the expected value of conditional on the past
measurements up to its present value at time t.

Thus, the controller design problem involves minimizing 

the cost functional

The states are now random variables (rather than deter­

ministic variables) and this fact has to be taken into account 

when defining the cost functional accordingly.
The stochastic fine pointing controller design problem can 

now be stated. Given the completely controllable and observable, 

linear, time-invariant system

performance index Jj is minimized. The design objective is

where
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x(t) = A x(t) + B u(t) + 5(t); x(o) = e {'x o ( (44)

and the time-invariant measurements

z(t) = C x(t) + 0(t) (45)

where the noises ?(t), 0(t) are both Gaussian, white, zero- 
mean, mutually independent (uncorrelated), and stationary such 
that

cov [£(t); £(x)] = S <5(t-x); H = ST> 0

cov [0(t); 0(t)] = 0 5(t-x); 0 = 0^> 0
cov [£(t); 6(x)] = 0

find a linear time yarying gain, feedback control u(t) for all

t £ [o, t^], such that the cost functional

J = E s

l
{f- ( xT(t)Q x (t) + uT(t)R u (t)) dt| (46)

is minimized where the constant weighting matrices Q and R are 

such that
Q = QT > 0 
R = RT > 0

The design problem formulated above is referred to as a 
steady state stochastic linear-quadratic Gaussian (LQG) control 

problem.
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3.3 The Separation Theorem.- The controller design problem stated in 
section 3.2 may be decoupled into two simpler design problems if 

the separation theorem of reference [15J is invoked.
For a particular class of this problem, which has linear 

system dynamics with white noise disturbances, and the cost 
functions are quadratic in nature, a decoupling of the design 

procedure is possible due to a very powerful theorem called the 
Separation Theorem. This theorem is stated without proof below: 

The optimal linear solution of the stochastic linear 
optimal output feedback regulator is the same as the 
solution of the corresponding stochastic optimal state 

feedback regulator problem except that in the control 
law the actual state x(t) is replaced with its MMS 

(minimum mean square) linear estimator x(t), that is 
the input control is chosen as

u(t) == - Gq £(.t) . (47)

The MMS estimator x(t) is the output of the 
optimal observer or filtering problem.
The theorem in essence states, that, for linear systems 

with quadratic cost functional and subjected to additive white 

Gaussian noise inputs, the optimum stochastic controller is 
realized by cascading an optimal estimator with a deterministic 
optimum controller. The decoupling is partly due to the fact 
that the random noises are white with zero mean and, since they
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are completely unpredictable and therefore cannot be taken into 

account in the design of the optimal controller. It must be 
noted here that the formulation of the cost functional (which 

is to be minimized) as a quadratic is indeed to maximize the 
average validity of the linearized models, both deterministic 
and stochastic. The proof of this important theorem can be 
found in the literature references[17] - [20],

The solution indicated above by the theorem is the optimal 
linear solution. It can be proved that,[21] - [25], if the 

initial state x q is Gaussian and the noise inputs (both 
inputs and measurement) are Gaussian white noise processes, then 

the optimal linear solution is indeed the optimal solution.

The state estimator x(t) in the theorem above is the 

conditional expectation of the true state x(t), viz.,

-x(.t) 4 ® { x Iz(t); c0  ̂ T < f

given all the measurements z (t ) up to the present time t. It 
is to be noted that if all noises are Gaussian white noises, this 
conditional mean of x(t) is the same as the MMSE (minimum 
mean square error) estimate, which also is equal to the Kalman 
estimate of x(t). If all noises are not Gaussian, however, 
then the Kalman estimate is only the linear HMSE estimate of the 

state x(t) , [ 15 ] .
The separation theorem thus guarantees that for a parti­

cular class of problems the LQG problem can be separated into
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two parts, viz.,

1) Linear Quadratic Optimal Regulator LQ Problems
To calculate the commanded control u(t) so as 

to minimize the cost functional

2) Linear Gaussian Optimal Estimator Problem
For the linear dynamics stochastic system 

x(t) = A x(t) + B u(t) + £(t) 
and the linear stochastic measurement equation

z(t) = C x(t) + 0(t) 
where x(t) is a Gaussian random variable with the mean 

E | x(tg) | xq (known) 
and the measured signal z(x) for all T t], find a vector

x(t), an estimate of the true state vector x(t), which is 
"optimal" in the well defined statistical sense of the minimum 

mean square error.

J = x^(t^)G x(t^) + x^(t)Q x(t) + u^(t)R u(t)] dt

G = GT > 0; Q = QT >. 0; R = RT > 0
for the deterministic time invariant system described by

x(t) = A x(t) + B u(t) where x(tQ) = x q is an n-vector
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The complete stochastic problem is seen to be a time-varying 

problem, and the control matrix gains Gq and the filter matrix gains 
Hq therefore will be functions of time. In principle, these time 
functions can be calculated, albeit with trememdous increase in the 

computational effort. In addition, from the viewpoint of the prac­
tical design of the control system, it is difficult to generate the control 

vector using a time varying control gain matrix or to generate the state 
estimate using a time varying filter gain matrix. Thus, the design 

problem of interest is reformulated by replacing:the cost function 
with..

J = £im Eg T-x» o
This modification ignores the transient behavior of the states, 

and the gains (both control and filter) are computed as constants 
as shown in next section.

rT
{?  ( [xT(t) Q x(t) + Tu (t) R u(t)] dt

/ (49)
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3.4 Linear Quadratic Optimal Regulator Problem.- The deterministic

steady state linear quadratic optimal regulator problem, which is 

the controller part of the stochastic control problem defined in 
section 3.2 is stated as follows:

Given the linear deterministic time invariant system 

x(t) = A"x(t) + B n(t) (50)

with x(o) = xo
y(.t) * C x(t) (51)

find a linear constant gain feedback control vector u(t) (an
m-vector) t £ltQ, T] so as to minimize the following deterministic
quadratic cost functional (performance index)

T
J = x T(T) G x (T) + { [xT(t) Q x(t) + uT(t)R u(t)]dt

I
(52)

Twhere G = G > 0  nxn matrix
TQ = Q > 0  nxn matrix
^ ” for all t elo, t]

R = R > 0  mxm matrix

The solution to the above time invariant problem is given

by the linear time varying feedback relationship 
u(t) - - GQ(t) x(t) (53)

where G (t) is a nxn control gain matrix. The value of GQ(t) 

is given by
GQ (t) = R-1 B KQ(t) (54)
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where the nxn time varying matrix KQ(t) is the solution of the 

nonlinear matrix differential equation, of the Riccati type 
(usually referred to as the matrix differential Riccati equation)

IF Ko(t) = - K0(t) at K^t): -; p v  : » ;

+ K (t) B rt1:jbt K .(t:) - t.' ... (55)
o o o

subject to the boundary condition at the terminal time T.

K (T) = G (56)o
The proof of the above result can be found in many places 

in the literature in the field of optimal control. There are 
also several ways of proving this result. One way is using 
Pontryagin's maximum principle [2 6] and subsequent manipulations 
of the necessary conditions [27]. This procedure is also out­
lined in the original work by Kalman [28,29]. Another way is 
through the use of Hamilton-Jacobi-Bellman partial differential 

equations [27,29,30,3lJ. Yet another method is related to
completing squares and proving that lim K(t) = K (t) exists

T-*» 00
for all t, the limit being approached monotonically from below. 
The proof is completed by showing that the corresponding closed 

loop system is exponentially stable [32]. Another solution 
method assumes that the optimal control is linear and of the 
form (5 3) and carries out a parameter optimization to determine 

the matrix GQ(t)[33].
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The solution of the practical, constant gain problem (49) 
is given in the form

u(t)= -G x(t) . (57)
The feedback.control gain matrix G is a constant (time 

invariant) matrix in this case, and its value is given by
G = - R”1 BTK (58)

where the nxn constant, positive definite matrix K (Riccati 
matrix) is the solution of the nonlinear matrix algebraic Riccati 

equation;
- KA - ATK - q+KBR-1BTK = 0  (59>

subject to the terminal boundary condition
K(T) = 0 . (60)

In this case then, the optimal trajectory is the solution of the

linear, time invariant homogeneous system
x = (A - B Gq) x(t)
A Ac x(t), x(o) = x q  (given) . (61)

The existence and uniqueness of the solution stated 

aboye are guaranteed by the following assumptions;
a) [A?B] is a controllable pair

b) [A,Q^] is an observable pair
The closed loop system

x(t) = Ac x(t)

is asymptotically stable in the large, i.e., all of the eigen­

values of the matrix A£ 'A(A - BG) lie in the left half complex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

plane. The proof of this result can be found in the literature 

127,30,34,35,36].
The main task in the solution of the optimal regulator 

design problem, therefore, is the computation of the constant 

symmetric, positive definite Riccati matrix K which is the 
solution of the algebraic matrix Riccati equation ( 59 ) with

the boundary conditions (60 ). The Riccati equation ( 59 )
is equivalent to a system of n(n+l)/2 simultaneous scalar 
quadratic equations, and hence presents a formidable computational 

task even for moderately large values of n, the dimension of the 
state vector x(t). Until recently the equation was solved by 
direct integration of the corresponding differential Riccati 

equation ( 55 )»[37j. Anderson [38J has shown that the solution
of the Riccati equation is equivalent to the solution of the 

spectral factorization problem which has been studied by Youla 
[39], Davis [40], and Amara l4lJ. An important result obtained 
is a theorem due to Rotter J42 J whereby the solution of the 
Riccati equation can be written down in terms of the eigen­
vectors of an associated Hamiltonian of the problem. MacRarlane 
[43J and O'Donnell 144] also proposed a similar technique. Rath 
[45] proposed a modified eigenvector solution for constant 
coefficient gain matrix by transforming the Riccati matrix into 
upper Hessenburg form (which has all the elements below the first

subdiagonal equal to zero) and then to block diagonal form. This 
method was used to design controllers for systems up to the 25th
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order with time reductions of the order 50 to 1 over earlier 

techniques using numerical integration of the Riccati equation.
In most of these methods, numerical difficulties occur when the 
time step chosen for integration is too large. It has been 
shown by Vaughan; [46, 47 J that a very small time step is required 
when the real parts of the characteristic , values of the system 

matrix Z [48] have a large spread, and very long computing times 

occur when the main interest is in the steady state solution.
An iterative procedure based on the Newton-Raphson method

is found to be extremely useful in solving the algebraic matrix
Riccati equation for the steady state case. The structure of

the procedure is as follows [48 ] :
The steady state solution K of the Riccati equation (55 )

must satisfy the algebraic Riccati equation ( 59 ).

0 = Q - K S K +  ATK + KA
where

S = BR_1BT . (62)
Consider the matrix function

F(K) = Q - K SK + ATK + KA . (63)
The problem is to find the non-negative definite symmetric

matrix K that satisfies 

F (it) - 0 .
The iterative procedure is derived as follows. Suppose that at 

the i-th stage, a solution has been obtained, which does
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not differ much from K, i.e.,
<v

K = K. + K 1

If K is small, F(K) can be approximated by neglecting qua­
dratic terms in K to obtain

F(K) = Q - K. S K. - K, S K - K S K. - A1' x 1 l i l

(K± + K) + (K± + K) A . (65)

The basic idea of the Newton-Raphson method is to estimate K 

by setting the right hand side of ( 65 ) equal to zero. If 
this estimate is K^, then

Ki+1 = Ki + Ri (66)
Kleinman [49] and McClamroch [50] have shown that if the algebraic

Riccati equation has a unique non-negative definite solution, 

and satisfy

Ki+1 " Ki i = 0, 1, 2, 3, . . . (67)
and

Aim K. = K (68)
1

provided Kq is chosen such that

A = A - S K = A - B R1-1 BTK (69)o o o ' '

is asymptotically stable. Thus, an incorrect initial guess of 

Kq may lead to convergence to a different solution or no con­
vergence at all. If the system coefficient matrix A is 

asymptotically stable, a safe choice would be K = 0,. If it
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is not, then the initial choice presents difficulties, thereby 

leading to numerical divergence or convergence to a wrong 
solution.

Although favorable experience using the Newton-Raphson 
method to solve Riccati equations has been reported in the 
literature f 51], it is to be noted that the method does not 

provide conditions that will insure monotonic convergence of 
the solution. Kleinman 149] proposed an iterative scheme based 

on successive substitutions and by using the concept of a cost 
matrix proved that the iterations are monotonically convergent. 

The method is exactly similar to one obtained by applying 
Newton’s method in function space [49]. The solution, in 

addition to being monotonically convergent, is also quadratically 
convergent in the vicinity of the true solution. This is unlike 
other iterative methods, where the schemes display only linear 
convergence near the true solution. Hence, the solution con­
verges faster to the true solution.

In a later paper, Kleinman [52] also gave a method of 
constructing a stabilizing control law without the necessity of 
transforming variables or of specifying pole locations. The 

structure of Kleinman's iterative technique and the way to 

construct the stabilizing control law is outlined in Appendices 
[G,H] for the sake of completeness. The control gain matrix is 

constructed using these techniques.
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All the methods described above, including Kleinman's 

iterative technique have a potential drawback. The existence 
of the set of stabilizing feedback gains assumes the complete 
controllability and the complete observability of the linear 

system ( 50 ) and ( 51 ) • This means that
1) (A,B) is a completely controllable pair, and
2) (A,C) is a completely observable pair .

These restrictions as such are not serious restrictions 
when the technique is applied to systems that are naturally 

controllable and observable. This kind of situation arises when 

it is desired to . control the attitude of a pointing device 
( a telescope) which is mounted on a stabilized inertial plat­

form ( a Shuttle), This problem has been discussed in great 
detail by Anderson and Joshi [53] as applied to the Annular 

Suspension and Pointing System (ASPS). As the platform is by 
itself inertially stabilized, the pointing system can be stabi­
lized in inertial space (against this platform).

The present problem of stabilizing the LST in inertial 
space by torquing it against the spinning rim in the magnetic 
gaps, presents some difficulties. These difficulties arise due 

to the fact that the platform (spinning rim in this case) is not 
actively stabilized in inertial space. The only stabilizing 
effect on the rim is due to the inertial stiffness provided by its 

angular momentum vector H which is fixed in inertial space in 
the absence of any external torques. Since the small magnetic
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forces, which control the LST-gimbal body are in effect external
forces on the rim, the momentum vector of the rim will exhibit a
small albeit definite, precessional motion. Thus, the LST-gimbal

body is being forced to stabilize in inertial space by controlling
it. against a platform (spinning rim) which cannot resist these
control torques. Mathematically, this difficulty shows up as
failure of the solution to converge when the transverse angles
0 , 0  of the rim are included in the state variable vector. 
a2 a3
In fact, the study showed that the method fails to generate even 

the initial stabilizing gains when these transverse angles 

are included in the state vector.
Thus, the system is uncontrollable. The open loop eigen­

values are all zero, except for two eigenvalues at + jwQ> 

where U)o is the nominal spin frequency of the rim. The 
spinning rim does not have any stabilizing mechanism of its own. 
Thus, the system is unstabilizable. However, since the state

yariables 6 , 0 are not of major importance, they can be
a2 a3

excluded fromthe state yector, and a linear quadratic optimal 
regulator can be designed. In the estimator design, however, 
the complete state vector must be retained to preserve observ­

ability. The optimal input, therefore, is a linear feedback of
a part of the optimal estimator.

Many problems of practical applications, including the 

present problem of fine pointing control, fall in this category.
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Sandell I54] pointed out and proved that the assumptions of control- 

ability and observability of Kleinman and others can be weakened to 
stabilizability and detectability. This important theorem with the 
proof is outlined in Appendix Ik].. Thus, the Newton-Kleinman method 
{App. H] in conjunction with Kleinman’s start up technique [App. G] 
represents a powerful and practical algorithm for computation of the 
Riccati equation solution, even for uncontrollable and unobservable 
system. The restrictions are now relaxed to include systems which are 

stabilizable and detectable.
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3.5 Linear Gaussian Optimal Estimator Problem.- The stochastic, linear 

Gaussian optimal estimation problem, which is the estimator
v

(filtering) part of the stochastic control problem defined in

Section 3.2, is stated completely as follows:
Given the linear stochastic, time-invariant, dynamic system

x(t) = A x(t) + B u(t) + g(t) (70)
with x(t ) = x , and o o’

z(t) = C x(t) + 0(t) (71)

where
1) x(t) is a random variable, the initial state vector being

Gaussian with known mean x and covariance matrix £  ( £  =o o o
o T

S 0),

2) £(t) the plant driving noise is white, Gaussian with zero
Tmean and known covariance matrix, «(t) 6(t-x), (E = E > 0  for 

t > t ) and,
3) 0(t) the measurement noise is white, Gaussian with zero mean
and known covariance matrix 0(t) 6(t-T), (0 = 0  > 0  for t > t )

A.find a vector x(t) which is an optimal state estimate of the true 
state x(t).

There are a variety of ways to define the optimization 
criterion. Some of these are least square error criterion, mini­

mum variance criterion, maximum likelihood of occurrence criterion, 

etc. However, the linear-Gaussian nature of the hypothesis 

developed for the problem lead all the above criteria to
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the same "optimal" answer— that the optimal state estimate x(t) 

is generated by the Kalman-Bucy filter and is the mean of the 
true state x(t).

The solution of the above seemingly complicated problem was 

made possible by Kalman and Bucy [55,56] who have shown that the 
dual of the optimal estimator problem is the optimal regulator 
problem. The dual problem is stated below.

Define a dynamical system which is the dual of

x(t) = C. A£(t) + B £(t) (72)
z(t) = ' C x(t) + 6(t) (73)

by replacing above matrices as follows:

A (t) —* AT(t*)

B (t) -*CT(t*) t* = -t (74)
C (t) -> BT(t*)

The dual dynamic system is then defined by

= AT(t*) x*(t*) + CT(t*) u*(t*) (75)

z*(t*) = BT (t*) x*(t*). (76)
The dual optimal regulator problem is then to find a 

control law which minimizes
t *

J - h ||x*(tQ*)| |2 ' E o  +  h  \  [x*T (t) Q x*(t)
t*

+ u*T(x) R u *(t)J dx. (77)

The complete mathematical details of this problem are
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discussed by Sage [15]. Kalman [55] has shown that the results 
of the solution of this problem can be applied to the optimal 

state estimation problem because of the duality theorem which states 

that the two solutions are equivalent. This leads to the solu­
tion of the optimal state estimation problem by the well-known 

Kalman-Bucy filter as indicated below.
The duality theorem, along with another theorem due to 

Kalman [57], makes the solution of the optimal state estimation 
possible using an iterative technique for continuous time case 
(for time varying systems) by the Kalman-Bucy filter as follows:

The optimal state estimate x(t) of a general linear 
dynamic time-varying system of type (70) and (71) is generated

A

by
*

x(t) = A x(t) + B u(t) + HQ(t) [z(t) - C x(t)] (78)

with initial conditions

The filter gain matrix HQ (t) is given by

H0(t) = £ o (t) CT 0T (79)

where P  is the covariance matrix of the estimation error ** o
vector. It turns out that

AE fx(t) - x(t) > = 0 (80)

so that

£ 0(t) = E (81)
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Furthermore, by a theorem [57] due to Kalman which gives the 
solution to the recursive estimation problem, the error covariance

matrix ^  (t) is the solution of the matrix Riccati differ­
ential equation

£  (t) = a £  (t) + £  (t) at + 5(t)

- £ 0(t) CT 0"1 C ^ o (t) (82)

with £  (t ) = £  (known initial covariance of o o' o
V

The solution of the practical constant gain, LG problem 
assumes a similar, but much simpler form. The filter gain matrix 

Hq is a constant (time invariant) matrix, and its value is

given by
= £  C T 0"1 . (83)H _O O '

The constant, symmetric (at least) positive semidefinite matrix 

£ q is the steady state estimation error covariance matrix 

and is the solution of the algebraic Riccati matrix equation.

0 = A ] C  + £ a T + 5 -  £  CT © _1 c £  • (84)o o n

The complete derivation of the Kalman-Bucy filter can be 

found in the original publications of Kalman [55] and Kalman- 
Bucy [56]. There are many different derivations of the above 
result since then, as well as extensions to nonlinear cases.

Comparing the steady state, LG problem (of calculating 

the filter gain matrix Hq and the algebraic Riccati equation
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for error covariance matrix 2^Q) with the steady state LQ

problem (of calculating the control gain matrix G and the

algebraic Riccati equation for Riccati matrix K), it is seen
that both problems are exactly equivalent with matrices A, B,

T T —Q, R, replaced by A , C , E and 0 respectively. The discussion 

about the solution of the steady state Riccati equation in 
Section 3.4 holds for the LG problem also. The iterative pro­
cedure (outlined in Appendix H) is again used to calculate the 
Kalman-Bucy filter gains for the estimator.

The measurement vector, which consists of the magnetic gaps 
.at the bearing stations, is a function of the transverse angles
0 and 0 . Therefore, to preserve observability, the angles
a2 a3
0 and 0 , which were neglected in the regulator problem, have
a2 a3
to be considered in the estimator problem. The inclusion of 
these angles does not create any numerical difficulties in con­
vergence of the solution, as it did in the regulator design.

With the design of the Kalman-Bucy filter and the estima­
tor now complete, it is possible to discuss the dynamics of the
closed loop" LQG, which follows.
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3.6 Stochastic Linear-Quadratic Gaussian (LQG) Control Problem.- After 

having formulated the solution of the linear quadratic optimal 

regulator (sec. 3.4) and of the linear Gaussian optimal filter 
(estimation problem) (sec. 3.5), it is now possible to cascade the 
two together (made possible by the separation theorem) to obtain 
the linear steady state, dynamic compensator.

The steady-state Linear Quadratic Gaussian (LQG) stochastic 
control problem can now be stated as follows:

Given the completely controllable and observable (these now 

being reduced to stabilizable and detectable) linear, time 

invariant system

x(.t) = A x(t) + B u(t) + 5(t) (85)
where x is an n-state vector,

u is an m-control vector

and the time invariant measurement relation
z(t) = C x(t) + 0(.t) (.86)

where z is an r-measurement vector

where
1) 5(t) the plant noise, is Gaussian, white, with zero mean
and stationary,
2) 0(t) the measurement noise, is Gaussian, white, with zero

mean and stationary, and

3) 5(t), 0(t) are uncorrelated,
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find the control u(t) for all t £(0,") such that the cost 
functional

T
J = Aim ^  { IxT (t) Q x(t) + uT (t) R u(t)Jdt

T-*» J o
Q = QT > 0, R RT > 0 (87)

is minimized.
Solution: The optimal control correction vector u(t) is

given by
u(t) = - G x(t) (88)

where x(t) is the optimal estimate of the state. The mxn 
constant matrix G is given by

G = R-1 BTK (89)

where K, .a: constant, positive definite Riccati matrix is 

the solution of the (control) algebraic Riccati equation 
0 = - KA - ATK - Q + KB R"1 BTK. 0°)

The optimal state estimation vector x(t) is generated on 

line by the steady state Kalman-Bucy filter
£(t) = A 4Ct) + B u (t) + H [z(t) - C x(t)J . (91)

The constant, filter gain matrix H is given by
H - £ c T e-1 (92)

w h e r eS , nxn constant matrix is the solution of the (filter) 
algebraic Riccati equation

0 = £ a  + AT£  + 5 - S c T 0"1 c L .  (93) 
Substituting for u(t) from ( 88 ) in the equation for
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x(t) and x(t) and combining these two equations, the closed loop 

system satisfies the equation

_dix(t) 1 f A -BG T)x(t)) ("I Ol|?(t)i (94)
dt \£(t) f “ |HC A-BG-HCj|x(t) r  LO H J \ 0 (t) j V '

An alternate and a more clear state representation of the closed- 
loop system is obtained by the use of the state estimation error 

vector
x(.t) = :x(t) - 2c(t) . (95)

From the definition of x(t) and ( 91 ), the modified closed- 

loop system now satisfies

J_jx(t)) I”A - BG BG i/s(t)).ri 0 ]/i(t)) (96)
dt|x(t)j I 0 A - HCj (x(t) f |_I -H J (6(t) j •

The eigenvalues of this system are given by the eigenvalues 

of the 2n x 2n matrix, whose characteristic polynomial is given by

j . f A - BG - XI 0 Td e t  [  o  A -  HC -  XI J  ( 9 7 )
= det (A - BG - XI) det (A - HC - Al) .

From this, the following points follow:
1) Half of the eigenvalues can be independently adjusted by the 
value of G (which depends only on Q and R, the weighting matrices), 
while the other half can be independently adjusted by the value

of H(which depends only on 5 and 0, the noise intensity matrices).

2) Since (A - BG) and (A - HC) are both strictly stable
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matrices (this is individually assured in the regulator design 

and the estimator design), it follows that the overall closed 
loop system is stable.

The block diagram of the linear, time invariant, dynamic 

compensator is shown in Fig. 6. As is seen from the figure, the 

dynamics compensator is obtained by cascading the Kalman-Bucy 
filter designed in Section 3.5 with the optimal regulator 

design in Section 3.4. The design of the stochastic steady 
state linear quadratic Gaussian control is now complete for the 

fine pointing problem.
It is noted again here, that to retain observability, the

A
state estimator vector x(t) contains the transverse angles
of the spinning rim, viz., 0 and 0 . However, the inclusion

a2 a3
of these angles in the state vector for the regulator problem, 
makes the system uncontrollable. Thus, only a part of the complete

Astate estimator vector x(t) (without the transverse angles) is 
used to generate the optimal feedback control vector u(t).

It now only remains to prove the validity of the design by 

calculating the accuracy of the results. This is done by 
calculating the covariance of error of the states. The procedure 
to calculate the covariance matrix, which indicates the root-mean- 

square (RMS) error in the estimation of the states, is outlined 

in the next section.
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u*

Figure 6. Dynamics Compensator
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3,7 Covariance Analysis,- In order to evaluate the performance of the 
controller design using the procedure outlined in sec. 3.4-3.6, it 
is necessary to perform a covariance analysis of the equations 

governing the total system consisting of the optimal regulator 
and the optimal estimator (filter).

The system equations for the optimal regulator are 
x = Ax + BF, (98)

F = ApF + Bf ( v  + nv) (99)
with the measurement equation

z = Cx + 0 , (100)
The system equation for the time invariant Kalman-Bucy

A
filter generating the optimal state estimate x for the above 

stochastic, time invariant state equations, is given by 

C(t) = + B?v + H [z - C?] (.101)
(A A

= + B?v + H [C£ - CS + 0].
Here, the state vectors x, F, S, the control vector v and

the measurement vector z, are defined as follows

9 S  > ®  ’3 g3

F =

: e e , e , e ,x » x ’ y ■ y’ z e , 0 , z S2
•0g

» 0O 2 3 81
’ T

f , F , F , F , 
al rl 2 2 S ’ S ’ V

a » Vr * va » Vr » al rl 2 2 v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The solution of the Riccati equation for the optimal regulator 

problem (sec. 3.4) yields the optimal control vector v as a closed
A  Aloop, time-invariant function of the state estimates x, F as

A
[X ,

v = [GJ5 pf G is 7x21 matrix (102)

" G1C

where is a 7x23 matrix obtained by adding two zero column

vectors to G.

Now let
~ A
e = c - c 

.*. i = c - s
A  ~

and v = G^Z = G^Z - G^Z
But GiC = tGj | (103)

Substituting, for v from above in (99), we have

V  ■ bf g jpj - % Gi'~ C104)
Now, let

G = [G' G"]
where G’ is a 7x14 matrix and G" is a 7x7 matrix. Then,
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bfv = bf G' x + bf G" F - Bp G ^ (105)

Also, the state equation can be written as

Thus, substituting for C from (101),

I = (A^ - HC)C + B^nv - H6. (106)

Therefore, the^equation for the total system of regulator and 

estimator can be expressed as

F I = V  W -bf g i

A^-HC

0 0
B„ 0F

B; -H
n

(107)

The above equation can be expressed as

X - v + Bx v (108)

where
X = (x F ?) . (109)
For a system given by the above equation, the covariance

matrix evolves according to the equation,

JXt = A £ + EAT + B v bJ = 0X X X (110)
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where

2 = E [XXTJ •
The covariance matrix Z is a 44x44 matrix and the diagonal 

elements of Z give the variance of the state vector X = H )  . 
The BMS errors in the estimation of the states can be obtained 

by taking the square root of these diagonal elements. The matrix 
equation (110) is solved by using Smith's method [58,59] outlined 

in Appendix! J.
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Chapter 4 
OPTIMAL LARGE ANGLE MANEUVER 

CONTROLLER DESIGN - NUMERICAL RESULTS

A detailed qualitative analysis of the complex motion of the 

LST-gimbal-spinning rim body was undertaken in Chapter 2. The system 

was considered to be made up of two bodies, the LST-gimbal and the 

spinning rim, and the nonlinear equations governing the motion of these 
two bodies in inertial space were derived in sec. 2.4 and 2.5. A way 

to derive the expressions for the magnetic forces and torques acting on 
each of the two bodies was indicated in sec. 2.7 and the procedure to 

increase the computational time interval for integration of these 
equations was outlined in sec. 2.6. A complete analysis of the non­
linear equations is undertaken in this chaper. In sec. 4.1, the 
nonlinear equations (5)-(8) are reduced to the final form suitable 
for the optimization procedure described in sec. 3.1. The specific 

forms of hard constraints on the state and control variables are 
derived explicitly in sec. 4.2. The numerical results obtained by 
applying the optimization procedure to an LST of specific parameters 

are presented in sec. 4.3.
4.1 Final Form for Equations of Motion for Large Angle Maneuvers of

the LST/AMCD.- The translational and rotational equations of motion 
for the LST-gimbal and spinning rim were derived in sec. 2.4 and 

2.5 in equations (5)-(8).
The expressions for the external forces F ’s and torques t ’ s
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in these equations consist of two parts. The first part is due
to a spring-dashpot system assumed for the bearings and is termed

'’passive." The expressions for the "passive" forces are derived
in Appendix C and those for the "passive" torques are derived in
Appendix B. These expressions are given in terms of the state

variables. The second part consists of additional perturbative
control forces generated by the bearing servos (termed "active"),

the torques at 0 due to the offset of 0 (the point of 8® 8
application of the forces) from ®gS> anc* t îe torques due to the
spin motor and the gimbal torquer. The experessions for the
total forces and torques on the spinning rim are derived in
Appendix D and those for the LST-gimbal are derived in Appendix
E. The control vector consists of eight control variables -
F , F , F , F , F , and F the six (axial and radial) forces 
al a2 a3 rl r2 r3

at the bearing stations and the two torques Tg and T^, the

spin motor torque and the gimbal torquer torque,

As was pointed out in sec. 2,6, the translational motion
of the center of mass of the LST-gimbal, 0 , and the translational8s
motion of the center of the spinning rim, 0 , are not indepen-

SL

dent of each other. Also, it is noted that the small inertial 

motions of the center of mass of the LST-gimbal, 0gS? an<̂  the 
center of mass of the rim, 0 , are not of interest but the magnitude 
of the gaps at the gimbal stations are of practical interest,

These gaps (axial and radial) are seen to be functions of the 
relative displacement, e, between the center of the gimbal ring
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and spinning rim and their relative orientation given by the
differences in Euler angles 0 and 0 . Since the "passive"g a
forces between the two bodies were derived as functions of e

(=x - x ) in Appendix C, the inertial components of e and itsa g
velocity are taken as state variables instead of the motion of 

the mass center of either rim or LST-gimbal, Equations (5)-(8) 

assume the following form:

m x. = - 3 K e - 3 K»e - CF + F + F ) > CHI)a 1 a x  a x a, a„ a„a 1 2  3

ma *2 * ‘ 1’5 V y  ' 1'5 “r S  ' [Fr. cos 61 ”a J J 1

F cos S2 - F cos 63 - Ffc Csin ̂  +

sin 62 - sin 6̂ ) ], CH2)

ma *3 ' ' 1>5 V .  ' 1,5 ' [Fr. sin 41 +a 1
F sin - F sin + F. Ceos 6- -r2 2 r3 3 t 1

cos - cos '«„)], C.113)

E 0 - I 0 - - T . - JL sin 0 [-1,5 K_exxgg g2 xzgs g3 spin 1 ^  y

- 1,5 Ki£ ] - JL sin 0[-) F cos 6, - F cos S0I f  1 J ri 1 r2 2

- Fr cos 63 - FfcCsin 6  ̂+ sin ~ sin C114)
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I '* 0 = K, (0 - 0 ) + K? (0 - 6 ) - T
yyg g2 . X a2 a3 . * a2 a3 g

+ ^  sin 0 cos 0g [- 3 KA ex - 3 K* ex 3

- I- cos 0 sin 0 [- 1,5 Kp e - 1.5 K» e ] ;•■x k y j\ y

+ cos 0 cos 0g [- 1.5 ez “ 1.5 ez]-.-

+ A. sin 0 cos 0 [- (F + F + F ) ]
1 gl al 2 3

- JL cos 0 sin 0 [-1 F cos 6. - F cos 60 -
1 gl * rl 1 r2 2

F cos 60 - F. (sin 6- + sin <S0 -
r3 3 1 2
sin S^)}]

+ 5,, cos 0 cos 0 [- J F sin <S. + F sin S0 -
1 %  *■ ri 1 r2 2

F sin 6- + F. (cos 6. - cos 80 -r3 3 t 1 2

cos 63)}], (115)

M  • •

■'"zz ” xz 3g « K., (.0 - 0 ) + Kf (0 - 0 )gs to3 gs ■ 1 A a3 g3 A a3 83

- sin 0 sin 0g [- 3 K£ ex - 3 ex 3

ft. cos 0 cos 0 [- 1.5 K* e - 1.5 L  e ]1 &2. r y R y

^  cos 0 sin 0g [- 1.5 ez - 1.5 ez]

- sin 0 sin 0 [— (F + F  + F ) ]
1 gl al 2 a3
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and

- £, cos 0 cos 0 [-| F cos 6 - F cos <5- -
1 *1 rl 1 r2 2

F cos - F. (sin 6. + sin <50 - 3 t 1 2

sin 6«)|]

- JL cos 0 cos 0 [--/f sin 6. + F sin 8_ -
1 8I I rl 1 ro 2

F sin 6- + F. (cos 5. - cos 60 - r3 3 t 1 2

cos <S3)j] > (116)
• •

I ' 0 = T ,
yys 8 (117) .

I 0 = T . , (118)xx a, spina l
I 0 + (I u ) 0 = - K, (0 - 0 ) - K* (0 - 0 )

a2 XXa ° a3 X a2 g2 X a2 g2

+ r [T sin 8n + F sin - F sin B„] » (H9)
al a2 a3

•• « • •

I 0 - (I (0)0 = - K, (0o - 0 ) - K? (0a - 9_ )
ZZa a3 XXa 2 3 g3 3 g3

+ r [- F cos 3- + F cos 39 + F cos 3ol • (120)
al a2 a3

It can be seen that (114 ) and (116 ) are simultaneous 
«< »*equations in 0 , 0 and have to be solved together to get
81 S3

separate equations for 0 and 0 . Denoting the right-hand side
81 S3

of (114 ) -. (116 ) by T , x , and T respectively, the equationsx y z
for 0 and 0 can be reduced to the following form: 

gl g3
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z
(114a)

I 0 = T (115a)yyg g2 gsy

U

i

V zz I gs XXI 10 = T +  --
: / g3 gszgs' I

(116a)gs.x

Theoretically, equations ( 111 ) - ( 120 ), with (114a) and 
( 116d) replacing (114 ) and ( 116 ) are the complete set of non­

linear, coupled, second order, nonautonomous differential 
equations fully describing the motion of the LST-gimbal-rim in 
inertial space and can be solved by standard numerical techniques 
on a digital computer. In practice, however, these equations 

pose an enormous computational time requirement for the reason 
discussed in sec. 2.6.

Therefore, following the technique noted in that section, 

the computational time interval required to integrate these 

equations was increased by an order of magnitude. The procedure 
to achieve this is as follows.

First, the high precessional frequency roots, due to the 

large rotational acceleration of the rim, were eliminated by 

defining the transverse moments of inertia of the rim identically
equal to zero. This has the effect of instantaneous transfer of

• •
rotational velocities ® , ® to the rim. The equations (119 )

a2 a3
and (120 ) thereby reduce to
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+ r [F sin 6n + F sin & 0 - F sin 6_], (H9a)
al 1 a 2 a3and

- H 9  + K, 0 = - K, 0 + K, 0 + K? 0o a2 A a3 A a3 A 83 A 63

+ r [F c o s  6, + F cos S0 + F cos S„]. (120a)
ai 1 a2 2 a3 3

• •
These equations can be solved simultaneously for 0 , 0 to

2 3
yield

,2 , „2\ A _ w v . q  _j_ tr v ~ a _i_ v? a -
h

(Kf + H ) 0 = - K, K,* 0 + K, K,* 0 + K * 0A o a„ A A a0 A A g„ A g.

+ K, r [F sin S, + F sin 60 - A ^  1 a2 2

F sin 60]+ K, H 0 - K, 0a3 3 A o a3 A o g3

and

K, H 6 - H r[-F cos <$.. + F cos 60 +A o g3 o aJL 1 a2

7 cosSA <119b>
a3 3

(K? + h2) e - - K. H e. + K, H e + K;H eA O a3 A 0 a2 A O g2 A O g2

+ H r [F sin 6- + F sin <5_ - F sin 6_]- o ai 1 a2 . 2 a3 3

_ K. K? 0 + K, K* 0 + K2« 0
A  A  6 3  S 3

+ K-? r [- F cos 6.. + F^ cos 6, +A a^ 1 a2 ^

F cos 60] (120b)
a3 3
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However, since the magnitudes of the angular gaps 6
2

6 and 0 - 0 are of greater importance than the magnitudes
g2 a3 g3 
of 0 , 0 , the above equations can be rewritten with 0 - 0

a 2 a3 2 g2 
and 0 - 0  as new state variables as follows: 

a3 g3
• • r •

6= " 0« = --------- I - k; K, 0 + K, K: 0 + (Kf - 1)0a2 g2 “ — — 2~ KX ^X °a + *X *X ag *r ^ X  “ ■L; ~g(K? + H ) L 2 g2 g2
A O

+ K, r [F sin 6. + F sin 50 - F sin 6,] +X â  ̂ 1 a2 2 a3 3

K. H 0 - K, H 0 - K, H 0 - HX o a3 X o g3 X o g3 o

r [- F cos 6, + F cos 6„ + F cos 6_] I (119c)a^ 1 a2 2 a3 3 J
and

0 - 0  = -0 1 -0 ■ - K, H 0 + K, H 0 + K: H 0
a3 S3 (K? + H ) I ° a2 ° g2 g2A o

+ H r [F sin 6- + F sin 6„ - F sin 6,]
° al 1 a2 2 a3 3

- K, K,* 0 + K, K: 0 + (K* - 1) 0 + K?X X a3 X X g3 X 83 X

r [- F cos 6- + F sin 80 + F cos 6„] I .3.1 X S/s ^ J I1 2 3  (120c)

Elimination of the large negative roots due to the large 
linear acceleration of the system, is. a straightforward procedure. 
These three roots are eliminated by defining the mass of the 
rim. • . identically equal to zero. This has the effect of

instantaneous transfer of linear velocities , x2 , x3 to
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the MCD.riini.; mass. The equations(H I  ) - (113 ) then reduce: 

to
K n

e = - — ■ e - -5“ - [F + F + F 1 (111a)x K* x 3K* a. a0 a0 » 7a a 1 2 3

%  1£ = - ■ = = ■ £  - -r ----- [F COS S.. - F cos 6_ -? Kj , l.SKj rx 1 r2 2

F cos <S_ - F. (sin 6. + sin 60r3 3 t 1 2

- sin S3)] , (112a)

*R 1e = - —  £ - i „  ■ [F sin 6. + F sin S_ -
H  z 1'5KR rl 1 r2 2

F sin 6, + F (cos 6, - cosr3 3 t 1 2

- cos 6j) ] . (113a)

Substituting for £ in T , T , and T the expressionsx y z
for these torques reduce to the following simpler forms:

T = - T . , (114b)gsx spin

t = k ,(6 - e„ v +  K:(ea - eo . Tg y X a2 g2) X a2 g?) - Tgf (115b)

T = K, (0 - 0 ) + K* (0 - 0 ) . (116b)gsx X a3 g3 X a3 g3

Utilizing equations (111a), (112a), (113a), (114a), (ll5a)» 
(116a), (119c) and (120c), (ill )- (120 ) after elimination of 
high frequency roots can be rewritten in the form (9 ).
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4.2 Explicit Form for "Hard" Constraints.- In the nonlinear, large

angle maneuvering problem formulated above, the state variables

and the control variables cannot assume unbounded values. The

magnitude bounds on states and controls arise due to the

following reasons.
It is easily seen that there are physical limits on the

magnetic gaps in which the spinning rim is suspended. These
limits impose an immediate constraint on the magnitude of the
state variables e , e , e , 0 - 0 and 0 - 0

x y 2 a2 g2 a3 g3
Under the assumption stated in sec. 2.1, the plane of the

spinning rim remains nearly fixed in inertial space. Hence,
magnitude bounds are imposed on the variables 0 and 0 due

g2 g3
to the limits on the magnetic gaps. In addition, the state
variable 0 cannot assume values greater than 2tt, since this 

gl
would mean that the maneuver has been accomplished by passing

through the final desired value of 0 more than once, and,
gl

this would not be an optimal maneuver.
In practical situations, the momentum vector of the 

spinning rim is pointed away from the Sun and the LST is not 
targeted to any point within a cone of 45° around the Sun. This 

imposes bounds on the values 0 can assume.

The constraints imposed on the magnitudes of the control 
variables are much more direct and are a result of the maximum 

force or torque that the electromagnetic actuators and torquer
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motors are able to supply. Thus, it can be seen that all the
control variables have "hard" magnitude constraints.

It is observed that there are no strict limits on the values
• • •the angular velocities 0 r; 0 , and 0 can take; the onlyg ^

indirect constraint being that the values of 0 , 0 , and 0© ®
cannot exceed the "hard" constraints bn them. This is achieved

in the program by prescribing reasonably large saturation values

to these velocities and checking the output to assure that the
state variables 0 , 0 , and 0 do not exceed their limits, g a

Thus, all the "hard" constraints on the state variables 

and the control variables are of the form

x (t) £ x i = 1, 2, . . . n (121)X Sat •1
Uj ^  “ Usatj 3 = 2, . . . m (122)

where the saturation values x and u are given in Table -S3C Sat
1* These inequalities can be rewritten in the following form

1 - — —  > 0 (123)xsat.x

1 - L- > o . (124)
*sat.3

Thus, all the "hard" constraints on the state variables x, and 

the control variables, u, are reduced to the following standard 
form of sec. 2.3.1.

g (u,t) > 0 (125)
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Gimbal
Torquer
(ft-lbs)

Actuator
Forces
(lbs)

Spin Motor 
Torque 
(ft-lbs)

Actuator
Gaps

(inches)

220 2.0 30 0.5

Note: The selection of these values is explained 
in Sec. 4.3.

Table 1. Constraints on Absolute Values of Variables
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h (x,t) > 0 (126)
u. (t)

where g.(u,t) = 1 _ _JL

x.(t)
h (x,t) = 1 -------
1 Xsati

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

4.3 Numerical Generation of Optimal Control Law.- It is noted that
the design objective in the synthesis of the maneuvering problem

was 1) to reorient the LST pointing axis with the new target,
having the known azimuth angle 0 and the known declination

glf
angle 0 ,̂ and 2) to achieve this retargeting with the minimum 
expenditure of energy. It is also to be noted that all the other 

state variables (relative displacement e and all the velocities) 
must return to their steady state value of zero.

The requirement of.achieving the maneuver with minimum 

expenditure of energyis incorporated in the integral penalty term.

The energy expended is assumed to be proportional to the square 
of the forces and torques developed by the electromagnetic 

actuators and torquers.
The algorithm to solve a general nonlinear, optimal control 

problem of the above form was programmed on a CDC 6600 digital 
computer [60] . The program was written in FORTRAN arid can handle 
systems of order up to n = 25 and n + m = 30. The storage space 
provided in the program can store up to 1000 points for both the 
forward trajectory of state equations and the backward trajectory 

of the costate equations. Provision is made to stop the iterative 

procedure with a user specified convergence criterion or maximum 
number of iterations criterion. In the event of the latter, provision 

is made to save the control history generated at the end of the 
last iteration (or in the case when the program encounters the time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

limit), and to restart the iterative procedure from this point 

onward. This feature makes it necessary to repeat only one 

iteration, without repeating all the previous iterations. A 
complete description of the procedure to use this program by a

The above program was used to generate an iterative 
procedure for obtaining the time history of the optimal, open 
loop control law. The numerical results were obtained for an 
LST/Gimbal/Spinning rim having parameters specified in Table 2. 

The maneuver retargeted the LST from an initial target with

example maneuver was restricted to this range because of the 
computer time requirements. In addition, the magnitude of 

forces and torques assumed available at the bearings were 

increased by a factor of 10 in order to complete the maneuver 
within a reasonable time. The assumed magnitude of forces and 
torques are shown in Table 1. The convergence results for this 
specified problem are shown in Figs. 7-13. The initial guess 
for the control law for this maneuver was assumed to be a linear 
law which is known to be the optimal for a simple second order 

system [27]. Thus, for starting the iterative procedure, both 
the spin torque and the gimbal torquer were assumed to be of 

the following linear forms

general user is given in reference [60].

0 = 8 = 10° to a final target 0 = 31.5°, 0 = 28.6°. The
81 81

(127)

T (t) = (Tmax - 2 Tmax -£■ ) g g g T (1 2 8 )
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Mass
Slugs

2Inertia (slug-ft )
IX Iy Iz

Rim

LST

Gimbal

3.105

1,000

12.5

77.71

2,000

312.5

38.85

15,542

156.25

38.85

15,542

156.25

r = 5’ , JL = 21.73* , £- = 30° , Q = 200 rad/sec. 1 o o

Table 2. System Parameters
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It can be seen from the converged value of the time history
for T , Fig. 7, that the shape of this converged time history §
does not change very much from the initial guess. The initial
assumed magnitude was oversufficient to maneuver the LST from

0^ = 0.17 rad to 9^ = 0.5 rad. Hence, the iterative procedure
cuts back on the magnitude of T (t) retaining the form of the8
linear law. This can be easily seen to be appropriate since the
equation of motion in the 9 direction (117) is indeed a simple,

second order equation and is uncoupled from the other equations.

However, the equation of motion in the 9 , direction (114a),
81

is nonlinear and highly coupled with the other state variables 
present. The effect of this can be seen distinctly in the converged 

solution of the time history for the spin control, Fig. 8. The 
final time history differs drastically from the initially assumed 

simple, linear law. This indicates that the initial guess does 
not always work and that the iterative method is capable of over­
coming a bad initial guess. It is seen from the time history plot 

for TSpin that the correction generated by the iterative procedure 
indicates the necessity of a torque magnitude (at a few points) 

greater than that allowed by the magnitude constraint on the 
spin motor. This is found to be the result of the arbitrary 

choice of elements in the penalty matrices. An additional run 
was performed by cutting off these violations. The terminal angle

0 obtained was found to be within 0.01 rad of the terminal 
81

angle obtained without cutting off the violation.
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Figure 9 shows one of the components,£ ,of the displacement

of the rim center from the gimbal center, £. It can be seen from

the figure that the displacement is well below the maximum value
of 0.5." Other components of £ exhibit similar behavior.

Figures 10, 11 show the time history of the two target angles

of interest, 9 and 9. it may be observed here that in the 
gl

present case, saturation values were assigned only to the dis­

placements, linear and angular, but not tb the velocities. In 

spite of this absence of the saturation value on velocities 
(introduced by choosing very high magnitudes of the saturation 
values), it is seen that the terminal value of 9 is fairly low

_3(.84 x 10 rad/sec = 173.2 arcsec/sec). This compares very well 

with the zero terminal velocity in the ideal case. However, it is 
found that the iterative procedure is unable to reduce the terminal
value of 9 to a similar small value. The relatively high resi-

§1 -1 dual velocity 9 (0.44 x 10 rad/sec = 9075 arcsec/sec) can be
S1

nulled by the fine pointing control as shown in Fig. 12. In

practice, it will be nulled by the centering forces. Figure 13
shows one of the components of the relative angular displacement
9 - 9 , between the spinning rim and the gimbal plane. It can

a 2 s 2
be seen that the angular displacement never exceeds the saturation 

_2value (0.833 x 10 rad = 1718 arcsec) during the maneuver,

corresponding to 0.5" gap.
Thus, the iterative procedure successfully generates the time

history of the control required to maneuver the LST with minimum 
expenditure of energy. The maneuver can be achieved
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without violating any of the hard constraints on the system. The 
residual errors in the pointing angles and velocities etc. may be 

corrected in the fine pointing mode.
The following general observations are made on the iterative 

procedure used to derive the open loop, time history of the control 
for a general, nonlinear, coupled, high order system. The rate of 

convergence of the iterative procedure, convergence to the (local) 
minima and the number of iterations required to converge to this 

minima, were found to be very sensitive to the following para­

meters:
a) The initial guess for the control time history to start 

the iterations,
b) The values of the elements of the weighting matrices £,

Q, R and of Heaviside step functions K and K , and
si ci

c) Change in the value of a particular penalty during the 

iterative procedure.
The results for the iterative procedure with an assumed 

bang-bang control history as the initial guess are shown in 

Table 3 together with the converged value of the performance 
index. The results of the procedure with a linearly-varying time 

history (which is the optimal control history for a simple second 
order plant with the performance index to be minimized being the 
total energy), are shown in Table 4 together with the converged 
value "Of the performance index.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

Iter. No. 0S1 6 cost(10 )̂ . AJ Remarks

1
2
3
4
5

0.81
0.43
0.76

-0.031
0.76

.76
0.73
0.73
0.73
0.73

0.3624
0.332
0.329
0.48
0.329

0.1
0.1
0.1
0.05
0.05

G(15,15) = 104

repeat of iter.3 
"converged"

Note: 0 = 0.1745 rad. 0 = 0.1745 rad.
81 o
o

0 = 0.55 rad. 0, = 0.5 rad.
%

f

Table 3. Convergence with Bang-Bang Law 
as Initial Guess
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Iter. No,
6
81 0 cost(lO^) _£J Remarks

.- ■ -■ First Run
1
2

0.5977
0.3280

0.5655
0,5464

1.999
1,087

0.1 . 
0.1 GQ.5,15) - 104

3 0.9508 0,5299 1,027 0.1
4 0.8176 0,5298 0,9964 0.1
5 • -0.35 0.52 1.19 0,05
6 0.8176 0,5298 0.9964 0.05 repeat of iter. 4
7 0.233 0.5257 0.9732 0.05
8 0.6874 0,518 0.9338 0,05
9 0.4775 0.517 0.9266 0,05
10 0.44 0.51 1,257 0.025
11 0.4775 0.517 0,9266 0.025 repeat of iter. 9
12 0.46 0,516 1.008 0,0125
13 0.4775 0.517 0.9266 0.0125 repeat of iter. 

Second Run
11

1
2

0.4700
0.4925

0.5169
0,5169

1.266
1,111

0.1
0.1 G(15,15) - 107

3 0.519 0.5169 0.9925 0.1
4 0.5636 0.5168 0,9593 0.1
5 0.499 0,5169 1,0950 0,05
6 0,5636 0,5168 0.9593 0.05 repeat of iter. 4
7 0.5318 0,5168 0.97 0.05
8 0.5636 0.5168 0.9593 0.025 repeat of iter. 6
9 0.5477 0.5168 0.9547 Convergence

I Note: 0
S1o

0,1745 rad 0 = o 0.1745 rad

0
%

0.55 rad CD Hi II 0.5 rad

Table 4. Convergence with Linear Law as 
Initial Guess - Case 1
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After the procedure converges to the neighborhood of 6 ,̂
it is required to raise the penalty on the deviation of the final

value of 0 :: .from" '- 0 . However, it is seen from Table 5
81 glf

that raising the value of G(15,15) (which penalizes the deviation
4 6in the terminal value of 0 ) from 10 to 10 does not facilitate

Sl 7convergence. However, raising G(15,15) to 10 makes the proce­

dure converge faster as seen from Table 4.
A very high value of an element of the G matrix chosen 

initially may force the numerical procedure to converge to the 
terminal value of that particular state, even when other states 
are far from their desired terminal values. Again, the high 
penalty may or may not even force the particular state to its 

desired terminal value at a faster rate as was desired.
The value of a particular penalty may be required to be 

changed after a part of the iterative procedure, when all other 
states have converged to their final values but not this parti­

cular state. Thus, in summary, a good, near-optimal initial guess 
for the control history is required, and a judicious choice of 
the penalty matrices is required. It may be necessary to conduct

a few test runs to assign the correct values for these matrices

so that a fairly rapid convergence to the correct local minima is 

obtained.
It may be even necessary to change the values of the 

element(s) of the penalty matrices through the iterative procedure,
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Iter. No.
0
81 6 cost(lO^) AJ Remarks

1 0.47 0.516 0.9785 0.05
Second Run

2 0.50 0.516 0.9731 0.05
G(15,15) = 10°

3 0.518 0.516 0.99 0.025
4 0.50 0.516 0.9731 "converged"

Table 5. Convergence with Linear Law as 

Initial Guess - Case 2
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when the procedure indicates convergence of only some of the 
states to their final desired values, but not of others. Again, 

it may be necessary to conduct a few more test runs to assign 
proper new values to these elements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 
OPTIMAL FINE POINTING 

CONTROLLER DESIGN - NUMERICAL RESULTS

A qualitative analysis of the motion of the LST-gimbal-spinning 

rim was done in Chapter 2. Assumptions made to linearize the complete 

nonlinear equations of motion, were outlined in sec. 2.8. A way to 
derive the expressions for the magnetic forces and torques acting at 
the bearing stations was indicated in sec. 2.7. The elements of the 
coefficient matrix B (premultiply the control vector u) are derived in 
Appendix F. A complete analysis of the linearized equations is under­
taken in this chapter. In section 5.1, the linearized form of 
equations (5) - (8) is reduced to the final form suitable for optimi­
zation procedure described in sections 3.4 - 3.7. The numerical results 
obtained by applying this procedure to an LST of specific parameters are 

presented in sec. 5.2.
5.1 Final Form for Equations of Motion for Fine Pointing Control of

the LST/AMCD.- The translational and rotation equations of motion 
for the LST-gimbal and the spinning rim were derived in sec. 2.4 

and 2.5. As was pointed out in sec. 2.1, the gimbal torquer is 
locked during the fine pointing control and so, the relative 

degrees of freedom between the gimbal ring and the LST (i.e., 0 
and 0) are lost. Both the bodies move as a single rigid body. The 
equations derived in section 2.4 and 2.5, therefore, will have
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to be modified slightly providing for the above changes.

Following the discussion in sections 2,6 and 2.8 concerning 
reduction in order and linearization, the above equations will have 

to be modified further as follows:

1) Combine equations (6) and (8) to get a single equation in
the variable x - x = £. Here, £ is the difference in the iner- a g
tial positions of the center of the gimbal ring and the center of 
the spinning rim. This facilitates calculation of the air gaps at 
the bearing stations in terms of this difference and allows the 
magnetic forces and the spin torque (control vector components) to 
be expressed as a function of these difference, and

2) Drop equation (5a) since the small spin up (or slow down) 

of the spinning rim is of no direct interest to the problem.

Further, from the detailed discussion of the controllability
of the system in Sec. 3,4, it was found necessary to ignore the

transverse angles of the spinning rim, viz., 6 and 9 while
a2 a3

designing the state feedback optimal regulator and calculating 

the gain matrix. It is, however, noted that, for the design of 
the Kalman^Bucy filter these two variables are included in the 

state vector to maintain observability. Thus the optimal regulator 
utilizes only a part of the state vector estimate from the filter, 

for feedback purposes.
Next, the explicit form for the equation of motion for e, 

is developed utilizing the geometry of Fig. 14.
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Figure 14. LST-Gimbal-Spinning Rim Geometry
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Thus,
e = x - x (129)a g
• « M »• M - *e = x - x - r (130)a gs

Here r is a fixed vector in the reference coordinate"frame

0 x y z which is rotating with the angular velocitygs gs gs gs
* *  *w = ( 0 , 0  , 0 ). Therefore, the velocity components of rg g-L g2 83

in this reference frame are given by

r = [w J r (131)

where [tô ] is the cross-product matrix defined earlier.

Substituting for the components of r as
r = - !L cos 0, r = 0 ,  r = JL sin 0 (132)x 1 » y ’ z 1

and simplifying, after substituting for x , x , equation (130)a gs
reduces to the following vector form

e = ( —  + — ) B u - r (133)m m aa gs
• f

Finally, dropping the equation for 0 and considering onlycL
0 and 0 as the state variables (but not 0 and 0 ), the
a2 a3 a2 a3
equations of motion for the system can be reduced to the final

standard state variable form of sec. 3.4, viz.,
x" = A x ' + Bu (134)

where x ^  = (e £ £ E £ £ 0  0 0 0x x y y z z g2 g2 g3 g3
0) W 0 0 \
a2 a3 gl Sl)
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Here x* is a 14th order state vector and u is a 7th order 
control vector. The elements of the matrices A and B are given 

in Appendix F.
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5.2 Controller Design and Numerical Results.- In the derivations of 

the equations of motion above, it was tacitly assumed that the 
control vector of magnetic actuator forces and torques was 
directly available and one could control the values of these 

forces and torques. However, in practice, these electromagnetic 

forces and torques are a result of the voltages in the actuator 

servo circuits. These forces and torques could be controlled 
only indirectly by controlling these voltages in the servo 

circuits. Thus, the differential equations of actuator dynamics 
governing the relations between the control voltages and the 

control forces and torques have to be included in the system 
equations as well. The actuator dynamics are represented by 

first order transfer functions (e.g., time lags due to inductances 
in the servo circuits). The control vector F, then, is obtained 

from the equation
F = Ap F + Bp(V + r y  (135)

where V is a 7x1 control voltage vector, and the zero-mean, 
white noise term r|̂  is included in order to represent actuator 
noise. The elements of the diagonal matrices A^, and are 

given in Appendix F.
The total system equations, therefore, can be written in 

the following vector matrix form
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The above system of equations can be expressed in the standard 

form where

x ' = ( e e £ £ £ £ d  0 0 0 w tox x y y z z g2 g 2 S 3 S3 a2 a3
0 0 )T
Si *1

F = (F F , F , F , F , F , T ) T
al rl a2 r2 a3 r3 S

V = (V , V  , V  , V  , V  , v , v ) T
al rl a2 r2 a3 r3 3

and r|y is zero-mean, white noise vector representing actuator

noise.
It is assumed that the LST attitude and rate measurements 

are available via star trackers mounted (on hardware inside the 
LST) and rate gyros mounted on the LST. The axial and radial gap

measurements are assumed to be available from the axial and radial
proximity sensors mounted at each actuator station. Thus, the 

measurement equation is

y = Cx + ny (137)
where

y =(6 ,6 ,6 ,6 ,6 ,6 ,0 ,0 , 0 ,ai’ rx* - a2 r2 a3 r3 g1» g2 g3
• «
0 , 0  , 0  )T 
*1 g2 g3

and n is a 12x1 zero-mean, white measurement noise vector.
y

The elements of C matrix are given in Appendix F.

It is noted, however, that the state vector x in equation
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( 137) above, contains the two transverse angles 9 , 9 which
a2 a3

are eliminated from consideration in the controller design for 
equation ( 136), due to the criterion on controllability. Thus, 

the state vector x in equation ( 137) is
x = (e , e , e , e , e , e ,  9 ,9 ,0 ,0 ,cu ,v x ’ x ’ y» y» z’ z’ g2» g ^  g ^  g3* a ^

•••T T0) ,0 , 0  , F ,0 ,9 )
a3 81 81 a2 a3

which is a 23x1 vector.

The procedure outlined in sections 3.4 to 3.7 can now be 
applied directly to the above problem for designing the stochastic 
optimal controller for fine pointing control. First, the deter­

ministic optimal regulator problem is solved to get the optimal 
closed loop gains matrix G, so that the optimal control law is given 

by
u* = G x" (138)

where x'* is the minimum-mean-square (MMS) estimate of the 

state vector x^. The state estimate x' used in the controller 
is a part of the complete state estimate x of the state vector 
x. This estimate x is generated by the Kalman-Bucy filter 

governed by the equation

x(t) = A £(t) + B u(t) + H [z(t) - C x(t)] (139)
with the initial condition x (o) = xo o

The filter (or observer) problem is next solved to obtain 

the optimal filter gain matrix H.
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As pointed out in sections 3.4 and 3.5, both the controller 

gain and estimator gain matrices are obtained via Newton-Kleinman 
iterations (Appendix H), using Kleinman's stabilizing (G), and 
Smith's method (J) for solving the Lyapunov matrix equation.

A complete block diagram of the dynamic compensator is 
shown in Fig. 6 . It is seen from that figure that only a portion 

(x') of the complete state estimate x is utilized for feedback 

purposes.
In order to investigate the performance of the above 

controller, a linear covariance analysis is performed as was 
outlined in sec. 3.7. The equations for the optimal regulator 

and the optimal controller were put in the form

where £ is the state vector and v is the input noise vector 
with known covariance intensity (table 6 ). The covariance 

matrix evolves according to the equation

This matrix equation can be solved by Smith's method ([58] 
and Appendix J) and the steady state covariance matrix E can be 
obtained. The diagonal elements of E give the variance values 

of the state vector £.
The closed loop response with optimal gain, feedback control 

is plotted to observe the performance of the closed loop system.

? = A ? + B  v (140)

E = AE + EAT + B v BT = 0 (.141)
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The time history of the pointing angles 9 , 9 ,  and 6 and
gl g2 g3

one of the transverse angular velocity of the rim, 0) are of
a2

particular interest and are plotted. Figure 15 shows the time 
response of the above variables for the LST-gimbal-rim config­

uration when the angle 0 =0°. This is the configuration when 
the inertial parameters have their least values. It is observed 
that the initial pointing errors are nullified in 5-6 seconds 

and the transverse velocity of the rim also is nullified.
Figure 16 shows the time response of these variables when 

0 = 45°. In this configuration the cross coupling effects

between 0 , 0 ,  and 0 are greatest in magnitude. It is
81 g2 g3

again found that the initial pointing errors and the transverse

angular velocity are nullified within the acceptable time interval.
The design of the optimal filter is done based on the

procedure indicated in Sec. 3,5 and the optimal filter gain matrix
was obtained.

To evaluate the validity of the design, covariance analysis
of the regulator and the filter was conducted (Sec, 3,6-3.7)

and the values of the RMS errors of the pointing angles 0 , 0 ,
gl g2

and 0 are tabulated in Table 7. The values of the sensor and 
g3

actuator noise parameters used are shown in Table 6, The values 

of RMS errors in pointing are found to be less than 1 arcsecond. 
These could be reduced further by a proper choice of weighting 
matrices and noise parameters.
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Source Standard Deviation

Proximity Sensors 

Star Tracker 
Rate Gyros

Input Noise for Each 
Degree of Freedom

0.0012 in.
0.5 sec 
0.031 sec/sec

0.0001 (normalized)
T

Table 6. Noise Parameters
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S1 %2 §3

Proximity Sensor Noise 0.22 0.483

Star Tracker Noise 0.067 0.1
Rate Gyro Noise 0.71 0.508

Actuator Noise 0.0906 0.191

All Sources 0.76 0.73

Table 7. RMS Errors in Pointing Angles, arc sec., 
idue to Various Noise Sources
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Chapter 6 
CONCLUSIONS

It has been demonstrated that both large angle maneuvers and fine 
pointing control of a Large Space Telescope can be effectively achieved 

using a single gimbal, single AMCD configuration.
A general user-oriented computer program was developed to compute 

an open loop optimal control law for a general, high-order, nonlinear 
system with "hard" constraints on state and control variables. The 
control history was generated using an iterative procedure utilizing 
a modified Gradient Method with penalty functions for handling the 

constraints. An optimal open1loop, time varying control was computed 
for a nonlinear, large angle maneuvering problem, involving an LST 
reorientation of- 20°.This optimal control law minimized the terminal 
pointing errors and the energy used for executing the maneuver, Conver­

gence to a local minima was highly dependent on the initial control 
history chosen. Thus, for the minimum power (or energy) solution, it 
was desirable to choose the initial control history to be the linear 
law, which was known to be optimal for a simple second order system 
[27]. Other choices, e.g., the bang-bang control which is the optimal 
control for the minimum time problem, lead to a very low convergence rate 

or to a different local minima.
Choice of the weighting matrices G, Q, R and the Heaviside 

functions H(h^), H(g_̂ ) also affect the convergence rate. Too high 
a penalty on one or some of the state-or control variables, may result
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in the numerical procedure converging only those variables to their 
terminal values, The performance index converged to a minimum value, 

even though some of the variables had not yet reached their terminal 

value or some variables have exceeded their constraint limits. Several 
test runs were required to assign proper values to the elements of these 
weighting matrices. Also, it was necessary to change the weights after 
the iterative procedure indicates convergence of one or more of the 

variables to their desired terminal values, when values of others were 
still far from their desired values. Accordingly, the penalties on 
the states which were far from their desired values were increased, so 
that the errors in these states were minimized in the next stage of 
iterations.

Thus, the program was used successfully to generate an optimal 
control history for a specific nonlinear problem of large angle maneuvers 

of an LST. It was shown that the computation of the optimal control 

law for a high order, nonlinear system was an art rather than a science. 
Several test runs, along with a good initial guess and judicious selec­

tion of penalties are needed to obtain meaningful results,
A linear, time invariant, closed loop, optimal control law (as 

a state feedback) was obtained for providing fine pointing control for 
the LST, A powerful iterative technique due to Kleinman {49.] was used 

to get the optimal controller gain matrix, using Smith’s method [58J 

which has been proved useful for systems of high order. The procedure 
was extended, in the present problem, to a system which was only
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stabilizable; thus, relaxing the requirements of controllability 
generally required by the above procedures.

The minimum mean square (MMS) error state estimate was obtained 
using the Kalman-Bucy filter and an optimal observer gain matrix was 

obtained using the same procedure as was used for the computation of 

the controller gains matrix above. Only a part of the estimated 
state vector was used for the feedback control law.

The covariance analysis of the total system of the regulator 

and the estimator (of the order 44) was performed to evaluate the fine 
pointing controller design. The RMS error in the estimates of the 

true pointing angles of the LST were found to less than 1 arcsecond.
This can be reduced further, if desired.

A few suggestions for future work of interest are listed below.

The problem has severe requirements on computer storage. A
large time interval is required to achieve any significant maneuver of
more than 20° - 30°, due to the necessity of a very small step size
(0.01 sec) for (forward) integration of the system equations and for

2(backward) integration of the adjoint system of order n , etc. These 

difficulties make a parametric study of the maneuvers all but impossible 
from the viewpoint of computer time required for each run and the number 

of runs required for even a moderate number of parameters. Since, it 
has been shown for the complete system that the maneuvers can be achieved 

without violating any constraints on linear and angular gaps, and other 

variables, these variables can be ignored and a much simpler system of
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significantly reduced order (consisting of only target angles 0 and
81

0 for example) can be studied to conduct a parameter survey to get 

nondimensional design curves.
The linear, fine pointing control problem was solved to yield 

an optimal controller gain matrix which includes all cross feedbacks. 
This controller is complex to implement in practice. A preliminary 

design of a simplified controller, in which the axial position of the 
rim in the gaps and the LST pointing control was decoupled from the 

radial position control of the rim, was considered by Nadkarni, Groom, 

and Joshi £ 61J - Further work on that procedure is needed before the 
controller design may be simplified appreciably.
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Appendix A 

Transformation Matrices

The various transformation matrices are given by

’ V ' V

yb ► "" 'V *yi
-Zb -zi-

'XI V

- T V “ t v 3' yb ►
• ZI ■V

'wX 91 :

‘ 0) y • = [VbE]' 92 ’

•wz •93

\ wX

•{2• = 0)y

.By

(A.l)

(A. 2)

(A. 3)

(A.4)
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Figure A.I. Body Fixed Coordinate Frame
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where

Appendix A (cont'd) 

Transformation Matrices

r ce2 ce3

-ce2 S03

S0,

se2 ce3 +  ce1 se3

-s01 se2 s03 + c01 c©3

-s 0 x co2

-C 0 1 S02 C03 +  SO-ĵ  S03

S02 S03 +  C03

C01 C02

[EbI]_1= [Eb /

(A. 5) 

(A. 6)

V̂bE^

r ce3 c02

- S 0 3 C02

S0,

S0,

C0,

0

0

1

(A. 7)

and

f V 1 ■ [vbE]-1
C03/C02

S0,

-ce3 s02/c e 2

■S03 /C 0 2

C0,

S03 S02 /C 0 2

0

0

1

.(A.8)

When the transverse angles 02, ©3 are small (<0.3 in present 
problem), the Euler rates can be approximated by following relationships:

0 3 - w  • 1 x 92 ‘ “y and 0O - u 3 z
(A. 9)

(Note: Here S0 = Sin0 and C0 = Cos0, etc.)
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Appendix B 
Expressions for "Passive"Torques

In the Figure B.l, the Fj's are acting in the positive Og 

direction and on the rim are taken as positive forces.

Fn = (K X + K.X) r sin Y + K.X r Y cos YX el cl 3.

F„ = -(K X + K.X) r sin(60°+ Y) - K.X r Y cos(60°+ Y) B̂ *2^L a a a
F_ = (K X + K.X) r sin(60°- Y) “ K.X r y cos(60°- y) (B.3)j 3, cl SL

The components of torques due to these forces can be resolved
into two components, one along the line of nodes, T, and the other

normal to it, T , as follows:P

T = r [ - Fx sin Y + ̂  sin(6ĉ + ¥) - ?3 sin(6(f- y)](b-4)

= r [ - F^ cos Y + 2̂ cos(60°- Y) + cos(60°- y)Kb*5)

Substituting for F^'s in above from (B.l) - (B.3), and simplifying

T = - (K^X + K^X) B̂ ’6)

T = - K{X Y (B-7)p X

where
K. = 1.5 r2 K (B-8)X a
K* = 1.5 r2 K. (B -9)X a

These components can be expressed along the gimbal axes 0 yO O
and 0 z as g g
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6(f

T, X, X

Figure B.l. Magnetic Bearing Forces and Resulting Torques
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T = T cos i - T sin i • (B.10)
yg P

T = T sin i + T cos i (B.ll)z pg
Following the derivation given in reference 6, and using Euler's 

Theorem on rotations, one can obtain the following expressions,

X = (A0* + AS*)*8 (B.12)

X = A0£ c o s  i + A0g sin i (B.13)
A0„

A0,  J-
sin i = — = ^ A ©2 + A0^ (B.14)

A0,
A0 •------------- ^

cos i = = ^A0^ + A0* (B.15)

Y = i - 6 (B.16)

(B.17)

(B.18)

(B.19)

(B.20)

Substituting these in (B.10) - (B.ll)

T = - K, (0 - e ) - K# (0„ - - KJ 6 (0 - 0 ) (B.21)
yg X a2 g2 x a2 g2 A 3 3

• •
T = - K, (0 - 8 ) - K; (9 - e ) + K; 6 (8 - e ) (B.22)
zg X a3 g3 X 3 g3 X 2 2

A82 = 0 - 
a 2

0
g2

A83 in CD P3
CA

1 0
g3

CM
•CD< •

= 0 - 
a 2

•
0
g 2

A03 = 0 - 
a3

•
0
g3
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Now 5 = 0  since 5 is fixed in gimbal frame. Thus, the expressions 
for the components of passive torques in the gimbal-fixed frame are

T = - Ki, (0 - 0 ) - K,* (0 - 0 . (B.23)yg X a2 i 2 ' X a2 g2>

T = - K, (0 - 0 ) - K,* (§ - 9„ ) (B.24)zg X a3 g3 X a3. g3

These are the torques acting on the rim. The torques acting on the

LST- gimbal at 0 are opposite to these torques.S
The above expressions are used in writing equations ( HI) - 

( 120) for the nonlinear problem.
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Appendix C 
Expressions for"Passive" Forces

In the Figure C.l, the F^'s acting radially outwards on the rim 

are taken to be the forces following the procedure similar to that 
developed in Appendix B,

F^ = - E cos y - [ £ cos y - sin Y Y .1,

F2 = - e cos(60°+ y) + [e cos (60°+ y) - e sin(60°+ y)Y ],

Fg - - e cos(60°- y) + [s cos(60°- y) - e sin(60°- y)y ],

where £ = x - x • (Cl - C4)a g

The components of the total force due to these bearing forces can 

be resolved into one along the relative displacement e of the rim 

with respect to the gimbal and one normal to it.

Thus,
F = F^ cos Y - cos(60°+ y) - F^ cos(60°- y) » (C«5)

F = F. sin Y + F_ sin(60°+ Y) - Fq sin(60°- y) . (C.6)p i  z j
Substituting for F^'s from (C.l) - (C.3), and simplifying

F ■ - 1.5 Kj £ - 1.5 Kj e, (c-7)

Fp = - 1.5 £ Y • (C,8)

The components can now be expressed in inertial frame as follows:
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r3

Figure C.l, Magnetic Bearing Forces and Resulting Forces
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F = F cos i - F sin i (C.9)
yl P

= F sin i + F cos i (C.10)I P

Substituting for F. and Fp in (C.9), (C.10), and neglecting the 

product of small quantities^ the expressions reduce to

F - - 1.5 (x2 - x2 ) - 1.5 (x2 - x2 ), (C.ll)
yI a g a g
F = - 1.5 K_ Cs, ■- x, ) - 1.5 K* (x_ - L  )• (C.12)
ZI *  3a 3g *  a 8

These expressions are used in equations (111-120) for the 

nonlinear problem.
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Appendix D 

Total Forces and Torques on the Rim

In the Figure D.l, the F , F , F are control forces acting at
3  a X  a t1 1

the ith bearing station and are the forces exerted by the gimbal on 

the rim. These forces are given by:

FC = F + F + F , (D.l)
Xg al a2 a3

Fy = Fr, cos ■ Fr, cos e2 - Fr, cos 63

and
- F (sin + sin 82 - sin 83), (D.2)

FC = F -sin 81 + F sin - F sin 80 Z r 1 r 2 r 3g rl 2 3
+ F (cos 8^ ~ cos 83 “ cos £3)*

Similarly, the inertial components of the control forces

FC , F° , and Fc can be derived.
XI yI ZI

The torques on the rim due to these control forces are

TC = 3 r F. , (D*4)x tg

T° = r Tf sin 81 + F sin 80 - F sin 80 ] > (D.5)yg L ai 1 a2 2 a3 3

T = rf - F cos 81 + F cos 80 + F cos 80 1 • (D.6) z L a .  1 a„ 2 a_ 3 Jg 1 2 3
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Figure D.l Forces and Torques on the Rim
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The components of 'passive" torques acting on the rim are given 

in the gimbal-fixed frame as (Appendix B)

T p = - K. (0 - 0 ) - K-J (9 - 0 )
yg X a2 g2 X 2 2

(0.7)

T p = - K, (8 - 9 ) - K* (0 - 0 ) (0.8)
zg * a3 g3 X a3 3

Thus, the torque on the rim is given by
x = TC + TP (D.9)a

These expressions are used in equations ( 118)— ( 120). The total 

forces on the rim are given by

f = f!: + FP (D.10)a l l
where F^ is the component of F°'s along the inertial axes and F 

is given by expressions derived in Appendix. C.
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Appendix E 

Total Forces and Torques on LST Gimbal

The forces on the LST-gimbal are the reaction forces, which are 

equal and opposite to the forces exerted by the gimbal bearing stations 

on the rim. Therefore,

F = - F (E.l)gs a

The expressions for F are given in Appendix D and the components

of F are shown in Fig. E.l. gs
The total torque acting on the LST-gimbal at the system center 

of mass 0gs, consists of the following:
a) The reaction torque, T , which is equal and oppositegs

to the bearing torque by the gimbal on the rim, T ,CI
b) The torque, Tg^, due to the passive forces, Fgg, (equation

C.ll and C.12) acting at 0 , andO
c) The torque, t c , due to the control forces, Fc , (equationgs ’ gs’

D.l - D.3) acting at 0 .s
The expressions for reaction torques are given by equations 

(B.23-24), with the signs of all the terms reversed. The expressions 
for torques due to forces at 0 can be derived as follows.S

If F , F , and F are the forces acting at 0 , then the 
XI yI ZI g

components T^, and T^ (Fig. E.l) are

T = - F JL sin 0 (E.2)
yI
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Figure E.l. Forces and Torques on the LST-Gimbal Ring
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T„ = F JL sin 0 + F JL cos 0 (E.3)2 Xj 1 ZI

T. = - F JL cos 03 yx 1

These components can be expressed in reference frame 0gg x^g

y z as gs gs

T = T. (E.5)
8SX  1

T = T„ cos 0 + T_ sin 0 (E.6)gSy 2 8l 3 Si

T = - T_ sin 0 + T_ cos 0 (E.7)gsz 2 8l 3 gx

The components of T P and T c can obtained from equations (E.5) -gs gs
(E.7) by substituting the values of F ^ (Appendix C) and Fgs gs
(Appendix D) respectively. These expressions are used in equations 

(111 )-(120 ).
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Appendix F 
Coefficient Matrices

The elements of the coefficient matrices A, A^, B̂ ,, 

are as follows:

A =£ a j_>2 ] ij j - 1» 2, . . . 14

where

where

where

a. . = 0  except for the following elements,

al,2 = a3,4 = a5,6 = a7,8 = a9,10 = a13,14 = 1,0 

all,12 = “ a12,ll = " Ho/]1yya;
a

= 1, 2, . . .  7

1,J

F =

0 i + j
-400 i = j ;

£ J i , j — 1,2, . . . 7

F. .i,J

0 i ^ j

400 i = j ;

B =

B£ - E(e) B

V
B 3
B 2 
*3V 
h

t

B, and C
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where denotes ith row of etc., and B£, B^, and B&
i

3x7 matrices whose elements are listed below.

B = —  + -i-m m a gs

1 0 0
0 c6^ s6.
1 0 0
0 -c62 s6,
1 0 0
0 -cS3 -sS,
0 0 0

0
fts0c3c
0

-&s0s3

0
-£s0s3"1

1

-S,s0+rs3c

S,c0s 3q

-&s0-rc3

-Ac0c3

-£s0+rc3

Jlc0c3+

0

rc3o
Ac0c3c
-rs3~

-&c0s3

-rs3+

-Ac0s3H
0
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0 -sBo -c3o
0 0 0
0 c8 sg

0 0 0.
0

+cn01 s8+
0 0 0
1 0 0

and
0 s0 0

E (0) = -S0 0 -C0

0 C0 0

and the elements of the coefficient matrix C are given as follows

C = [c. .] i = 1, 2, . . . 12,
j = 1, 2, . . .  23,

where C. . = 0 except for the following elements

cl,l = c3,l = c5,l = c7,7 = c8,8 = c9,9 = c10,10 = cll,13 

= C12,14 =

and
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Cl,7 " "Cl,22 " rs3o ’ Cl,9 = “Cl,23 " rc3o ’ 

C3,7 = ~c3,22 = -rc3 * C3,9 = “C3,23 = _rs3 »

C5,7 = “C5,22= rc3+ » C5,9 = "C5,23= "rs3 ’

c2?3 = CV C2,5 = s6l ’ °4,3= “cS2 »

°4,5 = s32 ’ c6,3 = “c 3̂ ' C6,5 = -s^3’ 

where = " 3o ’ 2̂ = 1̂ * 33 = ^l’

3“ = 30P- 3o , $+ = 30P+ 3q .
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Appendix G

Computing the Stabilizing Gain for a 
Linear Constant System

It is required to find a control law of the form

u(t) = - L x(t) (G.l)
that stabilizes the linear constant controllable system 

x(t) = Ax(t) + 3ii(t) (G.2)
without having to transform A to a canonical form and without regard

to explicit closed loop pole assignments. Such situations exist in 

iterative methods for solving matrix quadratic equations of the 
following type (sec. 3.4 )

- LA - ATK - Q + KBR-1 BTK = 0 • (G.3)
The following theorem presents a constructive method of finding 

a set of stabilizing feedback gain.
Theorem:

If the system (G.2) is completely controllable, then 
u(t) = - L x(t) is a stabilizing control law with

L = BT w~1 (T) , (G.4)

“At T Â -te BB e dx j T = arbitrary
o

and
T -1 v(x) = x w x

is a suitable Lyapunov function for the closed loop system.

The proof of this theorem is given by Kleinman [52],
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Appendix H

Iterative Technique for Riccati Equation Computations

An iterative technique used for solving the linear regulator 
problem with infinite time (steady state problem) is outlined below. 

The method uses successive substitution methods developed by 
Kleinman [49].

Theorem:
Let V^, k = 0, 1, 2, . . ., be the (unique) positive 

definite solution of the linear algebraic equation

° = a£ vk + + cTc h J r i ^ .  (H.l)

where, recursively,
L. = R'1 BT \ - l  , k " l> 2> ‘ • ■ - (H‘2)k
Aĵ  = A -  B Lfc , (H .3 )

and where L is chosen such that the matrix A = B L has o o o
eigenvalues with negative real parts. Then

1) K < Vk+1 < V k < .......... k = 0, 1, . . .

2) £im V, = K 
- k-*°°

The proof of the above theorem is developed by Kleinman 

using the concept of a cost matrix.
The following advantages listed make the iterative technique 

very useful in applications to Control problems.

1) Since the system is completely controllable, it is always 
possible to choose an Lq, such that Re (Aq) < 0.
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This condition is necessary to insure the boundedness of the 

cost matrix Vq ; otherwise the iterations may converge to an 
indefinite solution. It is noted here, that the initial Lo
can be chosen using the stabilizing gains computed in 

Appendix G.
2) Kleinman [49] has shown that the above iterative scheme is 

precisely that which is obtained by applying Newton's method 
(in function space) to solve equations of the type (G.3). 
However, Newton's method above does not provide conditions 

that will insure monotonic convergence, whereas this method 

insures this.
3) In addition to being monotonically convergent, the method is 

also quadratically convergent and hence the convergence is 

rapid compared to other methods.
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Appendix J

Numerical Solution of the Matrix Equation 
Ax + xA^ + B = 0

A method of solving the nxn matrix equation

Ax + xA^ + B = 0 (J.l)
for systems of large order (n <^146), is outlined below:

Let q be a positive parameter, let I be the nxn identity 

matrix, and let

u = (gl - A)-1 , (J•2)
v = u(gl + A) , (J.3)

w = 2 q UBUT . (J*4)
If an eigenvalue of A has negative real parts,

‘ 00

y = £  vi_1  w(Vi_1)T (J.5)
i=l

converges and is the solution of (J-l) for x, where A, B, and x are 
nxn matrices, B and x being symmetric. The rate of convergence 

can be improved by using the sequence of partial sum

2v

'vy = ]£ Vi_1 w(V1-1)T (J-6)
i=l

which can be obtained recursively from

yQ = w , (J - 7>

y = y + V^2V  ̂y V^2V  ̂ T. (J-8) Jv+1 v
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The matrix recursion formula (j,8) works well for solving (j,; 
on large systems. The method is given by Smith [58] based on 
method of solution suggested by Smith [59],

even
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Appendix K

On Relaxation of Controllability and 
Observability Criteria for Solution of Riccati Equation

When Newton's method is applied to the solution of the algebraic 

matrix Riccati equation, two potential difficulties arise. One, the 

method may not converge, and secondly, it may not converge to the 
desired solution. Kleinman [52] has given a theorem (Appendix H) 
demonstrating that the difficulties do not arise if the initial guess 
is stabilizing. He has also given [49] a numerically appealing pro­
cedure for generating a stabilizing initial guess (Appendix G). 
However, this technique like other techniques, assumes the complete 
controllability and observability of the linear system. The theorem 

stated below due to Sandell [54] points out that the assumptions of 
controllability and observability can be weakened to stabilizability 

and detectability.

Theorem:

If the system
x = Ax + Bu

is stabilizable, then
u(t) = - L x(t) is a stabilizing control

law with
L = BT w # (T)

where w(T) A ^ eAx BBT eA Tdx, T = arbitrary 
—  ô

where # denotes generalized inverse. The proof of the above is
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is given by Sandell [54].

The relaxation of the controllability (observability) requirement 

to stabilizability (and detectability) is very important for applica­

tions. Kleinman*s start up technique [52] and the Newton-Kleinman 
iterative procedure [49] can now be applied with confidence to systems 

that are not completely controllable (and/or completely observable) like 

the linear, fine pointing problem under study.
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Appendix L 

Survey of Numerical Methods

It is easier to analyze and visualize the finite dimensional 

optimization problem in the Euler n-space before analyzing the 
optimization problem in the function space as stated. The 
former problem is variously called "static" optimization, parameter 
optimization, or function minimization, etc. In its simplest form, 

it can be stated as follows:
Minimize J = F(x, u) 

where F is a general nonlinear function of the state vector x and 
parameter vector u. Since near the minimum, the second order terms 

dominate, only those methods which will converge quickly for a general 

function are those which will guarantee to find a minimum of a general 
quadratic exactly (apart from numerical round off error) and speedily. 

It is well known that for a general quadratic, the direction of search 
is in the direction opposite to the gradient of the function to obtain 

maximum rate of decrease, which was the basic idea of the method of 
steepest descent [62] . It is possible to prove convergence under 
weak assumptions on F(x) and to obtain bounds on the asymptotic 
rate of convergence. These bounds, however, demonstrate that the 
method is likely to perform unsatisfactorily on general functions, and 
the slow rate of convergence persists even in case of some quadratic 
functions. The difficulty arose because the method failed to utilize 
the curvature of the functions and hence the solution behaved in an
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oscillatory manner near the minimum. The so-called Newton or Newton- 

Raphson method or other methods based on the second variation, 
overcame this difficulty by maintaining the step size of search along 
the gradient of the function inversely proportional to the second 

derivative (curvature) of the function. This, however, introduced 

two additional difficulties - one, to calculate the Hessian matrix 
(numerically for nondifferentiable functions) and, two, to invert the 
Hessian matrix at each iteration. The method completely breaks down 

when the Hessian matrix is locally singular at any step during the 
iterative procedure. Also, the generalized Newton-Raphson methods 
demanded a good initial guess. These serious disadvantages outweighed 

the fast convergence properties of the method near the minimum. [63]
A significant contribution to the field of function 

minimization was achieved when Hestenes and Steifel [64] proposed a 

method, now popularly called the method of conjugate gradients, for 
linear systems. The method was based on the fact that, to achieve 
conjugacy or search directions for quadratic functions, it is only 
necessary to force -an orthogonality condition on successive search 

directions without evaluating the Hessian matrix [62]. The method 
was extended to general functions by Fletcher and Powell [65 ] with a 
modification of Davidon's metric method which has become popularly 

known as the Davidon-Fletcher-Powell(DFP) method. The method circum­
vented the necessity of evaluating the inverse of the Hessian matrix 
by replacing it with an arbitrary, positive definite symmetric matrix, 

which was initially an identity matrix. The iterative scheme pro-
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yided a correction for this matrix and it was shown that this 

corrected matrix tends asymptotically to the inverse of the Hessian 

matrix. The method was very useful in handling functions of a large 

number of variables, required only first derivatives and could start 
from a poor initial guess. A slightly modified version of the DFP 

method was given by Fletcher and Reeves [66] to reduce the storage 
requirements. These methods developed algorithms having the capa­
bility of starting from a poor initial guess,sureness of convergence 
of steepest descent and fast convergence near minimum of the Newton- 
Raphson methods. The methods also assured that the minimum is reached 
in at most n steps (where n = number of variables). Myers [67] 
showed that both Davidon's method and the C-G (conjugate gradient) 
method search along the same line in the absence of numerical errors 

and that the direction vectors of both are positive scalar multiples 

of each other. However, the C-G method was less susceptible to error 

propagation due to numerical roundoff.
Soon many more variants of the steepest descent method and the 

conjugate gradient method began to appear in the literature.
These methods however, were mostly developed for specific problems.

Although the methods described above primarily dealt with the 
problem of minimization of functions without any constraints on 

variables, linear constraints on the variables of the type 
g(x) >_ 0 h(u) >_ 0

could be handled by these methods with slight modifications. The 

modifications involved essentially eliminating, or at least relaxing,
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the constraints and solving the resulting problem as one of an uncon­

strained minimization problem or a sequence of such problems. This 
can be done in the simplest possible way by change or transformation 
of variables. However, this method is useful only when the number 
of variables is very small. Other ways of achieving this soon 

emerged. Roberts and Lyvers [68] proposed "hemstitching" where the 
point from which the steepest descent search was started, returned to 
the constraint boundary whenever the point violated the constraint.
The method can handle large number of variables, but it breaks down 
for nonconvex objective function. More systematic methods with a 
theoretical backing in terms of existence and convergence theorems 
have been proposed. Prominent methods: are the gradient projection, 

modified DFP method,approximation technique, or more commonly known 

as the penalty function method, or sequential unconstrained minimi­

zation technique.
The gradient projection method was introduced by Rosen [69] as 

a general nonlinear programing algorithm for problems with linear 

constraints and with nonlinear constraints [70] . The basic idea of 
the method is to search in a direction in which the function decreases, 
but which is also tangential to the constraint boundaries. Thus, the 

direction of search is given by the (negative) projection of the 
gradient on the constraint subspace. Attempts were made [71, 72, 73] 
to combine the gradient projection method with the DFP method.
However, in the gradient projection method the gradient of the function 

is not orthogonal to the search direction (as in DFP method) at a
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pointwhere it encounters a constraint. A new sequence of conjugate 

directions must therefore be started each time the constraint set is 
changed. Methods to update the inverse of the Hessian matrix for 

steps of arbitrary length and directions have to be included [7l] and 
the computational requirements would increase tremendously for high 

order systems.
The approximation technique or the method of penalty functions 

was introduced by Kelley [74]to handle problems with equality or 
inequality constraints on the variables. The method essentially 
consisted of redefining the original performance index with the help 
of Heaviside unit step functions, so that the value of the index is 

penalized to be high whenever the constraint is violated. Kelley has 
shown that for increasingly large values "of the penalty, the solution 

of the modified unconstrained minimum problem will tend towards the 
desired minimum problem with constraints. Butler and Martin [75] 
developed a penalty function method as an extension of Courant's 

method in Hilbert space and gave rigorous mathematical proof about 
the existence and convergence of the method. The penalty function 
technique is quite compatible with the successive approximation process 
provided by the gradient methods. Thus, the penalty function technique 
could be used in conjunction with the gradient procedure for ease of 
programing for problems involving a very large number of variables.
The required computer logic is minimized; the influence of a particular 
violation is increasingly large if the constraint is violated, the 

influence being automatically nil if the constraint is satisfied.
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The .method, however, is not without its drawbacks. If the value of 
the unit function is chosen too small, the method converges to the 

minimum of performance index without paying any attention to constraint 
boundaries. On the other hand, too heavy penalties may result in 
convergence to the nearest point on the constraint boundary from the 

starting point. Hence, a judicious choice of the value for the unit 
functions must be made. This may not only involve different weights 
for different variables, but also some preliminary trial runs for 
establishing these weights.

A slight modification of the penalty function method, called 
the sequential unconstrained minimization technique (SUMT), was 

proposed by Carroll [76, 77] and developed by Fiacco and McCormick 
[78], The method replaces a constrained minimization problem by a 

sequence of unconstrained minimization problems. By attaching 
different penalty functions to the given objective function,the 
successive optimal solutions(of unconstrained problems) approach the 

optimal solution of the given constrained problem.
Many attempts were made to extend the various methods of static 

or parameter optimization problems of Euler space into Banach space 
or the function space. The problem in general hcie is one of mini­
mizing :

J - QOtp tf) + <|>(x, u, t) dt
o

subject to

x(t) = f(x, u, t), x(o) = xQ
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and

g (u, .t) > 0, h (x, t) •> 0 •

One of the major difficulties faced in extending the methods of 

minimization of the functionals in Banach space was that the exis­
tence of the extremum (minimum or maximum) of a function which is 

assured in Euler space by the boundedness and continuity of the tj 
function cannot be assumed anymore. In Banach space, the continuity 
of the space often has to be replaced by a weaker property of semi­
continuity. Also, the convergence theorem, of the Euler space does 
not hold if the elements of the set are not points on a line or in 
n-space, but functions, curves, or surfaces. Lagrange proposed to 
solve this problem with the multiplier method he had proposed earlier 
for ordinary problem of constrained maxima and minima in differential 
calculus. He proposed to include the above differential equality 

as an equality constraint in the function to be minimized and solve 
the problem as an ordinary extremum problem. However, this method 
does not take into account the inequality constraints on the control 

variables usually present in the optimal control problems. However, 
the method was very powerful and Pontryagin et al [26̂ ] finally 
succeeded in presenting the solution to the optimal control problem 

in a very elegant manner by formulating the necessary conditions or 
the so called "maximum (or minimum) Principle." The problem was 
reduced by the Maximum Principle to a two-point boundary value problem

(TPBVP)of ordinary differential equations with split boundary condi­
tions. The application of the Maximum Principle for linear problems
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yields an ideal, linear, closed loop solution for the control vector. 

For a general nonlinear problem with state and control constraints, 

these set of equations may not be solved in a straightforward manner.

The difficulties in solving the two-point boundary value 
problems led to a search for variational methods of different kinds, 

known as direct methods or numerical methods useful for use of modern 

computers. The search developed broadly along three classes of 
techniques, Rayleigh-Ritz or finite difference, dynamic- programing 

and gradient methods.
Rayleigh-Ritz techniques cr finite difference methods are perhaps 

the earliest techniques used for the minimization problems. These 
methods are however, not too popular due to the difficulties in 

finding a suitable set of base functions. Another method, that of 
discrete dynamic programing was based on the Hamilton-Jacobi-Bellman 

partial differential equation, which is equivalent to Bellman's 

equation in function space. The method resembles closely £he 

method of characteristics and is able to provide a nonlinear feedback 
control law. However, the method suffers from severe storage problems 
and is all but useless for problems involving more than three or four 
variables (the so called "curse of dimensionality" by Bellman himself). 

This prohibits its use in problems involving a large number of 
variables (such as the present one) even though the state and control 
constraints present can make the application to dynamic programing 

easier.
Hence, the only feasible straightforward direct numerical method
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to be considered in the steepest descent or gradient method and its 

many variants and methods requiring second derivatives. Many proposals 
were put forward extending the steepest descent method, the conjugate 
gradient method and the DFP method to the function space [79-85].
These methods and their variants were proposed to handle problems.with 

equality and inequality constraints in conjunction with the gradient 
projection [86-88], penalty function [89, 90], and sequential uncon­

strained problem [91-94]. McReynolds and Bryson [95] proposed a 
successive sweep method, which was essentially a unification and exten­
sion of steepest descent method and the second variation method. This 

method required, in addition to the usual integration of the adjoint 
vector differential equation, and additional integration of a matrix 
differential equation involving first and second derivatives of the 
performance index. It also required the second derivative of the 

Hamiltonian with respect to the control variables to be a nonzero 
matrix.

For the large angle maneuvering, nonlinear problem under con­
sideration with added state and control inequality constraints, most 
of the methods described above posed potential difficulties. As was 
mentioned before, the problem consists of 20 ordinary, first order, 

differential equations. Also, the dominant translational frequencies 
of the spinning rim (~ 2 ojq) required extremely small step size for 

computing the trajectory. Even after certain approximations (sec. 2.6)

the step size could be increased to only 0.01 sec. The high order of 
the system equations together with the very small computational

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



164

interval, rules out the methods based on second variation because of 
the tremendous storage problems and large computational time require­

ments even on the biggest computers available. Calculation and 
inversion of the Hession matrix of the performance index at each point 
along the trajectory will impose additional computational time require­
ments so severe that the advantage of the quadratic convergence of the 

method is certainly lost. The method may not also be able to handle 
the hard constraints efficiently.

The conjugate gradient methods are limited to lower order problems 
(less than 4) [62,96] and this method getsworse as the order increases.

The modified DFP method (Fletcher-Reeves method) requires storage of, 
in addition to the gradient trajectory, one more trajectory of actual 

directions of search [82]. The method cannot handle the integral term 

in the cost function and the inequality constraints on states and 
controls.

The conjugate methods in addition require for a linear case, that 

the coefficient matrix A to be positive definite [63]. This require­
ment cannot be met in the present case, as is evident from the discussion 
of the linearized version of the present nonlinear problem in sec. 3.4.
The gradient projection method, in conjunction with any of the minimi­
zation techniques above, can handle equality constraints very effectively, 
but cannot handle the hard inequality constraints. Even if the method 
can be modified, the expensive correction cycle required during each 

iteration, rule out this method for high order system as in present 
case.
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