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ABSTRACT

THE SOLUTION OF HYPERSINGULAR INTEGRAL EQUATIONS 
WITH APPLICATIONS IN 

FRACTURE MECHANICS AND ACOUSTICS.

Richard S. StJohn 
Old Dominion University, 1998 

Director: Dr. John Tweed

The numerical solution of two classes o f hypersingular integral equations is 

addressed. Both classes are integral equations of the first kind, and are hypersingular due 

to a kernel containing a Hadamard singularity. The convergence of a Galerkin method 

and a collocation method is discussed and computationally efficient algorithms are 

developed for each class of hypersingular integral equation.

Interest in these classes of hypersingular integral equations is due to their 

occurrence in many physical applications. In particular, investigations into the scattering 

of acoustic waves by moving objects and the study of dynamic Griffith crack problems 

has necessitated a computationally efficient technique for solving such equations.

Fracture mechanic studies are performed using the aforementioned techniques.

We focus our studies on problems addressing the Stress Intensity Factors (SEF) of a finite 

Griffith crack scattering an out of plane shear wave. In addition, we consider the 

problem of determining the SEF of two parallel Griffith cracks and two perpendicular 

Griffith cracks. It is shown that the method is very accurate and computationally 

efficient.

In acoustics, we first consider the moving wing problem. For this problem we 

wish to find the sound produced by the interaction of a moving wing with a known
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incident sound source. Although this problem is relatively simple, it is a good precursor 

to the two-dimensional, finite, moving duct problem.

The bulk o f  the research is focused on solving the two-dimensional, finite, 

moving duct problem. Here we look at sound propagation and radiation from a finite, 

two-dimensional, moving duct with a variety of inlet configurations. In particular, we 

conduct studies on the redirection o f sound by a so-called scarf inlet design. In said 

designs, we are able to demonstrate the ability to redirect sound away from sensitive 

areas.
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1

SECTION 1

INTRODUCTION

Motivated by the desire to solve problems in fracture mechanics and 

aeroacoustics, numerically efficient algorithms for two classes of hypersingular integral 

equations are derived. Both classes of integral equations are integral equations of the 

first kind and contain a Hadamard and a logarithmic singularity along with a weight

function A“(r) = ( l—t 2)° 2 for a  = ±1.

The case a  = 1 is considered in section 2. The form of the integral equation is 

given by

1 r» - —2-+Blnjj-r| + D(5,r) dt = g(s) for |s|< 1 (1.1)
[ ( '- O '

where B is a constant, D{s,t) is a bounded function and g(s) is sufficiently smooth. A 

theoretical argument showing that (1.1) is uniquely solvable is followed by the 

development of a collocation method and a Galerkin method. Both aforementioned 

solution techniques are theoretically shown to converge to the unique solution and 

numerical experiments are conducted to better understand these rates of convergence.

In section 3 equation (1.1) is modified by assuming a =  -1. In addition, it differs 

from the previous class of integral equations because, in order to guarantee uniqueness, it 

will be shown that two subsidiary conditions are needed. This class of integral equation

The Journal o f  Computational and Applied Mathematics was used as the model journal 
for this dissertation.
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2

arises from physical situations with inherent boundary conditions. The class of integral 

equations along with the subsidiary conditions is given below

Two types of subsidiary conditions are considered. The first is the integral type 

subsidiary condition.

where wt (/) is a given weight function. The end-point type subsidiary condition is also 

considered and is denoted by

A technique similar to the one developed in section 2 is used to give theoretical 

assurance that equation (1.2) along with subsidiary conditions (1.3) is uniquely solvable. 

A Galerkin method is shown to converge to the unique solution and therefore, a Galerkin 

algorithm is developed to solve (1.2) with subsidiary conditions (1.3). In addition, a 

collocation method is derived and a computationally efficient algorithm is developed. 

Although the convergence of the collocation method is not, as yet, theoretically proven, 

numerical experiments demonstrate that the method rapidly converges to the unique 

solution.

In both classes of integral equations the first integrals are, in general, divergent 

and must be interpreted in a finite-part sense. In addition, the logarithmic terms have 

been extracted because although a logarithmic singularity is analytically integrable, it is

with subsidiary conditions

Wkf  = gt for & = 0,1. (1-3)

(1-4)

(1.5)
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3

numerically difficult to evaluate. In order to solve both classes of integral equations, 

analytic and numerical techniques are used.

The reason for the interest in these classes of integral equations is that they arise 

from many physical situations. The remainder of the dissertation is devoted to solving 

problems in fracture mechanic and aeroacoustics. Three chapters dealing with three 

distinct, but related, problems in fracture mechanics are presented followed by two 

problems in aeroacoustics; the study of sound propagation by moving objects.

The first problem in fracture mechanics is the dynamic Griffith crack problem. 

Here we are concerned with finding the stresses at the end of a finite line discontinuity 

located in an elastic, homogenous, isotropic medium, which is diffracting an out-of-plane 

shear wave. This problem has been studied by many others and is well documented. 

Therefore, we will be able to compare our solution with solutions obtained by others. In 

addition, this relatively simple problem will serve as a precursor to problems where two 

Griffith cracks are diffracting an out-of-plane shear wave.

The diffraction of an out-of-plane shear wave by two parallel Griffith cracks is the 

next problem studied. A related problem, the problem of two symmetric, parallel Griffith 

cracks, has been extensively studied and it is our goal to expand on this research. With 

the methods outlined here we are able to determine the stresses for any two disjoint, 

parallel Griffith cracks and we will compare our results to the results for the special case 

of symmetric cracks.

The final problem in fracture mechanics is concerned with finding the stresses of 

two perpendicular Griffith cracks which diffract an out-of-plane shear wave. Very little 

research exists for this problem and therefore, we expect to gain some new insight into

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

this problem. Future research will combine the later two problems into one by looking at 

the diffraction of an out-of-plane shear wave by any two disjoint line cracks.

For the study of aeroacoustics, two problems are considered. The first is the 

scattering of an acoustic wave by a thin moving wing. Following that is the effects of the 

scattering of an acoustic wave by a thin moving duct. In both problems we are assuming 

the motion is uniform in an undisturbed medium. Also, the wing and the duct are both 

infinitesimally thin. Therefore, linearized acoustics will be used.

The moving wing problem is concerned with finding the total acoustic pressure 

due to scattering of a known acoustic wave by the interaction of a thin moving wing. 

Although this problem has few applications, it is a good precursor to the moving duct 

problem because the moving duct is comprised of two of thin moving strips constructed 

in such a way that they form a duct.

The scattering of an acoustic wave by a thin moving duct is a problem with many 

applications. In particular, we will spend a great deal of time focusing on studies 

involving the effects of a scarf inlet on the radiated sound. A scarf inlet is defined to be 

an inlet configuration such that the line connecting the upper portion of the inlet with the 

lower portion of the inlet makes an angle a  with vertical. See Figure 1.1

Figure 1.1 Scarf Inlet Geometry
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5

In our case the duct is of finite length, but research exists for the semi-infinite 

duct. That is, the trailing edges of the duct are extended to negative infinity and the 

leading edges are constructed as in Figure 1.1. The prominent method for solving the 

semi-infinite scarf inlet is the Wiener-Hopf technique and some useful results have been 

obtained. It is our goal to extend these results to the finite duct.

In conclusion, we will see that the methods outlined in the first two sections are 

ideal for solving problems in fracture mechanics and acoustics. The algorithms are 

extremely fast and accurate and little modification is required to expand on the topics 

presented here.
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SECTION 2

THE SOLUTION OF HYPERSINGULAR INTEGRAL EQUATIONS

where B  is a constant, D(s,t) is a bounded, continuous functions, g(s) is sufficiently 

smooth and

integral equation with a Hadamard singularity. The Hadamard singularity in (2.1) is, in 

general, a divergent integral and must be interpreted in a finite-part sense, which is 

defined by

where the integral on the right hand side of (2.2) is a Cauchy principle value integral. 

Cauchy principle value integrals have been investigated by a number of authors [10,13, 

14,21,22]. In particular, Golberg [13,14] shows that equation (2.1) is uniquely solvable 

and proves numerical convergence results for a Galerkin method and several collocation 

methods when B = 0. Frenkel [10], on the other hand, developed a Galerkin method for

PARTI

2.1 Introduction

Consider the following integral equation,

~ / ,  A( 0 / ( ') j  i 1 ~ rl + E{s,t) U = <?(•*) for M < 1 (2.1)
\s ~ t )

2
Due to the (s - 1) term in the kernel, equation (2.1) is known as a hypersingular

(2.2)
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solving (2.1) but no proof of convergence was given. In this section, the theoretical 

development to the extension of Golberg will be given which includes the logarithmic 

singularity. In addition, the numerical technique developed by Frenkel will be improved 

upon by outlining a more efficient collocation method algorithm.

We begin by noting some well-known definitions and relationships. The 

Tchebyshev polynomials o f the first and second kind, respectively, are defined as,

r„(s) = cos(n0) (2.3)

where s = cos(0) . It is well known [25] that the Tchebyshev polynomials of the first and

second kind are related via the Cauchy type integral

* = - r - w for " - 0 (2-5)

Furthermore,

^  r „ w =«(/„., (,). (2.6)

By using the definition of the finite-part integral the Hadamard term takes the form

~ \  r dt = ~(n + O*7"(s) for n > 0 .  (2.7)
\ s - t )

Equation (2.7) suggests that (2.1) may be solved by approximating the unknown solution, 

f ( t ) ,  in a series o f Tchebyshev polynomials o f the second kind, i.e.

/ ( ' ) = f / A W -
n= 0
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8

Numerical experiments have shown this to be true and it is our goal now to theoretically 

substantiate this claim.

2.2 Fred holm Theory

The first task will be to show that equation (2.1) is equivalent to an integral 

equation o f the second kind on a suitable Hilbert space and thus, governed by Fredholm 

theory. To that end, we introduce the following operators J -f, £ ,  and D .

Definition 2.1. The Hilbert space H  is defined to be the space o f real-valued, measurable 

functions

(2.8)

with inner product

(2.9)

and norm

(2 .10)

It is well known that the Tchebyshev polynomials of the second kind, ^ U n{t), form an 

orthonormal basis for H. Define the following operators:

Definition 2.2. Define the linear operators J-f, £ , D , and ~W by

(2 .11)

(2.12)

(2.13)
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9

y /  = B £  + T> (2.14)

respectively, where 2? is a constant.

By virtue o f equation (2.7) it is clear that

-(/i + l)t/„ for n > 0 (2.15)

is an unbounded operator. However, Golberg [13] shows that the operator (2.11) has a

bounded, right inverse J f 1 . Furthermore, he showed that the nullspace of JC 1,

N^J-C1  ̂=  0 . Therefore, for every g  e  H , the special case of (2.1) for which /? = £> = 0

has a unique solution / e / 7 .

Now the solution of equation (2.1) will be studied. In operator notation, (2.1) 

takes the form

j £ f  + lW f  = g  (2.16)

It should be noted that the operator D  is assumed to contain a continuous kernel and is 

therefore compact [23]. Furthermore, since £  contains a weakly singular kernel, it too is 

compact [23] and by the linearity o f the operators £  and D , is compact. Finally,

since J-C1 is bounded, JC*^W  is compact and equation (2.16) is equivalent to the 

Fredholm equation

/  + j £ I '\V f  = J C : g .  (2.17)

The solvability of (2.16) may therefore be determined from the classical Fredholm

theory. In particular, (2.17) has a unique solution if  and only if N (l  + JC 1 Tvj = 0.

This condition is assumed to hold and hence, (2.16) or equivalently, (2.1) has a unique 

solution f  e /7  for every g  e  77. Now that a unique solution exists, the convergence of 

the Galerkin method is discussed.
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2.3 Galerkin Method

The convergence of the Galerkin method relies heavily on the fact that the 

o p e ra to r^  is compact Using this fact, the convergence argument developed by 

Golberg follows immediately. In order to be thorough, the method he uses is outlined 

below.

Approximate the solution of (2.1) by a finite expansion o f Tchebyshev 

polynomials of the second kind, Un(t), n = 0,1,2,..., Af. That is,

= (2.18)
n»Q

Define the residue rM by

r „ = ( J f + " lV ) / l" l - g  (2.19)

and determine the coefficients f n, by requiring that

{rM,Um) = 0 io rm  = Q ,\,- ,M  (2.20)

This yields the Af + 1 linear equations

= for m = 0,1,..., M (2.21)
n*0

It is now shown that for sufficiently large Af, (2.21) has a unique solution and that the 

corresponding sum converges in mean to the unique solution/  That is,

U m |[ / - / ‘" ’[ = 0. (2.22)

This is done by reformulating (2.21) in a fashion analogous to that used by Golberg [13]. 

Let PM be the orthogonal projection operator

= (2.23)
f t  nm 0
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Then the orthogonality conditions

(<ru ,Um) = 0 for m = 0,1,..., M  (2.24)

are equivalent to pu ru  = 0 or

Pu ( * f f {M) + 'W fiM)- g )  = Pu ! X f {M) + PmW (M) ~Pu g = 0 (2.25)

Note that espan{Un}^a , therefore PMJ-Cf{M) = Hence, f (M) satisfies

+ Pu y / f {u) = Pu g  (2.26)

Clearly, (2.26) has a solution if and only if f (M) satisfies

f(M) + t f i p J t y f W  = ip u g  (2.27)

According to Baker [3], in order to see that f (M) has the property (2.22), it is sufficient 

to show that

U m |j f ' 'V t '- J f , P„'V|J = 0 and j j n p f ’g -  J { ‘ P „ ^  = 0 (2.28)

Since 1 is bounded, it is sufficient to show that

h m ||V -P wV ||  = 0 and Um||g-Pwg|| = 0 (2.29)

The limits in (2.29) are valid from the fact that {Un}^_Q are complete in Hand 'W  is

compact Hence, the Galerkin method determined by (2.18) and (2.20) provides a 

convergent numerical scheme for solving the integral equation (2.1)

2.4 Collocation Method

In the collocation methodXO is approximated as in (2.18),

/ ' " ’( ' ) = S / A W
B-0
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and coefficients f„ are determined by the M  + 1 equations

(2.30)

where the tm are suitably chosen collocation points. Golberg [13] proves that the 

collocation method converges to the unique solution when the collocation points are 

chosen to be the zeros of 7^+1(x) or the zeros o f C/M+,(x ).

2.5 Galerkin Method Algorithm

In this section, the Galerkin algorithm is outlined. As denoted in the theory, the 

unknown solution of (2.1) is approximated by a finite expansion o f the Tchebyshev 

polynomials o f the second kind,

In order to set up the corresponding matrix equation, each term in (2.33) will be 

considered separately.

The finite-part integral is approximated by

M

Substituting (2.31) into a modified (2.1) yields,

£ ; / „ / '  k = <2-32>
.(s - t )

M

whereA(f) = V l- t 2 and A * 0 .  Hence, for m = 0 ,l,...M

f  M t) A(sP n ( tp m(s} - ^ + B ] n \ s - t \  + D(s,t) dtds
rt= 0  0 (2.33)
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« ( s - t )n=0

n=0 

n=0
Ms

'/i=0

In evaluating the logarithmic integral use is made of the formulas

® fln2 1 = 0
In]* -  r| *  v;7;(r)2 ;(4  where v, = j  2/  / > i

/ -o  [ / /  -

and

Hence,

5 Z  / » £  £ , A(0 A(*)tf» H* -  ¥ tds/i*0

= - B S / . S  ^  J', I', (s)i;(t)i;(s)adt
n -0  1-0

= - « £ / . £ > <  J',
n -0  /=0

— ■*(?) - < W
V J  n - 0  / -0

By expanding the regular part of the kernel in the Tchebyshev expansion,

D (s ,t) -  f ldt ,Ui (sp ,( t)
kJ-0

where

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)
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du  = -  J ' f' A(s)A(l)D(sj)U , (sp ,(t)d sd ,. (2.39)

we can write the bounded integral as

£ / „ ! '  j  A(>)A(s)C/,(,)l/m(S) j r j t lC/t ( s p ,( , ) i t*
n-0 tj~0

- t f .  I . d u S ' X ' P . m m S '  t f s p . { s p t {s)ds (2.40)
n-0 kJ-0

=  ( j )

Finally, the right-hand side becomes

l'lA(s)t/.,(l)«(4*

= J ',A(-S)C/.W Z * * C/»(J>* t2-4 ')

It
~ 2 gm

Therefore, the matrix equation to be solved is given by

£  - Aftin + l)Sm n - B ~ r mn+^ d m„]f„=gm for m = 0,1, . . . ,M  (2.42)
n-0 L *• J

where

r .„ = (I n 2 )< S .A o + —m v ’ m+2 m n

d-  = J.,1 , A(i)A(()C /.(i)C /.(()fl(i,'>*^ (2.43)

Sm -  f,A(j)£/.(*)g(i)<&.

Now we need to approximate the regular part and the right-hand side matrix components. 

This is accomplished by using a modified Tchebyshev quadrature. Hence,
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(2.44)

and

*-«  =  L L  ± (s M ‘W s , ‘P „ ( s p n(t)dsdt

Z  [ r -  (*■) ~  Tn+2 (*, ) ] f c  (*, ) -  Tm+2 ( * ,  )]z>(x,, X, )

8m =J_l| A( )̂C/m (5)^(5) ^
1 sQr , (2.45)

where

J  2/ + 1c, = c o a ----------- it
\2 N Q + 2

2.6 Collocation Method Algorithm

The Galerkin method requires the evaluation of double integrals for the bounded 

part of the kernel and a single integration for the right-hand side forcing function. The 

collocation method, on the other hand, requires only one numerical integration of the 

bounded part of the kernel. Therefore, the collocation method is computationally more 

efficient than the Galerkin method. A collocation algorithm for solving equation a 

modified (2.1) is now developed.

The method described here will make use o f the following analytic results.

f A(t) dt = -7t(n + l)U„(s) fo rn > 0 and |s |< 1 (2.47)
1 (*“ 0

^ ^ - I n 2  for « = 0
T 2 ( s )  T ( s )  for N*1 (2-48)
V 2 W  for n > 1
n + 2 n
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Let the unknown function, J(t), be approximated by a finite expansion o f 

Tchebyshev polynomials of the second kind.

/r* 0

Substituting (2.49) into the modified integral equation (2.1) yields

Now, we will evaluate equation (2.50) at the collocation points suggested by Golberg

With the use of (2.47) and (2.48), the integral equation is approximated by the linear 

algebraic system below,

£ / .  f‘ O M  U = (2-50)
n-0 ‘ (^“ 0

[13],

(2.51)

(2.52)

where

a „ ,= -4 r i  + \)Un{xi)

■^(2^(Xj)-ln4) for n = 0

(2.54)

(2.53)

fin i = \[*{t)U n{t)D{xi,t)dt (2.55)

8i = 8 i xi)- (2.56)
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In order to complete the collocation algorithm, a numerical integration scheme 

must be used to evaluate the integral. The scheme is given by a modified Tchebyshev 

quadrature formula,

2.7 Numerical Results

In this section a specific example is used to illustrate and compare the above 

algorithms for accuracy and computational efficiency. Due to fewer numerical 

integrations, the collocation method is more computationally efficient. However, the 

degree of efficiency has not been determined. An illustrative example with some later 

relevance is given. We wish to solve the following integral equation

is the Hankel function of the second kind of order X. Jx and Yx are the Bessel functions of 

the first and second kind, respectively.

(2.57)

where the quadrature nodes are located at

(2.58)

dt = kco sa e i>amia for |s j< l (2.59)

where
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Clearly we have to put this in the form of (2.1). To do this we will isolate the 

singular behavior of the kernel in (2.59) by expanding the kernel for |s -  f| « 1 .  This 

yields,

2 / 1 f t 2  , . ik2 (  k 1  wr') ^ - .2 \—  , ,— -  = -----------r------- InLs —/  In—+ y  1--------------------- )
\s - t\  x  \  2 2 2 J V i ;

where y  *.57721566490153 is Euler’s constant By using this expansion, equation

(2.59) takes the form

2  / ;u2
(s - t f

- i k  lnjj—/| + D[s,t) dt = k co sa e ihsC0Sa (2.60)

where

D{s,t) = 7t^  ^  - -  - -  +ik2 ln |s-f| = 0 (l) + 0 ( |j - f |2). (2.61)

In order to compare the two methods the following values will be used: k -Z K  

and a  = 0. The first set o f results is located in Table 2.1. This table shows the magnitude 

of each vector component in the expansions o f the Galerkin method and collocation 

method followed by their difference for the case M -  20. The computational time 

necessary to complete this case is negligible and therefore a more detailed study of the 

time requirements is necessary. In Table 2.2 the computational time, in seconds, required 

to complete each case is given along with the number of terms taken in the expansion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Table 2.1
Term by term comparison of the solution vectors obtain by the Galerkin 
method and the collocation method

it G a lerk in  m e th o d :  
M a g n itu d e  o f  th e  
n* c o m p o n e n t  \f„\

C o llo c a t io n  m e th o d :  
M a g n itu d e  o f  t h e  

it* c o m p o n e n t  |? A|

D iffe r e n c e
\\fn\-\gn\\

0 1.40E-01 1.39E-01 8.43E-04
1 3.99E-01 3.96E-01 2.26E-03
2 3.83E-01 3.80E-01 2.79E-03
3 7.40E-01 7.36E-01 3.86E-03
4 5.16E-01 5.12E-01 4.39E-03
5 4.88E-01 4.85E-01 2.90E-03
6 5.46E-01 5.44E-01 2.28E-03
7 8.69E-01 8.63E-01 5.29E-03
8 5.83E-01 5.78E-01 4.39E-03
9 4.30E-01 4.26E-01 4.38E-03

1 0 2.28E-01 2.25E-01 2.99E-03
1 1 1.14E-01 1.12E-01 2.01E-03
1 2 5.00E-02 4.89E-02 1.14E-03
13 1.95E-02 1.89E-02 5.94E-04
14 7.29E-03 7.00E-03 2.87E-04
15 2.35E-03 2.23E-03 1.24E-04
16 7.68E-04 7.16E-04 5.23E-05
17 2.14E-04 1.95E-04 1.93E-05
18 6.22E-05 5.50E-05 7.18E-06
19 1.54E-05 1.30E-05 2.38E-06
2 0 3.90E-06 3.43E-06 4.67E-07

From Table 2.2 it is clear that for large expansions, the Galerkin method is far 

more computationally expensive than the collocation method. In some of the case studies 

later in this dissertation, we will show that number of terms needed in the expansion 

exceeds 100. In that case, the Galerkin method requires over 2 minutes to execute and it 

implements a do loop with 1 0 E8  multiplication, whereas the collocation method requires 

only 10E6 multiplication and about 2 seconds to execute.
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Table 2.2
Time, measured in seconds, required to execute each 
method with varying number of terms in the solution
expansion

N o . o f  
te r m s

G a lerk in  m e th o d  
E x e c u t io n  tim e

C o llo c a t io n  m e th o d  
E x e c u tio n  t im e

1 0 0.06 0.05
2 0 0.33 0.06
30 1.54 0.16
40 3.63 0.33
50 9.06 0.54
60 17.90 0.83
70 32.24 1.15
80 54.11 1.37
90 85.12 1.64

1 0 0 130.95 1.98
1 1 0 189.05 2.41
1 2 0 266.82 2.96
140 493.45 4.23
160 840.85 5.83

To further test the accuracy o f the two methods, consider Table 2.3. For fixed 

k  = 40, a  = 0, the z* vector component with the maximum relative percentage between 

the two methods is computed along with the vector location of the maximum error for 

varying number of terms used in the expansion.

Assuming that the solution has converged when the maximum error between the 

two methods is less than 2%, the next step is to try to relate the number o f terms required 

in the expansion to the parameter k. The next table does just that Varying the parameter 

k  and holding a  = n !  2  fixed, the number of terms in the expansion required to produce a 

maximum relative error of less than 2% between the two methods is determined. Table 

2.4 suggests that M  » 2k will produce the desired convergence.
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Table 2.3
Maximum relative percentage error between the Galerkin method and 
collocation method for varying number o f terms in the solution
expansion

N o . o f  
T e r m s

M ax. e r r o r  
lo c a t io n :

/

G alerkin
\ f t \

C o llo c a tio n
\H\

M ax  
r e la t iv e  
% Error

2 0 18 8.81E-10 3.09E-09 250.86
25 2 2 1.74E-09 7.57E-10 56.45
30 28 1.63E-09 5.74E-10 64.80
35 34 1.65E-09 8.27E-10 49.77
40 36 2.01E-09 1.23E-09 38.77
45 38 1.61E-09 1.05E-09 34.52
50 38 1.46E-09 1.15E-09 21.45
55 38 1.40E-09 1.20E-09 14.29
60 38 1.36E-09 1.22E-09 10.05
65 38 1.34E-09 1.24E-09 7.37
70 38 1.33E-09 1.25E-09 5.58
75 38 1.32E-09 1.26E-09 4.33
SO 38 1.31E-09 1.26E-09 3.43
85 38 1.30E-09 1.27E-09 2.78
90 38 1.30E-09 1.27E-09 2.28
95 38 1.30E-09 1.27E-09 1.90

1 0 0 38 1.30E-09 1.27E-09 1.60
105 38 1.29E-09 1.28E-09 1.36
1 1 0 38 1.29E-09 1.28E-09 1.16
115 38 1.29E-09 1.28E-09 1 . 0 1

1 2 0 38 1.29E-09 1.28E-09 0 . 8 8

125 38 1.29E-09 1.28E-09 0.77

Finally, to see if M= 2k is indeed a good stopping criterion, Table 2.5 shows the 

relative change in the Ith component by letting M — 2k. This is done by evaluating the 2th 

component using M = 2k  and M =  2k + 20 terms in the approximation and determining 

the relative percentage change between the two. Furthermore, from Table 2.3, the 

maximum error between the two methods seems to occur on about the A* term.
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Therefore, the change in the term is considered. Table 2.5 gives the relative percentage 

error of taking an additional 2 0  terms on the i* term of the solution.

Table 2.4
For varying k, the number of terms required to 
obtain a maximum relative error of less than 2% 
between the solutions obtained by the Galerkin 
and collocation methods

k N o. o f  te r m s  
req u ired

M ax. relatr  
% E rror

10 2 0 1 .05
12 2 4 1 .56

14 28 1.29

16 32 1 .50
18 36 1 .50
2 0 4 0 1.88

2 2 4 9 1 .04

2 4 53 1.29

2 6 5 7 1.69

28 61 1.49

30 65 1.53

32 74 1.59
34 78 1.51
36 82 1.67

38 86 1.84

4 0 90 1.82
4 2 95 1.99

4 4 98 1.79

4 6 103 1.98
48 112 1.98

It is clear from Table 2.5 that M  = 2k terms in the expansion will produce the 

desired accuracy in the solution. Of particular interest is that the collocation method 

converges faster than the Galerkin method. Therefore, due to the computational 

efficiency and the rapid convergence, we clearly see that the collocation method is a 

much better choice.
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Table 2.5
The relative percentage error o f  the i* component o f the solution 
by taking an addition 2 0  terms in the approximating solution

G a lerk in
| / P +2°)-/P)|

fi
(2 i) 100% ¥

C o llo c a t io n
l2t+3D)_g{2k)

.(2*)
• 100%

1 0 1 0 0.81 0 . 6 6

1 2 1 2 0.69 0.56
14 14 0 . 8 8 0.72
16 16 0.95 0.78
18 18 0.81 0.67
2 0 2 0 1.03 0.85
2 2 2 2 0.98 0.80
24 24 0.90 0.74
26 26 1 . 1 0 0.90
28 28 0.96 0.79
30 30 0.97 0.80
32 32 1 . 1 1 0.91
34 34 0.94 0.77
36 36 1.03 0.85
38 38 1.07 0 . 8 8

40 40 0.92 0.77
42 42 1.07 0 . 8 8

44 44 1 . 0 2 0.84
46 46 0.93 0.77
48 48 1.08 0.89
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SECTION 3

THE SOLUTION OF HYPERSINGULAR INTEGRAL EQUATIONS

PARTH

3.1 Introduction

Consider the following finite-part integral equation

i r1 / ( ' ) * + 51n js-/| + £)(j,r) dt = g[s) for |i j< l (3.1)

with subsidiary conditions (linear functionals)

wk f  = gk for k = 0,1 (3.2)

which are typically of the integral type

Wkf  = — f' wk = gk for k  = 0,1 (3.3)

or of the end-point type

* 0 /  = / ( - I )  / ( I )  = g , . (3.4)

The first integral in (3.1) is a finite-part integral, defined by

(3.5)
(s-f)  d s ^ t - s

where the integral on the right o f (3.5) is a Cauchy principal value integral. Equations 

involving such integrals have been investigated by a number of authors [1,2, 10,13, 14] 

and the approach used here is similar to that developed by Golberg [13].
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It is well known that the Tchebyshev polynomials o f the first and second kinds, 

Tn(x) and U„(x) respectively, are related via the Cauchy type integral

Equation (3.7) suggests that the integral equation with subsidiary conditions may 

be solved by expanding the unknown solution, f ( t ) ,  in a series of Tchebyshev

polynomials of the first kind, Tn (/) , and the right-hand side, g (s ) , in a series of 

Gegenbauer polynomials, C*(s). Numerical experiments confirm that this technique 

works and the convergence o f the method is now discussed.

(3.6)

Hence, applying equation (3.5) to (3.6),

k V l - r 2  { s - t )2 [2C„2_2 (j), for n> 2
I f  rn( 0  1 for n = 0 , l0 , for n = 0 , 1

(3.7)

where C„ (x) are the Gegenbauer polynomials of degree n and parameter X . The 

Tchebyshev and Gegenbauer polynomials {^,(x ) } ^ 0  and |c ^ (x )J  are orthogonal 

sets of polynomials satisfying the orthogonality conditions

m m Smn where s,n n I (3.8)

and

= f ( » + 3X« + i)*, (3.9)
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3.2 Fredholm Theory

The goal here is to show that equation (3.1) with conditions (3.2) are equivalent to 

an integral equation o f the second kind on a suitable Hilbert space and are thus governed 

by Fredholm theory. To that end, define the Hilbert Spaces Ha (a  = 0,1,2) and the

linear operators J-C, £ ,  and T>.

Definition 3.1. The Hilbert space Ha is defined to be the space o f real-valued, 

measurable functions

H. = { / : [ - l , l ] - > R  | i p - S m O *  < “ } (3 1 °)

with inner product

( f ,g ) a (3.11)

and norm

m a = 4 ( ^ f ) a - (3 -12 )

It should be noted that Ha has an orthonormal basis j  where f£0) = T„ (x ),

f£l) = J — U Jx ) , and    C*(x), for n> 0 . Now we will define
* \ jc  nK 1 n -y^(/i+3X«+i) v '

some linear operators.

Definition 3.2. Define the linear operators J~C, £ , and D  by

= -dt (3 .1 3 )1 (S- , f

(3 1 4 )
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and

D /  = I f ' - ^ L o ( s,f>* (3.15)

respectively.

By virtue of equation (3.7) it is readily seen that

Clearly, J-f is unbounded when regarded as an operator from Ho to Hi. This motivates 

the introduction of a subspace H c H 0 on which all the operators (3.13)-(3.15) are 

bounded. The new subspace H  is defined as follows:

Definition 33. Let X0 = Xl = 1 and Xr — Vr2  -1  for r > 2 ,  then,

H  = \ f  | f s K ( /M " >)l < « }  0-17)

with inner product

( /.« > » = e ^ ( / . * ; oi>0(«.a™)0 p-1*)

and norm

r»0

\V \\H = 4 U ^ f ) H - (3-19)

Note that ||/^0)||^ = Xr and hence, Hhas an orthonormal basis {/zr}“ 0, where 

K = —  *i0) for r > 0

K

Assume that g  e  H2 and D(s,t) satisfies the condition
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i ' S w  ^ 2  & {sS)dsdt < oo. (3.20)

Lemma 3.4. J-f, £ , and D  define bounded linear operators from H  to Hz. In addition, 

£  and D  are compact.

Proof:
gp

(i) It is clear that 3-C.H-+ H2 is bounded. To see this, if /  = ^ f rhr e  H  then
r* 0

-2
r»  2

- I f M l

and

P O f i - Z / . ’
r»2

(3.21)

(3.22)

which shows that ^ f  e H 2 and < 1. Hence D£ is bounded.

(ii) To show £  is compact, and hence bounded, it will be sufficient [1 1] to show that

£ | £ * g  <oo. It is well known [25] that
r»  0

= Where *  “ C"-?’ t a r s *  (3-23)

Hence, Lhr = - / j r hr and therefore
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(3 .2 4 )

hence, L  is compact

(iii) Since D(s,t) satisfies (3^20), it is a Hilbert Schmidt kernel and hence the 

corresponding operator D  is compact D

Observe that if  g  = grh^\ is any element o f Hi, then /  = X  grK belongs to
rm 2 r* 2

Hand 3~f f  = g ■ H ow ever,/is not unique since J~C has a non-trivial nullspace,

N ( l{ )  = span\h^ ,hl}, and this is precisely why the subsidiary conditions (3.2) are

needed. The linear functionals Wt,k=  0,1, appearing in the subsidiary conditions are 

assumed to be bounded linear functionals from H  to R, and are assumed to satisfy the 

condition

By virtue of Riesz’ Representation theorem, Wkf  = ( f ,w k)H for unique wk e H  

and therefore the conditions (3.2) may be written as

where wrk=Wthr (k=Q, 1; r  = 0,1,2,...). Additionally, assumption (3.25) takes the form

o. (3.25)

= Y ,fr Wrk=gt ^  £ = 0,1
(3 .2 6 )

r*0

(3 .2 7 )
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It should be observed that while linear functionals of end point type, such as (3.4), are 

unbounded on Ho they are bounded on Hand  are thus, covered by the present theory.

The next stage is to construct an invertible operator which is equivalent to the 

integral equation (3.1) and its subsidiary conditions (3.2). In order to do this, the 

introduction of yet another Hilbert space H  and two additional operators I V  and X  

are required.

Definition 3.5. H  is defined to be the Hilbert space

H  = X 2@H2 = | x  = ( x 0 , x 1, x (2)) : ( x 0, x 1)  e X z,x[2) e H 2J (3.28)

with inner product

(*.*)* = W  + Xxy, +(*(2 )^ ( 2 ) ) (2) (3-29)

and norm

IMU = V(x’x)« • (3*30)

Clearly, H  has an orthonormal basis |a„} q where 4  — 1̂ ,0 ,0 (2j j , A, — (0 ,1 ,0 (2) j and 

4 = ( 0 ,0 ,/£>) for n > 2 .

Definition 3.6. Define the linear operators TV, X :H ->  H  by

= (3.31)

X f  = (0 ,0 , [BL + £>]/). (3.32)

It will now be shown that 'W  is a bounded, invertible operator and X  is bounded.

Lemma 3.7. : H —>H  is bounded and has a bounded inverse "W1 : H  —► H .

Proof:
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(i) ~Whr = (W0hr ,Wxhr, J-fhr ) = +wrlhx + { l~ S r0 -  S rl )hr .

(ii) Let /  e / f  then

n v / & = i ( / - o ) Hr + K/.w,>wr ^ / g

Thus I V  f  g H  and is bounded since

M *  shfe+M & +>
< 00.

(iii) The matrix of hV  is given by W„= (^Whr,hs^ .  Therefore, in view of (i),

W

where w = (w„) (r ,s  = 0,1) and b = (w„) (r = 2,3,...;s = 0,1). Since det(w) *  0 ,

w has an inverse w‘ and therefore W has an inverse given by

/  /1 w 0

w  = { K )  = -bw l I

(iv) The nullspace of "W = = {0}, For /  e H  and 1/V f  = 0 then

k.r»0

= E E / « = »
jbO r - 0

r=0 
= > /r =  0 .
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(v) For g  = Y ^ g X  e  H , define I t f 1 g  = /  = where f s = Y s rK  - Then,
J*0 r» 0

w oo
fs  ~Ss  for j > 2 .  Hence, £ / /  < =  ||g||^. Furthermore,

■f* 2 5*0

Z / S2 = Z
5=0 5=0 Vr=0

1 oo

J=0 r= 0

-«*6Z
s=0

S ( W« ) + S  J l ~ Wrk^L
r=Q r= 2 \ifc=0

\ 2

“ r ' -  -
U=0 r= 0  Jfc= 0

Thus, Y ,fs  -  A\t>l\ \  which shows that f  e H  and 'W 1 is bounded.
5*0

(vi) The nullspace Ni^W 1) = {0}. To see this,

0
r=0

gr = °  
g= o.

(vii) For f e H ,  W ( W f )  = / .  To see this,

'W I (W f)  = 'W I Z « A

=~w!

\p=°

E i w
^p=0g=0
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“ E E E W ' f k
5 = 0 ^= 0 p = 0  
00 00 

= ^ d^ dfq^qJls
j= 0  q=0

- i / A - / .
5=0

(viii) Similarly, for g  e H , lV {l/V I g) = g

33

^p= 0  

f

^p=0 <7 = 0

00 00 00

5=0 <7=0 p=0 
00

= ^ g A  = g-
5=0

Thus the proof is complete.

Lemma 3.8. JC :H ->  H  is compact.

Proof: Let S = B L + D  then S :H ->  H2 is compact Also, since JC f = (0,0,S f) ,  it is 

clear that \ 3 C = |[S/|2. Let f„ converge weakly t o /  in /fa s  n->oo. Then since 5  is 

compact |S/*„ 0  as n -> qo and hence, || JCfn -  JC f \\-+Q as n->  oo. Hence,

JC is compact.

With 1/V and DC defined as in (3.31) and (3.32), integral equation (3.1) with 

subsidiary conditions (3.2) can be written as an operator equation from H  to H  by

l /V f  + X f  = g  for /  eH a n d g  = (g0 g, g) e H  (3.33)
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Clearly, (3.33) has a solution if  and only if

f  + 'W IJ C f = 'W I g  (3.34)

Since, ~Wl is bounded and JC is compact, 1 JC is also compact and the solvability 

of (3.34) can be determined from the classical Fredholm theory. In particular, (3.34) has 

a unique solution if and only if  N ( I  + 1/V1 JC) = 0. It is Assumed that this condition

holds and thus (3.33) has a unique solution /  e  H  for every g  e H .  Now the 

convergence of a Galerkin method is discussed.

33 Galerkin Method

In the Galerkin method the unknown function f { t )  is approximated by a finite

series

/ ‘“’( 'H Z / A M  (3-35)
n*0

1 [s~
of weighted Tchebyshev polynomials of the first kind hn{t ) = — Tn(t) for

n -  0,1,..., A/. Define the residual rM by

fM = TVf (M) + OCf{M) -  g  (3.36)

and determine the coefficients/, by requiring that

= °  for m = Q, 1,2,... M . (3.37)

This yields M +  1 linear algebraic equations

+ = (3-38)
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It will now be shown that for large enough M, equation (3.38) has a  unique solution and

u
that the corresponding sum y \ f Hh„ converges in mean t o /  That is,

n»0

£ d ( ^ ‘i „ = 0 - (3-39)

Convergence is shown by reformulating the system (3.38) in a fashion analogous to that 

used by Golberg in [13].

Let Pm :H-> span{h„ J* be an orthogonal projection operator, so that for g  e  H

= (3-40)
/t* 0

Thus, {ru ,h^j^ = 0  for n = 0,1,...,Af ifandon ly if PurM = 0 . Therefore,equation

(3.38) is equivalent to the operator equation

+ Pu OCf(M) = PMg  (3.41)

and by lemma 3.7, Y V , therefore P ^ W f  = l Y f . Making use o f the

previous observations and equation (3.41) leads to the following operator notation

+ Pu 3 C f(M) = Pug  (3.42)

and clearly equation (3.42) has a unique solution if and only if / (M) satisfies

f(M) +'W JPu X f {M) = W P u i . (3.43)

According to Baker [3] it is sufficient to show that JC -  = 0

and hm |p 4 7 /g-"YV/ .Pwg | = 0. Since, l Y 1 is bounded however, it is sufficient to show 

that Urn ||3C -  PMJC|| = 0 and that Um ||g -  PMfi\ = 0 . Recalling that {4} Q is complete

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

A __
in H  and DC is compact, these previous limits are true. Therefore, the Galerkin method 

determined by (3.35) and (3.37) provides a convergent numerical scheme for solving the 

integral equation (3.1) with subsidiary conditions (3.2).

3.4 Galerkin Method Algorithm

The integral equation to be solved is given by

i f  /(<)
- 4irJ-l ( s - t f

+ B  Inj s —r| + D{ s, t ) dt = g(s) for |s)<l (3 .4 4 )

with subsidiary conditions,

W J  = g0 and W J = gx (3.45)

where A *  0 and B  are constants, A (t) = V l- t2 , and W0 and Wx are linear functionals.

Expand the unknown function in a Tchebyshev polynomial expansion and the 

right hand side in a Gegenbauer expansion as follows

/ ( ' )  = Z / - r»(0 3 1 1 ( 1  *(*) = Z  (346)

The Gegenbauer polynomials satisfy the following orthogonality condition,

AJM C*.(0C2-2 (f)tf = ~ y  - 1)5.. for n,m > 2  (3.47)

Now, by equation (3.46) and (3.47) we can rewrite the integral equation (3.44) as 

follows: for m = 2, 3,..., M

7.WI A
A(0 |{ ( s - t f

Y + B Inj s —r| + D(s, t) dtds = gm (3.48)

Consider each part of the kernel separately.

The Hadamard part is given first. Define the following (AT-1) x (M + 1) matrix
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f* i l f  \/->l f „ \ f l  ^ ^ n ( 0

~ !t(m2 - l )  ‘ ^  *-2( V-' A(/) ( s - t f
dtds (3-49)

Then,

<*mn =

0 ,
16A fi

n = 0 ,l

m

Upon simplifying, we see that

— J tA3 (s)C^_2 ( s ) C 2 (s>fc, n> 2

f0 , n = 0 , 1

a " " =\2 x A 6 .„  * Z 2

Now the logarithmic term is given below, 

p ~ =

- B i ^ ) ^ s)ci2{s)T-{s)ds

where

fi0 = ln(2 ) and Mn ~ ~  for n > 1
n

Thus,

B = Br' mn

7>jtS

(3.50)

(3-51)

m2

m — 1
ln(2 ), n = 0  and m> 2

2n(m1 —l) ((m + 1)^"l"+z- 2m6n,n+ im -\)Smn.  2], n > 1 and m> 2

Finally  the matrix for the bounded, regular part o f the kernel is given.

D = —7 —7 — r f  A3 (s)C£ l W r “* /T D(s,t)dtds 
mn Ji{m — l ) J_I W - 2W J - A ( f )  V 7
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In order to approximate the regular part, it will be advantageous for us to use a Gauss- 

Tchebyshev quadrature since we have an appropriate weight function embedded in the 

double integral. Hence, define the following quadrature nodes and weights, respectively.

( 2 k - \  x
tk = cos 3X1(1 = l j7 T  for k = l^ - NQriVj/r

 n
\2 N Q t

In addition, define the Gauss-Legendre nodes and weights by

Sj and a>1 for j  = 1,2,..., NQL

Therefore, for m = 2 ,3 ,..., M and n — 0 ,1 ,2 , . . . ,  M, we have

D- = J’- . t  i  ■‘t w u s K m , , ' ) * *

Finally, for m = 2, 3 ,. . . ,  M, the right hand side vector is given by,

8  r>

Hence, the integral equation produces ( M - 1) equations in ( M  +1) unknowns 

'Z [a„ n+ P mn+D,nn] fn = g n f<>r M = 2,3,..., M

(3.52)

This is precisely why the subsidiary conditions are needed. These conditions take the 

following form

K f  = g« for »  = 0 , 1

and provide the two additional equations
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W J  = w j ^ f J , ( t )  for m = 0 , l
fl« 0

Examples o f subsidiary conditions 

1 • / ( - 1) = Bo => Z  ( ~ l Y f n  =  8o
n»Q

2 - / ( l )  = g, = > £ / » =  Si
n» 0

i M
3- J_! = BO => £ ”0,nfn = Bo

Ms
n= 0

l NQr
where w0„ =  ̂  w(t)Tn(t)dt = - ^ ~  ’£ l M.‘t)" { ,t ) Tn(tt )

3.5 Collocation Method Algorithm

A theoretical proof of the convergence of the collocation method has not yet been 

given. However, it has been observed that numerical experiments yield valid solutions. 

Furthermore, the computational efficiency of the collocation method appears to be far 

superior to that o f the Galerkin method. Therefore, a collocation algorithm will be 

introduced and numerical experiments conducted to verify that valid solutions are 

obtained.

Consider the integral equation

M i *
J- * « ! ( * _ , ) ’ ^  1 

with subsidiary conditions

dt = g(s) for |sj < 1 (3.53)

Wkf  = gk for £ = 0,1 (3.54)
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where A and B are constants, D  is a  bounded function and A(f) = V I-f  .

We begin by approximating the unknown solution by a finite expansion of 

Tchebyshev polynomials o f  the first kind

/('HX/.r.M-
it*0

With this approximation the subsidiary conditions (3.54) take the form

Z - / X .  for / = 0 , 1

ir*0

and for the left end condition and the right end conditions, respectively, we have

By making use of the following analytic and numerical results, we will reduce (3.53) and 

(3.54) to a system of algebraic equations.

where

In particular, the integral type subsidiary condition can be written by

= ( - l ) n and  w n , = 1

(3.56)

(3.57)

where //„ = In 2  and //„ = — for n > 1

n
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J-' l j f )  ^  f  ) 0 .58)

where tt = ( 2 k - I  '
* =  C O S ------------1C

\ 2 NQt  ,
fo rk = 1, 2, ...,N Q t .

Combining equations (3 .5 5 ) -  (3 .5 8 )  yields the following system of equations.

W  =  g(s) for * e (“ U )  (3 .5 9 )
n*0

where

K„(j) = 2 x A ( l-S n„Xl - s n ,)c l2(s)-xBp„r„(s) + D„(s) (3.60)

andD„(j) is given by

A (») = £ , 4 j r . ( / ) f l ( J,»)<ir. (3.61)

With a suitable choice o f collocation points, s, for / = 2 ,3 , . . . ,  M , equation (3 .5 9 ) together 

with the subsidiary conditions (3 .5 4 ) yields the following linear system of equations for 

the unknown coefficients,/,.

Y .fn wn,=g, for / = 0 , 1

(3 -6 2 )

Z /» * n fo )  = g te )  for * = 2 ,3 , . - ,  Mrt* 0

We will compare the use of two choices of collocation nodes. The first set, 

denoted , are taken to be the zeros of TM_{(x) and the second set, denoted sjl}, are 

taken to be the zeros of UM_,(x ).

s' 0 ) = fo r f = 2 ’3’" ” M  ( 3 6 3 )

and
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= cosf-—
\  M  J

for i = 2,3,.„,M (3.64)

3.6 Numerical Results

In order to test the veracity o f  the technique developed here, we will construct 

examples with known analytic solution for varying subsidiary conditions and right hand 

sides. The examples will be constructed from the following equation

t / ( ') 1
V l-r2 ( s - ' f

- + ln|.y-f| + 2 ( j - f ) 2 dt = g(s) for |̂ | < 1 (3.65)

with subsidiary condition

W0f  = g0 and W J  = g l. (3.66)

Firstly, we will impose two end-point subsidiary conditions. The equation to 

solve is given by

/ «  i i

with subsidiary conditions

- + lnj5 - / |  + 2 ( j - / ) dt = g(s) for |s| < 1 (3.67)

/ ( - i ) =/(•)=<> (3.68)

and

/ x 16 n
g(s) = - -  +

(5 -4 * )

Equations (3.67) - (3.69) have the closed form solution

3 5 4f ( t )  = ----------------- 1
w  5 -4 r  3 3

nm 0 J J

(3.70)
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where e0 = 1 and e„ = 2 for n > 1 .

In Figure 3.1, the known analytic solution is compared with the solutions obtained 

via collocation and Galerkin. Clearly both methods agree extremely well.

Collocation Method000

Collocation Method ----
Galerkin M ethod----

\  Analytic Solution —

-100

-1.50 05-05
t

Galferkin Method96-07

8E-07

6E-07

46-07

2E-07

16-07

0 5-05
t

Figure 3.1 Collocation and Galerkin methods with 2 end-point subsidiary conditions
compared with the analytic solution

Now, instead of two end-point type subsidiary conditions, we will impose one 

end-point and one integral type subsidiary condition. The problem is stated as follows:

1f /(0
J-ivr=7 ( s - t y

-+ ln js-/| + 2 ( j - r ) dt = g(s) for |s| < 1

with subsidiary conditions

/ ( - l )  = 0  and f  dt = 0

and right hand side

_/ \ 16;r g(s) = r TV+
(5 -  4s)

The closed form solution for this example is given below
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Below are the plot o f the analytic solution compared to the numerical solutions obtained 

by the collocation and Galerkin methods. Again, the accuracy is exceptional.

Collocation Method 
Galerkin Method 
Analytic Solution

Collocation Method 
Galerkin Method3E-07

2E-07

IE-07

-0-5 0 5
t

Figure 3.2 Collocation and Galerkin methods with 1 end-point and 1 integral subsidiary 
conditions compared with the analytic solution

Lastly, we will impose two integral type subsidiary conditions. Solve 

£ , + H 5~ rl+2(s~rf -dt=s{s) for H < 1  

with subsidiary conditions

/ ( O ^  f  H f lf  dt=  0  and f  ~^M Ldt = 0

J-‘V T 7

and right hand side

, x 16;r

^ ) = ( W  +

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

The closed form solution is

/( ')  = 1 - s
5 - 4 /

ffaQ

Again we see very good results. The errors are very small in all three test cases.

1.00

0.75 Collocation Method —  
Galerkin Method - - 
Analytic Solution —

0.50

025

aoo

0.5
t

Collocation Method 
Galerkin Method3E-07

§2E -07

1E-07

4.5 0.5
t

Figure 3.3 Collocation and Galerkin methods with 2 integral type subsidiary conditions
compared with the analytic solution

To further test the method, an example with some relevance later is considered. 

The integral equation to solve is

A (/) M

with subsidiary conditions

For small argument, |s—f |« 1 ,  it is easily shown that

dt =  &cos<aae'focosar (3.71)

(3.72)
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* # i2)( * k - 'l )  2/ 1 ik 2 | , /fc2 f , £ 1 wr') |2\—  , ,— -  = ----------- =--------I n k - r ------- In- + y — + —  + O ls - /
\ s - t \  i t  { s - t f  x ^  ' i t \  2 2  2 J '  ^

where H ^ \ x )  is the vth order Hankel function o f the second kind and y  is Euler’s 

constant.

Equation (3.71) can therefore, be rewritten as

A(r) 

where

V  ik 2
— —ln|s—r|+

{ s - t f  X
dt — k  cos ae‘bcosa (3.73)

, x *ff{2 )(* |s -/|)  2,/ ik2
' (3 -74)

The first set of results we consider is the comparison between different choices o f 

collocation points. Recall the two sets o f collocation nodes used are given in equations 

(3.63) and (3.64). Figure 3.4 shows the error in the solutions between the two choices of 

collocation points.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

3 .0 E -0 4

O.OE+OO -0.5 0.5
X

Figure 3.4 Comparison between choice o f collocation nodes

The error caused by using different collocation nodes seems to be small. Therefore we 

will be using both sets o f collocation nodes when comparing to the solution of the 

collocation method with the solution of the Galerkin method.

We clearly demonstrated the computational efficiency o f the collocation method 

in the previous chapter. This chapter, therefore, will only focus on the convergence of 

the three methods.

In order to test the convergence o f the collocation methods against the Galerkin 

method, we will obtain a solution to the integral equation, in each of the three cases, by 

taking M  = 2k terms in the eigenfunction expansion and then obtain another solution 

using M= 2k + 20. Table 3.1 shows the relative percentage error o f the £* term in each 

of the three cases for varying values of k. Collocation 1 and collocation 2 denote the use 

of the collocation nodes from equations (3.63) and (3.64), respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

Table 3.1
Relative percentage errors o f the solution component for two
collocation methods and the Galerkin method by taking 2k  and 
2 & + 2 0  terms in the solution

. C o llo c a tio n  n o d e s  C o llo c a tio n  n o d e s  G alerk in  
______________ eq . (3 .6 3 )________________ e q . (3 .64)________ m e th o d

10 0.65 0.83 1.01
12 0.57 0.71 0.87
14 0.74 0.97 1.19
16 0.69 0.90 1.11
18 0.66 0.85 1.04
20 0.80 1.06 1.31
22 0.70 0.92 1.12
24 0.73 0.96 1.17
26 0.81 1.08 1.33
28 0.70 0.92 1.12
30 0.78 1.03 1.26
32 0.79 1.06 1.29
34 0.70 0.92 1.12
36 0.80 1.07 1.31
38 0.75 1.01 1.24
40 0.72 0.94 1.15
42 0.81 1.08 1.32
44 0.72 0.96 1.18
46 0.74 0.97 1.19
48 0.79 1.06 1.30
50 0.70 0.93 1.13

Surprisingly, the collocation method using the collocation nodes given by 

equation (3.63) seems to have the fastest rate o f convergence. This gives veracity to the 

claim that the collocation method is superior to the Galerkin method.

Next we consider several examples involving the same integral equation but with 

different subsidiary conditions. The problems to be considered are

f ' d! = kcosae‘hc°s“ (3.75)
J-1A(() |j - » |
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with subsidiary conditions

1 . J ‘ g j « * = 0  a n d /( l)  = 0  (3.76)

2. / ( - 1 )  = 1 and = 0 (3.77)

3. ^ / ( r ^ - O a n d  £ , ^ < *  = 0 (3.78)

4. / ( - ! )  = - !  a n d /( l)  = l (3.79)

The solutions / ( / )  are plotted in Figure 3.5 for k  = 3x, a  = 0. The figure in the upper

left corresponds to subsidiary condition (3.76), upper right figure with (3.77), lower left 

with (3.78) and lower right with (3.79).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.5,

*0-5i

-1.5
■os

os

V a r io u s  S u b s i d i a r y  C
°nditions

a = 0

X

Example 2

Example 3

F,gUreXSPI° ' ° f * e s oIutioDfor

X

Example 4

^ o u s  subsidiaiy conditiom

c °P yright o w n e r  Furth»



51

SECTION 4

DIFFRACTION OF AN OUT OF PLANE SHEAR WAVE BY A

GRIFFITH CRACK

4.1 Introduction

The study o f the Griffith crack originated from the observation that remote 

loading can cause very large stresses for an elliptic cutout located in an infinite, 

homogeneous medium. In fact, as the minor axis of an elliptic cutout approaches zero, 

the ellipse degenerates to a line crack and it can easily be shown that the stresses at the 

end of this line crack approach infinity and thus, any loading of the material will result in 

material failure.

By studying the energy changes caused by the extension o f a line crack, Griffith 

[15] determined that a line crack is capable of undergoing a constant load without 

material failure. He concluded that two conditions are necessary for the extension of the 

crack. The stress ahead of the crack must be above some critical stress value and the total 

energy must be reduced by an incremental extension of the crack.

In work by Irwin [17] a relationship between the stresses at the tip of a line crack 

and the strain energy release rate was demonstrated. From this relationship he was able 

to show that for some critical stress value, the crack would propagate. The notation of a 

Stress Intensity Factor (SEF) is used to measure the stresses concentrated in a localized 

region. For the line crack we are interested in the region located at the end of a Griffith
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crack and therefore by studying SIF we are able to determine the critical stress value 

required for crack propagation.

The problem discussed here is that o f determining the SIF and the elastic field in 

an infinite solid containing a finite line crack or “Griffith crack” which diffracts an out of 

plane shear wave. Although Griffith did not consider a case involving dynamic loading, 

it has been an active area o f research.

Dynamic crack problems are of particular interest for two reasons. Firstly, it has 

been observed that the dynamic Stress Intensity Factors may be about 30% higher than 

the corresponding static SIF [29]. Secondly, the dynamic fracture toughness value has 

been experimentally shown to be considerably lower than the static fracture toughness 

value [20]. In a paper by Loeber and Sih [24] the solution for the dynamic diffraction 

problem is given for a Griffith crack. The problem is also addressed by Mai [26]. The 

difference between the two is the frequency range over which the solutions are valid. 

Loeber and Sih solve the problem for low and intermediate frequencies whereas Mai 

solves the near field problem without restrictions on the frequency. Clearly, we would 

like to solve this problem for all frequencies and have a solution that is valid everywhere 

in the displacement field.

The goal o f this chapter is to develop an efficient, numerical technique for solving 

the dynamic crack problem. Furthermore, we wish to relax the intermediate frequency 

restriction made by Loeber and Sih and construct a solution which is valid everywhere in 

the displacement field. In addition, the numerical technique we develop must be versatile 

enough to apply to a class o f crack problems, not just the single Griffith crack problem.
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Nonetheless, the first case to be studied is the single crack problem. In later chapters, the 

dynamic crack problem is solved for multiple cracks.

The method used to solve the dynamic Griffith crack problem is straight forward 

and it is easily adapted to other problems related to the diffraction of an out-of-plane 

shear wave by multiple but disjoint cracks. Once a boundary value problem is derived, it 

is converted to an equivalent system of hypersingular integral equation sim ilar to the ones 

discussed in chapter 2. Upon solving the integral equations the total displacement field is 

known and from the displacement field, the SIF is computed. Numerical experiments are 

conducted and the results are then compared with results obtained by others, in particular 

Loeber and Sih, and Mai. We will see that the results agree very well and we were able 

to relax the low frequency restriction required by Loeber and Sih and we were able to 

obtain a solution valid in everywhere in the displacement field, not just the near-field.

4.2 Boundary Value Problem Derivation

A crack is located in an elastic, homogenous, isotropic medium. In the 

rectangular coordinate system (x ,y ,z) , the crack is located in the region a < x < b ,  

y  -  h and -oo < z < oo . See Figure 4.1
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SH wave

a

Figure 4.1 Geometry for Griffith crack

Under the assumptions of linear elasticity, the equation of motion is given by

<*ii.j +  Fi = P ui (4 l )

where <7 y are the stresses, Ft are body forces per unit volume and p  is mass per unit 

volume. In equation (4.1) the summation convention applies, so that

= i r + i r +  & “ ■ f o r ' :3 u -3 ■ ( 4 2 )C M j 0 X 2  ( M j

and

(4-3)

Furthermore, the independent variables are defined by

x l =x,  x2 - y ,  x3=z  

and the stress and displacement notation is defined as

o  = < 7  and u  = u .IJ  X, X j “ 1 “ x, •
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So, from the assumption o f out o f plane shear, the only non-vanishing 

displacement lies in the x3 = z  direction, uz — uz (x,y,t) and the only non-vanishing 

components of stress are

du, du.
<*xz = and a  = / /—-  (4.4)

ox dy

Hence, assuming no body forces, equation (4.1) reduces to

d u d u 1 d u z- r +-zf = -T^r (4 -5)dx dyz dt'

2  a
where c = — is the shear wave velocity, and // is the shear modulus.

The displacement uz (x,y,t )  is assumed to be time harmonic and hence, we m ay 

define a new dependant variable i f  by

uz(x,y,t) = e-“*U(x,y). (4.6)

Substituting (4.6) into the wave equation (4.5), yields the Helmholtz wave equation

+ t 2V m 0  (4.7)
dxz dy2

The total displacement field is composed o f an incident displacement and a 

scattered displacement that is due to the presence of the crack. The total displacement is 

thus,

U(x,y) = Ul (x,y)  + U s(x,y) (4.8)

where U l represents a known incident displacement and Us denotes the scattered 

displacement The known incident displacement is assumed to be continuous across the
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crack and satisfies (4.7) everywhere in the field. Hence, the scattered displacement must 

satisfy,

SPU5 d2Us %2ttS
dx2 dy2

+ k*Us = 0 (4.9)

Since the crack is traction free, the total field must satisfy the boundary condition,

cTy,. (x, h) = 0 for a < x  < b (4.10)

In terms of the displacements, this boundary condition becomes

^ ^ (x ,A ) = 0 for a < x < b  (4.11)
dy

In addition, energy considerations require that the crack opening displacement be 

bounded and lastly, since the scattered waves originate at the crack site, they must satisfy 

an outgoing radiation wave condition at infinity.

To finalize the boundary value problem derivation, a summary of the governing 

equations for the scattered displacement in terms o f a known incident displacement will 

be given.

d2U s d2Us + k 2us = 0  (4.12)
dx2 dy2

^  -(.x,h) = ~ ^ —(x,h) for a < x  < b (4-13)

limVr

dy dy

f d U s -  ikUs = 0 for r = v x  + y  (4-14)
dr I

lim A U(x,ti) = lim A U(x,h) = 0 (4.15)

where
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AU(x,h) = lim U(x,y) -  lim U(x,y)  (4.16)
y-*h* y—*k~

43 Integral Equation Derivation

The Green’s function for the two-dimensional Helmholtz operator that implicitly 

satisfies the radiation condition is given by

G ( x - X , y - Y )  = ^H l" (kr )  (4.17)

where

r = ^ ( x - X ) 2 + ( y - Y ) 2 (4.18)

For an arbitrary field function f  define the following field operators.

= rM W *  -  x -y)d x  (4->9)

i , [ f \ x , y )  = f j ( X ) d y ( * - X , y ) d X  (4.20)

where,

d { x - X , y )  = |^ ( x  -  X , y - h )

dy{ x - X , y )  = - ^ ( x - X , y - h )

ik H[l)(krh) i k { y - h h)
(4-22)

4 rh 4 ,h

and

rh = y j ( x - X ) 2 + ( y - h f
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Using results from potential theory [12], the scattered field can be written in terms 

of a double layer potential, with unknown double layer density Q.

U ’ (x,y) = ^ Q \x ,y )  (4.23)

Therefore, the total displacement takes the form

U{x,y) = d[Q\x ,y)  + £/' (x,y) (4.24)

In anticipation of evaluating the field operator on the crack, we will introduce the 

following surface operators. For an arbitrary field function/

D ,[ /]M  = dy [/K*.A) = J* f ( X ) D y (x -  X)dX  (4.25)

where

d2G ik
Dr( x - X ) ^ —  = -  for a  < x < 5 (4.26)

Hence, applying boundary condition (4.13) to (4.23) yields the hypersingular integral 

equation for the unknown layer density Q

D y [ 0 ] ( x )  = ~ ^ —{x,h) for a < x < b (4.27)
ay

Asymptotic analysis about the edges of the crack shows that the layer density must have 

the form

Q(X) = J { b - X ) ( X - a )  F{X)  for a < X < b  (4.28)

A brief summary of the system of hypersingular integral equation is now given. 

The unknown double layer density Q(X)  is uniquely determined by the following set o f 

equations.
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arri
Dy[g](x) = — — (x,h) for a < x  < b (4.29)

dy

Q(X)  = yj(b -  X ) ( X  -  a) F{X)  for a  < X  < b (4.30)

4.4 Singular Kernel Analysis

The kernel is composed of a Hadamard term, a logarithmic term, and a bounded

term.

4 |x - X |
1 1  £ 2

  — 7 - — H x - X \ + K ( x , X )
2jv (x — X )  4;r 1 '

(4.31)

where

, . ik H\l)(k \x -X \ )  i i  >t2  ,
^ x ' ' 9 - 7 - Lf c b l  ' ( 432>

Furthermore, it can be easily shown that AT^x, X)  = 0(1). This integral equation is

solvable with the method outlined in chapter 2 .

To complete this section, an overview of the integral equation is now given. We 

wish to solve

d X  = - ^ - ( x , h )  (4.33)
dy

for a < x  < b , where A(X) = <J(b -  X ) ( X  -  a) and Kng is given in equation (4.32). 

Equation (4.33) is solvable via the method outlined in chapter 2 by making a 

transformation from the interval [a,6 ] to the interval [ - 1 , 1 ].
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4.5 Results

The stress intensity factors at the crack tips are defined by:

K3(a)= lim and K3(b)= lim E ^ x ' h)

or equivalently,

F(a) “ d K,(b) = F(b) . (4.34)

In order to compare these results with those from Loeber and Sih [24], we will 

assume the incident displacement is given by a horizontally polarized shear wave (SH 

wave) with frequency k  and let this wave impinge at an angle of 9  with the x  - axis.

U ‘ ( x , y )  =  Y> { 4 3 5 )  

Furthermore, define the following reference quantities

Semi-crack length: L = - ——
2

Reference stress: r 0  = k/swQ sin#

Reference stress intensity: Knf  = r 0V l

r L
Reference displacement: Uref =

V

Figure 4.2 shows the intensity factor vs. normalized wave number. It should be 

noted that k  = 0 is the corresponding static case. Hence, the claim that the dynamic crack 

problem produces SIF about 30% higher than the corresponding static ones is

demonstrated. In particular, for 9 -  90° , the maximum SIF occurs at kL = 0.95.
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Secondly, Figure 4.3 shows the SIF plotted against the angle of incidence. Interestingly, 

the m axim um  SIF occurs at an angle o f 110 °.

• I* I

ANCLE OF MQOENCE V •  90*

HOMUUZEO WMCNUUaeR-aa

15 1 3  

£

2  r i0OS
ek.

*  , 0  cne
2c
~  0.9cn
01

s
5/3 as

Angie of Incidence 0 = 90*

1.50.5 1
kL — Normalized Wave Number

Figure 4.2 SIF v. Normalized wave number (comparison with Loeber and Sih)

US

uo

u

0

81.15

as 1.10

Nonnalized Wave Number kL -  O.S

105

45 90 135
9 — Incidence Angle (in degrees)

Figure 4.3 SIF v. Angle of incidence (comparison with Loeber and Sih)

Lastly, Figure 4.4 demonstrates that with an angle of 110° and fcL -  1.0, the 

dynamic crack problem produces a SIF approximately 35% higher than the static case.
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—  1.20

1.15

2  1.10

«  1.05

co
1.00 -tior

0 5  1
kL — Normalized Wave Number

1.5

Figure 4.4 SIF v. kL with 110 degrees incidenct angle

In all three figures, the graph on the right was taken directly from Loeber and Sih 

[24]. The results above agree with those from Loeber and Sih. Now we will focus on 

comparing our results with those from Mai. In particular, the result from Mai that is not 

given by Loeber and Sih is a plot of the SIF for higher frequencies. Using the same 

parameters as above we will plot the SIF for a normalized frequency range of 0 to 8 .
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SH

*1
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kL — Normalized Wave Number

Figure 4.5 SIF for higher frequencies

The graph on the right was taken directly from the paper by Mai [26], so it is clear that 

these results are in agreement with those from Mai.

Now we will consider the crack opening displacement plots. In Figure 4.6 the 

crack opening displacements are plotted from the method derived here. The right part of 

Figure 4.7 is the graph given by Loeber and Sih whereas the left side is the plot from 

Mai. Seemingly, Loeber and Sih, and Mai have yielded the same results for the crack 

opening displacement However, it appears as though Loeber and Sih have an error in 

the case corresponding to kL = 1.5. All other results from both papers agree with the 

results derived here.
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Figure 4.6 Normalized magnitude o f the crack opening displacement

l* 6

I-4

I- 2

0 - 8

0-6

0 4

0*2
.  QlO

cli or
0 * 2 0-4 0-6

DISTANCE ALONG CRACK
0 8 l-O (US ftwft

OOTSMCC 1L0NS CMCK - */»

Figure 4.7 Graphs from Mai and Loeber and Sih
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4.6 Conclusions

The observations made by Loeber and Sih, as well as Mai, have been 

substantiated here. Moreover, the low to intermediate frequency restriction has been 

lifted, allowing for the solutions to a wider range of problems. Furthermore, since we 

made no simplifying assumptions about the solution, our solution is valid everywhere in 

the displacement field, not just in the near field.

In this chapter we developed an efficient, accurate numerical procedure for 

solving a dynamic crack problem. This method is versatile enough to apply to other 

dynamic crack problems, as will be shown in later chapters where it is applied to 

problems involving a pair o f parallel cracks and a pair of perpendicular cracks. In fact, 

this numerical procedure is sufficiently versatile to apply to an array o f disjoint parallel 

and perpendicular cracks without increasing the numerical complexity.
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SECTION 5

DIFFRACTION OF AN OUT OF PLANE SHEAR WAVE BY TWO 

PARALLEL GRIFFITH CRACKS

5.1 Introduction

In the previous chapter we demonstrated that for a Griffith crack a dynamic 

incident displacement could produce stress intensity factors (SIF) as much as 35% higher 

than the corresponding static Griffith crack problem. Another factor that may effect SIF 

is the introduction of a second Griffith crack. This chapter focuses on the interaction of a 

second parallel Griffith crack and the corresponding SIF related to this interaction.

In a paper by, Jain and Kanwal [19], the solution for the diffraction of a dynamic 

incident displacement is given for two symmetric, coplanar cracks. Their solution 

method is based on expanding the wave number, which is assumed to be small, in a 

power series. Clearly, for large wave numbers their method becomes invalid. Itou [18] 

was able to solve the coplanar Griffith crack problem for intermediate wave numbers but 

his method is only valid in the near field. Furthermore, he assumes the cracks are 

symmetric and coplanar. Our goal here is to expand on this work by solving the problem 

for any wave number and any two parallel, disjoint cracks.

In a manner similar to that used in the previous chapter we will derive the 

governing Neumann boundary value problem, convert it to a system o f hypersingular 

integral equations and solve the system o f integral equations via collocation. Upon 

solving for the total displacement field, the SIF is computed using several different crack
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configurations. In particular, comparisons are made between the solution given by Itou 

[18] and the solutions given by the method derived here as well as some examples not 

solvable by Itou.

5.2 (Governing Equations Derivation

Two cracks are located in an elastic, homogenous, isotropic medium. In the 

rectangular coordinate system (x,y ,z ) , the cracks are located in the regions ax < x < b x, 

y = hx and a2 < x  <b2, y  = h2 and -<» < z < ~ . See Figure 5.1.

i i y

1
I
11

■ ■ " !  fh
Ii

i i ■T  " i 1

a i | 
i 
i

bx ! x  

1

Figure 5.1: Geometry for parallel cracks

Note that the two cracks can be coplanar as long as they remain completely disjoint. That 

is, if hx = fi2  = h , then bx < az .

Due to out-of-plane shear and temporal frequency 0 ), the total displacement in the 

z -  direction satisfies the Helmholtz wave equation,

g - g + r t ' - o  (5.1,
dx dy
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where k = — , c2 = — is the shear wave velocity, p  is the shear modulus, and p  is the 
c p

density.

The total displacement field is composed of a scattered displacement due to each 

crack and an incident displacement Thus, the total displacement is,

U (x, y )  = U l(x ,y )  + Y J Uj (*, y )  (5.2)

where U' represents a known incident displacement and U* denote the displacement due

to the j 1,1 crack (scattered displacement). The known incident displacement is assumed to 

be continuous across both cracks and satisfies (5.1) everywhere in the displacement field. 

Hence, the scattered displacements must satisfy,

— r + —r f  + k UJ =0 f o r /  = l,2 (5.3)ox ay

The main difference between the single crack and parallel cracks exists in the 

boundary conditions. Since both cracks are traction free, the total displacement field 

must satisfy the boundary conditions, for j =  1 , 2

Gyz(x,hj) = 0 for cij <x <bj (5.4)

In addition, it w ill be necessary to impose the outgoing radiation condition at infinity and 

to assume that the crack opening displacements are bounded.

In summary, the boundary value problem to be solved is given by

f i u ‘, c?U ‘  ,
= 0  <5 ' 5 >
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dU dU1
dyH x 'Hj ) =  foraJ < x < b i

f  dUs
— J— ikU* 

dr J
= 0  where r = Ĵxz + y z

lim A U[x,hj) = Urn A U{x,hj) = 0

A U(x,hj)=  lim U(x,y)— lim U(x,y)
v y-*h] y-th j

(5.6)

(5.7)

(5.8)

(5.9)

fo r/ = 1 , 2 .

The Green’s function for the two-dimensional Helmholtz operator that implicitly 

satisfies the radiation conditions is the same one used in chapter 4, namely

G ( x - X , y - Y )  = ±Hl"(kr) (5.10)

where

r = i j { x -  X ) 2 +(y — Y)2 (5.11)

Now we will introduce the field and surface operators. For an arbitrary field 

function/ and for/  = 1 , 2 , define the following field operators.

-  x ,y ) d x

d; [ / ] ( x, y) = | (* -  x <y)dx

(5.12)

(5.13)

where,

d J { x - X , y )  = ^ ( x - X , y  -  hj)
8Y

(5.14)
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and

d J ( x - X , y )  = - ^ G ( x - X , y - h j )

I k r f P f a )  i k { x ~ h j i '  ' . . ,  (5  l5 )

4 rj 4 , ,

where

rj = ^ ( x ~ X )2 +{ y ~ hj)  fo r/ = U  (5.16)

Using results from potential theory [30], the scattered field can be written in the

form

u \ (x *y)+ u i{x^y)= &\Q\](x ’y)+&\Qi]{x iy) (5-17)

where Qx and Q2 are the double layer densities o f the upper and lower cracks, 

respectively. Therefore the total displacement takes the form

U(x,y) = U'(x,y) + dl[Ql ](x, y)  + d2 [0 2 ](x, >/) (5.18)

Define the following surface operators. For an arbitrary field function/ and for

J =  h 2

D j M t o  = di t / ] M , )  =  C/(X)Dy(x -  X )dX (5.19)

where

d2G ik M l)(k \x -X \ )
| » - * |  f o r a ' < x < b '  (5 -20 )

Hence, applying boundary conditions (5.6) to equation (5.17) yields the set of integral

equations

Di[2 i]W  + d J[0 2 ](xA )  = - ^ - ( JCA )fo ra 1 < x < b x (5.21)
dy
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Equations (5.21) and (5.22) form a system o f hypersingular integral equations for the 

unknown layer densities Qx and Q2. Since the operators dy[^](x,A,) and d y f^ x ,/^ ) are

continuous, bounded linear operators, the asymptotic analysis about the edges o f the 

cracks yields results similar to those for the single crack problem namely,

Q ^ X ^ ^ b j - X ^ X - a j )  F ^ X )  fora, < X < b J a n d / = 1,2 (5.23)

A brief summary of the system o f hypersingular integral equations is now given. 

The unknown layer densities Qx (Af) and Q2 (X)  are uniquely determined by the 

following set o f equations.

^ \ [ Q i \ x ) + d\[Q2]{x,hx) = - ^ - { x , h x) foTa l < x < b x (5.24)
dy

d J[S i](^ /l2 ) + D ;[e 2 ](x) = - ^ - ( x ,A 2 ) f o r a 2  < x < b 2 (5.25)
dy

QJ{X) = yj(bJ - X ) ( X - a J) Fj(X)  fo ra, < X  <bj a n d / = 1,2 (5.26)

It is clear that the equations (5.24) - (5.26) are no more difficult to solve than the 

single Griffith crack problem. The numerical procedure is the same except for the 

additional bounded kernel. Thus, the unknown densities are expanded as follows

Q,{X) = p ,  -  X fx -a )  for a,<X<b} and ,  = 1,2 (5.27)
if*0

where iFn (AT) denote the shifted Tchebyshev polynomials of the second kind. The 

coefficients / /  are determined by using a collocation method.
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S 3  Results

As in the single crack case, the numerical results are focused on finding the stress 

intensity factors at the crack tips. By analogy with the single crack case, for j  = 1,2, the 

stress intensity factors are given by

* /(« ) = (5-2 8 )

and

Kj(b) = ^ j L j  Fj(b) (5.29)

bj - a .
where L .- = —-----—

J 2

Results are given in this section for the case o f horizontally polarized incident 

waves (SH waves).

£/'(*, y) = Woe-'*(«os*+ysmtf)

Furthermore, the following reference quantities are defined. For j  = 1 ,2

b: —cij
Semi-crack length: Lj  = - --  ■

Stress: r 0  = A/avq sin^

Stress intensity: -  TqJ I J

t  L -
Displacement: Unf  (x,y) = — for a j < x < b j  andy = hj

Our first comparison is with the results of Itou [18]. Therefore, we use 

symmetric, coplanar cracks. Hence, let Aj = hi = 0 and on the x  -  axis the cracks are 

located from —b to —a and a t o b ,  respectively; see Figure 5.2
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-a

Figure 5.2 Geometry for coplanar symmetric cracks

In addition, we will assume the out o f plane shear wave impinges the cracks at a right 

angle, 0 = 90°.

In Figure 5.3 and Figure 5.4, the stress intensity factors Kj are plotted for a/b = 

0 .1,0.2,0.5,0.9, corresponding to the relative distances between the two coplanar cracks. 

In particular, the case for a/b = 0.9 approximates the single crack case. Figure 5.3 shows 

the SIF at the inner edge o f the crack whereas Figure 5.4 shows the SIF of the outer edge 

of the crack. In both figures, the graphs on the right were taken directly from the paper 

by Itou [18].
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Figure 5.3 Stress Intensity Factors o f the inner edges o f symmetric, coplanar cracks
(comparisons with Itou)
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Figure 5.4 Stress Intensity Factors o f the outer edges of symmetric, coplanar cracks
(comparisons with Itou)

The case, a/b = 0.9, approximates the single crack and the results agree very well with 

that case. Moreover, the results derived here agree extremely well with those from Itou.

The stress intensity factors for alb = 0.1, at the inner edge yields the largest 

magnitude. This leads to the question, what if the strips are not coplanar? The next set of
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results is concerned with SIF o f the inner edges o f symmetric, non-coplanar cracks. The 

two cracks will be offset in th ey  direction by the values e = 0.05, 0.10, 0.15, and 0.20 

and axially located between —1 < x  < 0 and 0 < x  < 1, see Figure 5.5

y  = s

Figure 5.5 Geometry for offset cracks

The results are intuitively clear. Figure 5.6 gives the SIF of the inner edge of the top 

crack and Figure 5.7 gives the SIF for the inner edge of the lower crack. As the distance 

between the two cracks approaches zero the SIF o f both inner edges increases. However, 

the increase in not a linear increase. Nonetheless, the shapes of the SIF for both the inner 

and outer edges are similar. However, for kL between 1 and 2, the SIF o f the lower crack 

is larger than the upper crack. This observation lead to the staggered parallel crack 

problem.
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Figure 5.6 Stress Intensity Factors of offset cracks (top crack)
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Figure 5.7 Stress Intensity Factors of offset cracks (lower crack)
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The staggered crack problem focuses on two parallel, disjoint cracks that are a 

distance h = 0.1, 02, 0.3, and 0.4 apart but the inner edge o f one crack is positioned 

above the other crack. In particular, let the lower crack be located at -1.5 < x < 1 . 5  and 

the upper crack at 0 < x  < 3 . See Figure 5.8

-1.5

Figure 5.8 Geometry for staggered cracks
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Figure 5.9 Stress Intensity Factor for staggered cracks (top crack)

This is particularly interesting. As h get smaller and kL < 1, the SEF o f the top crack is 

reduced. It appears as though the lower crack is shielding the edge o f the top crack. The 

next figure shows the SIF of the lower crack.
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Figure 5.10 Stress Intensity Factor for staggered cracks (lower crack)

Figure 5.10 demonstrates the same type o f behavior as Figure 5.9. A more in-depth study 

is a topic for further research.

Lastly, we will consider non-symmetric, coplanar cracks. We will hold one crack 

length fixed, say, /, = 1 and allow the other length to take the values, l2 = a l \ , where 

a  = 2.00, 1.00, 0.50, and 025. See Figure 5.11
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Figure 5.11 Geometry for non-symmetric cracks

It is important to note that the distance between the two cracks will remain fixed. Hence, 

the effect of the length o f the second crack on the SIF o f the first crack is examined. 

Figure 5.12
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Figure 5.12 Stress Intensity Factor for non-symmetric cracks
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O f particular interest are the cases a  = 2 and a  = 05 ,  corresponding to crack 2 being 

twice and long and half as long as crack 1, respectively. From Figure 5.12, it is clear that 

the larger crack has a much greater effect on the SIF than the smaller crack. In fact, it is 

considerably higher for smaller wave numbers but considerably lower for larger wave 

numbers. This area of research will be left for future papers.

5.4 Conclusions

In this chapter we not only were able to reproduce results from others, we were 

able to expand on their research. Due to the flexibility of the crack length and locations, 

we were able to gain new insight into seeing what effect a second parallel Griffith crack 

has on the SIF.

In the next section the method is adapted to deal with the case o f perpendicular 

Griffith cracks. We will conduct numerical studies similar to the ones conduct in this 

chapter.
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SECTION 6

DIFFRACTION OF AN OUT OF PLANE SHEAR WAVE BY TWO 

PERPENDICULAR GRIFFITH CRACKS

6.1 Introduction

Section 5 demonstrated that the stress intensity factor o f a Griffith crack is greatly 

effected by the interaction o f a second, parallel Griffith crack. This observation led us to 

study what effect a second perpendicular Griffith crack has on the SIF. To the 

knowledge of the author, very little research exists for this problem. Therefore, we 

expect to gain new insight to this perpendicular Griffith crack problem.

The same methodology is used to derive the boundary value problem, convert it to 

an equivalent system o f hypersingular integral equations and solve the system.

Numerical studies sim ila r  to the studies from the parallel crack problem are performed.

6.2 Governing Equations Derivation

Find the stress intensity factors for a pair of perpendicular Griffith cracks. The 

two disjoint cracks are located in a homogeneous, isotropic, elastic material and must 

have no points in common. They occupy the regions of space ax < x < b \ , y  = hx, |z| < oo 

anda2 < y<b 2 , x  = h1, |zj < oo. See Figure 6.1
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-► X

Figure 6 .1 Geometry for perpendicular cracks

The derivation o f the governing equations is very similar to that o f the parallel 

crack case. The difference will come in the boundary conditions o f the B VP and in the 

double layer representation in the boundary integral representation. Under the 

assumption o f linear elasticity and assuming zero body forces and a time harmonic 

solution, the governing differential equation is given by

d2U d2U , 2
- + k*U = 0 (6 .1)

dx2 dy2

and using a scattering approach we get the total displacement is expressible as a sum of 

the incident displacement and the scattered displacement.

U{x,y) = U‘ (x,y) + Us(x,y)  (6.2)

The differential equation for the scattered field is unchanged from the parallel 

crack case, namely,

d2U s d2Us ,  c ^ ~  + ̂ - ~  + k 2Us =0  
dx2 dy2

Assuming the cracks are traction free, we get the following boundary conditions.

(6.3)
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o\_(x,A .) = 0  for ax <x<bx
w (6.4)

a xz(hi ’y)  = Q for a2 <y<b2

Using equation (6.2) in equations (6.3) and (6.4) we obtain the following BVP.

——̂ — + ——̂ — + k^U s = 0  (6.5)
dx dy2

-|-C /5 (x,/i1) = - - |- £ / ‘(x,A1) for ai<x<b\
*  *  (6.6)
^ - U s{h1,y) = —^ - U l(h2,y)  for a2 < y< b 2 
ox ax

Using the Sommerfeld radiation condition and similar edge condition as before, equations 

(6.5) and (6 .6 ) uniquely determine the scattered displacement field.

The Green’s function for the Helmholtz equation that implicitly satisfies the 

Sommerfeld radiation condition is given by

G ( x - X ,y - r )  = ^ 1)(fr)

where

r  = V ( * - * ) 2 + b - i f

We now define the field operators. For an arbitrary field function f  define the 

field operators for the horizontal and perpendicular cracks, respectively

<i l[fl*’y)=f'f(x)d'(x-x'y)dx («■?)
J a \

(6.8)
a2

where
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Now we will define the field operators by taking the derivatives o f the field operators 

d 1 and d2.

= j V ( . r K ( *  ~ X,y)dX  (6.11)

d][f]{x,y)  = f ' / i X r f i x . y - r j d Y  (6 . 1 2 )
Ja2

*\{flx,y)=t'f(X)d'Ax-X’yyx (613 )Jax

(6.14)
*On

where

d2d xy {x -  X ,y )  = ± ^ G ( x  -  X , y  -  hx)
dydY

_ ik #i0 )(foi) ik (.y ~ h \ Y  f ,  ^(l) 
4 rx 4

4 ( x - X , y ) = - ^ j G ( x - X , y - h , )

(6.15)

{zafVO-^Vi)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 6

^ y - y )  = - ^ a ( x - > h , y - r )
/ , w x (6.17)

and

r, = y j ( x - X ) 2 + { y - h l )2 and r2  = ^ ( x - h j ) 2 + { y - Y ) 2 (6.19)

It will be useful to define the surface operators for the horizontal and vertical 

cracks. Therefore, for an arbitrary field function/ define

DJ [/](* ) = <*y [ /] (* ,M
r b. , (6 -2 0 )

= \ f { X ) D l { x - X ) d X  for ax < x < b x
Jai

and

D x [/](> ')  =  d x[/]( /z 2 ,y )
rfc ,  (6.21)

= J f { Y ) D 2x { y - Y ) d Y  for a 2  < y < b 2jQri

where

d2GD ly ( x - X ) =  lim
' o y o i

i l)(k \x -X \)
for a x < x < b x

dydY

,k fl{1)(* |r--rD  
4 |x - * |

(6.22)
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.x—»/»2 dxdX

ik g,(l)( ^ lv - i 1 ) 
4 \ y - y \

(6.23)

for a2 < y < b 2

Using standard results from potential theory, the scattered field can be written in 

terms o f the double layer potentials. Hence,

where Qx and Q2 are the double layer densities o f the horizontal and vertical cracks 

respectively. Applying boundary conditions (6 .6 ) yields the following operator notation 

for the system o f integral equations.

Clearly, equations (6.25) and (6.26) comprise a set o f hypersingular integral equations. 

The solution technique is the same as the parallel case. It should be noted, however, that 

the numerical complexity o f the perpendicular crack problem is similar to that of the 

parallel crack problem. Details are therefore omitted.

6.3 Results

Each set of results will consist of two cases. The first will be for the crack 

arrangement to be hit by an incident wave with angle o f incidence 45° and the second will 

use an incident wave with angle o f incidence 225°.

For the first set of results we will consider two perpendicular cracks with the same 

length and being hit by an incident wave with incident angle 45° . See Figure 6.2

U '(x ,y )  = &l[Qll x , y )  + d 2[Q2l x , y ) (6.24)

DI[Q\](*) + d y[0 2 ](*>K) = —z r U t{x,hx) for ax < x < b x
dy

A\[Q\\h>y)  + V\[Q2\ y )  = - - ^ U t{h2 ,y) for a2 < y < b 2 (6.26)

(6-25)
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Figure 6.2 Geometry for symmetric perpendicular cracks

The crack lengths are adjusted such that alb = 0.1,0.2,0.4,0.8. The SIF of the inner 

edges is plotted vs. the normalized wave number kL.

a /b  =  0.1

1.75

a/b = 0.8 
a/b = 0.4at

1  0.75

1.5OS
kL — Normalized Wave Number

Figure 6.3 Stress Intensity Factors for symmetric perpendicular cracks (45 degrees)

In the next graph, the same parameters are used, except in the case the incident impinges 

on the cracks at an angle o f225 degrees.
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■g
£at

1-5
a/b = 0.2

o
03ti.
gCO
BU
B

0.5  1 1.5

kL — Normalized Wave Number

Figure 6.4 Stress Intensity Factor for symmetric perpendicular cracks (225 degrees)

Comparing Figure 6.3 and Figure 6.4 gives us some insight Specifically, the SIF in 

Figure 6.3 are considerably higher than the SIF from the 225 degrees incident 

displacement In addition, the SEF drop off much faster for the 225 degrees case. This 

observation leads to the next set o f results for the perpendicular crack problem.

We will look at the effects on SIF by placing the vertical crack above the 

horizontal crack. Again, the angle of incidence will be 45 and 225 degrees respectively. 

See Figure 6.5
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Figure 6.5 Geometry o f staggered perpendicular cracks

Let h denote the distance from the vertical crack to th ey -ax is. In the figures to follow, 

h is assigned as, h = 0, 0.25,0.50, and 0.75. The stress intensity factor o f the horizontal 

crack is examined.

h = 0.00

h = 0.50 
■h = 0.75

cn

0 .75
0.5

kL — Normalized Wave Number
1.5

Wave Number

Figure 6 . 6  Stress Intensity Factor for staggered perpendicular cracks (45 degrees)
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h = 0.00

1.5ca h = 0.50

h = 0.7:

£  0.5

0.5

kL — Normalized Wave Number
1.5

Figure 6.7 Stress Intensity Factor for staggered perpendicular cracks (225 degrees)

The last case examined is performed by holding the horizontal cracks fixed and 

vary the length o f the perpendicular crack, being sure to m aintain a constant distance 

between the two cracks. See Figure 6 . 8

a + 02

02

02

Figure 6 . 8  Geometry for non-symmetric perpendicular cracks 

Let a  = 2,1,05, and 025.
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a  =  2.00

a = 1.00

a = 0.;
a  = 0.5a(A

C/D

0.5 1 1.5
kL — Normalized Wave Number

Figure 6.9 Stress Intensity Factor for non-symmetric perpendicular cracks (45 degrees)

a =1.00
1.5

a = 0.50

a = 0.25

u.
i?  0.75 cn

0.5

CO

0.25

0.5 1
kL — Normalized Wave Number

1.5 2

Figure 6.10 Stress Intensity Factor for non-symmetric perpendicular cracks (225 degrees)
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6.4 Conclusions

As we expected, we have gained new insight into what effect a second 

perpendicular crack has on the SIF. Clearly, more study is required for the perpendicular 

cracks, but we noticed that the length and location of the perpendicular crack greatly 

effects the SIF o f the other crack.
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SECTION 7

SCATTERING OF AN INCIDENT WAVE BY A 

THIN MOVING WING

7.1 Introduction

Consider a wing, with uniform velocity, moving through a known sound field. 

The wing will scatter the acoustic pressure as it passes through the sound field and it is 

our goal here to model the effects o f this scattering on the total acoustic pressure.

The wing is approximated by a finite, infinitesimally thin strip moving in the 

positive x (axial) direction with uniform velocity VF. The wing is located in the region

of space define by I  = {(x, j? ) : a + VFT < x < b + VF7 , y  = A}, see Figure 7.1.

Furthermore, the wing is assumed to be rigid. That is, no sound can penetrate the strip, 

which means that the normal component of velocity is zero. A two-dimensional model is 

used, wherein the wave front o f a known incident wave is in the x y  plane.

i
/■w

1
1
1
1

y

tii

a + V f 7 b + V F7  x

•
Sound
Source

Figure 7.1 Moving wing geometry
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In the sections to follow, a Neumann boundary value problem (BVP) for the 

scattered pressure is derived, non-dimensionalized and converted into an equivalent 

hypersingular integral equation using a boundary integral equation method (BIEM). This 

integral equation for the unknown scattered pressure is then solved using a collocation 

method outlined beforehand in this dissertation. Upon solving for the scattered pressure, 

the total acoustic pressure can be easily computed anywhere in the sound field.

7.2 Boundary Value Problem Derivation

A scattering approach is used. That is, the total acoustic pressure is expressed as 

a sum of a known incident pressure and an unknown scattered pressure,

The incident pressure, p t , is known a priori and solves the homogeneous wave equation 

everywhere in the sound field except at sound sources. The scattered pressure, p s , 

solves the homogeneous wave equation everywhere in the sound field except on the 

moving wing. Hence, the total acoustic pressure satisfies the homogeneous wave 

equation everywhere in the sound field except on the moving wing and sound sources,

P{x,y,T)  = Pi(x ,y ,7 )  + ps{x ,y ,7) (7.1)

'  d1 t d 2____1 d2 '
<dx2 + dy 2 c 2 a r 2 ,

p ( x , y ,7 )  = 0 for (x ,y ) g { ? vj sources} (7.2)

7.3 Non-dimensionlization

Using SI units, non-dimensionalize length by L , time by , and mass by

p 0 Z?. Now, define the non-dimensional variables below,
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where I  is an arbitrary unit length, c is the ambient speed o f sound and p 0 is the

ambient density and /? = V l -  M 2

Thus, equation (7.2) reduces to the non-dimensional wave equation

where

s = {(x,y) :a + Mt < x < b  + Mt,y  = /t} (7.5)

7.4 Change of Variables

By choosing an appropriate change of variables, (7.4) can be written in a concise 

form, making the derivation of the integral equation much simpler. This section will 

outline the change of variables used.

Currently, the frame o f reference is fixed in space. Therefore, the first change of 

variables will make use o f a stretched, moving frame of reference

and in this moving frame, the wing is located in the region of space defined by

y  ~  y (7.6)
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S  = { (X ,y )  : A < X  < B ,y  =  h\,  where ,4 = — and 5  = — (7.7)
P  P

and P  = V l-  M 2  is the non-dimensional stretching constant Upon making this change 

of the independent variables, the wave equation (7.2) becomes

(  d2 d2 2 M  d2 d \ P (X ,y , t )  = 0 (7.8)
5 ^  dy2 p  dXdt dt2)

where

P (X,y , t )  = p(x,y,t)  (7.9)

Furthermore, the total acoustic pressure is assumed to be time harmonic with temporal 

frequency at. Hence, the time variable and the mixed partial derivative can be 

eliminated from (7.8) by making the following transformation o f the dependant variables

P(X,y ,t)  = Q (X,y)e ,'‘- ' ia> (7.10)

P . i X ^ ^ Q i X . y y * - * " '  (7.11)

P,(X,y,t) = Q ,{X ,y )e l'‘- ux) (7.12)

Combining (7.10) with (7.8) yields the Helmholtz equation for the new total acoustic 

pressure, Q,

r d2 d2 ^  
V.T T  + X J +,Cd X 2 dy2

Q(X,y)  = 0 for (X ,y)  sources} (7.13)

where k  = — is the stretched wave number and k  = is the dimensionless wave
P  c

number. Furthermore, a scattering approach can be used for the new total acoustics 

pressure,

Q{X,y) = Ql( X , y )  + Q!{X,y)  (7.14)
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7.5 Boundary Condition Derivation

The total acoustic pressure and acoustic velocity are related via the acoustic 

momentum equation

P o ^ + V ?  = 0 (7.15)

In order to make a relationship between the normal derivative o f the pressure to the wing 

and the velocity, they component o f the momentum equation is written below,

~  t t y  CS n
* w + f - °

where uy denotes they  component o f the velocity. By making use o f the non-

u
dimensionalization (7.3) and uy =-^-,  the non-dimensional form o f (7.16) is given 

below.

du dp
= ° (7.17)

dt dy

Using the change o f variables (7.10) and (7.18) below

uy(x ,y , t ) = ^ (X ,y )e ,(t,' ^ ) (7.18)

equation (7.17) can be written as,

M d V y K = dQ
P  dX p  y dy

Note that in the absence of inflow, M =  0, equation (7.19) simplifies to

: dQ
kV, = ‘i t  (7.20)By

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

otherwise, solving the first order linear O.D.E. for the velocity function in (7.19) yields 

the v e lo c i t y  written in terms o f the pressure.

e~‘“XVy(X ,y )  = ,y)dX'  for M  > 0 (7.21)
M  4  dy

In order to express the boundary conditions in a concise manner, the introduction 

o f field and surface functions will be defined. For an arbitrary field function f ( X , y ) ,  

define the surface functions by,

f ±(x)= lim f(x,y) 0 .21)
y-*h

where y - > h + implies thaty approaches h in such a way thaty  - h >  0 , and y->h~  

implies thaty  approaches h in such a way that y  — h<  0 .

The wing is assumed to be rigid. Therefore, no sound can penetrate the strip. 

Hence, the normal component o f the velocity vector across the wing is zero.

(IVy )* (X )  = 0 for A < X  < B (7.23)

By using condition (7.23) in (7.21), the normal velocity can be eliminated. Hence, for 

M  > 0 , the first set of boundary conditions can be written as

(if) = 0 for X  e  [A, B] (7.24)
v ? y j

and

\ A e " “ X — (X',y)dX'=  0 (7.25)
-® dy

For M=Q,  equation (7.25) is satisfied trivially and adds no additional information.
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By approxim ating the wing by an infinitesimally thin strip, sharp edges are 

produce on both the leading and trailing edges. This will lead to non-unique solutions o f 

(7.13) and (7.24) -  (7.25). In order to guarantee uniqueness, the introduction of 

additional physical conditions is required. The first o f these, called the Kutta condition, 

is imposed at the trailing edge and requires that

In addition, require that the total acoustic pressure be integrable over any finite region o f 

two-dimensional space.

Lastly, the boundary value problem is finalized by imposing the Sommerfeld radiation 

condition, which is given by

This radiation condition will guarantee that only outward traveling waves are possible at 

infinity.

7.6 Boundary Value Problem Summary

To complete this section, a brief summary of the Neumann boundary value 

problem for the scattered pressure will be given. Assume that the known incident wave 

Qi and its derivative are continuous everywhere in the sound field except in source 

regions and satisfy the radiation conditions (7.28). By making use o f (7.14) in (7.24) —

(7.28), the BVP for the scattered pressure is given by

(7.26)

(7.27)
Area

(7.28)
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(7.29)

(7.30)

(7.31)

(7.33)

(7-32)

Area

limV/jf— +i xQ1 = 0 where R = J x 2 +y 2 
VdR J v s

(7.34)

Equations (7.29)-(7.34) uniquely determine the scattered pressure Qs(X ,y)  in terms of 

Qi(X,y)  and therefore, the total pressure is determined by (7.14).

7.7 Boundary Integral Equation Method

In this section, equations (7.29) -(7.34) from the BVP are converted to an 

equivalent hypersingular integral equation. By using standard results from potential 

theory, the scattered pressure is written as a double layer Helmholtz potential. The 

problem o f solving for the scattered pressure reduces to that o f solving for an unknown 

double layer density. After solving for the layer density, the scattered pressure is 

explicitly calculated by evaluating the double layer potential.

The boundary integral formulation coupled with the solution technique is called 

Boundary Integral Equation Method (BEEM). BIEM has advantages over other 

numerical techniques such as finite difference and finite element methods. In particular,
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the later techniques require the computation o f the entire sound field to find the sound at 

any point in the sound field. In addition, extraordinary measures must be taken in order 

to satisfy the radiation condition. BIEM, on the other hand, solves for the boundary 

values only. Whence the total pressure can be evaluated at any point without having to 

compute the entire field. Furthermore, the far field radiation condition is implicitly 

satisfied. Due to the efficiency o f BIEM, most calculations can be done on any 

mainstream PC in a few minutes.

The two-dimensional Green’s function for the Helmholtz operator (7.29) that 

implicitly satisfies the radiation condition (7.34) is

G { X - X ' , y - y ' ) ^ ^ \ KR) (7.35)

where

R = J ( X - X f + ( y - y f  (7.36)

and

f # \ z )  = M z ) - i r 0 ( z )  (7.37)

is the Hankel function of order zero.

In order to express the equations in a concise, readable manner, field and surface 

operators are introduced. The double layer field operator, d, is defined as follows. For 

an arbitrary field density / ,

A f l x - y )= j ‘f ( X ' M X  -  X \y )d X '  (7.38)

where A = —, B = —, and
P  P
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In addition, define a new field operator by taking the normal derivative to the wing of 

(7.38). This field operator takes the form

A , { f l X , y )  = \ BAf ( X % ( X - X ' , y ) c D C  (7.40)

where

dr( X - J C , y )  = ^ L ( X - X , y - h )

The operators d and dy are continuous everywhere in the sound field except on the 

moving wing. The kernels, evaluated on the moving wing, are singular. The precise 

degree of the singularity o f these operators will be discussed later.

Using results from Helmholtz potential theory, the scattered pressure can be 

written in terms o f the double layer field operator,

a ( z , y) = d [ a ] ( ^ ,y )  (7 .4 2 )

After solving for the double layer density Q2 , the total acoustic pressure is known 

everywhere in the sound field by

Q(X,y)  = <tQ2l X , y )  + Qi(X ,y )  (7.43)
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The application o f the boundary conditions (7.30) w ill necessitate the evaluation 

o f dy on the moving wing. Therefore, for an arbitrary field density f , define the double 

layer surface operator

D ,[ /X * )  = < * ,[/](* .* ) = \ j { X ' ) D y( X  -  X')dX' (7.44)

where

f o r x - ^ a ’ b ) ( ? -4 5 )

For small arguments, \X -  X' \«l ,  equation (7.45) exhibits the asymptotic behavior,

D ( x - r )  =
2 (7.46)

2 x(X-X')  4/r

where Db is a bounded, continuous function across the wing. In contrast, the first term is 

hypersingular. That is, the corresponding divergent integral exists only in a finite part 

sense [16]. The logarithmic term has been extracted because although analytically 

integrable, it exhibits numerical difficulties. Numerical techniques have already been 

developed to handle these types o f kernels.

The continuity o f the field operators (7.38) and (7.40) is stated without proof. For 

sufficiently smooth field functions f

lim d[ftX,y)  = *\f(X)  for X <e(A,B) (7.47)
y —*h x.

and

lim d y[/](JT ,y) = Dy[ /] (* )  for X e(A,B) (7.48)
y —*h
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by applying (7.47) to (7.42), a relationship between the unknown layer density Q± and 

the jump in the scattered pressure across the wing is derived; namely

( a ) 4 w - ( a r w = - a w  x  S (a ,b ). (7 .5 o>

By making use o f the boundary conditions (7.30), the integral equation for the 

unknown layer density Q2 is given by

D, [ a ] W  = for x  e(A,B).  (7.51)dy

Equation (7.51) is a hypersingular integral equation o f the first kind with unknown 

double layer density Q2 .

Equation (7.51) alone does not have a unique solution Q2 . The non-uniqueness is 

removed by virtue of the boundary conditions (7.31) -(7.32). Asymptotic analysis about 

the edges o f the wing along with Kutta boundary conditions (7.32) shows that the layer 

density can be written in the form

a  (X )  = jm t, + 4 ( B - X \ X - A )  F(X)  (7.52)

where <2> 0  is an unknown constant and F(X)  is an unknown smooth function. In the

presence of motion, layer density Q2 (x) has a square root singularity at the leading edge

whereas at the trailing edge it is bounded due to the Kutta condition. In the absence of 

motion, the layer density is bounded at both edges.

Lastly, the boundary integral equation (7.51) is completed by the auxiliary 

condition (7.31). The boundary value problem is now replaced by an equivalent 

boundary integral equation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

Dy[ Q i W  = for X  e (AtB) (7.53)
dy

with subsidiary condition,

fC K
\ A e~lMX d [Q2](X,h)dX' = - \ A e~‘“ X ^ ~ { X ' ,h ) d X '  (7.54)

**^jo J —co o y

and a solution o f the form

f t( X )  = A/O. + J ( B - X ) ( X - A )  F (X)  for X  e (A ,B )  (7.55)

Recall that for M =  0, equation (7.54) is satisfied trivially and provides no additional 

information.

The solution o f (7.53) - (7.55) is obtainable via the technique described in 

chapter 3. The unknown density can be written as

= where M.X) = i l ( B - X ) ( X - A ) .  (7.56)

The governing integral equations can therefore be written in the form,

Dy = for X  e (A ,B ) (7.57)
dy

with subsidiary conditions

f { A )  = 0 and \A e ~ ' ^ X dy[Q2l X \ h ) d X '  = ~ \ A e~‘̂ X ?Q-(X',h)dX'  (7.58)
J —ao J —co m ;

7.8 Results

Consider the scattering of an incident plane wave by a thin moving wing. In the 

stretched, moving frame o f reference the incident plane wave takes the form,
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f  M-cosff y  ftsind 'j 
, _  I-  Mcosff l-Afcosfi*]Q ,(X ,y )  =  ve U-Mcos* i-Afcos<r j  (7 59)

in which 0 is the angle between the positive axis and the direction o f propagation. We

will use 6  = 225° for the examples which follow.

In order to give physical meaning, dimensional units will be specified. The 

kinematics are chosen to approximate an airplane wing during take-off,

?o = l- 2 1  %

f  = 3 4 2  ^  (7.60)
5  = 7.182 kHz
v = 95.55 Pa

At time T  = 0 , the location o f the wing is given by,

-1  m < x < 1 m ; j /= 0 m  (7.61)

In the picture that follows, the real part of the total acoustic pressure is plotted in a 

contour flood plot
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SCATTERING BY A MOVING WING
M  = 0.0

M  = 0.5

k  =  21

2 0 0 . 0

1 7 3 3
146.7
120.0 
9 3 3  
66 .7  
40 .0  
1 3 3  

-1 3 3  
-40.0 
-66.7 
-9 3 3

• 120.0
-146.7
-1 7 3 3
• 200.0

M  = 0.25

M  = 0.75

Figure 7.2 Acoustic pressure (Pascals) for a moving wing with various mach numbers

The Sound Pressure Levels, denoted SPL, of Figure 7.2 are plotted in the next 

picture. The sound pressure levels, measure in decibels, are given by the formula

SPL = 10 log ' a ' ”
Q ref j

(7.62)

where G ,* = 2 x 1 0  5 is used to approximate the acoustic pressure due to a whisper.
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S C A T T E R IN G  B Y  A  M O V I N G  W IN G  
M  =  0 .0  k  =  21 M  =  0 .25

Figure 7.3 Sound pressure level (dB Re H Pa) for a  moving wing with various mach
numbers

As one might expect, both plots show a very distinct shadow pattern below the wing and 

a reflected region above the wing.

7.9 Conclusions

The boundary integral equation method is excellent for solving the moving wing 

problem. In fact, this technique is fast and versatile enough to run on any mainstream PC 

in about 45 seconds. If we tried to run the same case using a FEM, we would not be able
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to efficiently run it on a PC. For this reason, we see that the BDEM is far superior to other 

traditional methods.

In the next section we will consider the effects o f scattering by two parallel 

moving strips. This problem will be termed the moving duct problem and it will be used 

to model an airplane engine in motion.
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SECTION 8 

SOUND RADIATED FROM A TWO-DIMENSIONAL 

FINITE DUCT

8.1 Introduction

In section 7 we established a numerical procedure for solving the moving wing 

problem. We solved the moving wing problem in order to develop an efficient numerical 

procedure for solving a more general acoustics problem. This problem is known as the 

moving duct problem.

For a known incident wave inside a finite, moving duct, we wish to model the 

effects due scattering by the duct walls o f the total acoustic pressure. The geometry for 

the moving duct problem is given by Figure 8 .1. We wish to make the shape o f the duct 

as general as possible so we can solve a variety of problems.

Literature exists for the scattering of an incident wave by a semi-infinite duct [1, 

2,27]. The semi-infinite duct geometry is given by extending the trailing edges o f the 

duct to negative infinity and forming an arbitrary duct inlet configuration. The dominant 

procedure for solving this problem is the Wiener-Hopf technique. Our goal here is to 

relax the semi-infinite restriction and gain new prospective to the effects o f scattering for 

a finite, moving duct. It should be noted that the infinite  duct problem, given by 

extending both the leading and trailing edges to infinity, is solvable in “closed form” by 

implementing the separation o f variable technique.
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Three major areas o f study will be considered. The first will compare the finite 

duct results with the infinite duct results. Since the infinite duct has a  “closed form” 

solution we can easily compute the spectrum for the infinite duct and compare it to the 

finite duct spectrum. A great deal of time will be spent on verifying that we have the 

correct spectrum in the finite duct solution. The reason for this is the second area of 

study.

After showing that the solution obtained via BIEM contains the correct spectrum 

we will look at the effects o f a scarf inlet configuration on radiated sound. The reason we 

need to verify the spectral composition of the solution is that it will be shown that the 

direction o f prominent sound radiation is directly related to the spectral composition 

inside the duct In fact, we will expand on research by Peake [27]. Peake, using ray 

acoustic methods and a semi-infinite duct, has determined that scarf inlet designs are 

effective at redirecting sound away from sensitive areas. This is a form o f passive noise 

control. Furthermore, he concluded that for modes which are near cut-off frequency, 

scarf inlet is an extremely effective passive noise control technique.

The last major topic considered is the effects o f resonance. It is well known that 

the infinite duct problem is not solvable at certain eigenfrequencies, whereas the finite 

duct is solvable for all frequencies. However, near the eigenfrequencies o f the infinite 

duct the numerical solution to the finite duct may become unstable and resonance may 

occur.

The geometry for the finite duct is described by two disjoint parallel, 

infinitesimally thin strips see Figure 8 . 1 . The two disjoint strips are assumed to form a 

duct with width W and have inflow in the positive x  (axial) direction with uniform speed
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VF. Furthermore, the interior of the duct is assumed to be rigid. The following notation 

convention will be used: subscript 1  refers to the top of the duct whereas subscript 2  

refers to the bottom of the duct.

F = 0

Line Source

Figure 8 .1 Duct geometry — ground fixed reference frame

Define the location of the duct by

s = { (x ,y ):ay+V^F< x < b j+ V Ft ,  y = h j  for y = 1,2}. (8.1)

8.2 Boundary Value Problem Derivation

By using a scattering approach, the total acoustic pressure is written as the sum of 

a known incident and an unknown scattered pressure.

p ( x ,y , t )  = p f(x ,y ,F ) + ps( x , y j ) . (8 .2 )

The total acoustic pressure satisfies the homogeneous wave equation everywhere in the 

sound field except on the moving wing and at sound sources Q . Hence,

(  d2 j ?  1  d2 ^
y d x 2 dy2 c 2  9F2  j

p ( x ,y ,? )  = 0  for (x ,y )  £ s u Q . (8.3)
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83 Non-dimensionallzation

We will non-dimensionalize length by the duct width W , time by , and mass

by p 0W3; where p 0 is the ambient density and c is the ambient speed o f sound. Hence, 

fo r/ = 1 , 2  define the following non-dimensional variables,

x  p . .  Vpx  = —  p  = — ■ a : = ~  M  -  —W 'X •x’2 j  W ~

t = -=- Ps = 2 hj =-Jr K = ^~
W Hs W P

where f5 = \ 1 - M 2 is a stretching constant Thus, equation (8.3) has the non- 

dimensional representation

a2 a2 a2 \
p(x,y,t) = 0 for (x ,y )g su Q  (8.5)

dx2 dy2 dt2 J 

and fo r /= 1 , 2

s = {(x,y):aj + M t < x < b j  + Mt, y  = h j} (8 .6 )

and Q is the non-dimensional form of the sound source.

8.4 Change of Variables

As we did in the moving wing problem, we will introduce a stretched moving 

frame coordinate system,
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J j t
I >

Define the new dependent pressure variables below,

Pi{X,y,t) =

P*{X,y,t) = Qs( X , y y ( b~ ^

Hence, the wave equation (8.5) is replaced by the Helmholtz equation below

f a2 a2 '
d X 2 dy2

Q{X,y) = 0 for (* ,y )« sS u Q

where for j  — 1 , 2

5 = { (X ,y ) :A j  < X < B j , y  = h j } with Aj  = and Bj  = ^
r  H

8.5 Boundary Condition Derivation

The total acoustic pressure and acoustic velocity are related via the acoustic 

momentum equation

— +Vp = 0 
dt

Furthermore, by defining the newy -  component of velocity as

u,(x,y ,t) = Vy (X ,y)e ‘̂ - ’MX>

and making use o f (8 .8 ) they -  component o f the momentum equation becomes,

115

(8-7)

(8.8)

(8.9)

(8.10)

(8 .11)

(8 .12)

(8.13)

(8.14)
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K K
e ' ^ V J X . y )  = 4 ~ X  e~‘“ X ^ - { X ' , y ) d X '  for M  > 0 (8.16)

M  J~c° ay

In the absence o f flow, equation (8.16) reduces to

kVy (x,y)  = i ^ Q  for M  = 0 (8.17)

To better discuss the boundary conditions, surface operator notation is introduced.

For an arbitrary field function f ( X , y ) , define the surface functions f f ( X )  for /  = 1,2

by evaluatingon  both sides o f the duct wall, i.e.

f f { X )  = lim f { X , y )  for X  e ( Aj,Bj)  (8.18)
y-+yf

where the notation y  —> y j  [y~ j implies that y  approaches such that y —y j  is always 

positive (negative).

Using surface function notation, the hardwall boundary conditions can be written

as

W *  W  = 0  for X  e (A JtBj) and j  = 1,2 (8.19)

It is convenient to express the boundary conditions in terms of pressure. Therefore, the 

normal velocity is eliminated by applying the momentum equation, (8.16), to (8.19). 

Hence, for j  = 1 , 2  and M  > 0 , we get the following set o f equations

r dQx± 
dy

1 (X )  = 0 for *  e (A j .B j)  (8.20)
' j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

and

(8.21)

Clearly, for M=  0 equation (8.21) is trivially satisfied and thus, provides no information. 

The Kutta conditions for the duct are given by

In addition to the Kutta condition, a farfield behavior must be specified. In particular, to 

ensure that only outgoing waves are possible at infinity, we impose the Sommerfeld 

radiation condition

Lastly, we will need to constrain the solution further by requiring the total acoustic 

pressure to be integrable over any finite region o f two-dimensional space.

Now a summary o f the N eumann boundary value problem for the unknown 

scattered pressure in terms o f the known incident pressure is given. It is assumed that the 

incident pressure and its derivatives are continuous everywhere in the sound field except 

at sound sources. Furthermore, the incident pressure is assumed to satisfy the 

Sommerfeld radiation condition. Hence, the BVP is written as,

(8.22)

where (8.23)

^ + t t + * 21 Q.(x >y)=o  for^oX dy J
(8.24)
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Km[(a);(*Ha);(*)]=o for >=1,2 (8.27)

J l a k R  < 0 0  R  is any 2 - D region (8.28)

lim V ^f = 0  where R = y j x 2 + y2 (8.29)
*-*• ^ die y

8.6 Boundary Integral Equation Method

In this section equations (8.24) - (8.29) are converted to an equivalent system o f 

hypersingular integral equations. From standard potential theory results, the scattered 

pressure can be written as a sum of the double layer potentials. Therefore, solving for the 

unknown scattered pressure is reduced to solving for unknown double layer densities.

The two-dimensional Green’s function for the Helmholtz operator (8.24) that 

implicitly satisfies the Sommerfeld radiation condition (8.29) is given by

G ( X - r , y - S )  = ±H?'(KR) (8 .3 0 )

where

X = J ( X - x f + ( y - y Y  (8.31)

and

HY\Z)~Jr(Z)-iY.(Z)  (8.32)

is the V th order Hankel function of the second kind.

So that we can write the equations in a concise manner we will introduce field and

surface operators. For field densities f j (X)  where X  for j  = 1,2, define the

double layer field operators, d*, as follows:
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Ai{ f , \ X , y )  = \ y j (X ')d‘ ( X - X \ y ) d X ' (8.33)

where

d‘(X -  X' ,y) = ̂ ( X  -  r , y - yj)
(8.34)

and

* , = , / ( * - x - f  + ( y - y ,  f (8.35)

The application of the boundary conditions (8.25) will necessitate taking the 

y  - derivative o f equations (8.33). Hence, the field operators dJy are defined by taking the 

y  derivative o f (8.33).

everywhere in the sound field except possibly for points on the upper (lower) part of the 

duct. These kernels, evaluated on the duct surface, are singular and the precise degree of 

singularity will be discussed later.

Using results from potential theory the scattered pressure can be written as a sum 

of the double layer potentials [9,30]

(8.36)

where

<8-37>

The operators d 1 and d ‘ (d 2  and d2) are well defined and continuous

(8.38)
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The functions Q\ and Q2  are the unknown double layer densities on the upper and lower 

duct strips, respectively. Once the layer densities have been determined, equation (8.38) 

is evaluated to find the scattered acoustic pressure and hence, the total acoustic pressure 

is known at any desired location.

By direct application o f boundary conditions (8.25), a system o f integral 

equations is derived for Q\ and Qi- However, to apply (8.25) to (8.38) it is necessary to 

evaluate the field operator on the duct surface. Hence, the following surface operators 

are defined

The kernels (8.40) are singular and small argument analysis of the Hankel 

function yields the following result

D ; ( X - X ' )  = - ± -  ,x ~ y  * D i ( X - X ‘) as 0(8.4

where DJB = 0 ( l) . The leading term in (8.41) is hypersingular. Consequently, integrals

such as (8.39) are divergent and must be interpreted in the Hadamard finite part sense 

[16]. In addition, the logarithmic term has been extracted because although integration 

involving the logarithmic term is analytically feasible, difficulties arise upon evaluating 

the integral numerically.
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The continuity o f the field operators (8.33) and (8.36) is stated without proof. For 

sufficiently smooth surface functions f j ( X ) , j  = 1,2, defined for X  the

following limits are given:

l i m d f o r  A T s(4 ,B ,) (8.42)
y~*yj 2,

and

lim d j[y ](jr,j-) = Di, [ / J](X) for X e f a . B j ) .  (8.43)

Applying (8.42) to (8.38) yields the well-known results

(& ),* (* )-(& );(* ) = ~Q,(X ) for x  e (A r Bt ) andy = 1 ,2 . (8.44)

That is, the double layer densities are equivalent to the jump in scattered pressure across 

the duct surface.

By applying (8.38) to the boundary conditions (8.25) and making use o f the 

surface operator notation, the system o f hypersingular integral equation can be written as

[ a X - J O + O j l& X * .* )  =  fo r x  « ( 4 .  A )  (8.45)dy

and

- - ^ - ( X , y 7) for X  s (X ,,a ,) . (8.46)
dy

Equations (8.45) and (8.46) comprise a system o f one dimensional, hypersingular 

integral equations of the first kind for the unknown double layer densities Q\ and Qi- 

However, to uniquely determine Q\ and Qj, the boundary conditions (8.26) - (8.28) are 

needed. Asymptotic analysis o f (8.45) and (8.46) about the duct edges together with 

conditions (8.26) and (8.28) show that the layer densities must have the form [1 2 ]
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Q:(X )=  M<t>, + )/(S'  " X t X ~ A’ ) F> W  x * ( Ar B,)  and 7  =1,2(8.47)

In (8.47), Oy are unknown constants and F} are unknown smooth functions. In

the presence of flow, the layer densities have square root singularities at the leading 

edges o f the duct whereas at the trailing edges they are zero due to the Kutta condition. In 

the absence of motion, the layer densities are zero at both ends.

A summary of the boundary integral equations will now be given. For/ =  1,2

D',[Q,lX)+A\[Q2l X , y , )  = - % k ( X , y t) for X  <=(A„B,) (8.48)
dy

d J t a K - ^  + D ^ S M  -  - ¥ - ( * > * )  for -*■ «K 4.-8.) (8.49)dy

\ y ,̂ '{A\{Q,lx\yy ^ Q A x'’y ^ ' = - \ y " r ^ ( x '’y,)dx' (8-5°)

Q , ( X ) = M o J ^ ~ ^  - X \ X - A , )  F,(X)  for X  e(A , ,B ,)  (8.51)

Recall that for M=  0, equations (8.50) provides no additional information and the first 

term in (8.51) vanishes.

A collocation method for solving (8.48) - (8.51) has been developed by the author 

and coworkers [7]. In particular, a FORTRAN subroutine, TBIEM2D [31], has been 

written to numerically solve (8.48) - (8.51) and is used to obtain the results which follow.

8.7 Spectral Analysis

In order to test the accuracy o f the numerical procedure, the spectrum of the 

infinite duct is compared to the spectrum o f the finite duct It is clear that for a
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sufficiently long duct, the spectrum o f the finite duct approaches the axial wave numbers 

o f the infinite duct It will be this approximation on which we focus.

Assume the infinite duct has width 2h and is symmetrically located about the x  -  

axis. In the stretched moving frame, at time / = 0, the infinite duct problem is given by

'  a2 a2 2'
 T + —KdX2 dy2 /

[eiKMXP{X,y))  = 0

JL[ei*MXp(X£h)} = 0
(8-52)

Using separation of variables let P (X ,y )  = F(X)Y{y) . Hence, equations (8.52) reduces

to

Therefore,

{F'+2iKMF'-K2 M 2 F^Y + T '  F+tc2 FY =0

r(±h) = 0

Y" 2  F"+2iKMT-K2 M 2F  , 2 = - K -------------------------------= - 1

(8.53)

(8.54)

where

T'+k 2Y = Q with r(±h) = 0 

Yn(y) = A ^ o ^ i y - h ) ]
(8-55)

A. = for n = 0 , 1 ,. " 2  h
and the O.D.E for F  becomes

Hence,

F'+2irsMF'-(fc2M 2 +A2 - k 2)f  = 0

F„(X) = A :elT: x  + A~e'T’ x

(8.56)

(8.57)

(8.58)
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where

r *  = kM  ± tJk z

So, in the unstretched, moving frame o f reference,

(8.59)

/„ (* ) = K e lYnX + An eir' x where r t = ~ t  (8-60)
P

where f n{x)= Fn(X)

Hence, in the unstretched, moving frame of reference, the pressure field inside the duct 

has the form

P { x , y t t )  = e *  co s^ y  -  h)]^A* eir"x + A ' e ' ^ J  (8.61)
n=0

where A* are constants such that the only the propagating modes are present Hence,

2h/c
0 < N <  —  (8.62)

it

Furthermore, y*  denotes left travelling wave, whereas

2  hk

r n =i
right travelling waves for n<

n
left travelling for n >

it

(8.63)

8.8 Spectral Analysis Results

Throughout the results to follow, combinations o f axial dipole line sources will be 

used as the sound source. In the stretched, moving frame the non-dimensional axial 

dipole, centered at (X 0,yQ) , produced the incident field
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Qi(X ,y )  = * (8.64)

where

(8.65)

and v  = — r- is the non-dimensional source strength. The SI units o f the sound source
Wp^C1

are given by Newtô nit i ^ h  • Furthermore, it will be imderstood that all results are taken 

at time 7 = 0 with the following choice of parameters, unless otherwise stated.

A> = 1-2 1  %  
c =  342 ^
W = lm
Duct length = 2 m

(8.66)

The first case will focus on a stationary, symmetric duct o f length 2 meters with 

one axial dipole centered in the center of the duct, see Figure 8.2

i i y  7 = 0

Line of Observers

Axial Dipole X

Figure 8.2 Geometry for one symmetrically placed axial dipole line source
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In order to test the accuracy of the method used to solve the finite duct problem, 

we will compare the axial spectrum from the infinite duct with the axial spectrum from 

the finite duct The spectrum o f the infinite  duct is computed analytically from equation 

(8.60). For the finite duct, the total acoustic pressure is computed for a line o f observers 

inside the duct The Fourier transform is computed for this line o f observer to see the 

spectral compositions for the pressure. This is compared with the spectrum computed 

from the infinite duct It should be noted that the location and type of source will effect 

which modes are cut on and which are not. Three cases will be examined: one with only 

even modes, one with only odd modes, and one with even and odd modes.

Firstly, we wish to use a source that will produce only even modes. The axial 

dipole is an even function in_y about its center. Therefore, due to the symmetry o f the 

duct, only the coefficients o f the even eigenfunctions are nonzero. Therefore, only the 

even axial spectrum is present. The top graphic in Figure 8.3 shows the analytic 

spectrum compared to the finite duct spectrum for a> = 6.498 kHz and a source strength 

of v  = 150 % . The lower left picture is the total acoustic pressure, measured in Pascals 

and the lower right is a plot o f the sound pressure levels, measured in decibels, where

SPL = 20 log
r \  

P where Pnf  = 2.0 x 10 5  (8.67)
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Axial Spectrum Analysis (Even Source)

k -  1 9  M =  0 . 0
3  = 6.498 kHz P = 150 %m

----------- Infinite Duct Results

R ight T r a v e llin g  Waves

.Finite Duct Results

- 2 0

L eft T r a v e llin g  Waves

10 A x i a l  Wave N u m b er 10

A co u stic  P ressure (Pa) SPL, dB(re 20 pPa)

-9 0  - 7 0  - 5 0  - 3 0  - 1 0  1 0  3 0  5 0  7 0  9 0 1 1 5  1 1 7  1 1 9  1 2 1  1 2 3  1 2 5

Figure 8.3 Conventional, stationary duct with 
one symmetrically placed axial dipole line source
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Clearly, the finite duct spectrum agrees very well with the infinite duct theory. In 

particular, no extraneous numerical noise is present and only the correct modes are turned 

on.

To further test the technique developed for the finite duct problem, consider using 

an odd sound source, meaning that only the odd eigenfunctions are present in the analytic 

solution. Using two axial dipole line sources o f opposite strength placed symmetrically 

about the x  -  axis can do this. See Figure 8.4

7 = 0

Line of Observers

Figure 8.4 Geometry for two symmetrically placed axial dipoles with opposite strengths

Using this array of axial dipoles, the total sound source is an odd function in y  

about the x  -  axis. Therefore, the only nonzero components o f the solution are the odd 

eigenfunctions. Using the parameters from equation (8 .6 6 ), a  = 6.498 kH z, and the 

source strengths are = 150 %  and v2 = -150 % .
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Axial Spectrum Analysis (Odd Source)

k =  1 9  M =  0 . 0
5  = 6.498 kHz vl = 150 %  v2 = -150 %m

  - Infinite Duct Results ■Finite Duct Results

R ight T r a v e llin g  Waves L eft T r a v e llin g  Waves
Su
o
W
C
ti
Eh

20-2 0 1(k x i a l  W ave N u m b er10

A co u stic  P ressure (Pa) SPL, dB(re 20 pPa)

-9 0  - 7 0  - 5 0  - 3 0  - 1 0  10  3 0  5 0  7 0  9 0 1 1 6  1 1 9  1 2 1  123  1 2 5  128

Figure 8.5 Conventional, stationary duct with 
two symmetrically placed axial dipole line sources o f opposite strength
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Again, the spectrum o f the finite duct agrees very well with the infinite duct case. 

However, the SPL plot shows that the noise is exiting the duct in a  narrow channel 

whereas in the single dipole case, the noise was in a much wider pattern. This 

phenomenon will be examined in depth in the section on Ray Acoustics.

The next example will look at a source that is neither even nor odd. Therefore all 

cut-on modes are present Using one axial dipole line source located non-symmetrically 

in the duct accomplishes this. See Figure 8 . 6

7 = 0

Line of Dbservers

,ine Source

Figure 8 . 6  Geometry for one non-symmetrically placed axial dipole line source

The parameters used are given by (8 .6 6 ). Furthermore, the frequency and source strength 

given by 3  = 6.498 kHz and v  = 150 % .

The spectrum for the infinite duct case is very complicated with the above 

parameters. In particular, there are 14 cut-on modes; seven right travelling and seven left 

travelling waves. The following graphic shows the comparisons. O f particular interest 

are the 0th and the 1st modes. It appears that the finite duct does not contain both modes. 

However, from the two previous examples, it seems as though both are included. This
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.L .

implies that in the asymmetric case, the 0  and 1  modes are present but they are so close 

together that the are undistinguishable. A very long duct is required to isolate those two 

modes.
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Axial Spectrum Analysis 

£ = 1 9  M =  0.0

5  = 6.498 kHz v=150 %

________Infinite Duct: Results Finite Duct Results

L e ft  T ra v e llin g  WavesR ight T r a v e llin g  Waves

•H

1(k x i a l  Wave N u m b e r10
2 0- 2 0

-9 0  -7 0  -5 0  -3 0  -1 0  10 30 50  70 90 1 1 3  1 1 5  117  1 1 9  1 2 1  1 2 3  125

Figure 8.7 Conventional, stationary duct with 
one non-symmetrically placed axial dipole line source
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The SPL pattern in Figure 8.7 is quite interesting. The sound is reflected up as it 

exits the duct Much more noise is being reflected in the first and second quadrants than 

in the third and fourth. Later, a technique, which is based on reflecting sound away from 

sensitive areas, is examined.

The last stationary case will look at the effect of a frequency that is below the cut- 

on frequency. For this particular geometry and an odd source, the cut-on frequency is 

k = 7t. Hence, we will use the two-dipole case and let 5  = 1 kH z.

Cut-Off Frequency Analysis

5  = 1 kHz v = 150 %

U
*23Otu

2010-1 0

SPL, dB(re 20 jiPa)

119 121 123 125 127 131 135

Figure 8 . 8  Sound pressure levels for a source below cut-on frequency
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This is particularly interesting because only the decaying modes are present It is 

clear from Figure 8 . 8  that the modes decay very rapidly and very little sound is 

propagated out o f the duct This concludes the stationary spectral analysis. Now the 

focus will shift to results from a moving, symmetric duct

The following results for the moving conventional duct are based on two 

symmetrically placed axial dipoles o f opposite strength. The following parameters will 

be used:

P„ =121 %  
c =342 
<q = 654 kHz
K , ( 868)  
W = lm
Duct length = 1 m

The velocity o f the duct for the first case will be 70 r̂ ec. In the two cases that 

follow, the velocity is 140 and 210 , respectively. Due to the fact that the right

travelling waves are being compressed and the left travelling waves are being stretched, 

there is more noise in front o f the source than behind the source.
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Spectral Analysis

k = 2 0 M  =  0.2

---------- Infinite Duct Results .Finite Duct Results
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Figure 8.9 Spectral analysis M  = 0.2
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M  =  0 .4

----------- Infinite Duct Results >Finite Duct Results
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Figure 8.10 Spectral analysis M  = 0.4
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£ = 20 M = 0.6

-----------Infinite Duct Results Finite Duct Results
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Figure 8.11 Spectral analysis Af =  0.6
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Something very interesting happens when the speed is increased to M — 0.6. The 

spectrum shows that there are additional cut-on frequencies. In particular, the ± 7th 

modes are present. In addition, both are right travelling waves. This is evident in the 

strength o f the sound exiting the inlet o f the duct

The previous spectrum examples are a very clear demonstration to the 

effectiveness o f the numerical technique developed for solving these acoustic duct 

problems. In the next section a passive noise control technique, called scarf in let is 

considered.

8.9 Passive Noise Control (Scarf Inlet Model)

A duct is said to have a scarf inlet if the line joining the leading edges o f its walls 

makes nonzero angle a  with the normal to the walls. The case a  = 0 represents the 

conventional in let see Figure 8.12.

Axial Dipole
Line Sources

Figure 8.12 Geometry for scarf inlet

As is clearly shown in the sound pressure level plots, distinct lobes o f prominent 

sound are present The direction o f these lobes can be approximated by a ray acoustics 

method. Rays are the solution to the homogeneous wave equation as the wave number 

approaches infinity. It can be shown that in a homogenous medium the wave fronts are 

plane waves and the rays are straight lines normal to the wave fronts [5]. That is, in a
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limiting sense, the far field sound pressure level directivity is approximated by plane 

waves propagating in straight lines.

For large k, the group velocity o f the /Ith mode makes the angle Qn with the duct 

axis [28] where

W * H % )2=

Furthermore, when sound waves impinge on the boundary the angle o f incidence is equal 

to the angle o f reflection. Hence, if  the waves inside the duct are travelling at the angle 

corresponding to the group velocity vector, they must exit in a channel with the same 

angle, see Figure 8.13

Figure 8.13 Group velocity vector

This simple geometric argument shows that if the lower portion of the duct is 

extended far enough; i.e. a  is large enough, all sound is reflected upward.

Using ray acoustic approximations and the Wiener-Hopf technique for solving the 

2-D scattering by a semi-infinite duct, Peake [27] has shown that at high frequencies and

7 t 7 t
for — > \On\ > —-  a  significant noise reduction in the lower farfield quadrant is possible
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due to the scarf in let In particular, nearly 20 dB reductions can occur for near cut-off 

modes.

Dunn [8] has noted some limitations of the previous method. He suggests the 

following: large frequencies are required for asymptotic analyses, radiation angle analysis 

provides qualitative results in the far-field only and, the effect on the scarf inlet on the 

amplitudes o f the reflected and transmitted modes inside the duct are not included.

The above restrictions do not apply to the integral equation method. It does not 

use modal decompositions. The only limitations o f the boundary integral equation 

method are limitations due to the following: computational resources, thin duct 

approximations, linearity, and uniform inflow. Another advantage of the integral 

equation method is that propagation and radiation are coupled both forward and a ft No 

special numerical procedure is required to ensure continuity o f the pressure at the duct 

inlet or exhaust Furthermore, the solution is valid in both the far field and near field at 

all feasible frequencies and inflow Mach numbers.

8.10 Scarf Inlet Results

Experimental evidence exists which demonstrates that a scarf inlet affects the 

directivity o f the noise radiation patterns [4]. The geometry for the scarf inlet is given in 

Figure 8.12. The results are divided into three case studies identified by the inflow Mach 

number (M=  0 ,0 .2 , and 0.6). A contour plot of the near field radiation patterns is given

for k=  20 and the following scarf inlets: a  = 0°, 10°, 20°, and 30°. Next, the far field 

radiation patterns o f the scarf inlet are compared to those from the conventional inlet In 

this case, the SPL is computed for an arc o f observers with radius 10 meters from the
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sound source polar plots are given for 

* = 1 5 ,2 0 ,3 0 ,  and 40.

The following kinematics and geometry is used for the results to follow.

A, = L21 %
c =342 

W = l m

a . = - - W  b ,= —W 
1 2 1 2
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Acoustic Near Reid Sound Pressure Levels
Af = 0 k  =  20

a ) a  = 0 b) a  = 10'

d) a  = 30
SPL, dB (re  20u.Pa)

120  121  122 123  1 2 4  125  126 1 2 7  128

Figure 8.14 Acoustic near field for various inlet configurations (Af = 0.0)
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Several interesting results are demonstrated here. Firstly, it is intuitively clear that the 

r t - l  modes *  ±9.0°) show very little attenuation. For these modes to be attenuated

by the scarf inlet, the angle 0  would need to be very large.

Now consider the n = 3 mode in the upper right quadrant, corresponding to

# 3  »  28.11°. This mode is effected very little in Figure 8 .14b corresponding to a  = 10°, 

whereas when a  = 20° and a  = 30°, we see considerable attenuation o f the n = 3 mode. 

In particular, fo ra  = 30° the corresponding mode in the lower right quadrant,

*  -28.11°, is nearly completely attenuated.

Lastly, the n = 5 modes, in the upper right quadrant, are negligible in Figure 8.14a-

b, but become quite prominent when a  = 20° or a  = 30°.

The next case was chosen to simulate flight conditions at take-off. The same 

parameters will be used, with the exception of the Mach number, which will be increased 

to M=  0.2.
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Acoustic Near Field Sound Pressure Levels
M = 0.2 A: = 20

a) a  = 0 b) a  = 10*

c) a  = 20 d) a  = 30
SPL, dB ( re  20(iPa)

120 121  122 123  1 2 4  125  126 127 128

Figure 8.15 Acoustic near field for various inlet configurations (M = 0.2)
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The noise radiation results in the upper right quadrant are similar to the case with no 

inflow. The exhaust pattern is far more skewed than the stationary case. The uniform 

inflow seems to effect the sound exiting the duct This observation implies that the scarf 

inlet has an effect on the modal structure inside the duct 

To conclude the near field study, let M = 0.6.
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Acoustic Near Reid Sound Pressure Levels

M —0.2 k = 20

a) a  = 0 b) a  = 10°

d) a  = 30
SPL, dB (re  20(j.Pa)

119 120  121 122 123 124 125 126 127 128 129 130 131

Figure 8.16 Acoustic near field for various inlet configurations (Af = 0.6)
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This case is particularly interesting. The magnitudes of the modes are effected 

considerably with the various inlet configurations. In particular, we validate the claim 

made by Peake. For the n = 7 mode (near cut-off), the noise is considerably lower with 

the scarf inlet.

In order to study the far field effects due to scarf inlets an arc o f observers, radius 

10 meters from the center o f the duct, is used. A two-dimensional polar plot of the sound 

pressure levels is given for k  = 15,20,30, and 40, and with M =  0, and 0.6. In Figure

8.17 - Figure 8.20 the sound pressure levels o f a a  = 20° scarf inlet are compared with 

the conventional inlet sound pressure levels. The results here agree very well with the 

findings by Peake. However, with the studies conducted here, the ray acoustics 

conclusions can be expanded to include the following:

1. The scarf inlet is effective at directing the sound away from the lower inlet quadrant 

for a  wide range o f frequencies and inflow Mach numbers.

2. Significant noise reduction in the lower quadrant is possible for low order modes.

1Z3. Noticeable noise reduction is observed in directions for which 9 „ <  a .
n 2

4. The scarf inlet affects the aft radiation pattern. The effects appear to be more 

pronounced for increasing Mach numbers.

5. Reflection patterns inside the duct can be severely affected by the scarf inlet thereby 

affecting the radiated field. This phenomenon requires further study and is the 

subject of future research.
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Far Field Directivity -  Sound Pressure Levels, dB (20 |iPa)

a) k = 15 b) k = 20

C o n v en tio n a l I n l e t  s c a r f  I n l e t  (a  = 20°)

M = 0 . 0  ^  = 1 0 . 0  m

Figure 8.17 Far field directivity (k = 15,20; AT = 0.0)
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Far Field Directivity -  Sound Pressure Levels, dB (20 jiPa)

b k = 40

C o n v en tio n a l I n l e t  —— — — S c a rf  I n l e t  (a  = 20°)
M = 0 . 0 Robs = 10 .0 m

Figure 8.18 Far field directivity (k  = 30,40; M  = 0.0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Far Field Directivity -  Sound Pressure Levels, dB (20 jiPa)

a) k = 15 b) k = 20

C o n v en tio n a l I n l e t  S c a r f  I n l e t  (a  = 2C

M = 0.  6 Rogg = 10 .0 m

Figure 8.19 Far field directivity (k = 15, 20; M  = 0.6)
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Far Field Directivity -  Sound Pressure Levels, dB (20 fiPa)

a) k = 30 b) k = 40

C o n v en tio n a l I n l e t  —— — — gc a r f  i n l e t  (a  = 2 0 °)

M = 0 . 6  ^  = 1 0 . 0  m

Figure 8.20 Far field directivity (k = 30,40; M  = 0.6)
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8.11 Resonance

It is well known that the infinite duct problem is not solvable at certain 

frequencies, called eigenfrequencies. The finite duct is, in theory, solvable for all 

frequencies. Numerical studies have suggested that near the eigenfrequencies of the 

infinite duct the finite duct experiences resonance. Although a theoretical proof is 

outside the scope o f the dissertation, this section will give numerical evidence to the 

veracity of this claim.

Consider a duct with length 2 meters and width 1 meter. The eigenfrequencies for 

the corresponding infinite duct have been previously determined to be Xn = n i t . It is 

further suggested that the numerical technique used for the finite duct becomes ill 

conditioned at these eigenfrequencies. Hence, in order to look for ill-conditioning Figure 

8.21 is a plot of the condition number o f the discretized system for the finite duct over a 

large range of frequencies.

Condition Number vs. Wave Number
too

6 0 0

5 0 0a
° 400 p̂

 3 0 0

o zoo u
100

1 510 Z0 25V an Btabttr

Figure 8.21 Condition number vs. Wave number
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It is clear that at certain frequencies the matrix becomes more ill conditioned.

The spikes in this plot represent the frequencies o f possible ill conditioning. Clearly, 

these resonance frequencies are near the eigenfrequencies o f the infinite duct In fact, for 

a sufficiently long duct the finite duct resonance frequencies are very close to the infinite 

duct eigenfrequencies.

Through numerical testing, a phenomenon has been observed. It appears that the 

axial dipole is not affected by these resonance frequencies. The geometry for this study 

is given by Figure 8.4, with the exception of the line sources. The first o f two cases will 

use two symmetrically placed axial dipole line sources whereas the other will use two 

symmetrically placed monopole line sources. It will be shown that the monopole line 

sources experience resonance, although the accuracy of the solution is as yet 

undetermined. A monopole line source centered at {XQ,yQ) gives the incident field

Q,{X,y)  = P//02,U ( ^ - X 0)2 + (y -^ „ )2 ] . (8.69)

Consider the resonance frequency k  = 15.774, which corresponds to the 

eigenfrequency A5 = 5n »15.708. Figure 8.22 clearly shows a standing wave in the 

monopole line case but no such wave exists in the case of a dipole line source. However, 

if the axial dipole line sources are sufficiently close to the inlet or exhaust resonance does 

occur for the axial dipole. Nevertheless, every case the author has considered, where the 

line sources are located near the center of the duct, demonstrates the type o f behavior 

seen in Figure 8.22. A more detailed study o f this phenomenon is left for further 

research.
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Resonance Flood Plot 

A x ia l D ip o le  L ine S ources

154

Monopole L ine  Sources

A c o u s t i c  P r e s s u r e  (Pa) SPL, dB (Re 20 p P a )

-1000 -2S0 250 1000 139 *42 145

Figure 8.22 Resonance for axial dipole and monopole line sources
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8.12 Conclusions

We have shown that the scarf inlet has the potential of redirecting sound away 

from sensitive areas. It was also shown that noise reduction occurs in the far field as well 

as the near field.

We have demonstrated the usefulness and versatility of the boundary integral 

equation method for solving the finite duct problem with scarf inlets. The mathematical 

formulation for two and three-dimensional scattering o f sound by finite length ducts are 

very similar. We therefore expect the observations for the two-dimensional case to apply 

to the sound scattered by a cylindrical duct with a scarf inlet in a uniform flow field.

The computer code TBIEM2D [31] was used for calculation for the two- 

dimensional duct. For the three-dimensional cylindrical duct, studies can be performed 

via TBIEM3D [6]. In this case, the sound from a finite cylindrical duct is computed via a 

boundary integral equation method. Both codes can easily be used to study acoustic 

scattering for any computationally feasible frequency, subsonic inflow Mach number, 

duct length, and inlet configuration.
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SECTION 9 

CONCLUSIONS

In this dissertation computationally efficient algorithms were given for the 

solution o f two classes of hypersingular integral equations. It was shown that the 

collocation method was the preferred method for solving each class of integral equation. 

The reason for this is two-fold. The Galerkin method requires a computationally 

expensive double numerical integration whereas the collocation method only requires one 

numerical integration. However, the question of convergence is just as important as 

computer resources. Although convergence results were proven for both the Galerkin 

and collocation methods, it was unclear as to which method converged faster. We were 

able to give qualitative meaning to the rates o f convergence. Surprisingly, we saw that 

collocation method was superior in that realm as well.

Once we established numerical techniques for solving each class o f hypersingular 

integral equation, we were able to use the techniques to solve problems in fracture 

mechanics and acoustics. The first problem was the dynamic crack problem. We were 

able to relax the rather strong restrictions imposed by the techniques used by Itou and 

Mai. In addition, the method we derived for the dynamic crack problem was versatile 

enough to apply to parallel and perpendicular line crack problems. We were able to solve 

these dynamic crack problems for different configurations of disjoint parallel and 

perpendicular Griffith cracks, yielding new insight into these problems.
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The last area of research was conducted in  acoustics. The moving wing problem 

was solved first and served as a  precursor to the moving finite duct problem. In 

particular, we focused on the effects of a scarf inlet design on the sound field. We saw 

that we could redirect sound away from sensitive areas with the appropriate inlet design.

Passive noise control studies are the topic for future research. In particular, the 

effects of acoustic liners in a moving duct will be examined. Some modifications will be 

required to the techniques presented here in order to solve the lined duct problem. 

Nonetheless, the work in this dissertation will help to develop such models.
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