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ABSTRACT

A Mathematical Model of the Dynamics of an Optically
Pumped Codoped Solid State Laser System

Thomas Gerard Wangler

Old Dominion University, 1990
Director: Dr. John J. Swetits

This is a study of a mathematical model for the dynamics of an optically
pumped codoped solid state laser system. The model comprises five first order,
nonlinear, coupled, ordinary differential equations which describe the temporal
evolution of the dopant electron populations in the laser crystal as well as the
photon density in the laser cavity. The analysis of the model is conducted in
three parts.

First, a detailed explanation of the modeling process is given and the full
set of rate equations is obtained. The model is then simplified and certain
qualitative properties of the solution are obtained.

In the second part the equilibrium solutions are obtained and a local stability
analysis is performed. The system of rate equations is solved numerically and
the effects, on the solution, of varying physical parameters is discussed.

Finally, the third part addresses the oscillatory behavior of the system by
“tracking” the eigenvalues of the linearized system. A comparison is made be-

tween the frequency of oscillations in the linear and nonlinear system. Pertinent
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physical processes—back transfer, Q-switching, and up-conversion— are then
examined.

The laser system consists of thulium and holmium ions in a YAG crystal
operated in a Fabrey-Perot cavity. All computer programs were written in FOR-

TRAN and currently run on either an IBM-PC or a DEC VAX 11/750.
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Chapter 1

Introduction

In 191€ Albert Einstein conceived the idea of stimulated emission of radiation.
Prior to that time physicists believed that a photon could interact with an atom
in only two ways: it could be absorbed thereby raising the atom to a higher
energy level or it could be spontaneously emitted as the atom dropped to a
lower energy level. Einstein advanced a third possibility — that a photon with
energy corresponding to that of an energy level transition could stimulate an
atom in the upper level to drop to the lower level, in the process stimulating the
emission of another photon with the same energy as the first.

The first one to utilize the concept of stimulated emission was Charles H.
Townes, one of the inventors of the maser—an acronym coined by Townes to
stand for microwave amplification by stimulated emission of radiation. Townes,
collaborating with colleague Herbert Zeiger and graduate student James P. Gor-

don, had a working maser by 1953 [14]. At about the same time, A.M.Prokhorov
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and N.G.Basov achieved similar results in the Soviet Union and later shared the
Nobel Prize with Townes.

It wasn’t long before physicists and others began looking beyond the mi-
crowave region to shorter wavelengths. Townes and Arthur L. Schawlow made
pivotal contributions in this area and published their results in a notable paper
(Schawlow and Townes,1958) which pointed out important differences between
requirements in the microwave and visible regions.

Meanwhile, a Columbia graduate student—Gordon Gould—was working on
his own analysis of the requirements for stimulated emission to occur at visible
wavelengths. Gould recorded his findings in a set of notebooks dated 1957 but
did not publish his results. Consequently, Gould did not receive recognition
for laying down the theoretical groundwork for the laser; however, he is the one
who coined the term —which is an acronym for light amplification by stimulated
emission of radiation.

The Schawlow-Townes paper of 1958 proved to be a catalyst for the scientific
community, stimulating many new efforts to build lasers. Most researchers—
including Schawlow and Gould—thought the best materials for building lasers
were gases. However, a physicist at Hughes Research Laboratories— Theodore
H. Maiman—opreferred synthetic ruby crystals instead. In spite of some theorists
insistence that ruby would not work, Maiman persevered. In 1960 he vindicated
himself and ushered in a new era by demonstating the world’s first laser: a rod of

synthetic ruby with reflecting coatings on the ends and surrounded by a helical
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flashlamp.

Maiman’s demonstration of the ruby laser paved the way for a proliferation
of solid-state lasers. Before years end, a second type of solid-state laser was
reported by P. P. Sorokin and M.J. Stevenson: trivalent uranium ions doped in
calcium fluoride. Then in 1961, L.F. Johnson & K. Nassan demonstrated the
first solid-state neodymium laser, in which the neodymium ion was a dopant
in calcium tungstate (CaWO,). Three years later the optimal host for most
commercial applications—yttrium aluminum garnet (YAG)—was demonstrated
as a laser material by Geusic, et.al. [14]. Subsequently, Nd:YAG became the
standard solid-state laser material, displacing ruby in many applications.For
the remainder of the 60’s and throughout the 70’s, research and development
of solid-state lasers lagged while attention was directed to other types of laser
systems.

Around 1980 there was a renewal of interest in solid-state lasers, due in
large part to the development and availability of new host materials. At about
this time (the early 1980’s) NASA began investigating tunable solid-state lasers
as promising candidates for the Earth Observing System (Eos). One facet of
Eos is active remote sensing of the earth’s atmosphere using the lidar (light
detection and ranging) and dial (differential absorption and lidar) techniques.
These techniques measure the distribution of various chemical components of
the earth’s atmosphere; for instance, H;0, CO, CO,, and CH,. Two of the

more prominent tunable solid-state lasers are alexandrite and titanium-doped
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sapphire.

The alexandrite (Cr3+ :BeAl;O4) laser which can operate at wavelengths
ranging from 700 to 800 nm is being developed for an autonomous DIAL exper-
iment in which it will make range resolved measurements of atmospheric water
vapor, pressure, and temperature [1].

A newer laser—Titanium-doped Sapphire (Ti*+ :Al;03)—is tunable from
660 nm to about 986 nm, a range which encompasses the 940 nm spectral lines
of water. Ti:Sapphire was discovered in 1982 by P.F. Moulton who later (1985)
reported on its performance capabilities and spectroscopic measurements [17).
Also in 1985, the temperature dependence of lifetimes in Ti:Sapphire was stud-
ied by C.E. Byvik and A.M. Buoncrisiani [11]. In 1986, P. Brockman et. al.
[7] performed pulsed injection control (also known as injection seeding) on the
Ti:Sapphire laser. From 1986-1988, L.F. Roberts, J.J. Swetits, and A.M. Buon-
cristiani conducted research on the Ti:Sapphire laser by employing a mathe-
matical model which accurately accounted for the dynamical processes taking
place in the active medium [10]. In order to ascertain the suitability of using
the Ti:Sapphire laser as a possible replacement for the alexandrite laser many
aspects of the laser had to be studied; for example, injection seeding, quantum
efficiency, and stability. The Ti:Sapphire laser was found to be a viable tunable
laser capable of satisfying the stringent requirements imposed by atmospheric
scientists for remote sensing. Recently, F. Allario reported [1] that titanium-

doped sapphire technology has been proposed by the NASA Langley team for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the LASA ( Lidar Atmospheric Sounder and Altimeter) facility and as a payload
attached to the manned space station (project “TALOS”).

During the past several years, research on the optical properties of materials
associated with the development of a solid-state laser in the 2 micron region has
been conducted. In particular, one likely candidate is the sensitized holmium
laser. The sensitized holmium laser operates in the near infra-red region and
can be used as a source for both LIDAR and DIAL. In addition, it may be used
aboard an aircraft to make Doppler lidar measurements of windshear, since it
operates in the eye-safe region.

In a solid-state laser, a dopant ion substitutes directly into the host lattice.
When the lanthanide rare earth ion holmium (Ho) is used as a dopant in the
host crystal yttrium aluminum garnet (Y3 Als Oy;), the holmium ion substitutes
into the yttrium sites. This induces a weak coupling to the host lattice which
results in narrower absorption and emission features than those commonly ob-
served in transition metals. Although the holmium laser has high gain and good
energy storage properties, ionic interactions among the holmium ions limit the
concentration of holmium possible in any host; therefore to increase the optical
energy absorbed, a sensitizing ion is included. In the present laser system, the
lanthanide rare earth ion thulium (Tm) is used as a sensitizer for holmium.

In order to develop a 2 um eye-safe laser, based on holmium emission sen-
sitized by thulium, it is essential to understand the inter-ionic energy transfer

processes at work within the host material. This is a study of a mathematical
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model of an end-pumped holmium laser sensitized by thulium ions, doped in
YAG. This laser will be referred to as a Tm-Ho:YAG laser or just Tm-Ho for
short.

The model was developed for the Tm-Ho laser, but with slight modifications
it may be used for other sensitizer and activator ions. The model comprises
two sets of rate equations; one set for thulium and one set for holmium. These
two sets, along with the equation for the photon flux, describe the temporal
behaviour of the laser system. The purpose of this study is to establish quali-
tative properties of the solutions using analytic techniques, investigate the local
stability of the solutions, examine the effects of Q-switching, study the oscilla-
tory behaviour of the solutions, and finally to subject the model to a numerical
treatment and compare the results with experimental data obtained in the lab-
oratory.

In Chapter 2, a mathematical model is derived which describes the temporal
evolution of the electron populations in the active medium as well as the photon
flux throughout the optical cavity. The optical cavity is taken to be a Fabry-
Perot cavity and the laser is assumed to be end pumped. The model is composed
of five first order, nonlinear ordinary differential equations.

In Chapter 3, a simplified version of the model is obtained by excluding
certain processes. This effectively reduces the system from five nonlinear o.d.e.*
down to four. The following qualitative properties of the solutions are then

established: nonnegativity, boundedness, and integrability.
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A local stability analysis is conducted in Chapter 4 to determine the stability
properties of the equilibrium solutions (also known as steady state solutions,
constant solutions, equilibrium points, fixed points, or critical points). The
affect on the equilibrium solutions, of varying appropriate physical parameters
is examined numerically.

In Chapter 5, a numerical solution to the system is obtained. In the case
where the pumping term is constant, i.e.W,(t) = W, a comparison is made
between the computed solution and the asymptotic solution predicted by the
stability analysis. The oscillatory nature of the system is then examined in some
detail and a process known as Q-switching is incorporated into the mathematical
model.

Chapter 6 is an investigation of back transfer and up-conversion. A study of
the qualitative and quantitative influence of these two processes on the solution
is performed and a comparison with experimental results is made. Q- switching
and up-conversion are then examined concomitantly. Also, an alternate spatial
averaging technique for the photon density is discussed.

All computer programs are written in FORTRAN and run on either a DEC
VAX 11/750 or an IBM PC. Three computer programs are included in the ap-
pendices. Appendix A contains the program that locates the equilibrium points
and determines their stability properties. Appendix B contains the program
that solves the simplified system of o.d.e.’ numerically. It can also track the

roots of the characteristic equation associated with the linearized system and
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implement Q-switching. Appendix C contains the program that solves the sys-
tem with back transfer turned on and the holmium up-conversion level included.
The modified coefficients—as discussed in Chapter 6—are incorporated into the

rate equation for the photon density and various pumping schemes are available.
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Chapter 2

Construction of the Model of the

Laser Dynamics

2.1 The Physical Processes Considered in the

Model

The energy level diagram for the Tm3+ ion and the Ho%+ ion in YAG is shown
in Figure 2.1. The spectrum for thulium emission and holmium absorption is
given in Figure 2.2 and the emission spectrum for holmium is given in Figure
2.3. The model comprises thulium ions in energy levels 3H, ,3F, , and 3H; ;
holmium ions in energy levels °I5 ,°I; , and ®I3 ; and the photon density in the
optical cavity.

Processes considered in the laser system will be divided into two main cate-

gories; namely, those processes which are inter-ionic— involving the transfer

9
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of an excitation from one ion to another—and those which are not. Inter-ionic
processes include: cross relaxation, back transfer, and up conversion. Processes
which are not inter-ionic include: spontaneous emission, absorption, and stimu-
lated emission. The latter processes will be considered first.

Spontaneous emission is represented in Figure 2.4 (a). It is characterized by
the emission of a photon with energy hv when the ion decays from energy level
1 to energy level 0. Here, h is Planck’s constant and v is the frequency of the
radiated wave. The probability of spontaneous emission is given in [21] and is
denoted Ajq. Ay is also referred to as the Einstein coefficient and represents the
rate at which this process occurs. In the laser model, the spontaneous emission
lifetime of a holmium ion in the °I; energy level (which is the upper lasing level)
is denoted 7; . This gives the relation 7§ = A7 .

Stimulated absorption is represented in Figure 2.4 (b). The rate at which

stimulated absorption occurs, Wo;, can be written [21]
Wai(t; A) = 001 (A)F(t; A) (2.1.1)

where A is the wavelength, 0¢;(A) is called the absorption cross section and
represents the probability of an atom absorbing energy from a passing photon,
and F(t;}) is the photon flux of the incident wave at time ¢ .

Stimulated emission is represented in Figure 2.4 (c). The rate at which

stimulated emission occurs, Wiq, can be written [21]
Wio(t; A) = 010(A) F(t; A) (2.1.2)

13
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Figure 2.4 A diagram of the radiative processes (a)spontaneous

emission,(b)stimulated absorption, and (c)stimulated
emission
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where 019(]A) is the emission cross section and represents the probability of an
atom being stimulated, by a passing photon, to emit its energy . Einstein showed
that, for a two level system, the probability of stimulated emission is equal to the
probability of stimulated absorption. Hence, from now on let gg;(A) = 010(A) =
o(A), where o()) will be referred to as the “transition cross section”. Also, the
number of electrons (per unit volume) in a given level will be referred to as the
“population” of that level.

The following inter-ionic processes increase the efficiency of the Tm-Ho laser
but at the cost of introducing more nonlinearities into the model. These non-
linearities make both the analysis and the laser dynamics significantly different
than solid-state laser dynamics studied previously. It should be noted that all
of the inter-ionic processes considered here are non-radiative processes.

The first process considered is called cross relaxation and is depicted in

Diagram 2.1.
3}'{4 3}]4
Fy F,
*He He
Tm3+ Tm3+
Diagram 2.1

In cross relaxation, a thulium ion in energy level 3H, loses energy and goes to

15
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energy level 3F, ; a “nearby” thulium ion in ground level 3H,¢ gains this energy
thus raising it to energy level 3F,. How “near” two thulium ions must be for this
process to occur and the probability of cross relaxation occurring are addressed
in [12]. Figure 2.5 gives spectroscopic evidence in support of cross relaxation in
thulium. From this it is seen that the upper thulium energy level,>Hy, decays
faster at higher concentrations of thulium. Furthermore,D.L. Dexter and J.H.
Schulman [12] give an expression for the lifetime of a thulium ion in energy level
SH, as a function of the thulium concentration; this is given in Figure 2.6 . In
the model, the probability of cross relaxation occurring is denoted by C.

The second inter-ionic process considered, forward transfer, is represented in

Diagram 2.2.

3F4 517

3H6 5-’8
Tm3+ Ho3+

Diagram 2.2

In forward transfer, a thulium ion in energy level 3F, loses energy and goes
to level *Hg ; a nearby holmium ion in energy level ®I; gains this energy and is
raised to level °I; . This results in a forward transfer of energy from thulium
to holmium. Figure 2.7 shows decay curves which are indicative of forward

transfer. The probability of this process occuring is denoted by C, .
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Figure 2.5 Decay curves for thulijum level 3H4.
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The inverse of this process, back transfer, is depicted in Diagram 2.3 below.

3
F, 51,
3.H6 5I8
Tm3+ Ho3+
Diagram 2.3

In back transfer, a holmium ion in energy level ®I; loses energy and goes to
energy level ®I; ; a nearby thulium ion in energy level 3Hg gains this energy and
is raised to energy level °F, . Spectroscopic evidence, indicative of back transfer,
was reported in [2] and is seen in Figure 2.8 . The net result is a transfer of energy
from holmium back to thulium. The probability of back transfer occurring is
denoted by C} .

The last inter-ionic process considered is up-conversion which is illustrated

in Diagram 2.4.

3}14
EIB
3
F,

4 7

3Hg SIg
Tm3+ Ho+

Diagram 2.4

In up-conversion, a thulium ion in energy level 3F4 loses energy thereby going

20
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to energy level ®Hg ; a nearby holmium ion in energy level ®I; gains this energy
and is raised to level °I; . This results in a transfer of energy from the thulium
3F4 level up to the holmium °I; level. The probability of up-conversion taking
place is denoted by ¢; . Spectroscopic evidence of up-conversion in the Tm-Ho
laser was reported in (2| and is seen in Figure 2.9 .

The inverse process of up-conversion, call it down-conversion, is illustrated

in Diagram 2.5.

3H4
51’5
3
Fy 51,
3H, A
Tm3+ Ho*+
Diagram 2.5

In this process, a holmium ion in energy level °I5 loses energy and goes to
level °I; ; a nearby thulium ion in energy level Hg gains this energy and is raised
to level *°F, . The result is a transfer of energy from the holmium °I; energy level

down to the thulium 3F, energy level. The probability of this process taking

place is denoted by ¢ .
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Figure 2.9 Indication of up-conversion in the Tm-Ho
system. (a)Holmium pumped in YAG:Ho(2%)
(b)Thulium pumped in YAG:Tm(6%) ,Ho(1%)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 The Photon Equation

In this section we develop the equation which describes the change in the photon
flux as it traverses the optical cavity. Throughout this discussion, the crystal is
taken to be within a Fabrey-Perot cavity as in Figure 2.10 .

Consider two energy levels, 0 and 1, of a given material. If a plane wave
with intensity corresponding to photon flux F,(t; ) is traveling in the positive =
direction in the material, the elemental change of this flux due to both stimulated

emission and absorption processes is given by
dFy (t;2) = o(A)Fy (8 A) (na(t) — no(t)) dz (2.2.1)

where ng(t) & n,(t) are the number of atoms in energy level 0 & 1 , respectively

and o()) is the transition cross section at wavelenth A . This is illustated below

in Diagram 2.6.

%
Fy ~ Fy +dF, ~
2

dz

Diagram 2.6

If there are g; manifolds associated with energy level 1 and gy manifolds

associated with energy level 0, then equation (2.2.1) must be replaced by

o

dF.(t;A) = o(A)Fi(t; A) (nl(t) - &no(t)) dz (2.2.2)
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For the instantaneous rate of change in the right traveling photon flux with

respect to time, divide through by dt in equation (2.2.2) .This yields

dEEN) _ R @) (nl(t) - ﬂno(t)> (2.2.3)
dt Jo
where we have used % = —:; = v . Here n denotes the index of refraction in the

active medium, ¢ denotes the velocity of light in vacuo, v is the velocity of light
in the laser crystal and z is the direction parallel to the major axis of the laser
crystal as indicated in Figure 2.10.

Similarly, denoting the left traveling photons by F_ (t; A) we obtain

dF_ d(tt; A _ o) () (nl(t) - z—;no(t)) (2.2.4)

The rate at which spontaneous emission from level 1 to level 0 occurs is

1

denoted by — . Only those photons emitted in the positive or negative z di-
71

rection will contribute to the photon flux in the crystal. We denote these by
s+(t;A) & s_(t; A), respectively. Incorporating these quantities into equations

(2.2.3) and (2.2.4) yields

2RI AYAR (nl(t) _ ;%no(t)> o)
0w (t:2) (n (t) - £ (t)) +5-(t; ) (2.2.5)
dt =\ 1 70 —(t 2.

Now let F(¢;A) be the total photon flux in both directions at wavelength J, so

F(t;X) = Fy(;A) + F_(¢;A). (2.2.6)
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Also let s be the total number of photons contributing to the photon flux in

either direction due to spontaneous emission at wavelength A, so
s(t;A) = s (8 A) + s-(8; A). (2.2.7)

Adding the two equations in (2.2.5) and using (2.2.6) and (2.2.7) we obtain

dF(t; A) _

i =vo(NF () (nl(t) - %no(t)‘) + s(t; A). (2.2.8)

The rate of spontaneous emission, —, can be written
T
1

1 1 1
5=t~
T 71 Tnr

where 7y is the fluorescent lifetime of the material and — is the transition rate
Tﬂl"

for non-radiative transitions [9]. The spontaneous emission function, s(t; A), can

be expressed as a product of two terms (9] as follows

s(t; A) = m(t) (&mzci’\)rﬂ)

711 At
where the first term is the rate of fluorescent decay from the upper lasing level
and the second term is the probability of emission at wavelength A . Equation

(2.2.8) can now be written

1dF(t;A) ) )1 ()
P T a(A)F(t; ) (nl(t) - ano(t)\) + sx—?f—‘—— (2.2.9)
where s, is given by
Sy = 87m3——0()‘)

A“ Tﬂ.

The photon flux, F(t; A), is related to the photon density, ¢(t; A), by the equation

$(t: ) = %F(t;/\)
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Substituting this quantity into equation (2.2.9) we obtain the following rate

equation for the photon density

va(A)d(t; A) (nl(t) - g:;no(t)> + s;nl—(t) (2.2.10)

dé(t;A) _
dt 1

The Tm-Ho laser emits at about 2 um . Hence, we will take A = A*, where

A* is a wavelength in the 2 micron region. Further, let ¢(t), o, and sp, denote

the photon density, transition cross section, and the probability of spontaneous

emission, respectively, at wavelength A*. Equation (2.2.10) now becomes
do(t n,(t
dé(t) = vod(t) (nl(t) - gl—n,o(t)) + spo—lu. (2.2.11)
dt 4o Tﬂ

The lifetime of a photon in the cavity will be denoted by 7, , the length of
the optical cavity by £. , and the reflectivity of the two mirrors by R; & R .
The cavity lifetime, 7., can also be thought of as the decay time for photons in
the optical resonator; as such, it represents all the losses in the optical resonator

of the laser oscillator. It can be expressed [21] as

. 2¢./c
. —'ll'lRle.

. . A . . 1
Since 7. is the lifetime of a photon in the optical resonator, = represents the
[
rate at which photons leave the optical cavity. Therefore, the total number of

photons leaving the cavity at time ¢, due to losses in the optical resonator, is

given by
40)

Te
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Incorporating this loss term into equation (2.2.11) we obtain the following rate

equation for the photon density, which is valid throughout the optical cavity

é%g—t) = vo¢(t) (nl(t) - %no(t)) _ ¢£ct) + s”"n;,(,t)' (2.2.12)

2.3 The Threshold Condition

Before oscillations can occur a threshold condition must be achieved. Oscilla-
tions will begin when the gain of the active medium compensates for the losses
in the laser. Assuming sp, is negligible close to threshold we take sp, = 0 in

equation (2.2.12). We then have

() = (va (nl(t) - %no(t)) - Tl) (t) (2.3.1)

. d
where ¢ = d_f The gain in the photon density will exactly compensate for the

losses when

1
vo (n1 — g]lno) - —=0. (2.3.2)
Jo e

The values of n; & ng which satisfy equation (2.3.2) are called equilibrium values
and will be denoted by #i; & 7o, respectively. With this notation, equation (2.3.2)

becomes

1
iy — iy = (2.3.3)

If ny(t) — z—lno (t) > 0, then the laser crystal will act as an amplifier in which case
)
we say there exists a “population inversion” in the material. When n,(t) & no(t)

attain their equilibrium values, i.e. satisfy equation (2.3.3), the system is on the
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threshold of lasing. Hence, a necessary condition for lasing to occur is that the

following inequality be satisfied.

1
Vo7,

na(t) — -Z—;no(t) > (2.3.4)

When this happens, photons which are spontaneously emitted along the cav-
ity axis will initiate the amplification process. Oscillations are introduced into
the system by placing the crystal between two highly reflective mirrors. This
causes photons traveling along the main axis of the crystal to bounce back and
forth between the two mirrors, thus amplifying the photon density on each pass
through the active medium. One of the mirrors is made partially transparent
so the laser beam can be extracted from the optical cavity. This capability of
amplifying the photon density — when a population inversion exists— is the

sine qua non of laser systems.

2.4 The Dopant Population Rate Equations

The energy level diagram, Figure 2.1, is the basis for the idealized model, Figure
2.11, of lasing action in Tm-Ho:YAG. For the remainder of the discussion the
following correspondence is made as a matter of notational convenience: thulium
energy levels *Hg, Fy, and *H, correspond to energy levels 0,1, and 2, respec-
tively and holmium energy levels *Ig, °I;, and °I; correspond to energy levels
0',1', and 2' respectively. The number of thulium ions, per cm?3, in energy level

1 and at time ¢ will be denoted N;(t) ; ¢+ = 0,1,2. Similarly, the number of
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Figure 2.11 Idealized mode! of the Tm-11o:YAG laser with the
following processes:(a) Stimulated Absorption,(b) Cross
Relaxation,(c) Back Transfer,(d) Forward Transfer,(e) Up
Conversion,(f) Down Conversion,and (g)Stimulated Emission
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holmium ions, per cm?®, in energy level 1/ and at time ¢ will be denoted n;(t) ;

1=0,1,2.
The electron populations of thulium and holmium are constrained by the

relations

and

ny = ng(t) + ny(t) + na(t) (2.4.2)

where Ny is the concentration of thulium ions, per cm3, and ny is the concen-
tration of holmium ions, per cm?.
The crystal is end pumped at a wavelength within the absorption band of

thulium. Hence, thulium electrons in the ground state are excited to level 2 at

a rate

Wp (t) No (t)

where W, (t) is called the pumping rate and represents the number of photons,
per microsecond (us), available to excite electrons in energy level 0 to energy
level 2. These excited electrons decay to the lower energy levels, due to sponta-

neous emission, at the rate

Na(t) _ Nalt) | Na(t)

T2 T20 721

1 1
where — & — represent the transition rates from energy level 2 to energy
T20 21

levels 0 & 1, respectively. Level 2 is also depopulated due to cross relaxation at
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the rate

CNo(¢) N2 (2).
Therefore, the rate equation for the electron population density of energy level
2 is given by

dN,(t)
ad ' °F

— CNo(t) Ny (t). (2.4.3)

() - 222

Electrons arrive in level 1 from level 2 at the rate

N, (t)

Ta1

and decay to the ground level, due to spontaneous emission, at the rate

M

Electrons are added to level 1 due to cross relaxation at the rate
2C No(t) N2 (2).

Level 1 is also populated due to back transfer. This is represented by the term
C1 No(t)na (),

and depopulated due to forward transfer at the rate
C1 Ny (t)no(t).

Finally, electrons leave level 1 due to up-conversion at the rate

quna (8) N1 (2)
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and arrive in level 1 due to down-conversion at the rate
@1 No(t)n2(2).

Hence, the rate equation for the electron population of energy level 1 is given
by

dNi(t) _ No(t)  Na(t)

= t) + C; No(t)na (t
at P 7.1 + 2C No(t) N2(2) + C1 No(t)n. (¢)

- C1N1(t)n0(t) + q;_No(t)ng(t) - qlNl(t)nl(t). (2.4.4)
Level 0 is depopulated due to excitation at the rate
W, (t) No(2).

It is populated, due to spontaneous emission of upper level electrons, at the rate

Ny (t) + (t)
T20 T

Level 0 loses electrons due to cross relaxation at the rate
CNo(t) N2(t)-

Electrons are added to level 0 due to forward transfer at the rate
C1N; (t)no(2)

and are lost due to back transfer at the rate

C; No(t)na(t).
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Finally, the population of level 0 will be incremented due to up-conversion by

the amount
@ Ny (t)na(t)
and decremented due to down-conversion by the amount

0 No(t)nz(2).

Therefore, the rate equation for the electron population of energy level 0 is

ﬂ\’;t(_t) = —W,(t)No(t) + ]—V%t) + J—V;—l(tl — CNo(t)N,(t) + C1N1(t)no(2)
- C;No(t)nl(t) + Q1N1 (t)nl(t) - q;’lNo(t)nz(t). (2.4.5)

Energy level 2' is populated by holmium electrons due to up- conversion at the

rate
q1N1 (t)nl (t) .
Electrons decay from level 2' due to spontaneous emission at the rate

ng(t) _ nz(t) + nz(t)
1 1 1
T2 T20 721

and due to down-conversion at the rate

g No(t)nz(t).

This gives the following rate equation for the electron population of level 2'

T — amu(0me) - 22 — ooyt (246)
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Electrons arrive in level 1’ due to spontaneous emission of electrons in level 2

at the rate
na(t)
T
and leave level 1’ due to spontaneous emission at the rate

ni(t)
7

Level 1' is populated due to forward transfer by the quantity
C1N1(t)no(t)

and depopulated due to back transfer by the quantity
CiNo(t)n.(2).

Electrons leave level 1' due to up-conversion at the rate
q1 N1 (t)na(2)

and arrive in level 1' due to down-conversion at the rate
q1No(t)nz(t).

Finally, since level 1' is the upper lasing level, it will lose electrons due to stim-

ulated emission. This loss is represented by the quantity

ovd(t) (nl(t) -~ ano(t)) :
9o
Collecting terms yields the following population rate equation for level 1

dn,(t) _ na(t)  na(t)
dt 91 T

+ C1Ny(t)no(t) — C1No(t)n,(t)
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+ g1 No(t)nz2(t) — g1 N1(t)na(t) — ove(t) (nl(t) — %no(t)>(2.4.7)
Energy level 0/ increases due to spontaneous emission of upper energy level

electrons at the rate
na(t) | na(?)

] !
T20 N

It is populated due to back transfer at the rate
CiNo(t)n4(2),

and depopulated due to forward transfer at the rate
C1N; (t)no(t).

Finally, energy level 0' gains electrons from stimulated emission which is repre-

sented by the quantity

ove(t) (nl(t) - i’ino(t)) .
go
Therefore, the rate equation for the electron population of energy level 0' is

given by

dn;t( 1 - n;( d + nlrst) + Cy No(t)n1(t) — C1N1(t)no(t)

+ ovd(t) (nl(t) - gl-no(t)) . (2.4.8)
0
Collecting equations (2.4.3)~(2.4.8) , we obtain the following set of rate equa-

tions for the dopant electron populations.

W)~ wymoe) - 22

4 m—— C Ny(t)N,(t)

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dNy(t)
dt

dNo(t)
dt

dng (t)
dt

dn1 (t)
dt

dno (t)
dt

+

N,(t) Nl(t) + 2C No(t) N, (t) + Cy No(t)n1(t)

C1N:1(t)no(t) + g1 No(t)n2(t) — qa N1 (t)na(2)

—Wp(£) No(t) + N:_zgt). + N;_l(t_)_

— CNo(t)N2(t)

CiN1(t)no(t) — Cy No(t)na(t) + g1 N1 (t)n1(t) — ¢1No(t)n2(2)

N (t)ma(2) - (t) ! No(t)na(t)

nay(t)  ma(t)
21 Gt

+ Ny (t)no(t) — Ci No(t)na(2)

Aot () — O () = 09810) ) = L))

(]
T20

malt) | nlf_st) + CiNo(t)na(t) — C1Na(t)noft)

ovd(t) (nl(t) - ;’—:no(t)) (2.4.9)

In the system (2.4.9), the quantities 7;,7/ ¢ = 1,2 represent the spontaneous

1
emission lifetime of energy level 7,1, respectively. The quantity, — . , represents

%)
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the transition rate (due to spontaneous emission) from level ¢ to level j. Sim-

. 1 . ops .

ilarly, - represents the spontaneous emission transition rate from level ¢’ to
i

level 3' . These two quantities satisfy the relations

1
—-—=) — 1=12
7i 7=0 T'.j
and
i—1

1 .
- = - 1= 1,2
T =0T

From constraint (2.4.1) it is clear that the dependent variables, No(t), Ni(t), &

N,(t), must satisfy

dNoft) | dMN(t) , dNa(?)

dt dt a0

and from constraint (2.4.2) the variables, ny(t), n,(t) and n;(t), must satisfy

dno(t) dnl(t) dng(t) _
a T Ta a0

Indeed, using equations (2.4.9), it is easily verified that the above two “rate
constraints” are satisfied. The “population constraints” (2.4.1) and (2.4.2) can

be rewritten as

No(t) = Np — Ny(t) — No(2) (2.4.10)
and
no(t) = nr — ny(t) — nq(t) (2.4.11)

Constraints (2.4.10) and (2.4.11) can now be used to eliminate Ny(t) & n(t)
from the rate equations (2.4.9). Substituting the expressions on the right hand
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side of constraints (2.4.10) and (2.4.11) into equations (2.4.9) for No(t) & no(t),

respectively , yields

dNy(t)

dt

AN, (2)

= Wy(t)(Nr — Ni(t) — Ny(t)) —

_ (1) Nl(t)

Nz(t) — CN(t)(Nr — Ny(t) — Ny(t))

dt

dny(t)

dt

dny(t)

_ ) _m(y

+ 2C N, (t)(Nr — Ny(t) — No(2))

T21

Ciny(t)(Nr — Ni(t) — Na(t)) — CiNy(t) (nr — na(t) — na(t))

qn2(8)(Nr — Ni(t) — Na(t) — auVa(t)na(2)

= aMa(Bm(E) ~ "2 gina(t) (2 — (1) - W)

2

dt

=y s C1Vi(t) (nr — na(t) — na(t))

Ciny(t) (N7 — Ny(t) - Na(t)) + ¢ina (t) (N7 — Ni(t) — No(2))

ai Ny (t)ny(t) — ove(t) (nl(t) - 5—;(11.1- —ny(t) — nz(t))) (2.4.12)
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2.5 Normalization and Initial Conditions

The coupled system (2.4.12) along with the photon density equation (2.2.12)
compose the temporal model of the laser system. The dopant electron pop-
ulations N;(t) & n;(t) ¢ = 1,2, are normalized by the quantities Ny & nr,

respectively. The photon density, ¢(t), is normalized by the quantity @norm -

Hence, let
o) = "2
y(t) = N]:,—S)
) = 2
0 = =
P(t) = ;f% (2.5.1)

be the normalized electron populations, photon density, respectively. Rewriting
the rate equations (2.4.12) and the photon density equation (2.2.12) in terms of

the normalized variables yields
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dz(t)
Tdt

dy(t)

z(t)

= Wy(t)(1 — =(t) - y(t)) — —— — Duz(t)(1 — =(t) — (2))

T2

_ ozt _ v 2D, z(t)(1 — z(t) — y(t))

dt

dw(t)
Tdt

dz(t
dt

et

dP(t)
Tdt

T21 1

Dsz(t)(1 - 2(t) — y(t)) — Day(t) (1 — 2(t) — w(t))

Dew(t)(1 - =(t) — y(¢)) — Dry(t)2(2)

w(

= Day(®)=) - 22 - Dow(t)(1 - =(t) - y(t)

z

2 _ 20, piyfe)(a - () - wie)
Dea(t)(1 - 5() - v(t)) + Dow(t)(1 - (1) — v(t)

Day(t)2(t) — Bulvz(t) + (1 — 7)(1 - w(t))]P(t)

{Blra0) + (1 - - w)] - -} PO +6s2l)  (252)

c
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where

D, =CNr Dy = C1Ny D7 = qinr B1 = 0VPporm
D; = Cinr Ds = Cy{Np Dg = q1Nr B2 = ovng
Spon
D3 = Cfnr D¢ = Q'lnr Dy = Q'lNT Bs = SR TT
T ¢norm
y=1+2
o

The initial conditions for the normalized populations in the active medium

are given by

z(0) = o
¥(0) = %
2(0) = 2
w(0) = wo
P(O) = B (2.5.3)

If the laser starts from quiescence, then the photons in the cavity as well as the
upper level populations are negligible and hence zg, yo, 20, w0, & P, would all
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be taken to be zero. The system of rate equations (2.5.2) along with the initial
conditions (2.5.3) constitute the initial value problem (I.V.P.) which will be the

topic of the subsequent discussion.
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Chapter 3

Qualitative Properties of the

Solution

3.1 The Modified Equations

In this section the full set of equations, (2.5.2), is modified by excluding two
physical processes—up-conversion and back transfer. This yields a simplified
system for which certain qualitative properties of the solution are established.
Throughout this discussion, the parameters are assumed to satisfy the following

(physically realistic) relationships :
T1>17 > 0
1>70 > 0
n>7 > 0

ﬁl;ﬂZ’ﬂS > 0
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Dl,Dz,D4 > 0
1 < #~«

sp, << 1

Excluding the above mentioned processes yields the following simplified system

of rate equations

dz z
G = WO-2-3). - Z-Di(i-z-y),
W o_ = Y oDw(l-z—1y)s - Dy(l—2)
dt 1 1z T—Y)+ 2Y 2)+
dz z
P73 = -—,+D4y(1—z)+ +p/i(v(1 - 2) — )P
71
dP 1
T = {Ah-a-2.- =P
(3.1.1)
where
l-z—y tfl—-z—y>0
Ql-z-y) =
0 otherwise
1-2z 1f1—-22>0
(1-2)s =
0 otherwise
(3.1.2)
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The following theorem which can be found in [6] is used to establish the first
qualitative property of the solution.
Theorem 1 Let f be a vector function (with n components) defined in a domain
D of (n+1)-dimensional Euclidean space. Let the vectors f, df /dyx(k = 1,...,n)
be continuous in D. Then given any point (to,n) in D there ezists a unique
solution ¢ of the system

y' =£(t,y)

satisfying the snitial condition ¢(to) = n. The solution ¢ ezists on any interval
I contasning to for which the points (t, ¢(t)), with tin I, lie in D. Furthermore,

the solution ¢ is a continuous function of the “riple” (t,t0,n) .

Equations (3.1.1) can be written symbolically as

y =1(ty)
where _
n z
Y2 y
y = =
Ys 2z
Ys P
and
] [ T
i| | W0a-2-0. - £ - Dali -2y,
z
f2 z_¥, 2D1z(1 -z —y)+ — Doy(1— 2)4
fy)=| " |=|™ 7
f3 7 + Dyy(1 = 2)4 + Bu(v(1 - 2); —1)P
1
1
| i | {,32[1 (1= 2)4] - T—}P + Bz
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Let D = {(t,y) :0<t< o0 and0< y, < oo fork=1,...,4} and I = [0, +o0)
for the remainder of the discussion. It now follows directly from Theorem 1 that
there exists a unique, continuous solution of the system (3.1.1) on any subinterval
of I containing t, for which (i) the pumping term, W,(t), is continuous and
(#7) the solution vector, y, is bounded. The following theorem establishes the
nonnegativity of the solution vector, y, as well as the ground states of thulium

and holmium.

Theorem 2 (Nonnegativity) If W,(t) > 0 for t > 0 and z(0) > 0, y(0) > 0,
2(0) > 0, and P(0) > O then

(¢) If 1—z(0) —y(0) >0 then 1—z(t) —y(t) >0 forallt>0;

(¢3) If 1 —z(0) — y(0) < O then there ezists a T such that 1 — z(t) — y(t) >0

for allt > T;

(¢4%) (a) If 1 —z(0) —y(0) > O then z(t) >0andy(t) >0 forallt>0

(b) If 1 —z(0) —y(0) <O then z(t) >0and y(t) >0 for allt>0;
(tv) If 1 — 2(0) > 0 then 1 — z(t) >0 for allt > 0;
(v) If 1 — 2(0) < O then there ezists a T* such that 1 — z(t) >0 for allt > T*;

(vé) 2(t) > 0and P(t) > 0 for allt > 0.

Proof of Theorem 2:
(¥) Since z(0) + y(0) < 1, then by continuity of z(t) + y(t) we know that
z(t) + y(t) < 1 for t near zero. Suppose that at ¢t = T, z(T) + y(T) = 1 and
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z(t) +y(t) <1for0<t < T,thenatt=T

1

%(z +y)= (—% + m> z+ (—:—1 —D,y(1- z)+) y (3.1.3)

1 1 1
Now since — — — < 0 and ~— — D;(1 — 2); < O, then if z(T) > 0 and
T21 T2 71 d

¥(T) > 0 and not both are zero, then from (3.1.3), a(z-}—y) < 0att =T which
contradicts z(t) + y(t) < 1 for t < T and therefore z(t) + y(t) < 1 for all t. Now
since z(T') + y(T') = 1, not both z and y are zero at t = T, hence it remains to
be shown that z(T') > 0 and y(T) > 0.

Suppose y(T') < 0, then since y(0) > 0 and y is continuous, there exists a

T, < T such that y(T,) =0 and y(t) >0 for 0 <t <T,. Then at ¢t =T,

dy _
dt

z [% +2D,(1-z— y)+]

The quantity in brackets above is positive so if z(T}) > 0 ,then §(T}) > 0 which
means y is increasing at ¢ = T;,. But this contradicts y(t) > 0 for 0 < ¢t < T},
and this contradiction implies y(t) > 0 for all t. Now suppose z(T}) < 0, then

since £(0) > 0 and z is continuous, there exists a T, < T, such that z(T}) = 0

and z(t) >0for0<¢t < T,. Thenat t =T},

dz_

G =W -2 -y, >0

Hence £(T,) > 0 which means z is increasing at t = T, which contradicts z(t) >0
for 0 <t < T;. Therefore, z(T;) > 0 and z(t) >0for 0< ¢t < T,. Now suppose

z(T,) = 0, then y(T,) = 0 and %(T,) = W,(T}) > 0. Additionally,

d*y z oy d
— = = _Z4ioDiz—(1—-z— (1 —z —
dt? oo Dz (1= 2=y)s +2Di8(1 -2 —y),

d .
- DgyE(l —2)y — Dyy(1 - 2)4
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From which we obtain

d*y 1 .
i (a + 2D1) £(T,)

> 0

So y(T) = 0, (T,) =0, and §(T;) > 0. Hence, y is concave up at t = T, which

implies that y is increasing to the right of ¢ = T}, and so
y(T)>0 (3.1.4)

Now suppose z(T) < 0, then since z(0) > 0 and z is continuous, we can choose

T < T such that z(T}) =0 and z(t) > 0for 0 < ¢t < Ty, then at t = T}

dz
7 = W) -z-y),

> 0

so z is increasing at ¢t = Ty which contradicts z(t) > 0 for 0 < ¢ < T} hence the
above supposition is false which implies z(T') > 0. This together with (3.1.4)
show that at t =T

d
5(x+y)<0

From prior comments, this implies that z(t) + y(t) < 1 for allt. Q.E.D. ()
(#7) The proof of (i) shows that if z(0) + y(0) = 1, then z(t) + y(t) < 1 for

all £ > 0. Suppose z(0) + y(0) > 1, then for ¢ near zero

d 1 1 1
E(“*H/) = (—g+gl‘)$+ (_Z_Dz(l_z)’f')y
< 0
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1 1
since for ¢ near zero -—+ — <0, _1 —Dy(1-2)4 <0, z(t) >0, y(t) >0,
2 ™ 1
and not both are zero at t = 0. So z(t) + y(t) is decreasing for ¢ near zero. Now
assume there exists a ¢ such that z(t) + y(t) > £ > 1 for all ¢, then

i(.'1:+y) = (—-1— + i) T+ (-—l - D,(1 “3)+) y

dt T2 T21 T1

< -—¢

1 1

since —— + — 4+ — < 0, —D,(1 — 2); <0, and an argument similar to that
T2 Tz1 T1

given in (z) can be adduced to show that z > 0, y > 0 . This inequality holds

for all ¢ so upon integrating from O to ¢ we obtain
2(0) +y(0) - (2(0) +4(0)) < ~-¢¢
or equivalently
z(t) + y(t) < —T—llft + 2(0) +3(0) (3.1.5)
From inequality (3.1.5) and since 7, > 0, it follows that
lim (2(t) + y(t) = —co

which contradicts z(t) + y(t) > £ > 1 for all t. Hence, our assumption was false,
which implies there exists a T such that z(T) + y(T) = 1 and z(t) + y(t) < 1 for
t near T. The analysis from (z) now applies to show that z(t) + y(t) < 1 for all
t > T as required. Q.E.D. (%)
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(¢%7) (a) Let z(0) + y(0) < 1 ,then from (i) we know z(t) + y(t) < 1 for
all t. Also, by hypothesis z(0) > 0, hence since z is continuous z(t) > 0 for ¢
near zero. Assume at some point, say ¢ = T} ,that z(T}) = 0 and z(t) > O for

0<t<Ty.Thenatt=1T,

dz
dt

which means z is increasing. This contradicts z(t) >0 for 0 <t < T; . Hence
the above assumption is false which implies z(t) > 0 for all ¢ > 0.
Similarly, assume that at some point, say ¢t = T3 , y(T32) = 0 and y(t) > O for

0 <t < T Then at t = T; we have

positive
dy T1 T
— = |—+2D,(1-
dt T21 + 1( z)+ z
> 0

since £ > 0 ,and ’—r%; + 2Dy(1 — z)4+ > O . This implies that y is increasing at
t = T, which contradicts y(t) > 0 for 0 < ¢t < T, .Hence, the assumption was
fallacious which shows y(t) >0 forallt > 0. Q.E.D. (a)

(32¢) (b) Let z(0) + y(0) > 1 ,then from (#7) we know there exists a T such that
z(t) + y(t) < 1for all ¢t > T, and z(T) + y(T) = 1. Suppose that at Ty < T,

z(Ty) =0and z(t) >0for0<t < T;. Thenatt=T)

dz

5—0
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Also, at t = T; we have

PUm) = W)
= —W,(T3) [~ 73T - Day(T)(1 - 2

= W,(T)y(Ty) [l + Dyl - ")*],

~

positive

> 0

Hence, z is concave up at ¢ = T} and consequently increases to the right of it.
From this it follows that z(¢) > 0 for 0 < t < T ; furthermore, for ¢ > T the
analysis from (i71) (a) applies to show z(t) >0 for all ¢ > T.

Again, assume that at T; < T , y(T3) = 0 and y(t) > 0 for 0 <t < T3 ,then

att =T,
dy 1
E = a.’t(Tz)
> 0

So y is increasing at t = T which contradicts y(¢) > 0 for 0 <t < T3, hence the
assumption was false which shows that y(t) > 0 for 0 <t < T. Also, fort > T
the analysis from (17¢) (a) pertains to show y(t) > O for ¢t > T.Taken together
we have, y(t) >0 for allt > 0. Q.E.D. (it7) (b)

(#v) Let 2(0) < 1 ,then since z is continuous we know that for ¢ near zero,
2(t) <1 . Now suppose that at t = T* ,2(T*) =1and 2(t) <1for 0<t <T".

Thenatt=T"

dz

1
E—'—;{_ﬂlp
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Since 7; > 0 and f; > O then if P(T*) > 0 then 2(T") < 0 in contradiction
to z(t) <1 for 0 <t < T* which would imply 2(t) < 1 for all ¢ > 0. Hence,
it suffices to show P(T") > 0. Assume P(T*) < 0, then since P(0) > 0 and P
is continuous we can choose Tp < T* such that P(Tp) = 0 and P(t) > 0 for

0<t<Tp.Thenatt=Tp

% = Bs2(Tp) (3.1.6)

(R.T.S. 2(Tp) > 0) Suppose 2(Tp) < 0, then choose T, < Tp such that 2(T;) =

Oand 2(t) >0for0<t < T,. Thenatt=T,

dz

prl Dy + (v — 1)1 P

> 0

since Dy > 0, (v~ 1)B; > 0, P(T,) > 0 (because T, < Tp), and from (¢47)(a)
& (i17)(b) we see that y(T,) > 0.Hence, z is increasing at ¢t = T, which is in
contradiction to z(t) > 0 for 0 < ¢t < T,. Therefore, the supposition (2(Tp) < 0)
was false which implies that 2(Tp) > 0 and 2(t) > 0 for 0 < ¢t < Tp. Now

suppose 2(Tp) =0, then at t = Tp

d
ﬁ = Duy(Tp)

> 0

so 2z is increasing at ¢ = Tp which contradicts 2(t) > 0for 0 <t < Tp. There-
fore, 2(Tp) > 0 and from equation (3.1.6) this implies that P(Tp) > 0 so P is
increasing at ¢ = Tp. But this contradicts P(t) > 0for 0 <t < Tp. Hence, the
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assumption (P(T*) < 0) was fallacious which implies that P(T*) > 0. From this
it follows that z(t) < 1 for all ¢t > 0. Q.E.D. (iv)

(v) The proof of (iv) shows that if 2(0) = 1, then 2(t) < 1 for all £ > 0. Now
suppose z(0) > 1, then for ¢ near zero

dz

1
Et- = —;{Z—ﬂlP

< 0

since 7; > 0, B > 0, P(0) > 0, & z(0) > 1. So z is decreasing for ¢ near zero.
Now assume there exists a u such that z(t) > p > 1 for all ¢t > 0, then

dz 1
— = ——z— 3.1.7

Now since P(0) > 0, suppose P(Tp) = 0 and P(t) > 0 for 0 < t < Tp, then at
t=1Tp

dP

T - Bsz(Tp)

> 0

So P is increasing at t = Tp which contradicts P(t) > 0 for 0 < ¢t < Tp and so

P(t) > 0 for all t > 0. Now from (3.1.7) we have

2 . _z
dt 7
W
< = 3.1.8
< & (318)

Since inequality (3.1.8) is valid for all ¢ > O we can integrate from 0 to ¢ to

obtain

2(t) - 2(0) < —%t

1
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or equivalently

2(t) < —:_‘—, t + z(0) (3.1.9)
1
From equation (3.1.9) we see that

Jim 2(t) = —oo

which contradicts z(t) > ¢ > 1 for all ¢ > 0. Hence, there exists a T such that
2(T*) =1 and 2(t) < 1 for ¢ near T*. The analysis of part (v) now applies to
show that z(t) < 1for allt > T*. Q.E.D. (v)

(vi) The arguments in (iv) show that z is positive on the interval where
2(t) < 1, therefore if 2(0) < 1 then 2(t) > 0 for all ¢ > 0. Now since P(0) > 0,
suppose that at some point Ts we have P(Ts) =0 and P(t) > 0 for 0 < ¢t < Ts.
Then at t =T

dP
d_t = fsz

> 0

So P isincreasing at t = T3 which contradicts P(t) > 0for 0 < ¢t < Ts. Therefore,
the preceding supposition was false which implies P(t) > 0 for all ¢ > 0.

To round things out, suppose z(0) > 1, then choose T such that 2(T*) =1
and z(t) > 1 for 0 < t < T*. Clearly for 0 <t < T*, z(t) > 0 and for ¢ > T* the
analysis from (tv) applies to show that z(t) > 0 for all ¢ > 0. Finally, using the
same arguments as above for P(t) we obtain P(t) > 0 for allt > 0. Q.E.D. (vt)

Theorem 2 tells us that the normalized ground levels of thulium and holmium
remain nonnegative on I or in other words that the constraints (3.1.2) are self-
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enforcing. Consequently, we will drop the “+” subscripts in system (3.1.1) for

the remainder of the discussion.

Theorem 3 (Integrability) Let W,(t) be positive, continuous, and integrable
on I. Then if z(0) > 0, y(0) > 0, 2(0) > 0, & P(0) > 0, then z(t), y(t), 2(t),

& P(t) are all integrable on I.

Proof: Fix T such that z(t) + y(t) < 1 for all t > T, then for ¢ > T we have

dz T
% = "o Diz(1 — z — y) + W,(t) — W,(t)z — W, (t)y

(_;1; ~Wy(t)) =+ Wy(t) = Dys(1 = 2 - y) ~ Wy (t)y

I

- (7 + W) 2+ W0

since Wp(t) >0,y >0, (1 —z —y) > 0, and z > 0. Rearranging we get

fid_‘: + (% + W,(t)) z < W,y(t)

(wo)

Now multiply both sides by E(t) = e/T to obtain

B + (5 + Wilt) Bz < BOW,(0)

which implies

L{B()=(0)} < EOW,(0) (3.1.10)

Upon integrating inequality (3.1.10) from T — ¢ and noting that E(T) = 1 we

obtain

E®)z(t) — =(T) < /T‘ W, (u) E(u)du
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which holds for ¢ > T. It now follows that

ogx(t)gf'

TW,,(u)E(u)E"(t)du + z(T)E(t). (3.1.11)

Since .

B(u)E'(t) = [ (G rwe) e

we can express (3.1.11) as
0 < z(t) < /T ‘W,(w)e -/: (}IZ * W”(g)) %+ (T)e /; (% + Wp(c)) d

Hence, integrating from T' — s yields

t /1
0< /::z:(t)dt < /T /T' W,(u)e_/u (f_z+W"(§)) ® gl ar

+ /: :c(T)e_ /“t (% * W,,(g)) dgdt

Now since W, is continuous on I the order of integration may be interchanged

to obtain the following equivalent expression

t/1
0< /Ta z(t)dt < /Ta /: Wp(u)e—/:‘ (:r; " Wp(g)) dgdt du

T2

o ; (l +W,(0)) s

. (3.1.12)

Using the relation

- LG +wao)de SLw0ds o wym

IA
3]

I
—
o~

|

1
~—
~~

o
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it follows from (3.1.12) that

fT'z(t)dt < /:W,,(u) {/:e_(t_“)/rzdt}du + 2(T) {f'e—(t—'—")/fzdt}

T

= /: T2Wop(u) {1 —e (s u)/rz} du + z(T)r, {1 —e(s- T)/Tz} .

Since 7 > 0 and W, (¢) is integrable on I, it now follows that z(t) is integrable

on I.

To show that y(t) is integrable on I consider the following quantity

d 1 1 y
dt(z—f-y) = (—-Tz + Tn) T - o D,y(1—2) + Dyz(1 — z — y)

+ W, —Wyz—Wyy

Now fix T* such that 2(t) < 1 for all ¢ > T* and let T} = max{T,T"}, then for

t > Ty we have

1 1 1
—-i-—):::— (T—+WP+D1:1:) (z+y)+ Diz+W,
1

d 1
fhad <[-=
aeros (g

Rearranging yields

d 1 1 1 1
—(z+y)+ (_ +W, +D1:z:) (z+y) < (—— +—+ =+ Dl) z+W, (3.1.13)
dt T T2 T3 TN

For convenience, adopt the following notation

1 1 1
[c:——+—+—+D1
T2 T21 31

and 1
('r_ + Wy(r) + Dl:c(r)) dr
1 .

¥(t) = e/TI
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Multiplying both sides of inequality (3.1.13) by ¥(t) yields
d 1
Ytz +9) + ¥() (- +W, + Diz) (s +1) < (s + W,)¥().
t T
Therefore,
d
2 (9(0)((t) + ¥} < (w(t) + W) W) (3.0.14)
Upon integrating (3.1.14) from T; — t we obtain
t
() (=(t) + y(t) — [=(T1) + y(Th)] < fT (rz(u) + Wp(u)) ¥ (u)du.
From which it follows

0<a()+y(t) < [ (ralu) + W) ¥ ¥ Odu + [o(T:) +u(T)]¥ )

- /‘ (;1: +W,(r) + Dlx(r)) drdu

= [ (oalu) + Wy(a))e e
1
+ [o(T) + y(T)le Im (E i Dlz(r)) o (3.1.15)
Using
t (1
e— /T; (; + Wy(r) + Dlz(r)) dr < ~(t-T)/n
and ‘1
e‘/u (H +Wylr) + D "”(')) @ _(t-u)/n
along with relation (3.1.15) we obtain
0<z(t) +y(t) < /T‘ (z(w) + W, (u)) e~ E— 2/ gy
+ [e(@) +y(@)le~ ¢~ T/m, (3.1.16)
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Now integrate (3.1.16) from T} — s to get

Y NEORO) [ { /; (a(w) + Wy(w)e™ ¢ =9/ au) as

+ [=(Ty) + y(T)] /T eC-T)/mg.  (3117)

Again, since z and W, are continuous we can interchange the order of integration

in (3.1.17) to obtain

o< [ +uepd < [ eate) + W) { [ n (<L) s

1

+ [e(m) +ym)(-n) [ e E-T/m (‘ﬂ)

1 1

Integrating the right hand side over ¢ yields

0< /;:@:(t) +y(t))dt < /T: 71 (kz(u) + Wy(u)) {1 —e(s- "’)/Tl}du

+ (@) +y(m))(m) {1 -~ T/} Gaag

Now since both z and W, are integrable on I and 7, > 0, it follows from relation
(3.1.18) that z(t) + y(t) is integrable on I. From the nonnegativity of z and y
we conclude that y(t) is integrable on I. Finally, to show that z(t) and P()
are integrable on I it is expedient (and equivalent) to show that the physical

variables, n;(t) and ¢(t), are integrable on I. From the rate equations we have

c

—(r+9) = (20‘ - ?) ny 4+ C1Ny(ny — ny) ~ ;2
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1 1 o 1
= ;T(sl’o —1)(ny + ¢) + CiNing — C1Nyny + (7 - i - —) ¢
1

1
< F(SPO - 1)(72.1 + ¢) + DN,
1
1
Let p = 7(81)0—1) ,50 p <0, then
1
d
E(nl + ¢) - p(n1 + ¢) < DyN;. (3.1.19)
Now letting T'(t) = ¢=P(t = T") and multiplying (3.1.19) by T'(t) yields
d
E{I‘(t)(nl + ¢)} < DNy (2)T(¢)
Upon integrating from T* — ¢ we obtain
t
T()(na(t) + 6(2)) < /T Dy Ni(u)T'(u)du + [no(T") + ¢(T7)].

From this inequality and the nonnegativity of n; and ¢ we may write

0< mi(t) +6(t) < /T'  DyNi(u)T@)I (@)du + [na(T°) + $(T) ()

t .
= [ DNi()ellt = ¥au + (1) + 9} = )
Now integrate from T* — s to gef

o< [[m@)+é0le < [ {/;_Dle(u)e”(t_")du}dt

+ [r(T*) + ¢(T)] {/T Pt = T')dt} (3.1.20)
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Since N, is continuous we may interchange the order of integration in (3.1.20).

Doing this and integrating over ¢ yields

0< /T‘.[nl(t) + @(t)]dt < fT' D—zl\;‘—(ul [e”(s —u) 1] du

¢ () : ()] [ep(s -T°) _ 1] (3.1.21)

Now since p < 0 and N, is integrable on I , it follows that n,(t) + #(t) is

integrable on I. Finally, from the nonnegativity of n;(t) and ¢(t) we conclude

that both n,(t) and ¢(t) are integrable on I. Q.E.D.

Theorem 4 (Boundedness) If W,(t) > 0 on I then z(t), y(t), 2(t), and P(t)

are all bounded on I.

Proof: Previous discussion shows that z(t), y(t), and z(t) are bounded on I .
Hence, it suffices to show that P(t) is bounded on I. For expediency, we once
again switch from the normalized variables to the physical variables . Clearly,
showing that ¢(t) is bounded is equivalent to showing that P(t) is bounded.
Rewriting the 5 and P equations in (3.1.1) in terms of the physical variables

and adding them together yields

d sp, 1
Et‘(nl +¢) = (% - r_{) ng — Tg; + C1Ny(nr — ny)

or equivalently

&d?(nl + ¢) = (Sp,o - —1,‘ + 'l) n; — }1—(71,1 + ¢) + ClNl(nT - nl)

71 Ty Te
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. 1 1 . .
Setting k = SPe _ Z 4= we may rewrite this as
1 L1 Te

%(nl + ¢) + ;1'(17.1 + ¢) =kn; + ClNl(nT — nl) (3122)

Now multiplying equation (3.1.22) by the integrating factor et/ we may express
it in the form

4

dt {et/n(ﬁ + ¢)} = {kny + C1Ni(ng — na)}et/ .

Integrating from T' — ¢ and rearranging yields

t
7% (ma(8) +$(8)) = [ s+ CuNi (or —ma) Yo/ ™o du + €T/ (ny(T) + 4(2)).
From which it follows

0 <nyt) +6(t) = /; {kny + CiNy (nr — ny)ye(® = 8)/7 gy

+ T =8/% (ny(T) + $(T)). (3.1.23)

Now since n; and N; are bounded for allt > 0,7. > 0, « < t, and T < t, the
right hand side of equation (3.1.23) is bounded on I. Hence, n; + ¢ is bounded
on I. The nonnegativity of n, and ¢ now implies that ¢(t) is bounded on I.
Q.E.D.

Theorem 4 states that if W,(t) > 0 on I then the solution vector, y, is
bounded on I and so the point (¢,y(t)) remains in D for all t in I. Hence, if
W,(t) is continuous on I it follows directly from Theorem 1 that there exists a
unique, continuous solution to the system (3.1.1) on all of I.
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Theorem 5 Let W), z, y, z, and P satisfy the hypotheses of Theorem 2. Fur-

thermore, let W,(t) — 0 as t — co. Then, the solution vector y—0 as t — co.

Proof: Showing y—0 is the same as showing that each component of y ap-

proaches zero. Hence, consider

dz T
% = We(t) — Diz)(1-z-y) - o

Now fix T such that z(t) +y(t) < 1forallt > T. If W,(t) > D,z(t) for allt > T,
then the nonnegativity of z(t) along with W,(t) — 0 as t — oo implies z(t) — 0
as t — oo. Now suppose at some point T > T we have D z(T) = W,(T) and

0 < Dyz(t) < W,(t) for 0 <t < T, then at t = T

lez — _Dl.’t <0
dt T2

so Dy z(t) is decreasing.Also, on any interval where Dyz(t) > W,(t), Dyz(t) will

be decreasing, since then

dD)x Dz
I = D) - Dix)(1 -z —y) -
~ —~— /s 1'2
negative
_Diz
T2

Therefore, D;z(t) is decreasing whenever Dyz(t) > W,(t). There are three
possibilities which must be considered. Firstly, suppose there exists a T* >
T such that Dyz(t) < W,(t) for all t > T*, then clearly z(t) — 0 as t —

co. Secondly, suppose that on [T, +00), Dyz(t) < W,(t) on some intervals and
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D1z(t) > W,(t) on others; then since Wy(t) — 0 as t — oo and D;z(t) is
decreasing whenever D;z(t) > W,(t), this implies z(t) — 0 as t — oo. Thirdly,
suppose there exists a point 7' > T such that Dyz(t) > W,(t) for all t > T; then
D, z(t) is decreasing on [T, +00). Furthermore, suppose there exists a ¢ such

that Dyz(t) > ¢ > 0for T <t < +oo. Then

dDIZ < Dl.'z: f

dt Ty T2

Integrating from Tt yields

Dyalt) < —-E—(t — ) + Dya()

from which it follows

Jim z(t) = —oo.

This, however, contradicts z(¢) > 0 for all ¢ > 0 and hence there exists no such
€. From this we conclude that z(t) — 0 as ¢t — oo.

To show y(t) — 0 as t — oo consider

dy 1 y
Y=z (T21 +2Dy(1 -2 — y)) -Dyy(1-2)- L. (3.1.24)

Now fix T* such that 2(t) < 1 for all ¢ > T*, and let Ty=max{T,T*}. Then,

whenever

1
T ('r_ +2D,(1—z— y)) > Dyy(1 - 2) (3.1.25)
21

we have that D,y(1 — z) — 0 since £ — 0. This implies either y — 0 or z — 1.

Assume z — 1 as t — 00, then since 0 < z(t) < 1 for t > T, z(t) must approach
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one from below.Now, from equations (3.1.1) we see that the rate equation for

2(t) can be written as

dz _(1-2)
dt 7

1

- 7 + D4y(1 - Z) + ﬁl’y(l - Z)P - BP.
1

Collecting all terms involving (1 — 2) yields

dz_ _1
dt 7

— AP+ (Dw + AP + Ti) (1-2). (3.1.26)
1

Since z — 1 as t — oo and—from Theorem 4—both y and P are bounded on I,
the third term in (3.1.26) can be made arbitrarily small and certainly smaller
than 2%_{ simply by taking ¢ large enough, say ¢ > T'. Then for allt > T" we
have

dz 1 1
~Z<«<—-=_-BP<0
dt < 2, 1Ny AP <

so z(t) is decreasing on [T, +00) which contradicts z — 1 from below. Therefore,
on the intervals where inequality (3.1.25) holds, y(¢) — 0. On the remaining

intervals we have from equation (3.1.24) that

dy y
— < -=<0
dt T

which implies y(t) is decreasing. Once again there are three cases to consider

which are analogous to those considered for z(t). It is easily verified, using the

same types of arguments as before, that in all three cases y(t) — 0 as t — co.
Finally, it will be shown that the normalized variables, z & P, approach zero

as t — oo, by showing the corresponding physical variables, n; & ¢, approach
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zero as t — oo. Since, n;(t) & ¢(t) are both nonnegative, this is equivalent to

showing n,(t) + ¢(t) — 0 as t — oco. Previously we obtained

d 1 o 1 1-sp,
"-l-t'(nl +¢) = ClN1(nT —n1) - (T_c + s—fl,— - ;Z') ¢— L—Tzs—p'—)(ﬂq +¢) (3.1.27)

Since ¢(t) > 0 for t > 0 and N,(t) — 0 as t — oo , then whenever

1 o 1
CiNi(nr — 1) 2> (r_ + P —.) ¢ (3.1.28)

e T 0T
then ¢(¢) — 0. By considering the rate equation for n;(t) it is easily shown
that this implies n;(t) — 0 as ¢ — co. Hence, on the intervals where inequality
(3.1.28) is satisfied n,(t) & @(t) both converge to zero as t — co. Now suppose
inequality (3.1.28) holds on some intervals and not on others. Then wherever

(3.1.28) is not satisfied, we see from equation (3.1.27) that

(1 —sp,)
Tl

%(n1+¢)<— :

(n1+¢) <0

so (ny(t) + ¢(t)) is decreasing. This together with Ny(t) — 0 as t — oo implies
n1(t) + ¢(t) — 0. Finally, consider the case where there exists a T > T} such

that forallt > T

1 sp, 1
ClNl(nT—n1)< (—+ I: ——,)¢
Te Tl 71

Then from equation (3.1.27) it follows that
d
gm+¢) <0

so ny(t) + #(t) is decreasing on [T, +00).Using the same type of argument as
before, it can easily be shown that this implies ny(t) + ¢(t) — 0 as t — oo.

Q.E.D.
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Chapter 4

Stability Analysis

4.1 The Equilibrium Solutions

In this chapter the equilibrium solutions (also called equilibrium points or criti-
cal points) are obtained and a local stability analysis is performed. Before doing
this however we make the simplifying assumption that the spontaneous emission
term, sp,, has a negligible affect on the asymptotic behaviour of the system and
hence may be dropped. This is reasonable from a physical point of view and —as
will be seen in section 5.1—the numerics corroborate this assumption. Further-
more, we will consider the case of continuous wave (CW) pumping. These two
considerations are equivalent to taking 83 = 0 and W,(t) = W, in equations
(3.1.1), where W, is a positive constant. Doing this yields the following system

of rate equations :
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T
— = W,,(l—:z:—y)—;_;—Dla:(l—:z:—-y)

dt
W o Z Y ope(i-z—y)- Duy(i-2)
d¢ ™ n 1 oy i ?
dz z
5 = ——= + Dyy(1 - 2) + By[v(1 - 2) — 1]P
N1
dP 1
& = {p-na-a-1}p (411

The equilibrium solutions are obtained by setting the right hand side of equations
(4.1.1) equal to zero. Doing this yields the following nonlinear algebraic system

which must be solved for x, y, z, and P :

W,(1 -z —y) —T%—Dlz(l—:z:—y) =0 (4.1.2)
T“:—l - f—l +2Dz(1~z—y)—Dyy(l—2) = O (4.1.3)
—Ti{ +Dyy(l—2)+Bi[v(1-2)-1P = 0 (4.1.4)
{52[1 —A(1-2)] - Tl} P=o0 (4.1.5)

From equation (4.1.5) we have

{ﬂz[l—’\/(l—z)]—rl}s 0Oor P=0O.

c
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Case 1(P = 0) Working through the rather involved algebraic manipulations

yields,
DW, + D, (Dlz W, -2 Dl) z
z= - 2 o (4.1.6)
%~ Diz) (5 + Dul1-2)) - 22
T1 T2
and 1
Wp+ (Dl:z:—-Wp— T— —Dl)x
= z 4.1.7
y W, ~ Dz (4.1.7)
where z is a root of the quartic equation
a1zt + a2+ azz +ayz+a5; =0. (4.1.8)
The coefficients a,,- - -, a5 depend on the physical parameters of the laser system
and are given by
a; (D1D4N7) (a1 + é1n7)
D)\ Dy D, D,é.
az st' (ala4 + ——INT;. - 0164 + IN: 2)
DD D, D,é,
as N;- (a1a5 - —-‘1—24—‘1:}' — 0204 + g4 + DszNT&l + —l—u)
N2 Nr
ay Nr(ezas — azay + D;W,Nrby — 8364)
Qg (DszNT63 - a3a5)
where
D, (2 1 1 )
= 2(Z_~-_p,—-—
* Nr\r, n : T21
D 1 D, W, W,
@ = —+—+DiDy+DoW,+—=+ L4+ —L
1 T1T2 72 T 721

1
ag = W,Nr (H + Dz)
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1 (D D
a = —=— (—‘ + =+ DD, + D4Wp)
Np\rn =
1
ag = W, (—: + D4)
Ty
DD,
6 = sz‘
v ( 2)
= A(w =
52 NT p + Dl + T2
63 = —D4Wp

1
64 = Dg(Wp+;‘+D1>
2

Employing a subroutine from [14] the four roots of equation (4.1.8) are obtained.
Two of the roots are complex conjugates and therefore are discarded. One of
the two remaining roots yields negative equilibrium values for both y and z and
hence is likewise discarded. The remaining root is positive and yields positive
equilibrium values for y and z ; hence, it is the only physically realistic root
of equation (4.1.8). Denote this equilibrium value of z by z!. Substituting z!
into equations (4.1.6) and (4.1.7) we obtain 2* and y?, respectively. Therefore,
equilibrium point 1 is given by (z!,y', 2!,0) and will be denoted I.

Case 2<ﬂg[1 —(1-2)] - Tlc = 0) Denoting the equilibrium values of z, y, 2

& P by z?, y?, 2%, & P? respectively and performing the requisite algebra yields

(D1$2 - Wp— ;1‘ - Dl) z? +Wp
2

2
= 4.1.9
y W,‘7 —- Dlzz ( 1 )

1 ~v—-1
22 — + — 4.1.10
Ba7. 0 ( )
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1 '
2 __ — —
Po= ’77'{¢narm {(1 ov‘r,_-nr) (nTT° t DzNTTch)

_ _ ! 2 1
nrrey DzNTTch-'B (1 + ___72(Wp — Dlxz) (4.1.11)

where z2

is 2 nonnegative root of
bi(z)? + byz + b3 = 0. (4.1.12)

The coefficients by, b;, by are given in terms of the parameters as

by = Di(¢ —2W, — ¢+ 2¢)

by = —(Wpse +2D1W, — ¢s¢4)
b3 = —Wps
where
1
G = + (v = 1)ng
ovuT,
1
2 = — (2171 + —)
T21
1 D
s = Dy+—— —#
1 anr

1
¢ = Di+W,+—
T2

One of the roots of (4.1.12) is negative and one is positive. Discarding the
negative root, equilibrium point 2 is given by (z?,y?, 2%, P?) and will be denoted

II.
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4.2 Local Stability Analysis

Having located the equilibrium points a local stability analysis is now conducted
to determine the stability properties of I and II. For the stability of I, introduce
the new variables £ = z—z!,§ = y—y!,2 = z— 2!, and P = P —0. Substituting

these variables into the system of rate equations (4.1.1) yields

dz " . Z R R A a n
5 = ~Wpz — W, — E — Dz + Dl(:z:)2 + Dyx'z + D, + Dyy'%

1
+ Dyz'z + Diz'§+ W,(1 - ' — ¢') ~ :— — Dyz'(1 — = — y')
2

dA ~ -~
¥ = 2 _ Y 9p,s-2D,(2) - 2Dz — 2D139 — 2Dyy's
dt To1 71

— 2D12'2 — 2D12'§ — Do + D2 + Dy2'§ + Dpy'2

!y
+ — —=+2Diz'(1 -z - y') - Dyy'(1 - 2Y)
71 N1

dA -~
Z = 2§ D - Dz - Dy2'g— Dey's
dt m

1

. -~ 2
+ By —E2-vz' —1)P - 7+ Dy'(1-2Y)
1

A

_ 5 x_l}
i {ﬁz(l Y+ 92+ ~2%) py P

Since (z!,y',2!,0) is an equilibrium point, this reduces to
dz 1
2 _ (pat-w,-L_Dp,a- 1—1)5:
dt ( ! p T2 l( z y )

+ (Diz' — W,)§ + Dy(2)? + D12§
Nt
I
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dA
2= (T—l— +2D,(1—z' - y') - 2D1x1) z
21

dt
1
- (T— +2Dyz' + Dy(1 - zl)) 9+ Dyy'sz
1
+ Dij2—2Dy(2)* —2Di39
9
dz

1
= _ _ 1\ A - 1] A
o (Dy — D4z )y-{—( 1'{ D4y)z
+ Pi(y—nz' —1)P —D,j2 — 1p,2P

-~

ds

1) A A

i {ﬂz(l—'7+’vz‘)——}P+ﬂz'rzP
Te \—-\f-—’a

4

This can be written in a more compact form—using @;; notation— as

di ~ ~ ~ A ~

I -z +aryt+a

dj G a A oA A oa

a = a21Z + A2y + G232 + G2

dz O

i G397 + G332 + 34 P + §s

dﬁ -~ - ~
@ 444P + 94 (4.2.1)

where the @;; * are defined in the obvious way. Now let X = (£, 9, 3, P]T ;

§ = [§1, 92, s, 64T ;and A = [@ij]- The above system may now be written
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symbollically as

.
~

X=AX+§ (4.2.2)
This is known as an “almost linear system ” since § consists entirely of sums of

quadratic terms and therefore satisfies

~

lim % =0 i=1,23,4 where p=|| X |.= Va2 + g2+ 22+ Pt (4.2.3)
p—0 p

The following theorem, due to Poincare and Perron, will prove useful in dis-
cussing the stability of the equilibrium points.

Theorem 1 (Poincare and Perron) Consider the equation y' = Ay+f(t,y).
Suppose all eigenvalues of A have negative real parts, f (t,y), and (8f/ dy:) (t,y)
(¢t =1,---,n) are continuous in (t,y) for 0<t<oo , ||y||< k where k > 015 a
constant, and f is small in the sense that its components satisfy (4.2.3) uniformly

with respect to t on [0,+00) . Then the solution y = 0 is asymptotically stable .

Definition 1 The equslibrium solution § s stable if for each € > 0, there ez-
ists a § > 0 such that if y(t) ts any solution of the above system satisfying
| ¥(0)-¥ ||< 6, then the solution y(t) ezists for all t > to and ||y(t)-7||< € for

t >t

Definition 2 The equilibrium solution § is asymptotically stable if st s stable

and if there exists a number 6§ > 0 such that if |ly(to)-¥l|< 6, then Jim y(t)=7.

The behaviour of the solution of equation (4.2.2) , near X =0, is expected to be

similar to the behaviour of the solution to the linearized system

.
~

X=AX
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Hence,to determine the stability of X=0 we consider the linearized system and

solve det[/i Y ] = 0 .This yields the following characteristic equation
0= (a4 —A)(X® + 432+ BA +C)

where

A = —(@y + dj2 + @33)
B = G2G3s + G11833 + Q11822 — @12821 — G23832
C = @11833832 + Q12821833 — d11822833

If all of the roots of this equation have negative real parts, then from the pre-
ceding theorem, X=0 is asymptotically stable; i.e. I is asymptotically stable.
The following theorem, due to Routh and Hurwitz, gives necessary and sufficient

conditions for the real part of the eigenvalues to be negative.

Theorem 2 (Routh-Hurwitz) Let
f(A) = aoA™ + bpA™ 1 + a; A" 2 + b A"3 + ... (ag #0). All roots of f(A) have
negative real parts iff the following tnequalities hold :

apA; >0 A >0 a3 >0 Ay >0

aA, >0 n odd

A, >0 neven

bo bl
where A;=0by Aj;=det

Gy a
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a a

0 b
and in general A, = det

0 a

0 0

b,
az
b
ay

bo

bn—l
Qn—1
bn—2
Qp—2

bn—s

e

Applying this to our characteristic polynomial yields the following conditions

A>0,C>0,AB>C, and G4 <0

After substituting the physical parameters in for A,B,C,& a4, and working

through a prodigious amount of algebra the following conditions are obtained :

Diz' -W, < 0

Ba[1 —~(1 — 2%)] —Tl <0

c

To show that condition (4.2.4) is always satisfied, consider

dz
dt

Taking z(0) = 0 and y(0) = 0, we have at t =0

&|§

= Wp

——=(W,,—D1z)(1—z—y)—r—2;.

which means z(t) is increasing linearly with ¢ for ¢ near zero.

(4.2.4)

(4.2.5)

Since D, is a

positive constant this means D, z(t) is also increasing near zero. If D;z(t) stays
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below W, for all ¢ > 0, were done since this would mean that D;z(t) — W, < 0.
Now suppose there exists a point T* such that D,z(T*) = W, and 0 < D;z(t) <
W,for0<t <T* thenatt =T*

lez _Pl_:z:

dt T2

and since both D; and r; are positive, this implies D;z(t) is decreasing. But
this contradicts 0 < D;z(t) < W, for 0 < ¢ < T* and hence no such point exists.
Therefore, D;z(t) — W, < 0 for all ¢ > 0 and so condition (4.2.4) is always
satisfied. Consequently, condition (4.2.5) is a necessary and sufficient condition
for I to be asymptotically stable.

It is interesting, at this juncture, to note that condition (4.2.5)— which
was obtained strictly from the mathematics— is simply a restatement of the
threshold condition (2.3.4) obtained earlier by considering the laser physics. To
see this, first recall that condition (2.3.4) must be satisfied for lasing action to
occur. Now if condition (4.2.5) holds, then I will be asymptotically stable and
since the P coordinate of I is zero, this means P(t) — 0 as t — oo, i.e. no lasing.

Hence, a necessary condition for lasing is

1
Be[l —4(1-2")]-=>0,
TC
or switching back to the physical variables
1 1
ov[ny —v(ng — nj)] — o> 0.

c

Rearranging and using y =1 + 3—1 yields
)

nl = 91y 1 (4.2.6)
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which is precisely condition (2.3.4) with n,(t) and no(t) replaced by their respec-
tive equilibrium values. From this simple observation, we see that the physics
and mathematics are in agreement.

For the stability analysis of II, introduce the variables Z = z —z%, § = y—3?,
z = z—2?,and P = P— P?. Substituting into (4.1.1) and reducing the equations

as before yields

8

dz 2 2 .2 i)
dt = (DIZ Wp Dl(l z y) T

+ (Dy2* — W,)§ + D1z§ + D1(%)?
N
[53

b A <2D1(1 —z* —y?) — 2Dy + i) z

721

- (;1- +2Dyz* + Dy(1 — zz)) g + Doy’z
1

+ D,yz — 2D:z5 — 2D,(z)*
7

dz 1
B Dy(1-2%)7 - (’Yﬂle + Dyy® + “.) z
dt 7
— B[l - (1 - 2*)|P—D,yz — v6;2P
7
dP _
—— = "B P’z +P2P
dt —
%
This system can be written symbollically as
X=AX+g (4.2.7)
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where X = [z, §, %, P|T; § = [§1, G2 @3, §4]7; and A = [a;;] where the @;;°
are defined in the obvious way. Now since system (4.2.7) is an “almost linear”

system, the stability of II can be determined by considering
X =AX

and hence we must solve det[4A — AI] = 0. This yields the following characteristic

equation
M+aX+bX+ed+d=0 (4.2.8)
where
a = —aj — G2 — Qsg
b = —@1282) — G23@3; + @22833 + 11822 + G11d33 — 34843
¢ = (811 + 822)834843 + 811823832 + Ty2821833 — 831822833
d = (12821 — G11822) 834843

Invoking the Routh-Hurwitz Theorem yields the following inequalities which

must be satisfied in order for II to be asymptotically stable
a>0,d>0,ab>c, a(bc —ad) > ¢* (4.2.9)

After an inordinate amount of algebraic manipulations it turns out that the first
three conditions will be satisfied if D1z* — W, < 0. It was shown above that
Dyz(t) — W, < 0 for all ¢ > 0 and hence the first three conditions are met.

Therefore, it is the fourth condition in (4.2.9) that determines the stability of
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II1. The algebra associated with this condition, however, is tremendously compli-
cated and therefore we resort to numerical calculations. The numerics indicate
there is an interplay of stability between equilibrium points I and IT which will

now be discussed in some detail in the following section.

4.3 Bifurcation Points

It is well known that nonlinear dynamical systems can exhibit a wide variety
of responses as initial conditions or parameter values change. The transition
from one response to another is often quite sudden; sometimes referred to as
“catastrophic.” Bifurcations are said to occur when there is a sudden change in
the behaviour of the system as a parameter passes through a critical value called
a bifurcation point. A system may contain more than one parameter, each with
its own bifurcation points. In this section we discuss the interchange of stability
between equilibrium points I and II and show the existence of bifurcation points.

To start with, consider W, as a parameter and choose it to be “small”. Then
using the computer program given in Appendix A, we calculate the equilibrium
values of I & II and use the Routh-Hurwitz criteria to determine the stability of
each point. By gradually increasing W, and repeating the process we see there is
an interchange of stability which goes like this. For W, small, the P coordinate
of II is negative, II is unstable, and I is asymptotically stable (i.e. no lasing).
As W, is increased, the P coordinate of II eventually reaches zero and thus the
two equilibrium points coalesce (this is the threshold of lasing). Finally, as W,
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is increased still further, the P coordinate of II becomes positive, II becomes
asymptotically stable, and I becomes unstable (i.e. lasing occurs).

This is illustrated in Figure 4.1 where P? is graphed as a function of W, and
the stability of I and II is noted. The value of W, at which the interchange
of stability occurs is a bifurcation point and is denoted W,. From numerical
calculations we find W, = 0.342 x 1075.

It is also of physical interest to see how the system responds as the cavity
lifetime of a photon, 7., is varied. Choosing 7. small and following the same pro-
cedure as above yields the same interplay of stability as before. Figure 4.2 gives
P? as a function of 7, once again noting the stability of each point. From this we
see that 7, has a bifurcation point which will be denoted 7. and is approximated
by 77 = 4.81x107°, It should be noted at this point that bifurcations are related
to catastrophes. Loosely speaking, a system experiences a catastrophe when a
smooth change in the values of a parameter result in a sudden change in the
response of the system [15]. By comparing Figure 4.3 where 7, = 4.8 x 1075
with Figure 4.4 where 7. = 4.9 X 10~°, we see that the change in the behaviour
of the photon density is both sudden and striking. Hence, as 7, varies from

7. = 4.8 x 107® to 7, = 4.9 X 107° the laser system experiences a catastrophe.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dund sy3 Jo uoIlounjy B se oml jurtod wniiqiTInbs Jo 83BUTPIOOD ¢

1% @ansij

,0LX9m
08 0L 09 0¢ oy 0¢ 0¢ 118
| i | L i | i | 1 | l |
||qels Ajjeonoidwise I sigeisun I

s|gejsun T

aigeis Ajjeonojdwise T

|
]
1
)
1
|
1
1
i
1
1
1
1
1
1
|
1
i

0F0-

S00-

00°0

S0°0

0L0

S0

¢’1d'03 40 31V¥YNIQH00D d

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ﬂ
6

I o
L0
« .
w —
>
o - (&)
(1]
o - 2
P - e
2 a - w
s g _ °
N > o
[ =7, -1 S
B 3 ®© o A
HH ] 9
___________________________ =3
p— Yy
b 4]
b 7]
2o ] ©
8 - 2
(72 — T I
> -t s
= o o
(4] -t hanl ot
.9. ¢ (@)
-— [«
B oK 1T o
o Q - D ‘:5,
ES - o
< i
> U | 0o
0 - 2
@ 3 | =
HH - =]
o2
- [1}]
T U
- (o]
— [(}]
js)
| _ — ™ g
-
- o
. | ]
Q
-} (e}
J
I [
— (o]
- 4
. @
- 1%
5
e v brer e oo o o
N - o A N ™
o o (e} (@] (o] o
S S S S S Q
© © © < Q <Q

¢’'1d'03 40 3LVYNIGHOOD d

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0001t

008

KaTsusp uoaouyd pazITewIOU 3Y] §°% =andtj

c-0L X 8P =0NVL
(D3SOHIIN) IWIL
009 00t 002 0

1 L I T T oo+ 0L X0}

—11- 0L X0}

— 11 0L X0k

= 11-0LX0°L

— - 0L X 0L

—~01- OLX 0"}

— 01- 0L X O}

_ _ _ oi- OLXO'L

Md

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0001

008

c-0LX6'v=DNVL

A3tsusp uojoyd pazileEWIOU BY] %'+ 2IndTg

(D3SOHOIN) FNIL

009

00

002

oo+0F X0t

10- 0L X O}

90- O+ X 0°L

go- 0L XGS'L

go- OL X0t

go- O XE'L

Md

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Numerical Solutions,

Oscillations, and Q-Switching

5.1 Numerical Solutions

In this section the numerical solutions of the system (3.1.1) are obtained. This
is done by employing either the subroutine LSODA (when using a VAX 11/750)
or the subroutine DDRIV2 (when using an IBM PC). In either case, all compu-
tations were performed in double precision arithmetic. LSODA was developed
in 1987 at Lawrence Livermore National Laboratory in Livermore, California by
L.R. Petzold and A.C. Hindmarsh. DDRIV2 was developed in 1979 and revised
in 1987 by D.K. Kahaner, National Bureau of Standards, and C.D. Sutherland
of Los Alamos National Laboratory. Both subroutines were created for the nu-

merical integration of stiff and nonstiff systems of first order ordinary differential
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equations. When the system is stiff, the subroutines use a backward difference
formula (BDF) to perform the numerical integration and when the system is
not stiff they use a higher order Adams method. Both LSODA and DDRIV2
have the capability of automatically switching from one method to the other as
the system passes from stiff to nonstiff regions. The BDF method was chosen
by both d.e. solvers throughout the interval of integration which indicates that
system (3.1.1) is stiff. Roughly speaking, a system is stiff when the characteris-
tic equation associated with the system has a root with a “large” negative real
part. A more detailed treatment of stiffness can be found in [16]. Tables 5.1-5.4

list the parameter values used in the program.

Table 5.1 Crystal Parameters for Tm-Ho

Nr =1 x 10 /em?
nr =1 x 102/cm?®
£=03cm

rorm = 1 X 1018/cm3

Table 5.2 Cavity Parameters

£, =17.5¢cm
Ry =1.0
Ry, =0.95
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Table 5.3 Material Parameters for Tm-Ho:YAG

= 2ox10m /He
C, = m em®/us
C; =0.0
T, = 450us
720 = 900us
791 = 900us
71 = 11,000us
1'; = 8,500us
go=1
=1
T=2

o="Tx10"% ¢m?

q1 = 0.0

¢; =0.0

Table 5.4 Physical Parameters

v = 30,000 em/pus

7,=1x107% us

W, =6 x 1073/em3 - us

sp, =1x 107

Employing the program given in Appendix B the numerical solutions for z(t),

y(t), z(t), & P(t) are obtained and plotted in Figures 5.1-5.4, respectively.
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Since W, is constant a comparison of the “long time” behaviour of the nu-
merical solutions with that of the equilibrium solutions can be performed. Using
conditions (4.2.5) and (4.2.9)—which were obtained from the Routh- Hurwitz
Theorem—it is found that II is asymptotically stable and I is unstable. The

equilibrium values of II are calculated from (4.1.9)-(4.1.12). This yields
2 = 0.1304363
y? = 0.7637408
22 = 0.5238095
P? = 0.0759492
Finally, from Figures 5.1-5.4 it is apparent that the solutions have steadied out

by t=2ms and hence are expected to be near their asymptotic values. At t=2ms

the following computed values are obtained

z = 0.1304372
y = 0.7637406
z = 0.5238095
P = 0.0759491

From this it is evident that the stability analysis predicts the “long time” be-
haviour of the solutions extremely well. Also, since sp, is nonzero in the com-
puter program, the claim made at the beginning of chapter four—that the spon-
taneous emission term has a negligible affect on the asymptotic behaviour of the
solutions— is substantiated.
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Various pumping schemes were considered in the model. Figure 5.5 gives the

numerical solution for P(¢) when the pumping term is taken to be
W,(t) = a’te=>"*

where a = .01133 . From this figure we see that the photon density has irregular

oscillations and decays rather rapidly, becoming negligible by about ¢ = 250us.

5.2 Oscillatory Behaviour of the Solutions

The oscillatory behaviour of the solutions is now examined in greater detail.
Figure 5.6 is a plot of the numerical solution of the upper lasing level, z(t),
and the normalized photon density, P(t). It is a typical example of the erratic
spiking behaviour exhibited by the photon density when lasing occurs.

In Chapter 4 a local stability analysis was conducted by expanding the system

(4.1.1) about the equilibrium points. This yielded a system of the form
y=Ay+g (5.2.1)

where A was the Jacobian matrix evaluated at an equilibrium point, y was the
vector X — X (where X was an equilibrium point) and g was a vector containing
all the nonlinear terms of the system. For g small, in the sense that it satisfied
(4.2.3), the behaviour of the solution to (5.2.1) was expected to be similar to

the behaviour of the solution to the linearized system
y = Ay (5.2.2)
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Figure 5.6 Photon density and upper lasing level with a constant pump
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Hence, equation (5.2.2) was used to determine the stability of the equilibrium
point under consideration. This is the same as saying that if the true solution,
X, is “close” enough to the equilibrium solution, X, then the nonlinear terms are
negligible and consequently the linearized system (5.2.2) can be used to predict
the behaviour of the nonlinear system (5.2.1). As seen in the preceding section,
this gave good results.

An investigation of the oscillations in the system (3.1.1) will now be con-
ducted by solving the system numerically on the interval [0, 400] and linearizing
about the current numerical solution every microsecond. Assuming the current
numerical solution, x,, is “close” to the true solution, x, the nonlinear terms will
be negligible and hence the behaviour of the solution to the nonlinear system can
be expected to be similar to the behaviour of the solution to the linearized sys-
tem. In particular, we expect the oscillatory behaviour of the nonlinear system
to be predicted by the linearized system. To this end, let the time of lineariza-
tion be denoted t. and the numerical solutions at t, be denoted z., y., 2. and

P,. Also, let

T -z,

Y=Y
y=X—X,=

z— 2z

P-P,

Then, linearizing at time ¢, about the point (z.,y., 2, P.) yields the system

y=b+Ay. (5.2.3)
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9f; .
Here A = [a;j] where a;; = %—(zc,yc,zc,Pc), the functions fy,---, fs are as
J
defined in section 3.1 and

b = f(t.,x.)

The general solution of equation (5.2.3) will be the sum of the homogeneous

solution and the particular solution. Written symbolically

Yo=Yr+Y¥p-

The homogeneous solution is obtained using the eigenvalue-eigenvector method
and the particular solution is given by y, = ~A™'b. The difference between the
general solution and the homogeneous solution is —A~'b, which is a constant

real vector. Thus, for the oscillatory behaviour it suffices to consider
y = Ay (5.2.4)
by forming det[A — AI] = 0 which yields the characteristic equation
M+aX¥+b+ed+d=0 (5.2.5)

where a,b,c¢ and d depend on the parameters and the current values of the
numerical solution.

Clearly, the solution to (5.2.4) will have oscillatory behaviour whenever
(5.2.5) has at least one root with nonzero imaginary part. Since the coefficients
of (5.2.5) are real and the complex roots of a polynomial with real coefficients
occur in complex conjugate pairs [5, p.111], another way of stating this is that
(5.2.4) will have oscillatory behaviour whenever (5.2.5) has a pair of complex
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conjugate roots. This will happen when either discriminant associated with
(5.2.5) is negative. Hence, an expression for the discriminants will be obtained
by following the procedure explicated in [5, pp.114-115] and only briefly outlined
here.

Starting with equation (5.2.5), introduce the new variable ¢ = )\ + 42 Sub-

stitute ¢ into (5.2.5), rearrange and simplify to obtain

G pttsc+r=0 (5.2.6)
where
3a?
= p——_
P 8
s = a—8+c—‘—zé
T8 2
;- ba,2_3a4 E+d
16 256 4

For any u, equation (5.2.6) is equivalent to

\[i:ﬂi— [(u—p)gz-sg‘-i- (u;—r)] =0. (5.2.7)
R? h pe g

R? is a perfect square with R = ¢2 + g and @Q? is a perfect square for all u such
that
(=5)? — (u— p)(u* ~ 4r) =0
or equivalently
s? = (u—p)(u? — 4r) (5.2.8)
Equation (5.2.8) is a cubic equation in u with real coefficients. Hence, (5, p.94]

states there exists at least one real number u; > p satisfying (5.2.8). Since
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(5.2.7) holds for all u, we can substitute u; in for u so that Q? will be a perfect

square. This yields
R'—Q*=0=(R+Q)(R-Q) (5.2.9)

where @ =a¢—B,a=+/u;—pand f = %. Finally, substituting the expres-

sions for R and Q into (5.2.9) yields

{§’+ag+(%—ﬂ)}{c’—ag+(%+ﬂ>}=0- (5.2.10)

Since (5.2.10) is a product of two quadratics we see there will be two discrimi-
nants associated with the characteristic equation (5.2.5). Denote the discrimi-

nants DISC1 and DISC2 where

DISCl1=a*-4 (;

ot —ﬂ) & DISC2=a2—-4<%+ﬂ) .
Oscillations will be present in the linearized system whenever either of the above
two discriminants is negative.

Using the program in Appendix B, the values of DISC1 and DISC2 were
tracked from ¢=0 to t=400us. The roots of (5.2.5) were simultaneously located
and tracked using [18] with the following results.

DISC2 starts out negative and remains negative until t=236us at which
time it becomes positive and stays positive for the remainder of the integration
interval. The root finder starts out by locating a pair of complex conjugate

roots with small imaginary parts (Im(A) = .005 so period=T = 1250us). The

imaginary part decreases monotonically with time and disappears altogether
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when t = 236us. These observations show the nexus between DISC2 and this
complex conjugate pair.

DISCI1 starts out positive but goes negative at about t=139us. While DISC1
is positive, the root finder consistently finds two real roots. When DISC1 be-
comes negative a pair of complex conjugate roots appear. This new complex
conjugate pair—unlike the one associated with DISC2— has a relatively large
imaginary part (Im(\) = 13) which increases with time. Since oscillations
begin—in the nonlinear system—at about 138.8us and DISC1 predicts oscil-
lations to start—in the linearized system—at about 139us, we see that the
oscillatory nature of the linearized system is indeed similar to that of the non-
linear system. For example, when t=165us we have, for the linearized system,
Im(A) = 15.4 and hence

2

m(})

pertod =T = 7 = 0.477999 us per osc.

Therefore, the frequency of oscillations in the linearized system is
1 .
frequency = T = 2.45 osc. per us

Solving the nonlinear system numerically and graphing the photon density on
the interval [140, 180] we obtain Figure 5.7 . From this it is seen that on the
interval [160, 170] there are 24 oscillations, which gives an average frequency of
2.4 osc. per us. Thus, the oscillatory behaviour of the linearized system is in
excellent agreement with the oscillatory behaviour exhibited by the nonlinear

system. Figure 5.8 is a graph of DISC1 and shows that DISC1 goes negative at
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about 139 us which is the threshold of lasing.

Finally, since equilibrium point two is asymptotically stable we expect the
time dependent eigenvalues to approach the eigenvalues associated with II. In
fact, this is exactly what happens as can be seen by the following information.

The eigenvalues associated with II are approximated by

X1 = —.1675+117.86
Az = —.1675-i17.86
s = —.0081
Ay = —.0070

At t = 400us the time dependent eigenvalues of the linearized system are ap-

proximately

Ay = —.1614 +1¢17.53
Az = —.1614 —7:17.53
As = —.0097
Ay = —.0061

A similar approach was taken to investigate the oscillations in the asymptotic
behaviour of the solution. The cavity lifetime, 7. , was taken small and gradually
increased until the system lased. For 7, small, the P coordinate of II was negative
and DISC1 & DISC2 were both positive. As 7. was continuously increased,

P? eventually became positive and DISC1 became negative. These two events
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occurred simultaneously when 7, = 7} = 4.81 x 10~° which is the critical value of
7. previously reported at the end of section 4.3. Figure 5.9 is a graph of DISC1
as a function of 7.. This shows that when one of the discriminants (DISC1)
associated with IT becomes negative, the asymptotic behaviour of the system

will be oscillatory.

5.3 Q-Switching

Many applications such as drilling, welding, high speed photography and optical
radar (i.e. lidar) require high “power” outputs. Q-switching—also known as Q-
spoiling or giant-pulse operation—is used to produce short, intense bursts of
“energy” from lasers. Distinguishing between power and energy is important.
Q-switched lasers produce lower energy outputs but higher power outputs due to
the short pulse duration. The relation between energy, power and pulse duration
is given in [3] as

pulse energy (joules)
pulse duration (seconds)

power output (watts) = (5.3.1)

In Q-switching a loss mechanism is introduced into the laser cavity. This en-
ables the population inversion to build up well beyond threshold without laser
oscillation beginning. The cavity loss is then reduced abruptly which causes a
rapid build-up of the photon density, P(t). This results in all the available en-
ergy being emitted in a single, large pulse which quickly depopulates the upper

lasing level, 2(t), to the extent that it drops below its threshold value and lasing
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action stops. Thus, Q-switching produces a single pulse of energy with high

intensity and short duration.

Q-switching can be implemented, physically, in a variety of ways: rotat-
ing mirror, electro-optic, acousto-optic, photochemical (also known as passive
Q-switching) and exploding film. To incorporate Q-switching into the mathe-

1
matical model of the laser dynamics, we replace — in the fourth equation of
-]

b
(3.1.1) by —— Qc(t) where

1 1
o = 5L+ 999 Qs() (5.3.2)

QS(t) is the Q-switch and is given by

4

1 if 0<t<TQ

QS(t) = 1——§1—f(t—TQ) if TQ<t<TQ+ST |

‘ 0 if t2>2TQ+ ST
where TQ denotes the time of Q-switching and ST denotes the duration of the
Q-switch or the time it takes for the switch to “flip”. From (5.3.2) we see that
when the Q-switch is on, photons are allowed to leave the laser cavity at a rate
1000 times that of the original rate. This rate is precipitously reduced when
the Q-switch is flipped and assumes its original value, 'rl’ when the Q-switch is

c

completely off.

Taking the time of Q-switching as TQ = 350us and the duration of the
switch as ST = 0.1 us, the system (3.1.1) was solved numerically with the rate

equation for the normalized photon density replaced by

dP

{ﬂz[l (1 - 2)] - } P+ fBsz. (5.3.3)

Q.()
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Figures 5.10 and 5.11 show the behaviour of the upper lasing level and the photon
density, respectively. By comparing Figure 5.11 with Figure 5.6 it is seen that
the pulse intensity, with Q-switching, is four orders of magnitude greater than
it was without Q-switching. In Figure 5.12 the photon density is scaled and
plotted with the upper lasing level to show the interplay between the two. The
time scale is then stretched, in Figure 5.13, to show the shape of the output
pulse. From this figure it is apparent that the peak pulse intensity occurs when
the upper lasing level drops to its threshold value. In fact, it can be shown
[22] that the peak power output of a Q-switched laser will always occur when
the population inversion drops to threshold inversion (which corresponds to z(t)
dropping to its threshold or equilibrium value). This shows that the numerical
solution agrees well with the laser optics.

Figures 5.14 and 5.15 give the behaviour of all four dependent variables on
the intervals [0,200] and [170,170.2] , respectively. Here the time of Q-switching
is TQ = 170us and the duration of the Q-switch is 0.1us. From Figure 5.15 it
is seen that both z and y vary slowly on the interval of Q-switching. Since the
d.e. solver spends a considerable amount of time on this interval, due to the
rapidly changing photon density, we look for ways of reducing the computational
effort involved. One way of doing this is to take £ and y as constants on the
interval of Q-switching by assigning to them, their respective values at the time
Q-switching begins; namely, z(t) = z(TQ) = Z and y(t) = y(TQ) = §. In fact, if

these assignments are made on [170,200] the difference in the numerical solution
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of z and P is virtually unnoticeable as evidenced by Figures 5.16 and 5.17.

Making these assignments is tantamount to reducing the system (3.1.1) to

the system
d
-‘g = _r% + Dyg(1 - 2) + By[v(1 — 2) — 1]P
dP 1

where equation (5.3.3) has been used for the photon density. System (5.3.4) is a
non-autonomous system which will be solved formally by using a method similar

to that found in [13]. Let

z D417 _,31
X = d= a =
P 0 B,
and
— (;‘r + Dm) Bi(y—1) 0 1
At) = 1 B =
Bs B2(1—7) — Q;(,) 1 0

Then, system (5.3.4) can be written symbolically as

x=d+ A(t)x + %axTBx (5.3.5)

The Taylor series expansion for x about the point £ = T'Q is given by

00

x(t) =Y xi(t —)* (5.3.6)
k=0
where
(k) 2k
= X0 _ k=0,1,2,.. (5.3.7)
k!
Py
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Once a recurrence relationship for the determination of x; is obtained, the

solution can be computed using (5.3.6). From (5.3.5) and (5.3.7) we get

Xo = X(t-) (5.3.8)

Xy = d + A(t_)XQ + %angxo (5.3.9)

After further differentiation and some rearranging the following relationship is

obtained
1 : L
Xepr = 77— { A@)xk + A (D)X + 72> XTI Bxy; (5.3.10)
k+1 2% &

which holds for k = 1,2,3,.... Hence, a formal solution of the “reduced” system
(5.3.4) is given by (5.3.6) where the coefficients, X, are obtained from (5.3.8),
(5.3.9) and (5.3.10). The recurrence relationship (5.3.10) can also be obtained

by assuming solutions of the form

2(t) = Y (e — D PO=SRE-D"

k=0

plugging these expressions for z(t) and P(t) into equations (5.3.4), formally

differentiating the left hand side, equating coefficients of like powers of (t — {)
and finally switching back to vector notation.

From numerical calculations it was found that for ¢ close to £, the series (5.3.6)

sums nicely, but eventually the summation breaks down. This is attributed to

the ill-conditioning of both matrices A() and A'(f). Denoting the reciprocal of

the condition number of A by rcond(A) we have

recond(A) = EZ_(A—) & 0<reond(A) <1
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If rcond(A) is close to one then A is well-conditioned, whereas if rcond(A) is
near zero then A is ill-conditioned. Using the software package MATLAB, the

following was obtained
rcond(A(f)) =8.74x 10° & rcond(A'(?)) =0.0

From this it is evident that both matrices are ill-conditioned.

5.4 Error Analysis

In this section the error incurred by “freezing” the two thulium levels at the
time of Q-switching is discussed. To this end, let X(x, t) denote the last two

equations of the system when Q-switching, so

) fi(x,t) —%5 + Dyy(1 — 2) + S P[(1 - 2) — 1]
x =X(x,t) = = 1
f2(x,1) Boz +{Bal1 = v(1 - 2)) - 5l } P

(5.4.1)
Also, let X*(x",t) denote the last two equations of the Th-Ho system when the

two thulium levels are held fixed at their values when Q-switching begins. Then,

. fi(x*,t) -5 4+ Dg(1 — 2") + B P*[y(1 ~ 2*) — 1]
)(‘l = X‘(x‘,t) = = i
f30x*,) Boz' + {Bal1 —v(1 - 2*) = A} P
(5.4.2)

We will think of x = [z P]T as the “true” solution and x* = [2" P*IT as the
“approximate” solution. The following definitions and theorem from [4] will be

useful in obtaining an error bound.
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Definition 1 (Approximate Solution) A vector valued function y is an ap-
prozimate solution of the vector d.e. x'(t) = X(x,t) with error at most n, when
| x(t) — y(t) ||, < n(t) for all t in [a,d]. Its deviation is at most € when y(t) is
continuous and satisfies the differential inequality | y' —X(y,t) ||, < ¢, for all

ezcept a finite number of pointst in [a,b].

Definition 2 (Lipschitz Condition) The system X(x,t) satisfies a Lipschitz
condition on D, when for some nonnegative constant L(Lipschitz constant), it
satisfies the inequality | X(x,t) — X(y,t) ||, < L | x =y ||, for all point pairs

(t,x) and (t,y) in D having the same t-coordinate.

Theorem 1 Let x(t) be an ezact solution and y(t) an approzimate solution,
with deviation ¢, of the d.e. x = X(x,t). Also, let X satisfy a Lipschitz conds-

tion. Then, for t > a, we have

I %(t) = ¥(2) Il < | x(a) —y(a) ||, X~ + % (Xt —1).

In order to use this theorem the deviation, call it €*, must be obtained and a
Lipschitz constant must be shown to exist.

For the deviation, consider

%" = X", 8,

| X" (x",8) = X(x"52)

{ (— [?II + D.,g] 2+ Dag + BiP' (1 - 2%) — 1]

2
+ [Tl—, + D4y] 2" — Dy — B Py(1—2") — 1])
1

+ (ﬂaz* + {/32[’7(3' -H+1- QL(t)} d
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) . 1 . 2) 32
...ﬁsz - {ﬂz['y(z - 1) + 1] - —Q':'(T)'} P ) }
= Dij1-2()] 15-30)] (54.3)

Hence, the deviation is obtained by defining

¢ =max D [1-2'(t)] [9-v(0)] -

Since X(x, t) is of class C! it follows from a Lemma in [4] that X (x, t) satisfies
a Lipschitz condition on any closed bounded (compact) convex domain. Hence,
a Lipschitz constant will exist on any closed interval [Z,b] where b is finite.

Invoking Theorem 1 and using || x(Z) — x*(%) ||,= 0 yields
%) - x* () < T {0 -1} = n*() (5.4.4)

Hence, n*(t) is an upper bound on the error and from the above definition we
see that n*(t) — 0 ast — . Although n*(t) does serve as an error bound on any
closed interval [t,b], it turns out to be an extremely conservative bound. This
is due primarily to the magnitude of the Lipschitz constant. From numerical
computations it was found that on the interval of Q-switching the Lipschitz

constant is quite large, L = 869,607 .
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Chapter 6

Upgrading the Model

6.1 Back Transfer & An Alternate Averaging

Technique

In this section two modifications are made to upgrade the model. The first is
to include the terms that account for the back transfer of energy and that were
excluded at the beginning of Chapter 3. The second is to replace §; & B3 in the

rate equation for the photon density with

[ ‘e [
ﬂ2=<£—c)ﬁ2 & ﬁ3=(é)ﬂs-

The rationale for the second change is as follows. A mathematical model that
accurately describes the dynamics of a laser system must, of necessity, account
for both spatial and temporal variations in the dependent variables. Allowing for

both types of variation yields a system of nonlinear partial differential equations
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(p.d.e.’). Due to the intractability of the equations and the amount of effort and
computer time involved in solving the system numerically, various averaging
techniques are used to eliminate the spatial dependence and thus make the
system more tractable. L.F. Roberts et.al. [20] gives three such averaging
schemes, the simplifying assumptions made for each and the resultant o.d.e.
models. She then compares (numerically) the output of the laser as predicted by
the p.d.e. model with the laser output predicted by each of the three resultant
o.d.e. models. The conclusion of this comparison is that only the temporal
model obtained by taking a spatial average over the optical length of the cavity,
£, yields numerical results that agree qualitatively with those predicted by the
spatial and temporal model. This averaging scheme can be incorporated into
the model by replacing 3, and (s by the quantities given above. Doing this and

including the back transfer terms yields the following system

dz T
% = W,,(t)(l—a:—y)—-T;-—Dlx(l—a:—y)
d
2= 2 Y i oDa(1-z-y)- Dyl - 2) + Dyz(1— z—y)
dt 721 T1
dz z
5 = —=+Dyy(1 —2)— Dgz(1 —z—y) + B[v(1 - 2) — 1|P
71
dP ) 1 P
T = B-a-a-—Pss (6.1.1)
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The numerical solution to the system (6.1.1) was obtained from the program
in Appendix C. Special attention was given to the qualitative behaviour of the
photon density for various values of C} and Zec— Recall that C} represents the
probability of back transfer occurring and both D3 and Ds are constant multiples
of C]. Also note that £ = (#)£. corresponds to 8, = (#)Bz and B3 = (#)6s,
respectively. In all four cases which follow, the pumping term was taken to be
of the form

2‘2

Wy(t) = o*te™™

In Figure 6.1 back transfer is turned off (C} = 0) and the length of the crystal
rod (active medium) is equal to the length of the optical cavity (£ = £,). The
erratic spiking behaviour is identical to the previously observed behaviour of the
photon density. In Figure 6.2, back transfer is turned on and £ = ¢,. From this
we see that the time of lasing is delayed (as expected) and the spiking behaviour
persists albeit for a shorter duration. Figure 6.3 corresponds to back transfer
once again being turned off and £ # £.. From this we see a salient disparity
in the qualitative behaviour of the photon density. The previously observed
erratic spiking has been replaced by regular and temperate oscillations. Finally,
in Figure 6.4 back transfer is turned on and £ # ¢,. The principal difference
between the preceding figure and this one is the fewer number of oscillations
occuring in the latter. In Figure 6.5 the time scale has been stretched and the
photon density plotted on the interval [80, 140]. Figure 6.6 is a picture of the

energy output as displayed on the screen of an oscilloscope in the laboratory.
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By comparing Figure 6.5 with Figure 6.6 we see that the behaviour of the
photon density, as predicted by the temporal model, is in remarkable agreement
to the behaviour observed in the laboratory (both having about 7 oscillations
in 25 ps). From this it is apparent that the inclusion of the back transfer terms
affects the time of lasing as well as the magnitude and frequency of the cutput
pulse but it is the £ term that has the most dramatic affect on the qualitative

£
behaviour of the photon density.

6.2 Up-Conversion

In this section we further upgrade the model by including the terms associated
with the up-conversion of energy from the °I; energy level to the °I; energy level
of holmium. An error bound on the solution to the systems with and without
up-conversion is obtained and a comparison of the numerical solution of the
systems with and without up-conversion is performed.

Let X(x,t) denote the system that includes up-conversion, then X(x, t) is the
right hand side of system (2.5.2) with the exception that §; & B3 are replaced by
B, & B as defined in the preceding section. Recall that in (2.5.2) the normalized
up-conversion level is denoted w(t). Also, let X(%,t) denote the system obtained
by holding the up-conversion level constant, say #(t) = % = 0. Then X(%,1)
is the right hand side of equations (6.1.1). Denoting the solution to the system
with up-conversion (the true solution) by x(t) and the solution to the system
without up-conversion (the approximate solution) by X(t) we wish to find a
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bound, #(t), such that

| %(t) - %(e) [l < #(2) -

Using Theorem 1 of section 5.4 and proceeding along the same lines as in that
section we first find the deviation, which will be denoted &.

Consider,
15 =Xl = | X&) -XE1) |,
= {[D2gw + Ds(1 — & — §)w] + [~ Dagiw — fu (v — 1) Pw]?

187 - 1) Puf?)?

| w(t) | {[D2§ + De(1 — & — §)]* + [Daii + Ba(v — 1) B)?

+la(r - 1) PP}

€(t)
The deviation is now obtained by defining

E= grslfls)% €(t)

Clearly, X(x,t) satisfies a Lipschitz constant on the interval [0, b] for b finite.

Hence, invoking Theorem 1 of section 5.4 we obtain the bound

€

I1%(8) = %(8) I, < 7 {e* -1} =4()

which is valid on [0, b] where b is finite.
The program in Appendix C was used to solve the system without up-

conversion. This gives the numerical solutions to Z, §, Z and P. Then, taking
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the probability of up-conversion & down-conversion as
@1 =50x10"2 & ¢ =12x10"2

respectively, the system with up-conversion was solved numerically. This infor-
mation was used to calculate ¢(¢) which is graphed in Figure 6.7. Hence, by

definition of the deviation we have
€ = 0.00497 .

Figure 6.8 is a plot of the maximal element of the Jacobian from which it is
seen that the Lipschitz constant can be taken to be L = 3150. This gives the

approximate error bound

_.0049

ii(t) = 3o {e% — 1} = 1.555 x 1076 {15 _ 1}

Evaluating 7(t) at ¢t = 0.25 us yields
71(-26) = 1.555 x 107° {10%2 — 1}

which produces an arithmetic overflow on an IBM PC and indicates that the
error bound (although of theoretical import) is of dubious practical use.
Figures 6.9 and 6.10 give plots of the photon density with and without up-
conversion, respectively. It is apparent from these figures that the qualitative
behaviour of the photon density is unaffected by up-conversion. This suggests
that the error bound, #(t), is conservative. To get a better understanding of

how the two systems compare we denote the numerical solution to the system
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Figure 6.9 Photon density with the up-conversion level included
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with up-conversion x, . and likewise for the system without up-conversion %__ .

Now compute the quantity TCT'ERR on [0, 200] where

TOTERR =| x,,, —%

num “2 *

From this it is found that the maximal difference occurs at the onset of lasing
and is about 4% as seen in Figure 6.11. Doing the same thing with just the

photon density term we define

PHOTERR =|P,, — P

num |

In Figure 6.12 PHOTERR is graphed. From this we see that most of the error
in TOTERR is contributed by PHOTERR. Figure 6.13 shows the interplay
between the photon density and the upper lasing level of holmium and Figure
6.14 gives a phase portrait of the same.

From the above observations we conclude that the qualitative behaviour of
the photon density is not affected by the up-conversion level, the error bound
obtained is extremely conservative (as before) and the major contribution of the
error in the numerical solution comes from the fourth component of the solution
vector, namely, the photon density. In spite of the qualitative agreement in the
photon density it is important to retain the up-conversion level in the model
for two reasons: (1) the quantitative difference of 4% may be significant when
addressing the efficiency of the laser and (2) the up-conversion level does affect

the laser output when Q-switching as will be seen in the next section.
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6.3 Q-Switching Revisited

When the system is Q-switched without the up-conversion level in the model—
as in section 5.3—the upper lasing level continues to grow monotonically, asymp-
toting to one. Hence, the longer Q-switching is delayed, the larger the output
pulse. With the up-conversion level included in the model, however, this is not
the case. Figure 6.15 and 6.16 graph the upper lasing level and the photon den-
sity, respectively, when Q-switching at 180us. The behaviour of both is similar
to that previously observed. In Figures 6.17 and 6.18 the time of Q-switching
is delayed to 250us. From this we see that the electron population of the up-
per lasing level has started to decline due to energy being transferred to the
up-conversion level. Consequently, there are fewer holmium ions available (in
the upper lasing level) for stimulated emission and hence when the Q-switch is
finally “flipped”, the output pulse is less intense than before (as can be seen by
comparing figures 6.16 and 6.18).

Now if the probability of up-conversion is reduced to ¢;=2 x 10723 and the
time of Q-switching kept at 250us, we obtain Figures 6.19 and 6.20. The latter
figure shows that the intensity of the output pulse has increased by an order of
magnitude. Thus, the numerics indicate that timing is crucial when Q-switching
the system that includes the up-conversion level and the optimal time of Q-

switching is closely linked to the up-conversion parameter, g;.
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Appendix A

COMPUTER PROGRAM:

Findroot
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PROGRAM FINDROOT
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecececcecececcecceccececececce

C C
c THIS IS A PROGRAM THAT CALCULATES THE EQUILIBRIUM POINTS OF THE Cc
C SYSTEM OF NONLINEAR O.D.E.s . IT THEN USES THE ROUTH-HURWITZ Cc
Cc CRITERIA TO DETERMINE THE STABILITY OF EACH POINT. FINALLY IT Cc
C COMPUTES THE TWO DISCRIMINANTS ASSOCIATED WITH EQ.PT. 2 . TO DO (o]
o] ALL THIS IT CALLS THE SUBROUTINE ''DZROOTS'', WHICH CAN BE FOUND Cc
(o IN THE BOOK ''NUMERICAL RECIPES'' . g
¢ c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
IMPLICIT DOUBLE PRECISION(A-H,N-2)
DOUBLE PRECISION IMPART
C EXTERNAL F
COMPLEX*16 COEFF,ROOTS,TROOTS,CVEC, RROOTS,COVEC, SROOTS, CO
INTEGER*4 NN :
LOGICAL PPOLISH, LROOT
PARAMETER (NN=4 ,MM=3, PPOLISH=.TRUE.)
DIMENSION COEFF(S),ROOTS(d),CVEC(A),TROOTS(J),RROOTS(d),
&COVEC(5) ,SROOTS (3) ,CO(4)
COMMON/POLY/B1,B2,B3,B4,B5
OPEN (UNIT=1,FILE='EQPT1.DAT')
OPEN (UNIT=2,FILE='EQPT2.DAT')
OPEN (UNIT=4,FILE='ROOT.ERR')
OPEN(UNIT=8,FILE="'D1TAUC.DAT')
OPEN (UNIT=9,FILE="'D2TAUC.DAT')
OPEN(UNIT=10,FILE="'PVAL.DAT')
THNTOT=1.0D21
HONTOT=1.0D20
C=1.0D0/ (4.0D1L*THNTOT)
WP=6.0D-3
TAU2=4.5D2
TAULl=1.1D4
Cl=1.0D0/ (4.75D2*HONTOT)
C1STAR=0.0DO
TAU21=9.0D2
TAU20=9.0D2
GAMMA=2.0DO
SIGMA=7.0D-21
cc=3.0D4
TAULDASH=8.5D3
c TAUC=1.0D-3
TAUC=0.44D-4
ITs=1
15 CONTINUE
C—em—- BEGIN TAUC LOOP~~=—m~ e e m e e e s e e — o —m— e m e
C THE FOLLOWING CONSTANTS ARE FOR THE CALCULATION OF THE VALUES OF
C EQ. PT. ONE
WRITE(1,20)'=—m—m———ccmmmmm TAUC=',TAUC, '-=-——ocrmmmm !
WRITE(2,20) '====m~mmmm o m e TAUC="',TAUC, ' ———=———wmm———— e '
20 FORMAT(1X,A24,E16.8,A20)
ALPHA1=2.0DO*C/TAU2 - C/TAUl - C*Cl*HOnTOT - C/TAU21
ALPHA2=C*THNTOT/TAUl + 1.0D0/(TAUL*TAU2) + C*C1*HONTOT*THNTOT +
1 C1*WP*HONTOT + C1l*HOnTOT/TAU2 + WP/TAUl + WP/TAU21
ALPHA3=WP*THNTOT/TAUlL + CL*WP*HONTOT*THNTOT
ALPHA4=C1STAR/TAU2 - C1/TAU2 - C/TAULlDASH - C*C1*THNTOT - Cl*Wp
ALPHAS=WP/TAU1DASH + C1*WP*THNTOT
BETA1=2.0DO*C*C1STAR - C*Cl
BETA2=C1*WP+C*C1*THNTOT+C1/TAU2-C1STAR/TAU2~-2.0DO*C1STAR*WP -
1 2.0DO*C*C1STAR*THNTOT
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BETA3=2.0DO*C1STAR*WP*THNTOT - C1*WP*THNTOT
BETA4=C1*WP*HONnTOT + C1*HOnTOT/TAU2 + C*CL*HONTOT*THNTOT

Al=ALPHA1*C*C1+BETAL*C#*C1*HONRTOT

A2=ALPHA1*ALPHA4+ALPHA2*C*C1-BETA1*BETA4+BETA2*C*C1*HONRTOT

A3=ALPHA1*ALPHAS+ALPHA2 *ALPHA4~ALPHA3 *C*C1+

1 BETA1*C1*WP*HONTOT*THNTOT-BETA2*BETA4+BETA3*C*C1*HONTOT

A4=ALPHA2*ALPHAS5~ALPHA3 *ALPHA4+BETA2*C1*WP*HONTOT *THNTOT -

1 BETA3*BETA4

A5=BETA3*C1*WP*HONTOT*THNTOT-ALPHA3 *ALPHAS

WRITE(1,35)A1l,A2,A3,A4,AS
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
C

C
C
C
c WE DESIRE TO PLOT THE POLYNOMIAL C
C P(N2)=A1*N2A*4+A2 H2**J+4AZ*XN2# ¥ 24 A4 *N2+AS c
o] FIRST I SWITCH TO THE NORMALIZED VARIABLE X=N2/THNTOT AND THEN c
c SCALE THE EQUATION TO KEEP THE COEFFICIENTS REASONABLE. c
C Cc
C Cc

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

VNORM=1.0D15

B1l=A1*THNTOT**4 /UNORM

B2=A2*THNTOT**3 /VHORM

B3=A3*THNTOT**2 /VNORM

B4=A4 *THNTOT/VNORM

B5=A5/VNORM
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

C o)
C MUST FIND THE ROOTS OF THE FOLLOWING POLYNOMIAL: c
C P(X)=Bl#X**4 4+ B2*X**3 + B3*X**2 + B4*X + B5 C
C c

CCCCCCeceececceeeeecccCCCccCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
35 FORMAT(1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)

COVEC (5)=DCMPLX (B1)
COVEC (4)=DCMPLX (B2)
COVEC (3)=DCMPLX (B3)
COVEC (2)=DCMPLX (B4)
COVEC(1)=DCMPLX (B5)
CALL DZROOTS (COVEC, NN, RROOTS , PPOLISH)
J=0

40 J=J+1
REPART=DREAL (RROOTS (J) )
IMPART=DIMAG (RROOTS (J) )
IF ( (REPART.GE.0.0DO) .AND. (IMPART.LE.1.0D-8) ) THEN
X0=REPART
ELSE IF(J.LE.3)THEN
GO TO 40
ELSE
WRITE(1,44) 'NO REAL POSITIVE ROOT FOUND WHEN TAUC=', TAUC
GO TO 66
END IF

44 FORMAT(1X,A40,E16.7)
N2=XO*THNTOT
N1=(WP*THNTOT+ (C* (N2~THNTOT) -WP-1.0D0/TAU2) *N2) / (WP-C*N2)
Y0=N1/THNTOT
E1=WP-C*N2
ZNUM=C1% (WP*THNTOT+N2* (C*N2-WP~-1.0D0/TAU2~-C*THNTOT) )
ZDEN=E1/TAU1DASH+C1*E1* (THNTOT~N2)+N2#% (C1STAR-C1) /TAU2
70=2NUM/ZDEN
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WRITE(1,63)' X0= ',XO

WRITE(1,63)*' Y0= ',6YO

WRITE(1,63)' 20= ',20

WRITE(1,62)"' J
c NOW THAT I HAVE THE VALUES FOR EQ.PT.1 I CHECK ONE OF THE
c ROUTH-HURWITZ CONDITIONS.

EQLHS=1.0D0-GAMMA+GAMUA*Z0
FORHS=1.0D0/ (S TGMA*CC+HONTOT *TAUC)
WRITE(1,61)' LHS= ', EQLHS
WRITE(1,61)' RHS= ', EQRHS
IF (EQLHS.GT.EQRHS) THEN
WRITE(1,49)' P=0 IS UNSTABLE '
ELSE
WRITE(1,49)' P=0 IS STABLE '
END IF

49 FORMAT(1X,A18)

50 FORMAT(1X,A20,1X,E16.8,1X,E16.8)

55 FORMAT(1X,Al15,1X,E16.8,1X,E16.8)

60 FORMAT(1X,Al13,12)

61 FORMAT(1X,A6,1X,E16.8)

62 FORMAT(1X,A3)

63 FORMAT(1X,A4,1X,E16.8)

65 FORMAT(1X,A17,1X,E16.8)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

(o C
C WE WILL NOW FIND THE ROOTS OF THE CHARACTERISTIC EQUATION C
C ASSOCIATED WITH EQ.PT.1 C
C o]

CCCCCCCCCCCCCCCCCCCCCCCCCCCCeeccecceceeececccccccecececececececececcececcece

D1=C*THNTOT
D2=C1*HOnTOT
D3=C1STAR*HONTOT
D4=C1*THNTOT
D5=C1STAR*THNTOT

(o4 FIRST WE WRITE THE ENTRIES OF THE MATRIX OF LINEARIZATION
C FOR EQ.PT.1,CALL IT MATRIX B.

B11=D1*Y0+2.0D0*D1*X0-WP~1.0D0/TAU2~D1

B12=D1*X0-WP

B21=1.0D0/TAU21-4.0D0*D1*X0~2.0D0*D1*Y0+2.0D0*D1-D3*20

B22=-(1.0D0/TAU1+2.0D0*D1*X04D2-D2*Z0+D3*20)

B23=D4*Y0+D5* (1,0D0~X0-Y0)

B31=D3+*Z0

B32=D3*Z0+D2*(1.0D0-20)

B33=-(1.0D0/TAU1DASH+D4*Y0O+D5* (1.0D0-X0-Y0))

B44=STGMA*CC*HONTOT* (GAMMA*70+1.0D0~GAMMA) -1 .0D0/TAUC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

C c
c THE CHAR.EQ. IS p**3 + Q*p**2 + R*p + S = 0 c
c SO I NOW DEFINE THE COEFFICIENTS AS FOLLOWS: c
c c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCT
Q=-(B11+B22+B33)
R=B22*B33+B11#B33+B11%B22-B12%B21-B23*B32
S=B11#*B23*B32+B12*B21+B33-B12*B23*B31-B11*B22+B33
CO(4)=DCMPLX(1.0D0)
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€O (3) =DCMPLX(Q)
CO(2)=DCMPLX(R)
CO (1) =DCMPLX(S)
CALL DZROOTS (CO, MM, SROOTS , PPOLISH)
WRITE(1,69) 'ROOTS OF EQ.PT.1 WHEN TAUC= ',TAUC
WRITE(1,71)B44
WRITE(1,72)SROOTS (1)
WRITE(1,72)SROOTS (2)
WRITE(1,72) SROOTS (3)

c WRITE(1,68)' Q= ',Q

c WRITE(1,68)' R= ',R

c WRITE(1,68)' S= ',S

CCCCCCCCCCCCCCCCCCCCeeceeccececcceeccccececceccceccceceeccccecececcecc
c WE NOW FIND THE COORDINATES OF THE SECOND EQ.PT. C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCececccccccecceece

66 CONTINUE
ETAl=1.0D0/ (SIGMA*CC*TAUC) + (GAMMA-1.0DO) *HONTOT
ETA2=ETA1*C1STAR/GAMMA-2.0DO*C*THNTOT-1.0D0/TAU21
ETA3=1.0D0/TAU1+C1*HONTOT+ETAl* (C1STAR~C1l)/GAMMA
ETA4=C*THNTOT+WP+1.0D0/TAU2
ETAS=ETA1*C1STAR*THNTOT/GAMMA

ZETA1=D1* (ETA2-ETA3+2.0DO*ETA4-2.0D0*WP)
ZETA2=ETA3*ETA4~-ETA2*WP~-2.0D0O*D1*WP-ETAS5*C
ZETA3=ETAS5*WP/THNTOT-ETA3 *WP

WRITE(2,70)' ZETAl= ', 3ETAl
WRITE(2,70)' ZETA2= ',ZETA2
WRITE(2,70)' ZETA3= ',ZETA3
68 FORMAT(1X,A4,1X E16.8)
69 FORMAT(1X,A30,1X E16.8)
70 FORMAT(1X,A8,1X,E16.8)
71 FORMAT(1X,E16.8)
72 FORMAT(1X,E16.8,E16.8)
QUADDISC=ZETA2**2-4.0D0*ZETAL*ZETA3
IF (QUADDISC.GE.0.0D0) THEN
X2=(~2ETA2+ (ZETA2%%2.0D0-4 .0DO*ZETA1*ZETA3) **0.5D0) / (2. 0DO*ZETA1)
X3=(-ZETA2-(ZETA2%%2.0D0~4.0D0*ZETA1*ZETA3) **0.5D0)/(2.0DO*2ETAL)
WRITE(2,75)' THE 2 ROOTS FOR EQ. PT. TWO ARE : '
WRITE(2,76)"' X2= ', X2

WRITE(2,76)' X3= ',X3

ELSE

WRITE(2,74)' THE QUADRATIC DISCRIMINANT IS NEGATIVE! °
GO TO 100

END IF

74 FORMAT(1X,A42)

75 FORMAT(1X,A36)

76 FORMAT(1X,A6,1X,E16.8)
PHINORM=1.0D16

IF(X3.LT.0.0D0) THEN
X=X2
ELSE
GO TO 100
END IF
Y=((D1*X-WP-1.0D0/TAU2-D1) *X+WP) / (WP-D1*X)
DMESS=TAUC*SIGMA*CC*HONTOT
7=(GAMMA-1.0D0) /GAMMA+1.0DO0/ (DMESS*GAMMA)
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P11=TAUC*HONRTOT/ (PHINORM*GAMMA)
P1=-P11+%(1.0D0/TAU1DASH+DS5* (1.0D0-X))*(GAMMA~1.0D0+1.0D0/DMESS)
P2=Y*P11*GAMMA* (D4+ (D5-D4) * (GAMMA-1.0DO+1.0D0/DMESS) /GAMMA)
P=P1+P2
WRITE(2,80)' THE FOLLOWING ARE VALUES FOR EQ. PT. TWO : '
WRITE(2,81)' X= '
WRITE(2,81)' Y= '
WRITE(2,81)' 2= °
WRITE(2,81)' P= '
WRITE(10,125) TAUC, P

80 FORMAT (1X,A45)

81 FORMAT(1X,A4,1X,E16.8)

o M-I

NOW THAT I HAVE VALUES FOR EQ.PT.2 I WILL USE THEM TO FIND
THE ROOTS OF THE CHARACTERISTIC EQN. ASSOCIATED WITH EQ.PT. 2.

an

FIRST THE ENTRIES TO THE MATRIX OF LINEARIZATION AROUND EQ.PT. 2
ARE GIVEN BY:

[eXg]

All=2.0DO*C*THNTOT*X+C+THNTOT*Y~WP~1.0D0/TAU2-C*THNTOT
A12=C*THNTOT*X-WP
A21=1.0D0/TAU21~4.0DO*C+THNTOT*X+2 .0D0O*C*THNTOT~2 . 0DO*C*THHTOT *Y
1-C1STAR*HONRTOT*Z
A22=-(1.0D0/TAU1+2.0D0*C*THNTOT*X+CL*HONTOT* (1.0D0-2) +
1C1STAR*HONTOT*32)

A23=C1*THNTOT*Y+C1STAR*THNTOT* (1.0D0~X-Y)
A31=C1STAR*HONTOT*2Z

A32=C1*HONTOT* (1.0D0-2)+C1STAR*HONTOT*2

A33=- (GAMMA*SIGMA*CC*PHINORM*P+1.0D0/TAU1DASH+CL+THNTOT*Y+
1C1STAR*THNTOT* (1.0D0-X~Y))

A34=~1.0D0/TAUC

A43=SIGMA*CC*GAMMA*PHINORM*P

c NOW FOR THE COEFFICIENTS OF THE CHARACTERISTIC EQN. ITSELF!

A=-(A11+A22+A33)
B=-A12*A21-A23*A32+A22*A33+A11*A22+A11*A33-A34*A43
D=(A11+A22) *A34*A43+AL1*A23*A32+A12+A21*A33-A11*A22*+A33

1-A12*A23*A31

E=(A12*A21-A11%A22) *A34+A43
WRITE(2,82)' A= ',A
WRITE(2,82)' B= ',B
WRITE(2,82)' D= ',D
WRITE(2,82)' E= ',E

82 FORMAT(1X,A4,E16.8)
NOoW I NEED TO SOLVE THE FOLLOWING EQN.

aann

S**4 4+ A*SA*3 + B*S**2 + D*S + E = 0

I WILL USE THE ROUTH-HURWITZ CRITERIA TO SEE IF THE ROOTS
HAVE NEGATIVE REAL PARTS.

ao0nNnon

CCCCCCCCCCCCCCCCCCCCCCCCCCeceeececccecccececccecececceccececcecceeccec

c C
c DEFINE ARGUMENTS FOR SUBROUTINE ZROOTS C
c C

CCCCCCCCCCCCCCCCCCCCCCeececcceecceececcecccecececccceceececceccececceccee

COEFF (5)=DCMPLX (1.0DO0)
COEFF (4 ) =DCMPLX (A)
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COEFF (3) =DCMPLX (B)
COEFF (2) =DCMPLX (D)
COEFF (1) =DCMPLX (E)

CALL DZROOTS (COEFF, NN, ROOTS, PPOLISH)
DO 83 K=1,4
WRITE(2,85) 'ROOT= ',ROOTS (K)

83 CONTINUE

85 FORMAT(1X,A6,E16.7,E16.7)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcceceeccccceeccccecccee

C Cc
C FIND DISCRIMINANT FOR CURRENT VALUE OF TAUC c
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeccccecececcceceecee

PP=B-0.375D0*A**2
0Q=0.125D0*A**34+D~0.5D0*A*B
RR=0.0625D0*B*A**2-3,0DO*A**4/256.0D0-0.25D0*A*D+E
CC4=1.0D0
CC3=-PP
CC2=-4.0DO0O*RR
CC1l=4.0D0*PP*RR-QQ**2
CVEC (4) =DCMPLX (CCA4)
CVEC (3)=DCMPLX (CC3)
CVEC(2)=DCMPLX (CC2)
CVEC (1) =DCMPLX (CC1)
CALL DZROOTS (CVEC,MM, TROOTS , PPOLISH)
II=1
87 CONTINUE
DRE=DREAL (TROOTS (II))
DIM=DIMAG (TROOTS (II))
IF ( (DABS (DIM).LE.1.0D~8) .AND. (DRE.GE.PP)) THEN
U1=DRE
LROOT=.TRUE.
ELSE
LROOT=.FALSE.
IF(II.LE.2)THEN
II=TI+1
GO TO 87
END IF
END IF
IF(.NOT.LROOT) THEN
WRITE(2,110) ' UNABLE TO LOCATE Ul WHEN TAUC =',kTAUC
END IF
IF (LROOT) THEN
AAA=DSQRT (UL-PP)
BBB=Q0/ (2.0DO*AAA)
DDISC1=AAA**2-2,0DO0*U1l+4.0D0*BBB
DDISC2=AAA%*2-~2.0D0*U1-4.0DO*BBB
WRITE(8,125) TAUC, DDISC1
WRITE (9, 125) TAUC, DDISC2
WRITE(2,120) "TAUC=',TAUC, 'DISCRIMINANT1=',DDISC1
WRITE(2,120) 'TAUC=',TAUC, 'DISCRIMINANT2="',6DDISC2
END IF
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
c c
c NOW THE ROUTH-HURWITZ CRITERIA c
o c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
CONLHS=A*B
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THELEFT=A* (B*D-A*E)
THERITE=D*D
IF((A.GT.0.0D0) .AND. (CONLHS.GT.D) . AND. (E.GT.0.0D0) .AND.
& (THELEFT.GT.THERITE) ) THEN
WRITE(2,93)' ROUTH-HURWITZ CONDITIONS ARE SATISFIED'
ELSE
WRITE(2,93)' ROUTH-HURWITZ CONDITIONS NOT SATISFIED'
END IF
WRITE(2,94)" '
WRITE(2,94)' °
93 FORMAT (1X,A40)
94 FORMAT (1X,A2)

ITS=ITS+1
IF(ITS.GE.1000) THEN
WRITE(2,130) 'TOO MANY ITERATIONS;ITS=',ITS
GO TO 100
END IF
IF((TAUC.LE.5.4D-5) .AND. (TAUC.GE.4.4D-5) ) THEN
TAUC=TAUC+1.0D-7
GO TO 15
END IF
Comme END TAUC LOOP-mm—mm e e e e e e e e e — e —

100 CONTINUE
110 FORMAT(1X,A33,E16.7)
120 FORMAT (1X,A5,E16.7,1X,A15,E16.7)
125 FORMAT(1X,E16.8,E16.8)
130 FORMAT (1X,A25,1X,I3)
STOP
END

DOUBLE PRECISION FUNCTION F(X)
IMPLICIT DOUBLE PRECISION(A-H,N-3%)
COMMON/POLY/B1,B2,B3,B4,BS5
F=B5+X* (B4+X* (B3+X* (B2+B1*X)))
RETURN

END
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Appendix B

COMPUTER PROGRAM:

Oldthho
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PROGRAM OLDTHHO

c THIS IS A PROGRAM TO SOLVE THE THULIUM HOLMIUM LASER SYSTEM BY EMPLOYING
c LSODA OR DDRIV2.THE CORRESPONDENCE BETWEEN THE VARIABLES IN THE SYSTEM
c AND THE VARIABLES IN THE PROGRAM IS AS FOLLOWS:

c Y (1)=NORMALIZED THULMIUM UPPER LASING LEVEL

c y(2)= " » THULMIUM LOWER "

c Y(3)= v » HOLMIUM UPPER LASING LEVEL

c Y(4)= " o PHOTON DENSITY

IMPLICIT DOUBLE PRECISION (A-H,0-2)

EXTERNAL FEX

PARAMETER (N=4,DEL=1.0D-7)

DIMENSION Y(N),WORK(288),IWORK(50),PD(N,N),FPERT(N),F(N),
&COL(N) , COLMAX (N) , YPERT (N)

c DIMENSION Y(N),ATOL(N),RWORK(84), IWORK(24)

COMMON W, TAU20,TAU21,CC,TAU2,TAU1,TAUC,SFO,C, THNTOT,C1,C1STAR,
1GAMMA, SIGMA, TAU1DASH, HOnTOT, D1, D2, D3, D4, D5, PHINORM, PAR4,
2PAR3, ZSTAR

OPEN (UNIT=6, FILE="'OLDTHHO.ERR')

OPEN (UNIT=7,FILE="TTY1.DAT')

OPEN (UNIT=8,FILE="'TTY2.DAT')

OPEN (UNIT=9,FILE="'TTY3.DAT')

OPEN (UNIT=10, FILE='TTY4.DAT')

OPEN (UNIT=12,FILE='INFO.THHO"')

OPEN (UNIT=13, FILE='MAXJAC.DAT')

OPEN (UNIT=14,FILE='GLB.DAT"')

NEQ=4

Y(1)=0.0D0

Y(2)=0.0D0

Y(3)=0.0DO

Y(4)=0.0D0

TOUT=0. 1DO

DELTAT=0.1D0

NPOINTS=7000

ZSTAR=0.0DO
ITEST=0

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
c LSODA PARAMETERS c
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
ITOL=2

RTOL=1.0D-08
ATOL(1)=5.0D-10
ATOL(2)=5.0D-10

ATOL(3)=5.0D-10
ATOL(4)=5.0D-16

ITASK=1

ISTATE=1

I0PT=1

LRW=84

LIW=24
JT=1

MF=21

DO 1 I=5,10

RWORK (I)=0.0D0

IWORK(I)=0

CONTINUE
HO=.01DO

Q

aaoaQaaaQoaaoaaaNNQO0n
-
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HMAX=.01DO
HMIN=1.0D-08
MXS7"iP=5000
RWOL..%(5) =HO
RWORK ( 6) =HMAX
RWORK (7) =HMIN
IWORK (6) =MXSTEP

nnoQaonn

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Cc C
Cc DDRIV2 PARAMETERS o
o C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

MSTATE=1
NROOT=0
EPS=1.0D-9
EWT=1.0D-22
MINT=3
LENW=288
LENIW=50

S$=1.0D0
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c S IS A SCALING FACTOR:

c IF S=0.001 THEN [T]=THOUSANDS OF MICROSEC.(1i.e.MILLISECONDS) C
c IF S=0.01 THEN (T}=HUNDREDS OF MICROSEC. c
C IF S=0.1 THEN [T)=TENS OF MICROSEC. c
c IF S=1.0 THEN {T]=MICROSEC. c
c IF $=10.0 THEN [T]=TENTHS OF MICROSEC. c
c IF S=100.0 THEN [T)=HUNDRETHS OF MICROSEC. c
c IF S=1000.0 THEN [T]=THOUSANTHS OF MICROSEC. (1.e.NANOSECONDS) C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeccececceccececceceece
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee

o o

Cc PHYSICAL PARAMETERS o

o c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeccecccceceecccecccceccee

TAU1=S+1.1D4
TAU2=5%4.5D2
TAU1DASH=S*8.5D3
HONTOT=1.0D20
THNTOT=1.0D21
GAMMA=2.0D0
C=1.0D0/ (S*4.0D1*THNTOT)
cc=3.0D4/S
TAU20=5%9.0D2
TAU21=S%9.0D2
TAUC=S*1.0D-3

c TAUC=S*4.7D-5
C1=1.0D0/ (S*4.75D2*HONTOT)
W=6.0D-3/S

c SIGMA=7.0D-21

SIGMA=1.32D-19
C1STAR=0.0DO
PHINORM=1.0D18
D1=C*THNTOT
D2=C1*HONTOT
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D3=C1STAR*HONTOT
D4=C1*THNTOT
D5=C1STAR*THNTOT
SPO=1.0D-6/S
PNUM=SPO*HONTOT
PDEN=PHINORM*TAU1DASH
« PAR4=PNUM/PDEN
PAR3=SIGMA*CC*HONTOT
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecceceecec
c C
Cc END OF PHYSICAL PARAMETERS C
C Cc
CCCCCCCCCCCCCCCCCCCCCCCCCeccceccecceceeccee

IF(ITEST.EQ.1)GO TO 100
IFLAG=1

TSTART=0.0DO

T=0.0D0
IF(IFLAG.EQ.1) THEN
CALL SCRIBE(N,T,Y)

END IF

15 FORMAT (1X,A7,E14.7)
DO 40 IOUT=1,NPOINTS
CALL LSODA(FEX,NEQ,Y,T,TOUT,ITOL, RTOL, ATOL, ITASK, ISTATE,
1 IOPT,RWORK,LRW, IWORK,LIW,JEX,JT)
IF(ISTATE.LT.0)GO TO 80
CALL DDRIV2(N,T,Y,FEX,TOUT,MSTATE, NROOT, EPS,EWT,
&MINT, WORK, LENW, INORK, LENIW, FEX)
IF (MSTATE.GT.2)GO TO 80
IF(T.GE.TSTART) IFLAG=1
IF(IFLAG.EQ. 1) THEN
c WRITE(6,70) RWORK(14) , IWORK(19) , INORK{20)
IF(IOUT.LE.1000) THEN
IF (MOD(IOUT,2).EQ.0)THEN
CALL SCRIBE(N,T,Y)
END IF
ELSE IF((IOUT.GT.1000).AND.(IOUT.LT.1700))THEN
CALL SCRIBE(N,T,Y)
ELSE IF((IOUT.GE.1700).AND.(IOUT.LT.6700))THEN
DELTAT=1.0D-4
1F (MOD(IOUT,10) .EQ.0) THEN
CALL SCRIBE(N,T,Y)
END IF
ELSE
DELTAT=0.1D0
CALL SCRIBE(N,T,Y)

eNeK®]

END IF

END IF
Crmmmm THE FOLLOWING SECTION OF CODE DUMPS THE ENTRY OF THE
C—===- JACOBIAN WITH LARGEST MAGNITUDE INTO 'BIG2'. THIS
Co=mm GIVES US A LOWER BOUND FOR THE LIPSCHITZ CONSTANT.

CALL JAC(N,T,Y,PD)
po 21 I=1,4
DO 20 J=1,4
PD(I,J)=DABS (PD(I,J))
20 CONTINUE
21 CONTINUE

c BIG2=DMAX1(PD(1,1),PD(1,2),PD(2,1),PD(Z,Z),PD(2,3),
c &PD(3,1),PD(3,2),PD(3,3),PD(3,4),PD(4,3),PD(4,4))
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22

25

35

BIG2=DMAXL(PD(3,3),PD(3,4),PD(4,3),PD(4,4))
WRITE(13,98)T, BIG2

-END OF JACOBIAN SECTION

-THE FOLLOWING SECTION OF CODE DUMPS AN UPPER LOWER
-BOUND FOR THE LIPSCHITZ CONSTANT INTO 'BIG1',WITHOUT
-EMPLOYING THE JACOBIAN.

DO 35 K=1,4
DO 22 I=1,4
YPERT (I)=Y(I)
CONTINUE
YPERT (K) =YPERT (K) +DEL
CALL FEX(N,T,YPERT, FPERT)
CALL FEX(N,T,Y,F)
DO 25 J=1,4 ‘
COL(J)=(FPERT(J)~F(J))/DEL
COL(J) =DABS (COL(J) )
CONTINUE
COLMAX (K)=DMAX1(COL(1) ,COL(2),COL(3),COL(4))
CONTINUE
BIG1=DMAX1(COLMAX (1) ,COLMAX(2),COLMAX(3),COLMAX(4))
WRITE(14,98)T,BIG1
-END OF LIPSCHITZ SECTION

CCCCCCCCCCcceeceececceccececececcececeececceccceccececceccecceccecece

(e}

40

OO0 oo nn

60

70

an

80
95
96

98

100

C
THE FOLLOWING STATEMENT LINEARIZES THE SYSTEM C
ABOUT THE SOLUTION VALUES EVERY 2 OR 4 C
MICROSECONDS Cc
C
C

CCCCCCCCCCCCCCCCCceeeeececeecececeecceceecceeecececcecececececcececececec

IF((T.LT.1.38D2).0OR. (T.GT.1.76D2))THEN
1IF (MOD(IOUT, 20) .EQ.0) THEN
CALL JEX(M,T,Y,MI, MU,AA,N)
CALL CHARPOLY (T,N,AA)
END IF
ELSE
IF (MOD(IOUT,10).EQ.0) THEN
CALL JEX(N,T,Y,ML,MU,AA,N)
CALL CHARPOLY (T, N,AA)
END IF
END IF
TOUT=TOUT+DELTAT
WRITE(6,60) IWORK(11),IWORK(12), IWORK(13)
WRITE(6,70)RWORK(14) , IWORK (19) , INORK(20)
FORMAT(/12H NO. STEPS =,16,11H NO. F-S =,
1I6,11H NO. J-S =,16)
FORMAT (1X, 'TOLSF=',E14.7,1X, '"MUSED=",12,1X, '"MCUR=",12)
MUSED=1 MEANS ADAMS METHOD WAS USED I.E.NON-STIFF
MUSED=2 MEANS BDF USED I.E.STIFF
CONTINUE
FORMAT (1X, 'ISTATE= ',13)
FORMAT (1X,A16,15,A7)
FORMAT (1X,A9,1X,12)
FORMAT (1X,E16.8,1X,E16.8)
WRITE(6,95) ISTATE
WRITE(6,97)' MSTATE= ',MSTATE
CONTINUE
STOP
END
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SUBROUTINE FEX(NEQ,T,Y,YDOT)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION Y (NEQ),YDOT(NEQ)

COMMON W, TAU20,TAU21,CC, TAU2,TAU1, TAUC, SPO,C, THNTOT,C1, C1STAR,
1GAMMA , SIGMA, TAU1DASH, HOnTOT, D1, D2, D3, D4, D5, PHINORM, PAR4,
2PAR3, 2STAR

c TPUMP=0.5D1

c WWP=W+PUMP (T, TPUMP)
WWP=W
TQ=1.7D2

QDEN=1.0D0+1.0D3*QSWITCH(T, TQ)

QTAUC=TAUC/QDEN
Cc QTAUC=TAUC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccececcececececceeccecececcceceee

c

Cc THE FOLLOWING IF-THEN-ELSE STATEMENT IS TANTAMOUNT TO
c STOPPING THE INTEGRATION AT T=TQ, INPUTTING CURRENT

C NUMERICAL VALUES OF SOLUTION AS INITIAL CONDITIONS AND
C RESUMING INTEGRATION ON A REDUCED SYSTEM WHERE THE

c UPPER AND LOWER THULMIUM POPULATIONS STAY CONSTANT.

C
C

aoaaoaaan

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
IF(T.LE.TQ) THEN
YDOT (1) =(D1*Y (1) -WWP) *Y (2)+(D1*Y (1) -WWP-1.0D0/TAU2-D1) *Y (1) +WWP
YDOT (2)=-(1.0D0/TAUL+2.0D0*D1*Y (1)+D2*(1.0D0-Y (3))+D3*Y(3))*Y(2)
1 +(1.0D0/TAU21-2.0DO*D1* (¥ (1)~1.0D0)-D3*Y(3))*Y(1)+
2 D3*Y(3)
ELSE
YDOT(1)=0.0D0
YDOT (2)=0.0D0
END IF
YDOT (3)=—(1.0D0/TAULDASH+DA*Y (2)+DS* (1.0D0-Y(1)-Y(2)))*¥Y(3)+
1 DA*Y(2)+ SIGMA*CC*PHINORM*Y (4)* (GAMMA* (1.0D0-Y(3))-1.0D0)
ZSTAR=PAR3* (GAMMA* (Y (3) ~1.0D0) +1.0D0) -1.0D0/QTAUC
YDOT (4) =PAR4*Y (3) +ZSTAR*YY (4)
RETURN
END

SUBROUTINE SCRIBE(N,T,Y)
DOUBLE PRECISION T,Y
DIMENSION Y(N)

c THIS SUBROUTINE WRITES THE NUMERICAL APPROXIMATION TO THE

c SOLUTION TO THE DATA FILES.
WRITE(7,125)T,Y(1)
WRITE(8,125)T,Y(2)
WRITE(9,125)T,Y(3)
WRITE(10,125)T,Y(4)

125 FORMAT(1X,E16.8,1X,E24.16)
RETURN
END

c SUBROUTINE JEX(NEQ,T,Y,ML,HU, PD, NRPD)
SUBROUTINE JAC(NEQ,T,Y,PD)
IMPLICIT DOUBLE PRECISION(A-H,0-2)
DIMENSION Y (NEQ),PD(NEQ,NEQ)
COMMON W, TAU20,TAU21,CC,TAU2,TAU1,TAUC,SPO,C, THNTOT,C1,C1STAR,
1GAMMA, SIGMA, TAU1DASH, HOnTOT, D1, D2, D3, D4, D5, PHINORM, PAR4,
2PAR3, 2STAR
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c TPUMP=0.5D1

c WWP=W*PUMP (T, TPUMP)
WWP=W
TT=T
TQ=1.7D2
QDEN=1.0D0+1.0D3*QSWITCH (T, TQ)
QTAUC=TAUC/QDEN

c QTAUC=TAUC
PD(1,1)=D1*Y(2)+2.0D0*D1+Y (1) -WWP-1.0D0/TAU2-D1
PD(1,2)=D1*Y (1) ~WWP
PD(1,3)=0.0D0
PD(1,4)=0.0D0
PD(2,1)=-2.0DO*DL1*Y(2)+1.0D0/TAU21-4.0DO*D1+Y (1)+2.0D0*D1~
1 D3*Y(3)
PD(2,2)=-(1.0D0/TAU142.0D0O*D1*Y (1)+D2*%(1.0D0-Y(3))+D3*Y(3))
PD(2,3)=D2*Y(2)+D3%(1.0D0-Y(1)-Y(2))
PD(2,4)=0.0D0
PD(3,1)=D5*Y (3)
PD(3,2)=PD(3,1)+D4*(1.0D0-Y(3))
PD(3,3) =~ (GAMMA*SIGMA*CC*PHINORM*Y (4)+1.0D0/TAULDASH+D4*Y (2) +
1 D5*(1.0D0-Y(1)-Y(2)))
PD(3,4)=SIGMA*CC*GAMMA*PHINORM* (1.0D0~-Y (3) ) -SIGMA*CC*PHINORM
PD(4,1)=0.0D0
PD(4,2)=0.0D0
PD(4,3)=GAMMA*PAR3*Y (4) +SPOYHONTOT/ (PHINORM*TAU1DASH)
PD(4,4)=GAMMA*PAR3+* (Y (3)-1.0D0)+PAR3~1.0D0/QTAUC
RETURN
END

FUNCTION PUMP(T,TPUMP)

IMPLICIT DOUBLE PRECISION(A-H,0-2)
TEST=T-TPUMP

IF(TEST.LT.0.0DO) PUMP=1.0DO
IF(TEST.GE.0.0DO) PUMP=0.0DO
RETURN

END

FUNCTION QSWITCH(T,OT)
IMPLICIT DOUBLE PRECISIOM(A-H,0-2)
c THIS Q-SWITCH TAKES 0.1 MICROSECONDS TO SWITCHI
QTEST=T-QT
ST=1.0D-1
IF(QTEST.LE.0.0D0)QSWITCH=1.0D0
IF((QTEST.GT.0.0D0).AND. (QTEST.LT.ST) ) QSWITCH=1.0D0-QTEST/ST
IF (QTEST.GE.ST) QSWITCH=0.0D0
RETURN
END

SUBROUTINE CHARPOLY(T,N,A)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c C
C THTS SUBROUTINE FINDS THE ROOTS OF THE CHARACTERISTIC C
(o4 POLYNOMIAL OF THE LINEARIZED SYSTEM USING A ROUTINE (o4
C FROM "NUMERICAL RECIPES" CALLED ZROOTS. Cc
C (o
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
IMPLICIT DOUBLE PRECISION(A-H,0-Z)

c EXTERNAL CPOLY
PARAMETER (M=3)
COMPLEX*16 COEFF,RROOTS,VAL,CVEC, TROOTS, POINT
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LOGICAL PPOLISH,LROOT
DIMENSION A(4,4),CD(5),COEFF(5),RROOTS (4),TROOTS (3),CVEC(4)
COMMON/AREA1/CD

OPEN (UNIT=1,FILE='LINEAR.DAT')
OPEN (UNIT=2,FILE='DISC1.DAT")
OPEN (UNIT=3,FILE='DISC2.DAT')
All=A(1,1)

Al2=A(1,2)

Al3=A(1,3)

Al4=A(1,4)

A21=A(2,1)

A22=A(2,2)

A23=A(2,3)

A24=A(2,4)

A31=A(3,1)

A32=A(3,2)

A33=A(3,3)

A34=A(3,4)

A41=A(4,1)

A42=A(4,2)

A43=A(4,3)

Ad4=A(4,4)

CC----NOW DEFINE THE COEFFICIENTS OF THE CHAR.POLY.-~-
CD(5)=1.0D0
CD(4)=- (A11+A22+A33+A44)
CD(3)=A11%(A22+A33+A44)+A22% (A33+A44) +A33*A44~
1(A34*A43+A23%A32+A12+A21)
CD(2)=A11*(A23*A32-A22*A44-A33*A44-A22*A33+A34*A43) +
1A22% (A34%A43-A33*A44)+A23¥A32%A44+AL2% (A21+A33+A21%A44-A23+A31)
CD(1)=A11%(A22*A33*A44-R22*A34+N43-A23*¥A32*A44)+
1A12% (A23*A31*A4A44+A21*A34*A43-A21*A33¥A44)

CCm===END DEFINITION==——=mmm—mm e o e e e

DO 50 K=1,5
COEFF (K) =DCMPLX (CD (K) )
50 CONTINUE

B=CD(4)

c=cD(3)

D=CD(2)

E=CD(1)

P=C-0.375D0*B**2
Q=0.125D0*B**3+D-0.5D0*B*C
R=0.0625D0O*C*B**2~3,0D0*B**4/256.0D0-0.25D0*B*D+E
C4=1.0D0

C3=-P

C2=-4.0DO*R
C1=4.0DO*PAR-Q#*2
CVEC(4)=DCMPLX (C4)

CVEC (3)=DCMPLX (C3)
CVEC(2)=DCMPLX(C2)
CVEC(1)=DCMPLX(C1)
PPOLISH=.TRUE.

C CALL DZROOTS (COEFF, N, RROOTS, PPOLISH)
C CALL DZROOTS (CVEC,M, TROOTS, PPOLISH)

WRITE(1,150)' AT TIME T= ',T,' WE HAVE THE FOLLOWING: '
po 100 I=1,4
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VAL~=DCMPLX (CD(5))

DO 60 K=4,1,-1

VAL=VAL*RROOTS (I)+DCMPLX (CD(K))
€0  CONTINUE

VVAL=DREAL(VAL)

WRITE(1,180) 'ZROOT= ',RROOTS(I),' VAL= ',6VVAL
100 CONTINUE

150 FORMAT(1X,A12,E16.8,A24)
170 FORMAT(1X,Al)
180 FORMAT(1X,A7,E20.12,E20.12,A6,E20.12)

I=1
250 CONTINUE
DDRE=DREAL (TROOTS (1))
DDIM=DIMAG (TROOTS (1))
IF ( (DABS (DDIM) .LE.1.0D-6) . AND. (DDRE.GE.P)) THEN
U1=DDRE
LROOT=.TRUE.
ELSE
LROOT=.FALSE.
IF(I.LE.2)THEN
I=I+1
GO TO 250
END IF
END IF
IF (.NOT.LROOT) THEH
WRITE(1,400)' UNABLE TO LOCATE Ul '
END IF
1F (LROOT) THEN
UMINP=U1-P
WRITE(1,298)' Ul-P= ', UMINP
AA=DSQRT (U1-P)
BB=Q/ (2.0DO*AA)
DISC1=AA**2-2.0D0*Ul+4.0D0O*BB
DISC2=AA**2-2,0D0*U1l-4.0D0*BB
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCee

C C
C THE FOLLOWING SCALING IS FOR GRAPHING PURPOSES Cc
(o} Cc

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeece
IF (DISC1.GT.0.0DO0) THEN
DISC1=DISC1/1.0D8
WRITE(1,299)' DISCl > 0 '
ELSE
DISC1=DISC1/1.0D3
WRITE(1,299)' DISCl < 0 '
END IF
IF(DISC2.GT.0.0D0) THEN
WRITE(1,299)' DISC2 > 0 '
ELSE
WRITE(1,299)"' DISC2 < 0 '
END IF
WRITE(2,300)T,DISC1
WRITE(3,300)T,DISC2
298  FORMAT(1X,A8,E16.8)
299  FORMAT(1X,A12)
300 FORMAT(1X,E14.7,E14.7)
END IF
WRITE(1,450)' TROOTS(1)=',TROOTS(1)
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WRITE(1,450)' TROOTS(2)="',TROOTS (2)
WRITE(1,450)' TROOTS(3)=', TROOTS (3)
WRITE(1,170)"' °
WRITE(1,170)" '

400 FORMAT(1X,A22)

430 FORMAT (1X,A24)

450 FORMAT(1X,Al1,E16.8,E16.8)

RETURN
END

FUNCTION CPOLY (X)
IMPLICIT DOUBLE PRECISION(A-H,0-2)
DIMENSION CD(5)
COMMON/AREA1/CD
VALUE=CD(5)

DO 10 K=4,1,~1
VALUE=VALUE*X+CD (K)

10 CONTINUE
CPOLY=VALUE
RETURN
END

aaaoaoaaQoonNon
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Appendix C

COMPUTER PROGRAM:

Newthho
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PROGRAM NEWTHHO

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee

(o]

c
c
C
c
Cc
C
c
C
ol

THIS IS A PROGRAM TO SOLVE THE THULIUM HOLMIUM LASER SYSTEM BY EMPLOYINGC
LSODA.THE CORRESPONDENCE BETWEEN THE VARIABLES IN THE SYSTEM AND THE c
VARIABLES IN THE PROGRAM IS AS FOLLOWS: c
Y(1)=THULIUM PUMP LEVEL(3H4) c
Y(2)=THULIUM ENERGY TRANSFER LEVEL(3F4) c
Y(3)=HOLMIUM LASING LEVEL(5I7) c
Y (4)=PHOTON DENSITY c
Y (5)=HOLMIUM LEVEL(5I5) c
Y(6)=HOLMIUM LEVEL(5S2) c

c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

IMPLICIT DOUBLE PRECISION(A-H,0-2)

EXTERNAL FEX

PARAMETER (N=6,HEQ=5)

REAL*8 LIPSCHITZ,JMAX,LIP,NEWABSP, NEWPHIOUT

DIMENSION Y(N),WORK(342),IWORK(27),YNORM(N),YY(NEQ),PD(NEQ, NEQ)
DIMENSION Y(N),ATOL(N),RWORK(116),IWORK(26),YPRIME (N), YNORM(N)
COMMON W, TAU20,TAU21,CC, TAU2,TAU1, TAUC, SPO,C, THNTOT, C1, CISTAR,

ISIGMA,TAUIDASH,HOHTOT,PHINORM,PARd,fO,fl,PUMPSIG,RODDIA,
2S,TQ,IQSWITCH,IPUMP,WI,FWHMI,FWHMZ,FWHMB,PI,RODL,OPTLNG,
3SPOLIFE,SIGMAPP,02,Q1l,Q1DASH, TAUS, TAUG

OPEN(UNIT=6, FILE="'NEWTHHO.ERR")
OPEN(UNIT=7,FILE='NEWTY1.DAT')
OPEN (UNIT=8, FILE='NEWTY2.DAT')
OPEN (UNIT=9, FILE='NEWTY3.DAT"')
OPEN (UNIT=10, FILE='NEWTYA4.DAT"')
OPEN(UNIT=11, FILE='NEWTY5.DAT")
OPEN (UNIT=13, FILE='NEWTY6.DAT')
OPEN(UNIT=12,FILE="'INFO.NEW')
OPEN(UNIT=14, FILE='TTDEV.DAT')
OPEN (UNIT=15, FILE="MAXJAC.DAT')
OPEN (UNIT=16, FILE='ETA.DAT')
OPEN (UNIT=17, FILE="'PHOTDEV.DAT"')
OPEN (UNIT=18, FILE='BIGONE.DAT')

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

C
C
C

C

INITIAL CONDITIONS : c

c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
Y(1)=0.0DO
¥(2)=0.0D0
¥Y(3)=0.0D0
Y(4)=0.0DO
Y(5)=0.0D0
Y(6)=0.0D0

PHIOUT=0.0DO
ABSPUMP=0.0DO
TOUT=0.25D0
DELTAT=0.25D0
NPOINTS=2000
LIPSCHITZ=0.0DO
LIP=3149.8496D0
DEVMAX=.49677547D-2

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Cc
C
c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
LSODA PARAMETERS C

C
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ITOL=2
RTOL=1.0D-8
ATOL(1)=1.0D6
ATOL(2)=1.0D6
ATOL(3)=1.0D6
ATOL(4)=1.0D-1
ATOL(5)=1.0D6
ATOL(6)=1.0D6
ITASK=1
ISTATE=1
I0PT=1
LRW=116
LIW=26
JT=2

c MF=21
DO 1 I=5,10

RWORK (I)=0.0D0
IWORK(I)=0

1  CONTINUE
HO=.01D0
HMAX=.01D0
HMIN=1.0D-9
MXSTEP=1500
RWORK (5) =HO
RWORK ( 6 ) =HMAX
RWORK (7) =HMIN
IWORK (6) =MXSTEP

[eNeNoeKe e Ko Ko XeNe R Ke N e K Re Ko Re Ne NeRe Ro Ne e Ko e No N !

S$=1.0D0
cceeeececcececceecceeccecececcccecccceccecccceccccceccecceceecceccececceececccecccecee

C S IS A SCALING FACTOR:

C IF S§=0.001 THEN [T)=THOUSANDS OF MICROSEC. (i.e.MILLISECONDS) C
c IF S$=0.01 THEN [T)=HUNDREDS OF MICROSEC. C
C IF S$=0.1 THEN (T]=TENS OF MICROSEC. C
C IF S=1.0 THEN [T}=MICROSEC. c
c IF S=10.0 THEN [T]=TENTHS OF MICROSEC. Cc
Cc IF S=100.0 THEN (T]=HUNDRETHS OF MICROSEC. C
C IF $=1000.0 THEN [T]=THOUSANTHS OF MICROSEC. (i.e.NANOSECONDS) C
CCCeceeeeeceecececeeceecececcecececccececcccececccececccccecceccececcecccecececcecccccecce
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCcceccececeeeecececeecccecececcecececceceeceece
C c
C PHYSICAL PARAMETERS C
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCT
TAU1=1.18D4

TAU1DASH=9.25D3

HONTOT=5. 0D19

THNTOT=8.0D20

WRITE (*,*)'PLEASE ENTER HORTOT'
READ( *, *) HOnTOT
WRITE(*, *) 'PLEASE ENTER THNTOT®
READ( *, *) THNTOT

PHINORM=1.0D16

£0=0.0115D0

£1=0.0685D0

C=4.6D-21

cc=3.0D4

TAU20=6.0D2

TAU21=6.0D2

[sEoNeN Y]
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TAU2=1.0D0/ (1.0D0/TAU20+1.0D0/TAU21)

Cl=7.0D-21

SIGMA=1.826D-19
C C1STAR=0.0DO

C1STAR=3.25D-22
C WRITE(*,*) 'PLEASE ENTER C1STAR'
Cc READ(*, *) C1STAR

PI=4.0DO*DATAN (1.0DO)
CAVRAD=0.0415D0

c WRITE(*,*) ' PLEASE ENTER CAVRAD'
c READ (*, *) CAVRAD
CAVAREA=PI*CAVRAD**2
RODL=0.3D0
c WRITE(*,*)'PLEASE ENTER RODL'
c READ (*, *) RODL
CAVL=17.5D0
c CAVL=RODL
c WRITE(*,*) ' PLEASE ENTER CAVL'
c READ (*, *) CAVL

RODDEX=1.78D0
RODDIA=0.3D0

c REFLOUT=0.98D0
WRITE (*,*) ' PLEASE ENTER REFLOUT'
READ (*, *) REFLOUT
REFLBCK=0.98D0
RODLOSS=0.0D0
SURFACET=1.0D0
OPTLNG=RODL*RODDEX+CAVL-RODL
ROUNDTT=2.0DO*OPTLNG/CC

c PUMPE=0.08D0
WRITE(*,*) ' PLEASE ENTER PUMPE'
READ (*, *) PUMPE
PUMPLAM=0.785D0
HC=1.9875D-19
HNUPUMP=HC/ PUMPLAM
PUMPETA=1.0D0
PUMPSIG=2.935D-21
EMISLAM=2.0D0
B=CAVAREA*4.0D0/ (PT*OPTLNG**2)
SPO=B#*RODL/OPTLNG
SPOLIFE=2.92D3
TAUC=ROUNDTT/ (4 .0D0-2.0D0*SURFACET-REFLBCK-REFLOUT+
12.0DO*RODL*RODLOSS)
SIGMAPP=0.0DO

Q2=0.0D0
c Q1=0.0D0
c Q1=1.0D-23

WRITE (*, *) ' PLEASE ENTER Ql'

READ(*,*)Ql

Q1DASH=1.2D-23

TAUS5=2.0D5

TAU6=2.0D5
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
c c
c PUMP PARAMETERS c
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IPUMP=3

FWHM1=S*2.5D2
FWHM2=S8*3.0D2
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FWHM3=5*3.0D2

W1=PUMPETA* PUMPE*PUMPLAM/ (HC*CAVAREA*RODL)

W=1.0D18
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeecccceececeee

C C
Cc IPUMP=0 <----> CONSTANT PUMP C
C IPUMP=1 <----> PUMP1l c
C IPUMP=2 <----> PUMP2 Cc
Cc IPUMP=3 <----> PUMP3 C
Cc C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee

CCCCCCCCCCCCCCCCCCCCCCCCCCCCeeceececcecceceecceceecceccccee
C

C
C Q-SWITCHING PARAMETERS c
(o4 c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeceeccceecccceccecceceece
TQ=2.0D2
IQSWITCH=0
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeecececcececceceecece
Cc Cc
C IQSWITCH=1 <=-=--=> Q-SWITCHING C
C IQSWITCH=0 <----> NO Q-SWITCHING C
o] c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccecccceccecceccecece

CCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
c c
c DDRIV2 PARAMETERS c
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceee
MSTATE=1
NROOT=0
EPS=1.0D-8
EWT=1.0D-22
MINT=3
LENW=342
LENIW=27
C--~--- END DDRIVZ2 PARAMETERS==m======-=—-—mmm——————m—e
IFLAG=1
TSTART=0.0DO
T=0.0DO
IF(IFLAG.EQ.1) THEN
CALL SCRIBE(N,T,Y)
END IF
TT=0.0D0
DEV=0.0DO0
PHOTDEV=0.0DO
ETA=0.0DO
BIGONE=0.0D0
WRITE(16,42)T,ETA
WRITE(14,42)TT, DEV
WRITE(17,42)TT, PHOTDEV
15 FORMAT(1X,A7,E14.7)
20 FORMAT(1X,E16.8)
THNO=THNTOT-Y (1) -Y(2)
EXARG=-PUMPSIG*RODDIA*THNO
IF (IPUMP.EQ.0) THEN
OLDABSP=W* (1.0D0-DEXP (EXARG) )
ELSE IF(IPUMP.EQ.1)THEN
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OLDABSP=W1#PUMP1 (T, FWIIM1, PI) * (1.0D0-DEXP (EXARG))
ELSE IF(IPUMP.EQ.2)THEN
OLDABSP=W1+PUMP2 (T, FWHM2, PI) * (1.0D0-DEXF (EXARG) )
ELSE
OLDABSP=W1*PUMP3 (T, FWHM3) * (1.0D0-DEXP (EXARG) )
END IF
OLDPHIOUT=Y (4)

DO 40 IOUT=1,NPOINTS
CALL DDRIV2(N,T,Y,FEX,TOUT,MSTATE,NROOT, EPS, EWT,
&MINT, WORK, LENW, IWORK, LENIW, FEX)
IF (MSTATE.GT.2)GO TO 80
CALL LSODA(FEX,N,Y,T,TOUT,ITOL,RTOL,ATOL, ITASK, ISTATE,
1 IOPT,RWORK,LRW,IWORK,LIW,JEX,JT)
IF(ISTATE.LT.0)GO TO 80
IF(T.GE.TSTART) IFLAG=1
IF(IFLAG.EQ.1) THEN
c WRITE (6,70) RWORK(14) , IWORK(19) , INORK(20)
THNO=THNTOT-Y (1) -Y(2)
EXARG=-PUMPSIG*RODDIA*THNO
1F (IPUMP.EQ.0) THEN
NEWABSP=W* (1.0D0-DEXP (EXARG) )
ABSPUMP=ABSPUMP+ (OL.DABSP+NEWABSP) *DELTAT/2 . 0DO
ELSE IF(IPUMP.EQ.1)THEN
NEWABSP=W1*PUMP1 (T, FWNHM1, PI) * (1.0D0O~DEXP (EXARG) )
ABSPUMP=ABSPUMP+ (OLDABS P+NEWABSP) *DELTAT/2.0D0
ELSE IF(IPUMP.EQ.2)THEN
NEWABSP=W1*PUMP2 (T, FWHM2, PI) * (1.0DO~DEXP(EXARG))
ABSPUMP=ABSPUMP+ (OLDABSP+NEWABSP) *DELTAT/2.0DO0
ELSE
NEWABSP=W1*PUMP3 (T, FWHM3) * (1. 0DO-DEXP (EXARG) )
ABSPUMP=ABSPUMP+ (OLDABS P+NEWABSP) *DELTAT/2.0D0
END IF
NEWPHIOUT=Y (4)
PHIOUT=PHIOUT+ (OLDPHIOUT+NEWPHIOUT) *DELTAT/2.0D0
OLDABSP=NEWABSP
OLDPHIOUT=NEWPHIOUT
YNORM(1)=Y (1) /THNTOT
YNORM(2)=Y(2)/THNTOT
YNORM(3)=Y(3)/HONnTOT
YNORM(4)=Y(4)/PHINORM
YNORM (5)=Y(5) /HONTOT
YNORM (6)=Y (6) /JHONTOT
IF (IQSWITCH.EQ. 1) THEN
IF(IOUT.LT.1400) THEN
IF (MOD(IOUT, 2) .EQ.0) THEN
CALL SCRIBE(N,T,YNORM)
END IF
ELSE IF((IOUT.GE.1400).AND.(IOUT.LT.6400))THEN
DELTAT=1.0D-4
1F (MOD(IOUT, 10) .EQ.0) THEN
CALL SCRIBE(N,T, YNORM)
END IF
ELSE IF(IOUT.GE.6400)THEN
DELTAT=0. 5DG
CALL SCRIBE(N,T, YNORM)
END IF
ELSE
CALL SCRIBE (N, T, YNORM)
END IF
READ(11,42)TT,X5

aon
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PHOTDEV=DABS (SIGMA*CC*HONTOT*RODL*f0*YNORM (4) *X5/CAVL)
DEV=DABS (X5) *DSQRT ( (C1*HCNTOT*YNORM (2) +QLDASH*HONTOT *
1(1.0DO-YNORM (1) ~YNORM(2))) **2+ (CL*THNTOT*YNORM(2)+
2SIGMA*CC*PHINORM* £O*YNORM(4)) **2+

3 (SIGMA*CC*HONTOT*RODL*£0*YNORM(4) /CAVL) *%2)

WRITE(14,42)TT,DEV

WRITE(17,42)TT, PHOTDEV
C-==m= THE FOLLOWING SECTION OF CODE DUMPS THE ENTRY OF THE
Commm JACOBIAN MATRIX WITH LARGEST MAGNITUDE INTO 'BIG'

DO 29 LL=1,NEQ
YY (LL) =Y (LL)
29 CONTINUE
CALL JAC(NEQ,T,YY,PD)
JMAX=0.0DO
Do 31 J=1,NEQ
DO 30 K=1,NEQ
PD(J,K)=DABS (PD(J,K))
1F(PD(J,K) .GT.JIMAX) THEN
JMAX=PD(J, K)
JSAVE=J
KSAVE=K
END IF
30  CONTINUE
31 CONTINUE
BIG=JMAX
BIGONE=DMAX1(PD(4,3),PD(4,4))
WRITE(18,42)T, BIGONE
WRITE(15,41)T,BIG,JSAVE, KSAVE
c WRITE(15,42)YY(3),YY(5)
IF(BIG.GT.LIPSCHITZ) THEN
LIPSCHITZ=BIG
END IF
c ETA=DEVMAX* (DEXP (LIP*T)~1.0D0)/LIP
c WRITE(16,42)T,ETA
END IF
40 TOUT=TOUT+DELTAT
41 FORMAT(1¥X,E16.8,1X,E16.8,' PD(',6I1,',',I1,')")
42 FORMAT(1X,E16.8,1X,E16.8)
PHIOUT=PHIOUT*CC*CAVAREAVHC* (1.0D0-REFLOUT)
&/ (EMISLAM*2.0DO0)
ABSPUMP=ABS PUMP* CAVAREA*RODL*HC/PUMPLAM
WRITE(12,84)' LIPSCHITZ= ‘,LIPSCHITZ
WRITE(12,75)' PHIOUT= ',PHIOUT
WRITE(12,77)' ABSPUMP= ', ABSPUMP
WRITE(12,78)' IPUMP= ',IPUMP
IF (IPUMP.EQ. 1) THEN
FFWHM=FWHM1
ELSE IF(IPUMP.EQ.2)THEN
FFWHM=FWHM2
ELSE IF(IPUMP.EQ.3)THEN
FFWHM=FWHM3

END IF

IF(IPUMP.NE.O) THEN
WRITE(12,73)' FWHM= ',FFWHM
END IF

IF (IPUMP.EQ.0) THEN
WRITE(12,83)' W= ', W

END IF

IF (IQSWITCH.EQ. 1) THEN
WRITE(12,79)' QSWITCHING '
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WRITE(12,75) Q= ',TQ

ELSE

WRITE(12,81)' NO QSWITCHING °
END IF
WRITE(12,76)' PUMPE= ', PUMPE
WRITE(12,77)' REFLOUT= ',REFLOUT
WRITE(12,76)' SIGMA= ',SIGMA
WRITE(12,75)' CAVRAD= ',CAVRAD
WRITE(12,73)' CAVL= ',CAVL
WRITE(12,73)' RODL= ',RODL
WRITE(12,75)' RODDEX= ',RODDEX
WRITE(12,75)' RODDIA= ',RODDIA
WRITE(12,77)' REFLBCK= ',REFLBCK
WRITE(12,77)' RODLOSS= ', RODLOSS
WRITE(12,74)' SURFACET= ',SURFACET
WRITE(12,75)' OPTLNG= ',OPTLMNG

WRITE(12,77)' PUMPLAM= ', PUMPLAM
WRITE(12,77)' PUMPETA= ', PUMPETA
WRITE(12,77) ' PUMPSIG= ', PUMPSIG
WRITE(12,77)' EMISLAM= ', EMISLAM
WRITE(12,72)' SPO= ',SPO

t

WRITE(12,77)' SPOLIFE=
WRITE(12,82)' Ql= ',01
WRITE(12,75)' Q1DASH= ',Q1DASH

WRITE(12,73)' TAUC= ',TAUC

WRITE(12,75)' C1STAR= ',C1STAR

WRITE(12,82)' Cl= ',Cl

WRITE(12,83)' C= ',C

WRITE(12,82)' cC= ',CC

WRITE(12,82)' FO= ',FO

WRITE(12,82)' Fl= ',F1

WRITE(12,77)' PHINORM= ', PHINORM

WRITE(12,82)' HC= ',HC

WRITE(12,77)' SIGMAPP= ',SIGMAPP

WRITE(12,82)' Q2= ',02

WRITE(12,73)' TAUl= ',TAU1

WRITE(12,73)' TAU2= ', TAU2

WRITE(12,73)' TAUS= ',TAUS

WRITE(12,73)' TAU6= ',TAU6

WRITE(12,76)' TAU20= ',TAU20

WRITE(12,76)' TAU21= ', TAU21

WRITE(12,74)"' TAU1DASH= ', TAULDASH

WRITE(12,75)' HONnTOT= ',HONTOT

WRITE(12,75)' THNTOT= ',THNTOT
WRITE(6,60) IWORK(11) , IWORK(12) , IWORK(13)
WRITE(6,70) RWORK (14) , IWORK(19) , IWORK (20)
FORMAT(/12H NO. STEPS =,16,11H NO. F-S =,16,11H NO. J-
1S =,16)

70 FORMAT(1X,'TOLSF=',E14.7,1X, 'MUSED=",12,1X, 'MCUR=",12)

72 FORMAT(1X,A6,E16.8)

73 FORMAT(1X,A7,E16.8)

74 FORMAT(1X,All,E16.8)

75 FORMAT(1X,A9,E16.8)

76 FORMAT(1X,A8,E16.8)

77 FORMAT(1X,A10,E16.8)

78 FORMAT(1X,A8,I1)

79 FORMAT(1X,A12)

81 FORMAT(1X,Al5)

82 FORMAT(1X,A5,E16.8)

83 FORMAT(1X,A4,E16.8)

, SPOLIFE

anNon
o
o
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84 FORMAT(1X,A12,E16.8)
c MUSED=1 MEANS ADAMS METHOD WAS USED I.E.NON-STIFF
c MUSED=2 MEANS BDF USED I.E.STIFF
80 CONTINUE
95 FORMAT(1X,'ISTATE= ',613)
96 FORMAT(1X,A16,15,A7)
WRITE(6,95) ISTATE
100 CONTINUE
STOP
END

SUBROUTINE FEX(N,T,Y,YDOT)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

DIMENSION Y (N),YDOT(N)

COMMON W,TAU20,TAU21,CC, TAU2, TAU1,TAUC,SPO,C, THNTOT,C1,C1STAR,
1SIGMA, TAU1DASH, HONTOT, PHINORM, PAR4, £0, £1, PUMPSIG,RODDIA,
2S,TQ, IQSWITCH, IPUMP, W1, FWHM1 , FWHM2, FWIM3, PI, RODL, OPTLNG,
3SPOLIFE,SIGMAPP,Q2,Ql1,Q1DASH, TAUS, TAU6

IF (IPUMP.EQ.0)WHP=W

IF (IPUMP.EQ. 1) WWP=W1*PUMP1 (T, FWHM1, PI)

IF (IPUMP.EQ.2)WWP=W1*PUMP2 (T, FWHM2, PI)

IF (IPUMP.EQ. 3) WWP=W1*PUMP3 (T, FWHM3)

IF (IQSWITCH.EQ. 1) THEN

QDEN=1.0D0+1.0D3*QSWITCH(T, TQ,S)
QTAUC=TAUC/QDEN

ELSE

QTAUC=TAUC

END IF

THNO=THNTOT-Y (1) =Y (2)

HONO=HONTOT-Y (3)~Y(5) ~Y (6)

ARG1=-PUMPSIG*RODDIA*THNO

ARG2=-SIGMAPP*RODDIA*Y (3)

YDOT (1) =WWP* (1.0D0-DEXP (ARGL) ) ~Y (1) /TAU2~C*Y (1) *THNO-
§Q2*Y (3) *Y (1)

YDOT (2) =Y (1) /TAU21~Y (2) /TAUL+2.0DO*C*Y (1) *THNO~
1C1*Y (2) *HONO+C1STAR*THNO#Y (3) ~Q1*Y (2) *Y (3) +QLDASH*Y (5) *THNO
YDOT(3)=-Y (3) /TAU1DASH+C1#*Y (2) *HOnO-C1STAR*THNO*Y (3) -
1STGMAXCCH*Y (4) * (£1*Y (3) -£0O*HON0) ~02*Y (3) *Y (1) -Q1*Y (2) *Y(3)-
2WWP* (1.0D0-DEXP (ARG2) )

YDOT (4) =SIGMA*CC*Y (4) * (£1*Y (3)~£0*HONn0) *RODL/OPTLNG-
1Y (4) /QTAUC+SPO*f1*Y(3) /SPOLIFE
YDOT(5)=Q1*Y (2)*Y(3) -Q1DASH*Y (5) *THNO~Y (5) /TAUS
YDOT(6) =WWP+* (1.0D0O-DEXP(ARG2))-Y (6) /TAU6+Q2*Y (3) *Y (1)
RETURN
END

c SUBROUTINE JEX(NEQ,T,Y,ML,MU, PD, NRPD)

SUBROUTINE JAC(NEQ,T,Y,PD)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

DIMENSION Y (NEQ),PD(NEQ,NEQ)

COMMON W, TAU20,TAU21,CC,TAU2, TAU1,TAUC,SPO,C, THNTOT,C1, C1STAR,
1SIGMA,TAU1DASH, HONTOT, PHINORM, PAR4, £0, £1, PUMPSIG, RODDIA,
2S,TQ, IQSWITCH, IPUMP, W1, FWIM1, FWHM2 , FWHM3, PI,RODL, OPTLNG,
3SPOLIFE, SIGMAPP,Q2,01,Q1DASH, TAUS, TAU6

IF (IPUMP.EQ.0)WWP=W

IF (IPUMP.EQ.1) WWP=W1*PUMP1 (T, FWHM1, PI)

IF (IPUMP.EQ.2) WWP=W1#PUMP2 (T, FWHM2, PI)

IF (IPUMP.EQ.3) WWP=W1+*PUMP3 (T, FWHM3)

IF (IQSWITCH.EQ. 1) THEN

QDEN=1.0D0+1.0D3*QSWITCH (T, TQ,S)
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QTAUC=TAUC/QDEN
ELSE
QTAUC=TAUC
END IF
THNO=THNTOT-Y (1) -Y(2)
HONO=HONTOT-Y (3)-Y(5)
EXARG=-PUMPSIG*RODDIA*THNO
PD(1,1)=-(1.0D0/TAU2+C*THNO-C*Y (1)+
1WWP*PUMPSIG*RODDIA*DEXP (EXARG) )
PD(1,2)=C*Y (1) -WWP*PUMPSIG*RODDIA*DEXP (EXARG)
PD(1,3)=0.0D0
PD(1,4)=0.0D0
PD(1,5)=0.0D0
PD(2,1)=2.0D0*C*THNTOT-4.0DO*C*Y (1)+1.0D0/TAU21~
1C1STAR*Y (3) =2.0DO*C*Y (2) ~QLDASH*Y (5)
PD(2,2)=-(1.0D0/TAU1+2.0DO*C*Y (1) +C1*HONO+
1CLSTARK*Y (3) +Q1*Y (3) +QLDASH*Y (5))
PD(2,3)=C1l*Y (2)+C1STAR*THNO-QL*Y (2)
PD(2,4)=0.0D0
PD(2,5)=C1*Y (2)+QLDASH*THNO
PD(3,1)=C1STAR*Y (3)
PD(3,2)=PD(3,1)+CL*HONO-Q1*Y(3)
PD(3,3)=-(CL*Y(2)+1.0D0/TAULDASH+
1C1STARATHNO+SIGHA*CCHY (4) * (£0+£1)+QL*Y (2))
PD(3,4)=-SIGMA*CC* (£1*Y (3)-fO*HONO)
PD(3,5)=-CLl*Y(2)-SIGMA*XCC*O*Y (4)
PD(4,1)=0.0D0
PD(4,2)=0.0D0
PD(4,3)=SIGMA*CC* (£0+£1) *Y (4) *RODL/OPTLNG+SPO*{1/SPOLIFE
PD(4,4)=-(PP(3,4) *RODL/OPTLNG+1.0D0/QTAUC)
PD(4,5)=SIGMA*CC*£0*+Y (4)
PD(5,1)=0.0D0
PD(5,2)=Q1*%Y (3)+Q1DASH*Y (5)
PD(5,3)=Q1*Y(2)
PD(5,4)=0.0D0
PD(5,5)=-Q1DASH*THNO~1.0D0/TAUS
RETURN
END

FUNCTION PUMPL(T,FWHM,PI)

IMPLICIT DOUBLE PRECISION(A-H,0-2)
ALPHA=PI/FWHM
IF((T.GE.0.0DO) .AND. (T.LE.FWHM) ) PUNP1=ALPHA/PI
IF(T.GT.FWHM) PUMP1=0.0D0

RETURN

END

FUNCTION PUMP2(T,FWHM,PI)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

ALPHA=PI/ (2.0DO*FWHM)

AARG=ALPHA*T

WIDTH=2.0DO*FWHM
IF((T.GE.0.0DO) .AND. (T.LE.WIDTH) ) THEN
PUMP2=(2.0DO*ALPHA* (DSIN (AARG) ) **2) /PI
END IF

IF (T.GT.WIDTH) PUMP2=0.0D0

RETURN

END

FUNCTION PUMP3(T,FWHM)
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IMPLICIT DOUBLE PRECISION(A-H,0-2)

ALPHA=1.1331512D0/FWHM

EARG=~ (ALPHA*ALPHA*T*T)
IF(T.GE.0.0DO) THEN
PUMP3=2.0DO*ALPHA*ALPHA*T*DEXP (EARG)

END IF

RETURN

END

FUNCTION QSWITCH(T,QT,S)
IMPLICIT DOUBLE PRECISIOMN(A-H,0-Z)

QTEST=T-QT

§S=5/1.0D2
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
c THE VALUE OF S DETERMINES THE UNITS OF TIME AND SS IS A C
c SCALING PARAMETER WHICH ENSURES THE Q-SWITCHING IS DONE C
c IN 10 NANOSECONDS REGARDLESS OF WHICH TIME SCALE I'M c
c PRESENTLY USING. c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCece
IF(QTEST.LE.0.0D0)QSWITCH=1.0D0
IF((QTEST.GT.0.0D0) .AND. (QTEST.LT.SS))QSWITCH=1.0D0-QTEST/SS
IF(QTEST.GE.SS)QSWITCH=0.0D0
RETURN
END

SUBROUTINE SCRIBE(N,T,Y)
DOUBLE PRECISION T,Y
DIMENSION Y(N)

c THIS SUBROUTINE WRITES THE NUMERICAL APPROXIMATION TO THE

c SOLUTIONS TO THE DATA FILES.
WRITE(7,10)T,Y (1)
WRITE(8,10)T,Y(2)
WRITE(9,10)T,Y(3)
WRITE(10,10)T, Y (4)

c WRITE(11,10)T,Y(5)
WRITE(13,10)T, Y (6)

10 FORMAT(1X,E16.8,1X,E16.8)
RETURN
END
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