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Abstract

Rational Cubic B-Spline Interpolation and Its Applications 

in Computer Aided Geometric Design

A Non-Uniform Rational B-spline (NURB) is a vector-valued function of the 

form

V '  Ef=o WiN?(u) ~  ~

where the w[s are scalars called the weights of the NURB, the p-s are vectors in 

E 4  (usually k =  2 or 3) called the control points of the NURB, and the IV”’s are 

the usual scalar-valued B-spline base functions associated with some given knot 

sequence.

Because of the flexibility that the weights and the control points provide, 

NURBS have recently become very popular tools for the design of curves and 

surfaces. If the weights are positive then the NURB will lie in the convex hull of 

its control points and will not possess singularities. Thus it is desireable to have 

positive weights.

In utilizing a NURB a designer may desire that it pass through a set of data 

points {xj}. This interpolation problem is solved by the assigning of weights to 

each data point. Up to now little has been known regarding the relationship 

between these assigned weights and the weights of the corresponding interpolat

ing NURB. In this thesis this relationship is explored. Sufficient conditions are
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developed to produce interpolating NURBS which have positive weights. Appli

cations to the problems of degree reduction and curve fairing axe presented. Both 

theoretical and computational results axe presented.

iii
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Chapter 1 

Preliminaries

1.1 Introduction

A 2D (two dimensional) nth degree Bezier curve is given by (see [9,10, 11, 27, 

35])

b"(u) =  £ > D f ( u ) ,  0 <  u < 1, (1.1.1)
i=0

where the b; g E 2  axe called Bezier points that form the control polygon.

The B * (u)'s axe the Bernstein polynomials of degree n, defined explicitly by:

B?(u) =

( \ 
n

\  1 /

u‘(l — u)n 0 <  u < 1 ,

where the binomial coefficients axe given by

if 0  < i < n 

0  otherwise.

1

/  \
n

I f >

(1 .1.2)

(1.1.3)
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Chapter 1: Preliminaries 2

A rational Bezier curve of degree n in E 2  is the projection of an nth degree 

Bezier curve in E 3  into the hyperplane w — 1. We view this 3D hyperplane as 

a copy of E 2, we assume that a point in E 3  is given by its coordinates [y; to;], 

where y; £ E2. It was proved that a  2D nth degree rational Bezier curve is given 

by (see [9, 10, 11, 27, 35])

0 £ " 5 1 ’ ( L 1 ' 4 )

where the Wi are called weights associated with b; £ E 2  that form the control 

polygon for x(u). This control polygon is the projection through the origin of the 

3D control polygon formed by [uit-b; wj] into the hyperplane w = 1 .

If all of the weights are equal to one, we obtain the standard integral Bezier 

curve. The to,- are typically used as shape parameters. If we increase one weight 

Wi, the curve is pulled toward the corresponding control point b, (see [9, 10, 11, 

27, 35]).

If any ibi is negative, the rational Bezier curves may have a singularity. If all 

the w^s are positive, the rational Bezier curve has the convex hull property, i.e. the 

curve lies in the convex hull of its control points. Thus we desire to have u>i > 0 

for all i. The rational Bezier curves also have several other properties that their 

integral counterparts possess; for example, they are invariant under affine param

eter transformations, and interpolate to the endpoints of their control polygon.
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Chapter 1: Preliminaries 3

In addition they possess invariance under perspective parameter transformations, 

which axe defined as follows:(see [2 2 ])

Let c 6  E 3  be the center of a projection and the perspective plane be given 

by the point a £ E 3  and by the normal vector N  € R 3. Then the projection of a 

point z is

(z — a) • N
tt(z) =  ( 1  — a)z  +  ac, where a  =  -------: .

(z -  c) • N

Also unlike their integral counterparts rational Bezier curves can represent 

conic curves exactly (see [10, 11, 27, 35]).

A 2D nth degree B-spline curve is given by (see [9, 10, 11, 27, 35])

L + n —1

bs(u) =  ^  p iN?(u), 0 < u < 1, (1.1.5)
i= 0

where the p ; £ E 2  axe called the control points of the curve which form the control 

polygon and {A’f(u)}o+ n - 1  axe the normalized B-spline basis functions of degree 

n, defined by the following:

1 if i < u < u i  
N f(u) = <i where i =  0 , .. .  ,L  + 2n — 2, (1.1.6)

0  otherwise,

w ? H  = "  ■ N T 1 M  + (1-1.7)
U j'+ n - l  U j - 1 u j + n  u j

where {u0 <  u i , • • - , u l+2n- 3  < UL+in-i}  is a given nondecreasing sequence. The 

axe called knots which in this context means that each interval [it;, n;+1] is
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Chapter 1: Preliminaries 4

mapped onto a polynomial curve segment (here a polynomial curve of degree 

<  n) by the B-spline function Nj-(u). The B-spline curve is (at least) Cn~r at its 

knots with multiplicity r.

A 2D nth degree rational B-spline curve is the projection through the origin 

of a 3D integral B-spline curve into the hyperplane w =  1 . It is given by

r i  _  E f j r 1 wtPlN ^ u )
0 } "  r S r 1 < w ( u )  ’ -  - 1’ (LL8)

where the Wi are called weights associated with each p; g E 2  that are called the 

control points of the curve which form the control polygon. The function s(u) has 

been called a NURB for Non-Uniform Rational B-spline.

If all of the weights are equal to one, we obtain the standard integral B-spline 

curve. As with the rational Bezier curves, the weights of the rational B-spline 

curves can be used as shape parameters. Also it is desirable to have these weights 

positive. Rational B-spline curves have similar properties to those of rational 

Bezier curves.

Both rational Bezier curves and rational B-spline curves have achieved widespread 

acceptance and popularity in the CAD/CAM and graphics community (see [9,10, 

11,27, 35]).

In this dissertation we are interested in C~ rational cubic B-spline interpolation 

(see [10, 11, 27, 35]).

Given 2D points x; and their weights Wi, we transform them to 3D points 

[to;Xi wi\ and perform 3D nonrational algorithms (for example interpolation and
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Chapter 1: Preliminaries 5

degree reduction). The result of these procedures will be a set of 3D points [y* uj. 

By the projection of this result into the hyperplane w =  1 , we obtain 2D points 

Yi/vi. The weights of these 2D points axe the scalars u,-.

The rational cubic interpolation problem in the context of rational B-splines 

is the following (see [10, 11, 35]):

Given: 2D data points x l5. . .  ,x^+i, parameter values . . .  ,U£+i-

Find: a C 2 rational cubic B-spline curve:

iw= ! £ f r  <LL«
such that

L(ui) =  Xi, i = l , . . . , L  + l. (1.1.10)

The knot sequence of L(u) is 0 =  Ui < u2  < . . .  < ul < ul+i =  1, where ui 

and ul+i axe the knots of multiplicity three, which ensures that L(u) interpolates 

the end points and is tangential at the end points to the first and last legs of its 

control polygon (see [2 ]).

The {d{)-Q+ 2  axe the control points of the interpolating rational cubic curve 

and {vi}o+ 2  axe the weights of the resulting C2 rational cubic B-spline curve, 

(which shall be called rational weights for simplicity from now on), associated 

with d{. Also we shall call L(u) the resulting rational junction or the resulting 

rational curve and we shall call resulting weight function from

now on. We shall use L (u) to denote Rational cubic B-spline interpolant in the 

titles of the figures in this thesis.
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Chapter 1: Preliminaries 6

Let bi  and 6 3 1 , - 1  be constants determined by the given end conditions of the 

interpolation and let all components of bi G E 2  and b 3 jr,_! G E 2 be the constant 

vectors determined by the given end conditions of the interpolation respectively.

In order to interpolate with rational curves, we need to assign weights W i , . . . ,  w l+ 1 

to the corresponding data points. Then we transform X i,. . . ,  and ti>i,. . . ,  w i+1 

to 3D points [wiXi Wi]T and perform 3D cubic B-spline interpolation as follows

V0 =  W i ,  U£+2 =  tO L + l,

V i  =  6 1 , VL + 1 =  6 3 i _ i ,  ( 1. 1. 11)

Ef=o2  ViNf(uj) = Wj (j = 2 , . . . ,  L),

u0 d 0  =  UJiX!, VL+2&L+2 = WL+iX.L+1,

nidi =  6 ib i, Ui+idi+i =  63£,_ib3x,_i, (1 .1 .1 2 )

£f=o2  VidiN?(uj) = WjXj (j =  2 , . . . ,  L).

Thus the preimage of L(u), which is formed by the control points {[u^d; u;] }^+2,

interpolates to the data [wjXj Wj]T. By projecting this into the hyperplane w =  1, 

we obtain 2D points Vidi/vi = d,-. The rational weights of these 2D points are 

the numbers V{. Thus L(uj) =  Xj and Yii^o viN f(uj) =  ws: j  =  1, • • •, L +  1.

If we change a B-spline which has the control points {[u;d; u;]}%+2 into piece- 

wise Bezier form, [6 ib i 6 1 ] will be the second control point in its first segment, 

and [6 3 L_ib3 £_i 6 3 £,_i] will be the next to last control point in its last segment. 

Thus we can obtain the first derivative of the each component of the preimage of 

L(u) at the end points in terms of 6 1  and 6 ]bi, 6 3 £,_i and 6 3 £/_ib 3 £ , _ 1 respectively
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Chapter 1: Preliminaries 7

and then we can obtain 6 1 and bi, b^L-i and b 3 £_i. We first consider 6 1 . Let 

Ai =  112 — ui, we have (see [1 0 ]):

1 ( | > A ? ( „ 0 ) =  2-3(6,

i.e.

d. i '+ 2  1
— ( £  DiWf(ui)) =  — 3(6! -  u»i), (1.1.13)

since uo =  w\.

Given W{ =  w(ui), i =  1 , . . . ,  L + 1, we have ^ w(ui) and thus we can obtain 

the following equation involving 6 1  by the clamped end conditions, (which equate 

the derivatives of the interpolant and the curve to be interpolated at each end 

point):

j  L+ 2  j

i.e.

^-3(6! -  iui) =  w(ui). (1.1.14)

Thus we can obtain 61 from equation (1.1.14). Similarly we can find 6 3 ^ - 1 , 

and then bi and b 3 £_!.

If we choose the Bessel end conditions for interpolation, (which give the ap

proximate first derivatives at each end point), we have (see [1 0 ])

1 1 r 1 , Ai +  A2 A2  7 M , u ,
6 1  =  3 [a T T a I 1" 1 + + ~ A — W2 ~  A2 (Ai + Aa) (1'U 5 )
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Chapter 1: Preliminaries 8

7 _  1  r  A l - 1  A ^ j  +  A l  A l  ,  .

8W “  3 Al«i +  Ax. " ^ 1 Wl+1 + A ^  Wl A ^ A ^  +  A l ) ^ ’ ( ^

6lbl =  J 1 A ^ a T 1 * 1 +  " ,lXl +  ^ l t r w™  -  A ^ T a ? W 31 ' (L117)

7 V    1  r  A l - 1  A l - i  +  A t ,

O3 L. 1  “ 3 L -1  — g L t  . A W l+i XL+1  +  W W X L + 1 H  ----------W LX L
0  A l - i  +  Z a l  A l - i

~ a u £ t a 3 ^ - ' ]- P -u «

Note the knots are {u0, . . . , ul+2 } under the definition in (1.1.7) and we have 

a relationship between { 0  =  ui < u2 < U3  < • • • < ul-  1 < ul < ul+ 1 =  1 }, where 

tzi and ul+i are the knots of L(u) with multiplicity three, and {{t0, . . . ,  u;+2}: 

u\ =  uo, Ui =  ui, ui =  u2  and

Ui =  iti+i, i =  2 , . . . i  + l. (1.1.19)

If some Vi axe negative, the resulting curve L(u) may have singularities. We 

rewrite (1.1.9) as

1+2 ViNf{u)

. ^ E £ c ?ViN](u)

and we consider

t>ilV?(u) . _  n T 9  

E S S » j« ?(« ) ’ b + l -

as basis functions. If all the Vi s are positive, the resulting curve L(u) will have

the convex hull property. If vj =  0 for some j ,  then from (1.1.12) the resulting

control point d, will be called “a point at infinity” in the projective geometry

sense. In this case the resulting curve would lose the convex hull property. Thus

we are only interested in positive Vis.
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Chapter 1: Preliminaries 9

1.2 A B rief Survey

Faxin stated in [9]: “Ask anyone in the CAD/CAM industry or graphics about 

the most promising curve or surface form. The answer is invariably ‘NURBS’ - 

nonuniform rational B-splines.” Some reasons given by Piegl in [27] for that are 

as follows:

They offer a common mathematical form for representing and de

signing both standard analytic shapes (conics, quadrics, surface of 

revolution, etc.) and free-form curves and surfaces. Therefore, both 

analytic and free-form shapes are represented precisely, and a unified 

database can store both.

By manipulating the control points as well as the weights, NURBS 

provide the flexibility to design a large variety of shapes.

NURBS have clear geometric interpretations, making them partic

ularly useful for designers, who have a very good knowledge of geom

etry - especially descriptive geometry.

NURBS have a powerful geometric tool kit (knot insertion/refinement 

/removal, degree elevation, splitting, etc.), which can be used through

out to design, analyze, process, and interrogate objects.

NURBS are invariant under any scaling, rotation, translation, or 

shear as well as parallel and perspective projections.
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Chapter 1: Preliminaries 10

NURBS axe genuine generalizations of nonrational B-spline forms 

as well as rational and nonrational Bezier curves and surfaces.

The definition and process of C2 rational cubic B-Spline interpolation in CAGD 

(Computer Aided Geometric Design) were given in [10, 1 1 , 27].

Following the procedures given in [10, 11, 27], when we perform rational cubic 

B-Spline interpolation, we first transform the 2D data and the assigned weights 

to 3D  points. Then we execute integral cubic B-Spline interpolation, and finally 

perform a homogeneous projection back into 2D. Thus, rational cubic B-Spline 

interpolation may inherit some properties of integral cubic B-Spline interpolation. 

We prove in Chapter 2  that it inherits a minimum norm property, and a best 

approximation property and we derive an error estimate.

Faxin conjectured in [10, 11] that “ it seems reasonable to assign high weights 

in regions where the interpolant is expected to curve sharply”. We support this 

conjecture in Chapter 3.

Faxin in [10, 11] shows, by an example, that rational cubic B-spline interpola

tion may produce a rational curve which has negative weights. In Chapter 4 we 

present a sufficient condition on the assigned weights which ensure the positivity 

of the rational weights of the resulting rational interpolant. In Chapter 5 we pro

vide three methods to modify assigned positive weights that led to NURBS with 

some negative rational weights in such a way that the new NURBS will have posi

tive rational weights. Several examples axe presented to illustrate and to compare
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Chapter 1: Preliminaries 11

these three methods.

In [27] Piegl wrote: “ We distinguish between two kinds of interpolation. In 

the first, we have pure data points unrelated to any other entities in the system; 

in the second, we have data points from another process that axe related to other 

entities such as section curves. In the first case, I recommend using nonrational 

curves (except when specific local interpolants seem more suitable than a general 

method). In the second case, ’true’ rational curves have to be computed if the 

existing entities are rational curves as well.” We consider these two kinds of appli

cations. We present an application of rational B-Spline in Chapter 3: we present 

two examples to show that sometimes we can consider the assigned weights as 

tension parameters in the interpolation process. In Chapter 6  we present an ap

plication of rational cubic B-spline interpolation to the degree reduction of rational 

Bezier curves and rational B-spline curves of degree greater than 3. In Chapter 6  

we also prove that we always can find suitable parameters for interpolation, which 

will guarantee positive rational weights of the resulting rational curve. Algorithms 

and examples are given in Chapter 6  which demonstrate these procedures.
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Chapter 2 

The Properties of a Rationed 
Cubic B-Spline Interpolant

2.1 Introduction

Cubic B-spline interpolants have been well investigated (see [30, 32]). Some 

of their most important properties are a minimum norm property, a best approx

imation property and an error estimate. These properties make cubic B-spline 

interpolation useful in many fields. In this section we discuss a C2 cubic rational 

B-spline interpolant defined by (1.1.9) (see [10, 11, 27]). We prove that it has 

similar properties to those of the interpolatory cubic B-spline function.

2.2 The Properties o f a Cubic Rational B-Spline  

Interpolant

Let g(u) =  ((g(u))i,(g(u))2), where (g(u))j € C f̂O, 1], for j  = 1,2, and let 

k(u) S C 2 [0,1 ]. For any given parameter values U =  (u i,. . .  u l + i ), where uj = 0

12
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Chapter 2: The Properties of Rational Cubic B-Spline Interpolant 13

and ul+j =  1 , we let W{ = k(u,) and Xf =  g (ui)/k(ui), i.e. W{X.i =  g (uf) in 

interpolation (1.1.11) and (1.1.12). Let bi and &3 L_i be determined by k(u) under 

the clamped end conditions and bi and b 3 L_i be determined by g(u) under the 

clamped end conditions respectively.

Now we have three theorems for rational cubic B-spline interpolation:

Theorem 2.1 (minimum norm property) Letv{u) be the cubic B-spline function 

interpolating to k(u) under the clamped end conditions by (1.1.11) and v(u) > 0  

and k(u) > 0 for all u G [0,1]. Lety{u) = ((y(u))i,(y(u))2) be the cubic B- 

spline Junction interpolating to g(u) =  ((g(u))i, (g(u))a) under the clamped end 

conditions by (1.1.12). Then we have

£ [ £ « < > « ■ * • *  j  = 1 A  (2'1 I)  

where v(u) = T ,i^ovi ^ i i u) fr0™ (I-1-!!)) y (u) =  ?VidiN?(u) from (1.1.12), 

and L(u) =  which interpolates to | u n d e r  the clamped end conditions by 

(1.1.10)

Proof. Consider the integral 

Note that
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Chapter 2: The Properties of Rational Cubic B-Spline Interpolant 14

rsr((y(u))j)5W  -  (y(«))jro«(u) sr((g(u))j)^(u) -  (g(“))iK*(u)i 
1 («K » 2 (* M ) 2

From the clamped end conditions and the interpolatory conditions (1.1.11) 

and (1 .1 .1 2 ) it follows that

[^(L (»)),- -  =  0 . “ =  0  <■ =  1 - (2-2.3)

Integrating by parts twice and using the interpolatory conditions and (2.2.3), 

the last term in (2 .2 .2 ) becomes

Now, (2.2.1) follows from (2.2.2).

T heorem  2.2 (best approximation property) Letv{u) be the cubic B-spline func

tion interpolating to k(u) under the clamped end conditions by (1.1.11) andv{u) > 0  

and k{u) > 0 for all u G [0,1]. Lety{u) =  ((y(u))1? (y(u))2) be the cubic B-spline 

Junction interpolating to g(u) =  ((g(u))i, (g(u))2) under the clamped end condi

tions by (1.1.12). Let L(u) =  | w h i c h  interpolates to under the clamped
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Chapter 2: The Properties of Rational Cubic B-Spline Interpolant 15

end conditions by (1.1.10)- Then for any rational B-spline L*(u) with respect to 

the same partition as L(u) we have

<2-2-4>

Proof. Consider the integral

i :

- -  i ^ )j?du

= + j f  -  £ 0 ' ! * *

+

As in the proof Theorem 2.1, we can show that the last integral is zero. Then 

(2.2.4) follows.

Before we present a convergence theorem for the B-spline rational cubic inter

polant defined by (1.1.9), we introduce some definitions and Lemmas.

D efinition 2.1 For f (u ) 6 C7[0,1], let j|/(ti) Ijoo denote the uniform norm of f  

defined by

ll/Mlloo =  max I /(« ) | •

Forg (u ) =  ((g(u))i,(g(u))2), where (g(u))j € £[0,1], j  = 1,2, we define the 

following norm:

III g(u) |||»= im uc || (g(«))j||eo-
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Chapter 2: The Properties of Rational Cubic B-Spline Interpolant 16

Now we introduce a definition from [32]

D efin ition 2.2 L etD t<f>(x) = For each nonnegative integer t and for each

p, I < p < oo, we will let PC 4,P[0,1] be the set of all real-valued functions <f>(x) 

such that:

(1) <f>(x) is t — 1 times continuously differentiable,

(2) there exists a partition

o =  6  < 6  < • • • < 6  < 6+i =  i

such that on each open subinterval (6>6+i)> 0 <  i < s, C t_1<̂ (a:) is continuously 

differentiable, and

(3) the Lp—norm of Dt<j>(x) is finite, i.e.,

i r v m i i ,  s  ( E  , \ d ‘4(*) r  dx y i’ < o*.
i= o  ■'«

For the special case o f p = oo, we require that

P?V(aO|[oo,, =  max sup | |< oo.
i)

D efin ition 2.3 For g(u) =  ((g(u))i, (g(u))2), where (g (u))j  6 P C ‘,oo[0,1], for 

j  = 1,2, we define

III -D‘g(u) |||oo,5= mjtt II (.D‘g(u))j||oo,s- 

From Theorem 4.7 and Theorem 4.8 in [32], we have the following:
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Chapter 2: The Properties of Rational Cubic B-Spline Interpolant 17

L em m a 2.1 Let v{u) be the cubic B-spline function interpolating to k(u) un

der the clamped end conditions by (1.1.11) and u(u) > 0 and k(u) > 0 for all 

u G [0,1]. Let y(u) =  ((y(u))i, (y(u))2 ) be the cubic B-spline function interpolat

ing to g(u) =  ((g(u))i, (g(u))2 ) under the clamped end conditions by (1.1.12). I f  

k(u) G P C 2’00̂ ,  1] and (g(u))j G PC 2,oo[0,1], for j  = 1,2. Then we have

ll*(») -  * M I U  <  \\W‘‘K'A\U>2 (2-2.5)

and

III y W  -  g «  IIU< |  III £>!g M  IIU,, V .  (2 .2 .6 )

I fk (u ) G PC,(4,o°)[0,1] and (g(u))j G PC4,0O[0,1], for j  =  1,2, we have

ll«W  -  * M IU  <  3 ^ l|i> 4K “)IU,,'*' (2.2.7)

CLTld

y(u) -  g(u) ||[oo< III D4g(u) llleo., h4. (2.2.8)

L em m a 2.2 Let v(u) be the cubic B-spline function interpolating to k(u) under 

the clamped end conditions by (1.1.11) and info<u<i k(u) > z  > 0, where z is a 

constant, k(u) G PC2'°°[0,1] and h > 0 is sufficiently small such that

^ ^ l l ^ u ) ! ! ^ 2. (2.2.9)

Then we have

inf tj(tt) > \ z ;  (2.2.10)o<u<i K J ~  2 v
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Chapter 2: The Properties of Rational Cubic B-Spline Interpolant 18

Furthermore if k{u) £ PC 4,oo[0,1] and h is sufficiently small such that

r  -  p -2-11)

then we also have (2.2.10) .

Proof. From Lemma 2.1 and the hypothesis of this Lemma it follows that 

v (u) =  k{u) -  (ik(u) -  6(u)) > z -  |||jD 2fc(u)||eo>2 >

or

v(u) = k(u) -  (k(u) -  V(u)) >  J j | | £ 4k(u)lloo>4 > \z -

Now we present the following theorem:

Theorem 2.3 (error estimate) Letv{u) be the cubic B-spline function interpolat

ing to k(u) under the clamped end conditions by (1.1.11), where k(u) £ PC,2’oo[0,1] 

and info<u<i k(u) > z > 0, where z is a constant and h > 0 is sufficiently small 

such that (2.2.9) holds. Lety(u )  =  ((y(u))i, (y(u))2 ) be the cubic B-spline func

tion interpolating to g(tt) =  ((g(u))i, (g(u))2), where (g(u))j £ P C 2,°°[0,1], for 

j  =  1,2, under the clamped end conditions by (1.1.12). L e fL iu ) =  which 

interpolates to under the clamped end conditions by (1.1.10), we have
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Chapter 2: The Properties o f Rational Cubic B-Spline Interpolant 19

i i i l w - | | i iu <

4 (III J ’ s M  I I U ,  l l * M I U  +  P > * * M U  Ill s  I I P  „  ( 2 1 1 2 )
3

Furthermore, ifk (u ) G P(74,oo[0,1], (g(ti))j € PC4'°°[0,1], for j  = 1,2, and h > 0 

is sufficiently small such that (2.2.11) holds, then we have

i i i L M - f g j n u s
5(||| D4g(u) IIU , Hfc(tt)||co+ ||fl4fc(u)Hoo,, 111 g IIU ), 4 r2 2 1Z)

192z2 '  ̂ ■ J

Proof. We have

in t r..\ s (u) in  hi y(«) s (u) in
^  M  k(u) ^°° ^  t>(u) jfc(u) ^°°

= m y(«)fe(») -  g(«)«(«) I,,
v(u)k(u)

... y ( u ) K u) - s { u ) K u) + e (u) K u ) -  s{u)y(u) hi
111 0(u)fc(u) 11,00'

From the hypothesis of this theorem and Lemma 2.2 it follows that

" 1 " < i  (2.2.14)lOO —C(u)fc(u)

From Lemma 2.1 it follows that

HI y(u)fc(u) -  g(u)i(u) +  g(u)fc(u) -  g(u)»(u) HI,*,

<||| y(u)fc(u) -  g(u)fc(u) |||oo +  ||| g (u)k(u) -  g(u)O(u) HI*,

<111 y(«) -  g(«) llloo HKU)l|oo+ <111 g(«) llloo ||w(«) -  K U)l|co

<  |(lll ^ g ( “) I I U  IW«)IU +  I W O I U  III g(“) IIU)42- (2-2-15)
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Chapter 2: The Properties of Rational Cubic B-Spline Interpolant 20

From the combination of (2.2.14) and (2.2.15) this theorem follows.

The proof of the second part of this theorem is similar to the proof of the first 

part and is thus omitted.

Remark: For any function f(tt) =  ((f(u))l5(f(u))2), where (f(u))j 6 PC 2'°°[0,1], 

for j  =  1,2, or (f(u))j 6 PCr4,oo[0,1], for j  =  1,2, we can let g(u) = fc(u)f(u), 

where k(u) satisfied the hypothesis of Theorem 2.3. From Theorem 2.3, we always 

can find L(u) to approximate ||^ |,  i.e f  (u), within a given tolerance e > 0, if h > 0 

is small enough such that ((2.2.9)) holds and the right hand side of (2.2.12) is less 

than e, or if h > 0 is small enough such that (2.2.11) holds holds and the right 

hand side of (2.2.13) is less than e. Specifically, we let f(u) be an nth degree 

Bezier curve or an nth degree B-spline curve, where n > 2, and let k(u) not be 

constant. We always can find a rational cubic B-spline L(u) to approximate f(u) 

to within e > 0.
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Chapter 3

The Assigned Weights o f  
Rational Cubic B-Spline 
Interpolation

3.1 Introduction

In this Chapter we discuss how the weights assigned to the data to be interpo

lated affect the resulting rational curve and present a new application of a rational 

cubic B-Spline interpolation in CAGD by considering the assigned weights as ten

sion parameters. We shall consider the Bessel end conditions for interpolation.

Farin indicated that “ It seems reasonable to assign high weights in regions 

where the interpolant is expected to curve sharply” (See [10] and [11]). This claim 

can be supported by investigating how the changes of the assigned uj-s affect the 

shape of the resulting rational curve in interpolation (1.1.9). We shall investigate 

how changes of some assigned weights W{ will affect L(u) defined by (1.1.9). In 

this case the definition of (1.1.9) implies that L(u,) will not be changed for all i 

and thus L(u) will only be changed between the knots.

21
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Chapter 3: The Assigned Weights of Rational Cubic B-Spline Interpolation 22 

Consider the parametric cubic curve:

x = 5 t -  11.512 +  7.5f3, (0 < t < 1),

y = 2t - 12 -  0.67f3,

presented in [34]. This curve does not have an inflection point, but has a loop, 

while its x-coordinate has an inflection point. We cannot in general deduce the 

geometric characteristics of the parametric curve only from the properties of its 

individual components. We will investigate how the curvature of the resulting 

rational curve will be changed when some assigned weights are changed. Focusing 

on [uj_i, Uj+1 ], we will prove that when only one assigned weight Wj increases, 

the magnitude of the curvature of the resulting rational curve L(u) will increase 

at Uj, thus the shape of the resulting rational curve L(u) will be changed at Uj 

in such a way that the resulting rational curve will bend more sharply (i.e. the 

direction of the tangent line changes rapidly) in a neighborhood of Uj\ and when 

only Wj decreases, the magnitude of the curvature of the resulting rational curve 

L(u) will decrease at Uj. Thus the shape of the resulting rational curve L(ii) will 

be changed at Uj in such a way that the resulting rational curve will be more 

flat in a neighborhood of Uj. We can extend this analysis to consider the effect 

of changing more than one assigned weight. We will present an application of 

the rational cubic B-Spline curve interpolation: sometimes we can consider the 

assigned weights as tension parameters in the interpolation to control the tension 

distribution. We present two typical examples to illustrate how this works.
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3.2 The Assigned W eights o f R ational Cubic 

B-Spline Interpolation

First we introduce some notation. Consider (see [10])

f J v r ‘(« ) -  .  " ,  f l w M .  (3.2.i)uU Uj—i ^n+i ^t+1

j  L + n -1  L + n -1  A J .

T - (  E  < W ( * 0 )  =  »  E  5- - - - - - - - - - " T ' M -  P - 2 -2 )
i = 0 i = i  ^ n + t —1 1

Let A ' Ad‘- l—  and A2d,_i =  Adi — Adi-i, we have

J 2 L + n - 1  L + n - 1  A 2//.

£  <W(«)) = » (» -1 )  E  ^ 2(
t=0 t=2 1+*—1 ^t—1

Note the knots are uo,. . . ,  u l + 2 under the above definition and we have a rela

tionship between 0 =  ui < u2 < uz < .. .  < u l - i  < u l  < u l + i  = 1 , (where ui and

u l + i  are the knots of L(u) with multiplicity three), and u0, . . . ,  u l + 2 : u i  = u0,

Ui = uj, Ui =  u2 and

Uj =  Uf+i, i =  2, . . .L  +  1. (3.2.4)

For the cubic B-spline and knot Uj we have

j  L+2 A / /  A / /
t - ( E =  3[.  A jV?(u,-) + (3.2.5)
CtU i=Q U j + 2 — U j _ i  U j+ 3 — Uj

Since N j(uj) =  1 and iV/(uj) =  0 when i j ,  we have

- ^ ( E  W K ) )  =  — Ad:-^ - -  ,  Adj~l }du2 U j+ 1  -  U j - 1 U j+3 -  Uj U j+ 2  -  U j —i
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For equidistant knots, let N  = Nf(ui) = Nf+1(ui) for all i, and let 8u = 

Ui+i — Ui which axe equal for all i. We have

d 1+2 N
£ ( £  * « ?(„ ,))  =  -  i j - i ) ,  (3.2.7)

( £ ( | V m ) = ( ^ A  (3.2.8)

Let L(u) =  ((L(u))i, (L(u))2). The signed curvature of L(u) is defined by 

(see [1 0 ])
d2 n  r..\\ d (T i..w d.2

We first investigate one simple case: we only change one assigned weight Wj by 

8wj > 0 to see how this change affects the resulting curve. Although the changes of 

(Ef=o2 ViN?(u)) defined by (1 .1 .1 1 ), (E^o2 VidiNf(u)) defined by (1 .1 .1 2 ) and L(u) 

defined by (1.1.9) axe global, when only wj changes, the effect of this change decays 

exponentially (See [30]). Thus we focus on the changes of L(u) in (uj_i, ttj+i). 

Now for equidistant knots, we have the following Lemma:

L em m a 3.1 Assume that the resulting weight function defined by (1.1.11) re

mains positive, when Wj changes. For an equidistant parametrization, if  wj is 

increased by 6wj > 0, where j  ^  1, or L + 1, then the magnitude o f the curvature 

o /L (u) will increase at uj. I f  Wi is decreased by Swj > 0, then magnitude of the 

curvature of L(u) will decrease at Uj. The sign of the curvature of L(u) at Uj 

remains the same, when Wj changes
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Proof. First we consider the following problem:

Problem l: for given data points X  =  (x i, . . .  , Xl+i), and weights W  = (w1}. . .  u>l+1), 

let v(u) = ViNf(u) be defined by (1 .1 .1 1 ) and let y(u) =  Yi^o (u) be

defined by (1.1.12), and let L(u) =  defined by (1.1.9). We have (see [10])

1  ( 3 ' 2 ' 1 0 )

=  4 Î y(“) - P-2-11)
Note that

-  < -2s 6(u)s L W )j( i L W )i - 0

and v(u{) = Wi. Let 

-

and

-  4 [(^ y  w  '  +

Then, by (3.2.10) and (3.2.11), we have

<3-2-i2>

When we increase wj by Swj > 0, we can consider the resulting interpolation

as the combination of the following two problems: one is problem 1 , and the other,
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which we shall call problem 2, is the rational cubic B-spline interpolation with all 

Wi =  0 except Wj = Swj. We denote this rational cubic B-spline interpolation as 

Sv(u) =  SviJVf(u) defined by (1.1.11) and Sy(u) = X)So2 SviSdiNf(u) defined 

by (1.1.12) and the result of the whole interpolation problem as L(u) =  

defined by (1.1.9).

From the hypothesis of this theorem it follows that (u(u) +  6v(u)) > 0, i.e., 

L(u) has a second derivative.

First from (3.2.7 ) we have

=  !(«» ,■ „ -« » « )■

From (3.2.8 ) we have

= w (foi+1 “ +

Also we can consider the interpolation (1.1.12) in this case as the following 

problem: let all =  0 except WjXj = SwjXj. If j  ^  2 or 3, we have =  0 

from (1.1.15) and &xbi =  0 from (1.1.17), i.e., we have &xbi =  biXj. If y =  2

We have bi =  Al̂ 2Swj from (1.1.15) and &ibx =  SwjXj from (1.1.17), i.e.,

we have 6xbi =  byxj. Similarly we have &ibx =  6xXj, when j  =  3, and we have

&3L-lb3£,-l =  bzL-lXj.

Now suppose that for i ^  j  Wi =  0 and Wj = Swj, and for i ^  j  w(Xi =  0 and 

WjXj =  SwjXj, 6 1  bx = biXj and &3 z,-ib3£,_i =  bzL-iXj. We can obtain the result 

of (1.1.12) by multiplying both sides of (1.1.11) by Xj. Thus we have <5cl; =  Xj for
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all i. Since L (uj) =  X j ,  we now have

^ y ( u j )  =  -  Sdj-iSvj-!)

= ^ Vj+1 ~  5Vj~1^  =

and

Also we have

d2 1
= ( ^ i+ i^ i+ i  — 2SdjSvj + ddj_iduj_i)

1 d2
=  d(6)2^Svj+1 ~  2SVj +  Svi~i)x i =  ; j ^ ( ui)L (“ j)>

- ^ ( y  (tti) +  dy(uj)) =  ^ y ( t t i )  +  ^ 8 v { u j) t{ u j ) .  (3.2.14)

Now v(uj) = Wj, 6v{uj) =  <5u)j and L(u; ) =  L(u;-). It follows that

= » (» ,- )+ « ( . ,)  [^ ( y ( U ) ) + iy W ) "  s (s (U i)+ * < “* ”

1 r [ i y ( ui) -  X75(ui)L(ui)]- (3.2.15)(u)j +  Swj) du J du

Thus,

[ (^ (L (« )) ,) ’ +  ( ^ (L (« ) )2)2]3/2

1 r [ ( i y f e ) - i < i( « i ) i . ( » ,) ) ! + ( iy ( “i ) - i « ( ' ‘, ) i . f e ) ) a 3/!(u>j +  du>j)3 du 1 du du du

U)?

(wj +  Swj)3f,.. \3^e(ui ) -
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Also we have

+ < y  W )  -  4 (0(u' ) +

1 r^ ( y ( ui) -  -  iL f i(Ui)L(Uj)].it)j +  Swj du2 du du du2

Since

(_ 2i- (« („ )+ « ( „ ) )A L (u ))I ( l £ ( » ) ) ! - ( - 2A (0(„)+ K (o)) ^ L (« ))I(A L («))I

=  0

and L(iij) =  L(uj), we have

Now we have the curvature, denoted by k(uj), of the resulting curve as follows: 

-t 'i fWj + Swj.nuiuj) n , Swj  .

* “i =  ( ^ “ 7— -  X 77T  =  +  T r ) * w ) -  (3‘2-16)de\Uj  J Wj

From (3.2.16) it follows that the magnitude of the curvature will increase by 

^i-K,(uj) and the curvature sign is unchanged at uj, when the weight wj increases

by 6wj. The proof of the remaining part of this Lemma is similar to the above

argument and thus is omitted.

From the above proof we know that, when we only let Wj be increased by 6wj, 

from [30] the resulting interpolant of problem 2 is an oscillatory function such
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that the sign of Svj is the same as the sign of Swj at u = uj and the interpolant 

decays exponentially, and changes its sign alternatively per data point as u moves 

away from Uj  in (1.1.11).

Now for a general parametrization, we have the following:

T heorem  3.1 Assume that the resulting weight junction defined by (1.1.11) re

mains positive, when W j  changes. For a general parametrization, i fwj is increased 

by Swj > 0, where j  ^  1, or L + 1, then the magnitude of the curvature o/L(u) will 

increase at Uj. I f  Wj is decreased by Swj > 0, then the magnitude of the curvature 

o/L(u) will decrease at uj. The sign of curvature of L(u) at Uj remains the same, 

when W j  changes.

Proof. We only discuss problem 2 in the proof of Lemma 3.1 in this case and 

we use the same notation as there. First we have by (3.2.5)

U i { u i )  = V j ^ ) ] .  (3.2.17)
(tlL Vjjf-2 Vjjf-2 — V>j

As in the proof of Lemma 3.1 we consider the interpolation (1.1.12) in this case

as the following problem: let WiXi = 0 for all i ^  j  and WjXj = SwjXj. We have

&ibx =  b\Xj and &3 L-ib3 L-i =  &3 L-iXy- Now assume that Wi = 0 for all i ^  j  and

Wj =  Swj, and assume that w:Xi = 0 for all i j  and WjXj =  SwjXj, &ibi =  biXj

and b^i-ihzL-i =  &3 L-iXj- We can obtain the result of (1.1.12) by multiplying

both sides of (1.1.11) by X j .  Thus 6d; =  Xj for all i, and

d_
du

Sy{uj) =  +  ( M v M N U u j)]
U]+2 U j _ x  Ujj,. 3 Uj
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= 3[^ - l Xi + ASV]* t Nj+1(u,j)}
U j + 2 - U j - i  U j + 3 - U j  ^

- % ASVi?  N f M  + )]x,-.
U j + 2  ~  U j - 1 U j + 3 -  Uj

Now (3.2.17) and Xj = L(uj) follows that

Note v(uj) = Wj, Sv(uj) = Swj and L(uj) =  L(uj), thus

=  6f e ) T < 6M IS ( y k )  +  { y W )  '  +

1 l i r y M - i r i M U u i ) } -  (3.2.18}(wj + Swj) du du

We have following by (3.2.6)

£ « ( „ , - ) = ,  6 - -  .  ASV‘Z' ]. (3.2.19)
GAL XLjj{.\ llj—i V>j+ 3 'U'j uj+2 'U'j—l

Now from (3.2.6) and Xj =  L(uj) it follows that

d2 6 A(<Juj5d.) A (^ d d ._ 1)
— Sy{uj) =  - -- —   J -  -  - --------------------------1—
du2 U i + 1 - U j _ i  Uj+ 3-U j  U j+ 2-U j- i

_  6 , A 6vj A 6 v j - i

Uj+1 -  Uj- 1 Uj+3 -  Uj Uj+2 -  Uj- 1 J

6 Auj A vj-i f
~ ------- -l~— h r  “  ~------- s— JLw )U j + l  — U j - 1 U j+ 3 — U j  U j + 2  ~  U j - 1

=  ^ v ( u j ) L ( u j ). (3.2.20)

Thus,
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d?
~ d u 2^ Uj') +

Wj +  Swj du2 du du du2

The proof of the remaining part of this theorem is exactly as in the proof of 

Lemma 3.1 and thus is omitted.

Since k(u) is a continuous function at Uj, k(u) will increase in a neighborhood 

of Uj, when Wj increases. Thus the shape of L(it) will be changed at Uj in such 

a way that the resulting curve will bend more sharply (i.e. the change of the 

direction of the tangent line will be more rapid) in a neighborhood of Uj. And 

k(u) will decrease in a neighborhood of u;-, when Wj decreases. Thus the shape 

of L(u) will be changed at Uj in such a way that the resulting curve will be more 

flat in a neighborhood of Uj.

If more than one weight changes, we can apply the above result one weight at 

a time to see the affects of their changes. We now have revealed the relationship 

between the shape of the resulting curve and the weights to be interpolated by the 

above theorems and we have confirmed Farm’s conjecture: “ it seems reasonable to 

assign high weights in regions where the interpolant is expected to curve sharply.” 

Farin further observed that “there is a limit to the assignment of weights: if all 

of them are very high, this will not have a significant effect, since a common factor 

in all weights will simply cancel out.” (See [10] and [11]). This can be observed 

in the following way: if all of the weights axe high, for example if a > 0 is added 

to each Wi, the u; will be (u; +  a) for all i from the lineax precision of B-spline
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interpolation. The basis functions in (1.1.20 ) became
2-a=o (Ui+ aW  (u)

when a —> oo, i.e (1.1.20 ) becomes an integral cubic B-spline.

In Figure 3.1 and Figure 3.2, all the assigned weights of the middle curve 

are 1, the sharp curve has the assigned weight increased at the middle point by 

0.4, the flat curve has the assigned weight decreased at the middle point by 0.4. 

Figure 3.3, Figure 3.4 and Figure 3.5 are their curvature plots respectively.

Figure 3.1 illustrates how the shapes change when the assigned weights change. 

The middle curve has the assigned weights wi =  1 for all i. When the assigned 

weight increases at the middle point by 0.4, the resulting rational curve bends 

more sharply near the middle point. When the assigned weight decreases at the 

middle point by 0.4, the resulting rational curve becomes more linear near the 

middle point. Figure 3.2 shows the 3D preimage of the above curve and we can 

see that the 3D preimage of the resulting rational curves interpolates the data and 

the corresponding assigned weights. Figure 3.3 shows the curvature plot of the 

resulting rational curve with assigned weights Wi = 1 for all i. Figure 3.4 illustrates 

that the magnitude of the curvature of the resulting rational curve increases in a 

neighborhood of the middle point and the curvature sign does not changed, when 

the assigned weight at the middle point increases by 0.4. Figure 3.5 illustrates 

that the magnitude of the curvature of the resulting rational curve decreases in a 

neighborhood of the middle point and keeps the curvature sign, when the assigned 

weight at the middle point decreases by 0.4.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 3: The Assigned Weights of Rational Cubic B-Spline Interpolation 33

Figure 3.1: Affect of changing the assigned weights on the shape of the curve.

Figure 3.2: The 3D preimage of Figure 3.1.
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Figure 3.3: Curvature plot: middle assigned weight is 1.

Figure 3.4: Curvature plot: middle assigned weight is 1.4.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 3: The Assigned Weights of Rational Cubic B-Spline Interpolation 35

Figure 3.5: Curvature plot: middle assigned weight is 0.6.
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3.3 U sing The Assigned W eights o f Rational 
Cubic B-Spline Interpolation as Tension Pa
ram eters

If we change assigned weights and do not change the data, L(tt;) will not be 

changed and L(u) will only be changed between the knots after rational cubic B- 

Spline interpolation. Furthermore, since the curvatures of L(u;) will be changed 

in the way indicated in Lemma 3.1 and Theorem 3.1, we can use the assigned 

weights as tension parameters to control the tension distribution.

Even convex data points (i.e., points such that the polygon formed by join

ing adjacent data points with straight lines is convex) may produce unwanted 

inflection points on the corresponding interpolatory cubic spline, as illustrated in 

Figure 3.6. The spline function under tension, which has the convexity preserving 

property, i.e. the resulting curve will preserve the convexity of the given data, 

was developed by many authors (see [5], [14],[15], [24], [31] and [33]) to deal with 

this problem. In general, the spline function under tension is not in C2.

From Figure 3.6 and Figure 3.7 (the curvature plot of Figure 3.6), we know 

that we need to increase the magnitude of the curvature at points on either side 

of the middle point and decrease the magnitude of the curvature at the middle 

point of the curve. We let the assigned weights be 2 at the points on either side of 

the middle point and let the other assigned weights be 1. Figure 3.8 is the graph 

of the resulting curve and Figure 3.9 is its curvature plot. This change of assigned
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weights removes two inflection points of Figure 3.7, preserves the data convexity, 

and produces a curvature of 0 in a neighborhood of the middle point in Figure 

3.9. Compaxing their graphs in Figure 3.8 and in Figure 3.6, we can observe that 

comparing the resulting curve to a cubic spline interpolant, the former is more 

linear in a neighborhood of the middle point, and the direction of its tangent line 

changes more rapidly in a neighborhood of the points on either side of the middle 

point. The resulting curve is C 2.
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Figure 3.6: Original cubic B-spline interpolant.

Figure 3.7: Curvature plot of Figure 3.6.
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Figure 3.8: L(u). Assigned weights axe 1,2,1,2 and 1.

Figure 3.9: Curvature plot of Figure 3.8.
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We next consider a second example from [10]. A chord length parameteriza

tion, whose parameterization is defined by

A » _  llA^ll
A«+i ||Axj+i | | ’

frequently produces better results than uniform knot spacing. As opposed to the 

uniform parameterization, it has been proven [7] that chord length parameteri

zation (in connection with natural end conditions) cannot produce curves with 

corners. Farin shows that the chord length parameterization (in connection with 

Bessel end conditions) yields the “roundest” curve, exhibiting the inflection points 

in Figure 3.10 and its curvature plot Figure 3.11.

From Figure 3.10 and Figure 3.11 (the curvature plot of Figure 3.10) we know 

that we need to decrease the magnitudes of the curvature at both middle points 

(the sixth and the seventh point from the left). We let the weight be 0.2 at 

the sixth point and let the assigned weight be 0.19 at the seventh point, and let 

the other assigned weights be 1. Figure 3.12 is the graph of the resulting curve 

and Figure 3.13 is its curvature plot. Comparing their graphs (Figure 3.12 and 

Figure 3.10), we can observe that the resulting curve in Figure 3.12 is a better 

fit to the data points than the cubic spline in Figure 3.10 in the sense that the 

resulting curve in Figure 3.12 bends more sharply between the two middle points 

and is more linear elsewhere. The curvature plot of Figure 3.12 is better than the 

curvature plot of Figure 3.10, since the former exhibits fewer inflection points and 

is smoother than the latter. Thus the curve in Figure 3.12 is fairer than the curve
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in Figure 3.10. In Figure 3.12 we have produced a curve that has a corner unlike 

the graph of Figure 3.10. The resulting curve in Figure 3.12 is C2.
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Figure 3.10: Original cubic B-spline interpolant.

Figure 3.11: Curvature plot of Figure 3.10.
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Figure 3.12: L(u). Assigned weights axe 1, 1, 1, 1, 1, 0.2, 0.19, 1, 1, 1, 1, 1 and 1.

Figure 3.13: Curvature plot of Figure 3.12.
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Chapter 4

Sufficient Conditions to  
Guarantee the Positivity of the 
W eights of a Rational 
Interpolant

4.1 Introduction

In order to use C2 rational cubic B-spline interpolation as in Chapter 1 to 

produce a curve with a desired shape, a designer may assign relatively high weights 

at some points. But from [20] we know that if we increase the assigned weight Wj 

by Swj > 0 at the point Uj, the rational weights of the interpolant at the points 

on either side of Uj will decrease by and duj+i respectively. If Swj is too 

large, one or both of these rational weights may become negative.

In the first example of Section 3.3 we try to obtain a better result by increasing 

the assigned weights to 7 at the points on either side of the middle point and letting 

the other weights be 1. The rational weight at the middle point of the resulting 

curve now becomes -4. Figure 4.1 shows that its graph produced extra loops at

44
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the points on either side of the middle point. Figure 4.2 (the curvature plot of the 

curve in Figure 4.1) shows that singularities axe created and new inflection points 

occur. All of these problem axe caused by the negative weights of the resulting 

rational interpolant. Figure 4.3 shows the preimage of the curves in Figures 3.6 

and 4.1. We can see that the perspective projection of the preimage of the curve in 

Figure 4.1 will have loops and cusps. A discussion about loops and the cusps of a 

cubic spline can be found in [34]. In this Chapter we present sufficient conditions 

on the assigned weights which ensure the positivity of the weights of the resulting 

rational interpolant.
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Figure 4.1: L(u). Assigned weights are 1,7,1,7 and 1.

Figure 4.2: Curvature plot of Figure 4.1.
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Figure 4.3: The 3D preimage of Figure 4.1.
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4.2 Sufficient Conditions

We want to explore the relation between the assigned weights, {ruj, and the 

weights of the corresponding rational interpolant, {u;}. We start with (1.1.11).

Given assigned weights, w j associated with given data x i , . . . ,x l+ i ,  

the rational weights vq, ■ • ., u l+ 2  are the solution of the following system of linear 

equations:

Vo = Wl, VL+ 2 = tUL+l,

< v-L =  h , v l+ 1  = b3n-i, (4.2.1)

ESo2 ViN?(u) = Wi j  = 2 , . . . ,  L.

However, (4.2.1) can be reformulated as (cf. (9.7) in [10])

/
1 0 0

OL2 0 2  72

0

0

OiL P l  7l  

0 0 1

\ /  N /  \
Ul ri

v2 r2

VL tl

K VL+l J

(4.2.2)

where the coefficient matrix is tridiagonal and 

ri = bu ri = (Af_i + Ai)tOi, rL+1 = b3L- U 

A i = A Ui ~  ui+i -  u{, ui = 0, ul+! =  1, A 0 = A i+ i -  0,

Vo =  W i ,  V L+  2 =  W L + 1 ,
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_  a?
-  A;_2+Ai_1+ A;’

/S.   Aj(A;_2+At-i) I Aj-i(A;+Aj4.i)
A;_2+A;_i+Ai Ai-i+Ai+Ai+i ’ (4 2 3)

-y • = Ai_i+Ai+Ai+1 >

for i =  2 , . . . ,  L.

Lemma 4.1 If the parameter values u \ . . .  ul+i satisfy the conditions

Ai_i < (A; +  Ai+i) and A, < (A;_2 +  A ^ )  for i =  2 , . . . ,  L, (4.2.4)

then

Pi > ai +  7 f for i = 2, . . . ,  L.

Proof. For i = 2 , . . . ,L ,

a i _  A ;(A {_2 +  A;_i) ( A ;_i(A ; +  A t+i)
Pi on + 7i -  +  + ^  + A _  ̂+ A _ + Aj+i

-  ( — +  —  )A ,-_2 4- A i_i +  A  i A;_i +  A{ +  A,-+i

_  At(At_ 2  +  A;_i — A ,) A t-i(A j +  A^+i — A ^ )
Ai_ 2  +  A{_i +  A; A i_i +  Ai +  Ai+j

Then. A{_2 -t- Ai_i Ai > 0, Ai_i +  Ai+Ai+i > 0, and Ai > 0, for i =  2 , . . .  ,L .

It follows from (4.2.4) that Pi — Oi + 'fi > 0, i.e., $  > + 7 i, for i = 2 , . . .  ,L .

Definition 4.1 A Matrix A = (aij)nxn is said to be a positive matrix, (denoted 

by A  > 0), if all aij > 0 for 1 < i, j, < n.
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Definition 4.2 For A = let ||A||oo denote the row norm of A  defined by

n
||A||oo =  max ^2  I aik \ .

* k=l

The following lemma is well-known (see [34] p. 37).

Lemma 4.2 I f  |jA|[oo < 1 and A  > 0, then (7 — A2)-1 exists and 

(7 - A 2) ' 1 > 0 .

Theorem 4.1 I f  the parameter values u1...ti£ +1 satisfy (4-24), v0 =  w\ > 0,

VL+2 = WL+1 > o, hi > 0, b3L_! > 0,

(A i +  A 2 )l02 — [6 lQ!2 +  (A i +  A 3)w3^\  >  0,

(Ai_x +  A i)wi -  [(Ai_ 2  +  +  (Ai +  Ai+i)u)i+i^] >  0

i =  2 , . . . , I - l ,  (4.2.5)

and

(An-i +  Al)wl -  [(Al_2 +  AL- i )wL- i ^  +  &3L-i7l] > 0, 

then Vi > 0 for i =  0 , . . . ,  L  + 2.

Proof. By Lemma 4.1 for i = 2 , . . . ,  L, fa > 0. From (4.2.2) it follows that 

(  . .
01 0 0

23.Pi 1 72
T i

IPl
'iL
IZ

0 0 1

\ ( \ I \
Vl

%- 12.
Pi Pi

n. li.Pl Pl

\ VL+1 , r1+1 ^

(4.2.6)
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\
0 0 0 0

Let A  =

a  0 IFPl U J i

0 0 0 0

/ \
*>1

v  =

0L

Now (4.2.6) becomes
\ VL+1/

f  \
ri

F  =

Pl

Thus,

(I  + A )V  = F.

(.I -  A2)V  = { I -  A)F. 

From (4.2.4) and Lemma 4.1 it follows that

ai 7»
J i

+
Ji

a ; +  7;
A

(4.2.7)

(4.2.8)

Also

i + 1  a; +  7*
IIAHoo =  inax £  I |=  max ' ̂  < 1 .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 4: Sufficient Condition to Guarantee the Positivity of the Rational Weights 52 

Now from Lemma 4.2 it follows that (7 — A2 ) - 1  exists and

(J — A2 ) " 1 > 0. (4.2.9)

So (4.2.8) implies that

V = (I — A2)-1 (I  — A)F. (4.2.10)

If (7 — A )F  > 0, it follows from (4.2.9) and (4.2.10) that V > 0, which implies 

that u;+i > 0 for i =  0 , . . . ,  L. Since v0 =  w0 > 0, vl+ 2  =  > 0, it suffices to

prove Vi > 0 for i =  0 , . . . ,  L + 2.

Note that (7 — A )F  > 0, if ri > 0, r^+i > 0 and

T2 r “ 2 , 72n  ^  n

Pl Pl r3/?2

i ^  +  r ‘+1^ ] > 0 > i =  3 , . . . , L - l ,

rL r a]J 1 ^ n
Pl [TL- l P l +rL+lpL] 

which is equivalent to our assumption that 6 1  > 0, 6 3 1 , - 1  > 0 and (4.2.5). The

Theorem is proved

R em ark : Condition (4.2.4) of Theorem 4.1 is not as restrictive as it appears 

to be. Parameter values U = {u;} whose distribution is uniform obey (4.2.4). In 

nonuniform distributions (4.2.4) means that no subinterval has a width A; that 

is greater than or equal to the sum of the widths of the its two nearest previous
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subintervals or its two nearest following subintervals. From now on, unless stated 

otherwise we shall assume that U = { u j  satisfies (4.2.4).

We mentioned that the values of bi and 6 3 ^ - 1  axe determined by the interpola

tion end condition. We will discuss Theorem 4.1 under the Bessel end conditions 

and under the Clamped end conditions in Chapter 5 and Chapter 6  respectively.

Now we prove the following Lemma about the {uj;} which will be useful later.

Lem m a 4.3 The hypothesis of Theorem 4-1 implies that W{ > 0 for 

i = 1 , . . . ,  L  + 1

Proof. From the hypothesis of Theorem 4.1 it follows that Vi > 0 for 

i — 0 , . . . ,  L  +  2, i.e. V  > 0 in (4.2.7). It follows that F  > 0, i.e. Wi > 0, since 

( /  +  A) > 0 in (4.2.7).
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Chapter 5 

M ethods and Computational 
Examples

5.1 Introduction

In this Chapter we provide three methods to modify assigned positive weights that 

have caused some of the weights of the resulting rational function to be negative, 

in such a way that the sufficient conditions in Theorem 4.1 are satisfied. As we 

mentioned before, the resulting rational curves will still interpolate the given data 

points. Only the shapes of the resulting curve between the data points will be 

changed. Several examples axe provided to illustrate and to compare these three 

methods.

54
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5.2 A djusting the Assigned W eights

Method 1, which modifies the assigned weights to produce positive rational 

weights, is to add a large positive number a to each of the assigned weights. 

The linear precision of B-spline interpolation implies that the resulting rational 

weights will be Vi +  a and will all be positive if a > max{—Vi: Vi < 0}. However, 

while this method is simple, it may produce a curve that differs greatly from that 

desired by the designer. (See [10] and [11] and Chapter 3). Thus we consider two 

alternatives which have the feature that the assigned weights are modified as little 

as is possible.

We now consider the Bessel end conditions for interpolation. The methods 

that we obtain for the Bessel end condition can be easily extended to other end 

conditions with little modification.

Theorem 4.1 becomes the following Lemma under the Bessel end conditions 

on the next page.
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Lem m a 5.1 I f  the parameter values u \ .. .ul+ i satisfy (4-2-4) and vo =  > 0,

VL+2 =  w l+i  >  0,

= I t s - fa z v i  +  “ i +  > °’

b̂  = I t s ^ f e ^ i  +  “  s z ^ + s z y ^ i ]  > °>

(A, +  l A 2)w2 -  0 ± ^ a 2Wl +  [3A2f i ; ; A2) -  (Aa +  A 3)% \w3 > 0,

(Ai_i +  A i)wi — [(A{_2 +  A;_i)u)i_i|f +  (A,- +  Ai+i)iOj+i^-] >  0 (5.2.1)

* = 2 , . . . , L - 1 ,

(sAi,! + Al )^!, +  [sAl.^A^j+Al)^1, _

— M All (13(Al_i+Al) Tl^ l+i > U,

then Vi > 0 for i = 0 , . . . ,  L  +  2.

Lemma 5.2 Suppose that the parameter values Ui . . .  ul+i satisfy the conditions

A 2  > Ai and A1  > Al+i- (5.2.2)

Then for w\ > 0 and to2 > 0,

+ >  0  ( 5 - 2 - 3 )

implies that bi > 0. I f w L >  0 and wl+ 1 > 0, then

( | a „  + A _ K  +  13a ^ i + Al)7i. -  (A n  +

2At,: +  Al

3(Al_i 4- Al )

implies that 6 3 ^ - 1  > 0 .

> 0 (5.2.4)
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Proof. If u>3 < 0, considering wi > 0, W2 > 0, and (1.1.15), we have bi > 0. 

Now if w3 > 0 and b\ < 0, we have the following from (1.1.15)

Wl s  -  a T T a I ” 1 +  (A , + !& ,)."»• (5'2'5)

Substituting (5.2.5) into (5.2.3), we should have

(A, + | a , ) ( - ioi -  + (A. + | A J (A if Aa)^ .

Al +  2 A i-a2Wl + r A . -  (Aa +  A3)J ]u ,3 > 0,
3(A, +  A2) 2 1 l3A2 (A, +  A2) v 2 3'£ '2

i.e.,

r . 2 .  . 2 . .  A 2 A 2 + 2A2 .
-  [A, +  -A , +  (A, +  3  +  3(Ai +

Equivalently we have

Also from (5.2.2) we have

(a . + a j ^ I a ,.

A5 s W(Aj + A 2 ) 2

These two inequalities imply that

Al -  (A2 + A3 )^-]u>3 < 0.
(Ai +  A2 ) /?;

Since u>i > 0, we have

r . 2 .  , ,  2 . .  A 2 Aj +  2A 2 ,
-  [A, +  - A ,  + (A, +  - A J  +  j ( Al +  A j “ !l“ >
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This is a contradiction. Thus it follows that &i > 0.

The proof of that &3i_i > 0 is similar to the above and is thus omitted.

The following Lemma corresponds to Lemma 4.3.

L em m a 5.3 The hypothesis of Lemma 5.1 implies that wi > 0 fo r i  =  1 , . . . ,  L + l.

Whenever a given set of assigned weights {to;}^1 causes some Vi < 0, we 

propose three procedures to modify {tu,}^1 in such a way that all u; > 0. We 

first prove that when all wi = 1, (5.2.1) holds:

L em m a 5.4 We have

I f  A 7 i 1 i A i+ A a    A? i «
3 LA1 + A 2  "r  “  A2 A2(A i+A j)J  U’

IT A L-1 4 . 1 4 . A I ^ 1 + A L _  A l  1 ^  f)
3 LA u + A L T 1 T  A U 1  a u 1(a J 1 + a l )J ^

(A > +  § A ‘ )  -  +  U f l t A . )  -  ( A .  +  A , ) g ]  >  0,

(Ai_i +  A i) — [(Ai_2 +  Ai_i)^  + (A; +  A{+i)^-] > 0 (5.2.6)

i =  2 , . . . ,  L — 2,

( 3 ^ 1  +  A l ) +  [3AI„i(A £i+A I,)'fr' ~  (^1,2  +

-  > 0.

Proof. The first two inequalities of (5.2.6) hold from the following respectively: 

Aa +  A2 A 2 (A 1 + A 2)2 A 2
A 2 (A i +  A 2) A 2 (Aj +  A 2) A 2 (A i +  A 2) > 0,
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A m  +  A l A I _ (Al.1 +  Al )2 A  2
Al-i Ai^!(Ai, i +  Al ) Al.i A ^^A u  +  A l )

Since A 0 =  0, A i > 0, > 0, we have

A | 2  A _  2  A 2 (A l +  A 2) 2 , . . Aj+A^+Aa
A l +  3 "  3 (A i +  A 2 ) 2 +  (Az +  A 3 ) M ^ T

^ 1 A j + A j + A a

Al +  2A Z_______ A 2_______ , . . ,  Ai+Aa+Aj______
3(Ai +  A 2) (Aq +  A 1 +  A 2) { 2 ^  +

K 1 K U 1 A o + A j + A i  ^  A 1 + A 2 + A 3

It follows that the third inequality of (5.2.6) holds.

Since a‘ 'A.i~A+Afiv  > 0 and A*~1+A4ffi'^  > 0 we haveA;_2+A»-i+Ai A»-i+At+A;+i

A? A ? _ :

^  +  Ai =  (Ai_2 +  A i - O f g g g g  +  (Ai +  A ^ f g g g g -
Ai»2+ î—l+^i Ai«.i+A*+A».j.i

>  (A i_ 2 +  Ai_i)-£77£7
a ?

Ai_2+Ai_i+Ai
A i ( A i _ 2 + A j - i )  , A j_ i ( A f + A ,- + i )  
A i _ 2 + A i _ i + A i  A i _ i + A ; + A , + i

A ? - i
1 f A . l A .  f______ A;-i+Ai+Ai+i_______

+  +  / A , + i ;  A j (A ,- -a+A i- i )  A i - i ( A i + A i + i )
A*_2+ î-l+A{ Ai-i+A»+A»+i

=  (A i_ 2 +  A i- i)^ -  +  (Ai + A i+ i)^  (i =  3, . . .  ,L  -  1).

Since A l+i =  0, A L > 0, > 0, we have

^ A  I A  — (A I A ) a^2+a^ i+ai- i 2 Al-i(Al.j +  Al )2
3 +  Al “  (A^  +  A m ) ' ^ ( a » ^ , )  + 3 ""(A " + A l )2 '

A l - 2 + A l - j + A l  ^ L' 1 T  LJ

(A  + A  t ________ Al.2+Al.i+al__________ . ^A l-i +  A l  ^
k M t a M ^ A L (A M + A M ) , A M ( A i + A i + 1 ) 3 ( A .  ■ +  A , )

A l - 2 + A l . i + A l  A i . j + A i + A i + i  

( \  1 a  \ a L  , 2 A ^ i  +  A l
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So the last inequality of (5.2.6) holds. This proves Lemma 5.4.

Now we present method 2. Let

=  K aT + a^ i +  ~  a ^ V a , ) ^ )  =

(Aa +  §A2)to2 -  3̂ t i l a*w' +  (3A2fir+A2) “  (A* + 

(A;_i +  A  i)wi — [(A ;_ 2  +  Ai_i)tUi_i|7 +  (A; +  A;+i)t/J,-+i2i.] =  hi
(5.2.7)

i = 3 , . . . , L — 1,

( f  Al.! +  AL)u>L +  (3Al.i(a£1+Ai;)'Ti- “  (Al-2 +  ^ 1 )^ )% !

-  =  hL.

M ethod 2

Input:

w i , .. . , wl+i , where u>; >  0 for all i, (the assigned weights to { x ;} ^ 1), 

u i , . . . ,  ul+i , (given parameter values), 

h > 0  (a given small constant),

Note: If hi < 0 in (5.2.7), i.e the ith inequality in (5.2.1) is not true, 

this method will modify {u>;} to let hi > h in (5.2.7) and then 

the tth inequality in (5.2.1) will be true.

Output:

toi, . . . ,  u>l+1 , where to; > 0  for all i,

(the modified assigned weights to {x, - } - ^ 1 which satisfy (5.2.1))

6 1  and &3 L_i (which will be used in the interpolation formula (4.2.2)).
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Step 1:

If hi < 0 for i =  1 , . . . ,  L, increase W{ in such a way that the new h{-\ > h, 

and then decrease to;+i if necessary, such that hi =  h.

Step 2:

Obtain b3L~i by (1.1.16). If b3L-i >  0 then set w, =  u>j, for i = 1 , . . .  ,L  +  1. 

Otherwise, If &3L_i <  0, set z  = | b3L~\ I and then set Wi = Wi + h + z  for 

i = 1 , . . . ,  L  +  1; &3L- 1  =  &3L- 1  + h + z, and obtain &i by (1.1.15)

Discussion of S tep  1: Step 1 is a recursive process to correct hi, if hi < 0.

We check each hi i =  1 , . . . ,  L to see if condition (5.2.1) holds or not. If hi > 0, 

i.e. the ith inequality in (5.2.1) is true, do not change Wi. If hi < 0, i.e. the ith 

inequality in (5.2.1) is not true, we first increase Wi in such a way that the previous 

inequalities still hold for wi after updating Wi, i.e. the new value of hi-i is still 

greater than or equal to h (which ensures that the previous inequalities still hold 

after correcting the ith inequality). Then decrease u);+i if necessary, such that the 

new hi = h and the ith inequality in (5.2.1) is true. In this way we can get new 

weights and &i that ensure that all hi > 0 in (5.2.1) through Step 1.

From our sufficient condition on {w ;}^1, we can see that if the differences 

between one weight and its neighboring weights axe too laxge, negative resulting 

weights will occur. But it is this kind of laxge difference that gives rise to a 

sharp bending interpolation curve which may be desired by the designer. When
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we change the weights {u>;} to {to,-}, we try to change them in such a way that 

J2f=o l^t — wi\ will be small and such that {tuj will satisfy (5.2.1). Assume that 

the ith inequality is not true. Lemma 5.4 implies that the coefficient of Wi is 

greater than that of So we increase ui; as much as possible first, and then 

decrease u);+1 if necessary. If the coefficient of iOi_i is less than the one of 

the change of hi by our Algorithm is optimal in the sense that J2f=o |ti)i — u>t| is 

least. (Note that the Wi here is not the final value of Wi that we shall output. We 

use Wi for convenience in our discussion). If the coefficient of Wi-i is greater than 

that of Wi+i, the change of hi by our Algorithm is not optimal in the same sense. 

Now we estimate

[(A ; _ 2 +  A,-_i)-^- -  (A,- +  A i+i)~ ] .

First we have

a?
i   l  a  i a  A ;_ 2 + A ;_ i+ A ;(A i_ 2  +  A;_i)-A  — (A ;_ 2  +  Af_i)-, A .(A ._2 + A ._ l )  A i_ 1(A i+ A ,+1)

A ;„ 2 + A i_ i+ A ; A ;_ i 4*At+Ai+i

A i- 2 + A i- i  +A»

From (4.2.4) we can obtain

(A , +  A i+I)7, -  (A , +  >  % !■ .

q q. _  A j(A t-2 +  A i_i) A j-i(A j +  A ,+1)
Ai-2 +  A i_i +  A i Ai-i  +  Ai +  Aj+i

^ A , —2 +  A i_i +  A; +  Ai+i
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and then we have

(At- +  Ai+1) ^  > +  A ._i ‘+1A . +  A .+i > 0.

It follows that

0 < [(A;_2 +  A -  (A; +  Ai+1) | ]  < A< -  A?- 1
Pi Pi A i_ 2  +  A ;_1  +  A{ +  A i+ 1

yy2
Considering ui = 0 and uL+i =  1, we have 0 < (A; -  a.^ + aE + a.+a^ ! ) < A«- 

Thus if A i is sufficiently small then (Ai — A. 2+a;_‘i+a;+Am.-) is small and so is 

Ei^o1 \™i ~  u>«|-

D iscussion of S tep 2 : Step 2  will produce an output. Given the results

of Step 1, if &3 £_i > 0, from Lemma 5.3 it follows that Wi > 0 for i = 1 , . . . ,  L  +1,  

and we let Wi =  Wi, i =  0, . . .  ,L  that satisfy the conditions of Lemma 5.1 and 

that are the weights that we desire.

In other cases we have

+ ^ a T 2^ 2  "  A2 (Af+A2H  > 0 ,

(A i +  t A > 2 -  ^ ^ a 2wz +  (3A2f ] ^ A2) -  (A2 +  A3) ^ ) u >3 >  0 ,

(At-i +  Ai)Wi — [(A; _ 2  +  A i_i)^j_x|r +  (A,- +  A,-+i)u)t-+i^-] > 0 

i = 3 , . . . ,  L — 1,

( 3  A l - 1  + +  (3Ai,1 (Ai1 +AL)^L ~  ( A l - 2 +  ^ 1 ) ^ ) % !

“  > 0.

Since h + z > 0 then by Lemma 5.4 it follows that
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+ z) + (h + z) + h + z ) ~  + z)} > 0,

(A, +  |A 2)(h + z ) ~  * g ^ a2(h +  z)

+ [3A2(Ar+A2) ~  (A2 +  +  Z) > °>

(Ai_i +  A,)(h + z) — [(A; _ 2  +  A i-i)(h  +  z)j£ +  (Ai +  Ai+i)(h +  z)^-] > 0  

i =  3, . . .  ,L  — 1,

(fAui +  Al )(4 +  z) +  -  (A ^  +  Aw)g£)(* +  z)

+  * > > 0 '

Combining the above two systems, it follows that u>i = Wi +  h +  z i =  0 , . . . ,  L 

satisfy (5.2.1). Now considering 63l_ i =  b3L-i +  h +  z  > 0, from Lemma 5.3 it 

follows that Wi > 0 for i =  1 , . . . ,  L  +  1.

From the above discussion we have the following:

T heorem  5.1 Method 2 produces positive assigned weights that satisfy

(5.2.1). Hence the corresponding rational interpolant has positive weights V.

We assume that the parameter values Ui. . .  ul+i satisfy the conditions A 2 > 

Ai and , Al > Ax,+1. Now, we introduce a third method to modify the assigned 

weights in the least squares sense. We have the following:

Problem L2 :

Given assigned weights Wi > 0; i = 1 , . . . ,  L  + 1 that do not produce positive 

weights Vi.
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Find weights { i £ i ? L + 1  such that the corresponding rational func

tion formed by Yi^o viN?(u) has positive coefficients and of all such weights 

D t i 1 (u>i — wi)2 is a minimum.

As an alternative to this problem we consider the following:

Problem L2b:

Given assigned weights 1 0 ; > 0; i = 1 , . . .  ,L  + 1  that do not produce positive 

rational weights Vi.

Find weights G RL+1 such that conditions (5.2.1) axe satisfied and all

Wi > 0  and such that (^i — ^t' ) 2  is a minimum.

We will not change wi and wl+i under the Bessel interpolation end conditions. 

We have the following Lemma under these assumptions:

L em m a 5.5 For given wi > 0; i = 1 , . . . , L  +  1 that do not produce positive 

weights vi; i = 0 , . . . ,  L  +  2, if we find any new weights Xi; i =  1 , . . . ,  L  +  1, with 

Xi = Wi and xl+i =  wl+i , that satisfy condition (5.2.1), then hi > 0, b^L-i > 0, 

and then Xi > 0 for all i.

Proof. First we wish to show that x2  > 0. Note that all the w\s axe x\s now and 

later on in the proof of this Lemma in (5.2.1)). Since (Aj +  |A 2) > (A2 +

a 2
from the proof of of Lemma 5.4 and 3 ^ ^ ° + ^ )  < (A2 + A3)^-. If x 2 < 0, then 

since z 2 and x3  satisfy the third inequality of (5.2.1) and Xi > 0, it follows that 

x3 < x2 < 0. Since A;_! > (A; +  and > (A ; _ 2 +  A .-.i)^  from the
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proof of Lemma 5.4 in

(A i- i  +  — [ (A w  +  +  (A i +  A i+ ij^ i+ i^ -] >  0
Pi Pi

of (5.2.1), i =  3 , . . . ,  L — 1, when i — 3 we have x4 < x3 < 0, since x3 <  x2 < 0.

The proof continues inductively to obtain xl < %l- i < ■ ■ ■ < x3 < x 2 < 0. But

the last inequality of (5.2.1) can not hold when xl < xl- i < 0 from the proof

of Lemma 5.4 and xL+l > 0 and 3 a ^ (a^ 7 Tal )7 l  < (Aw  +  A ^ ) ^ .  This is a

contradiction. Thus it follows that x 2 > 0. Since the s,-; i = 1 , . . . ,  L  +  1, where

xi =  w\ and xl+i =  wl+ i, satisfy condition (5.2.1) and x2 > 0 we have bi > 0

from Lemma 5.2. Similarly we can prove that xl > 0 and then b3L-i > 0. Now

since bi > 0 and b3L-i > 0 and the fact that x^  i = 1 , . . . ,  L  +  1, satisfy condition

(5.2.1) it follows that all Xi > 0 from Lemma 5.3.

From Lemma 5.5 Problem L2b can be reduced to the following minimization 

problem:

m m F (i)  =  n u n £ ( * i  -  w{)2, (5.2.8)
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where

V { x \ < n ( x )  >  di \  i  =  2 , . . .  , l }  C R L ~ l , 

x  =  [ x 2, . . ■ , x l ]t  and

a2(x) =  (Aj +  | A 2) l 2 +  [3A2(Ai+A2) — ^ 3 )^ ]Z3,

a i {x )  =  (Af- 1  +  A i ) Xi  — [(A ;_ 2  +  4 . (A; +  A,-+i)x i+i fy]

(1 =  3 , . . . ,  £ - 1),

a L ( x ) =  ( |A U1 +  A l)xl +  -  (A M +  A ^ ^ J x ^ ,

di = 0; (* =  2’ ’ • ’ ’ L ~  1) dL =  3̂ f t ^ ) 7 L ^ i

D efinition 5.1 Let
( \  

a2{x)

Oi(x)

v «l(*) }

= Ax.

Where the coefficient matrix A =  (&ij) is the following tridiagonal matrix:
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(A i +  | A 2) 

- ( a 1 + a 2) ^ (A2+A3 ) -(A3+A4) | -

\

where

(j Ah +Al)

—( A i - 2 + A , _ i ) ^ -  ( A i - i + A ; )  — (Ai-|-A{.|.l)■i!fV

- (A L .3 + A I ,2) (Al-2+ A i, i )

0 Ol.UI

°w' 1 =  3 A Z ^ r + A 0 71' "  +  A '

Problem (5.2.8) is a well discussed least-distance problem whose object func

tion is convex and its domain V  is a convex set (see [1, 6, 18, 23, 28, 39, 37, 38]). 

For problem (5.2.8) we have

L em m a 5.6 T> is nonempty

Proof. Let =  . . .  =  x l  = m ax^ijto i+ i). From Lemma 5.4 we have 

a,i(x) > di, i =  2 , . . . ,  L, where x = (x i , . . .  , x l ) t .

L em m a 5.7 I f  <f>{x) is a convex function defined on a convex set S  C R 1, then 

any local minimum is a glolal minimum.
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Proof. There is a proof of this conclusion under the condition that f>{x) is 

assumed to be explicitly quasiconvex, (a weaker hypotheses than that of this 

lemma), in [21].

L em m a 5.8 I f  problem (5.2.8) has a solution, then the solution is unique and is 

given by Xi =  Wi, for i =  2 , . . . ,  L.

Proof. The set D is open and nonempty. Hence, if (5.2.8) is solvable, then any 

solution is a local minimum of F{x). Since F{x) is convex and D is convex and 

from Lemma 5.7 it follows that any local minimum of F(x)  is its global minimum 

and the global minimum is unique.

Sometimes the solution of an optimization problem with inequality constraints 

is on the boundary of a feasible domain and thus (5.2.8) may not have a solution.

In order to solve problem (5.2.8) we shall consider the following optimization 

problem:
L

m ini?(x) =  min]V(xi — W{)2, (5.2.9)
x£V x&D ;_2

where

V  := {x|a;(x) > di\ i =  2, . . .  ,i}  C RL-1 and is closed.

Also we have

L em m a 5.9 V  is nonempty.
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Proof. See the proofs of Lemma 5.6.

As in problem (5.2.8) we have the following:

L em m a 5.10 I f  problem (5.2.9) has a solution, then the solution is unique.

If x 6 T>, where x = [£2 , ■ ■ - , x I]T is the solution of (5.2.9), then x is used as

the solution of (5.2.8).

If x is not in V,  then a;(x) = di for some i, i.e., the sufficient condition

(5.2.1) in Lemma 5.1 is not satisfied, and thus we can not guarantee that all

Vi > 0. Also there is the possibility that some of the components of x are 0. Thus

J2i=o ViNi(uj) =  i j  =  0 in interpolation (1.1.11) and Vid{N?(uj) =  xjxj =  0

in interpolation (1.1.12) for some j  and thus it will result that the resulting curve

L(u) =  obtained by interpolation (1.1.9) defined by (1.1.11) and
lZi=0 ViNHU)

(1.1.12) will not be defined at Uj for some j ,  i.e. it will result in the instability of 

the interpolation (1.1.9) defined by (1.1.11) and (1.1.12).

Let x =  x  + e, where e is any given positive number, x satisfies a{(x) > di for 

i = 2 , . . . ,  L  from Lemma 5.4 and thus x > 0 from Lemma 5.5 and x € V.  Note 

from the definition of (5.2.8) we have

min ^ ( x i  -  Wif  < Y f r  ~ wi f
X&D i=2 t=2

= ~ Wi)2 + 2E ( * i  “  + {L  + l)e2
i=2 := 2
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L  L

= m i n ^ ( i i  -  to;)2 +  2[y^(i; -  «jj)]e +  {L +  l)e2.
i= 2 t=2

Thus we can use x  as a good approximate solution to problem (5.2.8), when we 

choose e sufficient small.

In order to solve (5.2.9), we need the following Lemmas:

L em m a 5.11 The matrix A is strictly diagonally dominant.

Proof. From Lemma 5.4 it follows that

| (A, +  §A.) |> | «u  |=| -  (A, +  A ,)£  I.

i A;_1 +  A i |> | —(A{_2 +  A{_i)|^ I +  I — (A; +  A;+i ) ^  | , 3 < i < L — 2,

| ( |A t l  +  Al ) |> | d ^ 2 |= | 3Aui( ^ 1+Al)7i. -  I •

Lemma 5.11 is proved

L em m a 5.12 The row vectors of the coefficient matrix A are linear independent

Proof. Let c =  (0 2 , . . . ,  cl)t , where c; (i =  2 , . . . ,  L) are any real number. From 

Lemma 5.11 we have

Ac =  0 =>• c =  0,

i.e., the (L  — 1) column vectors of A  are linear independent and so are the row 

vectors of A, since A is (L — 1) x (L — 1). Lemma 5.12 is proved.

Problem (5.2.9) is a least distance problem with linear constraints. The row 

vectors of the coefficient matrix are linear independent. There are several efficient
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methods to solve this problem (see [6, 18, 23, 28, 39, 37, 38]).

Here we use QPROG/DQPROG in IMSL MATH/LIBRARY ( [39]). 

QPROG/DQPROG is based on M.J.D. Powell’s implementation of the Goldfaxb 

and Idnani (1983) dual quadratic programming (QP) algorithm for convex QP 

problems subject to general linear equality/inequality constraints, i.e., a problem 

of the form

min gTx + l-xTQx (5.2.10)
xeRn 2

such that

A 2x  — b2

and

A3x > b3,

• A A

given the vectors b2, b3 and g and the matrix Q, A 2 and A3. Q is required to be 

positive definite. For more details, see Powell (1983a. 1983b).

For using QPROG/DQPROG, we set yi = Xi — to;, i = 2 , . . . ,  L  and 

V =  (l/2 , • • • ,J/l)T and we change (5.2.9) into

L
min F{y) = min £ y ? ,  (5.2.11)
ys£> y£f> i = 2

where

D ■ {ykt(y) > di i = 2 , . . .  ,L }  c  Ri_1,

4  -  4  -  ( A ,  +  | A J A  -  [ 3 A i ( ^ A ; )  -  ( A ,  +  A , ) | ] » „
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di =  di — (A i_i +  A  i)wi +  [(Ai_ 2 +  Ai-i)wi-i-0- +  (Aj +  Ai+i)u>f+1^-]
Pi Pi

i =  3 , . . .  ,L  — 1,

d,L = dz, — ( -A m +  A h)wL — [— —  L 7 l  — (Al.2  4- A ^,)—
o o A l- i^ A i,!  +  A l J  Pl

Now b2 is a zero vector, 6 3  =  (d2, ■■■, dL)T, the g is a zero vector, Q = 21, A 2 

is a zero matrix and Az =  A  which is as in Lemma 5.11.

After we obtain new weights x,  we will check if X{ > 0 for i = 2 , . . . ,  L: if not, 

let x  +  e be the solution to problem (5.2.8), where e >  0 is given; otherwise we 

will check if Vi > 0 for i =  0 , . . . ,  L  +  2: if it is, then x is the solution to problem

(5.2.8), otherwise let x +  e be the solution to problem (5.2.8). Then we obtain 61 

and bzL-i which will be used in the interpolation formula (4.2.2).
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5.3 Com putational Examples and D iscussion

In this section we present several computational examples to demonstrate in

herent problems in choosing the weights to; for the data points x; in the interpo

lation scheme (1.1.9) and to show that the effectiveness of three methods.

First we consider the example, in Figure 4.1, at the beginning of Chapter 4. 

Figure 5.3 shows the curve with weights obtained by applying method 2 to the 

weights of the curve in Figure 4.1 and Figure 5.4 is its curvature plot. The value 

of h in method 2 is 0.1. There are no extra loops any more at the points on either 

side of the middle point and there axe no singularities or points of inflection in its 

curvature plot (Figure 5.4). Data convexity has been preserved. The curve is a 

better fit to the data than the curve in Figure 3.8 in that the resulting curve is 

more flat in a neighborhood of the middle point, and the direction of its tangent 

line changes rapidly in a neighborhood of the points on either side of the middle 

point.

Figure 5.5 shows the curve with weights obtained by applying method 3 to the 

weights of the curve in Figure 4.1. Figure 5.6 is its curvature plot. There are no 

extra loops any more at the points on either side of the middle point and there are 

no singularities or points of inflection in its curvature plot, and data convexity has 

been preserved. The curve is a better fit to the data than the curve in Figure 3.8 

in that the resulting curve is more flat in a neighborhood of the middle point, and 

the direction of its tangent line changes rapidly in a neighborhood of the points
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on either side of the middle point.

Figure 5.1 shows the curve with weights obtained by applying method 1 to the 

weights of the curve in Figure 4.1, i.e., by adding 4.2 to each of the original weights, 

since the resulting negative weight of the curve (Figure 4.1) is —4. Figure 5.2 is 

its curvature plot. There are no extra loops any more at the points on either 

side of the middle point and there are no singularities or points of inflection in its 

curvature plot Figure 5.2. and it preserves data convexity. There is no significant 

improvement in the graph of the curve in Figure 5.1 relative to the curve in 

Figure 3.8 since all of the weights have been increased. (See [10] and [11] and 

Chapter 3).

Farin used curvature plots for the following definition of a fair curve in [11]:

“ A curve is called fair if its curvature plot is continuous and consists of only a few 

monotone pieces.” The number of curvature extrema of a fair curve should thus 

be small. Comparing the curvature plot in Figure 4.2 and the curvature plots in 

Figure 5.2, Figure 5.4, and Figure 5.6, we can see that all three methods not only 

produced new weights which ensure positive resulting weights, but also faired the 

original curve.

All of the resulting weights in Figure 5.1, Figure 5.3 and Figure 5.5 axe posi

tive and the curves in these figures have the convex hull property. The curve in 

Figure 4.1 did not have the convex hull property.

All the data and weights of these graphs axe presented in Table 5.1 on page 79.
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Figure 5.1: L(u). Assigned weights axe modified by method 1 .

Figure 5.2: Crvature plot of Figure 5.1.
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Figure 5.3: L(tt). Assigned weights axe modified by method 2.

Figure 5.4: Curvature plot of Figure 5.3.
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Figure 5.5: L(u). Assigned weights axe modified by method 3.

Figure 5.6: Curvature plot of Figure 5.5.
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Table 5.1: Data and weights for Figures 3.6, 3.8, 4.1, 5.1, 5.3 and 5.5 

In table Weight below, each row gives the weights to be interpolated for the 

curves corresponding to Figure 3.6, Figure 3.8, Figure 4.1, Figure 5.1, Figure 5.3, 

and Figure 5.5 respectively.

In table Data, the first row gives the data values to be interpolated in the x 

direction and the second row gives the data values to be interpolated in the y 

direction for Figure 3.6, Figure 3.8, Figure 4.1, Figure 5.1, Figure 5.3, Figure 5.5.

Each table below gives the weights and the control points of the resulting 

rational curves that appear on the following pages. The numbers in the first row, 

denoted by v, are the weights of the resulting rational curves. The numbers in the 

second row, denoted by x, axe the control points of the resulting rational curves 

in the x direction. The numbers in the third row, denoted by y, are the control 

points of the resulting rational curves in the y direction.

Weight:
1 1 1 1 1

1 2 1 2 1

1 7 1 7 1

5.2 11.2 5.2 11.2 5.2

1 7 3.7 7 1

1 6.46 3.68 6.46 1

Data:

0.5 1.5 3.5 5.5 6.5

1 2.732 2.732 2.732 1
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Figure 3.6:
V l 1 1 1 1 1 1

X 0.5 0.667 1.286 3.5 5.714 6.333 6.5

y 1 1.866 3.165 2.516 3.165 1.866 1

Figure 3.8:
V l 1.633 2.583 0.508 2.583 1.633 1

z 0.5 0.949 1.537 3.5 5.463 6.051 6.5

y l 2.202 2.900 2.306 2.900 2.202 1

Figure 4.1:
u l 5 11.000 -4.000 11.000 5.000 1

z 0.5 1.333 1.740 3.5 5.260 5.667 6.5

y 1 2.559 2.771 2.786 2.771 2.559 1

Figure 5.1:
V 5.2 9.2 15.2 0.200 15.200 9.2 5.2

X 0.5 1.029 1.615 3.500 5.385 5.971 6.5

y 1 2.243 2.880 -2.897 2.880 2.243 1

Figure 5.3:
V l 4.55 9.875 0.612 9.875 4.55 1

X 0.5 1.119 1.540 3.5 5.46 5.88 6.5

y 1 2.542 2.776 2.379 2.776 2.542 1

Figure 5.5:
V l 4.193 8.983 1.028 8.983 4.193 1

X 0.5 1.088 1.517 3.500 5.483 5.912 6.5

y l 2.525 2.780 2.521 2.780 2.525 1
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Faxin in [11] presented an example which resulted in negative weights after 

interpolation. We will apply our three methods to this example.

Figure 5.7 - Figure 5.11 axe the resulting weight functions. Their assigned 

weights and resulting rational weights are in Table 5.2. The resulting rational 

weight function in Figure 5.7 has two negative weights but is positive everywhere. 

However the resulting rational weight function in Figure 5.8 has two negative 

weights and is negative on some subset of the interval. Figure 5.9, Figure 5.10 

and Figure 5.11 axe the resulting weight functions whose modified assigned weights 

are obtained by applying method 2 (h = 0.01), method 3 and method 1 (a =  2) 

to the assigned weights in Figure 5.7 respectively. All the curves in these three 

Figures show that the resulting rational weights axe now positive.
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Table 5.2: Assigned weights for rational weight functions

In each of the following tables, the first row gives weights to be interpolated, 

the second row gives the resulting rational weights after interpolation.

Fig.5.7 1 1 1 1 7 1 1 1 1

1 1 0.786 1.75 -1.786 11.393 -1.786 1.75 0.786 1 1

Fig.5.8 1 1 1 1 9 1 1 1 1

1 1 0.714 2 -2.714 14.857 -2.714 2 0.714 1 1

Fig.5.9 1 1 1 2.04 7 2.04 1 1 1

1 1 0.934 1.23 0.146 10.427 0.146 1.23 0.934 1 1

Fig.5.10 1 1 0.789 1.842 6.579 1.842 0.789 1 1

1 1.035 1.01 0.912 0.078 9.830 0.078 0.912 1.01 1.035 1

Fig.S.ll 3 3 3 3 11 3 3 3 3

3 3 2.786 3.75 0.214 13.393 0.214 3.75 2.786 3 3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 5: Methods and Computational Examples 83

Figure 5.7: Weight function with two negative rational weights

Figure 5.8: Weight function is negative on some subintervals
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Figure 5.9: Weight function. Assigned weights axe modified by method 1

Figure 5.10: Weight function. Assigned weights axe modified by method 2
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Figure 5.11: Weight function. Assigned weights are modified by method 3
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Table 5.3: Affect of choosing of h in method 2 on the rational weights

cose 1 i i 1 2.4 7 2.4 1 1 1

h = .l i i 0.986 1.05 0.814 10.093 0.814 1.05 0.986 1 1

case 2 i 1 1 2.04 7 2.04 1 1 1

h =.01 i i 0.934 1.23 0.146 10.427 0.146 1.23 0.934 1 1

case 3 i 1 1 2.004 7 2.004 1 1 1

h=.001 i i 0.929 1.248 0.079 10.461 0.079 1.248 0.929 1 1

case 4 i 1 1 2 7 2 1 1 1

h= 0 i i 0.929 1.25 0.0714 10.464 0.071 1.25 0.929 1 1

case 5 i 1 1 1.996 7 1.996 1 1 1

h =-.001 i i 0.928 1.252 0.064 10.468 0.064 1.252 0.928 1 1

case 6 i 1 1 1.96 7 1.96 1 1 1

U4 II 1 o >-> i i 0.923 1.27 -0.003 10.501 -0.003 1.27 0.923 1 1

Now we choose different values of h, and apply method 2 to the weights of 

Figure 5.7. The results axe shown in Table 5.3. There axe no large differences 

in the weights after interpolation (second row) from case 1 through case 3, when 

h assumed the value 0.1, 0.01 or 0.001 respectively. Thus method 2 was not 

sensitive to changes in h. When h =  —0.001 in case 5 of Table 3, the weights after 

interpolation axe still positive. Thus the sufficient condition in Chapter 4 is not a 

necessary condition. In case 6  when h =  —0.01, vs and vj  axe negative.

Figure 5.12 shows the resulting curve with the given weights of Figure 5.7 and 

the given data in Table 5.4 (see [11]). Figure 5.13 is its curvature plot. Figure 5.14, 

Figure 5.16 and Figure 5.18 show the resulting curve with weights obtained by
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applying our three methods to the given weights of Figure 5.12 respectively and 

the same given data of Figure 5.12. Figure 5.15, Figure 5.17 and Figure 5.19 are 

their corresponding curvature plots. We also considered an integral cubic B-spline 

interpolant with the same given data of Figure 5.12 (Figure 5.20 for the curve and 

Figure 5.21 for the curvature plot). All of the resulting data are in Table 5.4.

Comparing Figure 5.12 with Figure 5.20 and Figure 5.21, shows that the high 

weight at a point with a * caused the curve to have a sharp bend in its neighbor

hood (the direction of the tangent line changes rapidly there) and its curvature 

plot Figure 5.13 shows that the magnitude of the curvature increases in neigh

borhoods on both sides of this point. The fifth and seventh weights obtained by 

interpolation axe negative. Even though there are no singularities in this example, 

the resulting negative rational weights cause the loss of the convex hull property. 

The curves obtained by interpolation with modified weights by method 2 and 

method 3 (see Figure 5.16, Figure 5.18) are similar in shape in the neighborhoods 

on either side of a * to the curves obtained by interpolation with the original 

assigned weights. However, the curve obtained by method 1 does not bend as 

sharply (see Figure 5.14). Comparing the curvature plot in Figure 5.13 and the 

curvature plots in Figure 5.15, Figure 5.17, and Figure 5.19, we can see that 

the three methods not only produce new weights which ensure positive rational 

weights, but also fair the original curve.
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Table 5.4: Data and weights for Figures 5.12, 5.14, 5.16, 5.18 and 5.20.

In each of the following two-dimensional interpolation examples using (1.1.9), 

the first row gives the data values to be interpolated in the x direction, and the 

second row gives the data values to be interpolated in the y direction. For each 

Figure, the first row gives the control points of the resulting rational curve in 

the x direction after interpolation, and the second row gives the control points of 

the resulting rational curve in the y direction after interpolation. The assigned 

weights of Figure 5.12, Figure 5.14, Figure 5.16 and Figure 5.18 are from the 

given weights of Figure 5.7, Figure 5.9, Figure 5.10, and Figure 5.11 in Table 5.2 

respectively. In Figure 5.20 the weights are all 1.

1.9 1 1 1 2 3 3 3 2.1

3.19 2.7 1.42 0.85 0.35 0.85 1.42 2.7 3.19

Fig.5.12 1.9 1.4S 0.435 1.502 2.718 2 1.282 2.498 3.565 2.55 2.1

3.19 3.158 3.655 0.806 -0.002 0.322 -0.002 0.806 3.655 3.158 3.19

Fig.5.14 1.9 1.45 0.701 1.266 -2.223 2 6.223 2.734 3.299 2.55 2.1

3.19 3.158 3.094 1.022 2.422 0.263 2.422 1.022 3.094 3.158 3.19

Fig.5.16 1.9 1.45 0.546 1.657 -18.276 2 22.276 2.343 3.454 2.55 2.1

3.19 3.158 3.209 0.788 11.294 0.274 11.294 0.788 3.209 3.158 3.19

Fig.5.18 1.9 1.435 0.593 1.839 -33.085 2 37.085 2.161 3.407 2.565 2.1

3.19 3.099 3.075 0.567 19.941 0.273 19.941 0.567 3.075 3.099 3.19

Fig.5.20 1.9 1.45 0.771 1.128 0.718 2 3.282 2.872 3.229 2.55 2.1

3.19 3.158 2.947 1.149 0.979 0.036 0.979 1.149 2.947 3.158 3.19
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Figure 5.12: L(u). Assigned weights are 1, 1, 1, 1, 7, 1, 1, 1 and 1.

Figure 5.13: Curvature plot of Figure 5.12.
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Figure 5.14: L(u). Assigned weights modified by method 1.

Figure 5.15: Curvature plot of Figure 5.14.
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Figure 5.16: L(u). Assigned weights modified by method 2.

Figure 5.17: Curvature plot of Figure 5.16.
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Figure 5.18: L(u). Assigned weights modified by method 3.

Figure 5.19: Curvature plot of Figure 5.18.
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Figure 5.20: L(u). All assigned weights axe 1.

Figure 5.21: Curvature plot of Figure 5.20.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 6 

Degree Reduction of Rational 

Bezier and Rationed B-Spline 

Curves

6.1 Introduction

Because of the limitation, on the maximum polynomial degree that certain 

computer systems can store and work with, often a curve of high degree must be 

approximated by a number of curves of lower degree. This process of approxi

mation is called degree reduction, (see [3, 4, 10, 36]). One of the main uses of a 

degree reduction algorithm is in rendering, curve-curve, curve-surface intersection 

calculations.

94
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To achieve degree reduction of a rational curve we follow the procedure men

tioned in Chapter 1 : Given 2D control points {p,} and their weights {to;}, we 

transform them to 3D  control points {[to,p; to;]} and use 3D  algorithms for de

gree reduction. The result of this procedure will be a set of ZD control points 

{[y; u;]}. Prom these, we obtain 2D control points {y;/u;}. The weights of these 

2D control points axe the numbers {t>;}.

The authors in [36, 3] use interpolation by choosing Chebyshev interpolation 

points or approximation in the least squares sense to reduce the degree of a Bezier 

curves. All of the resulting curves in [3, 4, 36] are in C7[0,1].

We consider degree reduction of a rational Bezier curve or a rational B-spline 

curve of degree greater than 3 by using rational cubic B-spline interpolation. The 

resulting curves are in (72[0,1]. A rational cubic B-spline is acceptable in most 

computer systems.

We shall prove that we always can find parameter values to interpolate at so 

that the resulting rational cubic B-spline will have positive weights.

6.2 D egree Reduction

Degree reduction of x(u) =  and s(u) =  with
Z ^ i= 0  * » '■ > 2 ^ i = 0

degree greater than 3 is achieved by (1.1.9) defined by (1.1.11) and (1.1.12) to 

approximate the curve.
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First we choose Ui , . . . , ul+i such that 0 =  ui < v,2  < . . .  < < ul+i = 1 .

For degree reduction of x(tt), we let

w: =  £  ™iBi ( u:) j  =  +  l  ( 6 .2 .1 )
t= 0

and
n

WjXj = Wjx(uj) = J 2  WibiB?(uj) j  = 1 , . . . , L  + 1. (6.2.2)
1=0

We obtain a C2 rational cubic B-spline approximation to x(u) by (1.1.9). 

Similarly for degree reduction of s (u), we let

IrfTl—1

Wj =  W iN f f a )  j  =  1 , . . . ,  L  +  1 (6.2.3)
i=0

and

L+7l—l

WjXj =  Wjs{uj) =  Y ,  wiPiN^Uj) j  = l , . . . , L + l .  (6.2.4)
t= 0

We obtain a C2 rational cubic B-spline approximation to s(u) by (1.1.9).

We will apply Theorem 2.3 to this degree reduction to obtain an error estimate.

D efinition 6.1 For the real numbers yi, i = 0 , . . . ,  m, define

y'aiS = nM0< t <TO

Definition 6.2 For w =  (ujq? • • •, wm), define the norm:

H I  =  max in *
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Let x  =  (x 0, . . . ,  Xro), where Xf =  ((xj)i, (xj)2) € E 2, fo r  i  =  0 , . . . ,  m . Define the

norm,:

x  111=  max max I (xi),- I .
1<J<2  0<i<m ' V 1

The convex hull property of Bezier curves and B-splines yield the following:

Lem m a 6 . 1  I f  all xbi > 0, then

Lem m a 6 . 2

Lem m a 6.3

0 <  tDjnf < inf J2wiB?(u),0<u<l "  *v '
t= 0

Ir̂ rV.—1
0 <  a w  <  inf 5 2  WiNi(u).0<u<l f-f *  ̂ '

—  t=0

ii^ ii >  i i E < w ( « ) i u
i=0

XrHl— 1
H I  >  II E  W « ) l l o o .

t= 0

III » b  lll> lll I > b tB , »  IIU .
t=0

Lr̂ n—1
“ p  i n f i l l  E  w sP iJv r(« )  iiioo,

t= 0

where ||| . IHoo is as defined on page 15.

(6.2.5)

(6.2.6)

(6.2.7)

(6.2 .8)

(6.2.9)

(6.2.10)
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D efinition 6.3 Let A; =  u»+i — u;

h =  max A;
0<t<£-l

and let

A rqj = A '"  V i  -  A '- 'q , = £
j = o

( \

\ 3 1

( - 1  y-iqi+i, (6.2.11)

where qi € E k k  =  1,2.

We have

*(»)) =  Ar< W M .
t o  -  r)! i=0

(6 .2 .12)

and
| n - r

(6.2.13)

The convex hull property of Bezier curve yields the following:

L em m a 6.4 We have

(6.2.14)

and

£ ( f > M r ( « ) )  I I U <  7 i " ~ r u  III A W  III.
t= 0 (n — r)!

(6.2.15)

where

||A’w\\ =  max I A TWi I,
11 0 < i < n - T  ' 1
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a n d

where

L e t

a n d

A r (? S b )  111= m a x  | [ ( A r ( t2 3 b ) ) j |[ ,

l l ( A r ( d > b ) ) j | |  =  Q m a x _ r  | ( A ^ b * ) ) , , -

m =  E  « » )
t= 0

Zf+Tt—l
M(u) = 53 u>ipM(u). 

i=0

Consider

d  d  L + n _1  L + n - l  a -

j r A u) =  ^  E  < W ( « ) )  =  »  E  N r ' \du du  j_Q  un+i—i Ui—i

a n d

d  _ . . d  / " t S T 1 L + n - l  A ( ~  \

s M (o )= s ( £  = »  e  ^ ,(" 'iP,:) jv ? -‘—0 i= l u n + i - l  — U f_ !

Note that

and let

2  « r ' M  =  i
i = i

We have the following Lemma

»  ( 6 .2 .1 6 )

( u ) .  ( 6 .2 .1 7 )
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L e m m a  6 .5  I f  R{u) 6 PC '1-oo[0,l] and (M (u ))7- 6  PC '1'oo[0 ,1], for j  =  1,2,

d L+n~1 n
I I M M I k ,  =  \ \ U  E  S U V T M JIL , <  JllAtSH (6.2.18)

t=0

and

III B M W  III.,.=111 f & m V i JVTW) I IU .<  j  III A(<ip) III. (6.2.19)

where ||.||oo,* and ||| . Ill^, are as defined on page 16.

Similarly we can obtain  th e  uniform norm  (defined as above) of the higher 

order derivative of R(u) and M (u).

Corresponding to  Lem m a 2.2 we have th e  following:

L e m m a  6 .6  I f  all u>i > 0 and h is sufficiently small such that

“  I ^ 2 ( n - 4 ) ! ^A4^ ^ 4’ 6̂ '2'20^

then we have
L+2 n

0 E  ViNi (“ )) £  «Wlnf» (6.2.21)
-  -  t= 0

Proof. This follows from Lem m a 6.1 and letting  z = w-mf in Lem m a 2.2 

L e m m a  6 .7  I f  all u>i > 0 and h is sufficiently small such that

\ ^ > \ \ \ D 2R i u ) U ,h \  (6 .2 .22)
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where R(u) £ P C 2,co[0,1], then we have

£+2 -t
inf. Z ) viNi ( u) > A -  (6.2.23)o<u<i 1 ‘ w  -  2
-  -  t = 0

j4Zso i/  all u>; >  0 and R(u) £ PC74,oo[0,1] and h is sufficiently small such that

w-mi > ^W & R M W oosh4, (6.2.24)

then we have (6.2.2S) .

Proof. Prom Lemma 6.1 and letting z  =  w^f in Lemma 2.2 the result of this 

Lemma follows.

Prom Lemma 6.6 and Theorem 2.3 we immediately obtain the following con

vergence theorem:

T heorem  6.1 I f  all un >  0 and h is sufficiently small such that (6.2.20) holds, 

then we have

III U P  -  * ( u )  I I U <  5n !(ll“ » 111 |» % £ *  111 T O * .  (6.2.25)

From Lemma 6.7 and Theorem 2.3 we immediately obtain the following con

vergence theorem:

T heorem  6.2 I f  all w, > 0 and R(u) £ PC,2'oo[0,1], ( M ( t t ) ) j  £ PC,2’oo[0,1], for 

j  = 1,2, and h is sufficient small such that (6.2.22) holds, then we have

HI L(u)  -  s(«) |||TO< ONI 111 D 2M(u)  HU,, +||£>2P(u)||oo,a HI (rip) IH)^
3ri?f 

(6.2.26)
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Furthermore, if  R(u) € PC4,co[0,1], (M(u))j 6  PC4’°°[0,1], for j  =  1,2, and h is 

sufficiently small such that (6.2.2 4 ) holds, then we have

in .  5(||w || HI D4M(u) IHoo,, +\\D4R { u ) \U  HI (w p) |||) 4
HI L(u) -  s («) | |U < --------------------------- -------------------------------------A •

(6.2.27)

6.3 W eights

We shall prove that we always can find interpolation parameter values which 

will guarantee positive weights of the resulting curves.

As indicated in section 1 of Chapter 1 we use cubic B-spline interpolation in 3 

dimensions to achieve 2 dimensional rational cubic B-spline interpolation. In this 

section we will discuss the third component of a 3D cubic B-spline interpolation, 

since we axe primarily interested in the weights.

clamped end conditions are used in the interpolation in this chapter. We will 

find bi and 6 3 1 , - 1  i n  the interpolation (1.1.11) for (6.2.1). If we change a B-spline 

which has the control points {[ufd* Ui]}o+ 2  into piecewise Bezier form, 6 1  will be 

the fourth component of the second control point in its first segment, and 6 3£_i 

will be the fourth component of the next to last control point in its last segment. 

Thus we have (see [10]):
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d 1
— (V ) ViN?(0)) = — 3(6i -  wo), since v0 =  wi = w0. 
du ££ A0

For the Bezier curve to,B? we have

=  »(™i “  ^o).du . „t=0

Under the clamped end conditions we have

j  n j  L + 2

t=0 t=0

It follows that

h  =  — d5o)Ai +  u’o- (6.3.28)O

Similarly, we obtain

hL - 1  =  -  d;n)A i +  wn. (6.3.29)

Now we have the following Theorem:

T heorem  6 .3  I f  the parameter values tto. . .  ul satisfy the condition

Aj_i <  (Af +  Ai+i), Ai <  (Ai_2  +  A;_i) fo r  all i = 2 , . . . ,  L, (6.3.30)

Ai =  A2, A l - i  =  A i, (6.3.31)

A i <  for i = 2 , . . . , L ,  (6.3.32)

and

, ^  . t Winf 3W0 3wn . .
h <  \ | |A -io  -7—r -  ~—T’ T ~ r= ---- |) ’ (6.3.33)(m +  l)n||Aio|| 4n | Wi — w0 \ 4n | wn - 1  — wn |
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where m is an arbitrarily fixed number greater than or equal to one, then Vi > 0 

for all i in (1.1.11) for (6.2.1).

Proof. Prom Lemma 6.1 it follows that all W{ defined in (6.2.1) are positive. So

vo =  u>i => 0 and vl+2 = wl+i = >  0. By (6.3.33) it follows that

Tt 3
h  =  g  (&i -  t5o)A1 +  w0 > -wo >  0

and

Ti 3
&3L-1 =  g  (^n-1 ~  t5„)AL + Wn > - W n  > 0.

Now we prove that (4.2.5) in Theorem 4.1 are satisfied. Prom

for i =  2,. ..,X ,

it follows that

Ai_1 >  , = — 7 T> for i =  2 , . . . ,  X. (6.3.34)Aj_i +  Af (m +  1) A,-_i m  +  1

Let

17 =  (6.3.35)
m + 1 v '

Since £-L0 W iB f ( u )  is a continuous function on [0,1], we have

11t w iB?(ui) -  l <  l | - £ ( i > B ? ( “ ) ) I U  I -  <y I
» = 0  t = 0  a u  i = 0

<  n||Ato|| j Ui -  Uj I, Vui ,Uj  e  [0,1].

It follows that, if k  satisfies (6.3.33), we have

| Wi -  wi+i |<r], for i =  1 , . . . ,  L. (6.3.36)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 6: Degree Reduction 105

where Wi is defined by (6.2.1). We assume h satisfies (6.3.33) from now on.

First we examine the first inequality of (4.2.5). Considering tha t (6.3.33) holds 

and wq = wi, we have

h  =  7t(*5i -  u50)A i +  w 0 <  7 « i .  
o 4

We rewrite the first inequality of (4.2.5) as the following:

(Ai +  A 2)w2 — \ ---TT 1" (A 2  +  A3 )l0 3 ^-] > 0. (6.3.37)
4 Zil +  A 2 P2

From (6.3.36) it follows that | Wi — w2 |<  77 and | w2 — W3 |<  77. We only 

discuss the case where w2 < w 2 +  77 and 1 0 3  < w 2 + tj. The proof of the other cases 

are similar and axe omitted. In this case,

(A i +  A 2)u;2 -  [ - w i  ^  +  (A 2 +  & z ) w z j ^

K * 2

> (Ai +  A 2)w2 — [~{w2 +  77)■ 2  +  (A2  +  A3 X1U2  + y)-7r]' (6.3.38)
4 Zii +  A2  P2

Now Ai =  A 2 and from the definition of 77 it follows that

^  - a . .  6 ^  * Al .
A 2w 2 -  ~ ( w 2 +  7 7 ) - — — —  =  A 2w 2 —  - - — ^ - r - U ) 2  -  7

and

4 A i +  A 2 4 A i +  A 2 4 A i +  A 2

=  A 2w 2 -  ^ A 2w 2 -  | a 2 t 7

3 a 5 .
=  g  A 2 u ) 2  -  - A 2t )  >  0

A i  w 2 — { A 2 +  A z) ( w 2 +  77) ^
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= (Aa + As) Al(i f +A3) w2 -  (Aj + A3 )? (u,2 + v)
A 1 + A 2 + A 3

=  (A z  +  A s) a 2 + 2a 3 " (A z  +
A j  + ^ 2 + ^ 3

>  ( A 2 +  A 3 ) a i (A?+ A3) A ^ A ^ 2 "  +  A s f f i  *  ° -
S 1 + S 2 + A 3

So (6.3.38) > 0, i.e. the first inequality of (4.2.5) holds.

Now we examine the second inequality of (4.2.5). Prom (6.3.36) it follows that 

| Wi—Wi-i |< Tj and | Wi — io,-+i |< r). We only discuss the case where Wi-i <Wi + rj 

and w;+i < W{ + rj. The proof of the other cases axe similar and are omitted. In 

this case,we have

(A j_ i  +  A i ) w i  — [ (A i-a  +  +  ( A  i +  A i+ i)w i+ i
Pi Pi

>  (A ;_ i  +  A i)w i — [(Af_2 +  A i_ i) (u ) ;  +  r])^-  +  (A {  +  A«+i)(u>i +  y ) i r ]
Pi Pi

=  u>;[(A{_i +  A i)  — ( A i - 2  +  A » _ i ) ^  — (A ; +  A f+ i)^ - ]
Pi Pi

- T } (A i-2  +  A i_ i ) - A  -  ri(Ai  +  A i + i ) j - .

F irst we have

A ;_ i  -  (A i  +  A i + i ) ^ -  =  — ( A »—2 +  A i - 1 ) ^ -

A i_ i  -  (A j  +  A i + i ) ^ -  >  —— ( A, —2 +  A i_ i) -^ - .  (6.3.39)
Pi A i_ i  +  Z\i Pi
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Similarly, we have

-  (A i_ 2 +  A i-i)-^- >  * — (Ai +  A i+i)^-. (6.3.40)
Pi Ai +  Ai+i Pi

From (6.3.39) and (6.3.40) it follows that

u>i[(Ai_ i +  Ai) — (Ai_ 2  +  A i_i)^- — (A,- +  Ai+i)^-]
Pi Pi

— 7/(Ai_2 +  Ai_i)-A -  7?(Ai +  Ai+l)-j£

> +AM)i +■* ATrkr'A‘+̂ >1
—jy(Ai_ 2  +  A i-i)^ - -  r?(Ai +  A«+i)^- > 0  for i =  2 , . . .  ,L  -  2.

Pi Pi

The last inequality is from the definition of 77, Lemma 6.1 and (6.3.34). Thus the 

second inequality of (4.2.5) holds.

The proof of the third inequality of (4.2.5) is similar to the proof of the first 

inequality of (4.2.5) and is thus omitted.

Now Theorem 4.1 implies Theorem 6.3.

Remark: If w\ = wq we choose

, ^  . , tOinf 3uS„ .
^  mint * 1 \ n * *»ti? i 1 ** » «)(m +  l)n|[Au;|| 4n \ wn- i — wn \ 

in (6.3.33). The other cases axe similar to the above.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 6: Degree Reduction 108

We can find &i and &3 L- 1  in the interpolation (1.1.11) for (6.2.3) under the 

clamped end conditions in a similar way as follows:

h  =  7 ( ^ 1  - tA j)^ -  +  “ 0  
0  hi

and

& 3L-1 =  - ( t i i j + n - 2  -  W L + n - l ) ^ -  +  W L + n -1 ,
h i

where h i  is the width of the first segment of the piecewise Bezier form of a B- 

spline which has the control points {[u^P; u5;]}o+n_1, and h i  is the width of the 

last segment of the piecewise Bezier form of a B-spline which has the control points 

{ [ u ^  tSi]}S+B"1.

Similarly, we can obtain

T heorem  6.4 I f  the parameter values Ui. . .  ul+i satisfy the condition

A i-i < (Af + Af+i), Ai < (Af- 2  +  A i-i), for all i = l , . . . , L ,  (6.3.41)

Ai =  A2 , A l- i =  A l ,

Ai <  mAi_i i =  2 , . . . ,  L, (6.3.42)

and

U  ^  _ : _ r  k t S i n f  Z h i W o  Z h i W L + n - . i  ^  r c  o  a o \
tt ^  mm( . i i \ i (A*' i i5yi  I *  *' 1 * a 1 *■ *' (6.3.43)(m +  l)n||A io|| 4n | u>i -  u>0  I 4n | u; i + n _ 2  -  WL+n.  1 |

where m is an arbitrary fixed number greater than or equal to 1, then we have 

Vi > 0 in (1.1.11) for (6.2.S)
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6.4 Algorithm s and Exam ples

Given a rational Bezier curve of degree greater than three we have the following 

algorithm to find a cubic rational B-spline with positive weights which approxi

mates the original rational Bezier curve within a given tolerance e > 0. 

A lgorithm  I:

1 .  j  =  1

Let hi be a value of h that satisfies (6.2.20) in Lemma 6.6, 

let h2 satisfy

5ra!(||t5|| [|1 A4(u>b) HI +HA4u>H |[| (job) |[|) 4 , .
192(n-4)!u)^  ** ~  (6A44)

and let

hi = m in (h i,h2).

2. Choose parameters such that Ai =  A2 , A l- i = A l,

A i, i = 2 , . . . , L  satisfy (6.3.30) and all Ai < hj.

3. Obtain the w^s by (6.2.1) and then examine if the to<s satisfy (4.2.5). If so, 

then go to step 5.

4. j  = j  + 1, hj = \hj_i go to step 2.

5. Interpolate by using (1.1.9) defined by (1.1.11) and (1.1.12) for (6.2.1) and 

(6.2.2) respectively.
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The definition of hi, h2 and hi ensure that if all A; < hi, then the interpolation 

error will be less than e by Theorem 6.1.

Theorem 6.3 tells us that if the parameter values of the interpolant satisfy the 

parameter condition of Theorem 6.3, and h satisfies (6.3.33), we will obtain all 

v, > 0 by (1.1.11) for (6.2.1). Condition (6.3.33) is much stricter than (6.2.20) 

and (6.4.44) in general cases, since the power of h in (6.2.20) and (6.4.44) is four. 

(See the following examples). Also (6.3.33) is a sufficient condition and thus even 

if (6.3.33) is not satisfied, all u; may be positive (see the following examples). An 

alternative is not to find h which satisfies (6.3.33), but instead to consider an 

iterative method to find h which is as large as possible while still yielding positive 

weights. Here hi is a good initial choice, since the definition of hi and Lemma 6.6 

imply that the resulting weight function

Z r+ 2

y~) V{Nf(u) > 0 , for all u £ [0,1].
t=0

In the first loop, Step 2 ensures that the A(s satisfy (6.3.30) of Theorem 6.3 

and all A,- < hi. We always can choose m  large enough such that (6.3.32) holds. 

Thus, in practice we ignore (6.3.32). The interpolation error will be less than e 

by Theorem 6.1, since all A, < hi. From the second loop, we can choose the 

middle points of each segment as extra parameter values and combine them with 

the original ones to form new parameter values. The new parameter values still

A A

satisfy the parameter condition of Theorem 6.3 and all Ai < hj < h i.

Step 3 check if Wi satisfy (4.2.5) instead of interpolating to save time to check
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if all Vi axe positive now.

Step 4 ensure that hj -*■ 0 as j  -* oo. hj —>• 0 and Theorem 6.3 implies that 

algorithm 1 will produce all ut- > 0.

Step 5 produce a C2 cubic rational B-spline. The definitions of hi, /i2, hj and 

step 2 ensure that the interpolation error is less than e by Theorem 6.1. Thus 

from the above discussion we have the following:

T heorem  6.5 Algorithm I  produces a C2 rational cubic B-spline with positive 

weights which approximates a given rational Bezier curve of degree greater than 

three within a given tolerance e > 0 .

We have a similar algorithm for the degree reduction of a rational B-spline 

curve within a given tolerance e > 0:

A lgorithm  II:

1. j  = 1

Let hi be the value of h that satisfies (6.2.22) in Lemma 6.7, let h2 satisfy

(H I 111 D 2 M(u) nice,, + p p ifo ) lk . ill (gp) 111)A2 < (6 445)
3uJjLf 2 ’

where (M (u))j £ PC2,ac[0,1], for j  = 1,2 and 3, and J?(u) € P C 2,0°[0,1].

If (M (u))j 6 PC74,oo[0,1], for j  = 1,2 and 3, and R(u) £ PC4,co[0,1]. Let 

hi be the value of h that satisfies (6.2.24) in Lemma 6.7 

and let h2 satisfy

5(1H[ HI £ 4M(u) H k , + [[j^ (u )llo .,, Ill (wp) HI) 4 rfi, 4fn
192U& 2 “  K ’
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and let

hi =  m in(^i,/t2).

2. Choose parameters such that Ai =  A2 , A l- i =  A£,,

A i, i =  2 , . . .  ,L  satisfy (6.3.41) and all A; <  hj.

3. Examine if ihi, s obtained by (6.2.3) satisfy (4.2.5). If so, then go to step 5.

4. j  = j  + 1, =  \h j- i  go to step 2.

5. Interpolate by using (1.1.9) defined by (1.1.11) and (1.1.12) for (6.2.3) and 

(6.2.4) respectively.

We have the following:

T heorem  6.6 Algorithm II  produces a C2 rational cubic B-spline with positive 

weights which approximates a given rational B-spline curve of degree greater than 

three within a given tolerance e > 0.

Example 6.1 is for degree reduction of a rational Bezier curve of degree 8. 

Given e =  0.1, we obtain hi < 0.088 by (6.2.20) and h2 < 0.048 by (6.4.44), 

so hi =  0.048. We choose equal AJs so m  may be chosen as 1 in (6.3.32). In 

order to satisfy (6.3.34) in Theorem 6.3 , h should be less than 0.0048. But we 

choose hi = 0.048. Thus we must subdivide the interpolation interval into 22 

subintervals(i.e. L  in (1.1.9) is 22). In this example all u; > 0. Actually, even if 

we choose 8 subintervals, we still have all u; > 0.
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Figure 6.1 is the graph of the given 8th degree rational Bezier curve. The bot

tom of the heaxt in Figure 6.1 has a corner. The weight of the control point there 

is 14 and the weights of the other control points range from 1 to 1.2. Figure 6.2 is 

the graph of the resulting rational cubic B-spline, with 22 subintervals. There are 

no apparent significant differences between Figure 6.1 and Figure 6.2. Figure 6.3 

is the graph of the resulting rational cubic B-spline, (with 8 subintervals). This 

function has positive rational weights.

Example 6.2 is for degree reduction of a rational B-spline in two dimensions. 

We consider a rational B-spline of degree 4 with 19 simple knots. Given e =  0.1, we 

obtained hi < 0.246 by (6.2.20) and h2 < 0.014498 by (6.4.46), so hi = 0.014498. 

We choose equal A(s so m may be chosen as 1 in (6.3.32). In order to sat

isfy (6.3.43) in Theorem 6.4, h should be less than 0.001389!. But we choose 

hi =  0.014498, requiring 69 subintervals.

Figure 6.4 is the graph of the given 4th degree rational B-spline. The mouth of 

the face in Figure 6.4 has a corner. The weight of the control point there is 12 and 

the weights of the control points near it are as low as 1. Figure 6.5 is the graph of 

the resulting rational cubic B-spline with 69 subintervals. There axe no significant 

differences between Figure 6.4 and Figure 6.5. In this example all Vi > 0. We 

know that (6.4.46) is a sufficient condition. Figure 6.6 is the graph of the resulting 

rational cubic B-spline curve with 24 subintervals and its weights are all positive. 

However there are small differences between Figure 6.4 and Figure 6.6. Figure 6.7
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is the graph of the resulting rational cubic B-spline curve with 12 subintervals and 

one of its rational weights is negative.

Example 6.3 is for degree reduction of a rational Bezier curve in three dimen

sions. Farin found that an octant of the sphere can be exactly represented by 

a certain rational quaxtic Bezier triangular patch, and then eight copies of this 

octant patch can be assembled to represent the whole sphere. There are no sin

gularities at the north and south poles in this representation of the whole sphere. 

We know that the boundary curves of a triangular patch are determined by the 

boundary control vertices (having at least one zero as a subscript), i.e. the three 

boundary curves of the rational quartic Bezier triangular patch representation of 

the octant of the sphere are the rational quartic curves. We use these three ratio

nal quartic curves as an example. Given e =  0.1 we obtain hx <  1.23 by (6.2.20) 

and h% < 0.8 by (6.4.44), so hx =  0.8. We choose equal A\s so m  may be chosen 

as 1 in (6.3.32). In order to satisfy (6.3.34)

in Theorem 6.3 , h should be less than 0.68. But we choose hx =  0.8, so we 

must subdivide the interpolation interval into 2 subintervals (i.e. L  in (1.1.9) is 

2). In this example all v; >  0. Actually, even if we choose the original interval, 

we still have all u; > 0.

Figure 6.8 is the graph of the three rational quartic Bezier curves. Figure 6.9 

is the graph of the resulting rational cubic B-spline curve with 2 subintervals. 

There are no apparent significant differences between Figure 6.8 and Figure 6.9.
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Figure 6.10 is the graph of a resulting rational cubic B-spline curve with the 

original interval and its weights axe still positive. There axe few differences between 

Figures 6.8 and 6.10.

Example 6.4 is for degree reduction of a rational B-spline curve in three di

mensions. We use a rational B-spline curve of degree 4 with 26 distinct knots as 

a example. Given e =  0.1, we obtain hi < 0.447 by (6.2.20) and h2 < 0.0243 by 

(6.4.46), so hi =  0.0243. we choose equal A-s so m may be chosen as 1 in (6.3.32). 

In order to satisfy (6.3.43) in Theorem 6.4, h should be less than 0.0031. But we 

choose hi =  0.0243, so we need 42 subintervals.

Figure 6.11 is the graph of the given 4th degree rational B-spline curve. Fig

ure 6.12 is the graph of the resulting rational cubic B-spline with 42 subintervals. 

There axe no significant differences between Figure 6.11 and Figure 6.12. In this 

example all Vi > 0. Figure 6.13 is the graph of the resulting rational cubic 

B-spline curve with 28 subintervals and its weights axe all positive, but there is 

little difference between Figure 6.12 and Figure 6.13. Figure 6.14 is the graph 

of the resulting rational cubic B-spline curve with 16 subintervals and two of its 

rational weights axe negative.

In these four examples both algorithms produce rational cubic B-spline curves 

that approximate the original curves within a tolerance of e > 0 and whose weights 

axe all positive.
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Figure 6.1: 8th degree rational Bezier curve.

Figure 6.2: L(u) with 22 subintervals.
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Figure 6.3: L(u) with 8 subintervals.

Figure 6.4: 4th degree rationed B-spline with 19 knots.
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Figure 6.5: L(u) with 69 subintervals.

Figure 6.6: L(u)with 24 subintervals.
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Figure 6.7: L(u) with 12 subintervals.

Figure 6.8: 4th degree rational Bezier curves (three boundary curves).
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Figure 6.9: L(u)'s (three boundary curves), each with 2 subintervals.

Figure 6.10: L(u)'s (three boundary curves), each with 1 subinterval.
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Figure 6.11: 4th degree rational B-spline with 26 knots.

Figure 6.12: L(u) with 42 subintervals.
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Figure 6.13: L(u) with 28 subintervals.

Figure 6.14: L(ti) with 16 subintervals.
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