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ABSTRACT

Best Approximation with Geometric Constraints

by

Yuesheng Xu

Old Dominion University, July 1989

Director: Dr. S. E. Weinstein

This is a study of best approximation with certain geometric constraints. Two
major problem areas are considered: best L, approximation to a function in L, |0, 1]
by convex functions, n-convex functions, (m, n)-convex functions and (m, n)-convex
splines, for 1 < p < oo, and best uniform approximation to a continuous function

by convex functions, quasi-convex functions and piecewise monotone functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgments

I wish to express my deeply sincere gratitude to Dr. S. E. Weinstein, my Ph.
D. advisor, for his continuous encouragement and significant guidance in various
areas of numerical analysis and approximation theory and to Dr. J. J. Swetits, one
of my committee membhers, for his generous suggestions and constructive criticism
of my research which made great improvements of this dissertation. I would also
like to thank Dr. H. Kaneko and Dr. M. Bartelt for serving on my committee. A
special note of appreciation is due to Dr. J. Tweed, Chairman of Department of
Mathematics and Statistics, for providing a very nice academic environment and
financial support during the last three years.

Particular thanks are in order for Professor Yuesheng Li and Professor Youqain
Huang of Zhongshan University, P. R. China, and Dr. C. A. Micchelli of IBM for
their encouragement and recomendation which made it possible that I pursued my
further study in the United States.

I wish to thank my wife Yumei Hou, without whose understanding and support
this work would never have been completed. This dissertation is dedicated to my

wife.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ....ccoiitiiiirirnmnnriniininiieeiissensnsnrniessessseesssnsssssssasnee

1.1 INOLALIOM «uueerereniierrcreerressrasiessiscstiesiesiietreseserseessssierssosssrassssssnsossrnssnssssassens
1.2 A Brief SUTVEY .coverieeiiiiiiiinirnrieiininisiinssss s sisessesissseseisssessssssssssssssnssnsens
1.3 A General Description of This Thesis ....cccocveeveiriiiiiieiiiiimnnnnnniineieriiieeene,

CHAPTER 2. BEST CONVEX APPROXIMATION

IN Lp FOR 1 S P < 00 ttirrerrrninsninnneeninnnnnsnnnestesi sttt ss s s e
D2 I BYUR oo Yo RO TSA 5 Lo 1 RO N
2.2 Preliminaries vvueeiereecerereierteiirecerteenneeceresmnnssesesssrseseenssessssssessusssssesssssnsssssnsans
2.3 CharacteriZatiOn c..e.cceereeecereenceermnenreremnerrsneseseerssrsesssnsescasssssssenssssenssessnanness 13
2.4 Structural Properties of Best Convex L, ApproXimation ........ccceeveeerenenee 18

CHAPTER 3. BEST n-CONVEX APPROXIMATION

IN Ly FOR 1 < P < 00 trierreeterreeesiesisstotentsssaransessassssesssssssassnsnsstessensessssssssesaessnas 22
B 200 115 0 Yoo LV 3 Lo ) 1 A O 22
3.2 Some Properties of n-Convex Functions .....ccccecvveerieieueiisecrniieniinieninnennnnn. 23
3.3 Characterization of n-Convex Approximations .......ccccccccecerierrenissenicercnnnns 26
3.4 Some Additional Properties of Best n-Convex Approximation .........c...... 31

CHAPTER 4. BEST L, APPROXIMATION

FOR 1 < p < oo WITH MULTIPLE CONSTRAINTS ...coeeeerriiiiirinrrrnnnnen. 36
0 6117 0o RVl 3 Lo+ U PRRPPPRPI 36
4.2 Existence of A Best Lj ApproXimation ....ccceeeeerieeeirnneesinrinensnnniiinniniennnan 37
4.3 Characterization of Best (m,n)-Convex L, Approximation .........ccceeeuies 38
4.4 Best Monotone Convex Ly, ApproxXimation ......ccueeveeeiiieninsneninnnicnnnieen. 42

CHAPTERS5. BEST L, APPROXIMATION BY

MULTIPLY CONSTRAINED SPLINES FOR 1 < P < 00 trvutreremerenencsersncrininneninnns 49
5.1 INtTOQUCEION vevuueeeernreiieneirrereerrireriirtreierasseeee s sesnssessennressaenssenmneseersaseses 49
5.2 Characterization of L, Approximation for 1 < p < 00 cvveerrvirercieencnnnne. 50
5.3 Uniqueness of L; ApproXimation ...c.cceceieiiiiiumieinniicimmiminnnenneenmn e 55
5.4 ADDIICALIONS 1ruuieeeeeceiciiierrrieneeeseeereneennerseeemnemnesraerrearnassssssrsesaresisersssessssees 60
il

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER6. A DUALITY APPROACH TO

BEST CONVEX UNIFORM APPROXIMATION ....cccceuiimiririiiurirnneninnnennnaniennen 62
6.1 INtTOAUCEION cevrneneeriereeeieieerreternneessierterreraesoseresssaesssnssssiesstasrsscssssssnansonsons 62
Ea T2 D RV S 63
6.3 Some Properties of Best Convex ApproxXimation ......ccccccveumsvnscveensinsenens 70
CHAPTER 7. BEST QUASI-CONVEX UNIFORM APPROXIMATION ............. 75
7.1 INETOUCEION «uveererrenrrcrereerrereeereecenvtretieesrerrestenaessessesesnennmssnsasscarmrassarsseenne 75
7.2 Preliminaries cvucecreeeiieeeiiiieeeecreenteernrseesserasensessesisssraensesssneeensseansssessenane 76
7.3 DUALEY coviveeeneeriirereniceiiriimre st tresie et st nstessessessessseeebba s sessasaeansssssensans 84
7.4 Optimal KNOtS ciivveeiieeiiiirniirerieeernnirneeeeaseenimrsseesrenseceasenssstsenssensssssssnnnn 86
7.5 The Characterization of the Best Approximations ...ccccccvveiiriiericircvacininnnn 87

CHAPTER 8. BEST PIECEWISE MONOTONE

UNIFORM APPROXIMATION ....ciiiiiiiiiiiiinieiiinieernennineerssicnesensstsstensesnesenssssmessenns 91
P30 B 61 oo Yo R Lk 1 Lo NN R 91
8.2 PrelilmiNaries ..iieieeeieeieireueiierrteeierterrerierirereererensessensnsssrerasssassosssssrassnnsasens 93
8.3 Duality and EXISTEIICE ..cvvuveirrirriienreraeiirenrerereeiieerenscierermsesnneeeerernsnsssesrassenns 96
8.4 CharacteriZAtlON ...ceueeeeeeeeeiemreerrririoreererensseeareeereestesserereersnsesssssssasssassane 99
8.5 Nonuniqueness of Best Approximation .........ccccevveciveeeceerreccenreenenecunnnnnnn, 101

CHAPTER 9. THE COMPUTATION OF A BEST PIECEWISE MONOTONE

UNIFORM APPROXIMATION .cuettniiietieriinrrreiienerrsseeseecrensiessemrsssrsssesnssssrensees 106

0.1 PreliliMaries .oieueeeeieeieeeirneieiienieteererieranteaesseesssreissnerensensssssensssnsessnssossenser 106

9.2 Characterization of the Set of Best Knot Vectors ...ceeeercereencrniernerenennenens 109

9.3 Nondegenerate ApproxXimation ...c.cucccieeiiieeienireiiesiinicueiiiriiecnneioseiesesennes 113

9.4 An Algorithm for Computation ........cceviveiiiiiiiiiiiiiiniiiinniiiiiciecreennneneen, 117

REFERENQCES ..ontieiiiiiiitiiiertetseretaseesetiteetsestssssesssssssssssessenssssssessssssssssssenssses 123
iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1: Introduction

1.1. NOTATION

This dissertation is devoted to a study of best approximation with certain
geometric constraints. More precisely speaking, the basic problem that will be
considered is best approximation of a given function f in a Banach space, for ex-
ample, Cla,b] or Ly[a,b] for 1 < p < oo, by a set of functions which satisfy convex,
quasi-convex, n-convex, or piecewise monotone constraints.

Let X be a Banach space. In the following chapters, X will be specified to be
Cla,b], Bla,b] or Lyla,b] for 1 < p < oo, where Cla,b] is the space of continuous
functions with the supremum norm, Bla, b] is the space of bounded functions with
the supremum norm and Ly[a,b] is the space of pth power Lebesgue integrable
functions with the norm ||f||, = {f: |f(z)|Pdz}*/P. Let K be a nonempty subset
of X, which will be specifically defined in the concrete context. A function g* € K
is said to be a best approzimation to f € X from K, if g* satisfies the following

1
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condition:
If—9g*llx = inf{}|f —gllx : 9 € K},

where ||.||x is the appropriate norm on X.

1.2. A BRIEF SURVEY

There has been much interest in best approximation by monotone, convex,
quasi-convex, n-convex, or piecewise monotone functions. In the 1960’s and 1970’s,
much attention was paid to uniform approximation by finite dimensional subsets
subject to certain constraints (see survey papers [7| and [28]). Recently, an in-
creasing number of papers were devoted to best approximation by the whole set of
monotone, convex or generalized-convex functions.

For monotone approximation, constructive solutions to best L, approximation
were presented in [21] for p = 1 and in [50] for 1 < p < oo, a characterization of best
monotone L, approximation for 1 < p < co, was proved in [52], and the uniqueness
of best monotone L; approximation was shown in [48]. A representation of the
error of monotone least square approximation was established in [51]. Some further
properties of best monotone L, approximation were investigated in [25]. The Lo
case was considered in [53], [58], and [59].

For convex approximation, the existence and uniqueness of a best convex L;
approximation to a continuous function were presented in [24]. The existence of
a best uniform convex approximation to a bounded function was demonstrated in

2
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[56]. The characterization of best uniform convex approximation to a continuous

function was announced in [6] and proved in [69)].

Burchard [6] and Brown [3] characterized a best n-convex uniform approxima-
tion. Certain aspects of best n-convex uniform approximation were discussed in
[71]. With certain additional restrictions, Zwick [70] presented a partial characteri-
zation of a best n-convex L; approximation and proved the uniqueness of the best
n-convex L; approximation. The existence of best n-convex L; approximation was

proved in [22] and [62], by different approaches.

Ubhaya first considered the problem of best approximation by quasi-convex
functions. In [63], it was proved that a function is quasi-convex on [a, b] if and only
if it is nonincreasing on [a, p) (or [a,p]) and nondecreasing on [p, b] (or (p,d]), with
some p € [a,b]. With this result, Ubhayla employed his results on best monotone
uniform approximation [58, 59] to study best quasi-convex uniform approximation.
Best L, approximation for 1 < p < oo by quasi-convex functions was also considered
by Ubhaya in [61]. A more general result concerning the existence of best L,

approximation from a nonconvex subset was presented in [62].

Best piecewise monotone uniform approximation is a natural generalization of
best quasi-convex uniform approximation. However, this topic has not yet drawn a
lot of attention. Two papers that the author found to be connected with this topic
are [44] and [45]. The discrete case was considered by Cullinan and Powell [9)].

3
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1.3. A GENERAL DESCRIPTION OF THIS THESIS

This thesis will deal with two major problem areas: chapters 2 through 5
are devoted to the problems of best L, approximation by convex, n-convex, and
(m,n)-convex functions; chapters 6 through 9 are concerned with the problems of
best uniform approximation to a continuous function by convex, quasi-convex and

piecewise monotone functions.

In Chapter 2, a characterization of a best L, approximation, for 1 < p < oo,
by convex functions is presented and some structural properties of the best convex
approximations are established. In Chapter 3, best n-convex L, approximation,
for 1 < p < oo, is considered. A characterization of best n-convex L, approxi-
mation for 1 < p < oo is proved and some properties of best approximation are
discussed. In Chapter 4, the existence of a best L; approximation with multiple
constraints is proved and a characterization of this best approximation is estab-
lished. This characterization is used to discover some relationship between best
convex L, approximation and best monotone convex L, approximation. In Chap-
ter 5, a characterization of best L, approximation by multiply constrained splines
for 1 < p < oo and a sufficient condition for the uniqueness of best L; approxima-
tion are established. In the last 4 chapters, best uniform approximations by convex
functions, quasi-convex functions, and piecewise monotone functions are studied.
In Chapter 6, a duality theorem is established that expresses the error of the best

4
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convex uniform approximation in terms of the suprerum of a linear functional and
it is used to investigate some properties of best approximation. In Chapter 7, a
similar duality theorem is established to characterize both best quasi-convex uni-
form approximation and the set of optimal knots. In Chapter 8, a duality theorem
is established that gives a representation of the error of best piecewise monotone
uniform approximation. This duality leads to characterizations of both a best piece-
wise monotone uniform approximation and the set of knot vectors of best piecewise
monotone uniform approximation. Chapter 9 is a continuation of Chapter 8, where
an alternative characterization of the set of knot vectors of best piecewise monotone
uniform approximation is proved and an algorithm for the computation of a best
piecewise monotone approximation is developed by this characterization.

The main approaches used in L, approximations are general forms of inte-
gration by parts which will be established in the corresponding chapters, and the
following duality theorem of best L, approximation, for 1 < p < oo, by a convex

set:

THEOREM A [12]. Let f € L, = Lp(0,1], for 1 < p < co. Let Kp be a convex
set in L,. Then,
(i) for 1 < p < 0, g} € K, is a L, best approximation to f from K, if and
only if
1
[ G =0 -a)ls - 6P~ 2 0, forall g€ Ky
0

5
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(ii) for p =1, g} € K; is a Ly best approximation to f from K; if and only if

there exists a ¢ € Lo, with ||¢f|ec =1 and fol o(f — g7) = |If — 911 satisfying

1
/ (¢f —9)¢ > 0, forall g€ K;.
o

The a.pprba.ch used to investigate best uniform approximation is the represen-
tation of the error of a best approximation that will be established for each specific

problem.
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Chapter 2: Best Convex Approximation in L, for 1 <p < oo

2.1. INTRODUCTION

In this chapter, best L, approximation to f € Ly[0,1] from convex functions
in L, = L,[0,1], for 1 < p < oo is considered.
Let K, C L, denote the set of convex functions in Ly. Then K, is a closed

convex set. g* € K, is called a best conver L, approzimation to f € Ly if

If—g*ll, = inf{||f —g|lp: forall g€ Kp}. (2.1.1)

For 1 < p < oo, both the existence and uniqueness of a best convex L, approx-
imation follow from the facts that K, is closed and convex in the reflexive space
L, and that the L, norms are strictly convex. The existence and uniqueness of a
best convex L; approximation g* to f € C[a,b] is presented in [24]. In addition, it
is proved in [24] that g* must be piecewise linear where it does not agree with f.
The existence and uniqueness for best convex L; approximation with the continuity

condition relaxed is presented in [23].
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In this chapter, we characterize best L, approximation to f € L,[0,1] for
1 < p < oo by convex functions in L,[0, 1]. We show that a best approximation g*
must be

(i) linear on any interval on which g* < f a.e.,

(ii) a linear spline with at most one knot on any interval on which ¢* > f a.e., and
(ili) piecewise linear where g* # f a.e..
Furthermore, it is proved that g* is also the best convex L, approximation to f on
any maximal subinterval on which g* # f a.e..

Because of our choice of norms, we identify as one function any two functions
that differ on a subset of [0,1] of measure zero. Thus, approximation may equiv-

alently be considered on [0,1], or on any subset of [0,1] of full measure (such as

(0,1)).

2.2. PRELIMINARIES

The duality Theorem A in Chapter 1 provides the following two characteriza-
tions for best convex L, approximation:

(i) For1l < p < o0, g* is the best L, approximation from K, to f € Ly if and only

if for all g € K,

/O (0" —a)(f —g")f —g" P2 > 0. (2.2.1)

(i) For p =1, g* is a best L; approximation from K to f € L; if and only if there

8
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exists a ¢ € Loo, With ||@1]|co = 1, such that

1
[ 7=a18 =17 = "I, (2.2.2)

and for all g € K;

/0 1(g" —g)¢1 > 0. (2.2.3)

In addition, if f(z) # ¢*(z), then ¢,(z) = sign(f(z) — g*(z)).

The above characterizations of best convex L, approximation result from the
convexity of the sets K, but do not utilize the convexity of the functions in these
sets. However, the characterization theorem (Theorem 2.1) presented in section 2.3
of this chapter does depend on the convexity of the functions in K, and is simpler
than the above in the sence that unlike (2.2.1) or (2.2.3) which depends on f, g* and
on all g € K, Theorem 2.1 depends solely on f and g*. With this characterization

as our goal we complete this section with three lemmas.

LEMMA 2.1. For1 < p < oo, let g; be a best L, approximation from K, to
fE€Ly. For1 <p<oo,let¢p = (f —gp)|f —g;|”'“2, and for p = 1, there exists a

¢1 € Lo, satisfying ||¢1]lec = 1, and (2.2.2). For 1 < p < oo, define

hp(z) = /OZ ¢p(u)du, (2.2.4)
and
Hy(z) = zh,,(u)du. (2.2.5)
9
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Then,

() Jo 935 = O

(ii) fol gdp < 0, forall g€ Kp;

(iii) Hy(z) < 0, forall z€[0,1];

(iv) hp(1) = Hp(1) = 0;

(v) If Hp(z) =0, then hp(z) =0, and there exists an € > 0 such that

hp(t) >0 for all t€ (z—€o,z), and hy(t) <O forall tE€ (z,7+ €).

PROOF: (i) It follows from (2.2.1) and (2.2.3) that for 1 < p < oo,

1 1
/ 9pPp 2> / g¢p, forall g€ K. (2.2.6)
0 0

Letting g = 2g; in (2.2.6) we have fol gpdp < 0. Similarly, letting g = (1/2)g;
in (2.2.6) we have fol gy$p > 0. Hence, we have (i).
(ii) Combining (i) and (2.2.6) gives (ii).

(iii) For 0 <t < 1, define

t—z 0<z<t¢
0 t<z<l.

g+(z) = {

Then, g; € K, for 1 < p < o0, and by (ii),

/01 9t(z) dp(z)dz = /ot(t—z) ép(z)dz < O.

This implies (iii).

10
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(iv) By alternately choosing ¢ = 1 and g = —1 in (ii), we have hy(1) = 0. From
(iii), Hp(1) < 0. Furthermore, if we let g = z in (ii), by using ky(1) = O we find
that Hp(1) > 0. Hence, Hp(1) = 0.

(v) If z = 0 or 1 then hp(z) = Hp(z) = 0. Thus assume that 0 < z < 1 and

that Hy(z) = 0. Then, for sufficiently small ¢ >0

z4e€ z+e
0> Hy(z+e€) = / hp(u)du = / hp(u)du.
o] z

Thus, by the continuity of hp, there exists an €; > 0 such that hy(t) < 0, for all

t € (z,z+ €). Also,

0> Hp(z —¢) =/

z—€ z
hp(u)du = —/ hp(uw)du,
0 z—e€
which implies, by the continuity of k,, that there exists an €, where 0 <€y <€

such that hp(t) >0 for all t € (z — €,z). The above two arguments together

imply that hy(z) = 0.

We now state some general properties of convex functions, which are needed
in section 2.3. A function g is said to be piecewise linear on (0,1) if there is a
countable union of open intervals, {I:n =1,2,...}, such that g is linear on each

I, and UZ | I,, = [0,1].

LEMMA 2.2. Let g be convex on [0,1]. Then
(i) g is absolutely continuous on (a,b) for any 0 <a <b < 1;

11
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(i) the right and left derivatives ¢!, and g_ exist at each point in (0,1), ¢’ exists
a.e. in (0,1), and ¢’ = ¢’ = ¢/, a.e. in (0,1);

(iii) ¢', ", and ¢/, € Ly[a,b], whenever 0 <a <b<1;

(iv) ¢, and g’ are monotone increasing in (0,1), ¢, is right-continuous and g’ is
left-continuous in (0,1);

(v) if g is not strictly convex on any subinterval of (0,1), then g is piecewise linear

on (0,1).

PROOF: Proofs of (i) - (iv) can be found in [41] and [42].

(v) By the hypothesis, there is an open interval on which g is linear. Let
{I,} be the collection of all open intervals such that g is linear on each I,. By
Proposition 9 in Royden [42] page 32 (Lindelof), there is a countable subcollection,
{I,, : »n = 1,2,..} such that Uply = U, I,,. If U, I,, # [0,1], then the
complement of this set in [0,1] contains an interval I. But, then g is linear on a

subinterval of I, which is a contradiction. Thus, g is piecewise linear on (0,1).

LEMMA 2.3. Let g¢ € L1[0,1]. Assume that g is also of bounded variation on
[a,b] whenever 0 < a < b < 1, and that g is also monotone in both some right
neighborhood of 0 and some left neighborhood of 1. Let h(z) = [ ¢(t)dt satisfy

k(1) = 0. Then,

/0 9(z)é(z)dz = - /0 h(z)dg(z). (2.2.7)
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PROOF: If g(0) and g(1~) are finite, then by integration by parts and the hy-
pothesis that k(1) = 0, the conclusion holds.

If |g(0%)| = 400 and |g(17)| = +oo, then there exist an €o > 0 such that |g(z)|
is both nondecreasing on (1 — €o,1) and nonincreasing on (0,€0). For any € such

that 0 < € < €,

/1—€ g(z)d(z)dz = g(1 — €)h(1 — €) — g(e)h(e) — /; - h(z)dg(z).

Since |g¢| € L1[0,1], and since

1 1

o1 - 9r -9l <lot -] [ 18lalds< [ lo@)s(a)lez

1—¢ 1—¢
and
0(@h(] <1909 [ 16(2)ld < [ la@)é(a)
lg(1 — €)h(1 —€)| — 0, as € — 0, and |g(e)h(e)| — O, as € — 0. Hence, equation
(2.2.7) holds in this case.
If |g(0%)] = +o00 and g(17) is finite (or if |g(17)| = +oo and ¢(0™) is finite)
then we can similarly show that |g(€)h(e)] — 0, as € — 0, and g(17)h(17) =0 (or

lg(1 — €)h(1 — €)| — 0 as € — 0 and g(0*)R(0%) = 0).

2.3. CHARACTERIZATION

The purpose of this section is to establish the characterization of best convex
L, approximation by using the duality theorem and Lemma 2.3.

13
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THEOREM 2.1 (CHARACTERIZATION). (a) For 1 < p < o0, g, € Kp is the best
convex L, approximation to f € L,[0,1] if and only if
(i) hp(1) =0,

(ii) Hy(1) =0,

(iii) Hp(z) <0 forall z€[0,1],

(iv) if Hp(zo) <O for some zo € (0,1), then g, is a straight line in a neighborhood
of zg.
(b) For p = 1, g} € K, is a best convex L; approximation to f € L4[0,1] if

and only if there exists a ¢; € Lo, satisfying ||¢1]lec = 1 and (2.2.2), such that

conditions (i)-(iv) in (a) hold with p = 1.

PROOF: We demostrate the proof for (a) only.
(Necessity) (i), (ii), and (iii) are proved necessary conditions in Lemma 2.1.
Hence, it remains to show that the best approximation g; satisfies condition (iv).

To this end we prove the following equation:

[ s@s@e = [ H@as. (23.1)

By Lemma 2.3, we have

/0 63 (2)dp(2)dz = / hp(=)(a)'s (0) ds. (2.3.2)

Since Hp(0) = Hp(1) = 0, by part (v) of Lemma 2.1, there exists an €g > 0 such
that hy(t) >0 for all t € (1 — €o,1), and hy(t) < 0 for all ¢ € (0, &o).

14
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Assume that (g3)}(07) = —oo and that (g7)} (17) = +o0. Let 0 < € < €0 s0

that (g})!, (¢) <0 and (g;)} (1 — €) > 0. Then,

1—e

() (42)'s () da
= Hy(1- () - 9 ~ Bp(d() ()~ | T H,(2) dlg2)’s-
Also, .
0< ~Hy(1- )1 -9 = @)s1-9) [ yle)de
< [ hole) 63 (a)
and
0< Hy(9(e)4 (9 = 630 [ hyle)do < [ “ho(2) (a2)', (2) d.
However,
[ 1) 6@ e = timeo [ hole) 5 (2
and thus,

1

imeo{ [ @ @)@t [ mla) (6502 i} = o

1—¢
Noting that [ hp(z) (g;)"(z) dz > 0 and fll_e ho(z) (97)" (z) dz > 0, we deduce

that

and
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Hence (2.3.1) holds for this case.

We can similarly prove (2.3.1) in the cases
(a) (g3)4(0%) = —oco and (g;)’ (17) is finite, or
(b) (g3)%(17) = +co and (g;)%.(07) is finite.

Combining (2.3.1) and part (i) of Lemma 2.1, we find
1
/ Hy(z) d(g,) = 0. (2.3.3)
0

Now, suppose as in (iv) that Hy(zo) < 0. By the continuity of Hp, there exist z;

and zo with 0 < 71 < 7o < z2 < 1, such that
My = max{Hy(z): z; < z < z2} <O0.

Hence,

o= [ m@ dai), < [ Hy(a)dle)' < Mullop)y(ox) = a5), o)) <O
Consequently, (g5)’ (z2) = (9;)’; (z1). Finally, by the absolute continuity of g,

0tz / (62)' () dy + g2 (1)

= (gp)% (zo)(z — 1) + gp(z1), for z € [21,z2].

Thus, g, is a linear function in a neighborhood of zo.
(Sufficiency) For all g € K, as in establishing (2.3.1), we can use (i), (ii) and
(iii) to show that

| 9@ do(a)is = [ Hy(a)agt, <o, 2:3:4)
0 0

16
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Also, condition (iv) and (2.3.1) imply that

/0 ' 4*() by(z) ds = 0. (2.3.5)

Thus, combining (2.3.4) and (2.3.5) shows that g, is a best L, approximation to

f € L, from K.

Using integration by parts, we have for z € [0,1]

z
Hy(a) = [ (2= up(u)a
0
Hence, we can restate the charactrization:

THEOREM 2.2 (ALTERNATIVE CHARACTERIZATION). (a) For1 < p < oo,
gp € Kp is the best convex L, approximation to f € L,[0,1] if and only if
() fo dp(w)du = 0,

(ii) fo udp(u)du =0,

(iii) [ (z — u)dp(u)du <0 for all € [0,1],

(iv) if [3°(zo — u) ¢p(u)du < O for some zo € (0,1), then g,(z) is a straight line
in a neighborhood of zo.
(b) For p = 1, g} € K, is a best convex L, approximation to f € L;[0,1] if

and only if there exists a ¢; € Lo satisfying ||¢1]lcc = 1 and (2.2.2), such that

conditions (i)-(iv) in (a) hold with p = 1.

17
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2.4. STRUCTURAL PROPERTIES OF BEST CONVEX L, APPROXIMATION

The following corollaries of Theorem 2.1 give structural properties of a best
convex L, approximation, for 1 <p < co. In each case, f € Ly, and ¢g* denotes a

best L,-approximation to f from Kjp, for 1 < p < oo,

COROLLARY 2.1. (a) If g* is strictly convex on (e,b) C (0,1) then, g*(z) = f(z)
a.e. in (a,b);

(b) If g*(z) # f(z) a.e. in (a,b) C (0,1), then g* is piecewise linear on (a, b).

PROOF: (a) By property (iv) of Theorem 2.1, Hy(z) = 0 on (a,b). Therefore,

H!'(z) = ¢p(z) = 0 a.e. in (a,b), which implies that g*(z) = f(z) a.e. in (a,b).
(b) If g*(z) # f(z) a.e. in (a,b) then oy part (a), g* cannot be strictly convex

on any subinterval I C (a,b). Hence by part (v) of Lemma 2.2, g* is piecewise linear

on (a,b).

LEMMA 2.4. If H,(t) <0 forall t € (a,b) C (0,1), then g* is linear on (a,b).

PROOF: If g* is not linear on (a,b), then there must exist a point ¢ € (a,b) such
that g* is not linear on any neighborhood of ¢. However, by (iv) of Theorem 2.1,

g* is linear on some neighborhood of ¢, which is a contradiction.

COROLLARY 2.2. Let (a,b) be any open interval in (0, 1).
(a) If g*(t) < f(t) a.e. in (a,b), then g* is linear on (a,b).

18
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(b) If g*(t) > f(t) a.e. in (a,b), then g* is a linear spline on (a,b) with at most

one knot.

PROOF: (a) Suppose that g*(t) < f(t) a.e. in (a,b) C (0,1) and that Hy(zo) =0
for some zo € (a,b). Then, by part (v) of Lemma 2.1, hp(zo) = 0. By the hypothesis
#p(t) > 0 a.e. in (z0,b) C (a, b). Thus, h, is strictly increasing on (zo,b), which
implies that hy(t) > hp(zo) = 0 for all ¢ € (z0,b). Hence, Hy(t) > Hp(zo) = 0 for
all t € (zo,b), contradicting property (iii) of Theorem 2.1. Thus g*(t) < f(t) a.e.
on (a,b) C (0,1) implies that Hy(t) < O for all t € (a,b), and by Lemma 2.4, g* is
linear on (a,b).

(b) First suppose that Hp(t) < O for all ¢t € (a,b). Then, by Lemma 2.4, g*
is linear on (a,b). Next, suppose that Hp(zo) = O for some zo € (a,b). Then
hp(zo) = O by part (v) of Lemma 2.1, g*(t) > f(t) a.e. on (a,b) implies that
$p(z) < 0 ae. on (a,b). Thus H)(z) = hy(z) is strictly decreasing on (a,b).
Therefore H}, has a unique zero at zo in (a,b). Let Eo = (@, zo) U (zo,b). Then
H(t) # O for all ¢ € Eo. Thus, by Rolle’s Theorem, since Hy(zo) = 0, we have
Hy(t) # 0 for all t € Eo. Hence, by (jii) of Theorem 2.1, Hy(t) < 0 for all £ € Eo.
By Lemma 2.4, g* must be linear on both (a, o) and (zo,b). Since ¢g* is continuous,

it must be a linear spline on (a,b) with at most one knot at zo.

REMARK: If f € C(0,1), define the open sets

A_={z€(0,1):¢*(z) < f(z)},

19
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and
Ay = {z € (0,1) : g*(z) > f(=)}.

Then A_ and A, are each a union of a countable set of disjoint open intervals
called components, and thus by Corollary 2.2,
(i) g* is linear on each component of A_, and

(ii) ¢* is a linear spline, with at most one knot on each component of A;.

COROLLARY 2.3. (a) If [a,b] C [0,1] such that Hy(a) = Hy(b) = O, then, g* is
also the best convex L, approximation to f on [a,b].

(b) If Hp(a) = O for some a € (0,1) then g* is also the best convex Lp-
approximation to f on both [0, a], and [a,1].

(c) If g € K, is a best convex L, approximation to f on both [0,a] and [a, 1],

then g is a best convex L, approximation to f on [0,1].

PROOF: (a) Since Hp(a) = Hy(b) =0, by part (v) of Lemma 2.1, we have hp(a) =

hy(b) = 0. Corresponding to h, and H, on {0,1], define ky o, and Hp,q by

hpal(z) = /: ¢p(u)du, for z € [a,b]

and

z

Hy.(2) = / hpo(u)du, for z € [a,bd].
a
Then, for z € {a,}]

hp,a(z) = hp(z) — hp(a) = hp(z), (24.1)
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and
Hyo() = [a " b (u)du = Hy(z) — Hy(a) = Hy(2). (2.4.2)

Thus, hp,e(b) = hy(b) = 0, and Hp o(b) = Hy(b) = 0. Properties (iii) and (iv) of
Theorem 2.1 for f and g* on [a, b] follow from (2.4.1), (2.4.2) and the corresponding
properties for f and ¢g* on [0,1].

(b) Since Hy(0) = Hy(1) = 0, the statement in (b) follows from (a).

(c) This result follows from Theorem 2.1.

By property (iv) of Theorem 2.1, Hp(z) = 0 if g* is not linear in any neighbor-
hood of z. Thus, in Corollary 2.3, the hypothesis that Hy(a) = 0, (or Hy(b) = 0)
can be replaced by the alternative, ”g* is not linear in any neighborhood of @”, (or

”g* is not linear in any neighborhood of b”).

COROLLARY 2.4. If g* is linear on (a,b) C (0,1), but is not linear on any larger
open subinterval of (0,1) containing (a,b), then g* is the best L, straight line

approximation to f on (a,b).

PROOF: By the above hypothesis ¢g* is not a straight line in any neighborhood
of either a or b. Thus by property (iv) of Theorem 2.1, Hy(a) = Hp(b) = 0. By
Corollary 2.3, g* is the best L, approximation to f on (a,b), from K. Since g* is
a straight line on (a,b), and since K, contains all the straight lines, g* must be the

best L, straight line approximation to f on (a,b).

21

—— —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3: Best n-Convex Approximation in L, for 1 <p < oo

3.1. INTRODUTION

In this chapter, we characterize best L, approximation to f € L,[0,1] from
n-convex functions in Ly[0, 1], for 1 < p < oo and n = 1,2, .... This characterization
will be used to derive some addition properties of the best approximations.

A real-valued function g, defined on [0,1], is called n-convez if for any n» +1

distinct points zg,Z1, ..., Zn in [0, 1], the nth order divided difference

[ZO,xla eeey xn]g Z 0.

Thus, 1-convex functions are nondecreasing and 2-convex functions are convex in
the usual sense. For n = 1,2,..., let K, , denote the subset of n-convex functions
in L,.

g* € K, p is called a best n-convez L, approzimation to f € L, if

1 f—g" lp=nf{ll f —gllp: for g€ Kny}.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The existence of a best n-convex L; approximation is proved in [22], and the
uniqueness is proved under some additional restrictions in [70]. For 1 < p < oo,
both the existence and uniqueness of the best n-convex approximation follow from
the facts that K, p is closed and convex in the reflexive space Ly, and that the
L, norms are strictly convex. The characterizations of best 1-convex, and best
2-convex L, approximations for 1 < p < oo are established in [52] and Chapter
2, respectively. With certain additional restrictions, the characterization of a best

n-convex L, approximation, for n > 1, is considered in [70].

The existence of a best n-convex uniform approximation was proved indepen-
dently in [6] and [68]. Burchard [6] and Brown [3] have characterized best uniform
n-convex approximation. Some additional properties of best uniform n-convex ap-

proximation are considered in [71}.

3.2. SOME PROPERTIES OF n- CONVEX FUNCTIONS

It is known (eg.[4]) that if g is an n-convex function on [0,1] then g("~%) exists
and is absolutely continuous on any closed subinterval of (0,1), g(_n_l) exists and is
left-continuous and nondecreasing in (0, 1), g_(,_"_l) exists and is right-continuous and
nondecreasing in (0,1), g(»~1) exists a.e. in (0,1) and, g(r=1) = g(_n_l) = ggf‘_l)

a.e. in (0,1). In addition, for each [a,b] C (0,1), there is a polynomial p of degree

23
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n — 1 such that

b
o) =p@) + {1/ =D} [ (o= 0T du(t), =€ lat], (3:2)

where y is a nonnegative Borel measure defined by u([z,y]) = a" V(y) —g Y (z),

for0<z<y<l.
The following lemma. is used in section 3.3 to establish the characterization of

best n-convex L, approximation.

LEMMA 3.1. Ifg is n-convex on [0, 1], then there exist @ and b with0 <a <b <1

such that g is monotone on both (0, a) and (b, 1).

PROOF: We show that there exists a partition of [0,1] : 0 =z¢ < z; < ... <z, = 1,
such that if I; = (z;,%i41) for ¢ = 0,...,n — 1 then for n even, g is nondecreasing
on I; if 7 is odd, and g is nonincreasing on I; if 7 is even; and for n odd, g is
nonincreasing on I; if 7 is odd, and g is nondecreasing on I; if ¢ is even.

For n = 1, g is nondecreasing on (0,1). For n = 2, since g is convex on [0, 1],
there exists an z; € [0,1] such that g is nonincreasing on (0,z;) and is nondecreasing
on (z1,1). The proof is completed by induction on n, observing that for n > 2 if g

is n-convex then ¢’ is (n — 1)-convex.

DEFINITION 3.1: g is said to be strictly n-convex on the interval I if

[0y T15.msZn]g >0 forany zo <z <...<zn in I (3.2.2)

24
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DEFINITION 3.2: A real-valued function g on [0,1] is said to be a spline of degree
n — 1 with countable knots on [0,1], if g € C"~2[0,1] and there exists a countable
set of disjoint open intervals, {I; : ¢ = 1,2,...}, where U® I; = [0, 1], such that g is

a polynomial of degree < n — 1 on each I;.

LEMMA 3.2. (i) Let g be n-convex on [0,1]. If for some0 < o < 1 < ... < Zp < 1,
[0, T1,-» Zn]g = O, then g is a polynomial of degree n — 1 on [zg, Ty
(ii) Let g be n-convex on [0,1] but not strictly n-convex on any subinterval of

(0,1). Then, g is a spline of degree n — 1 with countable knots on [0,1].

PROOF: (i) There is a polynomial of degree n — 1 p such that

o) =p(e) +{1f(n -0} [ @-0T dul), ezl (323

where u is a nonnegative Borel measure. Hence

[0y Z15 -0y ]9 = /zn Bo,n(t) du(t), (3.2.4)

where Bo 5 (t) = [0, Z1, ..., Zn|(.— )7 /(n—1)! is an nth order B-spline with knots
at zo,T1,..,Zn. By a property of B-spline, B, n(t) > O, for all t € (zo,z,). The
assumption and (3.2.4) impliy that f;o" Bo,n(t) du(t) = 0. This equation holds only
if du(t) = 0. Substituting this into (3.2.3) yields g(z) = p(z) on [zo, Zp].

(ii) By the hypothesis, there is an open interval on which g is a polynomial of
degree < n—1. Let {I,} be the collection of all open subintervals in (0, 1) such that

25
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g is a polynomial of degree < n — 1 on each I,. By Proposition 9 in Royden [42, p.
32], there is a countable subcollection, {I,, : » = 1,2,...} of disjoint open intervals
such that Ugly = UL I, . If UX I, +# [0,1], then the complement of this set
in [0,1] contains an open interval I ¢ {I,}. By the hypothesis and Definition 3.1,
there exist o < 71 < ... < Zp, in I such that [zo,z1,...,Zn]g = 0. Part (i) of this

lemma then implies that g is a polynomial of degree < n — 1 on [zo, ], which is a

contradiction. Thus, g is a spline of degree n — 1 with countable knots on (0,1).

3.3. CHARACTERIZATION OF n-CONVEX APPROXIMATION

For 1 < p < o0, K, is a closed convex cone in L,. Thus, by using Theo-
rem A and by reasoning as in the proof of Theorem 2.1 we establish the following

characterization theorem.

THEOREM 3.1. (a) For 1 < p < oo, given g, € Ky, define

¢p = (f —gp)lf — ;7% (3.3.1)

and

Hpx(z) = {1/(k - 1)1} /0 ‘(- 2ty (t)dt, k=1,2,.n. (3.3.2)

Then, g, is the best n-convex Ly approximation to f € L,[0,1] if and only if
(i) Hpx(1) =0 for k=1,2,..,n,
(ii) Hpn(z) >0 forall z€|0,1],

26
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(iii) if Hpn(zo) >0 for some zo € (0,1), then g, is a polynomial of degree

< n —1 in a neighborhood of z,.

(b) g1 € Kn,1 is a best n-convex Ly approximation to f € L4[0,1] if and only
if there exists a ¢1 € Lo, with || ¢1 [lo= 1, and [, (f — g{)¢1 = |If — gill1, such
that (i), (ii), and (iii) of (a) hold with p = 1.

PROOF: (a) Since Ky, p is a convex cone, by the duality theorem (Theorem A), we

find that g; is the best approximation from K, p if and only if

1
/0 9p(z)¢p(z)dz = 0O, (3.3.3)
and
1
/ g(z)¢p(z)dz < 0, forall g€ Ky p. (3.3.4)
0
(Necessity) Alternatly, let ¢ = (1 —t)¥~1/(k—1)! and g = —(1—¢t)*~1/(k —1)!
in (3.3.4), for k = 1,2,...,n to prove (i). For each = € [0,1], define

g:(t) = (1) 3z - )7 !/(n—1)! for t€[0,1].

Then, g, € K, p. Next, using (3.3.4) with g = g, for each z € [0,1] yields (ii). To

establish (iii), we shall use Lemma 2.3. We have the {ollowing recursive relations:

Hpi(z) = / ép(t)dt, (3.3.5)
0
and
Hy(z) = —/zH k—1(t)dt, for k=2,...,n. (3.3.6)
0
27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By Lemma 2.3,

/ g = fH,ldg,, folH,l(g;)'-

To apply Lemma 2.3 again, we first show that Hy 1(gz)’ € L1[0,1]. If (g;)'(17)
and (g;)'(0%) are both finite then we are done. If l(g5)'(17)| = +oo, then by
Lemma 3.1, there exists an a € (0,1) such that |(g;)’| is nondecreasing on (a,1).

For z € [a, 1] define

o(z) = {sigan,l(z) if Hp,l(x)gzé

0
: (3.3.6)
1 if Hp,l(:z:) 0

and let 0 = 1 or —1 so that |(g;)'(z)| = o(g})'(z) for z € [a,1]. Then,

(62 (2) Hp (2)] = o(02) (2)p(a) Hpa (o) for = € [a,1]
It follows that for any €¢ > 0
[0y @ e
=0 [ 6 @lple) o)

= ol [ @y @nteie) s 1-e—o/l [y @iy

< olgp(1 —€) — gy (a)|Hp,1 (1 - €) + 0/ l95(2) — 95(a)]|85(2) |dt.

a

If g5(17) is finite, then

0 < ofgy(1 —€) — gp(a)]|Hp,1(1 —€)| = 0, as €—0. (3.3.7)

28
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If |g5(17)| = 400, then by Lemma 3.1, we can choose €o > 0 such that |g|
is nondecreasing on (1 — €9,1) and a < 1 — €. Let € satisfy 0 < € < «o.

Correspondingly,
1 1

0<0g3(1 ~ AHy (1~ A <lg5(1 =) [ 1ol < [ lg36,] >0 a5 €.
1—e¢ l—e¢

Hence, (3.3.7) holds in this case.

On the other hand, since g;qu € L,[0,1] and a is fixed,

of 030 — a5 (@)l (1) dt < / a3l + 05| / 6p] < +o0.

Thus, llme_.of |(g7) Hp,1| < co. Hence (g;)'Hp,1 € L1[a,1]. The possibility that

[(g3)'(0%)| = +oo can be handled similarly. Thus, we can apply Lemma 2.3 again

/ng¢p /H 2(95)"

This procedure can be repeated to yield the equation

to obtain

1
/0 iy = / Hpnd(g) Y. (3.3.8)

Combining (3.3.8) and fol g5 ¢p =0 we have

1
[ i) =0, (3:3.9)

From (3.3.9) and the continuity of H, ,, it follows that if Hpn,(zo) > 0, then

(gp)(n U must be constant in a neighborhood of zo, thus establishing (iii).

29
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(Sufficiency) For all ¢ € K, as in establishing (3.3.8), we can use (i), and (ii)

to show that
' ' (n=1)
/ 9%p = — / Hpnd(g)y ™ ~ <O. (3.3.10)
0 0

If g} € K, p satisfies (i), (ii) and (iii), then (3.3.8) holds and

1 1
/o 9;4’10 = "/(; Hp,nd(Q;)E:_l) =

Thus, g, is the best approximation to f.

(b) The proof of part (b) is similar to that of part (a).

COROLLARY 3.1. For1 < p < oo, let f € C[0,1] and g; € Ky, be given, and
assume that f # g, a.e. in [0,1] and that f — gp has a finite number of sign changes
at 7 < ..<ry in(0,1). Let

_ {(f—g;)lf—gglp"" 1<p<oo
’ sign(f — g;) p=1

and define Hy, (z) as in (3.3.2) for k = 1,...,n. Then, g; is a best L, approximation
to f from Ky, p if and only if (i) and (ii) (of Theorem 3.1) hold with 1 < p < oo, and

(iii)’ g, is a spline of degree n — 1 with simple knots &1, €2, ..., &, the distinct

zeros of Hy,  in (0,1).

PROOF: Let g; € Ky p be a best n-convex L, approximation to f. By the hypoth-
esis, f — g, has N sign changes in (0,1). Thus, by Rolle’s Theorem, Hp,n has at
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most N + n zeros in (0,1), counting multiplicities. Let &, £2,..., £ be the distinct

zeros of Hy, ,, in (0, 1), where r < N + n. Hence, with o =0 and £,4; =1,

/ (t — z)" 1¢p(t)dt >0, for z € (&,&i+1),1=0,1,...,7.
0

Thus by Theorem 3.1, g; is a polynomial of degree < n — 1 on each subinterval
(&5 &iv1)- Since g; € c"%(0,1), gy is a spline of degree n — 1 with simple knots

611 627 weey gr-

Conversely, let gy satisfy the assumptions and conditions (i), (ii) and (iii)’. If
Zo
/ (t — z0)" " 1¢p(t)dt > 0, for some =z, € (0,1),
0

then zo ¢ {&1, €2, ..., & }. Hence, zg € (&5, &j+1) for some index j € {0, 1,...,r}. By
(iii)’ g, is a polynomial of degree < n —1 on (&;, £;+1), which is a neighborhood of

zo. Thus by Theorem 3.1, g, is a best n-convex L,-approximation to f.

Remark: Corollary 3.1, for the case p=1, was also proved by D. Zwick [70], by

a different approach.

3.4. SOME ADDITIONAL PROPERTIES OF BEST N-CONVEX APPROXIMATIONS

We now present several structural properties of a best n-convex approximation
in L, which follow from Theorem 3.1. In each of the following results, 1 < p < oo,
f € Lp, and g, denotes a best n-convex Lp-approximation to f from Kp, p.
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LEMMA 3.3. If for some zo € (0,1), Hpn—2i(z0) = 0 for ¢ =0,1,...,m with
n —2m > 3, then Hp n—2i—1(z0) = 0, and Hp p_2:—2(t) > 0 for all t in some
neighborhood of zo. In addition, if Hp n—2m—2(zo0) > 0, then in some neighborhood

of zg, g; is a spline of degree n — 1 with a knot at .

PRrROOF: For sufficiently small € > 0
zo+e€
0< Hy (20 +€) = / Hp s (8)dt.
Zo

By the continuity of Hp n—1, there exists an €; > 0 such that Hy n_1(t) < 0 for all

t € (zo, To + €1). Similarly,
Zo
Zo—¢€

and there exists an €2 with 0 < €2 < € such that Hp,_1(t) > 0 for all

t € (zo — €2,%0). Thus, Hy n—1(z0) = 0. For any 0 < € < €3,

To+€
0< —Hpn1(zo+e€) = / Hp,n—2(t)dt,
Zo
and
To
0 Z —Hp’n_l(zo - 6) = —/ Hp,n_.z(t)dt.
Tg—E€
Hence,

Zo-+€
T

0 —¢€

It follows that there exists an €3 > 0 such that

Hp,n_z(t) >0 for te (zo — €3,Zp + 63).
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Thus, this lemma holds for ¢ = 0. Similarly, we can verify it for ¢ = 1,2,...,m.

In addition, if Hpp_am—2(zo) > O, then there exists a 6 > 0 such that,
Hy p—2m—2(t) > 0 on (2o — 6,70 + 8). Hence, Hypn_2m—1(t) is strictly increas-
ing on (zo — 6,20 + 6). Since, Hpp—am-1(z0) = 0, Hpn_2m-1(t) < 0 for
t € (zo — 6,70) and Hp n—2m—1(t) > 0 for ¢t € (o, %o + 6). Hence, Hpn2m(t) >0,
for t € (zo—6,z0) U(z0, To+6). Finally, Hp n(t) > 0fort € (zo—6,z0) U(z0,z0+6).

Thus, g, is a spline of degree n — 1 in a neighborhood of zo with a knot at zo.

LEMMA 3.4. If Hp ,(t) > 0 for all t € (a,) C (0,1), then g, is a polynomial of

degree < n — 1 on (e, §).

PROOF: If g, is not a polynomial of degree < n — 1 on (a,f3), then there must
exist a point ¢ € (a, ) such that g; is not a polynomial of degree < n —1 on any

neighborhood of ¢. However, this contradicts property (iii) of Theorem 3.1.

COROLLARY 3.2. (i) If g; is strictly n-convex on (o, ) C (0,1), then g, = f a.e.
on (e, B);
(i) If g} # f a.e. on (e, 8) C (0, 1), then on (a, ) g; is a spline of degree n — 1

with countable knots on (o, ).

PROOF: (i) By property (iii) of Theorem 3.1, Hy, »(z) =0 on («,f). Thus,

H,(,:';Z(:c) = (—1)""'¢p(z) =0 ae. on (a,p),
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and (i) follows.

(ii) If g5 # f a.e. on (a, ) then by part (i), g; cannot be strictly n-convex on
any subinterval I C (a, ). Hence, by Lemma 3.2g; is a spline of degree n — 1 with

countable knots.

COROLLARY 3.3. (i) If Hppn_2(t) < 0 for all t € (a,8) C (0,1), then g; is a
polynomial of degree < n — 1 on (a, 3);

(ii) If Hp,n—2(t) > O for all t € (a,B8) C (0,1), then g, is a spline of degree

n — 1 with at most one knot on (a, f3).

PROOF: (i) Assume for some zo € (a,8), Hpn(zo) = 0. By Lemma 3.3,
Hyp n—2(z0) > 0, contradicting the hypothesis. Hence, Hp »(t) > 0forall t € (e, B).

Lemma 3.4 implies that g, is a polynomial of degree < n — 1 on (&, §).

(ii) If Hp,n(zo) = O for some zo € (e, (), then by Lemma 3.3, g; is a spline

-of degree n — 1 in a neighborhood of zo. If Hy,, has another zero z; # zo in

(e, ), then by Lemma 3.3, Hp n—1(20) = Hpn—1(z1) = 0. Since Hp n—2(t) > 0
for all t € (a,8), Hp,n—1 is strictly increasing on (e, 8), which is a contradiction.
Thus Hp, has at most one zero in (e, ), which implies that Hp,(t) > 0 on
(e, z0) U (20, 8). Hence, g, is a spline of degree » — 1 with at most one knot on
(e, B).
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COROLLARY 3.4. (i) If (e, B] C [0,1] such that
Hy, k(@) = Hy(B) =0, for k=n,n—2,..,2 (or 1)

then g} is also the best n-convex L, approximation to f on [a,fB].
(i) In addition, let f € C(a,B) and let t; < ... < t, be distinct zeros of Hpn

in (o, B). Further assume that g satisfies the hypothesis of Corollary 3.1. Then

gy is a best L, approximation to f on (a,B) from Syp_1(t1,...,t;), the space of all

splines of degree n — 1 with simple knots at t,...,%,.

PROOF: (i) follows directly from Theorem 3.1 and Lemma. 3.4.

(ii) By (i) and Corollary 3.1, g} € Sp—1(¢1,---,tr) on (@, 3). For each ¢;

B B

[ #a@le =02 /= 1tz = [ (" ER@) e - 005 - Dt
8

=/ Hy o(2)(z — t:)3 dz

— Hyn(8) = Hyn)

=0.

Thus, ff ¢p(z)s(z)dz = 0, forall s € Sp_y(t1,...,t;). Hence, g is a best L,

approximation to f on (a, ) from Sp—1(t1,...,¢).
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Chapter 4: Best L, Approximation for 1 <p < oo

with Multiple Constraints

4.1. INTRODUCTION

In this chapter, we consider the problem of best L, approximation from a set
of functions with multiple constraints. The approximating functions in this chapter
are the (m,n)-convex functions. Given 0 < m < n. g is said to be (m,n)-convez
if (—1)%g is (m + i)-convex, for 1 = 0,1,...,n — m. Note that for n > m, (m,n)-
convex functions are functions with multiple constraints. From the above definition,
(n,n)-convex functions are n-convex functions and (0,n)-convex functions are n-
time monotone functions. For some applications of n-time monotone functions, see
[66] and other references therein. In addition, (0, co)-convex functions are complete
monotone functions (see [65]). Morn generally, we define (m,n),-convexity. Let
0 = (00501,++y0n—m), Where each o; is 1 or —1. A function g is said to be (m,n),-
convez if 0;(—1)tg is (m + 1)-convex, for ¢ = 0,1,...,n — m.
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Let K?, ,, denote the subset of (m,n)-convex functions in Ly = Ly [0,1]. Then,
K%, . is a closed convex cone in L. In this chapter, we characterize a best L,

approximation of a function f in L,[0, 1] from K}, , and study its applications to

monotone convex approximation.

4.2. THE EXISTENCE OF A BEST L; APPROXIMATION

For 1 < p < oo, the existence of a unique best L, approximation from K7, ,
follows from the facts that K%, , is closed and convex in the reflexive Banach space
L, and that the L, norm is strictly convex. The existence of a best (m,n)-convex
L, approximation will be proved to be a consequence of an existence theorem of
a recent paper [62] by Ubhaya. We first state a definition and a theorem that
appear in [62]. Let H be the set of all extended real-valued functions on [0,1]. We
say that P C H is sequentially closed if it is closed under pointwise convergence
of sequences of functions. We denote by P, the smallest superset of P which is

sequentially closed.

THEOREM U. Let P be a nonempty set in H. Assume the following two conditions

are satisfied:

(1) PNL,=PnLy;

(2) There exists a positive integer z which depends upon P only and the following
holds: If k € P, there exist an integer 1 < r < z and points {z; : 7 =0,1,..., r}
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with0 = 2o < 1 < ... < Zr = 1 so that k is monotone on each interval
(xi—laxi)-

Then a best approximation to f in L, from P N Ly exists, for 1 < p < co.

THEOREM 4.1. Let f € L1[0,1]. Then there exists a best (m,n)-convex L, ap-

proximation to f.

PROOF: Let K; ={g € H: (—1)'g is (m + 7)-convex}. Then,

K,ln,n = N2J"{K:;N L,}. By Proposition 3.4 of [62], K; N Ly = K; N L. Hence,
Kpwn = NE=g"{K; N L1}

- ﬂ::om{K, N Ll}

= Nt KN L}

= NEg"{KiN L1}

= K}, ..
Therefore condition (1) in Theorem U is satisfied. In addition, since an (m,n)-
convex function is m-convex, by Lemma 3.1, condition (2) is also satisfied. It

follows from Theorem U that there exists a best approximation to f from K ,ln’n in

L.

4.3. CHARACTERIZATION OF BEST (m, n)-CONVEX Lp APPROXIMATION

In this section, we establish a characterization of best L, approximation by
(m, n)-convex functions, for 1 < p < co. To do this, we first prove the following:
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LEMMA 4.1. Let g be (m,n)-convex on [0,1]. Then, (_"_l)(l‘) and

g(m+i)(1-‘), 1=0,1,...,n — m — 2, are finite.

PROOF: Since g is m-convex and —g is (m + 1)-convex, we find that ¢(™) is nonin-
creasing and g{™)(z) > 0, for all z € (0, 1). Hence, for arbitary small 0 < € < 1/2,
0 < g(M(1—¢) < gim(1/2). However, (™ (1/2) < +oo. It follows that ¢(™)(17)

is finite. The proof can be completed by induction.

For nonnegative integers m < n, let Ny p = {m +1,...,n}, and N, = Non.

THEOREM 4.2 (CHARACTERIZATION). For 1 < p < oo, let f € L,[0,1] and let
gy € Kb, -

(a) For1 < p < oo, let ¢p = (f —gp)|f —g;lp—z, and
H,i(z) = {1/(: - 1)!}/$(x — 1) 1g,(t)dt, z€[0,1],i=1,2,..,n.
0

Then gy is the best L, approximation from K%, , to f if and only if
(i) Hpi(1) =0, i€ Np;
(ii) (-1)™H, (1) £0, 7€ Ny n;
(iii) (—~1)™Hp n(z) <0, z € [0,1];
(iv) if (—1)™H, ;(1) <0, for some ¢ € Ny, », then g;(i—l)(l"‘) = 0;
(v) if (=1)"Hpn(z) < O, for some = € (0,1), then g; is a polynomial of degree
n — 1 in a neighborhood of z.
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(b) For p = 1, gi is a best L1 approximation to f from K}, ,, if and only if
there exists ¢1 € Loo with ||¢1]lecc = 1 and fol é1(f — 91) = |If — 97l|1, satisfying

the conditions (i)-(v) of part (a) with p = 1.

PROOF: (a) Since K}, , is a convex cone, by Theorem A, g, € K}, ; is a best L,

approximation to f from K%, , if and only if

1
/o 9p¥p = 0, (4.3.1)

and

1
fo g¢p < 0, forall g€ KF, .. (4.3.2)

(Necessity) First, observe that (1—z)*~!/(i—1)!, —(1—z)*~'/(i-1)! € K}, ,,
for ¢ = 1,2,...,m. By substituting these functions into (4.3.2), we prove (i). Next,
since (=1)™(1 —z)*~!/(i - 1)! € KB, ., i = m+1,..,n, by using (4.3.2), we have
(ii). Similarly, (—1)™(t — 2)%~!/(n — 1)! € KB, ,, for t € [0,1], which gives (iii).

To prove (iv) and (v), we establish the following form of integration by parts:

1 n—1 ) ] 1
[} 9% = D0 Haing 00+ (0" [l ) (423

A similar reasoning as in the proof of Theorem 3.1 gives

1 1
/ 9p $p = ("1)mf Hp,mg;(m)a
0 0

and Hp, g;(m) € L;[0,1]. By Lemma 4.1, g;(m)(l') is finite, and thus, for arbitary
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small € > 0, Hp m+1 gp(m+ ) e Li[e,1]. Hence,

/ Hpm g*(m)

- Pm+1(1)9*(m)(1 ) — Hp,m+1(€)g; ;) (e / Hy, m+1g*(m+l)

If g5 (™ (0+) is finite, then we are done. Othewise we have lg5(™ (0+)| = +o0. Since
g;(m)is nonincreasing, there exists ¢ € (0,1) such that |g;(m)| is nonincreasing on

(0,t). Whenever 0 < € < t,

[Hyams1(955™(E) < 1950 [ Hyinl < [ 1657 Hpn] 0, 3560,

Therefore,

/ Hpmg*( ) pm+1(1) g*(m) / H ym+1 g*(m+1)

and Hp i1 gp(m'H) € L1[0,1]. This procedure can be repeated to obtain (4.3.3).
Combining (4.3.1) and (4.3.3) yields
n—1
S (—1) By (DO (17) + (- / Hynd@ ") = 0. (434)

i=m

The definition of (m,n)-convex function together with (ii) and (iii) implies that

(1) Hpi+1(1)gs P (17) = 0, i=m,..,n—1, (4.3.5)
and
/ Hpnd(g;"Y) = 0. (4.3.6)
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Equations (4.3.5) and (4.3.6) give (iv) and (v) respectively.

(Sufficiency) Assume g; € KP, , and satisfies conditions (i)-(v). Then, by
(4.3.3), (4.3.1) holds. Also, (4.3.3) is true if we replace gy by any g € K}, .
Hence (4.3.2) holds by using conditions (i)-(v). Consequently, g; is a best Ly
approximation to f from K%, ..

(b) Since the proof for p = 1 is similar, we omit the details.

This theorem can be extended to characterize a best L, approximation from

(m,n),-convex functions.

4.4. BEST MONOTONE CONVEX L, A PPROXIMATION

As applications of the results in Section 4.3, in this section we consider best
L, approximation by monotone convex functions, and the relationship between
best convex L, approximation and best monotone convex L, approximation. For
1 < p < oo, let Mp(a,b) C Ly[a,b] be the set of nonincreasing convex functions
on (a,b) and Mi(a,b) the set of nondecreasing convex functions in Ly|a,d]. Thus,
g(z) € Mp(a,b) if and only if G(z) = g(—z) € Mi(—b,—a). In addition, ¢*(z) is a
best L, approximation to f from Mp(a,b) if and only if G*(z) = g*(—=z) is a best
L, approximation to F(z) = f(—z) from M;(-b,—a).

Since a nonincreasing convex function is (1,2),-convex with ¢ = (-1, —1) and
a nondecreasing convex function is (1,2),- convex with o = (1,—1), we have the
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following two corollaries of Theorem 4.2:

COROLLARY 4.1. (2) For1 < p < o0, ¢* € Mp(a,b) is the best nonincreasing

convex L, approximation to f € Ly[a,b] if and only if

() J; ¢p(z)dz = 0;

(ii) f z¢,(z)dz > 0;

(iii) [(t — z)¢p(z)dz <0, forall t € [a,b];

(iv) 1ff z¢p(z)dz > 0, then gp_(b )=0;

(v) Lff (to — z)¢p(z)dz < 0, for some to € (a,b), then g, is a linear polynomial
in a neighborhood of tg.
(b) For p =1, g} € Mp(a,b) is a best nonincreasing convex L, approximation

to f € Ly[a,b] if and only if there exists a ¢ € Logla,b] with |¢1]lec = 1,

f é1(f — 93) = |f — g1 |1 satisfying conditions (i)-(v) in (a) with p = 1.

COROLLARY 4.2. (a) For1 < p < o0, g* € M(a,b) is the best nondecreasing
convex L, approximation to f € Lyla,b] if and only if
(i) f ¢p(z)dz = 0;
(i1) f zd,(z)dz < 0;
(iii) ftb(z —t)¢p(z)dz <0, for all t € [a,b];
(iv) Jff z¢p(z)dz < 0, then gp_ (at) =0;
(v) if ftl; (z — to)dp(z)dz < O, for some ty € (a,b), then g, is a linear polynomial
in a neighborhood of t.
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(b) For p =1, g} € My(a,b) is a best nonincreasing convex L approximation
to f € Ly[a,b] if and only if there exists a ¢; € Loo[a,b] with ||é1lec = 1,

f: é1(f — g1) = ||f — gt |1 satisfying conditions (i)-(v) in (a) with p = 1.

The next three theorems establish the relationship between best convex L,

approximation and best monotone convex L, approximation.

THEOREM 4.3. Let g; be a best convex L, approximation to f € Lpy(0,1], for
1 < p < co. Then, there exists at € [0, 1] such that g;‘, is a best nonincreasing convex
L, approximation to f on [0,¢] and a best nondecreasing convex Ly approximation
to f on [t,1].

PROOF: If g} is nonincreasing (nondecreasing) on (0,1), then let ¢ = 1 (t = 0).

Assume that g is a non-monotone convex function. Let
m = inf {g; () : = € [0,1]}.

Then the set A = {z € [0,1] : g5(z) = m} is a nonempty and closed interval
contained in (0,1). Define ¢ = infA. Then, g; is nonincreasing on (0,t) and
nondecreasing on (¢,1). By the definition of ¢, g; can not be a linear polynomial in
any neighborhood of ¢ which contains ¢ as an interior point. The characterization
of best convex approximation implies f; (t — z)¢p(z)dz = 0. By Corollary 2.3,
gy is a best convex approximation to f on both [0,¢] and [¢,1]. Since the set of
nonincreasing convex functions in L0, ¢] is contained in the set of convex functions

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in Ly[0,t], g5 is also a best nondecreasing convex approximation to f on [0,1].

Similarly, g, is a best nondecreasing convex approximation to f on [t,1].

THEOREM 4.4. (a) For1 < p < oo let f € L,[0,1]. Lett € (0,1), gp € Mp(0,?)
be the best nonincreasing convex L, approximation to f on [0,t] and gr € Mi(t,1)

be the best nondecreasing convex L, approximation to f on [t,1]. Define
¢p,0(z) = [f(2) — gp(2)]If (2) = 9p(2)[P~*, for z€[0,1],

$p,1(z) = [f(2) — 91(2)]|f (2) — ax(@)|P~%, for z € [t,1],

and

oz) = {gD(:z:), z € [0,1]

gr(z), =z€|t1].
Then, g is the best convex L, approximation to f on [0,1] if and only if
() gp(?) = 91(t),
(ii) f§(t —)bp,p(z)dz = [ (z = t)p,1(3)ds.

PROOF: Let

¢p,D(:L‘), e [0, t]
ép,1(z), zEIL,1].

$p(z) = {
Assume g is the best convex L, approximation to f on [0,1]. Then g is continuous
on (0,1) and thus gp(¢) = gs(t). In addition, by the characterization of best convex
L, approximation, we have fol ¢p = 0, and fol Tép(z)dz = 0. Hence, for t € (0,1),
fol (t — z)¢p(z)dz = 0. It follows from the last equation that (ii) holds.
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Condition (i) implies that g is convex on [0,1]. By the assumptions, we find

1 t 1
/0 6, (2)dz = fo é0.0(2)dz + ft bo.1(z)dz = 0,

and

/01 z¢p(z)dz = /t(t — z)¢p,p(z)dz + /:(t — z)¢p,1(x)dz = 0.

0

For z € [0,¢],

/0 (o = u)dy(u)du = /0 (5~ 4)dp.p(w)du <0,
and for z € (t, 1], by condition (ii),
JACERIIOr
= [ wtnodn+ [ (o= u)palu)an
- [t wtno@dns [(e-dppaan+ [ (¢ 0t
= [ 0patrds = [ bprat [ opiluian

1

1
= / (u — t)dp,r(u)du — / (z — t)dp,1(u)du

x
1
= / (v — z)¢p,1(u)du < 0.
xz
Assume that for some zo € (0,1), f° (7o — u)¢p(u)du < 0. If zo € (0,¢), then
gp is a linear polynomial in a neighborhood of zo and so is g. If zp € (t,1), then
by the above reasoning, we have f:o (v — zo)¢p,1{u)du < 0. Thus, gy is a linear
polynomial in a neighborhood of zp and so is g. If zo = ¢, in view of the continuity
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of [ (z — u)dp(u)du for z € [0, 1],
z
j[ (z — u)dp(u)du <0, z € (t — 61,t], for some 6; > 0.
0

By the characterization of best nonincreasing convex L, approximation, we fine that
¢"_(t7) = gb_(t") = 0 and g is a linear polynomial on (¢ — 6;,¢|. In addition, since
(ii) holds, ftl (z—t)p,1(z)dz < 0. Similarly, ¢/, (¢7) = g7, (t*) =0, and g is a linear
polynomial on [t, + 6;) for some 6; > 0. Hence, 0 = ¢’ (t7) < ¢'(t) < g'.(t*) =0,
and thus g’(t) exists and vanishes. Therefore g is a constant on (t — 61, + &2).

The conditions that we verify guarantee that g is the best convex L, approxi-

mation to f on [0,1].

For p = 1, we have the following similar result:

THEOREM 4.5. Let f € L;]0,1] and t € (0,1). Assume gp € Mp(0,t) is a best
nonincreasing convex L, approximation to f on [0,t] and gr € Mj(t,1) is a best

nondecreasing convex L approximation to f on [t,1]. Define

o(z) = {gD(:l:) z € [0,

gr(z) zeltl],
Let ®(gp) be the set of ¢ € Loo[0,t] with ||¢||cc = 1, and fot é(f—gp) = f—9pl1,
satisfying conditions (i)-(v) of Corollary 4.1. Let ®(g;) be the set of ¢ € Loo|t, 1]
with ||¢|lcc = 1, and ftl é(f — g1) = ||f — g1ll1, satisfying conditions (i)-(v) of
Corollary 4.2. Then, g is a best convex L, approximation to f on [0,1] if and only
if
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(i) go(t) = 91(2),

(ii) there exist ¢p € ®(gp) and ¢; € ®(gr) such that

/Ot(t — z)¢p(z)dz = /tl(z — t)¢1(z)dz.

PROOF: Let
¢D (.’B) z€E [0, t]
é1(z) ze (1]

) = {

Then, ||$||cc =1 and

/Olqﬁ(f—g)=f0t¢u(f-gp)+/tl¢z(f—gz)=I|f—g||1.

The rest of this proof is similar to the proof of Theorem 4.4.
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Chapter 5: Best L, Approximation

by Multiply Constrained Splines for 1 < p < oo

5.1. INTRODUCTION

In this chapter, we consider best L, approximation by multiply constrained
splines for 1 < p < oo, i.e. best L, approximation to an L, function by (m,n)-
convex splines.

Given a partition A of [0,1], with A : 0 = 7o < 1 < ... < Tp+1 = 1. Let
S,’{'(A) denote the space of polynomial splines of degree n — 1 with k simple knots at
T1,...,Tk. As in Chapter 4, let K7, , be the closed convex cone of all (m,n)-convex

functions in L,[0, 1]. Define
SEE(A) = SHA)N KD, . (5.1.1)
Sk, (A) is the set of (m,n)-convex polynomials of degree n — 1.
Given f € Ly[0,1], s* € SEP (A) is called a best (m,n)-convez spline Ly
approzimation to f if
I f=s"llp=inf{|l f = s lp: s € Sph(A)}. (5.1.2)
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For 1 < p < 0o, the existence of a best approximation to f € L,[0,1] from S57,(A)
follows from the fact that S,’ﬁ;f’n (A) is a finite dimensional closed subset of L,. For
1 < p < oo, unicity follows from the fact that L, is strictly convex. For p =1,
unicity needs further investigation.

In section 5.2, the characterizations of best (m, n)-convex spline L, approxima-
tions for 1 < p < oo will be presented. In section 5.3, we investigate the uniqueness
of a best (m,n)-convex spline L; approximation. In section 5.4, we discuss some
applications in best L, approximation by n-convex splines of degree n —1 and

(n — 1)-convex polynomials of degree n — 1.

5.2. CHARACTERIZATION OF L, APPROXIMATIONS FOR 1 <p< o

By Theorem A, if K,, is a convex cone in Ly for 1 < p < oo, it is known that

(i) sy € Ky is a best L, approximation to f € Ly for 1 < p < oo if and only if

1
/0 Sbp =0, (5.2.1)

and

1
/ spp <0, forall s Kp, (5.2.2)
0

where ¢, = (f — s3)|f — s5[P7%; and

(i) s} € K, is a best L, approximation to f € L; if and only if there exists a
$1 € Loo with || ¢1 lloo=1and f 1(f — s3) =|| f — s} ||1, satisfying (5.2.1)
and (5.2.2) with p=1.
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With the above duality in mind, we have the following characterization of best

L, approximation from SE® (A) to f € Ly for 1 < p < co.

THEOREM 5.1 (CHARACTERIZATION). For1 < p < oo, let f € Lp[0,1] and let
sy € ShE (A).

(a) For 1 < p < 0o, let ¢p = (f — s})|f — 55?72, and
Hpi(z) = {1/(i— 1)!}/=c($ —t)*"1¢,(t)dt, z€(0,1], i€ Ny. (5.2.3)
0

Then, sy is the best L, approximation from Sk (A) to f if and only if
(i) Hpi(1) =0, 7€ Np;
(ii) (-1)™Hp (1) £0, 7€ Ny pn;
(iii) (=1)™Hpn(z;) <0, j € Ng;
(iv) if (-1)™H, (1) <0, for some i € Ny, n, then s;(i_l)(l) =0;
(v) if (-1)™Hpn(z;) <O, for some j € Nk, then s;(n_l)(zj‘) = s;(n_l)(zf).
(b) For p =1, s} is a best L, approximation from S,’ﬁ;,ln(A) to f if and only if
there exists a ¢; € Lo, With || ¢1 |0 = 1 and fol é1(f—s1) =|| f—si ||1, satisfying
the conditions (i)-(v) of part (a) with p = 1. We shall call ¢; an associated functional

*
of si.

PROOF: (a) This proof will depend on the duality theorem stated before this the-
orem. Since S,’ﬁ;”;(A) is a closed convex cone in Ly, by the duality, s; is the best
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approximation to f from Sf¥,(A) if and only if

1
/0 stbp =0, (5.2.4)

and

/ s¢p <0, forall se SEP (A). (5.2.5)

(Necessity) First, note that (1—z)*~1/(i—1)!, —(1-z)*"!/(i-1)! € Skr (A)

for i = 1,2, ...,m. By substituting these functions into inequality (5.2.5), we find

/01{(1 —2)7 (G —1)}¢p(z)dz =0, i=1,2,..,m

This proves (i).
Next, since (—1)™(1—z)'~!/(i—1)! € S5, (A), 7 = m+1,...,n, by using (5.2.5)
once again, we obtain (ii). Similarly, in (5.2.5), let s = (=1)™(z; — z)%~1/(n — 1)},

7 =1,2,..., k, respectively, and we have

/:j{("l)m(zj —z)" Y (n - 1)1}op(z)dz <0, j=1,2,..,k.

Now, by integration by parts and by using (i),

s;(:z:) ép(z)dz

(=1)"Hp,m (z)s;(m) (z)dz

S~

0
n—

[

(—1)* Hpi+1(1)s; (1 Z Hpn(2s)s3 "D (2F) — 557D ()]

=m 7+1

-,

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Combining the above equation with (5.2.4) gives

S(—l)in,iﬂ 2O +Z )" Hp,n(2;) 53" "D () — 55"V (a7)] = 0.
i=m Jj+1
(5.2.6)
Since sy € Ky, n, (—1)£—ms;(i)(l) >0, and
(D)™ 3D (@) — 3 D(a5 )] 2 0.
It follows from (ii)and (iii) that each term in (5.2.6) is nonpositive. Hence,
(—1)™Hp,ir1(1)s; (1) =0, i=m,m+1,..,n -1, (5.2.7)
and
(=1)™ Hp,n(z;)[s;* V() — 3 V(zf)] =0, j=1,2,..,k (5.2.8)

(5.2.7) implies (iv) and (5.2.8) implies (v).

Sufficiency. If s} € SKP (A) satisfying conditions (i)-(v), then by integration
by parts, it is easy to verify that (5.2.4)and (5.2.5) hold. Therefore, s, is the best
approximation to f from SE2 (A).

(b) The proof is similar to (a). Thus we omit the details.

In order to derive some structural properties of best approximation, we intro-
duce some additional notation. For 1 < p < o0 and ¢, € (Lp)*, define Hp; as in
(5.2.3) and

I{¢p) = {t € Njun : (-1)"Hp (1) < 0}, (5.2.9)
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and

J(¢p) = {j € Nyt (~1)™Hp n(z;) < O}. (5.2.10)

THEOREM 5.2. Let 1 < p < oo and let f € L,[0,1].

(a) For 1 < p < o0, 55 € S,’:;,”n(A) is the best L, approximation to f from
S,’ﬁ;,’;l(A) if and only if s} is the solution of the following spline approximation
problem:

min{]| f —s ||, s € SE(A)}, (5.2.11)

subject to the interpolation constraints:
sO@) =0, ieI(¢p), (5.2.12)

and
s (z7) = sV (z}), j e T(4p), (5.2.13)
where ¢, = (f — s3)|f —splP72.

(b) For p = 1, s; € Sk%(A) is a best Ly approximation to f from SEl(A)
if and only if there is a ¢1 € Lo, With ||¢1]lcc = 1 and fol é1(f —s1) = IIf — stlh
such that s is a solution of (5.2.11) subject to (5.2.12) and (5.2.13) with p = 1.
PRrOOF: (a) Let

Sk () ={s € SE(A): sO)(1) =0,7 € I(4y);

s D(z7) = s D(2F), 5 € T(4p)}-
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Then, problem (5.2.11)-(5.2.13) is equivalent to the following problem:
min{| f — s ||p: s € S¥*(A)}. (5.2.14)

Observe that S¥*(A) is a finite dimensional subspace of S¥(A) and that SF*(A)
has a basis {(1 — )", 7 € Np, — I(¢p), (z; — )%, 5 € Nk — J(#p)}. By the
characterization of best L, approximation to f from a finite dimentional subspace
of Ly, s € Sk+(A) is a best approximation to f from Sk(A) if and only if it

satisfies the conditions

/1(1 —8)""1,(t)dt = 0, i€ Ny, — I(p), (5.2.15)

and
1
[ @ - 0r s, = 0, jeN—T(6,). (5.2.16)

Now, by Theorem 5.1, s; is a best L, approximation to f from S,’f,’f’n(A) if and
only if conditions (i)-(v) of Theorem 5.1 are satisfied. Hence, it follows from the
definitions of I{¢p) and J(¢p) and from (5.2.15) and (5.2.16) that s, is a best
L, approximation to f from S%? (A) if and only if s} is a solution of problem
(5.2.11)-(5.2.13).

(b) The proof of (b) is similar to that of (a).

5.3. UNIQUENESS OF L; APPROXIMATION

To investigate the uniqueness of best L; approximation to a continuous function
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from the convex set S,’,‘.,’,ln(A), we need the following definition which is introduced
by Strauss in [49)].

DEFINITION 5.1: Let V = span{vi,...,v,} be a subspace of Cla,b] such that
every function v in V has only a finite number of separated zeros. We say that the
subspace V satisfies condition A, if for every nonzero v in V and every finite subset
Z1 = {t1, ..y t,} of Z(v) N (a,b), there exists a nonzero w in V such that

(@) (-1)*w(z) >0, for z € [ti—1,ti],i=1,..,7+1, where to=a,tr11 =b;
(b) if v vanishes on an open subset of [a,b], then so does w.

If V satisfies condition A, then V is called an A-space.

LEMMA 5.1. Let f € C[0,1]. Let I C {m,m +1,..,n — 1} with [ = {iq}f1‘=1
satisfying

M, i+n+k—p>1, for 1=1,2,..,n, (5.3.1)

where M; counts the number of terms in {i1,...,1,} less then or equal to 7. Then,

for any partition A,
SE(A,I) = {se€ §kA): sD(1)=0,i€ I}, (5.3.2)
is an A-space.

PROOF: The proof follows directly from Theorem 3.2 of [49].

From the proof of Theorem 5.2, we have the following stronger result:
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LEMMA 5.2. Let f € L1[0,1], let s7 € S,’,‘.;,ln(A) be a best approximation to f

from S,’ﬁ;}n(A) and let ¢, € Lo, be an associated functional of s. Then, s] is a

solution of the following spline approximation problem:
min{||f - sll1 : s € S5(A)}
subject to the interpolation constraints:
sV(1) =0, € I(¢1),

and

s (z7) = s("(z}), § € T ().

Now, we can prove the uniqueness of best L; approximation to f € C|0,1] from

SkL(4).

THEOREM 5.3. Let f € C[0,1}, let s* € & (A) be a best L1 approximation to
f from SE:% (A) and let ¢* be an associated functional of s*. Assume I(¢*) satisfles
condition (5.3.1) with p being the number of indexes in I(¢*) and M; counting the
number of terms in I{¢*) less than or equal to i. Then s* is the unique best L;

approximation to f from Sk (A).

PROOF: Since s} is a best L; approximation to f from S,’ﬁ;’ln(A), by the duality
theorem, there exists a ¢* € Lo, with [|¢*||cc =1 and fol *(f —s*) = ||f —s*|l1,
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satisfying (5.2.1) and (5.2.2). Then, for all s € S&2 (A),

1
I7-slh= [ #(-)
1 1
= / *(f —s) +/ ¢*s (5.3.3)
0 0
1
<l f-sli+ [ #s.
0
By Lemma 5.2, s* is a best L; approximation to f from Sk+(A), with I(¢*) and
J(¢*). Let us define a new partition by A’ = A — {z; : j € J(¢")}. Then,

Ske(a) = sp7HA', I(4%)),

where I counts the number of indexes in J(¢*). By Lemma 5.1, S¥~!(A!, I(¢*)) is
an A-space, and so is SF*(A).
If so is another best L; approximation to f from Sf%,(A), then, by (5.3.3),

fol so¢* > 0. Hence,
1
/ s0¢* =0, (5.3.4)
0
and from (5.3.3) it follows that
1
[ #=s)=lr=sols. (5.3.5)

Define

Hi(z) = {1/(1-1):}[(x—t)*‘—1¢*(t)dt, z€(0,1),i=1,2,..,n. (5.3.6)
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By using (5.3.4) and integration by parts, we have

n—1 k
S () E (1) (1) + (-1 H )88 () — o8V ()] = 0. (5.3.7)
t=m i=1

Since s* is a best L; approximation to f from Sk (A), (-1)™H}(1) < 0, for

i=m+1,..,n,and (—1)"H,(z;) <0, for j = 1,2,...,k. Thus,
(~)™mH (1)s$(1) =0, for i=m+1,...,n

and

(=)™ H(z;)[s8 D (zf) = s& P (27)] = 0, for j=1,2,...,k.

Therefore, if (—1)™Hf(1) < 0, for some i € Nyq, then s$ (1) = 0. If
(-1)™H}(z;) < 0, for some j € Ny, then sgn—l)(a:f) = sz z; ). In view
of (5.3.5), ¢* is an associated functional of so, a best L; approximation to f from
S,’ﬁ;,ln(A). Furthermore, Lemma 5.2 implies that sg is also a best L; approximation
to f from Sk*(A), with I(¢*) and J(¢*). However, S5*(A) is an A-space. Hence,

s* = sg. This prove the theorem.

COROLLARY 5.1. Let f € C[0,1] and k > n. Then the best L, approximation to

f from Sk (A) is unique.

PROOF: Let s* be a best L; approximation to f from S,’,‘;}n(A) and ¢* be an
associated functional of s*. Then I(¢*) satisfies condition (5.3.1). By Theorem 5.3,
s* is the unique best L; approximation to f from Sﬁ;’ln(A).
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5.4. APPLICATIONS

In this section we apply the general results obtained in the previous sections to
best L, approximations from S%&(A), the set of n-convex splines of degree n — 1,

and from the set of (n — 1)-convex polynomials of degree n — 1.

CORROLLARY 5.2. For 1< p< oo, let f € L,[0,1] and let s} € SF2(A).

(a) For 1 < p < oo, s} is the best L, approximation to f from SEE(A) if and
only if
(i) Hp:(1) =0, i=1,2,..,n,
(ii) (—1)"Hp,n(z;) <0, j=1,2,...,k,
(iii) if (—1)™Hpn(z;) <0, for some j € Ni, then s;("—l)(x;) = s;(n_l)(x}*‘).

(b) For p =1, s is a best L, approximation to f from S,’f;}L(A) if and only if
there exists a ¢1 € Lo With || ¢1 ||co=1 and fol é1(f — s3) =|| f — st |1, satisfying
the conditions (i)-(iii) of part (a) with p = 1. In addition, if f € C[0,1], then best

L, approximation to f from S,’f:,ll(A) is unique.

PROOF: (a) and the first sentence of (b) are direct consequences of Theorem 5.1.
Next, let s* be a best L; approximation to f from Sf1(A). Then I(s*) is empty.
Thus, M; = 0, & = 0, and condition (5.3.1) is automatically satisfied. By Theorem

5.3, s* is the unique best L; approximation to f from S,f:;(A).

There is some interesting relationship between best n-convex L, approximation
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and best L, approximation by n-convex splines of degree n — 1. Let K, denote

the set of n-convex functions in L,[0,1].

COROLLARY 5.3. Let f € C[0,1]. For1 < p < oo, let g; € Ky p such that f # g,
a.e. in [0,1] and f — g has a finite munber of sign changes att; < ... <ty in (0,1).

Let

b, = {(f—g;)lf—g;ll’—z for 1<p< oo
? sgn(f — g7) for p=1

and define Hy 5 as in (5.2.3). If g, is a best Ly approximation to f from Ky p, then
g, is a best L, approximation to f from Spp(A'), where A':0 < y; <...<yr <1,

and the y;’s are the distinct zeros of Hpn, in (0,1).

PROOF: It follows from Corollary 3.1 that g; is a spline of degree n — 1 with simple
knots at y1, ..., Yr, the distinct zeros of Hp,» in (0, 1). Moreover, Corollary 3.4 implies
that g} is a best L, approximation to f from S;(A'). However, g; € Kn,p, thus,

gy € Sph(A'). Hence, g, is a best approximation to f from Spr(A).

COROLLARY 5.4. Best L, approximation to f € C[0,1] by (n — 1)-convex poly-

nomials of degree n — 1 is unique.

PROOF: The proof follows from Lemma 5.1 and Theorem 5.3.
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Chapter 6: A Duality Approach to

Best Convex Uniform Approximation

6.1. INTRODUCTION

We now consider best convex uniform approximation in the space Cfa,b]. Let
K be the set of convex functions defined on [a,b]. As usual, a function ¢* € K is

said to be a best convez uniform approzimation to f € Cla,b], if

If=9" o= inf{]l f =g lloo: g € K}. (6.1.1)

The existence of a best convex uniform approximation to a bounded function
was demonstrated in [56], where an algorithm for the computation of a best convex
uniform approximation by means of linear programming was also presented. The
characterization of alternant-type is a special case of a result announced in (6] and
proved in [69]. We shall establish a duality theorem which establishes an error
representation of the best convex uniform approximation and use this duality result
to obtain some bounds for the error of best convex uniform approximation, to give
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an alternative proof to the characterization of best convex uniform approximation,
and to characterize the set of linear negative alternants. We also define a ”function
interval” (similar to that defined in [58] for monotone approximation) which we
show is a necessary condition for best convex uniform approximation.

A similar duality approach is used in Chapter 7 and Chapter 8 to investigate
best quasi-convex uniform approximation and best piecewise monotone uniform

approximation.

6.2. DUALITY

Define

S ={(z,y;)) : z,y€[a,b],0< A< 1} (6.2.1)

S is a compact set in R3. For f € C|[a,b], define the function F on S by

Flz,y,3) = (-1/2)[Af(2) - fQa+ (1 - M) + (1 - Nf@)].  (6:22)

Let

6 =6(f) =sup{F(z,y,)): (z,y; ) € S}. (6.2.3)

§ is a measure of the convexity of the function f. We shall see iz Lemma 6.1 that

6 = 0 is equivalent to f being convex. Let

A(f) ={(z,y;\) € S : F(z,y,A) = 6}. (6.2.4)
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Since f is continuous on {a,b], F is continuous on S. Thus, F’ assumes its maximum
on S, and therefore, A(f) is nonempty. For f € Cl[a,b], define the greatest conver

minorant or convez envelop of f by
envf(t) = sup{g(t):9€ K and f>g on [a,b]},t€E [a,b], (6.2.5)

where f > g on [a, b] means that f(s) > g(s) for all s € [a,b]. We remark that envf
is the largest continuous convex function that does not exceed f at any point in

[a,b] (see [41}).
LEMMA 6.1. Let f € Cla,b]. Then § =0 if and only if f is convex.

PROOF: If f is convex, then for all (z,y;)) € S, F(z,y,A) < 0. Hence, § = 0.
Conversely, if f is not convex, then there exists (z,y;A) € S with £ # y and

0 < X < 1such that F(z,y,A) > 0. Thus, § >0.

LEMMA 6.2. Let f € C[a,b] - K. If(z,y;)) € A(f), thenz #y and 0 < A < 1.

PROOF: Assume to the contrary that one of the following statements is true: z =y,
X =0or A =1. Thus F(z,y,)) = 0. Since (z,y;A) € A(f), 6§ = F(z,y,A) =0. By

Lemma 6.1, f is convex. This contradict the hypothesis.

The following lemma was basically proved in [56]:

LEMMA 6.3. Let f € C[a,b]. Then, f(a) = envf(a) and f(b) = envf(b).
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Now we can establish a duality theorem showing that 6(f) is the error of best

approximation.

THEOREM 6.1 (DUALITY). Let f € Cla,b]. Then,

inf{|| f — g llo: g € K} = 8(/) (6.2.6)
PROOF: For any (z,y;A) € Sand all g € K,

Ag(z) —g(Az+ (1 — A)y) + (1 = A)g(y) >0,
and thus
F(z,9,}) < F(z,9,3) +(1/2)[Mg(z) =9z + (1= Ny) + (1 - AN)g(v)] <[l f 9 [loo -
Conseqently, 6(f) <inf{]| f — ¢ |l 9 € K}.
To complete this proof, let

g(t) = envf(t) + 6(f), forall t € [a,b]. (6.2.7)

Since envf < f, on [a,b], we have g(t) < f(t) + 6(f), forall t € [a,b]. Assume

that there exists an zo € (a,b) such that

f(zo) — 6(f) > d(zo) = envf(zo) + 6(f)- (6.2.8)

By virtue of the continuity of f — envf, there exists some open interval I C [a,b]
such that
f(t) —envf(t) >26(f), forall tel.
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Lemma 6.3 then implies that there exist z,z2 € [a,b] with I C (z1,z2) such that

f(z1) = envf(z1), f(z2) = envf(zs),

and

f(t) —envf(t) >0 forall t€ (z1,z3).

By a similar reasoning as in [56], we can show that envf is linear on (z1,z2).

Therefore, for some Ag € (0,1), zo = Aoz + (1 — Ao)z2 and

env f(Aoz1 + (1 — Ao)z2) = Aof(z1) + (1 — Xo) f(z2)-
It follows that
f(onl + (1 - Ao):l:z) - envf()\ozl + (1 — Ao)xz)
= Xof(z1) + f(Aoz1 + (1 — Ao)z2) — (1 — Ao) f(z2)
> 26(f).

This last inequality contradicts the definition of §(f). This contradiction implies

that (6.2.8) cannot hold. Thus

g(t) > F(t) — 6(f), forall ¢t € a,b].

Hence,

f(t) —6(f) <g(t) < f(t) +6(f), forall t€ [a,b].

Since g € K, we have established equation (6.2.6).
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COROLLARY 6.1. Let f € Cla,b]. Then, g = envf + 6(f) is a best convex

approximation to f.

THEOREM 6.2.

(i) Let f € C'[a,b]. Then,
§(f) <[(b—a)/8lsup{f'(z) — f'(y) :a <z <y < b} (6.2.9)

(ii) Let f € C?(a,b]. Then,
8(f) <1(b—a)*/16]sup{[-f"(z)]+ : z € [a, ]}, (6.2.10)

where

(a) _{0 if a<0
o+ = a if a> 0.

PROOF: (i) Note that for (z,y;A) € S,

F(z,y,A) = (1/2){A[f(Az + (1 = Ny) — f(@)] + @ = N [f Az + (1= A)y) - f@)]}-

Since f € C![a,b], for some ¢ € [z, Az + (1 — A)y] and t2 € Az + (1 — A)y,y),
F(z,y,A) = (1/2)AM1 = X)(y — 2)[f'(t1) — f'(E2)]-

Therefore,

5(f) < (b - a)/8)sup{f'(z) — S'(v) : a< =<y < b}.
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(i) If f € C?[a,b] and (z,y;A) € S, then, for some ¢ € [z, ),
F(z,y,2) = (-1/2)A(1 = A)(y — 7)?[z, Az + (1 — Ny, ylf
= (~1/9A(1 - Ny - 2)*f"(t),
where [t1,%2,t3]f denotes the second divided difference of f at t;,t2,t3. Hence,

inequality (6.2.10) follows.

As another application of Theorem 6.1, we provide an alternative proof of the
characterization of best convex approximation to a continuous function, which was

announced in [6] and proved in [69].

CHARACTERIZATION THEOREM. Let f € Cla,b] — K. ¢* € K is a best convex
approximation to f if and only if there exist = < y in [a,b] and X € (0.1) such that

g* is linear on [z,y| and satisfies
fl@)—g*(x) = f¥)—g"@) = = | f = 9" lleo>

and

FAz+(1-Ny) —g" Az + 1 -Ny) =] f 9" [leo -

PROOF: (Necessity) By the hypothesis and Theorem 6.1, || f — ¢* |loo = 6(f). In
view of the continuity of f, A(f) is nonempty. Assume (z,y;)) € A(f). Then by

Lemma 6.2, z < y and 0 < X < 1. Since g* € K, the following inequality holds:

G(z,y,)) = (1/2)[Mg*(z) — g*(Az + (1 — A)y) + (1 = A)g*(y)] > 0.
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If G(z,y,A) > 0, then
6(f) = F(z,y,A) < F(z,y,A) + G(z,y, )

<@/2)Af=g" oo+ fF =9 lloo +A =) | f = " llco]

=[f=9"lloo -
This contradicts Theorem 6.1. Thus G(z,y,A) = 0. It follows from this equation

and the convexity of g* that g*is linear on [z,y|. Therefore,

8(f) = F(z,y,A) + G(z,y,])
= (1/2){Ag*(z) = f(@)] + [f(Az + (1 — A)y) — g"(Az + (1 - A)y)]

+ (1= A)g* @) - fW)I}
However, from Theorem 6.1, we have —6(f) < f(t) —g*(t) < 6(f), forall t € [a,b)].

If g*(z) — f(z) < 6(f), then
(1-2/2)é(f)

< (@/2{[f(Pz+ (1 —Ny) —g" Az + 1 - V)l + (1 = N)[g" ) - FW)]}

SA=A/2 1 F =9 llcos

and thus 6(f) <|| f — ¢* ||co, Which is a contradiction. This contradiction implies
that ¢g*(z) — f(z) = 6(f). Similarly, we can show that g*(y) — f(y) = 6(f) and
fOz+ (1= Ay) —g*(Az+ (1 — A)y) = 6(f). These three equations and Theorem
6.1 establish the necessity of this characterization.

(Sufficiency) From the assumptions we have
6(f) z F(z,y,2)

= f =" lo +(1/2)[-2g*(z) + ¢"(Az + (1 — N)y) — (1 — A)g*(¥)]

= f =9 lloos
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where the last equality holds because of the linearity of g* on [z,y]. Therefore, by

Theorem 6.1, g* is a best convex approximation to f on [a,b].

6.3. SOME PROPERTIES OF BEST CONVEX UNIFORM APPROXIMATIONS

In this section, we characterize the set of linear negative alternants of f — g*,
where ¢g* is a best convex approximation to f € Cla,b|, and identify two functions
which are respectively a lower bound and an upper bound of any best approximation
to f.

For a real-valued function h defined on [a,b], a < z; < 72 < z3g < b is said
to be a negative alternant of h, if —~h(z;) = h(z2) = —h(z3s) =| h ||c. For
f € Cla,b] — K and g € K, define the set of linear negative alternants of f — g by

A(f—g) ={(z,y;)) € S: g is linear on [z,y] and
(6.3.1)
z<Az+ (1 —A)y <y is a negative alternant of f — g}.

The following theorem characterizes the set of linear negative alternants of f — g*,

where ¢g* is a best convex approximation to f.

THEOREM 6.3. Let f € Cla,b]— K and let g* be a best convex approximation to

f on [a,b]. Then,

A(f - ) = A (6.3.2)

PROOF: Let (z,y;A) € A(f). By a similar reasoning as in the proof of the charac-
terization of best convex approximation, we find (z,y;A) € A(f — ¢*). This gives
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A(f) € A(f — ¢*). Conversely, assume (z,y;A) € A(f — g*). Then, g* is linear on

[z,y] and satisfies

fl@)—g*(2) = fl) — ") = — | f — 9" lloo = —6(S)-

and
fOz+(1=2y) ~g*(Az+ (1= A)y) = f - ¢" o= 6().

Hence,
6(f) > F(z,y,7)

= (1/2){-Alg*(z) = 6()] + [g"(Az + (1 — A)y) — 6(f)]
—(1-N)g"(v) - 6(N}

= 6(f).
This implies that F(z,y, ) = 6(f), and thus (z,y; A) € A(f). Accordingly, (6.3.2)

holds.

COROLLARY 6.2. Let f € Cla,b] — K and let g* be a best convex approximation

to f on [a,b]. Then, for all (z,y; ) € A(f) with z <y, ¢g* is linear on [z,y] and

g*(pz+ (1 —py) = pf(z) + (1 —p)f(y) +6(f), rel0,1]

PROOF: For (z,y;A) € A(f), by Theorem 6.3, (z,y;A) € A(f —g*). Hence, ¢g* is
linear on [z,y|, and g*(z) = f(z) + 6(f) and g*(y) = f(y) + 6(f). Therefore, by
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linear interpolation, for all x € [0, 1],
9" (uz + (1 - p)y)
=g*(g){uz + (1~ )y — yl/(z —y) + ¢" (W) [uz + (1 — w)y — =|/(y — =)

= f(z)u+ f(y)(1 — ) + 6(f).

Now we identify two functions which bound any best approximation. For

(z,y;A) € A(f), denote the linear interpolant to (z, f(z)+6(f)) and (y, f(¥) +6(f))

on [a,b] by

Uz, y)(t) = f(2)(t - v)/(z - v) + F(¥)(t — 2)/(y — =) +6(f), tE€ [ab]-

Let
L={l[z,y] : (z,5;A) € A(f)}, (6.3.3)
and
G = {envf — §(f)}U L. (6.3.4)
Define
g(t) =sup{g(t) : g € G}, t€|a,b]. (6.3.5)

It is easy to verify that g is a convex function on [a,b] and if f is convex then
g = f. The next theorem show that this convex function is a lower bound of the
best approximations to f.
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THEOREM 6.4. Let f € Cla,b]. If g* € K is a best convex approximation to f,
then

g(t) < g*(t) < g(t), forall t€[a,b], (6.3.6)

where § was defined in (6.2.7).

PROOF: In [56], it has been proved that

g*(t) Senvf()+ | F = 9" [loo -

By replacing || f — ¢* [l by 6(f), we obtain the upper bound. To show the
lower bound, assume to the contrary that there exists some z € [a,b] such that
g(2) > g*(2). Define

P =uU{[z,y] : (z,u;2) € A(f)}- (6.3.7)

By the definition of g,

g(t) = g*(t), forall te P.

Hence z is not in P. If g(2) = envf(z) — 6(f), then

f(2) = 8(f) 2 envf(2) — 6(f) > ¢7(2),

which contradicts the hypothesis that g* is a best convex approximation to f.
Therefore, there exists (z,y; A) € A(f), such that I{z,y](2) > ¢*(2). This contradicts
the convexity of g*. It follows that g(t) < g*(t), forall ¢t €& [a,b].
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As was shown in Corollary 6.1, g is a best convex approximation to f. Hence
it is the greatest best convex approximation to f. However, g need not be a best
convex approximation to f.

It is shown in [58] that if f is continuous but not nondecreasing on [a, b}, then
there exists a best monotone approximation to f that is in C°°. However, an
analogous statement is not true for best convex approximation. To see this, let us

consider the following example: Assume

—6z+1 0<z<1/8
4z —1/4 1/8<z<1/4
—3z+3/2 1/4<z<1/2
3z —-3/2 1/2<z<3/4
—4z+15/4 3/4<z<17/8
| 6z —5 7/8<z<1.

Then f is continuous but is not convex on [0,1]. 6(f) = 5/16 and

A(f) = {(1/8,1/2;1/2),(1/2,7/8;1/2)}.

Hence, every best convex approximation has a knot at z = 1/2, and thus is not

differentiable at 1/2.
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Chapter 7: Best Quasi-convex Uniform Approximation

7.1. INTRODUCTION

A function g € B is said to be guasi-convez [41] if
g(z) < max{g(s), g(t)}, forall 0<s<z<t<1.

Let K C B denote the set of all quasi-convex functions on [0, 1].

Ubhaya [63] has proved that g is quasi-convex if and only if there exists a point
p € [0,1], such that either

(i) ¢ is nonincreeasing on [0,p) and is nondecreasing on [p,1],0r

(ii) ¢ is nonincreasing on [0, p] and is nondecreasing on (p, 1].
We shall call the point p (in either (i) or (ii) ) a knot of g. Let K, denote the set of
functions in K which have a knot at p. Then, K = U{K, : p € [0,1]}. In general,
the set of all the knots of a quasi-convex function is a closed subinterval of [0,1].

The problem of best quasi-convex approximation is to find a g* € K, such that

| f=9" lloo=inf{|| f — g llco: g € K} (7.1.1)
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This problem is considered in [63], where a sufficient condition for a best quasi-
convex approximation to a bounded function is obtained, and some structural prop-
erties of best approximation are established. Algorithms for the computation of a
best discrete quasi-convex approximation are presented in [9, 57].

Given f € C[0,1], let

G=G(f) ={s" €K f—g" loo=nf{]| f — 9 llco: 9 € K}}, (7.1.2)

be the set of best quasi-convex approximations to f, and let

P* = {pe€[0,1]: p is a knot for some g* € G(f)}. (7.1.3)

We shall call P* the set of opttmal knots.
In this chapter, we shall characterize both the best quasi-convex approxima-
tions and the optimal knots. In addition, we shall prove that a best quasi-convex

approximation is unique if and only if f is quasi-convex.

7.2. PRELIMINARIES

Similar to the developments in [58], we define two functionals 6; and 6, which
we shall use to obtain the error of best quasi-convex approximation. For f € C|[0, 1]

and p € [0,1], let

6i(p) = sup{lf(y) — F(2)]/2:0< =<y <}, (7.2.1)
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and

6.(p) = sup{[f(z) — f(¥)}/2:p<z<y <1} (7.2.2)

We remark that 6§ is a measure of the ”decreasingness” of f on [0,p] and 6, is a

measure of the ”increasingness” of f on (p,1]. Moreover we define

é(p) = max{&i(p), 6 (p)}- (7.2.3)

Denote the minimum value of §(p) on [0,1] by

6* = inf{6(p) : 0<p<1}. (7.2.4)

Let

P ={pel0,1]:6(p) =6} (7.2.5)
be the set of minima for §(p), and let
S = {se0,1]: f(s) =m} (7.2.6)

be the set of minima for f, where m = inf{f(z) : 0 < z < 1}. Denote the convex

hull of S by [s,s,]. Then,

s; =infS, and s, =supS. (7.2.7)
In addition, define
m = inf{z € [0,s1] : f(t) < m+26*%, forall t€]lz,si}, (7.2.8)
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and

nr = sup{z € [s,,1] : f(t) < m +26*, forall t€ [s,, 2]} (7.2.9)

Thus, [s1,sr] C [m,nr]. We shall prove that P = [71,n+], and that P = P*, the
set of optimal knots.
Next, let f € B. For each p € [0, 1], similar to the definitions of u, and v, in

[8] with 8, replaced by §* we define the two functions:

B sup{f(t) : t € [z,p]} — 6* =z €[0,p]
g,(2) = {sup{f(t) cte(pal} -6 s€(n]] (7.2.10)
and
_ _ (inf{f(t) : t € [0, 3]} + & z € [0, p]
o(2) = {inf{f(t) it e (z,1]}+6* z€(p1]. (7.2.11)

LEMMA 7.1. Let f € C[0,1]. Then,
(i) |A&(p)| < (1/2)wy(|Ap|), and |AS.(p)| < (1/2)ws(|Ap|), where wy denotes the
modulus of continuity of f. Thus, § and 6, are continuous functions;
(ii) 6* =0 if and only if f € K;
(iii) S c P.

PROOF: (i) If Ap > O then,

&(p+ Ap) < &(p) + sup{[f(v) — f(@)]/2:pLz<y<p+|Ap},

and If Ap < 0 then,

&i(p) < 6i(p — |Ap|) +sup{[f(v) — f(z)]/2:p—|Ap| <z <y < p}.
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It follows that
Abi(p) < sup{if(y) — f(2)]/2:0 <y —z < |Ap[} = (1/2)ws(|Ap]).

Similarly, we may show the second inequality of (i).

(i) First let 6* = 0. By (i) 6 and 6, are continuous and thus so is §(p). Hence,
there exists a po € [0,1], such that 6(po) = 6* = 0. Thus, &(po) = 6-(po) = 0,
since 8; and 6, are both nonnegative functions. Consequently, by the definitions of
6, and 6,, f is nonincreasing on [0, po|, and nondecreasing on (po,1]. Thus, f € K.
Conversely, assume that f € K. Then there exists a po € [0,1] such that f € Kj,.
Therefore, 6;(po) = 6-(po) = 0, which implies that 6(po) = 0. Hence, §* = 0.

(iii) It is sufficient to show that if s € S, then,
61(s) < max{éi(p),6,(p)} forall pe [0,1] (7.2.12)

and

6-(s) < max{6i(p),6:(p)} forall p € [0,1] (7.2.13)

The proofs of (7.2.12) and (7.2.13) are similar. Thus we shall only present the proof
of (7.2.12).

If s = 0, then, since §;(0) = 0 and since 6; and é, are both nonnegative functions,
(7.2.12) holds. If s € (0,1], we consider two cases. First assume that p > s. Then
61(s) < éi(p) and thus (7.2.12) holds. Next, assume that p < s, and &(p) < 6-(s).
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f € C[0,1] implies that 26;(s) = f(y1) — f(z1) for some 1 < y; in [0, s]. It follows

that 26;(p) < f(v1) — f(z1) and p < y;. Hence,

26:(s) < f(y1) — f(s) < sup{[f(z) — f(¥)]: p < 2 <y < s} < 26:(p)-

Therefore, (7.2.12) holds.

LEMMA 7.2. g and g, as defined by (7.2.10) and (7.2.11) have the following
properties:
(i) 9,:9» € K, for all p € [0,1];
(ii) if f € C|0,1] then
(2) g9,€ Clo,1] for all p € [0, 1],
(b) g, € C[0,1] if and only if p € [s1, s/],
(c) if p € [s1, 5], then Gy(z) = G, (2) for all z € [0,1],
(d) if p € [0,1], then g,(z) < g,,(z) for all z € [0,1].
PROOF: (i) follows from the definitions (7.2.10) and (7.2.11).

(i) (2) For all p € [0,1], (7.2.10) implies that g, is continuous at any z # p.

Next, to prove the continuity of g, at z = p, we observe that

g,(p7) = limeosup{f(t) : t € [p — &, p]} — 6" = f(p) = &7,

and

g,(p*) = limeosup{f(t) : t € (p,p + €]} — 6" = f(p) — 6"

P
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Since f € C[0,1]. Thus, gp(p“) = gp(p+) = gp(p), and (a) is proved.
(b) Similarly, for all p € [0,1], g, is continuous where z # p. Next,if z =p

and p € [s1,5r), then

5,(p7) = limeoinf{f(t) : t € [0,p — €]} + 6 = f(s1) + 6",
and
g,(p") = limeoinf{f(t) : ¢ € [p + €, 1]} + 8" = f(s/) + 6"

Hence, g,(p7) = 7,(p) = J,p(p*).
Conversely, suppose that p ¢ [s1,s,]. If p < s1, then

gp(p7) = lime_oinf{f(t) : t € [0,p — €]} + 6 > f(s1) + 6"

= lim_oinf{f(t) : t € [p+ & 1]} + 6* =G, (p™).

While if p > s, then
g,(p7) = limoinf{f(t) : t € [0,p— €]} +6* = f(s1) + 6

< lime_oinf{f(t) : t € [p+ €& 1]} + 6* =7, (p™).

(c) Let p € [si,s,]. For z € [s1,p),
g,(z) = inf{f(t) : t € [0,2]} + 6" = f(s1) + 6" =m + 67,
and for z € (p, s/,
7,(z) = inf{f(t) : t € [z, 1]} + 8 = f(s,) + 6" =m + 6%,

and for z ¢ [s1, s, g—]p(a:) = g, (z). Thus, g, =7,,-
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(d) Assume that p ¢ [si,s,]. If p < &1, then g,(z) =7, (=), for all
z € [0,p] U [s1,1], and
gp(z) = inf{f(t) : ¢ € [z, 1]} + 6" = f(s,) + 67
< inf{f(t) : t € [0,2]} + 6* =G, () forall z € (p,s1).
If p > sy, then §,(z) = g, (), for all z € [0,5,] U [p, 1], and
gp(z) = inf{f(t) : t € [0, 2]} + 6" = f(sr) + 6"
< inf{f(¢t) : t € [z,1)} + 6* = 7,,(z) for all z € (sy,p).

Thus, by (c) if p € [0,1], then §,(z) < 7, (2) for all z € [0,1].

THEOREM 7.1. Let f € C|[0,1], and let P be the set of minimum points for 6.

Then, P = [n1,7,], where n; and n, are defined by (7.2.8) and (7.2.9) respectively.

PROOF: Assume that zo € [n1,7,]. We consider three cases.
Case 1: z € [n1,51]- Then, §(zo) < 6i(s:). However, since s; € § C P,
6, (o) = max{sup{[f(z) — F(¥)]/2: 20 <z <y < si},
sup{[f(z) - f(¥)]/2: s <z <y <1}}
= max{sup{f(z)/2: 70 < z < s1} — f(s1)/2,6-(s1)}
< 6.

Case 2: 7o € (s1,5r). Then,

sup{[f(v) — f(2)]/2: z1 < 2,y < s, } < 6.
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Since s; € P,

61(z0) = max{8i(s:), sup{[f(y) - F()]/2: 51 S © < y < wo}} < 6%,
and

b, (z0) = max{di(s,),sup{(f(z) — f(¥)]/2: 70 <z <y < s,}} < 6"

Case 3: zo € [$r,7r]- Then , 6,(z0) < 6,(s,) < 6*. Also, since s, € P,
bi(zo) = max{8i(s,), sup{[f(¥) — F(2))/2: s < = < y < 7o}}

max{8;(s;),sup{f(2)/2 : sr < = < zo} — f(sr)/2}

< §*.
Combining all three cases, §(zo) = max{6;(zo), 6;(z0)} < 6*, for zo € [n;,n,].

Hence, zo € P, and thus, [m,7,] C P.
Next, assume that zo ¢ [71,7,]. If o < 7n;, then by the definition of #;, there

exists a to € [zo, 1] such that (1/2) f(to) > (1/2)m + 6*. Hence,
ér(z0) Z sup{[f(z) — f(¥)]/2: 20 Sz <y < &1}

> (1/2)[f(to) — f(s1)]

> §*.
This implies that zo ¢ P. If o > 7n,, then by the definition of #,, there exists a

to € [sy,Zo] such that (1/2) f(to) > (1/2)m + 6*. Hence,
6r(z0) = sup{[f(y) — f(2)]/2:sr < z <y < 70}

> (1/2)[f(to) — f(sr)]

> 6%,
which implies that o ¢ P. Thus, P C [n,7n,].
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7.3. DUALITY

In this section we prove that é* is the error of best approximation and for

P € [n1,n4), g, and g, are both best quasi-convex approximations to fecC[o,1].

LEMMA 7.3. Let f € C[0,1] and p € [m,n,]. Then,
1f =g, llo < 6" and [If —Fplle0 < 6"

PROOF: The proofs of these two inequalities are similar. Thus, we present only
the proof of the second.

If z € [0,p] then g, (z) < f(z)+6*. Also, for each € > 0, there exists a £ € [0, z]
such that ,(z) > f(t) + 6* — €. Since p € P, §(p) = max{6i(p),é:(p)} = 67, and

thus 6* > [f(z) — f(t)]/2. Hence,
Gp(z) > f(t) +6" —e> f(z) - 6" — e
Consequently, if z € [0, p], then |f(z) — g,(z)| < 6*. Similarly, we can show that if

z € (p, 1], then |f(z) —g,(z)| < 6*. Thus, ||f - Fplle < 6*.

The following theorem shows that 6* is the measure of best quasi-convex ap-

proximation to f € C[0,1].

THEOREM 7.2 (DUALITY). Let f € C[0,1]. Then, inf{||f —gllwc : 9 € K} = 6%,
with 6* as defined by (7.2.4).
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PROOF: For each g € K, there exists a p € [0,1] such that g € K,. Hence, for
0<z<y<plor 0<z<y<p),

fy) = f(z) < fly) — f(=z) +g(z) — 9(v)
<|f(y) — g)|+ 17 (z) — 9(z)|

< 2/ f = glloos

andforp<z<y<l(or p<z<y<l),

f(z) — f(v) < fz) — fy) +9(y) —g(z)
<|f(y) —9()| + £ (=) — g(=)|

< 2||f - g”oo-

Tt follows that & (p) < ||f — gllco and 6-(p) < ||f — glloo. Therefore, for each g € K,

I — glloo > max{éi(p), 6:(p)} = 8(p) 2 6",
and thus inf{||f — g|lco : ¢ € K} > 6*. By Lemma 7.3, we also have || f —,[lcc < 67,

and by Lemma 7.2, §, € K, C K. Consequently, inf{]|f — glloo : g € K} = 6".

Theorem 7.2 can be extended to bounded f by using Theorem 4.2 of [63] and

(A) of Theorem 1 of [58].

COROLLARY 7.1. If f € C[0,1] and p € P = [n1,7,], then

1 = g lloc = IIf = Fplleo = 6™
Therefore, g9, and g, are both best approximations to f,and P C P*.
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7.4. OPTIMAL KNOTS
We now characterize P*, the set of optimal knots.

LEMMA 7.4. Ifg is a best quasi-convex approximation to f € C[0,1], and p is a

knot for g, then p € P = [, n,|. Thus, P* C P.
PROOF: Assume that p ¢ P, then by the definition of P either §(p) > 6* or
6:(p) > 6".
If 6;(p) > 6*, then there exists an z; < y; in [0, p] such that
(1/2)[f (1) — f(z1)] > 67
Since g is a best approximation, it follows from Theorem 7.2 that
—6* < g(z1) - f(z1) < 6™

Hence,

9(y1) — f(n1) < g(z1) - f(1)
= g(z1) — f(z1) + f(z1) — f(v1)

< 6* —26% = —6".
Similarly, if 6,(p) > 6* then there exist z3 < y2 in (p,1] such that

(1/2){f(z2) — f(y2)] > 6,
and as above, g(y2) — f(y2) > 6*. Consequently, g is not a best quasi-convex ap-

proximation to f. This contradiction implies that p € P.

Combining Corollary 7.1 and Lemma 7.4 we have the following:
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THEOREM 7.3. If f € C[0,1] then, P* = P, where P* is the set of optimal knots

and P = [n,n,] is the set of minimum points for &.

7.5. THE CHARACTERIZATION OF THE BEST APPROXIMATIONS

In this section we present a characterization of best quasi-convex approxima-

tions to f € C[0,1].

LEMMA 7.5. Let f € C[0,1] and let g be a best quasi-convex approximation to f.

Then, there exists a p € [ni,7n,| such that

gp(:z:) <g(z), forall z€|[0,1].

PROOF: Assume, to the contrary, that there exists an zo € [0,1] such that
g(zo) < gp(zo), for all p € [, 7).
If zo € [0,71], then
g(zo) < g_zm(mo) =sup{f(t) :t € [zo,m]} — 6.

Hence, there exists a to € [zo, 1] such that g{zo) < f(to) — 6*. By Lemma 7.4, if

we let po be a knot of g, then po € [n:,7,]. Thus,

g(20) < g(zo) < f(to) — 6".
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If 2o € (m,nr), then g (zo) = f(zo) — 6*, and hence, g(zo) < f(zo) — 6*. If

To € [m1,1], then

g(zo) < 9, (zo) = sup{f(¢) : t € [n,,z0]} — 6*.

Hence, there exists a to € [, Zo] such that g(zo) < f(to) — 6*. Thus, there exists
a to € [0,1] such that g(to) < f(to) — 6*. Hence, g cannot be a best approximation

to f, which is a contradiction.

THEOREM 7.4 (CHARACTERIZATION). Let f € C[0,1]. Then, g € K is a best
quasi-convex uniform approximation to f on [0,1] if and only if there exists a

p € [mi,ny] such that

gp(x) <g(z) <7, (), forall z€][0,1]. (7.5.1)

PROOF: (Necessity) Let g be a best approximation to f from K. The first in-
equality follows from Lemma 7.5. It remains to show that g(z) < g, (z), for all
z €0,1].

For t € [0,1], —6* < f(t) — g(t) < 6*. By the definition of g, _, for z € [0, s]|

and for all € > 0, there exists a t € [0,z] satisfying
g (z) > f(t)+6" — e (7.5.2)

Also, for £ € (s,,1] and for all e > O there exists a ¢ € [z, 1] satisfying (7.5.2).
Let po be a knot for g. If po < sy, then g(z) < g(t) for 0 <t < z < po, (or
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0<t<z<pg), and moreover
g(z) < g(t) < f(t) + 6" <G, () +¢ for z€ [0, p0], (or z € [0, p0))-

It follows that g(z) < g,, (z) for z € [0,po], (or z € [0,p0)). Also, g(z) < g(t) for

s, <z <t<1,(ors, <z<t<1),and
9(z) < g(t) < f(t) +6* <7, (z) +¢ for z€(sy,1], (or z € [s,1]).

Thus,

g9(z) <7, (z), for z € (sr,1], (or z € [sr,1]).

In either case, g(s;]) < g, (s;7). Hence for z € (po, s, (or [po, sr)), by Lemma 7.2,
9(2) < 9(sF) <7, (s]) =, (s7) <7s,(2)-
Therefore, if pg < s, then
g(z) <7, (), forall zel0,1]. (7.5.3)

If po > sy, then we can similarly prove (7.5.3).

(Sufficiency) If ¢ € K and there exists a p € [n1,7,] such that (7.5.1) holds,

then by Corollary 7.1, || f —gp“oo = ||f -7,

0o = 6*. Thus, ||f —¢gllcc =6*,and g

is a best approximation to f.

The following corollary gives the structure of G, the set of best approximations:
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COROLLARY 7.2. Let f € C[0,1], then

G = U {g* €K :gp(:c) < ¢*(z) £ 9,,(z), forall z€]lo, 1]} . (75.4)
PE[n,ny]

THEOREM 7.5. Let f € C[0,1]. Then f has a unique best quasi-convex uniform

approximation if and only if f is quasi-convex.

PRrROOF: If f € K then f is its own unique best approximation from K. Next,
assume that G has a unique element. Then by Corollary 7.2 for all p € [m1,79¢],
g (z) = g, (z), for all z € [0,1]. In particular, we find that g, (s7) = g, (5r)-
Hence, by the definitions of g, and g, , f(ss) — 6* = f(sr) +6". Hence, 6* =0,

and by Lemma 7.1, f € K.

Theorem 7.5 can also be derived from Theorem 5.1 of [63].
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Chapter 8: Best Piecewise Monotone Uniform Approximation

8.1. INTRODUCTION

For any integer n > 1, let

Q. = {p=(po,P1,»Pn) ER" 1 :0=pg <p; < ... <pn =1} (8.1.1)

Then, ,, is compact in R™*1.
Given a p € Qy, let I; = [pi—1,p:), for 1 = 1,2,...,n — 1, and I, = [pn_1,Pn)
Let

A(p) ={g € B: g is nondecreasing on Iy;_;, j=1,2,..,[(n+1)/2],
(8.1.2)
and g¢ is nonincreasing on Ip;, j =1,2,...,[n/2]}.

We call A(p) the set of n-piecewise monotone functions with knot vector p. Some
functions in A(p) have more than one knot vector. In general, the set of all knot

vectors for a given function g € A(p) is a convex subset of 2,. Next, let

A, =U{A(p) : p€ Qn}. (8.1.3)
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A, is called the set of n-piecewise monotone functions. When no ambiguity arises,
we call A,, the set of piecewise monotone functions.
For a fixed n, g* € A,, is said to be a best piecewise monotone uniform approz-

imationto f € C[0,1], if

| f=9" lloo=nf{|| f — g [lco: g € An}. (8.1.4)

For n = 1, this problem reduces to best monotone uniform approximation, which
is investigated in [58, 59], and for n = 2, this reduces to the problem of the best
quasi-convex uniform approximation studied in {63] and Chapter 7. In this chapter,

we consider the problem for n > 1.

DEFINITION 8.1: For f € C[0,1], let

Po={pcQu:inf{]| f—gllw:g€ A(P)} =inf{|| f —g[lc: 9 € 4n}}. (8.15)

P} is called the set of best knot vectors for piecewise monotone approximation to f.

Equivalently, if we let A}, denote the set of all best approximations to f from
Ay, then P} = {p € Q, : A(p) N A} # ¢}.

We shall present characterizations of both the set of best approximations, A,
and the set of best knot vectors, P;. Our approach is to find a representation of the
error of best approximation. Then, by employing this representation, we character-
ize A} and P, and prove the existence and nonuniqueness of a best approximation.
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8.2. PRELIMINARIES

Ubhaya [58], showed that if f € C[a,b], then

6 =sup{[f(z) - f(¥)]/2:a <z <y<b}

provides a measure of best uniform nondecreasing approximation to f. We shall

use a similar development to obtain a measure of best uniform piecewise monotone

approximation.

DEFINITION 2: For f € C[0,1],0<z<y<1,and k=0,1,2,..,n — 1, let

[f(z) — f(¥)]/2, if k is even,

Fy(z,y) = { [f(y) — f(=)]/2, if k is odd.

For0<a<pB<1,let
di(a, B) = sup{Fi(z,y) :a <z < y < B}

For p € Qp,, let

6n(p) = max{d(pk,pr+1), k= 0,1,...,n — 1}.

Define
6y = inf{6,(p) : p € Ny},
and

P,={pe,:6,(p) =6}

(8.2.2)

(8.2.3)

(8.2.4)

(8.2.5)

We remark that di(a, 8) is a measure of the ”decreasingness” of f on (o, ),

if k is even, and a measure of the ”increasingness” of f on (a, f), if k is odd. P, is

the set of all minima for the function 6, (p).
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LEMMA 8.1. Let f € C[0,1]. Then
(i) 1dk(tr + At bz + Atz) — di(tr, t2)] < (1/2)[ws(|At1]) + ws(|At2])],
where ws denotes the modulus of continuity of f;
(ii) 6n(p) € C(n);
(iii) P, is nonempty;

(iv) 6 =0 if and only if f € Ay.

PROOF: (i) We only present the proof for even k. Consider the following four cases:
Case 1: At; <0 and Ats > 0. Since dk(t]_ + Aty,t2 + Atz) > dk(tl,tz),

and

dy(t1 + Aty,ta + Atg) < sup{[f(z) — f(¥)]/2: 81 — |AH)| <z <y <t}
+sup{[f(z) - f(¥)]/2: t1 Lz <y < ta}

+sup{[f(z) — f(¥)]/2:t2 <z <y < ta+ |ALa]},

it follows that

|di(t1 + At1,t2 + Atg) — di(t1,t2)]
< sup{[f(2) — f(¥))/2:0 < y—=z < At}
+sup{[f(z) - f()]/2:0 <y — z < |Ata[}

= (1/2)[ws(1Ata]) + ws(|At2])]-
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Case 2: Aty <0 and Aty < 0. Since

dk(tl + Aty,te + Atz)
<sup{[f(z) - f(¥)]/2:t1 — [At)] Sz <y <t}
+sup{[f(z) — f(¥)]/2:t1 Sz <y <ty — |Atz[}

<sup{[f(2) — f(¥)]/2:0 <y — = < [Ats]} + di(t1,22),

and
di(t1,t2) < sup{[f(z) — f(¥)]/2:t1 Sz <y <t2—|Ate]}

+sup{[f(z) — f(y)]/2:t2 — |Atz| Sz <y < ita}

< di(t1 + Aty,ta + Atz)

+sup{[f(z) - f()]/2: 0 <y —z < [Atyf},
(i) holds in this case.

Case 3: At; > 0 and Aty > 0. Let t] =t; + Aty, th =t + Atg, t] + At] =1
and th + Aty = to. Then At] = —At; < 0 and Atj = —At; < 0. This reduces to
case 2.

Case 4: At; > 0 and Aty < 0. Let £} = t1 + Atq, th = ta + Atg, t) + At =1
and th + Aty = ty. Then At} = —At; < 0 and At; = —At; > 0. This reduces to
case 1.

(i) From (i), we find that dg(t1,t2) is continuous on the compact set
{(t1,t2) € R? : 0 < ¢; <t < 1}. Hence, é,(p) is continuous on .

(iii) In view of the continuity of 4, (p), Pr is nonempty since {1, is compact.

(iv) Assume 6 = 0. By (ii), there exists a p € Q,, such that 6,(p) = 0. Thus,
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dx(pk,Pk+1) = 0, for k = 0,1,..,n —1and f € A(p) C An. Conversely, assume
f € Ap. Then for some p € ,,f € A(p). It follows that 6,(p) = U, and thus

6% =0.

n

8.3. DUALITY AND EXISTENCE

We shall prove that the error of the best approximation to f is 6,. One conse-

quence of this is the existence of the best approximation from Ap.

THEOREM 8.1 (DUALITY). Let f € C[0,1]. Then

inf{)| f— g |lcc: 9 € Ar} =6,,. (8.3.1)

The proof of Theorem 8.1 follows from the next lemma. We first define two
approximations g, and g,, which we shall prove are best approximations to f from

A, whenever p € P,.

DEFINITION 8.3: For f € C and p € (1,, define g, g, in A, by

{sup{f(t) ipai_z <t <z} -6}, forz€ Ipi_1,i=1,2,..,[(n+1)/2]
sup{f(t) : z <t < pa:} — 65, for x € Ip;, ¢ = 1,2,...,[n/2],

g,(z) =
(83.2)

and

7.(z) = {inf{f(t) cx <t < py1}+6), forzelpy q,1=1,2,..,[(n+1)/2]
P inf {f(t) : paic1 <t <z} + 6%, forz € Ipjy i =1,2,...,[n/2]
(8.3.3)
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DEFINITION 8.4: For f € C|0,1], define the set of alternant local extremal points
of f by
Qr ={p € U : f(p2i—1) = maz{f(z) : T € [p2i—2,P2:]}, ¢ = 1,2,..., [(n + 1) /2];

and  f(p2:) = min{f(z) : ¢ € [p2i-1,P2i+1]}> ¢ = 1,2,...,[n/2]}.
(8.3.4)

LEMMA 8.2. Let f € C[0,1]. Then
(i) 9,9, € C[0,1], forp€ Qpn;

Gi) || f -9, loo< 6%, and || f—7,llc0< 6y, forp€ Pn.

PROOF OF LEMMA 8.2: (i) Note both g, and g, are continuous at z # p;,
i =1,2,...,n — 1. In addition, for p € Qy, we have g, (p3;_1) = f(p2i—1) + 65, and
p(P5i_1) = f(p2i—1) + 65, fori = 1,2,...,[(n+1)/2]. Hence, g, € C[0, 1]. Similarly
we can show g€ C[o,1].

(i) We present only the proof of the first inequality, since the proof of the
second is similar. By the definition of g, if z € In;_1,1 = 1,2,..,[(n + 1)/2],
gp(:z:) > f(z) — 6., and for any € > 0, there exists t € [p2;—1,2] such that

gp(:z;) < f(t) — 6% + €. Since p € P,, we have [f(t) — f(z)]/2 < §,. This implies that
gp(a:) <f)—6;+e€e< fz)+ 6, +e

Hence,

lg,(z) — F(2)| <67, z€ i1, T=1,2.0[(n+ 1)/2].

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Similarly, we prove that
Igp(:z:) —f(z)| <6k, z€Iy, i=1,2.,[n/2].

Therefore, || f— g, loo< 5.

PROOF OF THEOREM 8.1: For each g € A,, g € A(p) for some p € N,. Hence,
g(y) —g(z) >0, for z < yin Izi_1, % = 1,2,...,[(n+1)/2], and g(z) —g(y) >0, for

r <yin Iy, ¢ =1,2,..,[n/2]. It follows that for z < y in I3;_;,

f(z) = fy) < f(z) — Fly) + 9(v) —g(z) <2 f — g |lcos

and for z < y in Iy,

fy) = f(=) < fy) — f(=z) +9(z) —9(y) <21 F =g loo -

Consequently, dk(pk,pk+1) <| f— 9 llcos k¥ =0,1,...,n — 1, and therefore,
65 <|| f— g |loo, for all g € Ap.
On the other hand, by Lemma 8.2, we also have || f — g, loo < 65, for p € Py.

Therefore, inf{|| f — ¢ ||co: 9 € An} =|| f -9, loo = 6.

COROLLARY 8.1. If f € C[0,1] and p € P,, then g, and g, are best approxima-

tions to f from A,,. Hence, P, C P;.
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8.4. CHARACTERIZATION

In this section, we characterize both the best approximations from A, and P,

the set of knot vectors of the best approximations.

THEOREM 8.2 (CHARACTERIZATION). Let f € C[0,1] and g € An. Then, g is
a best uniform piecewise monotone approximation to f if and only if there exists a
p € P, such that

g,(z) <g(z) <Gp(z),  =z€[0,1] (8.4.1)

To prove this characterization, we need the following lemma:
LEMMA 8.3. Let f € C[0,1]. Then, P; C P,.

For 0 < a < 3 < 1, we define the following notation:

m(a, 8) = min{f(z) : « < = < f},

and
M(e, B) = max{f(z): a < z < B}.

PROOF OF LEMMA 8.3: Assume to the contrary that g is a best approximation
to f with a knot p ¢ P,. Then, for some index ¢ € {0,1,...,n— 1}, di(ps, pit1) > 65
There exist two points ¢ < y in I;; such that Fi(z,y) = di(pi,piy1). Thus, for

even i, f(z) — f(y) > 26;;. By the hypotheses, we find

—6; < g(z) — f(z) < 6.
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Hence,

a(y) — f(¥) > 9(2) — F(¥) = l9(2) — f(@) + [f (&) = F(W)] > 6.

Similarly, for odd i, we have g(z) — f(z) > 6. This contradiction implies p € Py,.

PROOF OF THEOREM 8.2: (Necessity) Let ¢ € A(g) be a best approximation
to f from A,. By Lemma 8.3, ¢ € P,. Assume to the contrary that there exists
an 7o € [0,1] such that for all p € Pp, g(z0) > Fp(zo) or g(zo) < gp(zo). Let
I! = [¢i-1,4), for i = 1,2,...,n — 1, and I' = [gn-1,4qn). If zo € I3;_,, then we
have tm € [To,q2i—1) and tar € [g2i—1,%0] such that f(tm) = m(zo,q2i—1) and

F(tar) = M(azi—s, o). If g(z0) > T, (o), then

g(tm) > g(z0) > Fy(z0) = m(z0,g2i-1) = f(tm) + &5
If g(zo) < gp(xo), then

g(tm) < g(zo) < g, (o) = M (g2i~2,%0) = f(tmr) = &y

Similarly, if zo € I};, we arrive at a contradiction.

(Sufficiency) If g € An and there exists a p € P such that inequality (8.4.1)
holds, then by Corollary 8.1, we have || f — g |lo= 6;. Thus, g is a best approxi-
mation to f from A,.

The following theorem follows from Lemma 8.3 and Corollary 8.1. Recall that
P is the set of best knot vectors.
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THEOREM 8.3. Let f € C[0,1]. Then, P; = Pp.

COROLLARY 8.2. Let f € C[0,1]. Then,

A= U {g € Ap : gp(a:) < g(z) < Gp(2), z €0, 1]} . (8.4.2)

8.5. NONUNIQUENESS OF BEST APPROXIMATION

THEOREM 8.4. Let f € C[0,1]. Then, the best approximation to f from A, is

unique if and only if f € A,,.

The proof of Theorem 8.4 depends on Lemma 8.4 and Theorem 8.5 which

follow.

LEMMA 8.4. Let f € C[0,1] and p € P,.

(i) Let k be an integer in [1,n — 1] and p,(cl) € [pk—1,Pk+1] such that for
odd k, f(p") = M(pk_1,Pr+1), and for even k, f(p\") = m(px—1,Pks1). Then
di—1(pr-1,") < 6 and di(p{", Pr+1) < 65

(ii) Let k be an integer in [1,n — 1] and pfcl) € [pksPr+1] such that
(a) for odd k, f(p") = M(pk—1,Pe+1)> m(PepE)) < f(Pr—1) = m(Pr_2,Pk),

and p{), = inf{s € [pk,p{"] : £(5) = m(pe, ) }s
(b) for even k, f(p") = m(px_1, Pr11), M(P,2Y) < f(Pr-1) = M(Pr—2, %),

and p{); = inf{s € [pe,p"] : £(5) = M(pr. i)}

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Then, di—1(p(",,p{") < 6, and  dy—z(pr—2,P;) < 6.

PROOF OF LEMMA 8.4: (i) We present only the proof for k odd. If pg) = Dk,

the proof is trivial. If pg) < pg, then
d_1(pk—1,P") < di—1(PE—1,P) < 631

Assume dk(pgcl),pk_,_l) > 6. Then, there exist two points z; < y; in [pg),pkﬂ]

such that f(y1) — f(z1) > 26;. If pfcl) <z < prs

di—1(pr-1,28) 2 [F (") = £(21)]/2 > [f (91) — f(=1)1/2 > 6,
and if pr < z1 < Pk+1,

di (P, Pr+1) = [f(v1) — f(z1)]/2 > 6y,

which is a contradiction. The case p,(cl) > pi can be handled similarly to obtain a

contradiction.

(ii) We prove this result only for odd k. Since p,(cl_)1 € [pk,pil)], by (i),
dk—1(P§c1_)1,P§¢1)) < dk—1(pk—1,P§¢1)) <é,.

On the other hand,
d (1) < d d (1)
k—2(Pk—2,P; 1) < maz{dr_2(Pr—2,Pk—1), dk—2(Pk—1,P5 1),

sup{[f(¥) = F(@))/2 : pr—1 < ¥ < P P2 < 7 < pr_1}}-
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But
d—2(px— 1,P£)1)<M(Pk l’Pk 1) f(P(I) )1/2

<(feM) - F(M)))/2

< di—2(Pk, Pr+1)

< by,
and
sup{[f(v) — F())/2 : Pk—1 <y <L, Ph—2 < = < pr-1}
< [M(pr—1,p32) — f(Pr=1)]/2
< [M(pr_1,p,) — F(2)]/2 < 6.
Hence,

di—2(Pr—2,{") < 6.

The proof of Theorem 8.4 also depends on the following theorem, which is
used in Chapter 9 to develop an algorithm to find a best knot vector p*, and a

corresponding best approximation g*.
THEOREM 8.5. Let f € C[0,1]. Then, P, N Qy is nonempty.

PROOF OF THEOREM 8.5: By Lemma 8.1, P, is nonempty. Assume p € P,. Let
k be the smallest index in {1,2,...,n — 1} such that f(px) does not assume its local
maximum for odd k or local minimum for even k, on [px—1,pk+1). If k is odd, find
pgcl) € [Pk—1,Pk+1] such that f(p,(cl)) = M(px—1,Pk+1) and replace p by p(l). If
f(pr—1) = m(px— 2,P§c )) then let p( ) = =p;,t=1,2,..,k — 1. Otherwise we deduce
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pr < pg) and m(pk,pg)) < f(pk-1), and let
P, = inf{s € [pr,p{"] : £(s) = m(px,p{")}-

Now, by Lemma 8.4, dy(pr—2,0%;) < 6%, de—1(pS2,p3") < 67, and

(0™, prsr) < 62 Also, F(,) = m(pi—2,pL") and f(p{") = M(pi2,,pe1).
If f(pr—2) = M(pk_g,p,(cl_zl) with k£ — 2 > 1, then let p(-l) =p,,1=1,2,...,k—2.

1

Otherwise we deduce px—1 < pil_)l and M(pk_l,pg_)l) > f(pk—2), and let

pM. = inf{s € [pe_1,0] : £(s) = M(pr-1,5{"1)}-

. 1 1 .
Thus, dk—s(Pk—&P](cl_)z) < é;, dk—2(P§c122aP§c1_)1) < é;, d:;_l(pi_)l,pfg )) < &%, and

. 1 1
de (", k1) < 63, with F(5(2) = M(ph-s,p(0s)s Fp1) = mlpi2z,pL"), and
FeM) = M(p,, pri1)-

By repeating this procedure, we shall obtain pil_)z, ey pgl), p{il) such that

(1) (pc(,l),pgl), ...,pfcl),pk,;.l, weyDn) € Py, with p((,l) = Po,
@) ) = M(p®,,p3), i=1,3,..,k—2,
M) = m(p®,, o), i = 2,40k - 1,
and
FP) = M, pes1).
Let pz(-l) =p;, i =k+1,..,n Then, p(!) € P,. Apply the same procedure to

1) and obtain p(2). In at most n iterations, we shall obtain p* € Pp N Qn.

If k is even, we can define a similar construction to find p* € P, N @n.
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COROLLARY 8.3. Let f € C[0,1] and, p € P, N Qn. Then, g, and g,, are contin-
uous best approximations to f. Thus, there always exist continuous best approxi-

mations to a continuous function.

PROOF OF THEOREM 8.4: If f € Ay, then f is its own unique best approximation

from A,.
Next, assume that f has a unique best piecewise monotone approximation. By

Corollary 8.2 and Theorem 8.5, for p € P, N @y, g9, = g,- Hence,
gp(pl) = M(plaPZ) — 6;: = f(pl) - 6;:a

and

7,(p1) = f(p1) + 65.

It follows that f(p1) — 6% = f(p1) + 6. This implies that é; = 0. By Lemma 8.1,

f € A,

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 9: The Computation of

A Best Piecewise Monotone Uniform Approximation

9.1. PRELIMINARIES

The existence, error representation, characterization and nonuniqueness of a
best piecewise monotone uniform approximation to a continuous function are proved
in Chapter 8. Ubhaya in [59] gave an algorithm for the computation of a best mono-
tone approximation to a continuous function on [a, ). Once we have an algorithm
to obtain a best knot vector, we can compute a best piecewise monotone approxima-
tion by employing the algorithm given by Ubhaya in each subinterval. Hence, it is
sufficient to establish an algorithm to compute a best knot vector. In this chapter,
we shall characterize the set of best knot vectors of the approximations and present
an algorithm to compute a best knot vector.

In this chapter, when we use the notation defined in Chapter 8, we shall not
repeat the corresponding definition.
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Let f€ C[0,1]. For0<a < B<1,let

e(a, B) =sup{| f(z) — F(¥) | /2: =,y € [, B]} (9.1.1)

Let

E, = {p = (po,P1,-sPn) € U : €(Pi—1,P:) > 6a(p), 1=1,2,...,n}, (9.1.2)
where (1, is defined by (8.1.1).
LEMMA 9.1. Let f € C[0,1] and let p = (po,P1,+sPn) € En N Qn. Define
go = Po, Gn = pn and for k =1,2,...,n— 1, let
gr = inf{z € [ge—1,Pk] : f(2) = f(px) and e(z,px) < 6n(p)}- (9.1.3)
Then,
(i) 8n(q) = én(p),
(ii) ¢ € En N Qy,

(iti) if = € [qk,qk—1) such that f(z) = f(qr+1), then e(z,pr+1) > 6r(p),

PROOF: (i) First, we claim that ¢; < p; < gi41,? = 1,2,...,n — 2. If for some
j € {1,2,..,n—1}, pj > g;j+1, by the definition of g, e(gj+1,Pj+1) < 6n(p), and
thus, e(p;,pj+1) < €(gj+1,Pj+1) < 6,(p), which is a contradiction.
For simplicity in the reasoning of this proof, we introduce the following nota-
tion:
di(t1,t2,t3) = sup{Fk(z,y): t1 <z <tz <y <ts}. (9.1.4)

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For k =1,2,...,n — 1, we have,
di(qr, qe+1) < max{d(gk, Pk) i (Pk, ak+1), Dk (qks PEs Gr+1) }-

Observing di(gk, px) < €(qk, Px) < 6n(P), dic(Pks ak+1) < di(Pr> Pr+1) < n(p), and

[M(qx,px) — f(px)]/2 if k is even

[f(pk) — m{gk, px)]/2 if k is odd = e(qk,Px) < 6n(P),

dic(qr, Prs Gkt1) = {

we deduce that di(gk,qk+1) < 6n(p), for £ =1,2,...,n — 1. Also, for k =0,

do(g0,q1) = do(Po;q1) < do(po,p1) < 6r(p)-

Hence, 6,(q) < 6n(p).

Now, assume that for some k € {0,1,2,...,n — 1}, 6n(p) = di(pk,Pr+1)- Then,
there exist z; < ¥ in [pk, Pk+1] such that Fi(z1,v1) = 6n(p). K z1,41 € [Pk, qr+1]
then Fi(z1,v1) = dk(gk,qk+1) and thus 6,(g) = 6,(p) in this case. Otherwise,
Qi1 < Pr+1 and there exists ' € [gr+1, Pr+1] such that Fi(ge+1,2') = 6n(p). I

T3 € [Pk, qk+1) and Y1 € (qk+1,Pr+1], then,
Fi(z1, qkt1) > Fr(z1,91) = 60(p) 2 dic(PrsPra1) 2> Fr(z1,qr41)-

Hence, Fi(z1, gk+1) = 6n(p), which is the first case. By virtue of fgk+1) = f(Pr+1),

we have

Aer1(qhs1, Ger2) > Fri1(z's prt1) = Fr(gr1, )

= 6,(p) > 6,(q) > dic+1(qk+1,Tk+2)-
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Thus, 6,(p) = 6n(q), in this case.
(ii) Since p € Qy and f(g:) = f(pi),¢ =1,2,...,n — 1, we have ¢ € Q. By (i),
g€ E,. Hence, g€ E, N Qy.

(iii) This is an immediate consequence of the definition of g.

9.2. CHARACTERIZATION OF THE SET OF BEST KNOT VECTORS

In this section, we characterize the set of best knot vectors under the assump-
tion that E, N Q,, is nonempty. In the next section we shall prove for n > 3 that

E, N Q,, is nonempty if and only if the approximation is nondegenerate.

TEOREM 9.1. Let f € C[0,1]. Then, E, N Qy C P, = P,.

PROOF: It is proved in Chapter 8 that P, = P,;. We show that E, N @, C P,.
If E, N Q,, is empty then the proof is trivial. Assume that E, N @, is nonempty.
By Lemma 9.1, we can define ¢ = (go,q1,..-»qn) € Ern N Qn and 6,(q) = 6,(p). By
Theorem 8.5, P, N Q, # ¢. Hence, it is sufficient to show that §,(q) < é,(v) for all
v = (v0, V1, -y Un) € Qn. Suppose for some j € {0,1,...,n—1}, d;(gj,95+1) = 6n(g)-
Then, there exist z; < y1 in (gj,gj+1) such that Fj(z1,y1) = 6n(q).

Case 1. There is no point of vy,v2,...,9n_1 lying in [g;,¢j+1]. Then there
must be an integer k € {0,1,...,n — 1} such that (vg,vk+1) D [g5,¢5+1]- H b+ 7 is
odd, then dg(vk,ve+1) > €(g5,95+1) > 6.(q). If k+ 7 is even and g;_, > v, then
di(vk,vk+1) > e(gj—1,4;) > 6n(g). If k and 7 are both even and g;_; < v, then
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f(vk) < f(=) for all z € [vg, vk41], and thus f(vg) < f(g;). Since p, ¢ € Qr and
gi-1 < vk < @5 < gj41 < Vk41, f(vx) = f(g;)- By Lemma 9.1, e(vg, ¢;) > 6.(q)-
Hence, di(vk,Vk+1) > €(vk,q;) > 6n(q). If k and j are both odd and ¢;—1 < v,
we can similarly show f(vk) = f(g;), and thus di(vk,ve41) > e(vk,q;) > 6n(9)-
Consequently, in this case we have 6, (v) > 6.(q).

Case 2. There is exactly one point of vy,...,vn—1 lying in [g;,g;j+1]. Assume
vk € [g7,95+1]- I vg € [g5,71) then

Fi(z1,y1) if k+ 7 iseven

2 F T1, = 6 R
Fi(y1,qj41) if k-+j isodd — i(z1,91) n(9)

di(vk, Vk+1) > {
If vg € [z1,¥1], then vi—y < ¢ < 21 < vk < Y1 < gj+1 < Vg41. Thus,
di—1(vk—1,vk) > Fi+1(gj, 1) > Fj(z1,41) = 6a(q), for j+k even,

and
Ak (V> vir1) = Fj+1(y1,95+1) = Fj(z1,91) = 6a{q), for j+k odd.

If vy € (Y1,9541), then,

Fi(z1,v1) if k+7 isodd

d _ ~1, > . o .
k—1(vk-1,vk) 2 {Fj+1(qj,$1) if K+ 7 iseven

> Fj(z1,y1) = 6n(q)-

Hence, 6,(v) > 6,(g) in this case.
Case 3. There are exactly two points, say vx and vgyy of {vq,...,vp—1} lying
in [g;,g5+1]. If k # j then there is another interval [g;, ¢;+1] contained in (vi,vig1)
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for some I, which is case 1, since the proof of case 1 does not use the fact that

di(gj,qj+1) = 6n(q). Let k=j. lfv; € [g;,71) and vj4;1 € (¥1,9;+1] then
di(vj,vis1) > Fi(z1,91) = 8n(q)-
If v; € [z1,g;+1] OF vj41 € [g;,¥1], then, respectively,
dj—1(vj-1,9;) 2 Fi—1(gj,%1) = Fj(z1,91) = 6a(9),

or

di+1(vi41,v542) = Fir1(v1,9541) > Fj(z1,91) = 6n(a).

Case 4. There are more than two points of v1,..,v,—1 lying in [gj,¢j+1]. Then

there is another interval [g;,¢;+1] contained in (vy, vi41) for some [. This reduces to

case 1.

For all cases, 6,(v) > 6,(g) for all v € Q,. Hence, E, N Qp C Pp.

We now use Theorem 9.1 to characterize the set of best knot vectors of the

approximation to a continuous function. Let p* € E, N @y, and define
n,(j)(p*) = inf{z € [0,p;]: forall t€ [z,p}], F;(t,p]) < 6},
nﬁ")(p*) = sup{z € [p},1]: forall t€ [P}, z], Fj(p},t) = -6},
and

P(p*)={p€ U :pi € nP(p*),nP (")), i = 1,2,..,n — 1}
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THEOREM 9.2. Let f € C[0,1]. If E, N Qn is nonempty, Then,
P, = U{P(p*) : p* € E, N Qy}. (9.2.4)

PROOF: Assume p = (Po,P1, - Pn) € U{P(p*) : p* € EnNQy}. Then, there exists

some p* € E, N Qy such that p € P(p*). By Theorem 9.1, p* € Py.

If prss € 0 (9%),0541), then, for pf < pr,

dk(Pk, Pk+l) < dk(PZ,PZH) < 6;’

and for px < pj,

di(pk, Pr+1) < di(Pks Prt1)

< ma‘x{dk(pkapi),dk(pl’:’pi.{-l)sdk(pka pl’:ap;;-{-l)}
< {ma.x{&;‘;, [M (pk,p;) — f(pk]/2} if k is even
B ma.x{6:;, [f(pl,:) - m(Pk,PZ)]/2} if k is odd
< 6.

k
If prt1 € [Pry1s n' ~Ibl)(p*)], then, for p} < pk,

di(Prs Pr+1) < dic(PFs Pr+1)
< max{dk(pk, Pi11)> Gk (Phs1>Ph+1)» Ak (ks Pkt 15 Pi+1) }

< 6.
and for pi < pg,
dk(pkapk-l-l) < ma‘x{dk(pksp;)adk(pltap;;+1)adk(Pl:-{—l,pk-i-l)adk(pkaplts plt:-i—l)a

sup{ Fx(z,9), Pk < = < phsPhp1 < Y < Pry1}ts k(Phs Pt 10 PR+1) 1}

3 {max{s:;,za;:—[f(pz+1)—f(pz)1/2} if k is even
max{63,28; + [f (phsr) — F(pP))/2} I k is odd

< 6%
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Hence, p € Py. It follows that U{P(p*) : p* € E. N @y} C Pn.

Next, we assume that p & U{P(p*): p* € E,NQy}. Then,p¢ P(p*) for
every p* € En N Qy, and thus for every p* € En N Qn, p; ¢ [n,(j) (p*),nsj)(P*)] for
some j € {1,2,...,n — 1}. First, consider the case where j is even. If p; < n,(j)(p*),
then by the definition of nl(j ), there exists ¢ € [p;, p}] such that f(t) — f(pj) > 26;.
Hence, for p;+1 > p; di(pj,pj+1) < [f(t) — f(p;f)]/2 > 6,, and for p;1 < pj, there
exist indices k < j and 7 odd, such that the interval [px4i,Pk+i+1) contains the

interval [pf,pj,.,] and such that

diti(Phtis Prtit1) > deti(Ph> Phy1) = €(Pk» Pks1) > On-
Hence, 6,,(2) > 6; in this case. If p; > n,(-j )(p*), we can similarly prove 6,(p) > 9.
The case where j is odd can be handled similarly to show 6,(p) > 6;;. Therefore,

p & P,. This implies that P, C U{P(p*) : p*€E» N Qn}. Hence, we have proved the

theorem.

9.3. NONDEGENERATE APPROXIMATION

DEFINITION 9.1: Let f € C[0,1]— A,,. Best n-piecewise monotone approximation

problem is said to be nondegenerate if 0 < 6} < 6_,, and in this case, 6, is also

n—13

said to be nondegenerate. Oiherwise the approximation problem and 6 are both

called degenerate. Let

E: = {p=(po,P1,-sPn) € Un : €(pi, pit1) > 65,2 =0,1,...,n — 1}. (9.3.1)
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Clearly, if f € C[0,1], 6% > 6%, 1.

THEOREM 9.3. Let f € C[0,1] — A,. Then the best approximation problem is

nondegenerate if and vnly if P, NQ, C E}.

PROOF: For n = 1, this result is trivial and for n = 2, it is also true (see Chapter
7). In this proof, we assume n > 3.

(Necessity) Let p € P,NQ,, and for some k € {0,1,...,n—1}, e(px, Pr+1) > 6;;.
Define p* = (p&,-- Pp—2) € Qn_2 by pf = pi, 1 = 0,1,...,k — 1, and p; = p;2,
i =k,k+1,...,n — 2. Then, p* satisfies the following conditions d;(p},p}, ;) > 6.,
for ¢ = 0,1,...,k — 2, and d;(p},p},1) = di(Pit2, Pi+s) = dit2(Pit2,piys) < 6, for

i=k,k+1,...,n — 3. In addition,
dr—1(Pk—1,Pk) = dk—1(Pk—1, Pk—2)
< max{dx_1(pk—1,Pk)s dk—1(Pk> Pr+1)> Ak—1(Pk+1, Pr+2)s
dk—1(Pk—1,Pk, Pk+1)> dk—1(Pks Ph+1, Pr+2),

sup{Fr—1(z,y) : Pk—1 < = < P, Pk+1 < Y < Prt2}}

S {ma.x{&,’:,[f(pk) — f(pr+1)}/2} if k—1 is even
= | max{6},(f(pPr+1 — f(px)]/2} if k—1 isodd

—_ Yn
It follows that 8} _, < 6. But, 6;_, > 6 _, > 6. Hence, 6, _, = 6;_, = 6, which
is a contradiction.

(Sufficiency) Let 0 < 6 = 6%_,. Assume (g0,q15--:qn—1) € Po—1 N Qn_1.
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Define p} = ¢i, ¢ = 0,1,...,n — 1, and p;, = gn—1. Then,

5:;,—1 = 6n—l(QO) (5 PRELP Qn—l) = 671-(?8’ PI, '"sp:.) = 6:;

Hence, p* = (pg, p%,--»PL) € PnNQn. However, since e(p;,_;,p};) = 0 < é;, we find

that (p3, pi,-Pr) & En-

COROLLARY 9.1. Let f € C[0,1]— A, PE Qn,and 0 < 6, <6, ;. Then,p € P,
if and only if p € E,,.

PROOF: The sufficient condition follows from Theorem 9.1. To prove the necessity,
assume p € P,. Since 6 is nondegenerate and p € P,NQ,, by Theorem 9.3, p € E;,.
Thus, 6,(p) = 6} and e(p;,pi+1) > 65 = 6n(p), ¢ = 0,1,...,n — 1. If follows that
pE EB,.

The next corollary is an immediate consequence of Theorem 9.3.

COROLLARY 9.2. Let f € C[0,1] — A, with n > 3. Suppose p € P, N @y, and for

some k € {Oa 1,...,77, - 1}7 e(PkaPk+1) S 6:;, Then: (pO: eves PDk—15Pk+2, --',pn) € Pn—2

COROLLARY 9.3. Let f € C[0,1] — A,. If §}_, = 6, then 6] =65 = ... = §;.

PROOF: Since §;_; = 6, by Theorem 9.3, P, N Q, is not contained in E;. Thus,
there exists a p € P,NQy,, but p ¢ E}. Let p = (po, p1, ..., Pn) be such a knot vector.
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Then, for some k € {0,1,...,n — 1}, €(pk, pr+1) < 6. Hence, 6;_, =6;_; = 6, by
Corcllary 9.2. Similarly, 6%_, = 6;5_, implies §;_3 = 6, _, = 6,_,. By repeating

this procedure, we obtain 6f = ... = 6.

THEOREM 9.4. Let f € C[0,1] — A,. Then the best approximation problem is

nondegenerate if and only if E, N Qy is nonempty.

PROOF: For the case that n < 2, see Chapter 7. We assume that n > 3. By
Theorem 8.5, P, N Q. is nonempty. If 6; is nondegenerate, then p, NQ, C E; . Let
P = (P0sP1y--Pn) € Pn N Qp. Thus, e(pi,pi+1) > 6, = 6n(p), for 1 = 0,1,...,n — 1.
Hence, p € E,. This implies E, N @, is nonempty. Conversely, let E, N Q, be
nonempty. Assume p € E, NQy. By Theorem 9.1, p € P,,. Hence, 6,(p) = 6. Thus

e(pi, pir1) > 6n(p) =65, for £ =0,1,...,n — 1. Since n > 3,

57 = sup{[f(z) - F(1)]/2:0 <z <y <1} > e(p1,p2) > 6.

By Corollary 9.3, 6% _, > 6. Noting f ¢ A,, 6, > 0. Therefore, 6, is nondegenerate.

Combining Theorem 9.2 and Theorem 9.4 gives the following

THEOREM 9.5. Let f € C[0,1] — M,,. If the best approximaltion problem is non-

degenerate, then

P, =U{P(p*) : p’eEn N Qx}. (9.3.3)
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9.4. AN ALGORITHM FOR COMPUTATION

In Chapter 8, it is proved that if p* = (p§,p3,...,Ps) € Pn then, gp,(:z:) and
7p-(z), as defined in (8.3.2) and(8.3.3) respectively, are two best approximations to
f. Hence, the computation of g, and g,. follows from the computation of a best
knot vector p* € P, and 6*. The algorithm presented in this section computes p*

and & simultaneously. Before describing the algorithm, we extend Lemma 9.1 and

Theorem 9.1. Let

ES = {p = (P0sP1,--sPrn) € 0 : €(Pi—1,pi) > n(p), i = 1,2,...,n}.  (94.1)

LEMMA 9.1°. Let f € C[0,1] and p = (po, P15+ Pn) € E2 N Qn. Define go = po,
gn = P and gx = inf{z € [qe—1,px] : f(z) = f(px) and e(z,pr) < én(p)}, for
k=1,2,..,n—1. Then,

(i) 6n(q) = én(p);

(ii) ¢ € Ex N Qn;
(iii) if for some z € [qk,qk+1), F(z) = f(gr+1), then e(z,pr+1) = 6n(p), for

k=1,..,n—2.

PROOF: First, we prove that ¢; < p; < gi41, for 7 = 1,2, ...,n — 2. Assume, to the
contrary, that for some integer j € {1,2,...,n — 1}, p; > gj4+1. If gj41 satisfies
f(g;+1) = Ff(pj+1) and e(gj+1,Pj+1) < 6(p), then we arrive at a contradition

that e(p;,pj+1) < €(gj+1,P541) < 6a(p). If gj4+1 satisfies f(gj+1) = f(pj41) and
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e(pj,pj+1) = 6(p), then there is a sequence {tm }y— with ¢tm € (¢, Pj+1] satisfying

f(tm) = f(pj+1), €t +m,pjt1) < 6n(p), and ty, | gj41, as m — oo. Since

gj+1 < pj, there exists a sufficiently large integer M such that ¢pr < p;j. Therefore

e(p;,pi+1) < e(ta,Pj41) < 6n(p). We arrive at the same contradiction. Hence,

¢ < pi < gip1, 1 = 1,2,...,n — 2. With this condition, the rest of this proof is

similar to the proof of Lemma 9.1. Thus we omit the details.

Similar to Theorem 9.1, we have the following

THEOREM 9.1°. Let f € C[0,1]. Then, EJNQn C Pn.

Assume p = (po, P1, s Pn) € Q. Let

Wp{(z,y) : Fi(z,y) = 6n(p), Pi <z <y < Pit1}.

(9.4.2)

If (z1,1) € Wy, then for some j, pj_1 < 23 < y1 < p; and F;_y(z1,y1) = 6.(p)-

Assume for some integer ¢ € [1,n], e(pk—1,Pk) = 6n(p), k = 1,2,...,7 —

e(pi—1,p:) < 6x(p). Clearly, 7 # 5. If § < 4, let

If 2 < g, let

o =3 I=j+1,

pi =1 = =5-2
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THEOREM 9.5. Let f € C[0,1] and p € Q, satisfies the above assumptions. Then,
p) = (pgl),pgl),...,pg)) satisfies
(i) p™*) € Qn;
(ii) 6n(p) = 6,(p™);
(iif) if 7 < i then, e(p\,,p{") > 6,(pM), k = 1,2,..,i +1; if i < j then,
e(p}cl_)l,pfcl)) > 6, (W), k=1,2,...,5—1,5-2,5—1, .
PROOF: (i) For even j, if there exists some z’ € [p;_1,y1] such that f(z') < f(z1),

then,

dj—1(pi-1,p5) > f(y1) — f(2') > f(y1) — f(z1) = 6a(p),

which is a contradiction. Hence f(z1) = m(p;j—1,1). Similarly, f(y1) = M(z1,p;).
For odd j we similarly have f(z,) = M(p;j_1,v1) and f(y1) = m(z1,p;). In view of
P € Qn and e(pi—1,pi) < bn(p), P € Q.
(ii) Since
di—2(pi—2,Pi+1) < max{d;_2(pi—2,pi-1), di—2(pi—1,P:), di--2(ps, Pi1),
di—2(Pi-2,Pi~1,P:i)s di-2(Pi—1,Pi> Pit1),

sup{Fi-2(z,y) : Pi—2 < Pi—1,Pi <Y < piy1}}

{max{&n(p),[f(pi_l) — f(pi)]/2}, if 7 is even
max{6n(p), [f(p:) = f(pi-1)]/2}, if ¢ isodd

< 6x(p),

di_1(pj—1,21) < dj_1(pj—1,P2;) < 6a(p), dj(z1,91) <| f(w1) — F(z1) | /2 = 6n(p)s

<

and dj1+1(y1,2;) < dj—1(pj-1,P;) < 6x(p), by the definition of p{1), we have
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5n(1’(1)) < 6n(p)-

(iii) For even j, we have f(p;j—1) > f(y1) and f(p;) < f(z1). Hence,
e(pi1,1) = [F(pj-1) — F(z1)]/2 2 [f(w1) — f(z1)]/2 2 6a(pD),

e(z1,91) > [f(y1) — F(21))/2 > 6 (o),

and

e(ui,p;) > [fly1) = F(2:))/2 2 [F (1) = F(21)]/2 2 6. (pV).

For odd j, we similarly prove that e(pj—1,z1) > 6u(p™M), e(z1,y1) > 6(pM), and

e(y1,p;) > 6n(p1). If follows that if j < ¢, then,
e(p1pf) = e(pr-1,p8) 2 6n(p) 2 6a(p), k=12, — 1,

e(p,, ) = elpj-1,71) > 8 (p™M),
e(p$),p\Yy) = e(z1,91) > 6, (o),
e(p{, p1y) = e(u1,p7) 2 6. (pM),
e(p(" 1, p) = e(pr—3, Pr—2) > 6a(p) = 6(PM), k=5 + 3,8,

e, p)) = e(pis,pit1) > e(pi=z,pi-1) > 6n(p) > 62 (pM);

and if 7 < j then,

e(pt?,, V) = e(pr-1,p%) > 6n(p) = 6, (pM), k=1,2,...,i - 2,
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e(p;('_l_)zap;('l_)l) = e(?i—z,Pi+1) Z e(pg_g,p,:__l) Z 6n(p) > 6n(p(1)),
e(Pg'{_)s,P_.S'l_)z) = e(pj—1,21) > 6n(p) > 5n(P(1)),
e(p§?2,p§91) = e(:z:l,yl) > 5n(P) > 6n(p(1)),

e(p§1_)1,p§1)) = ¢(y1,p5) > 6a(p) > 6n(p™).

We have proved this theorem.

Theorem 9.5 allows us to establish the following algorithm to compute a best

knot vector and the error of best approximation.

ALGORITHM:
Step 1: Find p(® = (pgo),pgo),...,pszo)) € Q,. Calculate 6n(p(°)) and
e(p®,p{”), i = 1,2,...,n.
Step 2: For k < n, if e(pglf_zl),pz(-k—l)) > En(p(k—l)), : = 1,2,...n, then, goto
Step 4. Otherwise assume for some j, Fj_l(xgk_l), ygk_l)) =6y, (p(k_l)), where
(k—1)

pEY < zgk—l) < ygk—l) < p§k—1), e(pl(ﬁl),pgk—l)) > 5n(p(k—1)), for | =

1,2,..,t <n—1, and e(pz(-k_l),pf-i:l)) < 6n(p(’°‘1)). If 7 <1,let

( pgk_l) £=0,1,...,7 — 1,
5 L=,
Y =y e=j+1,
oD e=j42,..i,
\ p,(k_l) L=1+1,..,n.
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Ifz<3,let
( pgk_l) £=0,1,..,t — 2,

k—1 . . .
p§+2 ) e= t—1,2,...,7 — 3,

Pg-k) = j zgkﬁl) L=35-2,
ygk_l) L= .7 - 1,
(pF e=5i+1,m0n

Step 3: Let k := k + 1 and goto Step 2.

Step 4: Let p* = p(*®) and 6} = 6,(p(¥)). Stop.
This algorithm enables us to obtain a best knot vector p* and 6,;. Then, we

can define 9, and gp-, which were proved to be best approximations to f from A,

in Chapter 8.
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