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Abstract

LARGE DEVIATION LOCAL LIMIT THEOREMS
FOR RATIO STATISTICS
Sanjeev V. Sabnis
Old Dominion University, 1987
Director: Dr. N. R. Chaganty

Let {T.,n > 1} be an arbitrary sequence of non-lattice random vari-
ables and {S,,n > 1} be another sequence of positive non-lattice random
variables. Let the two sequences be independent. Let ¢, and ¢, be the
moment genereating functions of {T,,n > 1} and {S,,n > 1} respectively.

Let {a,} be a sequence of real numbers such that a, — co. Let

1n(2) = = log d1n(2)

ay
and

Yon(2) = a,l log ¢2n(2)-

Under some mild and easily verif;able conditions on ¢, and ¢, which
imply that (T, — E(T,))/a, — O in probability and (S, — E(S,))/a, —
¢ in probability for some ¢ > 0, we obtain a large deviation local limit
theorem for the ratio statistic R, = T,,/S,, that is, we obtain an asymptotic
expression for the density, f,(r,), of the ratio statistic R, = T,,/S, at the
point r, where {r,,n > 1} is a bounded sequence of real numbers. This
expression is given by

arn Yo, (—TnTn)
(27 @n[Yin(Tn) + 72 Y5 (~7ats)]|2/2

fa(ra) =

X eXp(an[V1n(7n) + Y2n(—7n7s)])[1 + O(1/ay,)]
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where 7, is such that

1n(Tn) = Tn Pha(~TaTa) = 0.

When S, is degenerate at n, our result reduces to the result of Chaganty-
Sethuraman {Ann. of Probab., (1985), vol. 13, 97-113). We obtain similar
asymptotic expressions for the probability density functions (p.d.f.) or
probability mass functions (p.m.f.) of ratio statistics arising from different

combinations of non-lattice and lattice random variables T, and S,,.

We also present the corresponding results for the ratio of sums of i.i.d.
random variables along with some interesting applications. In all of these
applications, the p.d.f.’s (or p.m.f.’s) do not have closed form expressions.
However, our results provide simple computable approximations involving
moment generating functions for such p.d.f.’s (or p.m.f.’s). We verify our
result for the F statistic, whose exact density is available. Our approxima-
tion coincides with the exact expression except for the normalizing constant.
However, we show that our approximation is asymptotically equivalent to
the exact density.

Let {T,,n > 1} be an arbitrary sequence of random vectors and
{S. > 0,n > 1} be an arbitrary sequence of random variables. In Chap-
ter IlI, we obtain an asymptotic expression for the density of the vector
R, = T,/S.. A result which obtains an asymptotic expression for the tail
probability, P(R, > r,), is known as a strong large deviation result. In
Chapter IV, we obtain strong large deviation results for statistics which
can be expressed as the ratio of two independent sequences of non-lattice

as well as lattice random variables.

il
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Chapter 1

Introduction and Summary

The origin of probability theory dates back to the middle of the 17th cen-
tury. Since then limit theorems have become the core of probability theory
as they are quite useful in understanding the random phenomena present in
all our sciences. The history of the limit theorems begins with the limit the-
orems of Bernoulli (1713). Then followed the limit theorems of de Moivre
and Laplace. Later on, Poisson succeeded in obtaining generalizations of
the theorems of Bernoulli, de Moivre and Laplace. In today’s context these
theorems are referred to as the laws of large numbers, one of the fundamen-
tal propositions of the theory of probability. We state these results below
in Theorems 1.1 and 1.2 which are now known as Weak Law of Large Num-
bers (WLLN) and Strong Law of Large Numbers (SLLN) respectively. The
WLLN refers to convergence in probability whereas the SLLN refers to

almost sure convergence of averages of random variables.
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Theorem 1.1 (WLLN). Let {X,,n > 1} be pairwise independent and
tdentically distributed random variables with finite mean E(X;). Then we
have

% B(X) (1.1)

in probability.

Theorem 1.2 (SLLN). Let {X,,n > 1} be a sequence of i.i.d. random

variables with finite mean E(X;). Then we have
Sn
almost surely.

Theorems 1.1 and 1.2 are due to Khintchine and Kolmogorov respec-

tively.

Chebyshev, a Russian Mathematician, made major contributions to the
theory of probability by introducing new techniques to prove the theorems
concerning sums of arbitrarily distributed independent random variables.
For example, under the assumption of existence of moments of all orders
{by utilizing the methods of moments), Chebyshev gave different versions of
the proof of the Central Limit Theorem (CLT) (see Theorem 1.3 below for
a version of the CLT) for sums of independent but arbitrarily distributed
random variables. The CLT deals with convergence in distribution of nor-
malized sums of random variables. Then around 1900, Lyapunov proved
CLT with substantially weaker restrictions than those required by Cheby-

shev. He proved the theorem utilizing the method of characteristic func-

1-2
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tions, developed by himself, rather than the method of moments used by

Chebyshev. We give the simplest form of the CLT in Theorem 1.3.

Theorem 1.3 (CLT). Let {X,,n > 1} be a sequence of i.i.d. random
variables with E(X;) = p and var(X;) = o? and distribution function F.
Let F,, denote the distribution function of the normalized sum, that ts, the

distribution function of (S, — nu)/\/no, where S, = X1+ ---+ X,. Then
Fo(z) - 2(2) (1.3)

untformly in z where ®(z) denotes the distribution function of the standard

normal random variable.

While the CLT gives the limit of a sequence of distribution functions
F,, it is quite inadequate in practice. In many applications we are inter-
ested not only in the convergence of Fy,(z) but also in the error of ap-
proximating F,(z) by ®(z). This question was addressed by several au-
thors including Crarher (1938), Berry(1941), Esseen(1943, 1945) and Cher-
noff (1952). Berry and Essen established an upperbound for the error
en(z) = |F.(z) — ®(z)|, which is uniform in z. While the upperbound for
the error e,(z) is quite sharp for moderate values of z, however, for large
values of z, both F,(z) and ®(z) are close to 1 and the upperbound over-
estimates the error e,(z). Chernoff(1952) initiated the study of the tail of
F,(z). He showed that if X; has a finite moment generating function in a
neighbourhood of zero, then the probability that S, /» deviates from E(X;)

by a small amount ¢ > O tends to zero exponentially fast as n — oco. The

1-3
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event E, = {|S,/n — E(X,)] > €} is known as a large deviation event since
it represents the deviation of S,/n away from the mean. The probability
of occurrence of E, is known as a large deviation probability. Therefore,
Chernoff’s theorem is known as a large deviation limit theorem. In re-
cent years, limit theorems for large deviations have become a vital part of
the theory of probability. The theory of large deviations forms a natural

complement to the law of large numbers stated in Theorems 1.1 and 1.2.

Among the different kinds of limit theorems, the local limit theorems
are also of great importance. These theorems deal with the convergence of
a sequence of density functions to another density function as well as with
asymptotic expansions for a sequence of density functions. One should
note that the hypothesis of the CLT does not guarantee the convergence
of the corresponding density functions to the standard normal density. In
fact, such a convergence takes place almost everywhere only when F, is

nonsingular for some n.

Let {X,.,n > 1} be a sequence of independent and identically dis-
tributed random variables. Let S, = X; +--- + X, be the n** partial
sum. Let f, denote the density function of S,/ /n. Richter proved an im-
portant local limit theorem for large deviations for sums of i.i.d. random
variables, that is, an asymptotic expansion for f.(z.) when z, is allowed
to increase with n. Chaganty and Sethuraman (1985) generalized Richter’s
theorem to an arbitrary sequence of random variables thereby increasing
the applicability of Richter’s theorem to new classes of statistics. We state

the result of Chaganty and Sethuraman in Theorem 2.2.3 of Chapter IL.

1-4
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The goal of this dissertation is to generalize Theorem 2.2.3 to the ratio
statistic R, = T,/S,, where {S,,n > 1} is an arbitrary sequence of positive
random variables independent of {T,,n» > 1}. In the special case where
T, and S, are partial sums of independent random variables our result

simplifies to the heuristic conclusion of Daniels (1954).

The problem of obtaining the limit for log P(T, > z,), where z, — co
at a suitable rate as » — oo, has been studied by several authors in-
cluding Crarher (1938), Chernoff (1952), and Ellis (1984). Chaganty and
Sethuraman chose to call these results of Crarher, Chernoff and Ellis as
weak large deviation results since they give an asymptotic expansion for
log P(T, > z,) rather than an approximation for P(7, > z,). An approx-
imation for P(T, > z,) is known as a strong large deviation result. One
of the earliest strong large deviation results when T, is the sum of i.i.d.
random variables was obtained by Bahadur and Ranga Rao (1960). Re-
cently, Chaganty and Sethuraman (1986) extended the result of Bahadur
and Ranga Rao to an arbitrary sequence of random variables {T,,,n > 1}.
In this dissertation we present analogous results for statistics which can be
expressed as the ratio of two independent sequences of non-lattice as well

as the ratio of two independent sequences of lattice random variables.

This dissertation has been organised as follows:

Chapter II consists of five sections. In Section 2.1 we present the back-
ground material. In Section 2.2 we state Chaganty-Sethuraman’s results for
an arbitrary sequence of non-lattice random variables. We also state and

outline the proof of Chaganty-Sethuraman’s theorem with Condition (iii')

1-5
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in Theorem 2.2.3 replaced by another simple and easily verifiable Condition
(iii"). As an application we obtain a large deviation local limit theorem for
the Wilcoxon signed rank statistic under the null hypothesis. Section 2.3
contains the main results of this dissertation. Let {T,,n > 1} be an arbi-
trary sequence of non-lattice random variables and {S,,n > 1} be another
arbitrary sequence of positive non-lattice random variables. Under some
mild conditions on ¢y, and ¢2,, the moment generating functions of T}, and
S, respectively, we obtain in Theorem 2.3.1 an asymptotic expression for
the density of the ratio statistic B, = T,,/S,. We also obtain an asymptotic
expression in Theorem 2.3.12 for the density of the ratio statistic in the case
where T, is non-lattice and S, is lattice. In Section 2.4 we obtain similar
results in Theorems 2.4.1 and 2.4.2 when T}, and S,, both are lattice random
variables and when T, is lattice and S, is non-lattice respectively. In the
case where T, and S, are sums of i.i.d. random variables, the conditions
of the Theorems 2.3.1, 2.3.12 , 2.4.1 and 2.4.2 are very much simplified.
We present the corresponding results for the ratios of sums of i.i.d. ran-
dom variables in Theorems 2.3.13, 2.3.14, 2.4.3 and 2.4.4 respectively. In
Section 2.5 we provide three examples illustrating different occurrences of
non-lattice and lattice 7}, and S,,. For simplicity, in these examples we
let T, and S, to be sums of i.i.d. random variables. We also study our
approximation for the F statistic, whose exact density is available. Our ap-
proximation coincides with the exact expression except for the normalizing
constant. However, our approximation is asymptotically equivalent to the

exact density.

1-6
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Chapter III contains large deviation local limit theorems for an arbitrary
sequence of random vectors. Let {T,,n > 1} be an arbitrary sequence
of random vectors and {S,,n > 1} be an arbitrary sequence of positive
random variables. An asymptotic expression for the density of the ratio

statistic, R, = T;,/S, is given.

In Chapter IV, we present strong large deviation results for statistics
which can be expressed as the ratio of two independent sequences of non-
lattice as well as the ratio of independent sequences of lattice random

variables.

1-7
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Chapter 2

Large Deviation Local Limit

Theorems

2.1 Introduction

The very basic probability limit theorems are the weak law of large numbers
(WLLN), the strong law of large numbers (SLLN) and the Central limit
theorem (CLT). The WLLN refers to convergence in probability where as
the SLLN refers to almost sure convergence of the averages of random
variables. The CLT deals with convergence in distribution of normalized
sums of random variables. If {X,,n > 1} is a sequence of i.i.d. random
variables with E(X;) = p, Var(X;) = o? and distribution function F
and further if F,, denotes the distribution function of the normalized sum

(Sp — np)/\/no then the CLT asserts that,
Fa(z) — 2(2)

2-8
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uniformly in z, where ®(z) denotes the distribution function of the stan-

dard normal random variable.

The CLT raises a number of questions. For instance,
1) Do the partial sums of random variables always converge in distribution
to the normal distribution ?
2) How much error is committed in the approximation of F,(z) by ®(z) ?
3) Does the hypothesis of the CLT imply convergence of the corresponding

density functions to the normal density ?

The answer to the first question is negative. It leads to the theory of
infinite divisibility. As regards to the second question different authors have
obtained asymptotic expansions, as well as bounds for the error
ex(z) =| Fo(z)—®(z) | for fixed z. Theorem 2.1.1 below gives an asymptotic
expansion for e,(z) and Theorem 2.1.2 gives a bound on the error term
ex(z). Theorems 2.1.1 and 2.1.2 are due to Esseen(1945), Berry (1941) and
Esseen (1943) respectively.

Theorem 2.1.1 (Esseen). If F is non-lattice and has a finite third mo-

ment

[s = /°° 2 dF(z),
then
ps(l — %)

en(z) = Py exp(—z*/2) + o(1/n) (2.1)

uniformly in z.
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Theorem 2.1.2 (Berry and Esseen). Let E(X;) = 0 and let p = E|X;®
be finite. Then for all z and n

33 »p
| ea(z) | < T o (2.2)

The constant 33/4 was first replaced by 0.91 in Zolotarev (1967) and
subsequently by 0.7975 in Van Beeck (1972). For fixed n and for large values
of z, the quantities F,(z) and ®(z) both become close to 1 and the bound
given in Theorem 2.1.2 becomes impracticable. The problem of studying
the error of approximation was approached differentiy by Crarher(1938).

He obtained an estimate of the ratio of the tail probabilities,

[1 — Fa(zn)]
[1 = &(z.)]

for z, = O(4/n), assuming that the moment generating function of X;

(2.3)

exists. Petrov (1954) extended this result to the case of non identically

distributed random variables.

A counter example given in the book of Gnedenko and Kolmogorov
(1954), page 223 answers the third question in the negative. A close exam-
ination of the example reveals that the convergence fails to take place only
in a neighborhood of the origin. However, a result due to Ranga Rao and
Varadarajan (1960) guarantees convergence almost everywhere. We state

this result in Theorem 2.1.3 below.

Theorem 2.1.3. A necessary and suffictent condition for f,(z) to converge

to ¢(z) almost everywhere is that F,, is nonsingular for some n.

2-10
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Theorem 2.1.3 is known as a local limit theorem for densities.

The problem of obtaining an estimate of the ratio in (2.3) of the tail
probabilities can be characterized as the problem of large deviation. If
{T,,n > 1} is a sequence of random variables, an approximation to P(T}, > z,)
where z,, — ©0, is known as a Strong large deviation result whereas an ap-
proximation to k,(z,), the probability density function of T}, at z,, is known
in the literature as the large deviation local limit theorem. The result of
the latter kind was first obtained by Richter (1957) for the sums of i.i.d.
random variables. This result was stated in Richter’s paper in terms of
Crarner series. Recently, Chaganty-Sethuraman showed that the same re-
sult can be rewritten in terms of the so called large deviation rate. Large
deviation local limit theorems for sums of independent, non-identically dis-
tributed lattice and non-lattice random variables were also obtained by
Moskvin (1972) and by MacDonald (1979). Chaganty-Sethuraman (1985)
extended Richter’s result for an arbitrary sequence of random variables, for
both non-lattice and lattice cases. They have demonstrated the applicabil-
ity of the large deviation local limit theorems for statistics that occur in
nonparametric inference and also in establishing limit theorems for some
probabilistic models occuring in statistical mechanics(see Chaganty and
Sethuraman (1987)).

In this chapter we first state the local limit Theorems 2.2.1 and 2.2.3
due to Richter (1957) and Chaganty-Sethuraman (1985), respectively. As
noted by Chaganty-Sethuraman (1985) Condition (iii') of Theorem 2.2.3

was difficult to verify in examples. In Theorem 2.2.8 we estabiish Theorem

2-11
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2.2.3, replacing Condition (iii') by another easily verifiable Condition (iii").
The main goal of this chapter is to present similar large deviation local
limit theorems for statistics which can be expressed as the ratio of two
independent random variables. These results are obtained in Sections 2.3
and 2.4. We treat the case of the ratio of two non-lattice arbitrary random
variables in Theorem 2.3.1. Theorems 2.3.12, 2.4.1 and 2.4.2 cover the cases
when one of the random variables is non-lattice and the other one is lattice.
The conditions of our theorems are much simplified in the case of ratios of
sums of i.i.d. random variables. We state these results in Theorems 2.3.13,
2.3.14, 2.4.3 and 2.4.4. In Section 2.5 we provide a number of applications

of our theorems.

2.2 Local limit theorems for arbitrary se-

quence of random variables

Richter (1957) proved a large deviation local limit theorem involving the
Crarher series for the sequence {X,,n > 1} of i.i.d. random variables.
Chaganty-Sethuraman (1985) restated Richter’s result in terms of the large
deviation rate and extended the result to an arbitrary sequence of random
variables not necessarily sums of i.i.d. random variables. We present below

statements of these theorems.

Theorem 2.2.1 (Richter). Let {X,,n > 1} be a sequence of i.i.d. ran-

dom variables having common distribution function F with E(X;) =0 and

2-12
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Var(X;) =02 Let S, = X3+ Xo+ ---+ X,. Let f, be the p.d.f. of
Sp//n. Assume the following conditions:

(1) There ezists a positive number A such that

/:: exp(sz) dF(z) < oo

for all s with |s| < A.

(2) There exists an n, such that the distribution function of S, = X;+
Xo+---+ X, is absclutely continuous with a bounded derivative for n > n,.

Then, if z > 1 and £ = O(y/n), we have, as n — c©

z* z z
n — —_— )\ E— —_— R
fule) = 9l exp( TN+ O( ) (24)
where A(t) is a power series converging for all sufficiently small values of

[t| and ¢(z) is the density of the standard normal random variable.

The next Theorem 2.2.2 is essentially a reformulation of Theorem 2.2.1
in terms of the large deviation rate function ~ defined below in Theorem
2.2.2. One should also note the conditions of Theorem 2.2.1 are weaker
than those of Theorem 2.2.2. Here and throughout this dissertation log z

denotes the principal logarithm of the complex number z.

Theorem 2.2.2. Let {X,,n > 1} be an 1.2.d. sequence of random variables
with common distribution function F and analytic characteristic function

#(z), z € C, where C ¢s the set of all complex numbers. Let ¢(z) = log ¢(z).

2-13
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Let I denote the interval (—a,a), for fized positive number a. Let m be a
real number and a; be such that 0 < a; < a. Let 7 be such that P'(7) = m
and denote ¢"(r) = 6> > 0. Let m, — m. Assume the following cond:-
tions:

(i) There ezists B > 0 such that |¢(s)| < B, for all s€ I.

(it) There ezists 7, € (—a1,a1) such that '(r,) =m, for n > 1.

(iii) There ezists A < oo such that

o 1d(s + 1t)
é(s)
Define () = sup,g;[zs —(s)]. Let v, denote the probability density func-

tion of S,/n, where S, = X3 + Xo + -+ + Xp. Then,

sup
s€i J—o0

dt < A. (2.5)

vp(my) = \/\;_fra exp(—n~y(my))[1 + O(1/n)]. (2.6)

Now, we state Chaganty-Sethuraman’s theorem for an arbitrary sequence
of random variables. Theorem 2.2.3 below obtains an asymptotic expansion
for the density function %, of T,,/n at the point m, which is in the region

of large deviation for T;,.

Theorem 2.2.3 (Chaganty-Sethuraman). Let {T.,n > 1} be a sequence

of non-lattice random variables. Let

én(2) = E(exp 2T3,) (2.7)

2-14
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and

1
Pa(2) = - log ¢,(2) (2.8)
for a complex number z. Denote the interval (—a,a) by I and (—ay,a1) by
I, where 0 < a; < a. Assume that ¢,(z) is nonvanishing and analytic in

2 = {z:|Real(2)| < a}. Let {m,} be a sequence of real numbers. Let

Grr(t) = ¥u(7) + itm, — P (7 +it), (2.9)

for T € I). Assume that {T,,n > 1} satisfies the following conditions:

(?') There exists B > O such that [{pn(2)| < B for z€ N and n > 1.

(i1 ') There ezist « > 0 and 7, € I; such that P (1n) = m, and
YI(r) > a, for 7 € I and for alln > 1.

(#7i') There ezists n > O such that for any0 < 6 <7 ,

lllnf Real(G,(t)) = min[Real(G,(6)), Real(G.(—6))]

(2.10)
for all n > 1, where G,(t) = G, (t).
(tv') There ezist p,l > O such that
sup / ” ¢"(T + “) "= O(n?). (2.11)
2-15
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Let v, (u) = sup,e;[us—¥n(s)] and k, be the probability density function
of To/n. Then

N
k,(m,) = ————exp(—nv.{m,))[1 + O(1/n)]. 2.12
()\/z—w\/zZ;;(T) ( (mn))] (1/n)] (2.12)
The case of lattice random variables is treated in the next theorem.

Theorem 2.2.4 (Chaganty-Sethuraman). Let {T,,n > 1} be a sequence

of lattice random variables taking values tn the set S = {a,+kh, : k= 0,%1,%2,...}.

Define ¢,.(2), ¥n(2) as in Theorem 2.2.8. Let ¢,(2) be analytic in Q2 =
{z : [Real(2)| < a}. Let {my, = ay, + knhn/n} be a sequence of real num-
bers, where {k,} is a sequence of integers. Suppose that Conditions (V') and

(i7) of Theorem 2.2.8 hold. Further, let us assume the following conditions:

(17i*) There ezists n > O such that for any0< 6 < 7,

Real(G,(t)) = min|[Real(G,(6)), Real(G,.(-6))]  (2.13)

inf
6<|t|<=/|hn]

forn > 1.

l/n

dt = O(n?). (2.14)

(tv*) There exist p,l > O such that
GnlT + 2t)

7[hn
w1

Let v,(u) = sup,gr[us — ¥n(s)] and ¥, (7,) = m,. Then

ﬁ r n=my,) = ——-——l—ex —nY.(m n
AR ) N e (=7 (mn))[1 + O(1/7)]. (2-15)
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Remark 2.2.5. Condition (iv') of Theorem 2.2.3 is an integrability con-
dition which guarantees the existence of the density function %, of T,/n.
Conditions (i') and (ii') together imply that (T, — E(T,))/ W con-
verges in distribution to the standard normal and (T, — F(T,))/n converges
to zero in probability. Condition (iii’) is satisfied for example if the charac-
teristic functions |@, (7 + it)/én(7s)]| are concave in a neighbourhood of the
origin. Verification of condition (iii') in examples poses some difficulties.
In Theorem 2.2.8 we show that condition (iii') can be replaced by an easily

verifiable condition (iii") and still obtain the conclusion (2.12).

Remark 2.2.6. It is easy to see that Theorem 2.2.3 simplifies to Theorem

2.2.2 when T, is taken to be the sum of n i.i.d. random variables.

Remark 2.2.7. The proofs of Theorems 2.2.2-2.2.4 have the same pattern
and they consist of three major steps. In step 1, we use the inversion formula
for the characteristic functions of the conjugate distribution (see (2.26)
for the definition of a conjugate distribution) to get an expression for the
density functions k,(m,) and v,(m,). This expression is dependent on the -
conjugate distribution. We choose the appropriate conjugate distribution
using a saddle point technique. We then split the integral I, appearing
in the inversion formula into two parts I,; and I, (see (2.31) below). In
step 2, we show that I,; goes to zero exponentially fast and in step 3, we

complete the proof by showing that I,; = 1+ O(1/n).
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We now state and outline the proof of Chaganty-Sethuraman’s theorem
with Condition (iii') replaced by Condition (iii"). We continue to use the

same notations introduced earlier.

Theorem 2.2.8. Assume that {T,,n > 1} satisfies the following condi-

ttons:

(:') There ezists § > 0 such that [,(2)| < B forz€ Q and n > 1.

(3 ') There ezists @ > 0 and 7, € I such that ¢} (r.) = m, and
Yi(r) > a, forv €I, and for alln > 1.

(111 ") Given 6§ > O there ezists 0 < < 1 such that

, (1 +38) |"
limsup sup |[————= <. 2.16
n P ]t[>I<)5 ¢n(7n) ( )
(tv') There ezist p,l > 0 such that
. in
sup / ¢n (r + Zt) dt = O(n?). (2.17)
TE

Then,

() = m—\/z\/_T:) exp(—nin(ma))[1+O(1/n).  (218)

We will need the following lemma in the proof of Theorem 2.2.8.

2-18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lemma 2.2.9. Let 9,(2) be as defined in (2.8). Assume that the condition
(i') of Theorem 2.2.8 holds. Then,

kB

(a—ay)k

[(r)] <

for k> 1 and for T € J;. Let

(2.19)

112

i i . 2t
Bl +i8) = (7 + it) — alr) — it4(r) = T(s) — 2ell(r). (220
Then there ezists 6, > O such that for |t| < 61 and for 7 € Jy,

) 24t*
< —. .
|Ra(r +1t)] < (@a—a)* (2.21)
Proof. Since %, is analytic in 2, we can apply Cauchy’s theorem for

derivatives to get

k! Yn
() = [3 N _(:;?m dw (2.22)

for |7| < @ and for all £ > 1 where C(r,a — a;)={w € C:|r —w|=(a — a;)}.

We use Condition (i') to obtain

k! 1
E(r)] < = su (W) ———dw
l¥n (7)] o wEC’(r,f—al) [¥n(w)] Clra—ay) |W — Tn|FF1
k'8

for k > 1. This proves (2.19). Next, since ¥, is analytic in Q and |7| < a, the

following expansion is valid for all » > 1 and |t| < 6; where & < (¢ —a;)/2,

412 213
(e +10) = () it () + () + L) L R +1) (229
2-19
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where

.y () f P (w)
Ba(r +2t) = 271 Je(re—ay) (w—7)Hw —7 —3t)
An upper bound for R, is given by
Brtit)] € = sup fgnw)l [ L do
- 27 wec(f,f_al) ™ C(r,a—a1) ]w - 'r]4|w -7 — Ztl
20t4
a=a) (2.25)

wherein we have used the relation
lw—7—1t] > |w—17|—|t| = (@ — a1) — |t|> (a — a;)/2. This proves the

lemma.

Next, we outline the proof of Theorem 2.2.8. The proof is given in three

major steps.

Proof of Theorem 2.2.8 :
Step 1. Consider the conjugate distribution H, given by

dH,(z) = e—’;‘:—((:)i) dF,(z) (2.26)

for 7 € I, where F,, denotes the distribution function of T,. The charac-
teristic function (c.f.) of the distribution function (d.f.) H, is given by
&n(7 + it) [ ép(7). From (2.17) it follows that @,(7 + 7¢)/é.(7) is absolutely
integrable. Therefore the p.d.f. of H, exists and it is given by

1 [ (7 +1t)

— (—it .27
g exp{—itz) dt (2.27)
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and using (2.26) we get the p.d.f. of F,, as

% [ talr+it)exp(=(r + it)a) . (2.28)

Thus the p.d.f. of T,,/n is given by

k.(z) = % ‘/:: $u(7 + it) exp(—n(r + it)z) dt
= = [ °:° exp(nftha(r +it) — (r +i8)z]) dt.  (2.29)

The above equality (2.29) is valid for any 7 € J;. The appropriate choice

for 7 is 7, satisfying ¢/, (7,) = m,. Thus, we have

kn(m,) = % /:: exp (n[Yn(Tn + 2t) — (7 + 1t)my)) dt

n 1/2
- [WJ exp (—nvn(mn)) In (2.30)
where
'n ", 11/2 .
o= ¢§7E n)~ /_w exp (n[thn (T + 1) — Pp(ra) — itmy]) dt
" T, 11/2 -
~ ¢;7(r )_ [/{.425 exp (n[¥n(tn + it) — Yn(7a) — itma]) dt

T Jyes P (~[n(mn + it) — Ya(7a) — itmn)) dt} : (2.31)

where 6 is any positive number less than §; of Lemma 2.2.9. We choose our

6 small enough such that
M(6) = [B86/(a — a1)® + 288%/(a — @1)*] < /2.
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Thus we can write
I, = I + I,; (say). (2.32)

We now show that I,,; goes to zero exponentially fast.

Step II. Consider,

o ofy! 11/2
ol = |2 [ e (il + i) = () - i)
(ng(7) 1" [ | falra + i)
< / o T d
2m 126 | Gn(7n)
()12 1 | Ga(re+30) |7 | Ga(rn + i8) |7
= |Z=) ] dt
27 [t]>6 ¢n(7n) ¢n(7n)
- - r qn{l-l/n
. ! (7.) 1/2 . Sl + i) 1/n] #{1-1/n) b + it) In y
- 27!' d _lt|25 ¢n(7—n) ] It]25 ¢n(7-n)
- - r a1 n{i-t/n . n
o [P gl i [ [ |tz
- 27 ] _ItlZI‘)s ¢n(7'n) ] —00 ¢n(7n) )
(2.33)
From (2.16) and (2.17) it follows that,
n! (r,,) 1/2
l < |ZInin/ n(1-1/n) P
lIn1| ] [ 27[_ 77 O(n )
= O(n?*Y?) exp (—m(n —1)) (2.34)
where 7; = —logn > 0. Thus I,,; goes to zero exponentially fast. Next we

will show that I,, =1+ O(1/n) in step III below.
Step III. Let us recall that
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27
By making a change of variable ¢t = s/4/n, we obtain

1142
L [nzb (n)] yes O (Il +88) = (52) — it ds. - (2:35)

= [zﬁ';(;n)]l/z /,3]«/;5 exXD ([t (T + 15/ V) — tn(T) — %mn]) ds.

(2.36)
From (2.24) we get,
G ) e e PN L
Inz - [ 2 ] ‘/l:’k\/'—‘& Xp( [2n "pn(n) 677,\/77& n 7’-)
+ Ry (1 + 2s//n)]) ds
"(r 1/2 s2
=[BT e S v - e
(2.37)
+nRy (7. + 25/v/n) + La(s)] ds
where
L.(s) = [exp(2,) — 1 — z,,] (2.38)
and
2z, = —.—8 Up (1) + nRu (7 + s/ /7)) (2.39)

oy’

The r.h.s. of (2.37) can be written as the sum of four integrals. The
first integral is equal to 1 4+ o(1/n) by Mill’s ratio (see Feller (1968) page
175, (1.8)). It is clear that the second integral is zero. In order to show
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that the third integral is O(1/n) we will use the bound in (2.21) for R,.

For that comnsider,

talm) | S :
o[ BT [ e S e Ralr +is/ V) ds

'¢1I(Tn) 1/2
27 ] v/[s]<\/r—z$

IA
3

exp (—i’;- (7)) | Rl + 85/ /)| ds

(vu(r) 2 28

2
< n 4 __s_ "
= n | 27 | n?(a—ay)t /]‘s]<\/§6 s exp ( 2 Yr(m)) ds

= O(1/n). (2.40)

Thus

n [%J 1/2/I-8|<\/;6exp (—32_2 U (7)) Bn(n +is/4/n) ds = O(1/n). (2.41)

Finally, to show that the fourth integral is also O(1/n), we first get an
upperbound for L,(s). From (2 19) and (2.21) we have for |s| < \/76,

= |t () + nalra 85/ V)
< L) + nlBalrn + 65/
Bls|® 2( s* ]
: [\/ﬁ(a—am*n(a—w
<

[ Bés? i 2ﬁ5252]

(e —a1)®  (a—ay)t

= M(6)s* (2.42)
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where M(6) = [86/(a — a1)® + 28 6%/(a — a1)*]. Using the inequality
lexp(2,) — 1 — 2,| < |2,|? exp |2,| and (2.42) we get

L.(s) = |exp(z,) —1— 2z,

Bls]? . 288t
Vi@=e) ' na-a)
We will use the bound in (2.43) to show that the fourth integral in the r.h.s.
of (2.37) is O(1/n).

] exp (M(6)s?). (2.43)

Consider,

B8] [ oot Seta e

< (B [ e Su) eol(o)s)
[ nﬂalsil)s n(f‘is;) rd
< [1/’"(;"}1/2 [y 05 = M(E)5)
[ﬁils—'sal n(f[is;vr ds
= 0O(1/n) (2.44)

since we chose 6 such that M(6) < a/2. Thus, from (2.37), (2.41), (2.44) it
follows that I,, = 1+ 0O(1/r). The proof of Theorem 2.2.8 is now complete.
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For lattice random variables T;, we have the following analogous theo-

rem.

Theorem 2.2.10. Let T, take values in the set {a,+kh, : k =0,%1,£2,...}.
Let {m, = (a, + knh,)/n} be a sequence of real numbers where {k,} is a
sequence of integers. Assume that conditions (i') and (it ') of Theorem

2.2.8 hold and replace conditions (11" ) and (iv') by the following:

(2i2**) Given 6§ > 0, there ezists 0 < 5 < 1 such that

, bu(rm +1t) [
limsu su —_— . 2.45
P scinfbal | Bal7m) 7 (2.45)
(iv**) There ezist p,l > 0 such that
w/lhal | (1 + 1t) [
su == _Z dt = O(nP). 2.46
e /—r/lhnl bn(70) ) (2.46)
Then,
V™ (T, /= m,) L exp(—nga(ma))[1 + O(1/n)]. (2.47)
A n — n) = —————— —_ n n 7. K
Rl V2 [ (1)

Proof. The proof of this theorem is analogous to that of Theorem 2.2.5
except that the range of integration in (2.27) is from —n/|h,| to 7 /|h,|

instead of the whole real line. Hence we skip the details of this proof.

As an application to large deviation local limit theorems for an arbitrary

sequence of random variables Chaganty- Sethuraman (1985) have discussed
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two examples in non-parametric theory. One of the examples deals with
Wilcoxon signed rank statistic. We show below that the Wilcoxon signed

rank statistic satisfles our new Condition (:72**).

Example 2.2.11 Let {X,,,n > 1} be a sequence of i.i.d. random variables
with median m. Arrange |X;|,|Xz],...,|Xx] in increasing order of magni-
tude and assign ranks 1,2,....,n. The Wilcoxon signed-ranked statistic U,
is defined as the sum of the ranks of positive X;’s. This statistic is used to
test the null hypothesis Ho: m = 0 vs Hy : m # 0. Let T, = U,/n. The
c.f. of T, under the null hypothesis Hy is given by

}:[ [(exp(kz/n)+1)/2],z € C (2.48)
and therefore
= (1/n) Zn: [(exp(kz/n) +1)/2], z € C. (2.49)

In this example verification of Conditions (i'), (ii') and (¢v**) of The-
orem 2.2.10 does not pose any difficulties. The analysis in Chaganty and
Sethuraman (1985) page 26 shows that, there exists ng and 6; > O such
that for 0 < 6 < 6y,

1/n

| (T + 3t) < exp(—a §%/4) (2.50)

én (Tn)

for n > ng. This verifies Condition (27:**). Thus all the conditions of

sup
§<t<r/n

Theorem 2.2.10 are satisfied. Hence, the conclusion of Theorem 2.2.10

yields an expression for P(T, = nm,).
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2.3 Large deviation local limit theorems for

ratio statistics

This section deals with the main theorems of this dissertation, namely,
Theorems 2.3.1 and 2.3.12. Let {T,,n > 1} be an arbitrary sequence of
random variables and {S,,,n > 1} be another arbitrary sequence of positive
random variables. Let the two sequences be independent. Theorem 2.3.1
obtains an asymptotic expression for the density function of R, = 7,,/S,
at the point r, in the case where both T, and S, are non-lattice random
variables. The other Theorem 2.3.12 obtains similar result in the case
where T, is non-lattice and S,, is a lattice random variable. We treat the
case where T, and S, both are lattice random variables later in Section 2.4.

Our Theorem 2.3.12 simplifies to the result of Chaganty- Sethuraman
(see Theorem 2.2.8) in the case where T}, is taken to be the sum of n i.i.d.
non-lattice random variables and S,, is taken to be degenerate at n. Thus
our theorem generalizes the results obtained by Chaganty and Sethuraman.

The conditions of the Theorems 2.3.1, 2.3.12 are very much simplified
when T, and S, are taken to be the sums of i.i.d. random variables. These
results are stated in Theorems 2.3.13 and 2.3.14. The conclusion of Theo-
rem 2.3.13 agrees with the heuristic result of Daniels (1954).

Like the theorems in the previous section, the theorems in this sec-
tion are also obtained under some mild and easily verifiable conditions on
the moment generating functions ¢i, and ¢., of T,, and S, respectively.

These conditions are such that they give bounds on the means of T,,/a,
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and S,/a, and variances of T, /,/a, and S,/,/@, which in turn imply that
T,./a, converges to zero in probability and S,/a,, in view of (2.54), con-
verges in probability to some positive constant. Thus by Slutsky’s theorem
R, =T,/S, converges to zero in probability and therefore for any r, > 0,
the asymptotic expressions for the density function of R, at r, obtained in
this section become a large deviation local limit theorem. We proceed with
some notations.

Let {T},,n > 1} be an arbitrary sequence of non-lattice random variables
and let {S,,n > 1} be a sequence of positive non-lattice valued random
variables. Let the two sequences be independent. Let ¢;, and ¢, be the
moment generating functions of {T,,n > 1} and {S,,n > 1} respectively.
Let us further assume that ¢;,(2) is analytic in ;={z € C: |z| < ¢;} and
$2n(2) is analytic in Q,={z € C: |2z] < co} where C denotes the set of all
complex numbers and ¢;, ¢, are some positive constants. Let {a,} be a
sequence of real numbers such that a, — co.

Let
Yin(2) = — logdia(z), 7 € M. (2.51)

bin(2) = — logua(z), 7 € M. (252

Let J, = (—bl, bl), O0<b<cpand Jp = (*—bz, bz), 0 < by < ep. Let {Tn} be
a bounded sequence of real numbers such that there exists a sequence {r,}

contained in J; satisfying

Ilb',ln(‘rﬂ) - rn¢;n(_rnrﬂ) =0 (2‘53)

for r,7, € Jp for all n > 1. Let there exist positive constants ¢; and a;
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such that
1 (7) > a; and 1&;”(7') > as (2.54)

and 7 € Js.
We now state the main theorem of this section. Theorem 2.3.1 below

obtains a large deviation local limit theorem for the ratio statistic

R, =1T,/S, at the point r,.

Theorem 2.3.1. Assume that the two sequences {T,,n > 1} and {S,,n > 1}

satisfy the following conditions:

(A1) There ezist 1 < co and B2 < co such that

[%1n(2)| < Br forz € @y (2.55)

and

[¥2n(2)| < B2 forz € Qg, foralln > 1. (2.56)

(A2) For any given § > 0, there exist 0 < 5 < 1 and g > O such that

: Bun(7n +3t) [/
limsup sup | ———— < 2.57
n P lt[>I; ¢1n(Tn) g ( )
and
SUD [P, (—7n (T + 22))| = O(al) . (2.58)
|t|>6
(A3) There ezist p,l > 0 such that
sup = |funlr £ ) v dt = O(a?) (2.59)
r€d1)—co | @1a(T) e ’
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Then an asymptotic expansion for the density function g, of T,/S, at

the point r, s given by

(ra) = V@ Yon(—TnTn)
9] = rdia(m) + 120, (—rar) 12

X €xp(an[Y1n(7) + P2n(—7n7n)])[1 + O(1/a,)]. (2.60)

The proof of this theorem is deferred until the end of Lemma 2.3.11. We
now make some remarks about the Conditions (A1), (A2) and (A3) of the

above theorem.

Remark 2.3.2. Condition (A1) of Theorem 2.3.1 requires that ¢y, and
a2, be bounded uniformly in n in a circle around the origin in the complex
plane. In Lemma 2.3.7 we show that Condition(A1) implies that the means
of T./a. and S, /a, are bounded and the variances of T,/ V@, and S, /./a,
are also bounded. Applying Chebyshev’s inequality we can verify that
(T — E(T.))/a, — 0 in probability and (S,—E(S,))/a, — c in probability
for some ¢ positive. The application of Slutsky’s theorem shows that R, =

T./Sn goes to zero in probability.

Remark 2.3.3. Since |¢1, (7 + it)/P1n(7s)| is the characteristic function of
a non-lattice random variable, for each § > 0 we can always find0 < 7, <1

such that

sup l¢1n(7n + z't)/‘ﬁln('rn)]1/‘1" < 7p.
[t]>8
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Condition {A2) requires that the limsup %, = 7 < 1. We use Condition
(A2) mainly in Lemma 2.3.9 to show that the term I,; defined in (2.68)

goes exponentially fast to zero.

Remark 2.3.4. Condition (A3) guarantees the existence of the density
function of T,, and permits the use of inversion formula to get an expression
for the p.d.f. of T,,. This condition is also used to show that the term I,,;
in (2.68) goes exponentially fast to zero.

Remark 2.3.5. It is interesting to note that the conclusion of the Theorem
2.3.1 remains the same if ¢y, is replaced by ¢s, in (2.57) and (2.59) of
Conditions (A2) and (A3).

Remark 2.3.6. Selection of an appropriate sequence {r,} of real num-
bers guarantees the existence of a saddle point (7,,0) for the function
Real(1,(7 + it) + 2n(—ra (7 + 3t)) for each n. We use this saddle point to

get an asymptotic expression for the integral in (2.107).

We will need the following Lemmas 2.5.7 thru 2.3.10 in the proof of
Theorem 2.3.1. Lemma 2.3.7 obtains bounds which are independent of n
for z[JY;) and ¢§Z) for £ > 1 and also for the remainder terms Ry,(7+it) and

Ron(7 +3t) defined below.

Lemma 2.3.7. Let 41, and ¢, be as defined in (2.51) and (2.52). Assume
that Condition (A1) of Theorem 2.3.1 holds. Then the following holds:

K1B;

(c; —b5)F (2.61)

(k) <
sup i (T)] <
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for 3 =1,2 and for k > 1. Let

- . . ! (z‘t)2 n (Z.t)3 mn
R +8) = il + i8) = 95u(r) — (i805(1) — Lt (1) - oy
(2.62)
forT € J; ,5=1,2. Then there ezists 6; < (c; — b;) /2 such that
) 2B;t*
A7 < 2.
fél}j |Rin(7 + 1t)] < (G- b)° (2.63)

for [t| < é; and for 7 = 1,2.

Proof. The proof of this lemma is similar to the proof of Lemma 2.2.9 and

hence it is omitted.

Remark 2.3.8. Let sup |r,| = r. Let 65 = §;/r. Since ¢4,(z) is analytic in

2, the following expansion is valid for all » > 1 and || < 65 :

. . —1 nt 2 "
Uan(ralin ) = Walrare) + (it (=ra) + D ()
FR(—r(7m +t)) (2.64)
where
oy o ()’ / Yo (w)
B(=rn(mn +142)) = 27 Cr (W — (=1np))® (w — (—1p7p) + 27,0) dw
(2.65)
and C; = C(—rn7h, ¢z — bz). Therefore, for |t} < 65 we have,
. 2,62 7'3 ts
— < — . .
IR( Tn(Tn + Zt))l = (62 — b2)3 (2 66)
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Lemma 2.3.9 shows that the term I,; (see (2.113)) appearing in the proof

of Theorem 2.3.1 goes exponentially fast to zero.

Lemma 2.3.9. Assume that the Conditions (A2) and (AS) of Theorem
2.8.1 are satisfied. Let

fa(2) = $1a(2) + Y2a(—102). (2.67)

Then

L, = [fg%(%_)]uz /ltlzﬁexp([an(fn(fn”t)—fn(r,,))])

¢én(_rn(’rﬂ + Zt))
xF (2.68)

goes ezponentially fast to zero for all § > 0 such that § < min(é;,6z,63)

where 6; and 6, are as in Lemma 2.8.7 and 63 is as in Remark 2.3.8.

Proof: Consider

IIn1|

an, f(7, 1/2 . 2n(=Ta(mm +7
[%()] /[t126 xp([an(Fnn + i) = Fulr)]) 2 nz(bén(—(rn:;) La

< |5 " I e A e P

(2.69)

Replacing fr(7:) by %1n(7n) + Yon(—7n7s) inside the integral, we get

a, f(r) 1" P (=77 + 7))
[l < [ 27 ] /]tjzs

PYon(—TnTs)

G1n(Tn + 1t) Gon(—Tn(7y + 2t)) '
¢1n(7-n) ¢2n(_rn7n)

e
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-__a"' f’!" (T"'). i ¢1n(Tn + Zt) ¢'2n(_7'n (Tn + Zt))
< 27 ./|t|>6 ¢1n(7n) ¢£n(_7'n7'n) dt
[an 2|7 |l +32)) |
= B4 a7 ey
1n (T" + Zt) ton P1n (Tn + Zt) Hifen
4/|-t[25 ¢1n(7n) ¢1n(7n) dt. (2'70)

Using the fact that ¢4, (7) > a3, for 7 € J; and Condition (A2) we get,

" 1/2 l/an
2 ¢1n Tn
Finally, Condition (A3) implies that,
[Tn| < O(aﬁ+9+1/2) exp(—ni(a. — 1)), (2.71)

where n;=—logn > 0. Hence I,; goes exponentially fast to zero.

We need the following lemma to prove Lemma 2.3.11.

Lemma 2.3.10. Let ¢1, and s, be as defined in (2.51) and (2.52). As-
sume that Condition (A1) of Theorem 2.8.1 holds.
Let

dn = dj;'n (Tn) -+ sz.’ébgn(_rﬂ’rn) (272)

and

Yo (=7 (T + Z\/g))
Vo —TnTn)

Ln(s) = |exp(z,) —1-2z, (2.73)
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where

3 o3
Ty S "

a/"a—: 2n(_rn7n)

* .3
—8"

6 r—an in

(7a) +

j@”' (2.74)

. S .
+ an-Rln(Tn + Z_) + anR2n("Tn(Tn +

Van

Then there exists 6§ > 0 such that

[%} ) /|s|<\/a:s eXp(:zizd")Ln(s) ds = O(1/an). (2.75)

Proof. Let § be as in Lemma 2.3.9. Then

A & Yoo (—7a(7n + i)
@ = [27] Jyeymss =255 [e"p("“) Folorar) ] @
(2.76)

We can write @, as the sum of four integrals as follows:

 [da 1/2 _s? Yon(—Tn(m + 2\/2—,,))
Qn = [ZT_] /|-3|<\/Eo‘ exp(Tdn) l’exp((zn) T zn) 'sz;.n(_rn'fn)

Uhaloralm+ig)) ) b (—a(7n + i)
*( Pho(—7aT) 1) (”")*("'” Pha(—7aT) )} &

= I+ Ino+ Ins+ Ing(say) (2.77)

where

1/2 2
=2l (5 dn) expl(2x)-1
e Is|<y/@n6 XLy n exp((2:) ~1-27)
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PRE ot (Halralrmt i)
1= |2n —d, T d 2.79
= [271’] ~/Is|<\/§6 exp( 2 ) ( Vo (~TnTn) t) e ( )

1/2 2
= | / exp(—-d,) (~2n) ds (2.80)
e 27 |s|<\/ané P 2 " Zn ]

. 1* —s? Vo (—Tn(Tn + Z%))
1= & —d,) z, ds. (281
g [27r] /|s|<\/m xp(5dn) = $2n(~TnTn) s @8

The proof is completed by showing that I};= O(1/a,) for i = 1,2,3,4. In
order to show that I;;= O(1/a,), we get an upper bound for (exp(z,) —
1~ z,), by first obtaining an upperbound for z,. For |s| < /a6, using
Condition (A1) and (2.61) we get that

|s*8y " |7 |*[s]%82 2f,s* 2Byryst

Var(e1 — 1) /@a(e2 —b2)®  ap(er—b1)*  an(co — by)t

[an <

B16]s|? . Bz|rn[28]s|? 4 2816%s%  2[,ristst
T =) (e2—02)* (b))t (e~ o)t

B16 ﬁzl?‘n|35 2p,6* 26,736° 2
i + + - s 2.82
=5 oo bF (b (b )
Using the boundedness of 7, in (2.82), we get
|2,] < M(6)s* (2.83)

where

M) = [B18/(c1 — b1 + Bor®6/(c2 — b)?

+2816% /(e — b1)* + 28067 /(e — b2)*] . (2.84)
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We choose our 6 such that M(6) < «;/2. Using the simple inequality
|exp(z,) — 1 — 2,| < |2,|? exp(|2,]) we obtain,

Islsﬂl + 7’3[S|3ﬂ2
Van(er —01)%  /aq(c; — by)®

|exp(zn) —1— 20| < [

(2.85)

2
26, s* 2B,rtst ] exp(M(6)52).

an(er — b1)*  anfco — b)*

We are now in a position to show that Ij; = O(1/a,). Consider

+

38

d, 1z —s? Von(~7a(7n + By ))
- a dn n) = 1- n -
[Zw} ey P (5 o) (exple) =1 20) =l s

na] =

11/2

Byl —ra(rm +iA))

-3
S o /|s|<\/m op( 5 ) (op(z) =1 =2 Yon(=TaTn) “
d,]"* —s? o [ lsPB r’|sP°82
< o] [ e i) exnlue)s) | TR
i 206,s* 28,145t ]2 Yo (—Tn(7n + 2\/%:)) ds
an(c1 —b1)*  an(cz — b2)* Yan(—TnTn)
< L |én 1/2/ (“_‘52( — 2M () Bus® r®ls[*B2
- ay, 27 |s|<+/@rb exP 2 “ ) (Cl - b1)3 + (62 - b2)3

2,3184 2527484 ¢I2n(—rn(7n + Z\/_Z=n))

+\/a_,{(c1 - 61)4 T \/a(cz - 62)4] wén(—rﬂ’rﬂ)

Using Taylor series expansion for 3, and the bounds (2.61) and (2.63) ob-

ds. (2.86)

tained in Lemma 2.3.7 we can show that |z,b§n(—r,.,('rn + iﬁ))/zbgn(—rnm)]
is bounded in n. Since M(6) < a1/2 we get that I, = O(1/a,). Thus

L= 0(1/a.). (2.87)
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Next we show that I}, = O(1/a,). Consider

!
n2

(d]"? —s? [V (=Ta(rn +iE
/ exp(—s—d,,) : n vz — 1| ds
27 |s|<+/@n6 2 Yon(—TnTn)

-, q1/2
d, / —s? y

. S (_'TnTn)
'——dn — " 2n
.271'_ /I‘sl<\/ﬁﬁ exp( 2 ) [ 7 VGn %n(—?‘nfn)

38

2£'§[)'2'L(—Tn7n) R(_TnTn — iy \/'T—n)] ds

-7

" +
Qy, d"IZn(_TnTn) ¢,2n(_rn7.n)

where R(—rn(7, + ¢t)) is as given in (2.65). It is easy to see that the first

(2.88)

integral on the right hand side of I}, is zero. The use of bound on ¥4}, (—r.7,)
(see (2.61)) and the fact that ¢}, (—r,7,) > aq, it follows that the second
integral is O(1/a,). Similarly (2.66) and the fact that ¢}, (—rm) > o

imply that the third integral is O(1/a2). Therefore,
n2=0(1/ay). (2.89)

Next, consider

d 1/2 —32
In= | [ =2 ) (~z) d
s [27.-] |31<\/—anseXP( 2 dn)(=2s) ds

"

/]’s[<\/¢:seXp(_2_d")[W_c_z: ln(Tn) +6\/ﬁ 2n(_rn7.n)

1/2 : :
d,,}/ —s? =i iris®

-1 |2

s .
) + @nRon(—7n(m +1

The first two integrals on the right hand side of I3 are zero and the third

+apRin(tn + ¢

DI (2.90)

and fourth integrals using (2.63) can be seen to be equal to O(1/a,).
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Thus

Iris = O(l/an). (2.91)
Lastly, consider
- 1 —s? ¢'n —TalTn +7/ =
= |2 exp(—-d,) 2z — ( , 0t 1527)) ds
_271'_ [sl<v/@né 2 ¢'2n(_7'n7'n)
d 31/2 _& e g
= |= d, " n Wy

"no(_
+anRin(7n +1 > )+ @nRon(—7n(ma +2 5 ))] [1 —ir, I G

Vln Vn V/@n Vo (—TnTs)
i) RO )],
"an ¢£n(_rnrﬂ) ¢£n(_rn’rﬂ)
I4 can be easily shown to be O(1/a,). Therefore, it follows from (2.86),

(2.88), (2.90) and (2.91) that Q, = O(1/a,). This completes the proof of

the lemma.

(2.92)

The next lemma shows that the term I, appearing in the proof of the

main Theorem 2.3.1, (see (2.111)) is 1 + O(1/ay).

Lemma 2.3.11. Let fo(t) be as defined in (2.67). Assume that Conditions
(A1) and (A2) of Theorem 2.8.1 hold. Let § be as in Lemma 2.8.10. Then

1/2 on(—Tn(mn + 2
b = [22]" [ ententiutra 0 - ) Bl )
= 1+ 0(1/ayn). (259
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Proof. Consider

n dn, 1/2
In2 — [azﬂ’ } /I.tl<5 exp (an. [¢1n(7n + Zt) — ‘(/Jln(rn) + ¢2n(—rn(7n + 2t))

Pon(—Tn(7n + 1t))
d’;n(_rnTn)

Making a change of variable t = s/,/a,, we get,

d. 1/2 .
I, = [%] /1.3!<\/E5 €xp (an [¢1n(7n + z\/i—n) - '@bln(fn)

Vo (—Tn(7n + 1 5))
)

¢én(_rn7n

—¢2n(_rn7n)]) dt. (2.94)

FYon(—Tn{mm + 1

) - bl

Using the Taylor’s series expansions for ¢y, and v;, (see (2.62)), we get

dn. M2 82 1’282
I = I:E:I '/l:’]<\/ﬁ5 €Xp ('—an [E ,lln('rn) + _27:1 '2’n(_7'n7n)

n

T3 o3
ir, s
JyI1 Tn) n "

s
6a,+/a, Pin 6an~/an " )

an

(=7nTn) — Rin(7n + ¢

i) B,

1/2
= d,, ___—82 n L L2
Y ~/[s[<ﬁ‘a °Xp 2 [ 1a(7n) + T,Z?,bzn(—rn'rn)]

_isd - 3.3
X exp ( . () + WS (—7nTn) + @nBin(tn + ¢ 5 )

6./arn 6./a, " Ja,

o Y Hhaloralrnt i)
\/a—,))) T

+aRop(—7n(mn +1

(2.96)

2-41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Noting that ¥{,() + r2¢%,(—7a,) is d, defined in (2.72), we get that

d 1/2 —d s2 “‘7:33 7‘-7-333
g = batid n 1— m n m(_p
. [ZW] /xsx<¢a—nsexp( 2 ) [ oa ) ¥ g Jaban ()
(2.97)

) + L,,'(s)] ds

. S . S
+anR1n (Tn +1 ) + anR2n(_rn (Tn +1

where dp., 2, and L,(s) are as defined in (2.72), (2.74) and (2.73) respec-
tively. The right hand side of (2.96) involves six integrals. Let us analyze
these integrals.

The 1° integral

d, 1z —s?
[%] /;sk\/a—sexp (—2—dn) ds = 1-28(—/an6\/dy)

14+ 0(1/ay,) (2.98)

follows from Mill’s Ratio (see Feller (1968) page 175,(1.8)).
The 2™ integral

d 1M iyt (7) . —?
—| iz —d,) ds = 0. .99
{27.'] 6,/a, ./]s]<./—ana ® exp( 2 ) ® (2.99)

The 3¢ integral

dn. 1/2 A DY N B nTn —g?
da ] i (=7aTs) sexp | —d,| ds = 0. (2.100)
o7 6+/Tn lsj<v/@ns 2

For the 4** integral consider

d, 1? s —s?
— n nlin ._,—— —_dn
{2%} /ISI<\/E§6G Rip{mn +1 an)exp( 5 ¢ ) ds

2-42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dn 1/2/ —82 s
< n {5 T Yn ni\/n e d
< a [2#} ls|<\/<K6eXp 5 dn | |Rin(m +z\/a) s
1/2 2
a, |27 (Cl - bl) [s|<+/@ré 2
= 0O(1/a,). (2.101)

Thus

d, 1/2 s e
[ﬁ] /xa|<¢ra“"R1"“"”\/a—) =P (Td") ds = O(1/ay). (2.102)

Similarly, the 5°* integral can be shown to be equal to O(1/a,), that is,

d, ' .S —s?
[%] /ISI<\/G6 GnRon(—7n(mm + z\/a)) exp (Tdn) ds

= 0(1/a,). (2.103)
The 6% integral

d,1"? —s?
— —d,)L,(s)d
{271’] /[s]<\/ms exp/ 2 )Ln(s) ds

is nothing but @, defined by (2.76) and therefore, by Lemma 2.3.10 it is
equal to O(1/a,). Thus

Lo=1+0(1/a,).
This completes the proof of Lemma 2.3.11.

We now proceed with the proof of the main Theorem 2.3.1.
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roof. Let G, be the distribution function of R, = T,/S,. Then

Ga(r) = P {g’: < r] = [ Fiury) dPola). (2.104)

n

The density function, g,, of G,, is given by

gn(r) = /ooo Y fin(ry) dFoa(y) (2.105)

where fi,, is the p.d.f. of T,.
Using the conjugate distribution technique (see (2.26), (2.27) and (2.28)),
we get that

oo

Finlry) = % / " unlr + it) exp(—(7 + it)ry) ds (2.106)

which is true for all 7 € J;. Later we will choose r appropriately. Substi-

tuting (2.105) in (2.104) we obtain

0lr) = [ u[5z [ bulr+it)exn(=(r +)ry) de] dFny)

27 —oc

= 2% /_o:o G1n(T + 1t) [/Ooo yexp(—(r +it)ry) szn(y)J dt

= 1 /w G1n(T + 1) P5, (—r(r + 1t)) dt

271 J-o

= 22 [ explaaltinlr +i0) + Yan(—r(r + ) Yho(—r(r + i8)) .

Saddle point technique suggests that when r is replaced by r,, an appropriate

choice of 7 is 7,, where 7, is such that
¢3’ln(7-n) - 7’,;1,[/‘;”(—7',;7'") =0 (2107)
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for 7, € J; and r,7, € J;. Therefore, we have,

g(r) = / " exXp(@n[1n (T + 58) + Yo (=T + i8))]) o (7 (7 + 5)) dt

2 -0

Vs, (—TnTn) €xp(@n[¥1n(T0) + Y2n(—TnTn)])

7 ) + 2 (o (2108
where
" 2,0 [ /2 o

I, = [a"[¢1n(7n) +27;;z¢2n( rﬂTn)]] /-_oo exp(an[%n(rn + it) - ¢1n(7n)

+ ¢2n(—'rn(fn + 7't)) - "[)Zn(_rnfn)]} ¢2n§(b£_nr(n_(:r;:;)zt)) dt. (2.109)
Let fn(2) and d, be as defined in (2.67) and (2.72) respectively. We have,

a d 1M peo . (it
I, = %1 /_ _ exp(@n| fu(7s + it) — fn('rn)])zbz“é;:(_(:n:;)z ) dt

EXARS . B (—7a(r + it))

= |57 /M exp(enlfolrm +it) = fal(m)) 2 de

o (=1n(7n + it))
¢én(_rn7'n)

where 6 is chosen such that § < min(é;, 6, 6;) and M(6) < «;/2 where §;,

+ exp(an|fa(mn + 1t) — fu(m)])

Jt|<é

dt] (2.110)

6, are as in Lemma 2.3.7 and J; is as in Remark 2.3.8 and
M) = [B16/(cr—b1)® + B27%6 /(2 — ba)°
+28, 62/ (c1 — b1)* + 2, 7767 [(c2 — b)*] . (2.111)

Thus

In_ = Inl + Ing (2112)
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and, 1/2 . ¢'n(_7'n(7'n +it))
I, = [ 2T } Alza exp(an|fn(rn + it) — fa(m)]) 2 e 5 6117:13)

and

1/2 .
(2.114)
Lemma 2.3.9 shows that the term I,,; goes exponentially fast to zero and
Lemma 2.3.11 shows that I,; =1+ O(1/ay,).
Thus

I,=1+0(1/a,). (2.115)

Hence the proof of the theorem is complete.

Next, we obtain similar asymptotic expression for the density function
of ratio statistic R, = T,/S, for the case where {T},,n > 1} is a sequence
of non-lattice random variables and {S,,n > 1} is a sequence of positive

lattice random variables. This result is stated below in Theorem 2.3.12.

Theorem 2.3.12. Let {T,,n > 1} be a sequence of non-latiice random
variables with distribution functions Fy, and let {S,,n > 1} be a sequence
of posttive lattice random variabdles with distribution functions F,,. Let the
two sequences {T,,n > 1} and {S,,n > 1} be independent. Let S, take
values in the set S = {an + khy : a, and h, are such that a, + kh, > 0}.
Let Y1, and 1,, be as defined in (2.51) and (2.52) respectively. Assume that
(2.58) is satisfied for an appropriate sequence r,. Let {T,,} and {S,} further
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satisfy the Conditions (A1), (A2) and (AS) of Theorem 2.3.1. Then, an
asymptotic ezpression for the p.d.f., gon, of T,,/S, at the point r, is given
by

an Wy, (—7Tnn)
[27 @n[Y1n(7n) + 1205 (—7ams)] /2

92n(7s)

exp(an[V1n(Tn) + Y2n(—rn7)])[1 + O(1/a,)]- (2.116)

The proof of this theorem runs parallel to that of earlier Theorems 2.3.1.
Hence, we will give first few steps of the proof of this theorem.
Proof. Let G, be the distribution function of 7,,/S,. Then,

T,

Gan(r) = P(S—n <r)

1

ZP(TnSTy)P(Sn=y)

= 3 Fia(ry) P(Sn = g). (2.117)

y€S
Therefore the p.d.f. of T,,/8S, is given by

gn(r) = 2; Yfin(ry) P(Sn. = y)

= ; yP(Sn =y) fin(ry). (2.118)

Using the inversion formula for the conjugate distribution as in (2.109) we

can get an expression for fi,(ry). Thus we have

gon(r) = Z yP(S, =y) [i /_o:o 1n(7 + tt) exp(—(7 + it)ry) dt]

yeS 27
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Zs yP(S, = y) exp(—(r + 2t)ry)| dt

1 foo ]
= ﬂ/‘—xéln(r-*-zt)

— % /_ : an(r + 38) 8y (—r(r + it)) dt

(2.119)
an

_ /_ : XD (@n[W1n (7 + i8) + Yon(—r (7 -+ i8))]) Wy (—r (r + i2)) dt.

27

Replacing r by r,, and 7 by 7,, we get

Ay [ . . .
Gon(rn) = 5~ /_ exp(en[t1n(Tat1t) +bon(—Ta(ra+1it))]) Pon(—rn(retit)) dt.
(2.120)
The rest of the proof is similar to that of Theorem 2.3.1. Hence

an'lp;n(_rnrn)
[271" an['(,/};fn(Tn) + T3¢£In _TnTn)]]l/z

gan(rs) =

X €Xp(@n (Y10 (T0) + Y2n(—Tnm)])[1 + O(1/ay,)]. (2.121)

Theorems 2.3.13 and 2.3.14 below obtain asymptotic expressions for the
density of the ratio of sums of i.i.d. random variables. Theorem 2.3.13 deals
with the occurance of non-lattice 7, and non-lattice S, where as Theorem
2.3.14 deals with the occurance of non-lattice T,, and lattice S,. When Tn'
and S, are sums of n i.i.d. random variables not only that the conditions of
Theorems 2.3.13 and 2.3.14 become simpler, but, part 1 of condition (A2)
((2.57)) is automatically satisfied. We skip the proofs of these theorems as
they can easily be deduced from Theorems 2.3.1 and 2.3.12.
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Theorem 2.3.13. Let {X,,,n > 1} and {Y, > 0,n > 1} be two sequences
of non-lattice random variables with distribution functions F; and F, re-
spectively. Let the two sequences be independent. Let ¢1 and ¢, denote the
characteristic functions of {X,,n > 1} and {Y, > 0,n > 1} respectively.
Let 1;(2) = log ¢;(2) for ¢ = 1,2. Let ¢;(z) be non-vanishing and analytic
in: ={z€C: |zl <c} for i =1,2. Let J; denote the interval (—b;,b;)
where 0 < b; < ¢; for © = 1,2. Further, let {r,} be a sequence of real

numbers such that there ezists {r,} € J; and
1) — Ta Py (~7am) =0 (2.122)

for rn 7, € J2. Let there exzist oy > 0 and oz > 0 such that ¢{(7) > oy for
T € J1 and P4(7) > ap for v € J,.
Assume the following conditions:

(B1) There ezist B; < oo such that
l:(2)] < B; forallz € J; fori = 1, 2. (2.123)
(B2) Given § > 0, there exists ¢ > 0, such that

Ist}i;; |5 (—7n(rs + 3t))| = O(n9). (2.124)

(B3) There ezists B < co such that
¢1 T TZt

st

TEE / ¢1 7')
Let g1, denote the probability density function of T, /S, where

T,= Xi+---+X,and S, =Y, +---+Y,. Then

V1 Py (=7aTs)
27 (Y1 (7n) + 72 Y3 (—rama)]|Y/2

< B. (2.125)

din (Tn) = [
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x exp (r[1(7n) + P2(—rnma)]) [1+O(1/n)]. (2.126)

Theorem 2.3.14. Let {X,,,n > 1} be a sequence of non-lattice random
variables with common distribution function Fy and let {Y, > O,n > 1}
be a sequence of lattice valued random variables with common distribution
function F,. Let the two sequnces be independent. Let ¢1 and ¢, denote the
characteristic functions of {X,,n > 1} and {¥, > 0,n > 1} respectively.
Let ¢;(2) be non- vanishing and analytic in Q; = {z € C : |z| < ¢}
for ¢ = 1,2. Let J; denote the interval (—b;,b;) where 0 < b; < ¢; for
t = 1,2. Further, let {r,} be a sequence of real numbers such that there
ezists {1,} € Jy, rn7n € Jy and

¢;. (Tn) —Tn ¢;(—Tn7n) = 0. (2.127)

Also, let there exist oy > 0 such that ¥{(7) > a;.

Assume Conditions (B1), (B2) and (B3) of Theorem 2.3.13. Let gz
denote the probability density function of T,/S, where T, = X; +---+ X,
and S, =Y, +:--+Y,. Then,

V3 (—~TnTn)

[2 W[zpi’(rn) -+ Tg 'l_bg(—rnq-n)]]l/2

d2n (Tn) =

x exp (n[¢1(rs) + Y2(—7nm)]) [L + O(1/n)]. (2.128)
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2.4 Large deviation local limit theorems for
ratio statistics of lattice random wvari-
ables

In this section we obtain similar local limit theorems for ratio statistic
R, =1T,/S, when

(i) T, and S, both are lattice random variables and

(ii) when T, is lattice and S, is non-lattice.

First, we consider case (i) where both T}, and S, are lattice random vari-

ables. We continue to use the same notations introduced in Section 2.3.

Theorem 2.4.1 Let {T,,n > 1} be a sequence of lattice random variables
with distribution functions Fy,. Let T, take values in the set

S1 = {an + khy : a, and h, are real numbers and k is an integer}. We
assume that the two sequences are independent. Let {S, > 0,n > 1} be a
sequence of positive lattice random variables taking values in the set S, =
{a,, +kh;, : a, and k], are such that o}, +kh], > 0}. Let r,, be an appropriate

sequence of real numbers such that there exist r, € Jy such that
V1:(Tn) — T You(—TnTn) =0 (2.129)
for ro7, € J5, n > 1. Let oy, oz be positive real numbers such that

1a(7) > e and 9y, (1') > a3 (2.130)
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fort € Jy and v’ € J;. Assume that these two sequences satisfy the following

conditions: (D1) There ezist B; < oo and By < oo such that
[¥in(2)| < Bj for zwith |z| < Aj for j=1,2andn > 1. (2.131)

(D2) Given 6§ > 0, there exists 0 < n < 1 such that

. 11/an
n(Tn +1¢

limsup sup M <. (2.132)

no sclti<a/kal | Din(Tn)

(D8) There ezist p,l > 0 such that

x/|hn] ¢1n(7+it) lan
su f —_— dt = O(a?). 2.133
= A I ) (%) (2.133)

Let P,(r) = P(T, =rSy,). Then

1 1/2
[ZW{%ﬁ’l’n (ra) + Ti¢¥n(~rnrn)}]

Vg
T Balr)

(2.134)
X exp(@n{®1n(7n) + Yon(—7n7a)})[1 + O(1/a,)).

Proof. Consider

= D, P(Tu=ry)P(S5. =y) (2.135)

yES2
Using the conjugate density technique and condition (D4), we get that

| [0l

27 J—x/|hnl

P(T, =ry) G1n(T + 1t) exp(—(7 + it)ry) dt. (2.136)
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Substituting this in (2.134), we have,

P,(r) = E P(S,=y) []h d /ﬂ-/lhn G1n(T + 2t) exp(—(7 + it)ry) dt

VES: 27 J—x/lral
|hn| [7/Iknl , |
- 2m $1n(7 +it) 3 P(Sn = y)exp(—(r +1t)ry) dt
27 J =7/ |hal A
_ |Ra| /el _ _
= 2r ) G1n(T + it) Gon(—r(7 +3t)) dt
[ha|  fiital _ .
= o ] eXP(@n[Y1n(T + 1t) + You(—7(r + it))]) dt. (2.137)

Replacing r by 7, and 7 by 7, we can rewrite P,(r,) as follows:

Vonp () = Yo [T

an ¢1n(7'n + Zt) + "/’211( Tn(Tn + zt))]) dt

Thal B ]
(2.138)
1 1/2

- [271‘[¢i'n('rn) r2yl (— TnTn)]] e (@[t (rn) + Yan(=raa)]) I

where
n /'1’ ) + 72 "n —TnTn 1/2 x[|hn| .
I = [a [¥1n(75) 27:@/’2 (—ra7, )]J /—r/lhnl exp(@n[Y1n (T + 1t)
— P1a(Tn) + Yon(—Tn(mm + 18)) — Yon(—7amn)]) dt. (2.139)

We can easily verify that J, is equal to 1+ O(1/a,).
Thus,

1/2

Von pr) = 1

27| In(ma) + r?lz,bgn(—rnrn)]

(2.140)

X eXP(an[l/fln(Tn) + ¢2n(“7n7n)])[1 + O(l/an)]
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For case (ii) we have the following.

Theorem 2.4.2. Let {T,,n > 1} be a sequence of lattice random variables
with distribution functions Fy, and let {S, > 0,n > 1} be a sequence of
non-lattice random variables with distrtbution functions Fy,. Let T, take
values in the set S = {a,+kh, : a, and h, are such that a,+kh, > 0}. Let
T, be a bounded sequence of real numbers satisfying (2.138). Suppose that
Conditions (D1),(D2) and (D3) kold. If gay is the p.d.f. of T,/Sn, then

1/2
Vlrn 1
gzn(Tn) = " 2,10 ]
|on| 27 [P1n(1) + 124 (—TaTn)] |

(2.141)
X €Xp{@n[¥1n(Tn) + Yon(—7nm)])[1 + O(1/a,)]-

Proof of this theorem runs parallel to the proof of the preceding theo-

rems and hence is omitted.

Theorems 2.4.3 and 2.4.4 stated below consider cases (i) and (ii) for

1.i.d. random variables.

Theorem 2.4.3. Let {X,,n > 1} be a sequence of independent lattice val-
ued random variables with common distribution function F; and {Y, >
0,n > 1} be another sequence of independent and identically distributed
lattice valued random variables with distribution F,. Let the two sequences
{Xn,n > 1} and {Y,,n > 1} be independent of each other. Let ¢; and

¢, denote the charactereistic functions of X; and Yy respectively. Let J; =
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(—b;,b;), where 0 < b; < ¢; for some c;, 1 = 1,2. Let {r,} be a proper

sequence of real numbers such that there exist 7, € J; , oy > 0 and

¢;,[(Tn) —Tn "/);(—Tn'rn) =0 (2142)

and

"

") > ay. (2.143)

Assume that {X,,n > 1} and {Y,,n > 1} satisfy the following conditions:

(E1). There ezist f; < oo such that
[:(2)| < B; forallz € J; fori =1, 2. (2.144)

(E2). There ezists B < co such that
451 (T =+ it)

/mhl
su
ey —x/lbl | &1(7)

Let T, =X;+---+X,and S, =Y +---+Y,. Then

dt < B. (2.145)

1 1/2
27 {31 (7n) + rizﬁg(—rn'rn)}]

VA p(T, =8, =
7] P(T, =r,5,) [

(2.146)
exp(n[t1(7n) + Y2 (—7am)])[1 + O(1/n)].

Theorem 2.4.4 Let {X,,n > 1} be a sequence of independent and iden-
tically distributed lattice valued random variables with distribution function
Fi. Let {Y, > 0,n > 1} be another sequence of non-lattice and indepen-

dent random variables with common distribution function F,. Assume that
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the two sequences satisfy the conditions of Theorem 2.4.3. The probability
density function go, of T, /S, is given by
1/2
n 1
£gz"(rn) = ] 2.1
|A] 2n{Y1 () + 125 (—7n7s) }

X exp(n[t1(7n) + Y2(—7n7)])[1 + O(1/n)]. (2.147)
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2.5 Applications

In this section we present a number of examples to illustrate large deviation
local limit theorems for the ratio statistic R, = T,,/S, obtained in Sections
2.3 and 2.4. Our examples cover all the four combinations of non- lattice
and lattice cases for T}, and S,,. One should note that in all these examples
the exact density does not have a closed form, however our theorems provide
a simple asymptotic expressions. These examples clearly demonstrate the
wide applicability of our theorems. To simplify matters in all the examples
we choose T,, and S, to be the sum of n i.i.d. random variables. The
first Example 2.5.1 considers the case of non-lattice for both T, and S,.
In this example we choose T, to be the sum of » i.i.d. N(0,1) random
variables and S, to be the sum of » i.i.d. x? random variables with one
degree of freedom. We verify easily all the conditions of Theorem 2.3.13.
Thus the conclusion (2.125) of Theorem 2.3.13 yields a simple expression
for the density of the random variable which is the ratio of N(o,n) and x?
with n degrees of freedom. The second Example 2.5.2 considers the case of
non-lattice for T,, and lattice for S,,. Here we choose T;, to be the same as
in Example 2.5.1 but §,, is chosen to be the sum of n i.i.d. Poisson random
variables with mean equal to 1. Proceeding as in Example 2.5.1 we can
easily verify that all the conditions (B1), (B2) and (B3) of Theorem 2.3.14
are satisfied. Thus we obtain in (2.153) an asymptotic expression for the
density of the ratio statistic N (0,n) over Poisson (n) at a suitable point 7.
In the third Example 2.5.3 we consider the case of lattice random variables

T, and S,,. We chose both T,, and S,, to be the sum of » independent Poisson
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random variables each with means A; and A; respectively. As mentioned
earlier the probability mass function of T,/S, can only be written as an
infinite series and does not have a closed form. However, we easily verify
all the conditions of Theorem 2.4.3 and thus we obtain a simple closed form
asymptotic expression for the probability mass function of T,,/S,.

Finally we obtain an approximation for the density function of consider
the F statistic with n degrees of freedom for both the numerator and de-
nominator. We assume that n is large. In this case we show that our
approximation for the density agrees with the exact expression except for
the normalizing constant. However, we show that the ratio of two constants

converges to one as n — oo, directly instead of appealing to Theorem 2.3.13.

Example 2.5.1. Let {X,,,n > 1} be a sequence of independent normal
random variables with mean O and variance 1. Let {¥;,n > 1} be a se-
quence of independent random variables with common distribution function
x® with one degree of freedom. The c.f. of X is given by ¢;(z) = e**/?
and that of ¥; is given by ¢2(2) = (1 — 22)7Y/2 for |2| < 1/2. Let r, be a

bounded sequence of real numbers such that 0 <7 < r, < 7. Let

—1++/1+872
Tn = - = (2.148)
n

Let by = (—1+ V1 + 87%) /27 and ¢; = 2b;. Further, let
(~1+V1+872)/4 < by < min{(~1+ V1+87)/2,1/2} and ¢, = 1/2.
We now verify all the conditions of Theorem 2.3.13.
Condition (B1). Let 8; =c% and 8, = W. Then
22

[$1(2)| = - < By, forlz] < & (2.149)
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and
[2(2)] = |log(1 — 22)| < Bz, for|2] < 1/2. (2.150)

Condition (B2). Let § > 0. Then

1
sup s (—rn(m + ot = su -
lt]>6 [#a(=a( 2 |t|>1¢)‘>‘ [1—2(—ru(rn + 22))]
1
= sup

1>8 1/(1+ 2r,7)2 + 4r2 12

< oo (2.151)

where ¢ = sup,, g, and ¢, = 1/\K1 + 2r7,)? + 4r2 62.

Condition (B3). This condition is trivially satisfied.

Thus we have verified all the conditions of Theorem 2.3.13. An asymp-
totic expression for the density function of R, = T,,/S, where T, = X +
-+ X,and S, =Y; +---+7Y, is given by

7 PnTy) ™2 nr?
Qin(TnTn) = \/2; 2 -(%-1(-;3-;?”:,)7,,)2]1/2 exp (_2—&) [1+0(1/n)]. (2.152)

Example 2.5.2. Let {X,,» > 1} be a sequence of independent random
variables with common distribution function N(0,1). Let {¥,,n > 1} be a
sequence of Poisson random variables with parameter A = 1. Let ¢;(2) =
e”’1? and ¢2(2) = el**~1). We choose ¢; > 0 such that ¢; is non-vanishing

and analytic in ; = {z € C:|2] < ¢}, for ¢ = 1,2. Let J; = (=b;,b;),
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0 < b; < ¢; for ¢+ = 1,2. We choose b}s in such a fashion so that for a

bounded sequence r, we can always find 7, € J; satisfying
€™ =1, (2.153)

and .7, € J;. In this example we can easily verify Conditions (B1), (B2)
and (B3) of Theorem 2.3.14. Thus the density function g, of 7,/S, at the

point r, is given by

\/7_7/ e"'nfn

[27[1 + r2e~Tnn

|72 eXp(n[zeT;-’_zzi_—z])[l +0(1/n)] (2.154)

92n (Tn) =

Example 2.5.3. Let {X,,n > 1} be a sequence of Poisson random vari-
ables with parameter A;. Let {Y,,n > 1} be another sequence of Pois-
son random variables with parameter A;. Let T, = X; + --- + X, and
S, =Y+ - +Y, Then ¢;(2) = 41 and ¢;(2) = \i(e* — 1) for
1 = 1,2. Note that ¢;(z) and ¢,(z) are analytic in all the complex plane
C. Let J; = (—b;,b;) for 0 < b; < ¢; for 1 = 1,2. Let us choose a bounded
sequence of real numbers {r,} such that 0 < r < r, < 7 and there exist 7’s

satisfying

_logry +log A; —log Ay
B (rn+1) ‘
Let b; = 2log7+logAz —logA;/(r+ 1) and ¢; = 2b;. Let by = log7 +

log A; —log A; and ¢; = 2b,. With a; = ASFH)/Z/ZIzIAz(z“) we have ¢(7) =

n

(2.155)

A1 €” > ;. We now proceed to verify all the conditions of Theorem 2.4.3.
Condition (E1). Let 8; = 2); (e + 1)* for ¢« = 1, 2. For this §; it is easy to
check that |z| < ¢; implies |¢;(2)| < §; for 7 = 1,2.

Condition (E2) is trivially satisfied.
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Thus from Theorem 2.4.3 we can write an asymptotic expression for

g3n(rs) = P(T, = rS,) which is given by

1
27 n[Are™ + X 72 e~ ]]L/2

d3n (Tn)

X expn{A;(e™ — 1) 4+ Az (e7™™ — 1)][1 + O(1/n)].(2.156)

Let F, , denote the F statistic with n,n degrees of freedom. In the next
example we compare, for large values of n, exact density of F,, statistic

with the asymptotic expression of the density given by (2.60).

Example 2.5.4. Let T,, and S, be the sums of n i.i.d. x? random variables
with one degree of freedom. The c.f. of T}, is given by ¢,(z) = (1 — 22) /2
and that of S, is given by ¢;(2) = (1 —2z)™™/%. Both $;(2) and ¢2(z) are
analytic and non-vanishing in 2 = {z € C : |2] < 1/2}. Let J; = (=b;,b;)
for 0 < b; < 1/2. We now briefly verify conditions of Theorem 2.3.13.

Condition (A1). Let §; = 1/[log 4]? + 472 for 7 = 1,2. Then for |z| < 1/2
it follows that, |¢:(2)| < B; for ¢ = 1, 2.

Condition (A2). This is verified as in Example 2.5.1.

Condition(A3). Consider

1(r + it) ' 1—2r |
é1(7) (1 —2(7 +4t))
(1—27)1/2

(1= 27)2 + 42175
(2.157)
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Thus

R ¢1(T+it)

_ % (1—2r)1/?
e dt = sup

t
2P | oo [T 2r)2 + 27 ¢

sup
7€Jy /=00

0 1
_ o\1/2 [

s =207 | Ay s &
< Ve (2.158)

Thus we have verified all the conditions of Theorem 2.3.13 and we now
apply the same theorem (see (2.60)). On simplification of the numerator
and denominator in the expression (2.60) we get
ni/2gn=1/2  pnf2-1

27 (rn + 1)

qin(7s) = (2.159)

where {r,.} is an appropriate sequence of real numbers. The exact density
of the ratio T,,/S,, at point r is given by

(n—1)! /21
G0 D G 7

f(raln,n) = (2.160)

On comparing (2.159) and (2.160) we see that both the expressions agree
except for a constant. We can use Stirling’s formula and show that the
ratio of the two constants occurring in (2.159) and (2.160) tends to 1 as

n — CC.
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Chapter 3

Large deviation local limit

theorems for random vectors

In this chapter we shall extend the local limit theorems for ratio statistics
of random variables in Chapter 2 to random vectors. We begin with a few

definitions and notations.

3.1 Definitions and Preliminaries.

We denote the k-dimensional complex plane by C*. The points in C*
are denoted by z = (z1,25,---,2) where z € C, ¢ = 1,2,---,k. If
a = (a1,02,--,0;) is a k-dimensional vector with nonnegative integer

components, we shall use the following abbrevations:

2% =20 257 - gk (3.1)
dz=dz;dzy -+ dz (3.2)
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<z,€>=z11+ &+ + 2 (3.3)
for all z, ¢ € C*.
| = aa| + e + -+ + || (3.4)

When f is a complex valued function defined on C* and 7, j, I are

positive integers we write

D2
D;;f(2) = dzfé: )
_ _D*f(=)
D;:uf(2) = m ,
and "
Daf(z) _ D f(z)

T dx%1 %2 . A 0k
dzl dZZ * dzk

Definition 3.1.1. A polydisc s(z,r) of radius r = (ry,72,--+,7%) around a

point z is defined as
s(z,7) = s(z1,71) X s(z2,72) X -+ X 8(2k, k) (3.5)

where s(z,7)=[2] € C: |zl —z|<r]fori=1,2,---,k.

Definition 3.1.2. A closed polydisc s(z,r) of radius r = (ry,72,--,7)

around a point z is defined as
5(z,7) =35(21,71) X 5(22,72) X - -+ X 5(2k, k) (3.6)

where 5(z;,7;)=[zl € C : |zl — | < 7] fori=1,2,---,k.
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Definition 3.1.3. A complex valued function f is said to be holomorphic
at a point z, € CF if in some neighbourhood of 2z, it is the sum of an

absolutely convergent power series

f(2) = D aa(z — z)°. (3.7)

laf20

Let (z + re®) = (21 + ri€'®, -+, 2z + rie®®) for r = (r1,72,+++,7;) and
6 = (61,02,---,8). The following theorem can be found in Vladimirov

(1966) pp. 30-31.

Theorem 3.1.4 (Cauchy). Suppose that a function f(z) is holomorphic
and that it is bounded in the closed polydisc $(zo,7) then the coefficient a,

in the ezpansion of f ts given by

Qo =

/27' 2r f 2o +r et(?)

s exp (—7 < 8, >) db. (3.8)

(27r
Consequently,

ool < = _max 7). (3.9)

T% z€3(z0,r)

3.2 Local limit theorems for random vectors

Let {Tn,n > 1} be a sequence of non-lattice random vectors in R* and
let {S, > 0,n > 1} be a sequence of non-lattice random variables. Let us
assume that S, is independent of T,, for » > 1. Let the moment generating
function ¢1,(z) = E(exp < z,T, >) of T, be holomorphic in ¥, where
={z+iy:z €1 = (—cy,¢1) and y € R} for some ¢; > 0. Let
b2n(2) = E(exp(zS,)) be analytic in Q; ={z € C: |z| < ¢} for some
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¢z > 0. Let C denote the set of all complex numbers. Let J; = (—by, 5;),
0< by <c¢;and Jp = (—bs,b2), 0 < by < ¢;. Let {a,} be a sequence of real
numbers such that ¢, — co.

Let
binlz) = — logd1a(2), for = € 0. (3.10)

an(2) = ai log ¢an(2) , for z € Qs (3.11)

23

Let Vip1,(2) = (D1%1n(2), Detb1a(2), - - -, Di31n(2)) be the vector of the first
order partial derivatives and V?¢y,(z) denote the matrix of second order

partial derivatives, that is,

Viin(2) = (Dijth1n(2)) - (3.12)

The determinant of the matrix V21;,(z) is denoted by |VZ¢1,(2)|.

Let dn, = V2 (¥1,(7) + ¥2n(— < 7,7 >)) be positive definite. Further, let
the eigen values of d, be bounded below by o > 0, for all 7 € JF and
n > 1. Let {r,} be a sequence of vectors in R* such that |r;,| < 77 < oo
for y=1,---,k and » > 1. For this sequence r, let there exist a sequence

{7} in JF such that < r,,,7, >€ J; and

v ("pln('rn) -+ 2/)2n(—_~- < TnyTn >)) =0 (313)

-

and
";Z);n(_ < TnyTn >) > o (3.14)
for some positive constant o, and for all » > 1.

We now state the main theorem of this section.
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Theorem 3.2.1. Let {T,,,n > 1} be a sequence of random vectors in R*.
Let {S,,n > 1} be a sequence of random variables which is independent of

T.. Assume that T,, and S, satisfy the following conditions:

(F1) There ezist §; < co and B, < co such that

[Y1n(2)] < By for z € Of (3.15)

and

[92n(2)| < B2 for z € Q2 for all n > 1. (3.16)

(F2) Given 6 > 0 there ezist 0 <n < 1, ¢ > 0 such that

oy 11/n
: ¢1n(7-n + Zt) !
limsup sup | ————= n 3.17
at 55 | P1n(7n) (3.17)
and
sup hb'Zn(_ < TpyTn +ot >)l = O(ag,,) (3.18)
[t]>6
(F8) There ezist p,l > 0 such that

0 ¢1 (7 + t) Yan
sup / dt = O(a?). 3.19
TGJ" ¢1n T) ( ) ( )

Then, an asymptotic ezpansion for the density function g, of T./S. at the

point r, is given by,

= _ aﬁ/Z (Pan(= < Ty >))k
Gn(ra) = (27)%/2 |d,|1/2

(3.20)

X €XP (@n[P1n(Tn) + Y2n(— < T, >)]) [1 + O(1/a,)]-
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Remark 3.2.3. The proof of Theorem 3.2.1 is similar to that of Theorem
2.3.1. The proof has two major steps. In the first step the term I,,; appear-
ing in the proof of the theorem is shown to go toc zero exponentially fast
and in the second step the term I, is shown to be equal to 1 + O(1/a,).
These steps are presented below as Lemmas 3.2.7 and 3.2.9 respectively.
The proofs of these lemmas depend on lemmas 3.2.4, 3.2.8 which are also

proved below.

Lemma 3.2.4. Let ¢y, and 1, be as defined in (3.14) and (3.15). Assume
that Condition (F1) of Theorem 3.2.1 holds. Let 6; be any real number less
than (c; — b1)/2. For |t| < &, let

Rln(Tn + it) = ¢1n(7n + Zt) - ¢1n(7n) —1 < ts v '(bln.('rn) >

1
+5t VE pra(ra) t+2 >, al®glel, (3.21)
laf=3

Then we have the following bound :

4
sup |Rin(7n + 1t)]| < 2Bt (3.22)

= (e = b)Y
Proof. Since 7, € J{‘ for all » > 1 and %1, is holomorphic in QF we can

write for |t| < (e: — 81)/2,

Vinltw ) = Ginlra) +§ <8,V b1a(7) > —28 V¥ thra(r,)

—i > a®de £ 3 W)kl (3.23)

|a|=3 |a]>4
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By Cauchy’s theorem and Condition (F1) of Theorem 3.2.1 we get the

following bound for ag‘)

<P
|aa l S (c1 _ bl)lal . (3.24)
Thus for |t| < (¢; — b;)/2 and for all n > 1,
|Rin(rn +3t)] = | o (it)lel
fa>4
k 1 B

< poloi| — M1
= [l e et
2 [t* B

< (cl——bJ‘I' (3.25)

Remark 3.2.5. Let R,,(7+7%) be as defined in (2.62). Asshown in Lemma
2.3.7 there exists 0 < 6; < (2 — b;)/2 such that

283, t*

sup | Rz )| <
Te};l z(T+z)l_(cz_b2)4

for [t| < 6, and for all n > 1.

Remark 3.2.6. Let sup,, |r,| =r. Let & = 8, /r. Let R(2) be the remain-
der term in the expansion of ¥},(— < 7,,2z >) as in (2.64). Proceeding as

in Remark 2.3.8. we can show that for |t]| < &,

28; < 71,,t >3

R(—<rp,mm+t >} <
R < Bt

(3.26)

In the next lemma we show that the term I,,; defined in (3.29) goes to

zero exponentially fast.
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Lemma 3.2.7. Assume that the Conditions (F2) and (F8) of Theorem
3.2.1 are satisfied. Let

dn = Vz("/)ln(fn) + ¢2n(— < TrsTn >)) (3'27)
and
fln(z) = ¢1n(z) T z1’27;(— < Tp,2 >)- (3.28)

Then there exists 6§ > 0 such that

I = |l 7] el i) - 1))

Yho(— < 7y Ta +1it >)
n dt
¢2n(_ < TpTn >)

goes ezponentially fast to zero.

(3.29)

Proof. Let § be such that § < min(éy,6,,65) where 61, 6, and 63 are as in

Lemma 3.2.4, Remark 3.2.5 and Remark 3.2.6 respectively. Consider

il = |5

1/2
(2m)* ] -/ltlza exp([an[fa(mn +78) = fu(m)]])

Yoo(— < Ty 1y + 08 >)
¢£n(_ < TpyTn >)

dtl

IA

[(zm ) LN ACE R ACH) )}

d’;n(_ < TrnyTn + it >)
¢£n(_ <TnyTn >)
Substituting for f.(7, +7t) and f.(r,) (see (3.28)), we get that

i s 2]

X

a

¢1n(7n + Zt) ¢2n(— < TpyTn + 2t >)I
¢1n(7'n) ¢2n(‘_ < TnsTn >)
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e .
9 Yon(— < TpyTn + 1t >) dt
Yon(— < Tny™n >)
< [ak|d,|] 1/2 / G1n(Tn +18) | |Dha(— < Ty T + 3t >) ’ it
| (27{')k i jt]>6 ¢1n(7-n) "/)én(_ <TpyTn >)
< [akldal] sup | Pl <y it >)
T oL@m)*] s Yhe(— <TasTa >)
/ S1n(7n + it) [1% | Sualr + it) |7/
X = —_ dt
|t|25 ¢1n(7n) ¢1n(7n)
GEldo 1 b= <y Ta it >) bin(rn + it) [T
e sup .
(2m) 126 | Pon(— <TasTw >) | 5| P1al(mn)
Sinlmn + 1%) Yan
[ |putnrif,
126 | P1n(7n)
From (3.17), (3.18) and (3.19) and also noting the fact that
Yo (— < 70y Tn >) > ez we get that
e - e
Li| < |-22= — O(a) n=H/e) / mn dt
el < [(271')]c Qs (at) RE | P1n(Tn)
< O(aB9**/%) exp (—ny(an — 1)) (3.30)
which goes to zero exponentially fast, since n; = —logn > 0.

The following lemma will be used to prove Lemma 3.2.9.

Lemma 3.2.8. Let 11, and v, be as defined in (3.14) and (3.15). Let d,
be as in (3.27). Assume that Condition (F1) of Theorem $.2.1 holds.
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Let

! (— 2
where
ls) = [_i S e+ LT 2V g o o)
\/a’—" |a|=3 6@
(3.32)

. S .S
+a, Ryp(mn+ 1 \/ﬁ) + an Ron(— <7p,Tn+1 e >)] .

Then, there ezists § > 0 such that

M2 —s'd,s
G [ =0 = o). (539

Proof. Consider

r /2 '
. Tldal T / —s'd,s
@n = | (27)F BN exp( 2 )

Yon(— < Ty Tn + iz >)
wén(_ < TpyTh >)

for 6 > 0. The r.h.s. of the above equation can be written as the sum of

exp (2n)

—-1- zn} ds (3.34)

four integrals as follows:

Pon(— < TnyTu + 1= >) (z/)'zn(— < TnyTn T 1= >) .
¢én(— < TnyTn >) ‘l)bén(_ < Tpy Ty >)

wén(_ < TpyTn >)

—(2n) + (zn%"(— ST e >))] ds

= I+ Lo+ Lis+ Is (say)
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where

1/2 ,
o= ——-[d"l dns _
nl = [(271')"] -/Ia|<¢a:5 exp( 2 )(eXp (Zn) 1— Zn)

Vo (— < Ty + iﬁ_: >)
¢én(_ < TrsTn >)

1/2 r(— 3
Iz = 1| / exp(_s’dns) Yol STmtn Ve >) —1] ds.
(27r)’° 13|<\/K5 2 ¢’2n(_ < TnTn >)

ds.

d,| 1z —s'd,s
= | A% / —)(—2x) ds.
™ [(270"] ievams TPy )

ds.

- [ |d,] }1/2/ (255 Yho(— < Ty + i >)
" 2m)*]  Jl<yams 2 T (= < >)

We complete the proof of this lemma by showing I; = O(1/a,), ¢ =
1,2,3,4. To show that I;; = O(1/a,), we get an upperbound for (exp (z,) —
1—z,).

For |s| < /a6, consider

— Z a‘(zn) s*+ 7:(< Trny S >)3 m

Ve i el T

lznl =

S

+an Bin(m + 2 )+ an Ron(— < 7pymn+12 >)1.

(3.35)

The bound on |Ry,(— < 7p, ™ + ¢ >)| given in Remark 3.2.5 yields yields

1 _BisP | IsP &(Zia7)
Van (1= b1)*  \/an (cz —b2)®

|za| <
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(3.36)
2Bl 2sl'B(Sh 7))’

an(c1 - 151)4 an(cz - 52)4

exp(M(6)]s]*)

Bad |s|* + Bab 13[2(E§=177)3
- (Cl - b1)3 (02 —_ 62)3

2B,6% |s|? + 2262 |s|*(Th_, 75)*

Tla—by)* (e — bz)*

B16 a6 (Th.75)°
(e —81)3 (€2 —bg)®

IA

26:6° | 28,67 (X1 7)
(e —b1)* (cz = b2)*
wherein we have used the fact that |r;,| < 77 Thus we have

+

ls|? (3.37)

|22 (s)| < M(6)|s] (3.38)
where

_ B16 B2 (Lo 75)°
M(e) = {1 —b1)® (c2 - bz);

2618 | 28:6" (T} T3)"
(Cl - b1)4 (62 - b2)4
Let us choose our 6 such that M(6) < e;/2k. Using the simple inequality,

+

(3.39)

|exD (22) — 1 — 2n| < |2,]? exp(|2,|), We obtain,

1 Bsf® L P B =173)°

Van (1= 61)°  yan (2 —b)°

lexp (2n) =1 — z,| < [

(3.40)

53ﬁ1|sl4 + 21514:32( ;F=17'_7')4 :

+
an(cl - 51)4 an(CZ - 52)4

exp(M(8)|s|?).
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Consider

Il

1/2 ,
[(_l%] /is]<\/ﬁ5 exp (_32dn8) (exp (22) — 1 — 25)

1»0'2,;(— < TnsTn + iv/sT—n >)
‘/Jén(_ < TpyTn >)

ds|.

Substituting the bound in (4.46) in the above equation, we get

d|1/2 e
Il < [
I (o= N

x[ 1 _BlsP | P ﬂz(Ek—1—3+ 261}s[*
Van (c1 —by)3 Van (c2 —b2)? an(c1 — b1)*

L 2ls*6s (5 )rr

an(CZ - bz

"%) exp(M(6)[s]?)

Yon(— < Try T + i\/i—,; >)

Yon(— < TnyTn >) ds

= al_n [%] " /lswm =

BulsP | IsI*Be(Zia)® 2B s[*
8 [(cl - 51)3 * ( b2) N \/‘Z(‘h - bl)4

—0oy S's

) exp(M(8)]s")

Yo (— < TpyT + z\/_“_ >)
Yho(— < Ty T >)

2ls*B2(S5, 7)1
+wm@—w4}

Since k(s's) > |s|?, we have
m s 2T et 5 e M@k
T e, [(27)F ls|</@ns Plmar 5 s

BisP |s]2B2( _1ﬁ) 26]s|*
x [(cl—b1)3+ CED RN L

ds. (3.41)

3-75

Reproduced with permission of the copyrlght owner. Further reproductlon prohibited without permission.




¢2n( < TnsTn + zﬁ >)
1/)271( < TnsTn >)

+2|5|4ﬂ2( 71)4] ds (3.42)

Vaa(cz — bz)

1/ s's
R T
Bils® ls*B2(2F.. 75)° 2B1|s|*
8 [(01 —b)® * (c2 — b2)3 i Van(cr — b1)*

2|46 (Sk )J
Van{ez — 52)

Proceeding as in the univariate case we can show that

'ﬁbz( <7'n.a7-n+7«\/—>)
bn(— < TnyTn >)

ds. (3.43)

Y20 < TnsTn + 38 >) /(= < 7ry 7 >))]

is bounded in n. Since M(6) < a;/2k, the inequality (3.45) shows that
m=O(1/a,). Next consider,

11/2 _s Voo (— < Ty T + 1= >
I = | 1d.| exp(ZS5nS ( 2 Van )—1) ds

_(27T)k‘ /]‘s[<\/5:6 2 ¢2n(_ < TpyTn >)

i .. ] 1k& /’ o (—s’dns) 1< Tpys > Py (— <71y 7 >)
| (27)F | lsl<\/ans P an Dho(— < 7y T >)

_X ™S > P(= <rp,1n>) | R(<7mym+ i >)} ds. (3.44)
S . (3.

Gy, ¢'2n( < TnyTn >) "/)én(— < TnyTn
It is easy to see that the first integral on the right hand side of I, is zero,

second integral is O(1/a,). We can use the bound on |R(< 7,7, + i >}
(see Remark 3.2.6) to show that the third integral is O(1/a,).
Therefore

n2=0(1/a,). (3.45)
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Now, consider

= [T [ e e

1/2 _s'd_s
- 0[] =T

—1 i <ftp,s>°
[ Z a‘(zn) %+ ns " (_ < Ty Ty >)

T a //— %on
‘/an |a|=3 61/(1,1

(3.46)

s )
)+ @ Ron(— < TpyTn +1

The first two integrals on the right hand side of I3 are zero. We use the

+a, Ryp(mn + 1 >)| ds.

bounds on Ry, (7+%t) and Ry, (7 +1t), obtained in Lemma 3.2.4 and Remark
3.2.5, to show that the third and fourth integrals are O(1/a,).
Thus

ILis=0(1/ay). (3.47)
Lastly, consider

, o Idnl 1 1/2 / (_s'dns) ¢’2n(_ < Tn,Tn +i zn >)
ex Zn Y
n | (2m)E]  Jisj<yame A Pho{— < Ty 7 >)

ds

- 11/2 , )
|dy| ! / —s'd,s —1 (n) .o
= exp ay’s
| (27) %] [sl<+/@nt ( 2 ) Van %::3
_—z'<rn,s>3 (= < TnyTn >) + @ Ryp(rn +1 ° )
6\/@ 2n nyin n Liin\in \/a_n

+ap Ron(— < TpyTn +1

)
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3 P < Ty > P (— < 7p, 7 >) < Tp,8 > P (= < 7y T >)

1
22 wén(_ <TpyTn >) arn wén(_ < TpyTn >)

R{<rp, Tn + 1= >)
Yon(— < TnyTn >)
Using the argument similar to the univariate case the term I4can be easily

ds.

verified to be equal to O(1/a,). This completes the proof of Lemma 3.2.6.

The next lemma shows that the term I, appearing in the proof of the

main theorem is 1 + O(1/a,).
Lemma 3.2.9 Let f,(t) be as defined in (3.81). Let 6 > O as in Lemma

3.2.8. Then

o TaE |da|]M? . o B (= < Ty T+ i)
Lo = [(%)k} Jyes B Uonlintin +30) = 1)) Pog =S L2 g

= 1+ 0(1/an)- (3.48)
Proof. Consider
ak |d |1 :
(3.49)
Yo (— < TnyTp + it >)

+Yon(— < Ty T F 1 >) — = < Ty Tp >
’l/)z ( ) ¢2n( Tns 7y )]) 'd)én(_ < TpyTn >)

dt.

By making a change of variable ¢ = s/,/a,, we have,

Lo FAREE [ .S
|l /181<¢a—ns = <a“ Pl 5~ el

R
¢I2n(_ < TnyTn + 7’\/_80,—: >)
Phu(— < TnyTn >)

Fon(— < rp,Tm+ 1 d

\/Q ds.

>) — Yon(— < TpyTn >)D
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For |s| < \/a, 6, we use Taylor’s series for v, and ,, to get

]dn 1/2 1 ,
b2 = [#] Awm =P <_a" [is V(s

< Tpys >,
_— zn(— < TnsTn >)

)
— > (n) g
a,’s
Gn \/C@n leef=3 *

2a,

1< r,,s>3
— n (= < TpyTn >) — Ryn(7n + ¢ s

6a, /a, " Ja,

)

(3.51)
. ¢,n—<7'm7'n+i—i‘>

—RZn(_ < TpyTn + ZL >)}> 2 ( 7 Ven ) ds.
\/CTn- ¢2n(— < TnyTn >)

We note that s'V? 91n(mn)s+ < 75,8 >% ¢, (— < 74, 7n >) = s'dps. Thus

we have,

1/2 ' .
ol =[] [ o o (-2 5 e

" laj=3

1< Tp,s >3 .S
- g:z(_ <7TpyTn >) + an Rln('rn +1

6/ Ve

Yo (= <7p,Tp +1-2= >
S >)) 2 (, Van )
\/a'—n ¢2n(‘ <TnyTn >)

|dy] 1/2/ —s'd,s
(2m)* [s|<+/@m 6 exp( 2 )

i< rpys >3 . s
- a o~ < TpyTp >) + ap Rin(r, + 1

N v

)

+anR2n(‘" < TnyTn + )

ds

7
1-—- > a{™) s°
Ve

a|=3

.S
+apRon(— < TpyTn + z\/a_n

>) + Ln(s)J ds (3.52)
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where d,,, L,(s) and z,(s) are as defined in (3.30), (3.35) and (3.36) re-
spectively. The right hand side of (3.56) involves six integrals. The 1*
integral is 1 + o(1/ay,). Trivially, 2™ and 3" integrals are equal to zero.
In order to show that the 4% integral is 1 + O(1/a,,), we use the bound on
Rin(m + 7 s/4/a,) given in Lemma 3.2.4. Thus

/2 '
CARE .S —8'dps
[(27r)" Aslﬁ/ﬁﬁ Gp Rin(7n + 1 an) exp( 5 )ds

/2 '
|dy| ! —s'd,s
On [(271')" /|,1<¢m exp(—5 )

S

< .
—_ Rln(7n+z\/a—n) ds

1 | |dn] Y2 9B, / 4 ~s'd,s

an [(2“)k_i (c1 — 1)* Jisi<yans ol exp 2 ) ds
= 0(1/an). (3.53)

Similarly, the 5%

integral can be shown to be equal to O(1/a,). The 6%
integral, [Idnl / (27.')"] Ve Jisicyars In(s) exp(—s'dns/2) ds is @}, defined in
(3.37). Therefore, it follows from Lemma 3.2.8 that

M —s'd,s
5] e ) o e =00 (a0

Thus
IL; =14+ 0(1/a,).
We now proceed with the proof of main Theorem.
Proof. Let G, be the distribution function of R, = T,/S,. Then, for

r= (7’1,7'2,"',7’1:)



= /(; Pr(Tin < 11y,..., Tin < 11y] dF2n(y)

= /o Fin(ry) dFan(y). (3.55)
The density function g,, of G, is given by
gn(r) = /0 ¥* fin(ry) dFon(y) (3.56)

where fy, is the p.d.f. of T,.

Using the conjugate distribution technique, we get,

k
fin(ry) = [%] /};k S1n(7 + 1t) exp (— < ry,7 + it >) dt. (3.57)

Therefore,

00 1 1% ) )
gn(r) = /0 ¥ [g] /Rk S1n(7 +1t) exp (— < ry,7 + it >) dt dFsn(y)

_k oo
= |5z /;# G1n (7T + i) [/0 y* exp (— < ry,7 + it >) szn(y)} dt

= —k ,/}-3;: G1n (T +1t) [/Ooo y* exp (— < ry, 7+t >) ngn(y)] dt

17k ‘ .
= —- /};k ¢1n(T +Zt) ¢I2n(— < T37+Zt >) dt

a1k
= gf /Rk exXp (@n [Y1n(T + 2t) + thon(— < 7,7 + 1t >)]) P4 (— < 7,7 + 4t >)dt.

We now replace r by r,, and 7 by 7, to get

gn(rn) = [

k
;_;} /;zk XD (@n [Y1n(Tn + 1) + Yon(— < Tay 7 + it >)])
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XPou(— < Tny Tn + it >) dt

/ (3.58)
k/2 L
= [52]" 2o ) eplanlint) + danl < o> 1,
where

k dn 1/2
b= [a@r)kl] /Rk €XD (@n[1n (T + it) = P1a(7n) (8-59)

! .
+hon(— < 1p, T, + 1t >) — Yon(— < 7, 7p >)]) ¢2n(, < TpyTn + 3t >) dt.

Writing 91, (t) and 1,.(t) in terms of f,(t) (see (3.31)) we get,

_ [af |dn]] 1/ ) Vo (— < Ty T + 3t >)
I, = 27)* ] /;zk exp(an[fr(7s +1t) — fa(ma)]) 2¢£n(_ < Ty T >) di

’
~~~

_ [ah1dal]M [ . Phal= < Ty 7o + it >)
Tt | /[;]26 exp(an[fn(tn + it) — fo(m))]) T S~ dt

. Yoo (= < 1y T + 3 >)
T t|<é e (@nfol7n +22) = fu(rn)]) 2¢2n(— < TpyTn >) dt (3.60)

where 6 is chosen such that § = min(6;,6,,683) and M(6) < a1/2k for M(6)
in (3.45). Thus

In = in1 + In2 (361)

— a’fz ldﬂ-l 1/2 .. ¢In(_ < "n>Tn + it >)
Inl - [ 271_1: } -/ItI26 exp(an[fn(Tn+Zt)_fn(Tn)D 2¢2n(_ < Tn.:Tn >) dt
(3.62)
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and

[k i) - )
Iy = [—2_7r_"—] Aflq exp(an[ fn(Tntit) = fa(7a)]) Yon(— < 7oy 7 >) N

(3.63)

Lemma 3.2.7 shows that the term I,; goes exponentially fast to zero and

Lemma 3.2.9 shows that In, =1+ O(1/a,). Thus
I,=1+0(1/a,). (3.64)
This completes the proof of the theorem.
Theorem 3.2.10 stated below is analogous to Theorem 3.2.1 except that

in Theorem 3.2.10 we take the components of T,, and S, to be sums of n

i.i.d. random variables, particular case of Theorem 3.2.1.

Theorem 3.2.10 Let {X,,n > 1} be a sequence of non-lattice i.i.d. ran-
dom vectors in R* with distribution function Fy and m.g.f. ¢. Let {Yp,n > 1}
be another sequence of non- lattice, positive random variables with distri-
bution function Fp and m.g.f. ¢,. We assume that Y's are independent of
the components of X s. Let ¢y and ¢, be analytic and non-vanishing in QF

and Uy respectively, where U ={z€ C : |z2| < ¢} fore; >0,7=1,2. Let
1
'(,b,'(Z) = ; lOg ¢i (Z),

fori1=1,2. Let Jy = (=b1,b1), 0 < by < ¢1 and Jo = (—bs,b2), 0 < b < ¢5.
Let {a,} be a sequence of real numbers such that a, — co.

Let Vi1(2) = (D1h1(2), Dothr(2),- - -, Dri1(2)) be the vector of the first
order partial derivatives and Vii(z) denote the matriz of second order

partial derivatives, that is,
Vii(2) = (Dijiha(2)) - (3.65)
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The determinant of the matriz VZ,(z) is denoted by | V¢, (2)].

Let d, = V2 (¢1(7) + ¢¥2(— < r,7 >)) be positive definite. Further, let the
eigen values of d, be bounded below by ey > 0, for all T € J¥ and n > 1.
Let {r.} be a sequence of vectors in R* such that |r;,| <7} for j=1,---,k
and n > 1. For this sequence r, let there exist a sequence {r,} in JF such

that < 1y, Tn >E€ Ja

v (¢1(Tn) -+ ¢2(_ < TpyTn >)) =0 (3.66)

and

Yo(— < TpyTw >) > a2 (3.67)

where ag > 0 and n > 1.

Let us assume the following conditions on the moment generating func-
tions ¢; and ¢,.
(F11) There ezist B; < 0o and B2 < oo such that

[W1(2)] < By for z € OF (3.68)

and
[2(2)| < B2 for z € Qa. (3.69)

(F12) Given 6 > 0, there ezists ¢ > O such that

sup |Yy(— < 7,7 + 7t >)| = O(n9). (3.70)
|t|>6
(F18) There ezists By < co such that
lan
o ¢1 (7' -+ Zt
su / dt < Bj. 3.71
reﬁ ¢1(T ' ( )
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(F12) Given § > 0, there ezists ¢ > 0 such that

I5}1p [y (— < 7,7 + 1t >)| = O(n9). (3.70)
t|>6

(F18) There ezists By < oo such that

l/an

sup dt < Bj. (3.71)

fEJf —co

lq& 1(7 + 4¢)
é1(r)

LetT, =X3+---+X,, S, =Y1+---+Y,. Then an asymptotic expression

for the p.d.f. of R, =T,/S, at the point r, is given by,

nk/? (Po(— < Tny 7w >))Ic
(2r P 2,

g1 (Tn)

(3.72)
X exp (n[th1(7) + Y2(~ < 1y 7 >)]) [1 + O(1/7)].
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3.3 Large deviation local limit theorems for
lattice random vectors

Now we proceed to obtain similar local limit theorems for ratio statistic
R, = T,/Sy where the random vector T}, and the random variable S, both
are lattice. We continue to use the same notations introduced in Section
3.2.

Before we state and prove the results of this section we give below a few

definitions and results for lattice random vectors.

Definition 3.3.1. Consider R* as a group under vector addition. A sub-
group L is discrete if every ball in R* has only a finite number of points of

L in it.

Definition 3.3.2. A discrete subgroup L is called a lattice if there exists
k linearly independent vectors {£;,..., &} such that
L=[& E=mé& + -+ + mp&y; myinteger,Vi=1,...,k].

Definition 3.3.3. A random vector X in RF is a lattice random vector if

there exists zo € R* and a lattice such that Pr(Xe€zo+L)=1.

Definition 3.3.4. A random vector X in R is degenerate if there exists
a hyperplane H = {z:< a,z >= ¢}, where a # 0 and ¢ is a constant such

that Pr(X € H) = 1, otherwise we say that X is non-degenerate.

Lemma 3.3.5. Let X be a nondegenerate lattice random vector. Then there

ezists a unique lattice Ly such that the following two properties hold:
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(1) Pr(X € £+ Lo) = 1 for all = such that Pr(X =z) > 0.
(¥i) If M is any closed subgrouph such that Pr(X € yo + M) = 1 for some
yo € R, then Ly C M.

Proof: See Bhattacharya and Ranga Rao (1976), pp. 226-227.

The lattice Ly is called the minimal lattice for X. In what follows we
shall consider only the minimal lattice. Let ¢(t) = Ee<%*>, t € R* be the
characteristic function of X. A vector ¢y € R* is said to be a period of ||

if [¢(t + to)| = |4(t)] for all ¢t € RE.

Lemma 3.3.6. Let X be a lattice random vector with characteristic func-
tion ¢. The set L, of periods of || is a lattice if and only if X is nonde-
genrate. Further, let Ly = {t : <t,£ >€2r mV £ € L, m integer}. Let
{n1,...,nx} be a dual basis, that s, < &;,n3 >=04j# ;7 and 1 if 5 =3'.

Then Ly = {27t & = myn; + - - - + mgng, m; integer}.

Proof. See Bhattacharya and Ranga Rao (1976), pp. 227-228.

This completes the preliminaries. We now proceed with Theorem 3.3.7
which gives an asymptotic expression for the density of the ratio statistic
R, =T,/S, where {T,,,n > 1} is a sequence of lattice random vectors and

{Sn,n > 1} is a sequence of lattice valued random variables.

Theorem 3.3.7. Let L, be the lattice {& : £ = h,(mie1+...+myer), m: integer},
where {hp,n > 1} is a sequence of real numbers and {e1,---,ex} is an or-

thonormal basis of R*. Let {T,.,n > 1} be a sequence of nondegenrate
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lattice random vectors defined on L, with distribution functions Fy,. Let

{Sn,n > 1} be a sequence of lattice random variables taking values in the set

S' = {al, +khl, : al, k], are such that a}, +kh] > 0}. Let S, be independent

of the components of the vector T, for alln > 1. Let rp = (T1n, -~y 7kn) be

a sequence of vectors in R* such that |rjn| <7 for j=1,---,k and n > 1

and r > 0.
Assume that the following conditions are satisfied.

(H1) There ezist §; < oo and B, < 0o such that

[h1n(2)] < By forz € QF
ard
I¢2n(2)l < ﬂz fOTZ € Qz

forn > 1.
(H2) Given 6 > O, there ezists 0 < n < 1 such that

.\ 11/an
limsup sup w <.
no o s<l<r/Ibn] | P1n(Tn)
(HS) There ezist p, | > 0 such that
7/ lha] it) [/
sup / Mz_t). = O(ai).
regk J=n/lhal | H10(7n)

Let P,(r,) = P(T, =7, S,). Then

lhn]k 1/2
[(27f)" af, [V3($1n(7a) + bon{— < rn, 7 >))!]

Po(rn)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

X €XP(@n[¥1n(7n) + Y2n(— < 7ay 7 >)])[1 + O(1/a,)].
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Proof: Consider,

P(Tn = Tnsn) = Z P(Tn = ry) P(Sn = y). (3_78)
yeS!, ry €L,
We use the conjugate distribution technique to obtain the probability P(T, =

ry) and it is given by

[ / 1) gm<ruiri
P Y = — n <ry,7+it> .
(T, =ry) 2r) Jan 1n(T +1t) € dt (3.79)
where E™ = {(t1,--+,tx) : [t;]| < 7/|h,|}. In view of (3.82), (3.81) becomes
|n]*

P(T, =rS,) [ / b1a(7 + it) e <VTHE Gt P(S, =y
yeS", ry €Ln (2m)* Jg- )

= [ lhnlk 1 / ¢1n(7 + it) Z e— <TY.THit> P(Sn _ y)
| (2m)k] JEn s e r,
o | |
= (27{')k ‘/;n ¢1n(7' + Zt) ¢2n(— <ry, 7+t >) dt
e (3.80)
by - .
= (|27r[)k ’/;n exp(an[lbm('r -+ Zt) -+ ¢2n(_ <ry,T + 1t >)] dt.

The saddle point allows us to replace 7 by 7, when r is replaced by r,.

Thus, we have,

i k
P(Tn = T'nSn) = (I;z;])k} -/;n exp(an[lﬁm(:’n -+ Zt) -+ 'zﬁzn(— < TnlY,Tn + 7t >)] dt
(3.81)
_ [ Ihnlk / I
ek 2m)hrz (g, )12 ] e eXP(an[Y1n(7n) + Y2u(= <10y >)]) Ln
where

aﬁ/z Idn]1/2 . ‘
In = —7—271_,: 2 ] ,Ln exp(an[¢1n(7n -+ Zt) —_ ¢ln(7n) + 11)2“(_ < TrsTn + 7t >)
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—Yan(— < TnyTn >)]) dt. (3.82)

Using the techniques similar to the techniques in Theorem 3.3.7, we can
easily show that I, =1+ O(1/a,). Thus

[n*
o2 (2m)%/2 |d,, [1/2

P(T, =r,5,) =
(3.83)

X eXP(an[¢1n(Tn) + 1!’27:(_ < TnyTn >)]) [1 + O(l/aﬂ)]'

The following Theorem 3.3.8 is a particular case of Theorem 3.3.7 proved
above. Here T, is the sum of » i.i.d. lattice valued random vectors defined
on the lattice L,, and S, is the sum of n i.i.d. lattice valued random variables
Y,. This theorem gives an asymptotic expression for the density of the ratio

of two statistics.

Theorem 3.3.8. Let L, be the lattice {£ : € = hp(mie;+. .. +mex), m; integer},
where {h,,n > 1} is a sequence of real numbers and {e1,-+-,e;} ts an or-
thonormal basts of R*. Let {X,,n > 1} be a sequence of i.i.d. lattice
valu ed random vectors defined on lattice L. Let {Yn,n > 1} be an i.1.d.
sequence of lattice random variables taking values in the set S' = {a! +kh!, :
a;, hl, are such that a], + kh], > 0}. Let Y, be independent of the compo-
nents of the random vectors X, for alln > 1. Let r, = (715, ,7kn) be @

sequence of vectors in R¥ such that |r;,| <71 forj=1,---,kandn > 1 and

r > 0. For this sequence {r,}, let there exist 7,5 in JF such that
¢1(Tn) - 7’"1/15(— < TpyTn >) =0and <71,,7, >E€ Js.
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Let v, = VE(¢y(1) + tbo(— < 1,7 >)) for 7 € JF and < r,7 >€ J,. Let the
ergen values of v, be bounded below by o; > 0. Assume that the following
conditions are satisfied.

(H11) There ezist B < oo and B, < oo such that
l'l,bl(Z)l < ,31 fOTZ € Qlf (384)
and

|42(2)| < B2 forz € Q.. (3.85)

n

(H13) There exists By such that
Y2
Hulr +it) < Bs. (3.86)

/W/Ihl

sup

regk J=x/lbl | é1(7)
LetTo=Xi+---+ X, and S, = Y1+---+Y,. Let P(T, = r,5n) = Po(ry).
Then,

L Al "
R = |G < T

x exp(a[1(7) + Po(— < r,7 S))[1+ O(1/n)]. (3.87)
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Chapter 4

Strong large deviation results

for ratio statistics

4.1 Introduction

Let {Th,n» > 1} be a sequence of random variables such that T},/a, — 0
for some sequence of real numbers a, — 0. In most examples the prob-
ability of the event {T,, > z,} goes to zero exponentially fast whenever
z, = O(aen) and z, is positive. The event {T,, > z,} for z, positive is
known in the literature as a large deviation event. Numerous authors in-
cluding Crarher (1938), Chernoff (1952), Ellis (1984), Varadhan (1984) have
obtained asymptotic expressions for log P(7T, > z,) under some conditions
on the moment generating function of 7,. Bahadhur and Ranga Rao (1960)
obtained asymptotic expression for P(T, > z,) when T, is the sum of n

i.id. random variables and z, = O(n). Chaganty- Sethuraman coined the
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term Weak large deviation results for the results of the former type and
Strong large deviation results for the results of the latter type. In a recent
paper, Chaganty-Sethuraman extended the results of Bahadhur and Ranga
Rao (1960) to an arbitrary sequence of random variables T}, not neces-
sarily sums of i.i.d. random variables. We state these results precisely in
Theorems 4.2.2 and 4.3.2.

The purpose of this chapter is to obtain strong large deviation result
for the ratio statistic R, = T,,/S,, where T,, and S,, are arbitrary sequences
of random variables. In Theorem 4.2.3, we show that Conditions (Q1) and
(Q2) on the m.g.f.’s of T, and S,, imply Conditions (P1) and (P2) of theorem
4.2.2 for the random variable T, . Thus Conditions (P1) and (P2) of Theo-
rem 4.2.2 are satisfiesd for arbitrary random variables T}, = T,,—r,S, giving
an asymptotic expression for P(T,,/S, > r,) i.e. for P(T, — 7,5, > 0). The
case of arbitrary lattice random variables T,, and S, is treated in Theorem

4.3.3.

4.2 Non-lattice case

This section contains strong large deviation limit theorems for non-lattice
random variables.
Strong large deviation theorem for an arbitrary sequence of non- lattice

random variables is stated below in Theorem 4.2.2.

Theorem 4.2.1 Let {W,,n > 1} be a sequence of nonlattice valued random

variables with m.g.f.¢,(2). Let ¢.(2) be analytic and nonvanishing in
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Q={zeC :|z| <c}, where ¢ > 0. Let

() = —4a(2) (4.1)
forz€ Q, n>1. Also, let
Yo (u) = sup [us — P,(s)], forreal u . (4.2)

[s]<a
Let {m,,n > 1} be a sequence of real numbers such that there ezxists a

sequence T, satisfying i} (7,) = m, and d < 7, < ¢ < ¢; for some positive
numbers ¢ and d and for all n > 1. Assume the following conditions for

Tn.

(P1) There ezists B < oo such that |,(2)| < B foralln>1, z € Q.
(P2) There ezists 6 > O such that

(T +28)| 0(-1_
Bn(7n) B Vn

sup
[t]26

) (4.3)

for all0 < 6 < é;.
(P8) There ezists o > 0 such that P!"(r,) > « for all n > 1.

Then
%% -
P(22 2 m,) ~ SR lin)) (4.4
Gn V217 /an{(T,)

The following Theorem 4.2.3 generalizes Theorem 4.2.2 stated above to

ratio statistic.

Theorem 4.2.2 Let {T,,n > 1} be an arbitrary sequence of nonlattice
random variables with m.g.f. ¢$1n(2) = Elexp(2T,)] and {S,,n > 1} be an-

other sequence of nonlattice positive random variables with m.g.f. ¢2,(2) =
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Elexp(2T,)]. Assume that the two sequences are independent of each other.
Let ¢1, and ¢, be nonvanishing and analytic in the region @ = {z € C :
|z| < ¢}, where ¢ > 0 and C is the set of all complez numbers. Let {a,} be

a sequence of real numbers such that a, — co. Let
1 .
Yin(2) = - log ¢:n(2), forz € 0,1 =1,2. (4.5)
n

Let {r,} be a positive bounded sequence of real numbers such that there

exists T, satisfuing 0 <d < 7. < ¢ and

¢;.n(7n) - Tn¢;n(‘rn7n) =0. (4.6)
Assume the following conditions for T,, and Sy,:

(Q1) There ezist 3; < co such that |;(2)| < B; for z€ Q, for i =1,2.

(Q2) There ezists &, > 0 such that

¢1n (Tn + Zt)
¢1n (Tn)

sup

sup = o(1/ayn) (4.7)

forany 0 < 6 < 6.

(Q3) Let oy be a positive real number such that ¢, (1) > o4.

Then
/ _
P (_zln_ Z Tn> ~ exp(an[UIn(Tn) + ¢2n( 7'n.'rr/.)]) . (4.8)
Sn V2T @[ (1) + T2 (~7aTn)]
Proof: Consider
P(%y,,) — P (Ta—r.S,>0)
P (% >0) (4.9)
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where T} = T, — r,S,,. Using the independence of T}, and S, we get the
follwing relationship between the m.g.f.’s of T}, S, and T;

¢0n(7') = ¢1n(7') ¢2n("'77) fOT T E€ Jp (4-10)
which implies that
¢0n(z) = 'ﬁbln(z) + 11’271(_7'3) (4.11)

where ¢y, is the m.gf. of Ty}, on(2) = - log gon(2). Let v;(u) = SUP) <, [us—
Yon(s)]. From Condition (Q1) and (4.11), it follows that

[on(2)| < B1 + Bs- (4.12)

Thus, there exists o = f; + B2 < oo such that |¢o,(2)] < Bo. Hence
Condition (P1) of Theorem 4.2.2 is satisfied.
We have forany 0 < § < §;

¢0n (Tn. + 2t) l

¢1n(7n T 2t) ¢2n(7n + Zt)
Bon(72) s

s | P1n(7n) b2n(7n)

sup
it[>6

G1n(Tn + 1t)
= Ist}lz% Bon(7n) )
From Condition (Q2) it follows that
$on (7 + 3t)
$on(Tn)
Hence Condition (P2} of Theorem 4.2.2 is also satisfied. In view of ¥ (1) >

sup
1123

=o(1/a,). (4.13)

a; and (4.11) Condition (P3) is easily satisfied. Thus an arbitrary sequence
{T;,n > 1} satisfies all the conditions of Theorem 4.2.2 and hence the

conclusion of the Theorem 4.2.2 yields
P <£ > 0) -~ exp(—a.7,(0))

a., YV 27”-”'\/;%"(7—”) .
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which in turn gives Strong large deviation result for T, /S,, namely,

T. eXP(@n[VP1n(Tn) + Y2n(—7nTn)])
P(=Z>r) ~ . (435
(Sn - > \/2—”Tn\/an[¢'1'n(rn) + Tyzz'ngn('_rﬂfﬂ)] ( )

4.3 The Lattice case

In this section we state strong large deviation theorem for lattice valued
random variables. These theorems are analogous to the theorems for lattice
valued random variables of the previous section.

The next theorem provides an estimate of P (T, /a, > m,) where
{T,,n > 1} is a sequence of lattice valued random variables and m,, is in
the large deviation of T,,/a,. We first introduce few notations.

Let {T,,,n > 1} be an arbitrary sequence of lattice valued random variables
taking values in the lattice {¢, + kp, : K = 0,%1,£2,---}, p, > 0. Let the
c.f. of T,, ¢.(2), be analytic and nonvanishing in the region

Q={zeC: |z| <ec1}. Let {a,} be a sequence of real numbers such that
an — 00 and p, = o(1/@s). Let

¥n(2) = ai log #(2), (4.16)

be a well defined analytic function on §2. Let {m,} be a sequence of real
numbers such that there exists 0 < 7, < b; < ¢ satisfying ¥.(r,) = m,

and 7, /a, — 00 as n — co. We now state Theorem 4.3.2.

Theorem 4.3.1 Assume that T, satisfies Conditions (P1) and (P3) of
Theorem £.2.2 and the following Condition (P2’):
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(P2’) There ezists 6; > 0, such that for 0 < § < &y,

5SI;SII<1£/h,, ba(m) | (4.17)
Then
In ~ Pr exp(—anYn(my))
.P (an Z mn) \/2_71_ an ;:(Tn) (1 —_ exp(_pnTn)) (4.18)

where v,(my,) = M7, — Pu(rn)-

Next, we prersent Theorem 4.3.3 which provides an estimate of the
large deviation probability for the ratio 7,/S,, where {T,,n > 1} and

{8, > 0,n > 1} denote the arbitrary sequences of random variables. First

we begin with few preliminaries.

Let {T,.,n > 1} be a sequence of lattice random variables with distri-
bution functions Fi,. Let T, take values in the set
8; = {an + khy : @, and h, are real numbers and k is an integer}. Let
{S, > 0,n > 1} be a sequence of positive lattice random variables taking
values in the set S; = {a], + kh, : a}, and k), are such that o, + kk! > 0}.
Let the m.g.f.’s of T, and S, ¢1, and ¢2,, be analytic and non-vanishing
in 2 = {z € C 2| < b}. Let r, be a positive bounded sequence of real

numbers such that there exist 7, suchthat 0 < 7, < b; < b and
;.n(Tn) —Tn tp;n(_rnTn) =0. (4.19)
for all n > 1.

Theorem 4.3.2 Assume that these two sequences meet the following con-

ditions: (R1) There exist f1 < co and B2 < co such that

[Yin(2)] < Bj for zwith |z2| < b for j=1,2 and n > 1. (4.20)
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(R2) There ezists 6; > O such that

¢1n (Tn + it)

o) = o(1/a,) (4.21)

for any 0 < 6 < é;.

(R3) Let ay be positive real numbers such that

1n(7) > a1 (4.22)
Then
TS pe—
Sn 27\ @n [ (1) + 720 (— )]

exp(an[¥1n(7s) + Y2n(—7n7n)]) )

% (1 = exp(—kn7y))

(4.23)

Proof. The proof of this theorerm is similar to the proof of theorem and

hence we omit it.
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