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ABSTRACT

STABILITY ANALYSIS OF HYBRID JUMP LINEAR  
SYSTEMS WITH MARKOV INPUTS

Arturo Tejada Ruiz 

Old Dominion University, 2006 

Director: Dr. Oscar R. Gonzalez

In the past two decades, the number of applications that make use of supervisory 

algorithms to control complex continuous-time or discrete-time systems has increased 

steadily. Typical examples include air traffic management, digital control systems 

over networks, and flexible manufacturing systems. A common feature of these ap

plications is the intermixing of the continuous dynamics of the controlled plant w ith 

the logical and discrete dynamics of the supervising algorithms. These so-called hy

brid systems are the focus of much ongoing research. To improve the performance 

of these systems, it  is important to analyze the interactions between the supervising 

algorithms and the plant. Few papers have studied this interaction when the plant 

is represented by a discrete-time system. Thus, this dissertation fixes this deficiency 

by addressesing the following three main objectives: to introduce a new modeling 

framework for discrete-time stochastic hybrid systems suitable for stability analysis; 

to derive testable stability conditions for these models; and to demonstrate that these 

models are suitable to study real-world applications. To achieve the first objective, the 

Hybrid Jump Linear System model is introduced. Although it  has many of the same 

modeling capabilities as other formalisms in the literature (e.g., Discrete Stochastic 

Hybrid Automata), it  possesses the unique advantage of representing the dynamics of 

both the controlled plant and the supervising algorithm in the same analytical frame

work: stochastic difference equations. This enables the study of their jo in t properties 

such as, for example, mean square stability. The second objective is addressed by 

developing a collection of testable sufficient mean square stability conditions. These 
tests are developed by applying, successively, switched systems’ techniques, singular 

value analysis, a second moment lifting technique, and Markov kernel methods. The 

final objective is achieved by developing a hybrid jump linear system model of an 

AFTI-F16 flight controller deployed on a fault tolerant computer w ith rollback and 

cold-restart capabilities, and analyzing its stability properties.
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1

CHAPTER I 

INTRODUCTION

A general modeling framework for embedded control systems is a hybrid system 

representation which allows the inclusion of analog and digital subsystems together 

w ith a model for the interfaces between them and the inherent constraints on their 

states and independent variables. These representations have the sufficient fide lity 

that is needed in the analysis and design of safety critical systems such as reliable, 

fault-tolerant control systems that can affect human lives. A particular advantage 

of hybrid systems is that they can directly represent hierarchical control systems, 

including the dynamics of a decision making supervisor present in most embedded 

control systems (cf. DeCarlo, Branicky, Petterson & Lennartson (2000), Henzinger 

(1996), Koutsoukos, Antsaklis, Stiver & Lemmon (2000)). In the presence of noise, 

disturbances or uncertainties, such hierarchical embedded control systems can be rep

resented as in Figure 1, where the low-level closed-loop dynamics are represented by 

a Jump Linear System (JLS) that is switched by {0(h), k >  0} and {N i ( k ) , k  >  0}, 

namely the decisions of the supervisor, d(k), and the value of a stochastic process, 

Ni(k),  which represents, for instance, the state of a fault or internal event detector. 

The switching is used to model, for example, the change in closed-loop dynamics 

for different operating regions or the change in closed-loop dynamics between nor

mal and recovery operation during an upset or critical failure. This model is useful 

for studying the effects of the high-level supervisor on the low-level control loop 

dynamics where the supervisor takes decisions based on the states of the JLS and
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mx(k)

Nt(k)

Stochastic
Processes

Decision Making 
Supervisor

Jump Linear System

FIG. 1: Block diagram of a simplified hierarchical embedded control system w ith a 
jump linear system.

stochastic process {Nh(k) ,k  >  0}. The state dependency allows the supervisor to 

command a control law change or to select among a set of fault-tolerant recovery 

techniques. In addition, the supervisor can monitor and make decisions based on the 

performance of the low-level control system. The stochastic process {Nh(k),  k >  0} 

typically models the status of environmental sensors that indicate the presence of 

harsh environmental exogenous conditions. In addition to the interpretation given 

above, {N i (k ) , k  >  0} can also be used to represent noisy sensor inputs or com

mands, component failure detection, etc. Likewise {Nh(k) ,k  >  0} can be used to 

represent high-level fault processes (e.g. machine breakdowns), random variation of 

requirements (e.g. increase/deacrease of production goals), etc. Clearly, the inclusion 

of these stochastic processes enhances the fidelity of hybrid system models by taking 

into account stochastic uncertainty.

For qualitative and quantitative analysis, a particular type of jump linear system 

and decision making supervisor w ill be considered as shown in Figure 2. These models, 

called Hybrid Jump Linear System (HJLS), are composed of a Finite State Machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Supervisor

N(k)

m
A/S

Finite State 
Machine

Jump Linear Closed-Loop System

FIG. 2: A hybrid jump linear system.

(FSM), a state feedback analog-to-symbol (A/S)  map, and a jump linear closed-loop 

system. The discrete-time stochastic process { 0(k), k > 0} that drives the jump 

linear closed-loop system is generated by the finite state machine, which represents 

the decision making process of the high-level supervisor. The supervisor itself is 

driven by a (feedback) function of the JLS’s n-dimensional state vector, u(k), and 

by a stochastic process {N (k ) ,  k >  0}. This particular configuration was devised for 

practical and theoretical reasons. On the one hand, hybrid jump linear systems can be 

used to extend the research, initiated by Zhang, Gray & Gonzalez, on the analysis of 

the effects of harsh neutron environments on closed-loop system performance, which is 

of interest in aviation safety (see Zhang, Gray & Gonzalez 2005). On the other hand, 

these systems are of theoretical interest. They are related to several main stream 

hybrid models in the literature, such as Discrete Hybrid Stochastic Automata (DHSA) 

and Piecewise Deterministic Markov Processes (PDP) (Davis 1993, Bemporad & Di 

Cairano 2005), whose stability characteristics have not been investigated w ith the 

tools to be introduced in this dissertation.
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The rest of the chapter is organized as follows. Section 1.1 provides the motiva

tion and background that led to the development of the hybrid jump linear system 

formalism. It  also summarizes, briefly, the literature related to this class of systems. 

Section 1.2 gives a precise formulation of the goal and objectives that this disserta

tion addresses. Section 1.3 provides an overview of the dissertation, including the 

methodology used to pursue the objectives described in Section 1.2. Finally, Section

1.4 summarizes the notation used throughout the dissertation.

1.1 BACKGROUND, MOTIVATION, AND RELATED LITERATURE

Motivation for the Hybrid Jump Linear System Formalism

During the past ten years, the Systems Research Laboratory at Old Dominion 

University (h ttp ://w w w .s rl.o d u .e d u /) has conducted research on the system-level 

effects of harsh electromagnetic environments on digital flight controllers. Commer

cial aircraft are exposed to these environments when, for instance, they fly  through 

thunderstorms or approach radar ground stations (Hess 1997). Although these con

ditions do not usually pose a significant safety hazard for older aircraft, it  has been 

documented that newer fly-by-wire models can be severely affected (Malekpour & 

Torres 2000, Hess & Belcastro 2001, Belcastro 1997). The computer platforms on

board newer aircraft include an array of fault-tolerant provisions. O f particular in

terest were those computers designed and bu ilt to be resilient not only to localized 

faults but also to pervasive faults. Pervasive faults, better known as common-mode 

faults, cannot be tolerated w ith standard hardware redundancy provisions. They are 

handled w ith information redundancy techniques, such as rollback recovery, which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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N(k)
Finite State m Jump Linear 

System 

* (*+ !)  =

®(fc)

Machine

FIG. 3: An advanced model of a closed-loop system deployed on a fault-tolerant 
computer.

require one to flush and replace the (corrupted) data stored in the memory of the 

affected computer (see (Tejada 2002) for a detailed account of these ideas). During 

the recovery procedure the faulty computer is rendered inoperative, which suspends, 

for a brief period, the control law computations. The net effect is that the a ircraft’s 

dynamics are changed, abruptly, from a closed-loop configuration to an open-loop 

configuration (and vice-versa). As was argued in (Gray, Gonzalez & Dogan 2000), a 

good model for this behavior is given by

x(k  +  1) =  AN(k)x(k),

where { N ( k ) , k  >  0} is a two-state stochastic process (usually a Markov chain) which 

represents the presence (N ( k ) =  1) or absence (N ( k ) =  0) of computer faults, and 

Aiv(fc) € Mnxn are the respective closed-loop state matrices. Thus, at every time k >  0, 

N ( k ) determines the operating mode of the system by selecting an appropriate state 

m atrix. As discussed in (Tejada 2002), the structure of the matrices can be devised 

to represent the closed-loop dynamics of the aircraft (Ao), and the dynamics of the 

recovery process (A i).

The model discussed above lacks the ability to easily control the duration of the 

recovery procedure. This problem was solved in (Patilkulkarni, Herencia-Zapana, 

Gray & Gonzalez 2004) by introducing a fin ite state machine (or a stochastic fin ite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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state automaton (Zhang et al. 2005)), which reacted to the fault process, {N (k ) ,  k > 

0}, by generating a new, precisely timed mode-switching signal {0(h), k >  0}. This 

extended model, depicted in Figure 3, was very successful not only because its stability 

and performance could be studied w ith well established tools in the literature (cf. 

Costa, Fragoso & Marques 2005), but also because it  properly captured the essence 

of the fault-recovery phenomena under study (Zhang et al. 2005).

It  is possible, however, to find situations for which this extended model is not 

entirely suitable. For example, an advanced recovery logic could be implemented to 

decide, based on the conditions of the closed-loop system and on the conditions of 

the computer platform, which recovery procedure is to be executed. Since different 

procedures require different amounts of resources (computational power, recovery 

time, electrical power, etc.), the recovery logic could choose to execute a simpler 

and less resource-consuming recovery procedure when the closed-loop system exhibits 

“good performance” , or even to not execute a recovery operation. On the other hand, 

when the performance is especially poor, the recovery logic could execute a more 

extensive and resource-consuming recovery procedure.

Another example where the extended model falls short is where a gain scheduling 

controller is deployed on a fault-tolerant computer. Essentially, a gain scheduling 

controller is composed of two elements: an array of standard closed-loop controllers, 

and a selection mechanism. This mechanism activates one closed-loop controller at 

a time based on, for example, the location of the closed-loop system’s state vector, 

x(k), in the phase space. Thus, when a gain scheduling controller is deployed on a 

fault-tolerant computer, the dynamics of the closed-loop system axe changed based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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on both the value of x{k)  and on the presence of computer faults.

In these two examples, the computer executing the control law is also running an 

algorithm which generates the mode changes based on closed-loop system information. 

Clearly, this behavior could not be captured w ith the model in Figure 3. For this it  is 

necessary to include a state feedback loop. This gave rise to the hybrid jump linear 

system model in Figure 2. I t  also marked a departure from previous work because in 

general the process {0(k), k >  0} driving the jump linear system is not a Markov chain 

and its statistics (e.g., distribution functions) depend on the state process {x(k), k >  

0}. Consequently, the tools available for Markov Jump Linear Systems (MJLS’s) that 

were used in (Tejada 2002, Zhang et al. 2005) to analyze the stability and performance 

of the extended model in Figure 3, could not be applied to study HJLS’s. Hence, a new 

framework for stability and performance analysis was needed. This dissertation aims 

to provide such a framework and to derive testable mean square stability conditions for 

HJLS’s. Due to the similarities between HJLS’s and MJLS’s, several of the stability 

concepts and conditions derived for hybrid jump linear systems were adapted from 

the literature on MJLS’s. In particular, the emphasis in this dissertation lies on 

mean square stability, which is necessary to design optimal linear quadratic regulators 

(Costa et al. 2005). A complete mean square stability analysis is also necessary to 

extend the performance analysis in (Zhang et al. 2005) to hybrid jump linear systems. 

The stability analysis presented here is important not only for the benefit of the fault- 

tolerant community but also for the hybrid system community at large, due to the 

aforementioned connection between this model and other established hybrid models 

in  the literature. This connection is explored next.
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Related Hybrid System Models

In  Figure 2, the fin ite state machine represents the supervisor’s decision making 

algorithm. In general, an algorithm can be more complex than a set of conditional 

(IF-THEN-ELSE) statements. I t  could also include, for example, decisions based on 

time, order, repetition, or security considerations. Moreover, the algorithm could also 

react to both synchronous and asynchronous “events” . Clearly, a fin ite state machine 

is insufficient to represent a general decision making algorithm. I f  necessary, the 

supervisor could be represented by a more complex automaton (Antsaklis, Koutsoukos 

& Zaytoon 1998), leading to a more abstract supervisory system setup such as the 

one in Figure 1.

Supervisory systems have been studied in the context of hybrid systems by several 

investigators. For instance, (Koutsoukos et al. 2000) presented a detailed analysis of 

a supervisory control system based on a hybrid system model. I t  was shown that 

the closed-loop system and its interfaces (e.g., the A jS  map) can be modeled w ith  a 

Discrete Event System (DES). By also modeling the supervisor w ith a discrete event 

system, the authors reduced the supervisory control problem to that of designing a 

DES controller. DES are easily analyzed to determine properties such as safety or 

liveliness, but are not as suitable to analyze, for example, stability. As a consequence, 

several other formalisms and techniques have been developed to investigate different 

aspects of hybrid systems. An excellent survey of these models and techniques can 

be found in (Antsaklis et al. 1998). As pointed out there, hybrid models range from 

those tailored to study properties such as stability, robustness, and optimal control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(Ye &; Michel 1998, Davis 1993) to those specifically suited to address the prop

erties of real-time embedded systems (Henzinger 1996). There axe other models of 

interest located in between these extremes. O f particular interest are Piecewise Affine 

(PWA) systems (Sontag 1981), Mixed Logical Dynamical (MLD) systems (Bemporad 

&  Morari 1999), and Discrete Hybrid Automata (DHA) (Torrisi & Bemporad 2004), 

which are known to be equivalent and suitable for modeling, simulation, and verifi

cation of a broad range of hybrid applications (Torrisi & Bemporad 2004, Heemels, 

Schutter & Bemporad 2001).

Deterministic hybrid jump linear systems, that is, HJLS’s where { N ( k ) , k  >  0} 

has been replaced by deterministic discrete-time signals, are the autonomous version 

(ur(k) =  0) of DHA. However, unlike DHA’s, the stability of deterministic HJLS’s can 

be directly studied w ith the tools to be be presented in this dissertation (DHA’s need 

to be translated first into the PWA formalism). As stochastic models, HJLS’s are the 

autonomous version of Discrete Hybrid Stochastic Automata (DHSA), the stochastic 

extension of DHA (Bemporad & Di Cairano 2005). The stability analysis of these 

models, which have been recently introduced, is s till an open problem. Moreover, as 

explained in (Bemporad & Di Cairano 2005), DHSA are known to be the discrete

time version of piecewise deterministic Markov processes (PDP). The latter have 

been extensively studied due to their ab ility to model a broad range of phenomena. 

The stability of PDP’s, however, has not yet been studied w ith the second moment 

techniques presented here. Thus, the tools and results presented in this dissertation 

constitute both a significant contribution to the study of DHSA and provide a seed 

for a new viewpoint in the stability analysis of PDP’s.
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1.2 D IS S E R TA TIO N  G O A L A N D  O B JE C TIV E S

The goal of this dissertation follows.

D isse rta tion  G oal: To introduce a new model class for discrete-time stochas

tic  hybrid systems that combine continuous and symbolic dynamics. The model 

class should be amenable for stability analysis and useful to study advanced 

fault-tolerant recovery procedures.

To attain this goal, the following objectives w ill be addressed.

1. To introduce the general hybrid jump linear system model class shown in 

Figure 2 and three different subclasses: canonical HJLS’s, HJLS’s w ith perfor

mance supervision, and HJLS’s w ith performance map.

2. To develop a mean square stability analysis framework for hybrid jump linear 

systems.

3. To develop testable mean square stability conditions using four different ap

proaches: switch systems techniques, singular value analysis, a second moment 

lifting  technique, and a Markov kernel technique.

4. To develop a HJLS model and analyze the mean square stability of an AFTI- 

F16 flight controller deployed on a fault-tolerant computer platform equipped 

w ith an advance fault recovery mechanism.

1.3 D IS S E R TA TIO N  O V E R V IE W

The research developed in this document is based on the methods and tools of (Ye 

& Michel 1998, Costa et al. 2005, Ji &  Chizeck 1990a), which were adapted to attain 

the dissertation’s objectives. The first three objectives are addressed in Chapters
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II-IV . In Chapter II, the hybrid jump linear system model is presented in detail. 

Four different versions are discussed: general HJSL, canonical HJLS, HJLS w ith 

performance supervision, and HJLS w ith performance map. Each of these variations 

has unique advantages either from a modeling perspective or from a stability analysis 

point of view.

Stability analysis of HJLS’s is done in Chapters I I I  and IV . In Chapter II I, an ap

propriate stability analysis framework is introduced. Then, the mean square stability 

analysis of HJLS’s is explored by applying in succession switched systems techniques, 

singular value analysis, and a second moment lifting  technique. Several testable suffi

cient mean square stability conditions are developed for the various classes of HJLS’s. 

The main result of this chapter is Theorem I I I .5.2, which is used to derive a suffi

cient mean square stability test for HJLS’s w ith performance map. This test is later 

extended to canonical HJLS’s in Chapter IV . The results are arranged in decreasing 

order of conservativeness and increasing order of generality. Each is illustrated w ith 

a simple numerical example.

In Chapter IV , hybrid jump linear systems are analyzed using Markov chain tech

niques. It  is first proven that the state of a HJLS realizes a Markov chain in a metric 

space. Then, the associated Markov kernel is used to derive a closed-form formula 

for the evolution of the distribution of the state vector, fj,yk. This formula is used 

to derive two sets of stability results based on a structural constraint imposed over 

the supervisor and using Theorem II I .5.2. The most important result of this chapter 

is Theorem IV.4.4, which provides a simple testable condition for the mean square 

stability of canonical HJLS’s.
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The fourth objective of this dissertation is addressed in Chapter V. It  presents an 

example of an AFTI-F16 digital controller deployed on a computer platform  equipped 

w ith a novel fault tolerant mechanism. It  is shown that the closed-loop system can 

be modeled w ith a HJLS. A detailed model is then introduced using data taken from 

(Tejada 2002). Finally, mean square stability of the model is analyzed w ith both the 

tools presented in Chapter IV  and Monte Carlo simulations.

In Chapter V I, a summary of the dissertation is presented. A list of conclusions 

and open problems for future research is also included.

1.4 A WORD ON NOTATION

As customary, R and R+ denote, respectively, the set of real numbers and the set 

of non-negative real numbers. Rra denotes the space of n-dimensional column vectors 

w ith real components, while Rnxn denotes the set of n x n-dimensional matrices w ith 

real components. Likewise, Z and Z+ represent, respectively, the set of integers and 

non-negative integers. For any A E Rnxn, a(A), g(A ), Amax(A), Am;n(A), and p(A) 

represent, respectively, A ’s maximum and minimum singular value, its maximum and 

minimum eigenvalue in modulus, and its spectral radius. Throughout the text, Ep 

and I n represent, respectively, an t  x I  m atrix of ones and a n n x t i  identity matrix.

Countable sets are denoted using curly brackets. For instance, { a i , . . . ,  ap}, a, E 

R, represents a fin ite set of t  real numbers. Finite sets that require a specific name 

w ill be denoted by S0 and their cardinality by £0 =  |£0|, where o represents any 

appropriate label. However, fin ite sets of the specific form {0 ,1 ,. . .  ,£ — 1} w ill be 

denoted by Ip. As usual, 2E° (or 2I f ) denotes the power set of E0 (or Ip). I f  £ 0
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represents a set of symbols, then E£° =  {(o0, <>i. . . )  : Oj e E0} represents the set of all 

the infinite sequences formed by elements of E0. Likewise, =  {(/0, h, ■ ■ ■) : h € Te} 

represents the set of all the infinite sequences formed by elements of Te. Discrete

time signals (or functions) are considered countable sets. They w ill be denoted, for 

example, by {0(k), k >  0} or {N(k),  k >  0}. If, for instance, N(k)  6 le for all k >  0, 

then it  follows that {N (k ) ,k  >  0} G 1$°. Similarly, if  6{k) € E0 for all k >  0, then 

{0(k), k >  0} € Uncountable sets are denoted by f l  and $. Their elements are 

denoted, respectively, by u  and <p and their various subsets by {u  : ■ ■ ■ } and {(p : ■ • • } 

(or, if  needed to add clarity, by {a; 6 0  : • • • } and {</> € $ : • • •  }).

This document makes intensive use of several measure theoretic concepts (Borel 

and measurable functions; random variables, vectors, and processes; etc.), which are 

reviewed in Appendix A. I t  is assumed throughout the dissertation that every random 

variable, random vector, or stochastic process is defined over the same underlying 

probability space, (Q, Pr). Random variables, vectors, and elements are denoted 

by lower case bold letters x  or y. The notation, x(cu) or y(uj), w ill be used sparingly 

to emphasize, when needed, the dependence of x  or y  on u> € D. y x and (iv w ill 

be used to denote the probability distributions (also called probability measures) 

of x  and y. Stochastic processes are denoted by {0(k), k >  0}, {N (k ) ,  k >  0} 

(or {0(k,u) ,  k >  0}, {N(k ,w) ,  k >  0}). This implies that, at every time k >  0, 0(k) 

and N ( k ) are random variables w ith distributions fiek and respectively. I t  follows 

from the notation introduced above that {0(k,u>),k >  0} and {N(k,u j) ,k >  0} for a 

fixed u  € D represent, respectively, specific sample paths of the processes {0(k), k >  

0} and {N (k ) ,  >  0}.
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The cross product of two random variables (or vectors), x  and y, is denoted by 

(x ,y ) ,  and its distribution is denoted by fix’y. Note that if  x  and y  are independent, 

then yx'y =  y,xfiy. Similarly, the cross product of two stochastic processes, {0(k), k >  

0} and {N ( k ) , k  >  0}, is denoted by { (6 (k ) ,N (k ) ) ,k  > 0}, where (0(k), N (k ) )  has 

distribution fidk'N. As usual, for any random variable or vector x, a(x) denotes the 

smallest er-algebra w ith respect to which x  is measurable. Finally, E {- }  w ill be used 

to denote the expectation operator.
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CHAPTER II 

THE HYBRID JUMP LINEAR SYSTEM MODEL

II.1 INTRODUCTION

This chapter describes the hybrid jump linear system model and its various sub

classes. The presentation is arranged in two sections. Section II .2 introduces the 

basic concepts of finite state machines, which are used later to represent the deci

sion making supervisors. Next, two types of HJLS’s are introduced: general and 

canonical HJLS’s. General HJLS’s have a structure similar to DSHA (Bemporad 

&  Di Cairano 2005) and axe well suited to model general hybrid systems. Canonical 

HJLS’s are introduced to simplify the derivation of the stability conditions introduced 

in Chapter IV . They axe general HJLS’s in which the Supervisors are represented by 

Moore FSM’s w ith identity output maps. A t the end of Section II.2, it  is argued that 

given a HJLS w ith an embedded Moore FSM, it is possible to construct a canonical 

HJLS w ith equivalent stability properties (the complete proof of this proposition ap

pears in Appendix C). Consequently, the stability of any HJLS w ith an embedded 

Moore FSM can be studied w ith the results presented in Chapter IV . Section I I .3 in

troduces two more subtypes of general HJLS’s: HJLS w ith performance supervision 

and HJLS w ith performance map (the latter is a particular subcase of the former that 

is specially useful in applications).
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II. 2 THE HYBRID JUM P LINEAR SYSTEM MODEL

As described in the Chapter I, hybrid jump linear systems are composed of a 

finite state machine, an analog-to-symbol {A /S) map, and a jump linear closed-loop 

system. The first two components are used to model the behavior of the high level 

supervisor and its interaction w ith the closed-loop system, while the latter describes 

the dynamics of the compensated “plant” . Before introducing a detailed description 

of the supervisor, it  is convenient to summarize the basic concepts related to fin ite 

state machines.

II.2.1 Finite State Machines

The formal definition of a FSM follows.

Definition II.2.1 A fin ite sta te machine is

a six-tuple, M =  (£/v, Es, £o> 5, w, So), where E^r is a finite set of input symbols,

Us is a finite set of states, Eo is a finite set of output symbols, S : Es x Ejv Es is

the state transition map, w  : Eg x E / jn  Eo (Mealy FSM) or w  : E5 1—► Eo (Moore

FSM) is the output map, and s0 € Eo is the in itia l state.

From an input-output perspective, a finite state machine is a device that converts 

(or maps) infinite input sequences of symbols of the form {N (k), k >  0}, N (k) E E/y, 

into infinite output sequences of symbols of the form {0(k), k > 0}, 6{k) E Eo- The 

dynamics of the conversion process are given by the state transition map, 6, and the
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output map, w, as follows

z(k +  1) =  5(z(k), N (k)), z(0) =  s0 (1)

0{k) =  za(z(k), N (k)) (or 9{k) =  w(z(k))),

where z(k) E Eg is the FSM state at time k and {z(k), k >  0} represents the internal 

state sequence of the FSM. Clearly, a FSM is a dynamical system evolving according 

to (1). The FSM’s dynamics can be expressed in a form more suitable for analysis. 

To this end, w ithout loss of generality, consider Eg =  { s i, . . . ,  s*s} to be the set of 

states of a FSM and define the set of elementary vectors in M£s, Eg =  {e i, . . . ,  e*s},

where is  — |Eg| and e* =  [o ••• o i o o]T w ith a 1 in the z-th entry. Next, define

the collection of transition matrices S =  {Sv : r) E where each m atrix Sv

is defined as follows: if  [5 ,]j, j  E {1 ,. . . ,  is } ,  denotes the j- th  column of 5^ then 

[S^lj =  e, whenever S(sj ,r ])  =  Si. Finally, define the map w  : Eg x E^v * Eo (or 

vj : Eg i—> Eo) as follows: ro(ej,r/) =  m(si,rj) (or w(ei) =  m(si)). I t  is now possible 

to define the following dynamical equation

z(k +  1) =  SN{k)z(k), 5(0) =  zq (2)

0(k) =  w(z(k), N (k)) (or 6{k) — m{z{k))),

where z0 =  whenever sq =  ŝ . Clearly, from an input-output perspective, equations 

(1) and (2) describe the dynamics of the same FSM because, for every k >  0, z{k) — e* 

if  and only if  z(k) =  Si and 6{k) =  6{k). This suggests the following alternative 

definition of a FSM.

D e fin itio n  I I . 2.2 (A lternative D efinition) A fin ite sta te machine is a six

tuple, M =  (Eat, Eg, Eo,<S, w, zo), where E# is a finite set of input symbols, Eg =
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{e i, . . . ,  ees} is a finite set of states, So is a finite set of output symbols, S is the set 

of transition matrices, w  : S5 x 1—► So (Mealy FSM) or vj : Ss >—> So (Moore 

FSM) is the output map, and Zq 6 So the in itia l state.

I t  is clear from equation (2) that a FSM behaves as a jump linear system. This 

important fact w ill be used to develop the stability theory for hybrid jump linear 

systems presented in Chapters I I I  and IV . In the rest of this dissertation, all the 

FSM’s w ill be defined using Definition II .2.2. To simplify the notation, the hat ( ' )  

notation w ill be dropped. That is, equation (2) w ill be simply w ritten as

z(k +  1) =  SN(k)z(k), z(0) =  z0

6(k) =  ,uj(z{k), N (k )) (or 0(k) — w(z(k))),

A description of the general HJLS model is provided in the following three subsections.

II.2.2 The Supervisor

As shown in Figure 2, the supervisor is composed of two subsystems: a finite 

state machine and an analog-to-symbol (A /S) map. The FSM, MSp, represents the 

decision making algorithm of the supervisor. Msp has two inputs, the stochastic 

processes { N (k ), k >  0} and {v (k ), k >  0}, and one output, {0(k), k >  0}. Formally, 

MsP =  (IeN x Xev, Es, I eo,S,zv,pQ, where

•  XeN — {0* * * * 5 is the finite input set corresponding to Jc ^

that is, N (k ) for every k >  0. {N (k ), k >  0} is assumed to be a discrete

time, homogeneous Markov chain w ith transition probability m atrix =  \pf3]  

and in itia l distribution .
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• Xiv =  { 0, — 1} is the finite input set corresponding to {v (k ), k >  0}, that

is, v(k) G for every k >  0. {u (k ),k  >  0} is the output of the analog-to-

symbol (A /S) map.

•  S5 =  {e i, e2, . . . ,  ets }, the set of elementary vectors in Rfs, is the fin ite set of 

states, that is, z(k) G S5 for every k > 0. {z(k), k >  0} is the state process of 

MSp.

•  XtQ =  { 0 ,. . . ,  to  — 1} is the finite set of output symbols, that is, 6(k) G 210 for 

every k >  0. {0(k), k > 0} is the output process of Msp.

•  5  4  {Ŝ ,VG I ( N, v G Ie „} is the fin ite set of state transition matrices. 

Therefore, {z (k ),k  >  0} evolves according to

z(k  +  1) =  SN(k)Mk)z(k), z( 0) =  z0. (3)

Note that the in itia l state of MSp, z 0, is assumed to be random, w ith in itia l 

distribution Pq.

•  w  is the output map, which is given by

■w : I iN x l ti/ x E s - *  IeQ (4)

(N (k ), v(k), z (k )) 0(k) =  w (N (k),L '(k ), z(k)).

As shown in Figure 2, the second input, v(k), is the output of the A /S  map,

which is represented w ith a quantization function, ip : Rn —*• Xfu. I t  partitions the

jump linear closed-loop system’s state space, Rn, into t v mutually exclusive Borel-

measurable subsets { f i j j iG l ^ } . 1 That is,

e*-i
x) =  £  |J  ifc =  R", (5)

»=0 i&Tlv

^ a c h  Ri is required to be Borel-measurable to ensure tha t the expression Pr{x(fc) 6 R{} is well 
defined. This will be im portant in Chapter IV.
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FIG. 4: A general HJLS. FIG. 5: A canonical HJLS

where Ri £ 3§(M.n), for every i  £ and l { xefti} (or 1r, (®)) denotes the indicator 

function, which equals 1 if  x £ Ri and 0 otherwise.

II.2.3 The Jump Linear Closed-Loop System

The dynamics of the closed-loop system in Figure 2 are represented by a jump 

linear system w ith state vector x(k) € Kn, whose modes are selected by the FSM’s 

output sequence according to

x{k  +  1) =  Ae{k)x(k), x(0 ) =  *o, (6)

where Ag^) =  At £ Mnxn, whenever 6(k) =  i  £ 1(Q. The closed-loop system’s in itia l 

vector, Xo, is assumed to be an integrable random vector independent of z0 and 

{N (k )  j k ^  0} w ith distribution /̂ q*
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I I . 2.4 Form al D e fin itio n  o f a H JLS

The (internal) state of a hybrid jump linear system is given by [a;T(fc) z T(k)]T, 

which yields the following jump system representation

x(k  +  1)

1 ?r +
 t—‘ •

Ae(k) 0 
0 SN(k),v(k)

x(k)
z{k)_ (7)

This is not a jump linear representation. This is made evident by noting that 

Ae(k) =  -^n7(rv(fc),i/(fc),*(fc)) and SW(fc),t/(fc) =  S(N(k),ii>(x(k))) (see (4) and the A /S  map 

definition). In  the sequel, y (k ) w ill be used to represent the state of a HJLS, that is, 

y(k ) =  [* T(fc) zT(k)]T. This simplifies the HJLS formal definition that follows.

D e fin itio n  I I . 2.3 The system in Figure 4 described by (3)-(6) is called a hyb rid  

ju m p  lin e a r system. Its state evolution is given by

y{k +  l)  - “l  6(k)
0 5,

0
N(k),u(k) y(k), 2/(0) =  y 0 (8)

where y(k) 6 Y =  R" x and the in itia l condition, y 0 — [aig Zq]t , has distribution

Mo =  MSMo-

The HJLS paradigm shown in Figure 4 is well suited to model a large class of 

state-dependent supervisory applications. As mentioned in the introduction, the sta

b ility  of the general HJLS introduced here w ill be analyzed in Chapters I I I  and IV . 

This analysis w ill be significantly simplified for a special subclass of HJLS’s to be 

introduced next.

I I . 2.5 C anonical H y b rid  Jum p L inear Systems

Consider a HJLS w ith a Moore FSM equipped w ith an identity output map as 

shown in Figure 5. For this system, the FSM’s state evolution equation and output
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map are given by

z(k  +  1) =  SN(k),v(k)z(k)

9{k) -  w (z(k)) =  z(k). (9)

Consequently, the closed-loop system’s dynamics are given by

x(k  +  1) =  Az{k)x(k), * ( 0) =  x Q, (10)

where Az =  A{ € Mnxn, whenever z(k) =  e* e E5.

Remark II.2.1 Observe that in a canonical HJLS, the output symbol set is given by 

Es (instead o fle 0). Consequently, the matrices Az(k) in (10) take values from the 

set { A i , .. . ,A is }.

Definition II.2.4 The system in Figure 5 described by (5), (9), and (10) is called a 

canonical hybrid jum p linear system  with state evolution given by

y(k  +  1) =  [^o(fc) y(k), y(0) =  2/0

The focus on canonical HJLS is justified by the fact that for any general HJLS w ith 

an embedded Moore FSM, it  is possible to construct a canonical HJLS w ith equivalent

stability properties. The proof of this claim makes use of concepts developed in

Chapter IV  and can be found in Appendix C. To understand the construction process 

for a canonical HJLS, first consider the following HJLS w ith embedded Moore FSM:

x(k  "h 1) =  A ^ ^ ^ ^ x ljc ) , ®(0) — x 0

z(k  +  1) — 5N(k),ii>(x(k))z{k') 

e„-i

i= 0
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where Aw^k)) — A/, whenever m {z{k)) =  I e 1iQ. Assume the supervisor’s FSM is 

given by MSp =  ( I tN x l (l/, Es, J fo ,«S, w ,Hq). Next, consider the FSM, MSp, given by 

M5p =  (Ti n x 2 ^ , E5 , Es,<S, th,/ig), where w  is an identity output map, i.e., ro(e) =  e 

for all e € E5 . Finally, embedding M in a HJLS structure yields the desired equivalent 

canonical HJLS

x{k  +  1) =  Az(k)x(k), 5(0) =  x 0

z(k  +  1) =  5jv(fc),v>(*(fc))-2:(^) 
iv- 1

^(x) =  |J  Ri =  K". (12)
i=0

where =  A,, whenever m(z(k)) — i E 1eQ.

The jump linear closed-loop system in (12) may have more modes than the original 

system in (11). I t  is easy to see, however, that if  both HJLS’s are initialized w ith the 

same in itia l state, yo, then a;(A;) =  x(k) for all A: > 0. This condition, which is called 

A-equivalency (Patilkulkarni et al. 2004), implies that the stability characteristics of 

the HJLS’s in (11) and (12) are identical. A more complete treatment of this concept 

is given in Appendix C.

II.3 HYBRID JUM P LINEAR SYSTEMS WITH PERFORM ANCE  

SUPERVISION

This section introduces two additional subtypes of HJLS w ith structure imposed 

on the A /S  map and the FSM that are typical in applications (see Chapter III) . The 

stability analysis of these special HJLS’s can be carried out w ith a simpler method

ology than that required to analyze the stability of canonical HJLS. Moreover, by
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vision.

analyzing these simpler systems first, one can obtain useful insight on the behavior 

of general HJLS’s.

II.3.1 Hybrid Jump Linear Systems with Performance Supervision

It  is assumed here that the A /S  map provides a measure of the jump linear closed-

loop system performance to the supervising algorithm. The performance metric of

interest is a quantization of the value of the norm of the closed-loop system’s state

vector, x(k). Specifically, for a finite set of +  1 positive constants satisfying 0 =

ao < &i <  ' • • < &tv- i  < =  °°, the A /S  map is given by

e„-i
v{k) =  (̂||a:(A;)||) = ^  *l{a4<||*(*)||<Qj+1}, (13)

i=0

where l { Qi<||x(A;)||<oi+i} =  1 whenever at <  ||x(A;)|| < ai+l and zero otherwise. Note 

that the A /S  map quantizes the range of ||a:(fc)|| into l v levels, which is expected 

since v(k) € Tiu. Also note that the boundaries between the quantization regions are 

hyperspheres in Rn. Formally, this subtype of HJLS is defined as follows.
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D e fin itio n  I I . 3.1 A hybrid jump linear system as described by (3), (4), (6), and (13) 

is called a H ybrid Jum p Linear System  with Perform ance Supervision. Its

state evolution is given by (8).

II.3.2 Hybrid Jump Linear Systems with Performance Map

In addition to restricting the A /S  map as in (13), this subclass of HJLS’s assumes 

that the supervisor performs its decision process in two steps. In the first step, 

the supervisor uses the information from the external input N (k )  and its current 

state, z(k), to determine the ‘best’ subclass of modes to apply to the closed-loop 

system at the next sample instant. During the second step, the supervisor uses the 

performance information provided by the A /S  map to make the final mode selection 

from the subclass of modes selected in the first step. Thus, the FSM’s state evolution 

equation depends effectively only on N (k ), while its output map depends on both 

N (k ) and v(k). Since the output map performs the final mode selection based on 

performance information, it  w ill be called the performance map. This map has a very 

special structure, which makes it  amenable for stability analysis, as w ill be evident 

in Chapter III. Note that under the considerations described above, the FSM’s state 

evolution equation (3) reduces to

z(k +  1) =  SN(k)z(k). (14)

The FSM’s output, {9(k), k >  0}, is generated by the specific output (performance) 

map given next. I t  is precisely this representation which simplifies the stability anal

ysis. Observe

0(k) =  w (N (k ), t/(k), z(k))
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=  (4v • is )v [k )  +  I , . . . ,  i s -  l]*(fc ) +  N (k )

=  ( In ■ is )v (k ) +  i Nz(k ) +  N (k )

=  ( iN - is )v (k )  +  (p(k), (15)

where cp(k) =  lN z(k) +  N {k )  and z(k) =  [0 ,1 ,... ,Is  — 1 ]z (k)- Thus, if  z(k) =  ej 

then z(k ) =  j  — 1 G l is . Clearly, z(k) is isomorphic to z(k). Also, observe that 

ip(k) =  z(k)), where 'fr : leN x l es —> le N es ■ (e, d) i-» /  =  i N ■ d +  e is a

bijective map. Thus, (p(k) is isomorphic to the random process (N (k ) ,z (k )), which 

is known to be a Markov chain (see Chapter IV  Section IV.3 and (Patilkulkarni 

et al. 2004)). Consequently, <p(k) is also a Markov chain. Notice, however, that 9(k) 

may not be a Markov chain since v(k) may not be memoryless. The formal definition 

of this subclass of HJLS’s follows.

Definition II.3.2 A hybrid jump linear system as described by (6) and (13)-(15) 

is called a H ybrid Jump Linear System  with Perform ance Map. Its state 

evolution is given by (8).

Figures 6 and 7 show block diagrams for these subtypes of HJLS.

II.4 CHAPTER SUMMARY AND CONCLUSIONS

This chapter presented the general hybrid jump linear system model. I t  also 

summarized the basic properties of fin ite state machines, which are used to model the 

HJLS’s supervisor and provided a description of three specific subclasses of HJLS’s: 

HJLS’s w ith performance supervision, HJLS’s w ith performance map, and canonical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

HJLS’s. In addition, this chapter introduced two important concepts to be employed 

in the stability analysis presented in the subsequent chapters:

•  General HJLS can be subdivided into two subclasses: those w ith embedded 

Moore FSM’s and those w ith embedded Mealy FSM’s. A HJLS of the first class 

can always be restated as a canonical HJLS w ith equivalent stability properties. 

The stability of the latter, however, is simpler to analyze. This motivates the 

focus in Chapter IV  on canonical HJLS.

•  A FSM is usually specified by means of a state transition diagram or table, 

which is an alternative representation of its state transition map, S. However, 

it  is clear from the discussion in Subsection II .2.1 that these representations can 

be easily transformed into the formalism of Definition II .2.2. As a consequence, 

one can design a HJLS’s supervisor using state transition diagrams, the usual 

tool for algorithm design. This idea w ill be used in Chapter V.
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CHAPTER III

STABILITY ANALYSIS OF HYBRID JUMP LINEAR

SYSTEMS

III.l INTRODUCTION

This chapter presents a framework and basic stability analysis theory for hybrid 

jump linear systems. It  w ill be shown in Section III.2  that the essential component 

of a HJLS, for stability analysis, is its embedded jump linear closed-loop system. 

This JLS has no external “reference” or “tracking” inputs. The effect of the HJLS’s 

input process, {N (k ) ,k  > 0}, is reflected only through the mode-switching process, 

{0 (k ),k  >  0}. From this perspective, both the jump linear closed-loop system and 

the HJLS are autonomous systems. Thus, only zero input stability is considered in 

this research, and emphasis w ill be placed on deriving testable stability conditions.

Four goals are pursued in this chapter: to establish an appropriate stability anal

ysis framework for HJLS’s, to introduce the relevant stability concepts for these sys

tems, to illustrate different stability analysis techniques that lead to an array of 

testable stability conditions, and to derive a stability condition for a JLS driven by 

general, finite-state stochastic processes. The first two goals are addressed in Section

III.3  where a stability analysis framework based on the concepts developed by Hou 

and Michel (Hou & Michel 2001a) is described. This section also discusses a particu

lar invariant set, 971, for which stability definitions can be w ritten in terms of only the 

equilibrium point, xe =  0, of the embedded jump linear closed-loop system. In  this
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way, several stability concepts developed for jump linear systems can be extended 

to HJLS’s. Moreover, through this framework, the stability of HJLS can be studied 

w ith techniques similar to those used to analyze switched systems and Markov jump 

linear systems.

The th ird  and fourth goals are achieved in Sections III.3 , III.4 , and I I I .5. The work 

is focused on mean square stability (MSS) for three reasons: First, it  is one of the 

two strongest forms of stochastic convergence (the other one is almost sure stability 

(Papoulis 1991)). Second, it  is well-known that for hybrid systems (particularly for 

Markov jump linear systems), MSS implies the existence of solutions for optimal linear 

quadratic regulator design problems (cf. Costa et al. 2005). Finally, as explained in 

Chapter I, MSS is also used in performance analysis of HJLS’s (Zhang et al. 2005). 

Several testable sufficient mean square stability conditions w ill be derived based on 

different techniques. Section III.3  views HJLS’s as switched systems. It  presents 

two new testable conditions, one necessary and one sufficient, for the asymptotic 

stability of linear autonomous switched systems under arbitrary switching. The latter 

condition is also valid for HJLS’s. Section II I .4 studies the stability of HJLS’s using 

singular value techniques. I t  derives several mean square stability conditions based 

on restrictions imposed on the singular values of the state matrices of a embedded 

jump linear system. Section III.5  applies a lifting  technique sim ilar to the one used 

by (Costa & Fragoso 1993) to study Markov jump linear systems. Two new sufficient 

MSS conditions are presented in this context. The first MSS condition applies only 

to HJLS’s w ith performance map. The second one applies to any autonomous jump 

linear system. Its application requires that certain statistics about its switching
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FIG. 8: The organization of the main results in this chapter.

process, {6 (k ),k  >  0}, be estimated. This last result, which is presented in Theorem

II I .5.2, is the main result of this chapter.

It  is important to note that the stability conditions in this chapter have been 

(loosely) arranged in increasing order of generality and decreasing order of conserva

tiveness (see Figure 8). Section I I I .6, at the end of the chapter, illustrates the main 

results through several simple numerical examples and Monte Carlo simulations.

III.2 STABILITY ANALYSIS FRAMEWORK

Intuitively, since the jump linear closed-loop system is autonomous, one would 

expect that a HJLS would remain in equilibrium whenever x{k) =  0, regardless of 

what its supervisor does. Consequently, it  makes sense to look for conditions that 

establish the boundedness and convergence of the continuous subsystems of a hybrid 

jump linear system (its jump linear system). This idea is not new. It  is called 

Lagrange stability by some authors (cf. Hassibi, Boyd & How 1999, Ferrari-Trecate,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

Cuzzola & Morari 2003) and has been used to study the stability of discrete hybrid 

automata (Torrisi & Bemporad 2004).

This section w ill introduce a stability analysis framework that equates the study 

of the stability of a HJLS w ith the stability of the equilibrium point, xe =  0, of 

the embedded jump linear system, regardless of the state of the embedded fin ite state 

machine, z(k). In practice, however, stability is not only a property of the equilibrium 

point of the jum p linear system but also of a subset of the states of the fin ite state 

machine. So it is important to study the stability of a subset of Y — R" x Es that 

includes the equilibrium point of the jump linear system and all or some of the states 

of the fin ite state machine. The framework presented next w ill also make it easier 

to analyze a sampled-data version of the jump linear system in Figure 2, consisting 

of a continuous-time plant interfaced via A /D  and D /A  converters to a discrete

time jump linear controller. The relevant stability definitions w ill be adapted from 

(Hou & Michel 2001a), generalizing some of the standard jump linear system stability 

definitions to the hybrid jump linear system case.

For stability analysis, the sample solutions (or motions) of interest correspond to 

the stochastic process {y (k ) ,k  >  0} (see (8)). A t each time instant k, y (k ) maps 

samples w e l l  into Y. Thus, a useful metric space for the desired stability analysis 

is (y, d), where the metric d :Y  —► R+ is defined by

d ( [ * U * ]) =  \\x ~ X\\ +  \Z -  Z\ (16)

w ith x, x  € Rn, z,z € Es, and || • || and | • | denote the Euclidean norm in Rn and 

the discrete metric, respectively. The distance between y € Y  and a set M  C Y  is 

defined in the usual manner as d(y, M ) =  in f{d (y, m) : m € M }.
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Definition III.2.1 (Stochastic Motion of a HJLS) Let (Y, d) be the metric 

space in (16). Consider a HJLS in (8) with in itia l time ko =  0 and a fixed in itia l state 

y0 =  [xq Zq]t  G Y . Let {N (k ), k > 0} be a Markov chain with in itia l distribution Po 

and transition probability matrix 11^. A stochastic process {<fi(k, ui, yo, p / ) ,  k >  k0} 

is called a stochastic m otion of (8) i f  fo r each uj € 0 ,  {(f)(k,uj,yo, Pq ), k >  fco} is 

a sample solution of (8) and (j)(0,oj,yo, Po) =  yo fo r all u E Q.

Observe that it  is always possible to define a stochastic motion for a hybrid jump 

linear system. Specifically, fix any u> E Q and note that under the sample path (or 

input signal) {N (k , cv), k >  0}, the dynamics of the hybrid jump linear system in 

(8) are governed by a set of difference equations. Thus, there always exists a unique 

trajectory (or solution), {<f>{k,uj, yo,Po),k >  fc0}, for the HJLS. The collection of 

these trajectories is exactly the stochastic motion {<f>(k,u,y0, Pq ), k >  ko}.

Definition III.2.2 (Stochastic Dynamical System) Let s be a collection of the 

stochastic motions corresponding to a subset of fixed initia l states y0 E Y and/or a 

subset of in itia l distributions p / . This collection together with the set Z+ of time 

values and the metric space (Y, d) is called a stochastic dynam ical system  and it 

is represented by {Z+,Y, d,s j.

Remark III.2.1 For any given HJLS, the collection of stochastic motions associated 

with all the valid fixed in itia l conditions, yo E Y, and all valid in itia l distributions, 

Po , w ill be denoted by 0 .
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III.2.1 Stability Concepts

The following definitions and lemma provide the core concepts for analyzing sta

b ility  of hybrid jump linear systems. In the sequel, s C 6  denotes a set of stochastic 

motions of a HJLS. Also, unless otherwise stated, it  is assumed that ko =  0.

Definition III.2.3 (Invariant Set of a HJLS) A set M  C Y  is said to be in 

v a r ia n t  w ith  respect to  s, or simply M  is  s - in v a r ia n t ,  i f  m  6  M  implies

that Pr{d(ef>(k,uj,m, pff), M )  — 0, Vfc >  0} =  1, fo r every stochastic motion

{<p(k , uj, m, Po) ,  k > 0} in s.

Definition III.2.4 (Equilibrium Point of a HJLS) A poin t ye G Y is called an 

e q u il ib r iu m  p o in t  o f s i f  {y e}  is s-invariant.

Definition III.2.5 (Stability in the Second Mean) Consider the stochastic dy

namical system {Z  + ,Y ,d ,s }  defined fo r  a given HJLS. A set M  C Y is said to be 

stab le  in  the  second m ean, i f  fo r  any e > 0 there exists 5 =  5(e) >  0 such that

E {d  2((f>(k, uj, y0, p£), M ) }  <  e,Vk >  0, (17)

fo r  every stochastic motion {4>(k, uj, yo, Po), k >  0} €  s where d(yo, M )  <  5.

Definition III.2.6 (Asymptotic Stability in the Second Mean )

Consider the stochastic dynamical system {Z +, Y, d, s} defined fo r  a given HJLS. A 

set M  c Y  is said to be a s y m p to t ic a lly  s tab le  in  the  second m ean, i f  i t  is stable 

in  the second mean and i f  fo r  any e >  0 there exists 5 =  5(e) >  0 and r  =  r(e ) such 

that

E { d 2(ej>(k,u>,yo,Po),M)} <  e,Vk > r, (18)

fo r  every stochastic motion  { ej>(k,u, y0, Po), f c > 0 } e s  where d(y0, M )  <  5.
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The following lemma shows that the stability of a particular set 971, such that 971 is 

s-invariant, leads to conditions on only the equilibrium point xe =  0 of the embedded 

jump linear closed-loop system.

Lem m a III.2 .1  Consider the stochastic dynamical system (Z +, Y, d,s} defined fo r a 

HJLS. The set 971 =  {[a£ *T]T € Y\xe =  0 € Rn, £ s}, when k0 =  0, is

•  stable in the second mean i f  fo r any e >  0 there exists S =  5(e) >  0 such that

E{||s(*)H2} < ^ 0

fo r any stochastic motion {<f)(k,uj,yo,Po),k >  0} € s where ||rr01| < 5.

•  asymptotically stable in the second mean i f  it  is stable in the second mean and 

i f  fo r any e > 0 there exists 5 =  5(e) >  0 and r  =  r(e) such that

E{||rr(fc)||2} < e , V f c > r  (19)

fo r any stochastic motion {ef)(k,u!, yo, p^), k >  0} 6 s where ||xo|| < 5.

Proof : Both results follow immediately by noting that E {d 2(<fi(k, oj, y0, /r^),9J l)} =

E { \ \x ( k m .  -

Note that condition (19) is equivalent to requiring that limfc^oo E{||a:(A:)||2} =  0. 

This condition is called mean square stability (see Definition I I I .2.7). Lemma I I I .2.1 

indicates that the asymptotic stability in the second mean of 971, an invariant set 

of the HJLS, is equivalent to the mean square stability of xe =  0, an equilibrium 

point of the jump linear closed-loop system embedded in the HJLS. So, w ithout loss 

of generality, consider the following stability definitions for 971, w ritten in terms of 

xe =  0 only.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

Definition III.2.7 (Second Moment Stability) Consider the stochastic dynam

ical system {Z +,Y, d, © } defined fo r a HJLS. The equilibrium xe =  0 of the jump

linear closed-loop system, or simply the HJLS, is said to be

•  stochastically stable if, fo r every stochastic motion in G,
00

5 ^E {||x (fc )||2} <  oo; (20)
k= 0

•  mean square stable if, fo r every stochastic motion in ©,

E{||a;(fc)||2} —► 0 as k —*• oo; (21)

•  exponentially mean square stable i f  there exist real numbers X E (0,1) and

p >  0 such that fo r all k >  0 and every stochastic motion in &

E{||*(fc)||2} <  /iAfc||a:o||2; (22)

•  second m om ent stable i f  the HJLS is simultaneously stochastically, expo

nentially mean square, and mean square stable; and

•  second m om ent unstable i f  the HJLS is simultaneously stochastically, ex

ponentially mean square, and mean square unstable.

Remark III.2.2 The relationship between these definitions is well-known. For ex

ample, it  is easy to see that stochastic and exponential mean square stability each 

imply mean square stability. Hence, mean square instability implies second mo

ment instability. Also, note that exponential stability implies stochastic stability since 

IX o E { IW * ) ll2} < E ? .o M ‘ I M 2 < oo. Hence, exponential mean square stabil

ity implies second moment stability. Finally, note that when a HJLS represents a 

Markov jump linear system, it  is stochastically, exponentially or mean square stable 

i f  and only i f  i t  is second moment stable (Ji, Chizeck, Feng & Loparo 1991).
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R em ark I I I . 2 .3 In Definition I I I .2.7, conditions (20), (21), and (22) must hold fo r 

every stochastic motion of 6 . That is, they must hold fo r any xq € R " and any in itia l 

distribution p,Q . This in turn implies that the second moment stability of a HJLS 

should be independent of its in itia l state and the in itia l distribution of the Markov 

chain {N (k ) ,k  >  0}. This fact is usually emphasized by some authors by including 

the phrase “...for any x0 £ Rn and any in itia l distribution (j,q ...” in their definitions 

of second moment stability (cf. Costa et al. 2005, Fang, Loparo & Feng 1995).

The independence from the in itia l distribution is important because {N (k ), k >  0} 

may include more than one ergodic class (see Papoulis 1991). Thus, it  is possible 

fo r the second moment, E {||x(fc)||2}, to converge to zero when 1V(0) belongs to one 

ergodic class and to diverge to infinity when N ( 0) belongs to another class. This is 

clearly illustrated in (Example 2.2, Fang et al. 1995).

R em ark I I I . 2.4 In  the rest of this chapter, each lemma and theorem w ill be careful 

to specify the underlying stochastic dynamical system under consideration. I t  w ill be 

implicitly understood that the stability results introduced by these lemmas and theorems 

are derived fo r the invariant set 3Jt. However, any reference to this particular set w ill 

be dropped. Finally, unless otherwise stated, it  w ill be understood that the HJLS under 

consideration has the general form of Definition II. 2.3.

The stability analysis framework has been completely introduced. The next sec

tion w ill derive the first testable sufficient conditions for MSS by analyzing HJLS’s 

as switched systems.
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III.3 STABILITY ANALYSIS OF HJLS’S USING THE SWITCHED  

SYSTEMS APPROACH

III.3.1 Preliminaries

Consider the following autonomous linear discrete-time switched system

x#(k +  1) =  A ^ k)X^(k), x#(0) =  x0, (23)

where {i9(fc),A: > 0} € represents a discrete-time switching signal. A t every 

time k >  0, d{k) is used to select G 21 =  {A i : At € Rnxn, i 6 It# }-  The effect 

of the switching signals {$(£), k >  0} E can also be seen via the set of discrete 

linear inclusions (DLI) consisting of the set of all possible trajectories

DLI(2l) 4  {(x *(0 ),. . . • • ■) = x*(k) € Rn, k 6 Z+},

where x#(k +  1) =  A^k)x^(k), A#^) G 21, and {$ (& ),k >  0} E X ^.

The stability of (23) has been studied by many authors by paralleling the ap

proaches taken for continuous-time switched systems (cf. Molchanov & Pyatnitskiy 

1989, Gurvits 1995, Liberzon, Hespanha & Morse 1995, Daafouz, Riedinger & 

lung 2002). One of the main goals of these studies is the derivation of conditions 

under which the trajectories of (23) converge to zero under any switched signal 

{$(&), k > 0}. This stability notion, called absolute asymptotic stability, is defined 

next.

Definition III.3.1 (Gurvits 1995) The equilibrium point x$ — 0 of the discrete

time switched system (23) is Absolutely A sym ptotically Stable (AAS) i f  every 

trajectory in DLI(QT) satisfies lim ^oo x#(k) =  0.
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Note that AAS can be studied by analyzing the lim it behavior of infin ite products of 

matrices from 21. This is justified by the fact that (23) is AAS if  and only if

lim  Av^) ■ ■ ■ Atf(o) =  0, for all {ti(k), k > 0 } e  2?°.
fc—>0o

In order to relate switched systems to HJLS’s, consider the set of switching signals 

that is formed by the sample paths of a stochastic processes, {0(k) ,  k > 0}, w ith state 

space 2^, and in itia l distribution //g. Also consider the system

x{k  + 1) = A §{k)x(k) ,  5(0) =  x q , (24)

where A § ^  e 21, and extend the mean square stability definition in Definition III.2 .7  

as follows.

Definition III.3.2 The system (24) is mean square stable i f  fo r every x0 and p60 it  

follows that E{||5(A:)||2} —> 0 as k —► oo.

Clearly, if  (23) is absolutely asymptotically stable then (24) is mean square stable 

since for every sample path generated by 0(k)  it  follows that limfc_ 00 A#(k) • • • A^(0) =  

0. This can be formalized as follows.

Lemma III.3.1 I f  (23) is absolutely asymptotically stable then (24) is mean square 

stable provided that Xo is a second order random variable.

Proof: Observe that {0 (k ) ,k  >  0} can be viewed as a random element from Cl into 

Thus, the AAS of (23) implies that for any e > 0 and any uj E Cl, ||x(A;,u;)||2 <  e 

provided that k is large enough. This in turn implies tha t1

|E { | | i ( < r ) f } |= E { | |x M f } =  J  ||x(fc,a,)||2dPr< J e dPr =  e.
n n

xIn the sequel, f  represents Lebesgue integration. See also Appendix A.
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That is, |E {||cc(A;)||2} | < e for any arbitrary e > 0 provided that k is large enough. 

This last statement implies that limfe_ 00 E {||*(fc)||2} =  0. Note that this conclusion 

is true independent of Xo and Hence (24) is MSS. ■

The stochastic process {0(k) ,  k > 0} in (24) can be generated, for example, by a 

stochastically driven high level supervisor as in (4). In this light it  is easy to see that 

the stability of hybrid jump linear systems can be studied w ith the tools available for 

discrete-time linear switched systems. The next subsection presents a new testable 

sufficient condition for the AAS of (23), Theorem III.3.3. By extension, this test 

applies also to hybrid jump linear systems.

III.3 .2  Stability Analysis

A recent result in (Daafouz et al. 2002) provides a sufficient condition for the 

absolutely asymptotic stability of (23). This result, however, requires the solution 

of (I#)2 linear m atrix inequalities (LM I’s) in 1$ unknowns. The following theorem 

reduces the number of inequalities to only t$. In  the sequel, P >  0 w ill denote a real, 

symmetric, and positive definite m atrix in Rnxn.

Theorem  III.3 .1  I f  fo r a given set of matrices {W t >  0 : i  G there exists a set 

of matrices {Pi >  0 : i 6 satisfying the condition

Pi =  Wi +  Y .  AJpi A i ’ e I t ,  (25)
j =0

then (23) is absolutely asymptotically stable.
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Proof -. Suppose (25) holds and observe for any x € K " that xTAJPiAiX >  0. Then

4>-i
xTAJPjAiX — xTP{X < ^  xTA jP jA ix — xTPiX

j =o

< - x TWiX,

and therefore Pi — AJPjAt > 0 for every h i  £ Ze#- Since the matrices Pi satisfy 

the hypothesis in (Theorem 2, Daafouz et al. 2002), then system (23) is absolutely 

asymptotically stable. ■

The R icatti equation (25) has been used to determine the MS stability of MJLS 

(Ji & Chizeck 1990a). But to the best of our knowledge, this is the first time they 

have been used to study general switched systems. Moreover, there exists a simple 

test to determine the existence of a solution to (25). The following test has been 

adapted from the more general results in (Proposition 6, Costa & Fragoso 1993) and 

(Lemma 1, Kubrusly & Costa 1985).

Theorem  III.3 .2  Let {A i € Knxn : i  6 2 ^ }  be given and define A  as

A  =  (Et„ ® / „ 2) diag(A) ® A0, . . . ,  A ^ - i  ® ^ „ - i ) ,  (26)

where E(<) is an £# x £$ matrix of ones, and I n2 is an n2 x n2 identity matrix. Then, 

fo r every set of matrices {W i > 0 : i  € Z ^ } there exists a unique set of matrices 

(P j > 0 : i  E le A  that satisfy (25) i f  and only i f  the spectral radius of A  is less than

1 (P(A ) < 1).

A consequence of this theorem is a spectral radius test to determine the absolute 

asymptotic stability of a switched system.
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Theorem III.3.3 Consider the system (23), and let A  be defined as in (26). I f  

p(A) <  1 then the system (23) is absolutely asymptotically stable.

Proof: The result follows directly from Theorems I I I .3.1 and II I .3.2. ■

Observe that the AAS condition p{A) < 1 in Theorem III.3 .3 is similar to the 

sufficient condition for the mean square stability of the system

x(k  +  1) =  \/% Ag{k)x(k), (27)

where {0(k), k > 0}, 6(k) € 2 ^ , is a Markov chain w ith transition probabilities pA =  

l / l $ (Costa & Fragoso 1993). Thus, Theorem III.3.3 has the following interpretation: 

i f  the mean of the sample paths of (27) goes asymptotically to zero then so does every 

trajectory of (23). The converse claim, however, is not always true. I t  can be seen 

that if  (23) is absolutely asymptotically stable then only the mean value of ||rr(A:)||2 

over all possible trajectories must approach zero asymptotically. This motivates our 

next result.

Theorem III.3.4 Let A  be defined as in (26). A necessary condition fo r  (23) to be 

absolutely asymptotically stable is that p(A) <  I#.

Note that a given switched system which fails the test in Theorem III.3 .3  can s till 

be AAS. Although more sophisticated methods are available, this criterion provides 

a simple first check.

The proof of Theorem III.3.4 parallels the necessity proof of (Theorem 2.1, Ji &: 

Chizeck 19906). The asymptotic stability of (23) is used to show that for any given set 

of matrices {W i >  0 : i  e 2^ ,}, there exists a unique set of matrices {P* > 0 : i  € 2^ }
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satisfying (25). That is,

Pi =  Wi +  ( l /U )  Al P3Ai- (28)
j=0

This fact and Theorem III.3.2 give the desired result.

Proof of Theorem I I I .3.4- I t  is assumed that (23) is AAS. Let the in itia l condition xo 

be fixed and let the transition m atrix 4>(fc +  n, k) be given by

I"’■/,*) =  <
1 = 0,

$ (*  +  ,

i) • • • A,j(fc), I >  l.

Let {W i > 0; i G be given and define g($(k  +  n, k )) =  <f>T(fc +  I, k)W$(k+i)${k +  

I, k). Note that for every fixed value of d(k), g($(k + I, k)) can take on (£o)n different 

values, one for each possible permutation of {d{k  +  1), . . . ,  d(k +  /)}. That is, if  

d(k) =  i and I >  1, then g($(k  +  I, k)) can take any of (£#)1 different values which 

are obtained by evaluating

g($(k  + I, k)) =  A fA ^(k+l) ■ • • A ^ k+l_l)W ^k+i)A ^k+i_ i) • • • A ^ k+1)Ai,

for all the different values of {d(k  +  1), . . . ,  d{k +  /)} (that is, (0,0,. . . ,  0,0), 

(1,0,. . . ,  0,0), . . . ,  (t$ — 1, t# — 1,.. . ,1$ — 1,1$ — 1)). Thus, when d(k) =  i, the 

average value of g($(k +  I, k )) is defined as

Wu 1 =  0

e$-i g($(k+n,k+l)Ai) ; 1
2^ 2_>

^tf(fc+l)=0 tf(k+i)=0

Now, W#(k+i) is positive definite, so Rayleigh’s inequality yields |fy(4>(A: +  /, A:)) || < 

A||4»(A; +  /,A)||2, where A =  maxj{Amax(l4/i) } , and Amax(H/j) denotes the maximum 

eigenvalue of Mfy Furthermore, since (23) is ASS, it  follows from (Theorem 22.7,
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Rugh 1996) that there exist scalars /? > 1 and 0 < a  < 1 such that ||4>(A; + 1, k)||2 < 

j3al . Consequently,

\\E{g($(k +  l , k ) ) \m } \ \

Next, define the matrices P{l,'d{k) =  i), I >  0, as follows

k+l
p ( i , m  =  o  4  ^ e { s ( $ ( * ,  AOMfc) =  *},

i=k

and observe that they are symmetric and positive definite by definition. Furthermore, 

for any m > I >  0

fc+TO

| |P ( m . t f ( * )  =  i ) - P ( ' . W  =  O I I <  £  H E { 9 ( 4 > ( a ) ) l< W } l l
i= fc + Z + 1 

m

< E  w
i=l+1

< \/3al+1/ ( l  — a).

Since for any e > 0 there exists a sufficiently large I such that A/3al+1/ ( l  — a) < 

e, then P (l,$ (k ) =  i ) has a unique lim it w ith respect to I. Hence, define Pi =  

lim ^oo P(l, 'd(k) =  i), and observe that

i i
P ( l , m  =  *) =  ^ E { 5(4 > M )M 0 ) =  i }  =  Wi +  E e { s ( * M ) M 0 )  =  *}• (29)

4=0 4=1

In  addition, since g($>(k +  l,k  +  l)A?(fc)) =  ^ (k )9 (^ (^  +  l>k +  l))j4,?(fc)> then

E {g ($ (i, 0) M 0) =  i }  =  (l /e,)AJ E  E {s (* ( ‘ , l) ) l^ ( l)  =  j } A .  (30)
j = o

Substituting (30) in (29) gives

4>-i
P(l, 0(0) =  i) =  Wi +  (1 /4 ) E  AI P (l ~  M U )  =  M i -
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Letting I —► oo in the expression above gives

<*-i
Pi =  Wi +  ( l /e * ) J 2 A jP j Ai .

3 = 0

This implies that the matrices P* uniquely satisfy (28). Consequently, Theorem III.3.2 

implies that p(A/I$)  < 1 or p(A) < completing the proof. ■

A HJLS whose associated jump linear system satisfies the conditions of Theorem

III.3.3 is both absolutely asymptotically stable and mean square stable. This is 

formalized next.

Theorem  III.3.5 Consider the stochastic dynamical system {Z +, Y, d, © } defined fo r  

a HJLS. Let A  be given by

A  =  (Ee0 <S> I n*) diag(A0 <g> A0, . . . ,  Ato- i  ® Ato- i) ,  (31)

where Au i € Lg0 , are the state transition matrices of the embedded jump linear 

closed-loop system. I f  p(A) <  1, the HJLS is AAS and mean square stable.

Proof: This is a direct consequence of Theorem I I I .3.3 and Lemma III.3.1. ■

Observe that the conditions in Theorem I I I .3.5 imply that ||x(A:,a;)|| —*• 0 as 

k —*• oo for every to 6 f2. Note, however, that if  ||x(A:,u;)|| —> oo for some subset 

0 C 0, E{||x(A:)||2} can s till converge to zero provided that, for instance, P rfy } =  0. 

Moreover, depending on the structure of the supervisor, the sample paths of the out

put process {#(&), ^ >  0} may reside in a proper subset o fZ ^ , that is, only some (not 

all) the switching signals may drive the jump linear system embedded in the HJLS. 

Both situations show that the conditions in Theorem III.3.5 are conservative. The 

next section w ill derive less conservative conditions using singular value techniques.
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III.4 STABILITY ANALYSIS OF HJLS’S USING SINGULAR VALUE 

TECHNIQUES

Consider again a hybrid jump linear system as described in Definition II.2.3. That 

is, a HJLS w ith dynamics given by

x{k +  1) =  Ae(k)x(h), x(0) =  x 0

z{k +  1) =  5jv(fe), î(x(fc))'2( )̂ 

e„ - i

This section w ill provide a MSS condition for such systems based on the maximum 

and minimum singular values of the state transition matrices Ai, i  € Tp0 . This 

section also includes a detailed analysis of the stability of a HJLS w ith performance 

supervision. In the sequel, d'(A) and q{A) w ill denote the maximum and min imum 

singular values of the m atrix A.

Theorem  III.4.1 Consider the stochastic dynamical system {Z + , Y ,d ,& } defined fo r  

a HJLS. Ifa (A i)  < 1, Vi e le0> then the HJLS is second moment stable. Ifa (A i)  >  1, 

Vi € Ie0> then the HJLS is second moment unstable.

Proof: Consider the sample paths of the jump linear closed-loop system. Note that the 

state of the jump linear system, x(k), has the form x{k) — A6(k-i)-^0(k-2) ■ ■ • ^(o)^o 

for any stochastic motion in © w ith fixed in itia l state yo =  [x j z^]T. Hence, ||x(A:)|| =  

\\Ae(k-i)Ae(k-2) ■ ■ ■ ^ 0(o)Xo||. This expression can be bounded using singular values as

(32)
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follows:

&{Ae(k-i)Ae(k-2) ■ • -^(o ))lko || <  ||*(fc)|| <  ^(^e(fc-i)^e(fc-2) • • • ^e(o))lko|| 

Q{A6(k - 1)) • • •<j04e(i)MA>(o))lko|| <  ||aj(fc)|| <  v { A 0(k- i ) )  • • • a (^ e(1)) a ( ^ (0))||a;o|| 

fk (A j(i))lko || <  ||*(A:)|| <  n^e(i))||a:o||
i= 0  i= 0

nun{e-(Ai)}fc||a;o|| <  ||®(*0II < max{a(j4i)}fc||:ro||- (33)

Suppose that a (/I*) < 1 for all i € Z t 0 - Let (i =  l  and A =  maxigi <o {a(Ai ) } 2 <  1, and 

observe that ||a;(A;)||2 <  //Afc||a;o||2 and E{||a;(A;)||2} <  /^A*j|:ro||2- Clearly, the HJLS is 

exponentially mean square stable and, therefore, second moment stable.

Now suppose that g (A ) > 1 for ah * G T^0 . Using the same reasoning as above, it  

follows that m.miei eo{a (A i)}2k\\xo\\2 <  E {||*(A :)||2}. Since mmiexto{a (A i)}2k\\x0 \\2 is 

a divergent sequence, E{||a:(A;)||2} —*• oo as k —> oo and the result follows. ■

This theorem is a discrete-time generalization of Theorem 1 in (M itra, Tarn & 

Dai 2001) for switched systems. Less conservative tests can be derived for specific 

HJLS’s by taking their particular structure into account. This is demonstrated in 

the next subsection, where a simple HJLS w ith performance supervision is analyzed. 

The material also motivates the use of finite-time stability concepts.

III.4.1 Stability Analysis of a Simple HJLS with Performance Supervi

sion

In  safety critical systems, the saturation of certain signals or a critical event is 

often detected by a threshold test on the state’s norm. I f  such events causes the jump 

linear closed-loop system to become unstable, the role of the supervisor would be to
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command a switch to a fail-safe operating mode. That is, the supervisor reacts to the 

lack of stability in the closed-loop system (reflected by a big increase in the state’s 

norm) by changing its operating mode. In addition, the supervisor may also activate 

a fail-safe operating mode in response to an external fault-detection signal.

The focus here, however, is on the case where the supervisor does not com

mand such a fail-safe operation. The effect of the fault-detection signal or the state- 

dependent input when the performance boundary is reached is simply to reflect the 

change of models for the jump linear closed-loop system. Under these conditions, 

it  is not expected that the HJLS w ill perform satisfactorily once the performance 

boundary is reached. This is formally shown in Theorem III.4.3, where this specific 

HJLS is shown to be second moment unstable. Despite the lim ited application of 

this HJLS, this is a useful problem to analyze because it shows how the structure 

of the HJLS can be exploited to derive stability results. I t  also shows how com

plex system behavior can be represented by a HJLS w ith performance supervision. 

Finally, since stability over an infinite-tim e horizon is not expected, it  is useful to 

consider an alternative notion of stability, finite-time stability, as first proposed in 

(LaSalle & Lefschetz 1961) and used, for example, in (Michel & Porter 1972, Ye & 

Michel 1998, Zhai & Michel 2002, Xu & Antsaklis 2003). Two such definitions and 

a corresponding sufficient stability condition axe given at the end of this subsection. 

The precise structure of the system of interest is given first.

Assume that the fault-detection signal is modeled by a two-state, homogeneous 

Markov chain {N (k ) ,k  >  0} w ith in itia l distribution Hq =  [p^ p^} =  [P r{iV (0) =  

0} P r{iV (0 ) =  1}], and transition probability m atrix Hv =  e {0 ,1 }- For
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simplicity, let 0 < Po,Pi <  1 and {N (k ) ,k  >  0} be aperiodic w ith no absorbing 

states, that is, let p f{ G (0,1), i  G {0 ,1 }. In this context, N (k ) =  0 (N (k ) =  1) 

signifies the absence (presence) of detected faults in the system at time k.

The analog to symbol map is used to detect whether the norm of the closed-loop 

system’s state vector has reached a performance boundary given by a  G K+, that is,

... ,, J 1, ||:r(A:)|| >  a > 0
, W  =  ^ W ) = ( 0 - j [ ^ j j - a  (34 )

Clearly, the role of the detector is to output a 1 when the performance boundary is 

exceeded. As described above, whenever N (k ) =  1 or u{k) =  1 the supervisor always 

selects the same failure mode of operation. This behavior can be modeled w ith a 

HJLS as follows.

Consider system (32) and note that XiN =  Tto =  {0 ,1 }. For simplicity, assume 

that z(k ) and 6 {k) are isomorphic, that is, is  — 2, w ith z(k) G {e i,e 2}. The output 

map, tJ7, has the form

w  : £ 5 -> Xto 

z(k) 0 {k) -  w (z{k)) — [0 1 ]z{k).

To complete the model, observe that I t u =  {0 ,1 }. Thus, the FSM’s state transition 

matrices are given by S0,0 =  [0 0] and 5'o,i =  ^ 1,0 =  S1A =  [??]•

Alternatively, the supervisor’s actions can be represented by the state diagram 

in Figure 9. In this figure, the arcs in the transition diagram are labeled w ith the 

values of the input processes {(u(k), N (k )), k >  0}. (An x in the transition diagram 

represents a don’t care condition). The nodes in Figure 9 correspond to the values of
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xl or 10

xl or00

00

FIG. 9: Transition diagram for a fin ite state machine representation of a logical OR 
operation.

0 ( k ) G l e o . Based on this diagram, the evolution of 6 ( k )  can be expressed as follows:

0 ( k + D  = !  1 : v { k ) = 1
[ ’ \  N (k )  : u(k) =  0

=  N (k ) +  u (k )( l - N ( k ) )

=  O R (N (k),u (k)). (35)

The stability analysis of such a system can be done using its associated auxiliary 

scalar Markov jump linear system as defined below.

D e fin itio n  III.4 .1  An Auxiliary Scalar M arkov Jum p Linear System

(asMJLS) associated with a HJLS is a scalar Markov jump linear system driven by

the same stochastic input process, {N (k ), k > 0}, and represented by

x(k  +  1) =  0,N(k)x(k), (36)

where x(0) =  xq and CLi G M fo r all i  € l e N •

In particular, the asMJLS associated w ith the HJLS specified by (34)-(35) has 

two modes, <20 and f l i .  I t  is assumed that CLq 0, so that its sample solutions axe of 

the form

X ( k )  =  (a 1/a 0)n(fc)(ao)fc5o, (37)
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where {n (k ),k  >  1}, and n(k) =  ^ = o  N ( i), k >  1, is the stochastic process that 

counts the number of ones in the sequence (iV (0 ),. . . ,  N (k  — 1)}. This framework 

enables the following result.

Theorem  III.4 .2  Consider the stochastic dynamical system {Z  +,Y ,d ,s} associated 

with the HJLS specified by (34)-(35), where s C © is the collection of stochastic 

motions with in itia l state y0 =  [rrj eJ]T, and x0 € Mn with ||x0|| < a.

(a) I f  a (A i) /a (A 0) > 1 then the HJLS is second moment unstable whenever its 

associated asMJLS in (36) with CLo =  ff(Ao) and CLi =  g (A i) is second moment 

unstable.

(b) I f  a {A f)/ a{A{) > 1 then the HJLS is second moment stable whenever its 

associated asMJLS in (36) with CL0 =  o(A0) and CL\ =  6 {A{) is second moment 

stable.

Proof : Let m {k) =  ®(*)- Note that zo =  e1} so 0(0) =  0. A reasoning sim ilar

to the one used to derive (33) yields

IW * ) I I  >  ( g ( / l1) /g (A .) )™ (t|! r ( A ) ‘'l|x „|| (38)

IW * ) I I  <  ( a ( A , ) M 4 ) ) ) ” < *)ff(A ))‘ | | i„ | | .  (39)

To prove (a), assume g(A i)/g(Ao) >  1, and let CLq =  g(Ao), CLi =  g (A i), and 

x0 =  ff(Ao)||x0|| in (37). Thus,

x ( k - l )  =  {a (A f)/a{A o))<k- M A o ) k\\xo\\.

Note from (35) that 0(k +  1) > N (k ), which in turn implies that m (k) >  n (k  — 1). 

This fact and (38) yield

||*(A:)|| > x ( k -  1), (40)
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and, consequently, E{||;c(fc)||2} > E{ai2(A; —1)}. Now, if  (36) is mean square unstable 

then E { * 2(A: — 1)} —> oo as k —> oo, and thus, E{||a;(A;)||2} —► oo as k —> oo. Hence, 

the HJLS is mean square unstable, making it  also second moment unstable.

A sim ilar argument proves (b). Assume o(Aq) / g{A i ) > 1, and let f l0 =  g (Ao), 

<2i =  a (A i) and xq — a(Ao)||a:o|| in (37). Then (39) reduces to

||a;(A;)|| < x(k  — 1),

which implies that E{||aj(£:)||2} < E { x 2{k — 1)}. Now observe that if  the MJLS 

in (36) is second moment stable then E { x 2(k — 1)} <  ||r0||2 for some // > 0

and A € (0,1). So it  follows that E{j|a;(A:)||2} <  (/i/A )A fc||x0||2. Thus, the HJLS is 

exponentially mean square stable and consequently it  is also second moment stable. ■

Note that Theorem II I .4.2 requires less restrictive conditions than Theorem III.4.1, 

since it  only requires the ratio of the singular values of Ao and A i to be bigger than 1. 

Also note that to determine the mean square stability of (36) it  is enough to compute 

the spectral radius of the m atrix

a =  U V o ) 2 p ^ i ) 2 '
[ Pô (do)2Pf(1(a 1)2_ '

I f  p{d) <  1 then (36) is mean square stable; otherwise, it is unstable (see Costa & 

Fragoso 1993).

The following two lemmas are used to prove Theorem III.4.3. The ceiling operator 

\c] represents the smallest integer greater than or equal to c G R.

Lem m a III.4 .1  Consider the asMJLS associated with the HJLS specified by (34)- 

(35). 7 /0 < x0 < a, d 0 <  1, and (Li > 1 then the firs t sample time, k*, fo r which 

x(k) may reach or exceed a is given by
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k* = log ( a /5 0)
> 1- (41)

log (tti)

The probability that the worst case sample path, i.e. the sample path fo r which N (k ) =  

1 fo r all k > 0, reaches a at time k =  k* is P r{|i(fc *)| >  a } =  P i{P i,i)k’ ~l >  0. 

Furthermore, fo r every k < k*, Pr{|a;(A:)| >  a } =  0.

Proof : First, assume w ithout loss of generality that p^ > 0. I f  p^ =  0 then analyze 

the system as if  it  were starting at k — 1 w ith in itia l state (LqXq < a  and p± =  p^x > 0, 

which is not zero by assumption. Observe that xq < a, so x(k) can reach a  only from 

below. Also, note that the worst case sample path is

m ax{*(fc, w )} =  ( t t i) kxo- (42)u>£U

By definition, the first time at which x (k ) could reach or exceed a is A;*. Thus, 

setting (42) equal to a  and solving for k* gives equation (41). Now, observe from 

(37) that |aj(A;*)| >  a only if  n(k*) =  k*. Then, it  follows that Pr{|*(A ;*)| >  a } =  

P r{IV(z) =  1, Vi =  0 ,1 ,..., k* — 1} =  P i(P iti ) k’ ~ 1 >  0 (note that Pi >  0 and > 0 

by definition). Clearly, for every k < k*, |i(A )| < a and Pr{|x(A:)| > a } =  0. ■

The long term behavior of the sample paths of the HJLS specified by (34)-(35) is 

examined next under the multidimensional generalization of the conditions of Lemma 

III.4.1.

Lem m a III.4 .2  Consider the stochastic dynamical system {Z  +,Y ,d ,& } associated 

with the HJLS specified by (34)-(35). Leta(A0) < 1, q(A \) > 1 and a{Ao)g{Ai) >  1. 

I f  fo r a stochastic motion in © there exists sample paths such that >  a fo r
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some k' >  0, then there exists a finite k" > k' such that fo r those sample paths 

||a;(fc +  1)|| > ||a;(A;)|| > a fo r all k > k " .

Proof : Note that 6 {k' +  1) =  1, since by assumption ^  Q- Thus, it  follows

that

||x(fc' +  2)|| =  W AiAe^xW W  >

But a iA iA e w ) >  g(v4i)g(Ae(fc/)), a(A0{k>)) > a(A0), and g(> lo )g(^i) > 1 (by as

sumption), so

||x (k ' -1-2)|| >  g(Ai)g(Ao)\\x{k')§  > H *^ ')!!- (43)

In the same way, it  can be shown that ||a;(A:/ 4-2m)|| > \\x{k' +  2m — 2)|| for all m >  1. 

Even though in itia lly  nothing can be said about \\x(k' +  m)|| when m is odd, notice 

that ||®(A:'4-2m)|| is a strictly  increasing subsequence. Thus, there exists m' >  1 such 

that \\x (k '4-2m')|| > a /g (A Q) > a and 0(k' +  2m' +  1) =  1. This in turn implies that

\\x(k' +  2m' +  1)|| =  \\Ae(k'+2m')x{k' +  2m')\\

> Q{Ae(k'+2m'))\\x{k' +  2m') ||

> g(A0)\\x(k' 4- 2m')|| > a.

Hence, for k > k "  =  k' +  2m' 4-1, 0(k) =  1 so that ||x(k  4-1)|| > ||*(^ )ll > a and the 

result then follows. ■

Theorem  I I I . 4.3 Consider the stochastic dynamical system {Z +,Y, d, s} associated 

with the HJLS specified by (34)-(35), where s C & is the collection of stochastic 

motions with in itia l state yo =  [zq e[]T, and Xo G R " with ||a;o|| < a. Let a(Ao) <  1, 

g(A i) >  1 and g(A0)g(A1) >  1. The HJLS is second moment unstable.
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Proof : Let & 0 =  g(A0), hy =  a(Ay) and x0 =  a(A0)\\x0\\ in (36) and observe that 

g(Ay)/ g(Ayy) >  1. This implies that (40) holds (see Theorem III.4 .2). This also im

plies that the conditions of Lemma III.4.1 are satisfied, so there exist sample solutions 

of (36) such that at time k' — 1 =  k*, \x{k' — 1)| > a w ith k* defined as in (41).

Now, (40) indicates that there exists at least one stochastic motion in s w ith 

sample paths that make ||a;(A:/) [| >  a. This in turn implies, by Lemma III.4 .2, that 

these sample paths make ||x(A;)|| > a  for every k > k" > k '. Hence, the Markov 

inequality implies that for a ll k > k" > k*,

E {||a :(fc )||2} ^  > Pr{||aj(A:)|| > a } > P r{i(fc *) > a } > 0,

which in turn implies that lim *,.^  E {||a :(fc )||2}  > 0 and J2T=o -^ {ll:c(^)l|2} =  00 f° r 

at least the aforementioned stochastic motion in s. This indicates that E {||a ;(fc )||2}  

does not converge to zero for all the stochastic motions in s C ©, which in turn 

implies that the HJLS is mean square and second moment unstable. ■

Clearly, over an infinite time horizon a HJLS satisfying the conditions in Theorem

III.4 .3 is mean square unstable since there are sample solutions that are ultim ately 

unbounded. But if  the HJLS were to operate only over finite time horizons, its sample 

paths would be bounded remaining below the performance boundary. The following 

definition from (Michel & Porter 1972) formalizes the concept of finite-tim e stability.

D e fin itio n  I I I . 4.2 Consider the stochastic dynamical system {Z +, Y ,d ,G } defined 

fo r a HJLS. Let T  € Z+ and a, j3 € R+ be constants such that T  >  0 and /3 >  a >  0. 

The HJLS is said to be

(a) f in ite - t im e  stable w ith  respect to  (cx,(3,T) i f  ||x(0)|| < a implies that
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ll3^ ) ! !  <  P f OT all k  €  I t + i , and

(b) mean square fin ite-tim e stable with respect to (a ,(3 ,T )  i f  ||r(0)|| < a 

implies that E {||* (A :) ||2}  <  (32 fo r  a ll k E I t + i -

In  this definition (3 represents the performance boundary for all the sample solutions 

of a HJLS. The next result follows directly from Lemma III.4.1.

Lem m a I I I . 4.3 Consider the stochastic dynamical system {Z  +,Y ,d ,s} associated 

with the HJLS specified by (34)-(35), where s C © is the collection of stochastic 

motions with in itia l state y0 =  [xq eJ]T, and xo E Kn with ||x0|| < a. Let o(Aq) <  1, 

a {A i) > 1 and o(Ao)cr(Ai) >  1. The HJLS is finite-time stable and mean square 

finite-time stable with respect to (a,/3 ,T* — 1), where

T* -
' iog(/?M A))llxo||)

log(<x(^i))

Proof: First, observe that the maximum value that the right hand side of (39) 

can take on at time k is d,(v41)fc_1d-(̂ 40)||;ro||- Since d-(A0)||xo|| < a, the shortest 

time at which the right hand side (39) can reach or exceed (3 is A; =  T*. Hence, 

maxu,en{||*(fc ,a ;)||} < /? for all k E Xr* =  { 0 ,1 ,. . . ,T* — 1}. Also, note that 

E{||a j(A ;)||2}  <  maxu,en{||a;(fc,u;)||2} < (32 for all k E I t *• These two facts directly 

prove that the HJLS is finite-time stable and mean square finite-tim e stable w ith 

respect to (cc, (3, T* — 1). ■

If (3 =  a then Lemma III.4.3 shows that the performance boundary w ill not be 

reached for at least T* — 1 samples. During this time, the output of the analog to 

signal converter is zero, and the fin ite state machine evolution is simply described by 

0{k) — N {k  — 1) for k <  T*. If, in addition, the JLS is scalar then T* also represents
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the maximum time over which all sample solutions behave as a Markov jum p linear 

system (see Lemma III.4.1).

The results introduced in this section are based on bounding the norm of the 

matrices Ai w ith their maximum and minimum singular values. I t  is well-known 

that these bounds are generally not tight. The following section introduces two less 

conservative results that are not based on these bounds. Instead, they utilize a lifting  

technique employed successfully, for example, by (Costa & Fragoso 1993) to study 

Markov jump linear systems. A disadvantage of this approach, however, is a sharp 

increase in the dimensionality of the matrices involved.

I I I . 5 S T A B IL IT Y  A N A LY S IS  OF H JLS ’S U S IN G  A  L IF T IN G  

T E C H N IQ U E

It was shown by (Costa & Fragoso 1993) that the lim it behavior of the second 

moment of a Markov jump linear system, E {||x(fc)||2}, is related to the asymptotic 

stability of a discrete-time deterministic LTI system of the form

q(k +  1) =  Aq(k),

where the lifted matrix, A, is formed by taking into account the MJLS’s state matrices 

and the properties of the Markov chain driving the MJLS. Moreover, it  was shown 

that for a MJLS E{||a;(A;)||2} —> 0 as k —> oo if  and only if  p{A) <  1. In this 

section, this lifting technique adapted to derive two sufficient MS stability conditions 

for two different subclasses of HJLS’s. Subsection III.5.1 introduces a sufficient mean 

square stability test valid for any HJLS w ith a performance map. The sufficiency test 

consists of checking whether the spectral radius of a particular A  m atrix is less than
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1. Although the test is derived by carefully exploiting the unique structure of HJLS’s 

w ith performance map, it  is possible to extend this test to other types of HJLS’s via 

a more complex two step approach. Subsection I I I .5.2 presents the first step of this 

extension. I t  introduces a new sufficient mean square stability condition that applies 

to any jump linear system driven by a general discrete-time, finite-state stochastic 

process { 6 (k),k  >  0}. The second step of the extension requires one to compute a 

m atrix of parameters, Me, which depends on the specific structure of the HJLS under 

consideration. The discussion of the general method for computing Me is delayed 

until Chapter IV  because it requires the study of HJLS’s from the point of view of 

Markov chains. Nevertheless, the method is illustrated for two particular examples 

at the end of the section.

I I I . 5.1 M ean Square S ta b ility  o f H JLS ’s w ith  Perform ance M ap

This section presents a practical mean square stability test for the subclass of 

HJLS w ith performance map. The test makes use of the following supporting results.

Lem m a III.5 .1  Consider the space L 2(Q, Pr) of square integrable random vari

ables. For any x ,y  € L 2(Q,J?,Pr) it  follows that m a x{|E {xy }j, E {x 2}, E {y 2} }  =  

max{E{a;2}, E {y 2}} .

Proof : Suppose |E {x y }| > E {x 2} and |E {x y } j2 > E {y 2}. Then |E {x y }| > 

E {x 2}E { x 2}, which contradicts the Schwarz’s inequality. Thus either |E{ccy}| < 

E{cc2} or |E{a?y} | <  E {y 2}, or both inequalities are satisfied. Hence,

m a x {|E {x y }|,E {x 2} ,E {y 2} }  =  m ax{E {x2}, E {y 2} } . ■
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Lem m a I I I . 5.2 Let X  G Rn be a random vector such that E {X TX }  < oo. Then

||ve c(E {X X T})||oo =  max {E {a:2}} ,

where x t is the i-th  entry of X ,  and vec(-) is the column stacking operator.

Proof: Since E {X TX }  < oo then x t G L2(fl, Pr), for a ll*  G {1 ,. . . ,  n}. I t  follows 

from Lemma III.5.1that

max{|E{£cis j } |,E {x 2},E {a :2} }  =  m ax{E{®2}, E{a:2}} ,

for every i , j  G {1 ,. . . ,  n }. Therefore

|| ve c (E {X X T})||00 =  max {^ {a v c ,-}!} =  max {E {a:2} } . .

The main result of this section follows.

Theorem  I I I . 5.1 Consider the stochastic dynamical system {Z +, Y, d, 6 }  associated

with the following hybrid jump linear system with performance map (see Definition

II. 3.2)

x (k  +  1) =  Ae(k)x(k) 

ev- i
U{k) =  *l{aj<||a:(fc)||<aj+i} i

i=0

0(k) =  £vi/(k) +  <p(k), (44)

where x(k) G Rn, 0 =  ao < a i < • ■ ■ < =  oo, and {ip (k),k  >  0} is a Markov

chain with <p(k) G I ev, transition probability matrix — \pfj] and in itia l distribution 

Pq . Let A  be defined as

A  =  (IIJ ® I n2) diag(A) ® A ), • • ■, -4 ^ -1  ® (45)

where II# =  Etv <8> 11 .̂ I f  ||-4.||oo < 1 then the HJLS in (44) is mean square stable.
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Proof : F ix any stochastic motion in © (that is, choose any in itia l state yo =  [:rj Zq] 

and in itia l distribution /ig). Let Q(k +  1) =  E {x(fc +  1 )xT(k +  1)} and define

Qi{k +  1) =  E{a;(A: +  1 )x T(k +  l)l{e(jfc+i)=i}}

so that Q(k +  1) =  Y t i f 1 Qi(fc +  !)• Then it  follows that

Q i{k -\-1) —^i{Aff^h)x(k)x (^)-Te(fc)^-{®(fc+i)=*}}

=  ^ {A jx (k )x T{k )A ] l{eik+i )= itm = j}}
j —0 

i„ iv-  i
=  £  A jE {x (k )x T(k ) l{g{k+l)=iAk)=j}}A ]. 

j =o

Now define qx{k) =  vec(x (k )xT(k)), qi(k +  1) =  vec(Qi(fc +  l) )  =  E {q x(k +

l)l{e(fc+i)= i}} and apply the vec(-) operator to the equation above to obtain

Qi(k +  1) =  ® ^ ) E { 9x(fc)1Wfc+i)=i,e(fc)=j}}- (46)
j=o

As shown in Lemma A.3.1, if  a random variable £ is measurable w ith respect 

to a a-algebra Q C &  then £ =  E {£ |f/} and E {£ } =  E {E {£ |£ /}}. Let & k =  

<t(0(O), . . . ,  9 {k)) and observe that

E {g*(fc)l{e(fc+l)=i,0(*)=j}} =  E { E {9x(fc)1{0(fc+l)=i,0(A:)=j}l‘^fc}}

=  E {qx(k) P r{0(k  +  1) =  1, 0(k) =  j\<?k} }

=  E {9*(*0 Pr{0(fc +  1) =  i\^k }l{e (k )= j}}, (47)

where the last equality follows from the next set of identities.

Pr{0(k +  l ) = i , 0 ( k ) = j \ & k}

£i/£(p—1
=  Pr{0(A; +  1) =  i, 0(k) =  j\0 (k )  0(0) =  lo}l{e(k)=ik,...,e(o)=i0}

o= 0
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iUv- \

=  'YL Pri 0 (k +  x) =  • • • > 0 (°) =  M 1{0(fc)=ik,...,fl(o)=io}1WO=j}
lki—ih=0

=  Pr {0 (k  +  1) =  i\^k}l{e(k)= j}- (48)

Note that the value of (48) changes depending on which of the following four mutually 

exclusive conditions is satisfied:

(i) The set {0(k) =  j }  is empty.

(ii) The set {0(k) =  j }  is not empty, but there are no non-empty sets of the form

{0 (k  +  1) =  i, 9(k) =  j ,  0{k -  1) =  lk- i, • ■ •, 0(0) =  Zo}.

(iii) The set {0{k) =  j }  and some or all of the sets {0 (k  +  1) =  i,0 (k ) =

j , . . .  ,0(0) =  Z0} are not empty, but =  Pi{(p(k +  1) =  i\tp{k) =  j }  =  0,

where j  =  j  -  £v \ j/£ v\, i  =  i  — (L*J returns the maximum integer

smaller than or equal to i).

(iv) The set (0(fc) =  j }  and some or all of the sets {0(k  -I- 1) =  i, 0(k) =  

j , . . . ,  0(0) =  Zo} are not empty, and > 0.

In (iii) observe that {9(k) =  j }  — { <p(k) =  j,  v(k) =  [j/^ >  J} • So a very simple 

argument shows that {9{k  +  1) =  i, 0 (k) =  j , . . . ,  0(0) =  Zo} =  {<p(k +  1) =  *, cp(k) =  

j,  ...,V?( 0) =  Z0}. Thus,

Pr{0(fc +  1) =  i\0(k) — j , . .. ,  0(0) =  Z0}

=  Pr {<p(k +  1) =  i\<p(k) ip( 0) =  Zo}

=  p?.

=  0.

Note that (47) equals zero according to (i)-(iii) since the random variable P r{0 (k  +  

1) =  Z|^fc}l{e(fc)=j} is a constant equal to zero. This is not the case for the last
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condition from which it follows that Pr{0(/c +  1) =  i \ ^ k } l { 8(k)=j} e {0 ,p |J . Thus, 

Lemma III.5 .2 implies that

ll-^{9x(^)^{fl(*;+i)=i,s(fc)=j}}lloo =  m ax{E {xm Pr{0(A: -F 1) =  i\&k\}]-{e(k)=j}}

^ l E l ^ l w ^ l l U

< p u m \ u

Now, define hi =  [p ^(A 0 <g> A0) , .. .  ® Aw v- i) ] ,  q(k) =

[qo(k)T, - ■. ,qe„ev- i{k )T]T, and let T{k) C Tivtv be the set of indices for which (48) 

falls under condition (iv). Then it follows from (i)-(iv), (46), and Lemma III.5 .2  that

f c ( *  +  l) IU  <  IIM ~  max {  >> \
m€l(k) ( Prh,£ ^  J

< Halloo max {H^AO H*,}m€X(k)

< IN W IS W IL -

Note that if  m =  j  +  ^  then m =  j,  so =  p?v Also, \\A\\oo =  m aX i{||[p^(A0 ® 

A0) , - - - ,P ^ _ lh i(Ae,ev- i  ® ^ ^ - 1)]||00} =  maxi {||fii ||00}. Thus,

II q(k +  l)||oo =  nux {||®(A: +  l)||oo}
0<t<£utip—1

-  n < ^  ^ I ^ U I I W H c o  <  M I I - | | f f ( * ) | | o o .0<t<£v£tp—l

Clearly, if  ||̂ 4||oo < 1 then q(k +  1) —> 0 as k —> oo, which in turn implies that 

Q(k + 1) —> 0 as k —> oo. The same conclusion can be reached for any other stochastic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

motion in &. Thus, the HJLS in (44) is mean square stable. ■

As a final remark, define, for every j  6 1 ^, the matrices

A j =  (n£ ® I n2) diag(A,-^ ® Ajtv , Ajtv+X <8> Ajtv+1, A jev+ev- i  ® Ajev+ev- 1) 

and observe that

A =
Ao • • • Aiv ~ i

_Ao • • • At„ - 1

Thus, Theorem II I .5.1 can be expressed as follows.

C o ro lla ry  III.5 .1  If\\[Ao • ■ ■ •A*„-i]||00 < 1 then system (44) is mean square stable.

I I I . 5.2 M ean Square S ta b ility  o f JLS ’s D rive n  by G eneral D iscre te -T im e, 

F in ite -S ta te  S tochastic Processes

Consider the stochastic dynamical system {Z +,Y ,d, 6 }  associated w ith a HJLS 

defined as in (8). In  particular, recall that its associated jump linear closed-loop 

system is given by

x(k  +  1) =  Ae{k)x(k), (49)

where {0 (k ),k  >  0} is, usually, not a Markov chain but a general discrete-time 

stochastic process that takes values from the set lea- The main result in this sub

section, Theorem II I .5.2, provides a new sufficient mean square stability condition 

for any jump linear system such as (49), using a lifting  technique similar to the one 

employed in Theorem II I .5.1. Since {0(k), k >  0} is a general discrete-time stochastic 

process, the result in Theorem II I .5.2 depends on estimated bounds for the “transition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

probabilities” of {0 (k ),k  >  0}. These bounds must be derived for each particular 

HJLS under consideration. This derivation, however, is relegated to Chapter IV  (see 

Theorem IV.4.4).

Recall that ^  =  o(6(0),.. .  ,0(k)) and that both 0{k) and x (k ) are 

measurable random vectors. The stability condition in Theorem I I I .5.2 relies on 

computing

E { l{ e(fc+i)=J}|^fc}l{0(fc)=i} =  

t o - 1 f0 - i
£  Pr{6>(fc +  1) =  j \ 0 (k) =  i, 0 (k -  1) =  4 _ ! , . . . ,  0(0) =  l0j

lo=0 i =0

l{0(fc)=i,0(fc-l)=Jfc_1,...,0(O)=/o}> (50)

where lo, ■ ■ ■, 4 - i e ito -  I t  follows from the definition that E{l{e(k+i)=j}\<^k}l{o(k)=i} 

is a bounded random variable that takes values in [0,1]. Thus, there always exists 

constants 0 <  M tJ(k) < 1 such that

E{l{0(jfc+i)=j}|«^fc}l{0(fc)=i} <  M ij(k)l{e(k)=i},

for every k >  0. Clearly, the set {M ij(0 ), M j j ( l ) , . .. } is bounded from above, so 

there exists constants such that M ij > M ij(k )  for all k >  0. This motivates the 

following definition.

D e fin itio n  I I I . 5.1 A matrix Mg € is an upper bound m a tr ix  with respect

to the random variables defined in (50), or simply Mg is an upper bound matrix, i f  

each of its entries, M i j , 1 satisfies the condition

E{l {0( f c+ i ) = j } | <  M itjl{0(fc)=i},

'N ote th a t the rows and columns of Mg are labeled from 0 to t o  — 1.
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fo r every k > 0 , where i , j  € Te0 .

The following is the main result of this section.

Theorem  III.5 .2  Consider the stochastic dynamical system system {Z +, Rn, || • ||, © } 

associated with the jump linear system2

x(k  +  1) =  Ag{k)x(k), x(0) =  x 0, (51)

where { 0 (k),k  >  0} is any discrete-time stochastic process independent of x o, such 

that Q(k) e l lo , fo r every k >  0. Let Me =  [M itj ] be an upper bound matrix fo r the 

random variables in (50) and define

A Me =  (MJ ® /„2) diag(A) ® A>, • • •, ^ 0- i ® Aeo- 1).

I f  p ( A m „ )  <  1, then (51) is second moment stable.

R em ark III.5 .1  Note that the stochastic dynamical system {Z +, R ", || • ||, © } is asso

ciated with the jump linear system in (51) only. No relationship with any underlying 

HJLS is presumed or needed to prove this result. This is important to emphasize 

because Theorem III. 5.2 can be applied outside the context of HJLS’s. Its application 

to HJLS’s, however, is fu lly explored in Chapter IV.

Proof: The proof parallels that of (Theorem 2.1, Ji & Chizeck 19906). First, fix  any

stochastic motion in © and observe that p(A ms) <  1 implies that for any given set

of real, symmetric, positive definite matrices {W i > 0 , i  € le0} there exists a set of

real, symmetric, positive definite matrices {Pi > 0 ,! G T^0} such that

to—l
J 2  M ijA jP jA i -  Pi -  -W i (52)
j= 0

2This theorem was developed in collaboration with Mr. Heber Herencia-Zapana (Tejada, Gonzalez 
& Gray 2007).
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holds for every * € ‘Zf-o (Costa & Pragoso 1993). Next, consider the Lyapunov function 

V (k ) =  x T(k)Pe(k)x(k), and observe that

AP ||x(A;)||2 < V (k) <  Ap||x(A;)||2, (53)

where Ap and Ap are, respectively, the smallest and largest eigenvalues of {P i, i G 

IeQ}- F ix an in itia l state x0, let ^  =  a(6(0) , . . . ,  6 (k)) and note that

E {V (k  +  l ) | ^ fc,a:o} =  E {x ’T(k )A l{k)Pe(k+1)Aeik)x (k ) \^ k,x 0}

t0 - i
=  E E ( x  (k)AQfji}P j\{0(jz+i}=j}AQ(k}x(k)\&k, Xo}.

3 = 0

Note that for a given Xo, both x(k) and 0(k) are measurable w ith respect to 

Thus, each term in the sum above can be expanded as follows

E{a; (k)AQ^Pj'L{g(i<:+i)=j}A0(k)&(k)\<^ki ^o}

to—i
=  ^  , E ja ; (k)A} Pjl{g(ic+i')=jyA ix (k ) l{0(ic')=i } \ ^ k ixo^ 

i= o  

e0 - i
=  x rT(k)A jP j AiE ^ l {e(k+i)=j } \ ^ k , x ^ x ( k ) l {e(k)=i}-

i=0

Since Pj is positive definite, it  follows that x T(k)AJPjAiX(k) > 0. This fact together 

w ith the independence of x 0 and {0 (k ),k  >  0}, and the assumption that Mg is an 

upper bound matrix, yields

E { *  ( k ) A f f ^ P j1 .^ ie+i'j=jyAg^ic)X (k ) \^ k :  •£()}

t o - 1 

i=0

and therefore,

t o -1
V { V ( k  +  l ) \ & k,x0} <  ^2 x T(k)

i=0 lj=o
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Note that V (k) =  Y^=o1 xT (k) Pi&(k)l{e(k)=i}, so it follows from the expression above 

and (52) that

E {V (k  +  l ) \& k,x0} -  V (k ) < - x T(k)Wm x(k).

Next, observe that dividing the expression above by V (k ) yields, after some simpli

fications,

where a =  1 — (Xw /Xp), 0 < a < 1, and Xw is the smallest eigenvalue of {W i, i £ Ie0}- 

Since E {E {V (A ; +  l)|< ^fc}|^ fc-i} =  E {V (k  +  l ) \ ^ k - i } ,  it follows from (54) that

Finally, taking expectation w ith respect to 0(0) in the expression above yields, 

after using (53),

Since this conclusion can be reached for every stochastic motion in 6 , it  follows from 

by Definition I I I .2.7 that (49) is exponentially mean square stable and, consequently, 

second moment stable. ■

I t  is clear from its derivation that the stability test in Theorem I I I .5.2 is least con

servative when the entries of Mg are as small possible, i.e., when M ij =  supj.-fM ij(&:)}. 

Also, observe that if  d(k) is a Markov chain, its transition probability matrix, lie ,

E {V {k  +  l ) \& k,x 0} < a V ( k ) , (54)

E {V (k  +  l) |^ o ,x0} =  E{V(A; +  1)|0(O ),r0} <  a k+1 V (0).

E{||#(fc +  l) ||2|a;o} <
E { r ( fe  +  l)la:o} 

Ap

afc+1E {V (0 )|r0}
A p
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satisfies the upper bound condition in Definition III.5.1, i.e., Mg =  lie , and Theo

rem I I I .5.2 becomes the well-known mean square stability test developed in  (Costa & 

Fragoso 1993). Finally, note that by letting Mhj  — 1, i , j  =  1 , . . . ,£o, Theorem I I I .5.2 

becomes the sufficient condition for asymptotic stability under arbitrary switching in

troduced in Theorem II I .3.2. The rest of this subsection presents two case studies 

that illustrate the application of Theorem II I .5.2.

Case S tudy 1: S ta b ility  o f H JLS ’s w ith  Perform ance M ap

This case study shows that Theorem I I I .5.2 can lead to a tighter sufficient mean 

square stability condition than does Theorem III.5.1.

Theorem  I I I . 5.3 Consider the stochastic dynamical system {Z +, Y, d, 6 }  associated 

with the HJLS with performance map defined in (44). The HJLS is second moment 

stable whenever p ( A m 6) < 1, where

A m» =  (M f  ® I n2) diag(A) ® A0, . . . ,  Alvtv_x <g> Ae„ê i ) .

Proof : I t  was shown in the proof of Theorem III.5.1 that for every set of numbers 

lo, ■ • ■, h - 1 € Tlo,

Pr{0(£; +  1) =  j\0 (k ) =  i, 0{k -  1) =  . . . ,  0(0) -  Z0} € {0 ,p * } ,

wherep?- =  P r { i p ( k + 1 )  =  j \ < p (k )  =  I}, and i  =  i - £ v [ i / £ v \ , j  =  j - £ v [ j / £ v \ .  Clearly, 

it  follows from (50) that if  M itj =  p fj then E {0 (/c+ l) =  j \ ^ k } ^ - { e ( k ) = i )  < M i , j l { o ( k ) = i }  

for every i ,  j  6  T t 0  • Furthermore, it  follows from the definition of i  and j  that 

M i j  =  M i+evj , M i t j+ev =  M i+evj + ev , i , j  =  0 , . . . , £ v - l .  So M e =  [ M it j ] can be 

expressed as M g  — E(i/ ® I IV. Since by construction M g  is an upper bound matrix,
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then it  follows from Theorem III.5.2 that if  p ( A m 8) < 1 then the jump linear closed- 

loop system embedded in (44) is second moment stable. However, the mean stability 

characteristics of the jump linear closed-loop system and the HJLS are equivalent. 

Thus, if  p ( A Me) < 1, the HJLS is second moment stable. ■

Note that A m 9 =  A  (see (45)), so p ( A m 9) < IM m JIoo =  ||-4||oo- Thus, Theorem

III.5.3 provides, in general, a tighter sufficient mean square stability condition than 

Theorem I I I .5.1. Furthermore, it  also provides a more complete stability character

ization because it  shows that system (44) is not only mean square stable but also 

exponentially mean square stable and stochastically stable.

Case S tudy 2: S ta b ility  o f a JLS d riven  by a S ta tic  Function  o f a M arkov 

C hain

Consider a jump linear system driven by a process { 0 ( k ) ,  k  >  0}, which is a static 

function of a Markov chain. This is the case, for example, of a jump linear system 

driven by the output of either a FSM or a finite-state stochastic automaton, which in 

turn is driven by a Markov chain. These systems have been used to study the stability 

and performance of fault-tolerant digital flight controllers. For instance, in (Zhang 

et al. 2005) the stability of these systems was studied using a well-known stability 

condition which is both necessary and sufficient. In  contrast, Theorem III.5 .2 provides 

only a sufficient stability condition. Nevertheless, as w ill be shown in the sequel, this 

latter condition requires a much smaller computational effort than the one in (Zhang 

et al. 2005), and thus is more feasible for use in complex applications. This conclusion 

is based on the following lemma.
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Lem m a I I I . 5.3 Let {(p(k),k >  0} be a finite-state Markov chain with state space

Z(v, transition probability matrix I IV =  and in itia l distribution Pq. Let

{ 0 (k),k  >  0} be such that 0 (k) =  w((p(k)), k >  0, where w  : —> I (0 is a

static (memoryless) onto map. Assume that to  <  ty  and, fo r every i € Z(Q, define 

the set L i =  vo~l {i) with L i C Ss- The matrix Mg =  where

with p f s =  Pr{<p(A; +  1) =  s\<p(k) =  r } ; is an upper bound matrix with respect to the 

random variables defined in (50). That is, ^{\.{o{k+i)=j}\^k\^-{6(k)^i} < -M»,.7' l { 0(fc)=»} 

fo r every i, j  € Ie0 ■ Moreover, M ij are the smallest constants that satisfy this condi

tion.

Proof: Let & k =  a  (0 (0 ),..., 0(k)) and observe that l{6»(fc)=t} =  Y lreC i 1 {v>W=r}- 

Hence,

max
reC i

(55)

E { l { 0(fc+ l)= j}|^fc}l{0(fc)=i} =  ^  E { l { # +l)= « } l^ } lw ) = r } '
s€Cj r€Ci

Since ip(k) is a Markov chain, it  follows that

and therefore,

E{l{e(fc+I)=j}|^it}l{0(fe)=i} =  < X ]p r,s > lMfe)=r}
reCi I seCj

(56)

Observe from (55) that YlseCjPf.s — M iji so clearly

E{l{e(fc+i)=j}|^*;}l{0(fc)=j} <  ^  M i,jl{<e(k)=r} =  Mijl{g(k)=i}.
reCi
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4
M o ,, M0J
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l̂o-1.0 Mt0-i.t0 -1

FIG. 10: Structure of the permuted transition probability m atrix of

Thus, Me =  [M jj] is an upper bound m atrix. I t  also follows from (56) that M lj  is 

the smallest number that upper bounds all the coefficients ^2seCjPf,s every time 

k. Thus, Mitj  is the smallest constant that satisfies E{l{e(fe+1)=J}|^*;}l{e(/c)=i} < 

This completes the proof. ■

Lemma III.5 .3  has the following alternative interpretation. Suppose that the rows 

of 11̂ , were reordered so that those corresponding to states in £ 0 are listed first, 

those corresponding to states in L \  are listed next, and so on. Moreover, just for 

convenience, suppose that the rows corresponding to states in the same set, e.g. £*, 

were reordered in increasing numerical value. Finally, suppose that the columns of 11̂ , 

were then permuted in the same order as the rows and call the permuted m atrix 

Then 11̂  can be partitioned into { l o f  sub-matrices, such that the i , j - th  sub-matrix, 

I l t j ,  has dimension n, x r i j ,  where n* =  |£ j| (see Figure 10). Then, it follows from 

(55) and (56) that is the maximum row sum of f i j j .  Also observe that M i j  

represents the maximum probability that {0 (k ),k  >  0}  visits state j  given that it  is
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N (k)^ Stochastic m Jump
Linear
System

x (k ^

Automaton

FIG. 11: Jump linear system driven by a stochastic automaton, 

currently at state i.

In  order to relate Lemma III.5 .3 w ith the approach in (Zhang et al. 2005), consider 

again the jump linear system

x(k  +  1) =  A0(k)x(k), (57)

where {0 (k ),k  >  0} is the output of a finite-state stochastic automaton defined as

follows (see Figure 11).

Definition III.5.2 A fin ite-sta te stochastic autom aton is a five-tuple 

, f ,w ) ,  where I ( N is the automaton’s set of input symbols, Es =

(e i,. . . ,  e(s} is its set of internal states, and X(0 is its set of output symbols, f

describes the dynamics of the automaton as follows

f  • %eN x Es x Es —► [0,1]

(/, ei} ej) i-> pltj,

where p f j  =  Pr{z(A: +  1) =  ej\N (k)  =  l ,z (k ) =  e j,  and {N (k ) ,k  >  0} and
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{ z(k),k  >  0} represent, respectively, the automaton’s input and state processes. F i

nally, w  is a memoryless output map, which has the form

w  : le N x Es -+ Ie0

{N (k), z{k)) i-> 0(k) =  w (N (k ) ,  z{k)) — 0 ... is  — 1 z(k),

that is, the automaton’s output process {0(h), k >  0} depends only on its state process, 

{z(k), k >  0}.

I t  follows from its definition that the automaton is a Moore FSM w ith non- 

deterministic state transitions. That is, given a current state and input, eg. (e*,/), 

the next state, ej, is reached w ith probability p-j. Also note that when {N (k ) ,  k >  0} 

is a Markov chain independent of the automaton’s in itia l state z(0) w ith transition 

probability m atrix ILv, the process (<p(k) =  (N ( k ), z(k)), k >  0} is a Markov chain 

w ith transition probability m atrix given by (Zhang et al. 2005)

n *  =  d ia g (n ° ,. . . ,  n ^ - ' x n *  ® h s ),

where I fs is an is  x is  identity matrix, and I I 1 =  [pA] £ M.esxes for a ll I G IeN- I t  

follows from the definition of w  that 0(k) =  [001  . . .  is  — l]<p(fc). That is, 9{k) is 

a static function of <p(k). This motivates the following result.

Lem m a III.5 .4  Consider the jump linear system (57) driven by the output of 

a finite-state stochastic automaton as shown in Figure 11. I f  the input process 

{N (k ) ,  k >  0} is a Markov chain independent of the automaton’s initial condition 

z(0), then (57) is mean square stable whenever p(A m6) < 1, where

A Me =  (MJ  ® / na) diag(A> ® Ao , . . . ,  Aeo-1 <8> Aeo- 1),

with M e =  [M ij], M i j  =  max;gI(w {p/+ lj+ 1 } , i , j  e l eo.
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Proof : Since {0(k),k  > 0} is a static function of {w {k ),k  >  0}, it  follows from 

Lemma III.5 .3  that Me =  [MtJ] is an upper bound m atrix provided that

Mi j  — max I  Y ]  P i{ (N (k  +  1), z(k  +  1)) =  (u, es)\(N (k), z(k)) =  (/, er )}  I ,

where Ci =  =  { ( l,er ) G XtN x Es : w(l,er ) -  i } ,  and Cj — a7_1( j )  =

{(u,ea) G leN x Es : w(u,es) =  j } .  Observe from the structure of the zu that Ci =

{(0, ei+1), . . . , (£ n -  1, ei+1)}  and Cj =  {(0, ej+1), 1, ej+ i) } . Consequently,

M iyj =  max < V ]  P r{ {N {k  +  1), z(k  +  1)) =  (u , ej+ i)|(iV (fc), z(k)) =  (I, ei+ i)}

=  max {P r{z(fc +  1) =  ej+1\(N(k), z(k)) =  (l,ei+ l) } }
1&I<N

= {p\+i j + i }  •

Thus, M e =  [M ij], M id =  maxigI<N {p!+i,j+1}> hJ  £ Z>0, is equivalent to the upper 

bound m atrix defined in (55). Therefore, it  follows from Theorem I I I .5.2 that (57) is 

MS stable whenever p(A m9) < 1- ■

Note that in (Zhang et al. 2005) the stability of (57) is determined by analyzing 

the equivalent model

x(k  +  1) =  AN(k),z(k)x{k), (58)

where x (k ) G Rn and A ^ ei) =  T j_ i, for a ll I e l tN and ej G Es. Since

{ (N (k ) ,  z(k)), k >  0} is a Markov chain, the mean square stability of (58) can be

assessed by determining if  the spectral radius of

A  =  (IIJ  (8) I n 2) diag(A),ei ® A0 < e i AeN- Utg <S> AtN_ i,e<s) (59)
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is less than 1. The key observation is that M g  € Re° xto, whereas Hv €

In general £n £s  £o, so p ( A m „ )  can be computed w ith much better numerical 

accuracy than p(A). This is a significant advantage in situations where n 3> 1. 

However, as Lemma III.5.4 shows, M g  does not take the transition probability m atrix 

of {N (k ) ,k  >  0} into consideration, so the stability test in Theorem I I I .5.2 can be 

more conservative than the approach taken in (Zhang et al. 2005).

III.6 NUMERICAL EXAMPLES

This section contains two numerical examples that illustrate the theorems devel

oped in the previous sections. The first example compares Theorems I I I .3.3, I I I .3.4, 

and III.5.1. The second example illustrates Theorem III.5.2.

III.6.1 Example 1: HJLS with Performance Map

In  this example, three hybrid jump linear systems w ith performance map are used 

to represent closed-loop systems implemented on fault recoverable computers. These 

systems operate as follows: {N (k ) ,k  >  0} is a two-state Markov chain, i.e. N (k )  G 

{ 0, 1}, representing the absence (0) or presence (1) of computer faults in a system. 

The objective of the supervisor is to maintain a correct level of performance, which is 

attained when the norm of the plant’s state vector, ||®(fc)||, is below a specified level 

a. Thus, the A / S  output is 0 whenever ||*(A;)II < a and 1 otherwise. The supervisor 

can select one of three operational modes: Nominal, Fault-Recovery, and Performance 

Recovery. The Nominal mode is selected only when there are no detected faults in 

the system and the performance is acceptable, i.e., when N (k )  — v{k) — 0. The 

Fault-Recovery mode is selected whenever there is a fault in the system, regardless of
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TABLE I: Hybrid Jump Linear Systems’ Parameters.

HJLS 1 HJLS 2 HJLS 3

Ao
' 0.75 0.15 ' 

0.40 0.30
0.41 0.075 
0.20 0.15

' 0.90 0.15 ' 
0.40 0.30

A\
'-0 .62 0.00 

0.00 0.57
' - 1.01 0.00 

0.00 0.40
- 1.20 0.00 

0.00 0.70

A2
' 0.21 0.00 ' 

0.10 0.30
' 0.25 0.00 ' 

0.05 0.30
' 0.50 0.00 ' 

0.10 0.60

n iv
' 0.10 0.90 ' 

0.05 0.95
' 0.70 0.30 ' 

0.60 0.40
' 0.60 0.40 ' 

0.50 0.50

the current performance of the system. This is because the supervisor prioritizes fault 

correction over performance correction. Finally, the Performance Recovery mode is 

selected when the performance is unacceptable and there is no detected fault present 

in the system, i.e. N ( k ) =  0, v(k) — 1. The behavior described above can be 

represented by setting Ai =  A3 in (44). Table I gives the parameters for each HJLS. 

A ll the examples use the same in itia l condition x0 =  [1 — l ] T, the same in itia l chain 

distribution [1$ = [ 1 0 ], and the same performance threshold a =  1.

In  Table II, the entries w ith a check mark indicate which stability conditions are 

met by the HJLS’s. For example, HJLS 2 satisfies the necessary condition for sta

b ility  under arbitrary switching but not the sufficient condition clearly showing that 

the necessary condition is not sufficient to ensure stability under arbitrary switch

ing. Also, HJLS 3 only satisfies the necessary condition for stability under arbitrary 

switching.

Monte Carlo simulations were used to confirm these predictions. Since it  is im

possible to show that HJLS 1 is asymptotically stable for every switching rule, the 

following procedure was followed: 2000 sample paths of N (k )  were produced and for
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TABLE II: S tability Conditions Satisfied by the HJLS.

Theorem II I .3.3 Theorem III.3 .4 Theorem III.5.1

p(A) < 1 p(A /L )  < 1 Mlloo < 1

HJLS 1 0.9997 / 0.2499 / 0.7463 /

HJLS 2 2.2729 0.5682 / 0.9947 /

HJLS 3 3.1651 0.7913 / 2.0470

each one, the system trajectory was computed. A t every time k the square of the 

norm of the plant’s state vector was calculated. Finally, the average of ||x(A;)||2 was 

computed and plotted in Figure 12. As this figure shows (and was expected), none 

of the 2000 sample paths diverged to infinity. The mean square stabilities of HJLS’s 

2 and 3 were estimated also using 2000 Monte Carlo runs. Figure 12 also shows the 

simulation results for those systems. Note that the simulations suggest that HJLS is 

also mean square stable.

III.6.2 Example 2: A JLS Driven by a Stochastic Automaton

Consider a scalar version of the jump linear system in Figure 11. Its dynamics 

are given by

x(k  +  1) =  a e(k)x{k), (60)

where {#(&), k > 0} is the output sequence of a stochastic automaton w ith parame

ters: X(_N =  Tz0 =  { 0, 1}, £5  =  {e i, e2, 63},

0.50 0.25 0.25 0.25 0.50 0.25
n° - 0.25 0.25 0.50 , n1 = 0.25 0.25 0.50

0.50 0.25 0.25 0.50 0.25 0.25
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E{|)x(k)Jf2) in Examples 2 &  3

Mean o f |jx(k)|p in Example I
1 1 0 '

£  10'

—  Example I
-  -  Example 2 
■ ~ • Example 3

100 „  150, 
Samples

200 250 30050

FIG. 12: Mean of the norm squared (HJLS 1) and second moment of x {k ) (HJLS’s 
2 and 3). HJLS 1 satisfies Theorem III.3.3 while HJLS 2 satisfies Theorem I I I .5.1. 
HJLS 3 satisfies neither condition.

0(k) =  <

and

0 : z(k) — ei

1 : otherwise.

The dynamics of the plant are given by the state matrices <2q =  0.7 and CL\ — 1.001. 

The stability of (60) was determined using Theorem I I I .5.2 and Lemma II I .5.4, and 

by testing the stability of the equivalent model (58). I t  follows from Theorem I I I .5.2 

and Lemma III.5.4 that

Mg —

Since p(A\fe) =  0.9965, the jump linear system is mean square stable. This was con

firmed by Monte Carlo simulations, where the second moment of x(k) was estimated 

using 10,000 runs each of 500 sample periods. The simulation results are shown in 

Figure 13, which clearly shows that E{||a:(A;)||2} —> 0 as k —> oo as expected.

0.50 0.75 j 0.2450 0.5010
0.5 0.75 > A-m9 = 0.3675 0.7515
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FIG. 13: Estimate of E{||a:(fc)||2} computed via 10,000 Monte Carlos runs.

The second method, that is, testing the stability of the equivalent model (58), 

requires one to compute p(A), where A  is defined in (59). The spectral radius of A,

which varies depending on I Ijv =
1 _ „ N  0̂,0 1 ™0,0

1 P l , l  P l , l
, was computed for different values of

Pofo and Piti- The results are plotted in Figure 14. Observe that 0.78 <  p{A) <  0.82, 

which implies not only that (60) is mean square stable, but also that p { A m 9) and 

p(A) are reasonably close in size.

I I I .7  C H A P T E R  S U M M A R Y  A N D  C O N C LU SIO N S

This chapter has established a framework and definitions necessary to study the 

stability of hybrid jump linear systems. Emphasis was placed in deriving testable 

sufficient mean square stability conditions, which were derived using three approaches: 

switched systems techniques, singular value techniques, and a lifting  technique. The
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FIG. 14: Spectral radius of A  as a function of and (see (59))

main results are listed in Table I I I  along (see also Figure 8). The two more important 

ideas presented in this chapter follow.

•  The stability of a given HJLS can be studied using general techniques, such 

as those introduced in Theorem III.5.2. However, less conservative conclusions 

can be drawn by exploiting the particular structure of the HJLS, as exemplified 

in Theorems III.4 .2 and III.4.3.

•  Theorem I I I .5.2 established a general method to study the stability of jump 

linear system driven by general stochastic processes.
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TABLE III: Summary of The Main Results in Chapter III.

Technique Theorem Summary

Switched Systems

III.3.3 Sufficient AAS condition for switched systems

III.3.4 Necessary AAS condition for switched systems

III.3.5 Sufficient MSS condition for general HJLS’s

Singular Values

111.4.1 A sufficient and a necessary MSS condition for 
general HJLS’s

III.4.2 A sufficient and a necessary MSS condition for a 
particular HJLS

III.4.3 Sufficient MS instability condition for a particular 
HJLS

Lifted A  m atrix

111.5.1 Sufficient MSS condition for a HJLS’s w ith per
formance map

III.5.2 Sufficient MSS condition for JLS’s driven by 
general, finite-state, discrete-time stochastic pro
cesses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

CHAPTER IV

STABILITY ANALYSIS OF HJLS’S USING THE 

MARKOV KERNEL TECHNIQUE

IV. 1 INTRODUCTION

The main goal of this chapter is to derive testable mean square stab ility condi

tions for HJLS’s w ith embedded Moore FSM’s using Theorem II I .5.2. As explained 

in Chapter II I, this theorem makes use of the upper bound matrix, M$ =  [M ij], 

which collects the smallest possible upper bounds, M for a particular set of ran

dom variables associated w ith the mode-setting process {0 (k ),k  >  0}. When this 

process is a Markov chain, its transition probability m atrix, n^, and the m atrix 

Me coincide. In  the context of HJLS’s, however, {0(k),k  >  0} is generally not 

a Markov chain, and Me must be computed using a different type of analysis. 

As is shown in the sequel, under specific conditions the state process of a HJLS, 

{(j/(A;), N (k )) ,  k >  0}, constitutes a Markov chain on a metric space w ith associated 

Markov kernel P(y,jv). This kernel, which determines the transition probabilities of 

the jo in t process {(y(k), N (k )), k > 0}, can be used to estimate the transition proba

bilities of {0(k), k > 0} yielding the smallest possible values for M i3. The end result 

of this analysis is Theorem IV.4.4, which extends the stability test for HJLS’s w ith 

performance map, introduced in Chapter III, to a much larger subclass of HJLS’s, 

namely, HJLS’s w ith Moore-type FSM’s.
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The concepts and analysis tools needed to prove Theorem IV.4.4 are introduced 

in Sections IV.2 and IV.3. Of special interest is Theorem IV.2.1, which shows the 

conditions under which the jo in t process, {(x(k), N (k)), k >  0}, formed by combining 

the solution, x(k), of a non-linear stochastic difference equation of the form a;(A:+l) =  

Fk(x(k), N (k ) )  and its input, N (k),  constitutes a Markov chain. This well-known 

fact plays an important role in the analysis that leads to Theorem IV.4.4. Surprisingly, 

a detailed proof of Theorem IV.2.1 seems to be lacking in the literature. One is 

provided here based on the general approach presented (Morozan 1976) for non-linear 

difference equations w ith i.i.d. inputs.

As was discussed in Chapter II, HJLS’s are autonomous discrete stochastic hybrid 

automata which, in turn, are known to be the discrete-time version of piecewise 

deterministic Markov processes (PDP’s) (see Bemporad & Di Cairano 2005). The 

latter have been extensively studied due to their ab ility to model a broad range of 

continuous-time phenomena (cf. Davis 1993). So far, the research on the stability 

of PDP’s (in continuous-time) has mainly addressed conditions for the existence of 

non-trivial invariant distributions (cf. Davis 1993). Although there is also some work 

on moment stability for these systems, there are at present no mean square stability 

tests for continuous-time or discrete-time PDP’s. Thus, the ideas presented in the 

following sections may provide an alternative methodology for the stability analysis of 

PDP’s in discrete-time. The foundations are laid for such a methodology by deriving 

several properties of HJLS’s, including a complete account of the many Markov kernels 

associated w ith them, and the evolution of their probability measures.

The rest of the chapter is organized as follows: basic facts about Markov chains
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in metric spaces are summarized at the end of this section. Section IV.2 derives the 

Markov property for non-linear difference equations w ith Markovian inputs, Theorem 

IV.2.1. I t  also derives the Markov kernel associated w ith these equations. Section 

IV.3 derives the properties of HJLS’s from the Markov chain perspective. I t  is shown 

that a HJLS can be posed in the framework of Theorem IV.2.1, proving that the state 

process of a HJLS, {y(k), k >  0}, has the Markov property. This section also derives 

the Markov kernels and the probability distributions associated w ith HJLS’s. The 

chapter ends w ith Section IV.4, which introduces two new sets of testable sufficient 

mean square stability conditions for HJLS’s. The first set of conditions consider a 

special case of the A /S  map. Under this restriction, the FSM embedded in a HJLS 

behaves as if  it  were driven only by its input { N ( k ), k > 0}. As a consequence, the 

mean square stability of the HJLS can be studied w ith tools available for Markov 

jump linear systems. The second set of conditions is based on computing the bounds, 

in Theorem III.5.2 using the Markov kernels associated w ith the HJLS. These 

results constitute the main contributions of this dissertation.

IV. 1.1 Basic Properties of Markov Chains in Metric Spaces

Let {<p(k),k > 0} denote a discrete-time stochastic process taking values on a 

set X .  This process is called a Markov chain if  it  satisfies the Markov property, 

namely, ~Pr{ip{k +  1) 6 B\<p(k),. . . ,  y?(0)} =  Pr{</?(& +  1) € B\ip(k)}. Markov chains 

are usually studied under the assumption tha t the ir state spaces are fin ite . In  such 

cases, their properties can be characterized by studying their one-step transition 

probabilities (cf. Papoulis 1991). If, for example, ip(k) G X  — 2 ^ , it  is always possible 

to arrange its transition probabilities into a transition probability matrix, Ylv — \pfj],
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w ith p fj =  Pr{<^(fc +  1) =  j\ip(k) =  i} ,  i , j  € X ^, whose properties determine, 

among other things, the long term behavior of {(p(k), k >  0}. This analysis, however, 

is not practical or even possible when X  =  Z or X  =  R for obvious cardinality 

problems. Fortunately, most of the theory available for finite-state Markov chains 

has been extended, under certain conditions, to Markov chains w ith countable (cf. 

Nummelin 1984) and uncountable (cf. Hernandez-Lerma & Lasserre 2003, Meyn & 

Tweedie 1993) state spaces. In these cases, the transition probability matrices are 

replaced by Markov kernels which determine the long term behavior of their associated 

Markov chains. Since the state process of a HJLS, {y (k ) ,k  > 0, takes values on 

Mn+ ŝ, the rest of this section w ill summarize the basic properties of countable (or 

uncountable) Markov chains evolving over metric spaces.

Let (X , dx) be a metric space w ith Borel algebra 3§{X). A Markov kernel on X  is 

a function, P : I x  & (X )  —> [0,1], w ith the following properties (Hernandez-Lerma 

& Lasserre 2003):

(MK-i) For every x  £ A", P(x, •) is a probability measure over 3S(X).

(MK-ii) For every B € & (X ) ,  P(-, B) is a bounded measurable function.

I f  {<p(k),k >  0} is a time-homogeneous Markov chain on X ,  it  can be shown that the 

function

PV(X, B) A  P r{<p(k +  1) € B\ip(k) =  * } ,  (61)

w ith % € X  and B  G & (X ) ,  satisfies properties M K-i and M K -ii above. This 

function, called the Markov kernel associated w ith {ip(k),k >  0}, is the countable 

(or uncountable) equivalent of a transition probability matrix. Moreover, the long
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term behavior of {cp(k), k >  0}, that is, its convergence, is determined by its Markov 

kernel since the chain’s probability measures,

n l{B )  =  Pr {<p(k) € B}, B e  & ( X ) ,k  >  0

evolve according to the Kolmogorov equation

f4+ i(B ) =  J  PAXk,B)fj,^(dxk)
x

=  J  p <p(Xk, B) J  Ptp(xk-i,B )ii£_1(dxk-i)
X X

=  J  Pv(Xk, B) J  Pv{Xk-1, B) "  J  Pv(Xo, B )^ (dxo ).  (62)
X X  X

To simplify the notation, let M \(X )  represent the set of all the probability measures 

over £%{X). Next, define the operators P* : M \(X )  —>• M x(X), k >  0 as follows:

P> ( £ )  =  »(B), Pvli{B ) =  J  p v(y> B M d y ) ,  Pj+V (5 ) =  PVP lA B ) ,  (63)

where [i € M i{X )  and B e & (X ) .  The Kolmogorov equation (62) can now be 

expressed more succinctly as

h W B )  =  P X M  =  P j+V « B ). (64)

The importance of equation (64) in stability analysis is twofold. First, if  there 

exist invariant distributions such that n f(B ) =  Pvfi^(B), for a ll B e & {B ) ,  it  

can be shown that under certain conditions the long term behavior of {<p(k), Ar >  0} 

can be studied via Monte Carlo simulations (Hernandez-Lerma Sz Lasserre 2003). 

Second, if  it  can be shown that there exists a unique invariant distribution, w ith 

the property

Jim J  h (x )P ^ (d x )  =  J  h{x)nt(dx),k
X
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for every fi e M \(X )  and every bounded measurable function h : X  —► K  w ith 

compact support, then {cp(k),k >  0} converges at least in distribution, which is the 

weakest form of stochastic convergence. In other words, the existence of such a unique 

invariant distribution is a necessary condition for the convergence of {(p(k),k >  0} 

in, for example, the second moment.

This approach, which is equivalent to the one used to study PDP in continuous

time (Davis 1993), w ill not be pursued in this chapter. Instead, (64) w ill be used to 

derive closed-form formulas for the probability distributions associated w ith HJLS’s 

(e.g. nvk). The analysis and interpretation of these formulas w ill lead to the sufficient 

mean square stability tests introduced in Section IV.4. Towards this goal, the next 

section introduces the tools necessary to establish the Markov property of the process 

{ (y (k ) ,N (k ) ) ,k  >  0}, where y(k) is the state of a HJLS and {N (k ) ,k  > 0} is a 

Markov chain.

IV. 2 THE MARKOV PROPERTY OF NON-LINEAR DIFFERENCE  

EQUATIONS WITH MARKOVIAN INPUTS

I t  w ill be shown in the next section that the dynamics of a hybrid jump linear 

system can be expressed as the solution of a non-linear difference equation w ith a 

Markovian input. Although the Markov property of this type of equations has already 

been established by several authors, a comprehensive and complete proof of this fact is 

lacking in the literature. Consequently, the first subsection addresses this problem by 

introducing a detailed proof of this fact using only fundamental measure-theoretical 

concepts. The second subsection below presents the Markov kernels associated w ith
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this type of equations.

IV.2.1 The Markov Property of Difference Equations with Markovian 

Inputs

Consider the following system of difference equations

x(k  +  l )  =  Fk(x (k ) ,N (k )) ,

where F* is a time-indexed sequence of Borel functions and {N (k ) ,k  >  0} is a 

Markov chain. The Markov property of {(*(& ), N (k )),  k > 0} (or { (a:(i), N (t) ) ,  t >  

0}) for this class of equations has been addressed in the literature. I t  has been 

stated w ithout proof by many authors both in discrete-time (cf. Costa et al. 2005) 

and in continuous-time (cf. Fang & Loparo 2002, Ehrhardt & Kleinman 1982). On 

the other hand, the proofs that are available either address the simpler case when 

{N (k ) ,  k >  0} (or {N ( t ) , t  >  0}) is an independent and identically distributed (i.i.d.) 

process (Morozan 1976, Arnold 1974), use heuristic arguments (Srichander & Walker 

1993), or employ sophisticated results (Arnold & Kleinmann 1982). To the best of 

our knowledge, there is no complete proof of the Markov property of (x (k ) ,N (k ))  

when N (k )  is a Markov chain. The following theorem presents a complete and 

explicit proof which uses only fundamental measure-theoretical concepts and follows 

the probabilistic approach, that is, it  interprets the process { (x (k ) , N ( k ) ) , k >  0}  as 

a sequence of random vectors and exploits its properties.

Theorem IV.2.1 Consider the system of equations

x(k  +  1) =  Fk(x (k ),N (k )) ,  x(0) =  x 0, (65)
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where x(k)  € Rn, {N (k ) ,  k >  0} is a Markov chain in Rm with a finite, countable or 

uncountable state space, x 0 is an integrable random vector independent o f {N (k ) ,  k > 

0}, and Ffc : Rn x Rm —> Rn are measurable functions for every k >  0. The process 

{ (x (k ) , N (k ) ) , k >  0} is a Markov chain.

The proof of Theorem IV.2.1 relies on the following three supporting results: The

orems IV.2.2-IV.2.4. The detailed proofs of Theorems IV.2.2 and IV.2.4 are relegated 

to Appendix B to simplify the presentation of the proof of Theorem IV.2.1. The proof 

of Theorem IV.2.4 can be found in the appendix of (Morozan 1976).

Theorem  IV .2 .2  Consider system (65) under the conditions of Theorem IV.2.1, 

and let f  : Rm —> R be any bounded Borel function. Then, i t  follows that

E { f ( N ( k  +  1))|*(A:), N ( k ) , . . . ,  x(0), N (0 )} =  E { f ( N ( k  +  1))|*(A), N (k ) j .  (66)

Proof Outline: This result is straightforward. Since x(k) is a (measurable) func

tion of 0(k — 1),.. .,0(O), then a (x (k ) , . . . ,  *(1 )) C a(0 (k),.. .  ,0( 0)). Hence, 

a(x(k), N ( k ) , . . . ,  a;(0), N ( 0)) =  o{0{k), . . . ,  0(0), *(0 )). This fact together w ith the 

independence of *(0 ) and {N (k ) ,  k >  0}, and the Markov property of {N (k ) ,  k >  0} 

show (66). ■

The formal proof of Theorem IV.2.2, which uses measure-theoretic concepts and the

orems that need to be introduced first, has been included in Appendix B.

Theorem  IV .2 .3  (Morozan 1976) Let Tt be a linear space of bounded real-valued 

functions defined on a set 4>. Assume that

(i) Ti contains the constant functions.
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(ii) I f { f n }  is a sequence in TL and f n —* f  uniformly, then f  E li. .

(iii) I f  { fn }  is a monotone sequence in TL and 0 < / „  <  M  fo r all n, then 

lim n—,oo f n £ TL.

(iv) TL has a subset C with the property: i f  C\, c2 G C, then their product, CiC2, also 

belongs to C.

Then TL contains every bounded function g : $  —► M which is measurable with respect 

to the a-algebra generated by the sets: {(j) G $  : c((j>) G B}, c G C, B  G &(R ).

Proof : See Theorem 1 in the appendix of (Morozan 1976). ■

Theorem IV.2.4 Consider system (65) under the conditions of Theorem IV .2.1, 

and let =  Rn x Rm x Rm. IfTL is the set of all bounded Borel functions f  : $  —» R 

such that

E { / ( * ( * ) ,  N (k), N (k  +  l))|*(/u ), N ( k ) , . . . ,  x(0), N (  0)}

-  E { f (x (k ) ,  N (k ),  N (k  +  l))|*(A r), N (k ) } ,  (67)

then TL satisfies conditions (i)-(iv) of Theorem IV.2.3.

Proof: See Appendix B for details. ■

The fundamental step in the proof of Theorem IV.2.1 is to establish that the set 

TL of all bounded Borel functions which satisfy (67) contains every bounded Borel 

function on <f>. This is proven by combining Theorems IV.2.3 and IV.2.4. Theorem 

IV.2.2 is used to verify property (iv) in Theorem IV.2.4.

Proof of Theorem IV.2.1: First recall from (p. 564, Shiryaev 1995) that a random 

process {<p(k),k > 0} is a Markov chain if  and only if  for every bounded, real

valued Borel function, h, it  follows that E{h(<p(A;-|- l))|<p(A:),. . . ,  V’ (O)} =  E{h(ip{k +
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l))|<^?(fc)}. In particular, to show that (x(k), N (k ))  is a Markov chain, it  is sufficient 

to prove that for every bounded Borel function h : R n x Rm —> R

E {h (x{k  +  1), N (k  +  l ) ) \x (k ) ,N (k ) , . . . ,  x (0 ) ,N (0 )}  

=  E {h (x(k  +  1), N (k  +  l))|*(fc ), N (k ) }

or, equivalently,

E {h(Fk(x (k ) ,N (k )) ,  N (k  +  l))|s(A :), N ( k ) , . . . ,  x(0), N (0 )}  

=  E {h(Fk(x(k), N (k)), N (k  +  1))|®(A0, N (k ) } .

Let Ti. be the set of all the bounded Borel functions /  : $  —> R, $  =  R ”  x R m x R m, 

that satisfies the expression

E { f (x (k ) ,  N (k ),  N (k  +  l ) ) \ x ( k ) , N ( k ) , x ( 0 ) , N ( 0 ) }  

=  E { f (x (k ) ,  N ( k ), N (k  +  l))|aj(A:), N (k ) } .  (68)

I t  follows from Theorem IV.2.4 that Ti satisfies all the conditions of Theorem IV.2.3. 

Thus, 'H contains all the bounded functions g : $  —► R which are measurable w ith 

respect to &/, the <r-algebra generated by the sets {</>€$:  c(</>) € B},  c € C C H , 

B E ^ (R ).

As is shown in the proof of Theorem IV.2.4, the set C is composed of all bounded, 

separable functions c : $  —> R of the form c{4>) — 01(7 )62(A), where 61 : R " x R m —> R 

and c2 : R m —*• R are bounded Borel functions, and 0 =  (7 , A).

Now, let A G srf and observe that A  must be of the form

hi
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for some q  e C and e <^(R). But the functions Cj are Borel, thus {4> : Ci(<j>) £ 

Bi:j} £ & (R n) 0 & ( R m) 0 & ( R m), and consequently, A £ & (R n)0A3(Rrn)0A&(Rm).1 

Moreover, since this is true for every A £ &/, it  follows that stf C <^(R") 0  & (R m) 0  

& (R m). Conversely, note that for every B £ A3(Rn) 0  & (R m) 0  A3(Rm), B  =  {(/> : 

1{B}(0) £ [0.5,1.5)} £ £/, since the indicator function of B, 1{B}(-), belongs to C. 

This implies that srf D & (R n) 0 & ( R m) 0 & ( R m), so s f  =  ,0(R n)<g>.̂ (Rm)® .^ (R m).

Hence, 7i contains every bounded Borel function of the form g : $  —» R, and each 

of these functions satisfies (68). In particular, let h : R" x Rm —*■ R be any bounded 

Borel function and define g(4>) =  h(Fk('y), A), <j> =  (7 , A). Clearly, g £ 'H, so in (68)

E {g (x (k ) ,N (k ) ,N (k  +  l)) \x(k), N ( k ) , . . . ,  *(0 ), JV(0)}

=  E{g(x(k), N (k ),  N (k  +  1 ))|*(*), N (k ) } ,

which implies that 

E{h(Fk(x (k ) ,N (k ) ) ,N (k  +  l ) ) \x ( k ) ,N (k ) , . . . ,  ®(0), iV (0)}

=  E {h(Fk(x (k ) ,N (k )) ,  N ( k  +  1))|*(A:), N (k ) } ,

or

E {h (x(k  +  1), N (k  +  l))|*(fc ), N ( k ) , . . . ,  *(0 ), IV (0)}

=  E {/i(x(fc  +  1), N (k  +  1))| x (k ) ,N (k ) } .

Since this is true for every bounded Borel function h : Rn x Rm —> R, we conclude 

that {(a:(fc), N (k)), k >  0} is a Markov chain. ■

The next step in the analysis is to derive the Markov kernel associated w ith 

{ ( x ( k ) ,N (k ) ) , k > 0 } .

'i n  this context, ® represents the direct product of cr-algebras.
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IV.2.2 The Markov Kernel of Non-Linear Difference Equations with 

Markovian Inputs

The following two assumptions are introduced to place the following discussion 

closer to the context of HJLS. First, although the proof of Theorem IV.2.1 does not 

require {N (k ) ,k  >  0} to be a finite-state Markov chain, it  w ill be assumed that it  

takes values from w ith transition probability m atrix IIjv  =  [p ij]- Second, it  w ill

be assumed that =  F  for all k > 0. Under these conditions, the Markov kernel

associated w ith { (x (k ) ,N (k ) ) ,k  >  0}, P(x,n), can be derived using the approach 

introduced in subsection IV . 1.1. That is, define

P(x,N)((x, i ) , D ) ±  P r{(*(fc  +  1), N (k  +  1)) G D\(x(k), N ( k )) =  (*, *)},

for every (x , i) G M" x I 1n and D € 38(Wl x I ( N). Observe that Pr{(a;(A: +  1), N ( k  +  

1)) G D\(x(k), N (k ))  =  (x , i) }  ^  0 only if  (F (x , i ) , l ) G D  for some I G XtN. Note 

that {a; : x(k,u j) =  x,N(k,u>) =  i }  =  {ui : x (k  +  l,u ;) =  F (x , i) } .  Thus, it  follows 

that

Pr{(*(A : +  1), N (k  +  1)) =  (F(x, i),l)\(x(k), N ( k )) =  (x, *)}

=  P r{ N ( k  +  1) =  l\{x(k), N ( k )) =  (x, *)}

=  P r{N (k  +  l )  =  l \N (k )  =»} ,

where the last simplification is explained w ith an argument sim ilar to that in The

orem B.1.3. That is, since {w : x(k,uj) =  x}  G a (N (k  — 1) , . . . ,  N (k ) ,  *(0 )), the 

simplification follows from the independence of *(0 ) and {N (k ) ,k  >  0}, and the
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Markov property of the latter. Combining these elements together yields

I s —1
P i x , N ) ( ( x , i ) ,D ) =  ^ 2  1D { { F ( x , i ) , l ) ) p * l .

1=0

I t  is easy to show that P(x,n ) fu lfills properties (M K-i) and (M K -ii). Furthermore, if

D — B x C, where B E ^ (R n) and C E 2IeN, jv) can be written as

f j v - l

p(x,w )((z, i ) , B x C ) = ^ 2  1 b ( F ( x , i ) ) l c ( l ) p Z -  (69)
1=0

Finally, consider the following lemma which provides an alternative proof for the 

results in (Morozan 1976). This lemma is also consistent w ith (p. 23, Hernandez- 

Lerma & Lasserre 2003).

Lemma IV.2.1 Consider system (65). I f  Fk — F  fo r a llk  >  0 and {N (k ) ,  k >  0} is 

an i. i. d. process taking values on FeN, which is independent o fx (0), then {x(k), k >  0} 

is a Markov chain in R" with Markov kernel

l s ~  1
P x(x ,B )  =  ^ 2  1 B (F{x , i ) )p i ,  (70)

i=0

where pi — Pr{lV(A:) -  i} .

Proof : First, observe that if  {N (k ) ,k  >  0} is an i.i.d. process, then pF =  pj. Fur

thermore, { (x (k ) ,N (k ) ) ,k  >  0} is also a Markov chain. Hence, assuming that 

Pr{a;(A; +  1) E B\x(k) — x }  ^  0, it  follows that

Pr{a;(A; -I-1) E B\x(k) =  x }

t-S — 1 I s  — 1
=  ^ 2 ^ 2  P r{ * ( fc +  1) e B, N {k  +  1) =  j ,  N ( k ) =  z|cc(At) =  x }

i=0 j=0
eN- i  eN- i  +  i)  G B N( k̂ +  i)  =  ^  N (k )  =  i, x(k)  =  x }
E E Pr{x(A:) =  l }
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^ n r .-,^p r {x(k) =  x ,N (k )  =  i }
“ S E  p (*.*)((®> *)»B  x M ) )  Pr {x(A:) =  x } 

i=o j=o i v y  j
(■N — 1 ĴV —1

=  X !  J 2  p ( ^ ) { ( x ,  i ), s  X { j } )  P r{ iV (fc )  =  i |* ( fc )  =  x } .
i=0 j=0

Note from (65) that x (k) is a function of {cc0, N ( 0), . . .  ,N ( k  — 1)}. This fact and the 

assumption that Xo and {N (k ) ,k  >  0} are independent imply that x(k) and N (k )

are independent for every A; > 0. Hence, using (69) in the expression above yields

I n — I ^ j v —1 / f j v - 1  \

Pr{a:(A; +  1) G B\x(k) =  x} =  ^  I 5 Z  1B(F {x , i ) )1{ j}{ l )Pi,i ) Pi
i=0 j=0 \  1=0 )

i s  — 1 I n —1

=  E E  M ^ X M ) ) ? ^
i=0 j=0

<jv —1 ^ j v - 1

=  M F (X> *))Pi Y1 PiJ
i=0 j=l

f j v - 1

=  l B(F(x ,*))p i-=  Px(ar,5).
i=0

I t  is easy to see that Px defined above complies w ith properties (M K-i) and (M K -ii). 

Thus, it follows from Kolmogorov’s Existence Theorem (Shiryaev 1995, Billingsley 

1995) that {*(& ), k > 0} is a Markov chain. ■

The Markov property of a HJLS can now be established using the tools developed 

in this section. This analysis is presented in the next section together w ith a discussion 

of the evolutions of the distributions, f iyk, associated w ith a HJLS.

IV.3 THE MARKOV PROPERTY OF HYBRID JUM P LINEAR  

SYSTEMS

This section is divided into three parts. The first subsection presents a discussion 

of finite state machines in the framework of Theorem IV.2.1. The goal is to show the
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circumstances under which the state process of a FSM, {z{k ),k  >  0}, constitutes a 

Markov chain, and to derive its associated Markov kernel. Although this is an inter

esting result in its own right, it  is included mainly to motivate and clarify the notation 

in (75) and (77), which is used extensively at the end of this section. The second 

subsection shows that a canonical HJLS can be posed in the framework of Theorem

IV.2.1. This clearly shows then that systems modeled as HJLS’s axe Markov chains. 

As a consequence, it  possible to derive their associated Markov kernels both when 

{N (k ) ,  k >  0} is a Markov chain and when it is an i.i.d. process. The last subsection 

derives closed-form formulas for the probability distribution, yvk, of a HJLS’s state 

vector, y(k). The derivation is based on the aforementioned Markov kernels and on 

equation (64).

IV .3 .1  M arkov Kernels Associated w ith  FS M ’s

Recall from Definition II .2.2 that the evolution of the states of a fin ite state 

machine w ith input process {N (k ) ,  k >  0} is given by

I n —1

z(k  +  1) -  SNWz(k) =  £  l{N(k)=i}SiZ(k) =  Fz(z(k), N(k)). (71)
i=0

It  is clear that the equation above is a particular example of (65), where n =  t s and 

m =  l.  Thus, if  {N (k ) ,k  >  0} is a Markov chain, it  follows that {(z(k), N (k ) ) ,  k >  

0} is also a Markov chain over E5 x ZeN, provided that z(0) and (JV(k), k > 0} are 

independent. This derivation is important because it provides an alternative proof 

of the well-known fact that the cross product of the state and the input of a FSM 

constitutes a Markov chain (cf. Patilkulkarni et al. 2004). The focus here, however, 

is the Markov Kernel associated w ith {(z(k), N (k )),  k >  0}. When {N (k ) ,  k >  0} is
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a Markov chain, it  can be shown that the corresponding Markov kernel is given by

I n  — 1

P(«,jv)((cr, i ) , C x D ) = J 2  lc(S ier) l D(l)p%, (72)
1=0

where i  e l e N,e r £ X s, C E 2Es, and D E 2x‘n . It  follows from Lemma IV.2.1 that 

{z(k), k >  0} is a Markov chain over £5  when {N (k ) ,k  >  0} is an i.i.d. process. In 

which case, it  can be shown that its Markov kernel is simply given by

I n —1

P g(er ,C) =  1 c(Sier )pi, (73)
1=0

where pi =  P r{N (k )  — I}, er E £s, and C E 2Es (equation (73) can be derived 

from (72) by setting D =  and noting that pi =  p ft when {N (k ) ,k  >  0} is an 

i.i.d. process).

R em ark IV .3 .1  When {N (k ) ,k  >  0} is an i.i.d. process, I I2 =  \pfj\, the transition 

probability matrix associated with the Markov chain {z (k ),k  >  0}, is given by

£n ~  1

n z = st ± Y 1  sipi- 
1=0

To see this, observe from (73) that

i n —i  t t f —i

Pij =  p z(ei, {gj}) =  1{e,}(Siei)pi =  ^ 2  e]S ieiPi =  e]Sei =  ejSTej.
1=0 1=0

Consequently,

n2 =
~ eJSTe1 .

—

'e?ST'

h  . îs _

1---------
h-H 

...
i

eJsS*e i . • eTesSTees_ T  Q T

----
1i

Finally, note that I(s, anhsx ?s identity matrix, can be written as I(s =  [e\ . . .  ê s] . 

Hence, I I2 =  ST.
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Remark IV.3.2 When {N (k ) ,  k > 0} is a Markov chain, a similar approach can be 

used to compute an expression fo r U(ZtN), the transition probability matrix associated 

with { (z (k ) ,N (k ) ) ,k  >  0}. However, a simpler expression can be obtained fo r  the 

probability matrix of { (N (k ) ,z (k ) ) ,k  >  0} as shown in (Patilkulkami et al. 2004)-2

On FSM ’s Embedded in  HJLS’s

Consider the state evolution of the FSM embedded in a HJLS. It  is given by

z{k  +  1) =  5ljv(fc),V'(a:(fc))'̂ '(̂ ')- ( ^ )

Note that if  x (k ) =  i e i "  for all k >  0, then the equation above could be rewritten 

as

z(k  +  1) =  SN(k)z(k),

where S/v(fc) =  5W(fc),i/>0r)- Since this equation is similar to (71), one can define a 

Markov kernel associate w ith { (z (k ) ,N (k ) ) ,k  >  0} as follows:

I n -  1

< ~  S  lc(SiMx)er )lD(l)p"h (75)
{ r ^ ( C , D ) ^

where er E E5 , i G I t N , C G 2Ss, D  G 2IeN , and x G Rn.

Remark IV.3.3 Note that P (x) can be seen as a family of Markov kernels in- 

dexed by x. Also note that there are only l v possible Markov kernels, since x must be

long to one the partitions induced by ip- Finally, observe that the notation, P (x),
(r,i) ,(C ,D )

is simply a compactification of the notation, P((er , i ) ,C  x D).

2Note that Patilku lkam i et al. study the jo in t process { ( N ( k ) ,  z ( k) ) ,  k  >  0} instead o f the process 
{ ( z ( k ) , N ( k ) ) , k  >  0 }, which is the focus here.
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In  general, of course, x(k) is not constant for every k >  0. Therefore, (75) cannot 

be used to show that {(z(k), N (k )), k >  0} is a Markov chain for every HJLS. Instead, 

P (x ) can be interpreted as follows: if  it  is known that x(k) =  x, z(k) =  er , and
( r , i) , (C ,D y  V

N ( k ) =  i, observe that the probability that at time /c+1, (z (k+ l) ,  N ( k + l ) )  G C x D ,  

for some C G 2Es and D  G 2t ‘n is either equal to zero, if  S i ^ ( S) ^ r  £ C, or equal to 

Z JeDP& -  °> when S'Mi)er € C. That is,

P r{z (k  +  1) € C, N (k  +  1) G D\z(k ) =  er , N (k )  =  i, x(k) =  x }

1

1=0

This clearly suggests that

P (x ) =  P r{z (k  +  1) G C, N (k  +  1) G D\z(k) =  er , N ( k ) =  i, x (k ) — x } .
( r,i) ,(C ,D )

(76)

This assertion is proven in the next subsection. A similar development is possible 

when {N (k ) ,k  >  0} is an i.i.d. process. In this case, define P (x) as
r,C

?N — 1
P (x) ±  V  1 c(SiM i)er )Pi, (77)

r,G ‘ ®i= 0

where er G Eg, C  G 2Es, and x  G Mn. A reasoning similar to the one above suggests 

that P^x) can be interpreted as follows (see next subsection for a proof)

P (x) =  Pr{«(/c +  1) G C\z(k) — er , x(k) =  x }. (78)
T,C

Note that a direct comparison w ith (72) and (73) reveals that P (x) and P (x)
(r,i) ,(C ,D ) r ,C

in, respectively, (75) and (77) are both Markov kernels for every fixed x G Mn. On 

the other hand, the equalities in (76) and (78) need to be formally established. T his
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w ill be accomplished in the next subsection, after introducing the Markov kernels 

associated w ith HJLS’s. As a final remark, consider the following simplifying notation. 

I f  C =  {es} and D =  { j }  then the following abbreviated notation w ill be used

r u  ■ u F \ r \ ^  =  1{e' } (SiM*)er)pU
?N — 1

IV.3.2 On the Markov Property and Markov Kernel of Canonical HJLS’s

Recall from the discussion in Chapter I I  that every HJLS w ith an embedded 

Moore-type FSM can be transformed into an equivalent canonical HJLS. Conse

quently, the analysis that follows focuses on determining the Markov property and 

Markov kernel of the latter. Recall that the evolution equation of a canonical HJLS 

given in Definition II .2.4 can be written as

x(k  +  1) Az{k)x (k )
z(k  +  1) R N(k),ip(x(k))Z(k')

(80)

where

£„-i
^ (x) =  |J  Ri =

i= 0

(81)

As before, let Y =  Kn x Ss, y{k) =  [x(k)T z{k)TY  represent the state of the HJLS, 

and define F  : Y  x lg N i-» Y  as

F(x, z, I) =
Fi{x,z)

F2(x,z,l)
Azx

Ri,ip(x)z

ts
^2 AiXl { z=Ci} 
i=1

eN- ie v- i
12 12 <S,i,j2 l0e{i}}1{xeHj }

_ 1=0 j =0

(82)
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Note that (80) can be expressed as

y(k +  l )  =  F (y (k ) ,N (k )) ,  (83)

where F  in (82) is a Borel function. Moreover, observe that y(k) 6 7  c  Rn+fs. Thus, 

(83) is a particular case of (65) in which n has been replaced by n +  Is  and m =  1 

(N (k) E l iN C R1). This establishes the Markov property of { (y (k ) ,N (k ) ) ,k  >  0} 

provided that y {0) is integrable and independent of the Markov chain {N (k ) ,  k >  0}. 

Consequently, this and the following additional assumptions w ill be taken to hold in 

the sequel.

Assumption IV.3.1 Assume that y {0) and {N (k ) ,k  > 0} are independent. I t  is 

also assumed that z (0) and x(0) are independent. Let the distribution of x(0) be 

Vo =  fo r  some ie R "  and every B  E  <^(Rn) (Ss(-) is the Dirac measure).

Under Assumption IV.3.1, { (y (k ) ,N (k ) ) ,k  >  0} is a Markov chain on Y x l (N. 

Consequently, it  follows from (69) that its kernel, P(y,N), is given by

(■N~ 1
P(y,iv)(([eXr] x C x D) =  ^ 2  lB (^e r^ ) lc ( ‘S'i^(x)er) l z?(Z)p^, (84)

1=0

where x E  R", er E  £ s, i E leN, B  E  ^ (R n), C E  2Es, and D E  2I in . Observe from 

(75) that (84) can be written as

P p ) ( ( [ : ] , i ) , B x  C x D) =  l B(Aerx) P J x ) .

Moreover, if  follows from the discussion on Markov kernels associated w ith a Markov 

chain provided in Subsection IV.1.1 (see equation (61)) that

p M ( ( [ : ] , i ) , r x C x i ) )
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=  P r{y (k  +  1) e Mn X  C, N (k  +  1) e D\y(k) =  [ * ],  N (k )  =  z}

=  Pr{z(A; +  1 ) e C ,  N (k  +  1) e D\z(k) =  er , N ( k ) =  z, x(k) =  x } 

=  P (:r).
(er ,i) ,(C ,D )

Clearly, the last two equalities establish (76). A similar derivation is possible when 

{N (k ) ,k  >  0} is an i.i.d. process. In such cases, Lemma IV.2.1 implies that

{y{k), k >  0} is a Markov chain in Y  w ith Markov kernel given by

tN—i
p „ (U M , b x O = £  l-B(Aer3?)lc(‘Sli,V'(x)'2')Pi- (®^)

i= 0

As before, observe that

Py( [ l ] , B x C )  =  l B(Aerx )P (x ) ,
r,C

which, after taking B — Rn and using (61), proves (78). Equations (84) and (85) w ill 

be instrumental in studying the probability distributions of {y(k), k >  0} as done in 

the next section.

IV.3.3 Probability Distributions Associated with HJLS’s

The goal of this last subsection is to derive closed-form expressions for the proba

b ility  distributions y vk associated w ith the state vector of a HJLS when {N (k ) ,  k > 0 }  

is either an i.i.d. process or a Markov chain. In the latter case, the probability dis

tribution, t^k 'N\  of {(y(k), N (k )),k  >  0} is computed first and then used to de

rive These probability distributions are defined as in subsection IV .1.1, that is, 

yvk{B) =  Pr{y(A;) 6 B }  and ŷ k ’N\C )  — Pr{(y(k), N (k ))  G C }, for every k >  0, 

B G & (Y ) ,  and C G SB{Y) ® 2I(n . As done earlier, the discussion w ill be restricted 

to canonical HJLS.
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P ro b a b ility  D is trib u tio n  o f a C anonical H JLS ’s w ith  i.i.d . In p u ts

Under Assumption IV.3.1, the probability distribution of y (0), /ig, has the form 

Ho(B x C) =  5x(B)hq(C), for any B  E & (R n) and C  E 2Es. I t  follows from the 

Kolmogorov equation (62) and the definition of F  in (82) that

r f ( B  x C )  =  Py 0(B x C)

=  I  Py( y ,B x C ) f i v0(dy)
Y

. ĵv-1
^ 2  1B ( F i { y ) ) l c { F 2( y J ) ) P i ^ yo(dy)-
i—n■y t — 0

Using Fubini’s Theorem (Billingsley 1995), the expression above can be simplified as 

follows:

In-  1
p \{B  x C) =  2̂ [  f  1B(Azx ) l c (SiMx)z)pi5i (dx)^(dz)

i= 0  E S R»

£n~ 1 p 

i—A Xi=() „Ss
ts ?N — 1

— ^  ^ M o ( { e r o } ) l B ( - ^ e r n ^ )  ^  ] ^ - c { S i t,j)(x)e ro )P i-  
r o = l  i = 0

Observe that the right-most summation in the expression above is P (x). Also note
ro ,C

that l B{Ae x) =  6;i x{B). Thus, it  follows that'ero^J -  ^Aero

IS
lA(B  x C) =  ^ /* S ( {e n,} ) ^ . ,o,(B ) P (*). (86)

u ro,C
r o = l

R ecall th a t for every fixed x ,  P  (x ) is a  M arkov kernel. T hus, for every  ero €  E g ,
ro,C

P (x) is a probability measure over E5. Let Px,r0(B  x C) — 2(B ) P (x) for
ro ,(-) ’ r ° r 0,C

every B  E ^ (R n), C E 2Es, and observe that this is a product measure over Y, 

which has the same form as Thus, Pypxtro(B x C ) can be computed using the
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same procedure as in (86). That is,

i s

PyVx,ro(B XC ) =  Y ^  P {x)8A A i{B )  P' (Ae x).
■ r o , r i  i  u  r i , C
n = l

Furthermore, since f i \ {B  x C) =  P y ji^B  x C), it  follows from the expression above 

and from (86) that

l 4 ( B  x C) =  P /4 (B  x  C)

i S

=  * c )
r 0= 1

i s

=  £  £ / 4 ( K } )  P ( * ) « * , * , . ( « )  PJAe^x). (87)# * * ■* t*o,ri i u n,C
ro=l r i= l

Again, letting x C) =  5A A J B )  P (Ae x),  yields, after computing
7*1,0

Pylix,r0n (B  x C ) and repeating the procedure above,

4 ( B  x C )

=  X ]  X ]  ' ^ v l { { er0} )B T {x)Pr {AerQx)5Aer2Aer iAerox {B )B J <AerxAerQx).
ro=l r i= l T2 =l

Hence, a simple induction argument proves the following theorem.

Theorem  IV .3 .1  Consider a canonical HJLS with state evolution equation (80). Let 

the input process {N (k ) ,  k > 0} be an i.i.d. process, and let Assumption IV.3.1 hold. 

The distribution of y(k) — [a;(A;)T z{k)T]T, pvk, is given by

p l(B  x C ) =

i s  i s

E  ^o ({er0}) P (*) P iAer0X)--- P i Aerk "  ' A ^ x ) -fo,ri r  i,r2 r/t_2 ,r*_j K_d u
r0= l r fc_x = 1

Tk-P  (S Aerk- 2 '  '  ’  Ae’~0 X ^ A‘ rk_1 - A erQx ( B ) ,  ( 8 8 )

fo r  any B  € <Ŝ (Mn), C e 2Ss, and k >  1.
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Proof: A proof by induction is immediate using the procedure followed above to derive 

(87) from (86). ■

Probability Distribution of a Canonical HJLS with Markovian Input

A procedure sim ilar to the one that lead to Theorem IV.3.1 can be followed when 

{N (k )  , k >  0} is a Markov chain. In  this case, however, the procedure yields a closed- 

form expression for p^!'N  ̂■ Thus, extra steps are needed to compute pvk from 

As before, Assumption IV.3.1 implies that ^ q 'N\ B  x  C x  D) — 5x (B ) pqZ'N\ C  x D), 

for any B E ^ (K n), C E 2Es, and D E 2I in , where is any distribution over

S5 x le N. (Assumption IV.3.1 also requires that Pq 'N  ̂ =  PqPq , but this is not relevant 

for the subsequent analysis). Using the Kolmogorov equation (62) and the definition 

of F  in (82) yields

p ^ ’N){B x C x D) =  P (ytN)$ ' N){B x C x D )  

=  J P(y,A0 (y, i , B x  C)p(oV,N) (dy x di)
Y x l tN

£n— 1/  i_ 1
1B(Fi (y)) lc(F2(y , i ) ) lD ( j )pZp io ’N)(dy x di),

a nY x X t „  3 -0

where the last expression follows from (84). Again, applying Fubini’s Theorem yields

. t-N — 1
p[v’n)(B x C x D) =  f j  ̂ 2 l B(Azx ) l c (Siti,{x)z ) lD(j)p^j SS:(dx)p{0z'N\d z  x di)

SsxI<JVR" 3=0

/ ( n  — 1

^ 2  ^B{Azx) lc {S i^ (x)z ) lD( j ) p f ^ ' N\d z  x di)

^SXltN

= ]C 51 Po'N){{{er0, io)})lB{Aerox) ]T lc {S loM-x)ero) l D{ j )p l j
r o = l  io = 0  j = 0
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=  J 2  Vo’N)({(ero,io)})tAerox{B) . P (x).
, . A (ro^o)i(C,£/)ro=l to=0

Note that P (x) is a Markov kernel. Thus, P (x) is a probability measure
(ro,io ),(C ,D y (ro,io),(;-)

on E5 x J (N, which implies that pf0<io(B x C x D ) =  8a€t x(B) P (x ) is a product
r° (ro,*o), (C,D)

measure on Y x w ith the same characteristics as p̂ 'N .̂ Hence, P ŷ^ p f oio{B x 

C x D) can be computed using the same procedure used to obtain p ^ 'N\  This, in 

turn, implies that =  P (y,N)P î'N  ̂ can be computed as follows:

$ ' n){B x C x D)

i s  t-N  — 1 t-S  t-N  — 1

= E  S ] E E  »o'N)({(er0,io)}) . P . (x )6a Aerox{B) . P' (Ae x).
“  “ i “ n (ro,*o),(ri,ii) 1 0 (n,n),(C,D)ro=l to=0 r i= l  i \  =U

I t  is clear that, by repeating the same procedure, it  is possible to compute p ^ ’N\  

p$ ,N\  .. •, etc. This is formalized in the next theorem.

Theorem  IV .3 .2  Consider a canonical HJLS with state evolution equation (80). Let 

the input process {N (k ) ,k  >  0} be a Markov chain and let Assumption IV.3.1 hold. 

The distribution of (y(k), N (k )),  p.^'N\  is given by

$ ' N\ B  x C x D) =

i s  # N - 1 i s  I n —1

E E - " E  E  /4 ‘ i,v)( { ( ^ , io ) } ) ,  p  .,(* ) , p  / m -
, n i n (ro,*o),(ri,ti) (ri ,*i),(ra,*2 )ro=l io=0 rfc_i=lifc_!=0

P (Aer • ■ • Ae x) P (Ae ■ • • Ae_ x)Sa ...a x(B),

(89)

and the distribution o fy(k) is given by

p l(B  x C) =  ^ ’n)(B x C x 1(n), (90)

fo r  any B E <^(R” ), C E 2Es, D E 2I i n and k >  1.
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Proof : The proof of (89) follows directly from an induction argument. The proof of

(90) follows from the definition of a marginal distribution. ■

The next section takes advantage of Theorems IV.3.1 and IV .3.2 to derive two 

new sets of testable sufficient mean square stability tests for HJLS’s.

IV .4  S U F F IC IE N T  MS S T A B IL IT Y  TESTS FO R  C A N O N IC A L  

H JLS ’s

This section introduces two new sets of sufficient mean square stability tests for 

canonical HJLS’s. The first set of tests is based on imposing a structural restric

tion on the A /S  map. The second set adapts Theorem I I I .5.2 to HJLS’s. This 

involves computing appropriate upper bound matrices, Mg, and using the concept of 

A-equivalence explained in the sequel.

IV .4 .1  M S S ta b ility  Tests Based on Com m on In va ria n t Subspaces

Consider a canonical HJLS w ith state evolution equation (80). For the JLS embedded 

in the HJLS define a common invariant subspace as follows.

D e fin itio n  IV .4 .1  A set 3 C Rn is said to be a com mon in va ria n t subspace of

the jump linear system in (80), or simply a common invariant subspace, i f  fo r  every 

x £ 3  i t  follows that Aeix £ 3 fo r all ej £ E 5 .

Examples of common invariant subspaces are 3 — R”  and 3 =  {0 }. A less triv ia l 

example is the subspace 3 =  {ap,Va £ R }, where p is an eigenvector shared by all 

Aei, ej G Es- Clearly, if  for a common invariant subspace 3, x(k ') £ 3 for some
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k' > 0, then x(k)  G 3 for every k >  k '. Recall that

l v - i

x) = a { * £ R i } ’ U ̂ =Rn>
i=0 i€li„

and assume that for some I G 2iv, Ri is a common invariant subspace. Further 

assume that *(0 ) =  x G Ri. Under these conditions, ip(x(k)) — I for all A: >  0, that 

is, the output of the A /S  map is a constant for all k > 0. This implies that the 

FSM embedded in the HJLS is “only” driven by the Markov input {iV(A;),A; > 0 } .  

Consequently, the HJLS behaves as a jump linear system driven by a FSM without 

state feedback, and its stability can be determined w ith a simple spectral radius test. 

These ideas are formalized in Theorem IV.4.1, which is based on the following two 

lemmas. To simplify the discussion, M.n\ip w ill denote the partition of Rn induced by 

i).

Lem m a IV .4 .1  Consider a canonical HJLS with state evolution equation (80). Let 

Assumption IV.3.1 hold, and assume that fo r some I G 2 Ri G Rn\ ^  is a common 

invariant subspace. Let x(0) =  xi G i?/. I f  {N (k ) ,k  >  0} is an i.i.d. process, then 

{z(k), k >  0} is a Markov chain with initial distribution Pq and transition probability 

matrix Uz — [p*J with

£n~ 1
Prs ~  P (^ ) =  ^ 2  1 {ea}{Si,ier)pi,.r,s ^

i=0

Proof: First, observe that pvk is given by (88) as a consequence of Theorem IV.3.1. 

Moreover, since x E Ri, each term of the form  ̂P fc(̂ 4erfc_2 • • • J erô ) in (88) can be
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simplified as follows:

is - 1
P S ^ erk-2 ' ’ ' ^ er0̂ ) =  5 3  -̂{e’-k }^ iM Aerk_2" Ae rox)erfc_i )Pik—l,k i=0

Is - 1
=  5 3  ■̂{erfc}('^Mer*_i)P» 

1=0

— , P . (0) — Pk- 1 k■k—l,k

Therefore, (88) can be rewritten as 

HI(B  x C) =

.̂s
5 y ‘ ’ ’ 5 y Po({ero})Pr0riPrir2 ' ' ' Prk_2rk- i rk P c^ erk-2 ’ ’ ’ ^ erl ̂ ^ Aerk-i  -Aerox(B).
ro=l rfc_i=l

Note that n t ( {erk}) =  /4 (^ "  x ( e rfc} ), so it  follows that

Pl ( {e  r j )

=  53 ' ‘ ‘ 53 Po({ero} )Prori Pr\r2 ' ‘ ' P r ^ ,  P (4 *fc_2 ’ ‘ ’ . . .^ ( R " )
r0= l rfc_1=l k 1,1 rk t

Is ?s
~  5 3  ‘ ■ ■ 5 y /io({en)})ProriPrir2 ’ ‘ ' Prk- 2rk_iPrk-irk • 

r0= l rfc_ i= l

Next, observe that p l( {e rk}) =  [Pfc({ei})> • • •, Pk({e(s})}erk- Hence, after a few sim

plifying steps, the expression above can be rewritten as

/4 ({er j )  =  W ({c i}), ■ • •, Po({e^})](H Jfcert

or, equivalently,

K ( ( c i » ,  • • •, Pk({ee.})) =  [M o({e i» , • • •, P o ({e /.} ) ](n ,) fc.

This last expression is the Kolmogorov equation of a Markov chain in £ s w ith in i

tia l distribution [Po({ei}), • • •, Po({efs})] (that is, pg) and transition probability ma

tr ix  n * =  [p*J. Therefore, it  follows from Kolmogorov’s Existence Theorem that
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{z(k), k >  0} is a Markov chain. ■

Note that in the context of this lemma, Remark IV.3.1 implies that II*  =  

SJiPi. The lemma that follows shows that a similar derivation is possible 

when {N (k ) ,  k >  0} is a Markov chain.

Lem m a IV .4 .2  Consider a canonical HJLS with state evolution equation (80). Let 

Assumption IV.3.1 hold and assume that fo r some I E l e „ ,  Ri E  Rn\̂ /> is a common 

invariant subspace. Let x(0) — xi E Ri- I f  {N (k ) ,k  >  0} is a Markov chain, then 

{ (z(k ), N (k )),  k >  0} is a Markov chain with initial distribution and transition

probability matrix n ^ jv ) = with

P ^ L )  ~  {rl J ^  =  l{e,}(Si,ier)pZ-

Proof: Using a reasoning similar to the one in the proof of Lemma IV.4.1, it  follows 

that every term of the form P (Aer • • ■ A€r x) in (89) can be simplified
(rk-i,ik-i),(rk,ik) k 2 0

as follows:

P (Aer • • • Aer x ) =  pj*’N^, w_ • v*-2 ° J ^ rk-iM-A(rk,rk)

Observe that ^ k 'N\ { ( erk^k )})  — x {(erfc, fy)}). Thus, after replacing the

expression above in (89) and simplifying, it  follows that

Pk'N\ { erkM )  =
fs  t-N — 1 f-S 1

£  ^ 2  Po’ )( { (eroUo)})P((r; ij0))](ri)ll)P ^ 1)),(r2,t2) ‘ ‘ '
ro=l io=0 rfc_i=ltfc_!=0

( 2 ,AT) (z , N )

P( r*_
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Finally, as in Lemma IV.4.1, it  is possible to conclude that

= [ '̂■JV)({(e.,0)», 1)}),... e« -  I)})](n(,,„))*,

which in turn proves that {(z{k), N (k )), k >  0} is a Markov chain w ith in itia l d istri

bution and transition probability m atrix II(2)jv) = (*.w)

R em ark IV .4 .1  Observe that the effect of requiring that aj(0) =  xi € Ri, is to 

induce a restriction on the supervisor. That is, the supervisor’s FSM is now given by 

MSpi =  (leN,T,s, I eo,Si,zo,fj.^), where Si =  {SVt„ € 5|t? € T1n , v =  I}. Hence, under 

the conditions of Lemmas IV. 4-1 and IV.f.2, the HJLS becomes a jump linear system 

driven by a FSM with a Markovian (or i.i.d.) input.

In light of Remark IV.4.1, it  is now possible to state the main result of this 

subsection.

Theorem  IV .4 .1  Consider a canonical HJLS with state evolution equation (80). Let 

S be the set of all its stochastic motions with initial condition a:(0) =  xi € Ri, I € Tiv, 

Ri 6 MnY0- I f  Ri is a common invariant subspace and Assumption IV.3.1 holds, the 

following statements are true.

(i) I f { N ( k )  , k > 0 } i s a n  i.i.d. process, the dynamical system {Z  +,Y,d,s} is 

mean square stable whenever p(Aad) <  1, where

Aiid =  (n j ® Irfi) diag(yli ® A u . . . ,  Atg <8> Alg), 

and Hz is defined as in Lemma IV . f . l .
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(ii) I f { N ( k ) , k  >  0} is a Markov chain, the dynamical system {Z  +,Y,d ,s} is 

mean square stable whenever p ( A m c ) < where

•Amc =

( n ^ jv )  ®  I n 2 ) diag(^4(i,o) <8> ^4(i,o), -^(1,1) ®  A m )  • ■ •» ®  Av-i))>

n (2jN) is defined as in Lemma IV. 4-2, and A ^ j)  — fo r every i e { l , . . . ,  £3 } 

and j  e leN •

Proof : To show (i), recall from Lemma IV.4.1 that {z{k), k >  0} is a Markov chain. 

Therefore, the jump linear system in (80) is a Markov jump linear system and the 

spectral radius condition in (i) follows from (Costa Sz Fragoso 1993). To show (ii), 

recall from Lemma IV.4.2 that {(z(k), N (k )),  k >  0} is a Markov chain. Thus, (ii) 

follows directly from Theorems 2.2 and 3.5 in (Patilkulkam i et al. 2004). ■

IV.4.2 MS Stability Tests Based on Theorem III.5.2

The stability tests developed in this subsection rely on Theorem III.5.2, which 

provides a sufficient MS stability test for a jump linear system of the form

x(k  +  1) =  Ae(k)x(k),

where {0(h), k >  0} represents any discrete-time stochastic process taking values 

from the set {1 ,. . .  ,£o}- The test consists on determining if  p(AMe) <  1, where

A Me =  (M f  ® I nt) diag(^4i <8> A u . . . ,  Ato ® Alo ),
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and M q =  [MhJ\ is an upper bound matrix. That is, the entries satisfy the 

equation

E{l{e(fc+i)=j}|^fc}l{e(A;)=i} <  M i j lWfc)=i},

where

E{l{e^k+1)=jy \^ k}l{e(k)=i} =  
to- 1 to- 1

■ • • X  P rW fc +  X) =  ^  W  =  *» “  X) =  **-*’ ■ • • > W  =  lo>'
fo=0 /jt_i=0

l{fl(fe)=»,o(Jb-i)=ifc_ 1,...,e(o)=/0}

In  Chapter III, it  was shown that this theorem could be used to study HJLS’s 

w ith performance map. Appropriate bounds, M i j ;  were computed assuming that 

W O ,*  > 0} represented the output sequences of the embedded FSM’s. The goal 

in this subsection is to extend this analysis to included canonical HJLS’s, and then 

to all HJLS’s w ith embedded Moore-type FSM’s. Recall that for a canonical HJLS, 

0(k) — z{k). Thus, the expression above can be rewritten as follows:

E { l { z (fc+I)= es} |^ j fc } l{ 2 (fc)=er} =

i s  t-S

X ' "  X  P*{z (k +  1) =  es\z (k) =  er , z ( k - l - )  =  erk_1, . . . ,z (0 )  =  ero}
'•0=1 '■*-1=1

l{z(fc)=er,z(fc-l)=erfc_1,...,z(0)=e,.0}- (9 1 )

Now, suppose that /Zq =  <5Z, that is, *(0 ) =  x for some fixed i e l " .  Observe that 

if  z(k  — 1) =  erfc_1, . . . ,  z(0) =  ero for any fixed sequence of indexes r0, . . . ,  r k _ y ,  then 

x{k) =  Ark_1 • ■ ■ Arox. If, in addition, Assumption IV.3.1 holds then Pr{z(fc +  1) =
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ea\z{k) =  er , z(k — 1) =  er k l , . . . ,  z(0) =  ero} in (91) can be expressed as follows

Pr{z(fc+1) =  es\z(k) =  er ,z(k  -  1) =  erk_x, . . . , z ( 0) =  ero}

_  P r{z (k  +  1) =  ea, z {k ) =  er , z(k  -  1) =  eTk_x, . . . ,  z(0) =  ero}
Pr{z(fc) =  er ,z(k  -  1) =  eTk_x, . . . ,z(0) =  ero}

_  Pr{z(fc +  1) =  es, x(k  +  1) =  ArArk_x ■ ■ ■ Arox , . . . ,  z(0) =  ero,x(0) =  x } 
Pr{z(A:) =  er , x(k) =  An _x • • • Arox , z(0) =  er„, *(0 ) =  x}

or, equivalently,

Pr{z(A: +  1) =  es\z(k) =  er ,z {k  -  1) =  erk_x, . .. ,z (0) =  ero} =

Pr{z(A; +  1) =  ea, x (k  +  1) =  ArArk_x • • • Arox\z(k ) =  er , x(k)  =  Ark X ■ ■ ■

Arox , . . . ,z (0 )  =  ero,x ( 0 ) = x } .  (92)

Equation (92) is the basis of the proof of the following result.

Theorem  IV .4 .2  Consider the stochastic dynamical system {Z +, Y, d, 6 }  associated 

with a canonical HJLS with state evolution equation (80). Let Assumption IV.3.1 hold 

and assume that {N (k ) ,k  >  0} is an i.i.d. process. For every element Ri G M.n\ip, 

choose an arbitrary element oti € Ri and define M z =  [MTtS], where

M r,s - m ax{P (a j)},
l€  Xtv  r,s

and P (q j) is defined as in (77). Then, {Z +, Y, d, 6 }  is mean square stable i f  p(A mz) <
r ,5

1, where

A m, =  (M J ® fn*) diag(Ai ® A l t . . . ,  Als ® Ats).

Proof : Note that the HJLS defined above satisfies the conditions of Theorem I I I .5.2. 

I t  is only needed to show that M z is an upper bound m atrix in the sense of Definition

II I .5.1. To this end, recall from Lemma IV.2.1 that when {N (k ) ,k  >  0} is an
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i.i.d. process, {y(k), k >  0} is a Markov chain in Y  w ith transition kernel given by 

Py([er } ,B x C )  =  2/=o-1 1B {A rx ) lc {S i^(x)er)pl . Hence, it  follows directly from (92) 

that

Vv{z{k +  1) =  ea\z{k) =  er , z ( k - l )  =  erk_^ . . . ,  z(0) =  erJ

— Pr{z(A: +  1) =  ea, x (k  +  1) =  A A fc_! ■ • • Arox\z(k) =  er , x(k) =  A t_! • • • Arox}

=  P ^ ^ A ^ 0* ] > {A tAth- i ■ ■ ■ Aro*} X {e .})

=== y  '  ^■{ATA r k _ 1 —AT0 x ) { A r A r k _ l  • • • A r o x ) l { e sy ( S l t1i , ( Ar k_ 1 - A r 0 x ) e r ) p l  

1=0 

tfj—1
=  y  ]  ^- {es} ( ^ l , i t ' ( A r k _ 1 - - A r 0 x ) e r ) P l  

1=0

P (Ark_! ' ' 'A,.0x).
r,s

The last step above follows from (77). Note that Ark_1 • • • Arox £ Ri for some I £ Ttv. 

Thus,

P ( A fc_! • • • Arox) =  P(o-i) <  m ax{P (a()} =  M ns.
r , s  r , s  / € J t u r ts

Using this inequality in (91) yields

es is
E { l { * ( f c + l ) = e 5} | ^ f c } l { 2 ( fc ) = e r }  <  y !  ■ ^ r , s l { * ( f e ) = e r , z ( f c - l ) = e rA. _ 1 , . . . , * ( 0) = e r.0 }

r 0 = l  r fc_ ! = l

i s  t-S

<  M rtS l { z ( f c ) = e r }  ^  l { 2 ( f e - l ) = e rfc_ 1, . . . , z ( 0 ) = e r o }

r 0 = l  r fc_ ! = l

— M r , s l { z ( k ) = e r } '

This last expression shows that M z =  [Mr,a] is an upper bound m atrix in  the 

sense of Definition I I I .5.1. Thus, Theorem II I .5.2 implies that if  p(A mz) <  1 then
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{Z +, Y,d,<3} is mean square stable, completing the proof. ■

A similar result can be derived when {N (k ) ,k  >  0} is a Markov chain. This 

result, however, cannot be derived using the same technique that led to (92) directly. 

To understand this, recall from the discussion leading to (92) that

Pr{«(A; +  1) =  ea,z(k) =  er ,z (k  -  1) =  erfc_i ; .. . ,2(0) =  erJ

=  Y>x{z{k  +  1) =  es, x(k  +  1) =  ArAr k l  ■ ■ ■ Arox , . . . ,  z(0) =  ero, *(0 ) =  x}.

This expression was derived under Assumption IV.3.1 holds w ith /rg =  8% and for a 

fixed sequence of integers To,. . . ,  The right hand side of this expression can be 

rewritten as

Pr {z (k  +  1) =  es, x(k  +  1) =  ArArt_x • • • Arox , z (  0) =  ero, *(0 ) =  x } =

P r{z (k  +  1) =  es,x (k  +  1) =  ArArjfe_1 • • • Arox ,N (k  +  1) € 2 ^ , . . . ,

2(0) =  ero, *(0 ) =  x, N (0)  € leN}

or, equivalently,

P r{z (k  +  1) =  es, x (k  +  1) =  ArArk_x ■ ■ ■ Arox , . . . ,  z{0) =  ero, *(0 ) =  x }  =

In — 1 bv — 1
' Y ! ' "  'Yh Pr{ ^ ( fc +  1) =  x (k +  !) =  Ar A r ^  ■ ■ ■ Arox, N (k  +  1) =  lk+i,
io = 0  Zfc+ 1 = 0

. . . , * (0 )  =  ero,£c(0) =  x ,N (  0) =  /0}-

Now recall that the process {(y(k), N (k )),  k >  0} is a Markov chain. So 

after m ultiplying and dividing the equality above by I>r{z{k) =  er , x(k) =  

Ark l ■ ■ ■ A rox, N ( k ) =  Ik, . . . ,  2(0) =  ero, x(0) =  x, N ( 0) =  /o}, using the definition 

of conditional probability, and using the Markov property of {(y(k), N (k ) ) ,k  >  0},
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it  follows that

Pr{z (k  +  1) =  es, x {k  +  1) =  ArAriŝ  ■ ■ ■ Arox , . . . ,  z(0) =  ero, x(0) =  x }  =

(n~ 1 Zn~ 1E E .'*) x {e,} x {4+1}) •
io = 0  ifc+ i=0

Pr{z{k) =  er , x{k) =  A rfc_x • • ■ Arox, N { k ) z(0) =  ero, *(0 ) =  x, JV(0) =  l0},

where

P(y,N) J k jd A r A r ^ - ' - A r . x }  X {es} X { /fc+1}) =

P r{z (k  +  1) =  e „ x(k  +  1) =  ArATk_x ■ ■ ■ Arox , N (k  +  1) =  lk+1\

z(k) =  er ,x(k) =  Ark_r ■ ■■Arox ,N (k )  =  lk},

and P(VtN) is the Markov kernel associated w ith { (y (k ) ,N (k )) ,  k >  0} defined in (84), 

w ith B =  {A rArk l ■ • • Arox}, C =  {es}, and D =  { lk+i} . Note from (75) and (84) 

that

p (y,w) ( ( [ Ar^ \ ' Ar°x] > Ik) , { A r A ^  • • • Arox } x {es} x { lk+i})

=  P ( A r ■■■Arox) ,
(r,lk),(s,lk+l) k 1

which in turn implies that

Pr {z (k  +  1) =  e „ x(k  +  1) =  ArArk^  ■ ■ ■ Arox , z {  0) =  ero,x{0) =  x }  =

#N — 1 — 1
^  y * * * ^  v ( i \ Y i S ^ rk-i * * ’ Arox) P r{z(k) =  er , x(k) =  Ark • • • Arox , 
zo=0 ifc+1=oWfc)’Wfc+l)

JV(fc) =  «(0) =  ero, x(0) =  x, 1V(0) - Z0}-

Note that

£n—i
(rl i ^ k - r " ^ ) =  P ■ • • Arox).
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This latter expression is either equal to 1, when es =  Siki^A rk_1-Arox)er, or equal to 

0 otherwise. Thus,

Pr{z(A; +  1) =  ea, x (k  +  1) =  ArArk_1 ■ • • Arox , z (  0) =  ero,x(0) =  x }  <

l N- 1 lN- 1
^   ̂ ^  ] Pr{z(A:) =  er , x(lt) — Ar k l  ■ • ■ Arox, JV(fc) lk, . . . ,  ^(0) firoi
l0=0 /fc—o

x(0) =  x ,N (  0) =  /0},

or, equivalently,

Pr{z(A; +  1) =  es, x {k  +  1) =  A r A ^  ■ ■ ■ Arox , . . . ,  z( 0) =  ero,x(0) =  x }  <

Pr{z(fc) =  er , x(k) =  A ^  ■ ■ ■ Arox , . . . ,  z (0) =  ero, *(0 ) =  x}.

This, in turn, implies that the procedure described above can, at best, only upper- 

bound the conditional probabilities in (92) w ith 1. That is, the best bounds produced 

by this procedure are M riS =  1. This is equivalent to the condition for stability under 

arbitrary switching of Theorem III.3.2, which obviously conservative.

This analysis can be significantly improved using the concept of A-equivalency. 

This concept was introduced by Patilkulkarni et al. (2004) in the context of Markov 

jump linear systems and can be extended to HJLS’s. Briefly (see Appendix C for a 

fu ll discussion of this concept), two jump linear systems

x(k  +  1) =  Ae(k)x(k) and x(k  +  1) =  Av k̂)x(k),

are said to be A -equ iva len t if, for every k >  0, Ag(k) =  Av(k)- Hence, two HJLS’s 

are said to be A-equivalent if  their jump linear closed-loop systems are A-equivalent.
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Consider the particular HJLS’s

x(k  +  1) =  Az(k)x(k)

z(k  + 1 )  — ‘5W(fc),V’(a'.(k))Z(kt) 

r „- i
'H x) ~  Y .  (J  = R" (93)

i=0

and

x(k  +  1) =  Az{k)tN{k)x  (k)

z(k  +  1) =  SN(kU(x(k))z(k) 
r „ - i

(94)
i=0

As explained in Appendix C, these HJLS’s are A-equivalent when they have the 

same A /S  maps, are initialized w ith the same in itia l state [xa zo], and Az(k) =  

Az(k),N(k) =  Ar , whenever z(k) =  z(k) =  er . Furthermore, it  is established in 

Corollary C.2.1 that if  Assumption IV.3.1 also holds, then the MS stability of (94) 

is equivalent to the MS stability of (93). These ideas are the basis for the next two 

theorems. They constitute the main contribution of this dissertation.

Theorem  IV .4 .3  Consider the stochastic dynamical system (Z +, Y ,d ,& } associated 

with the HJLS in (94). Assume that {N (k ) ,  k > 0 }  is a Markov chain. Let Assump

tion IV.3.1 hold, 3 and, fo r  every set R[ £ Rn\ip choose an arbitrary element ot[ £ Ri. 

Finally, let M {z<N) =  where

max
l&tv

3In  this context, Assumption IV .3 .1  requires y (0) to be independent o f { N ( k ) , k  >  0}.
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and P (a i) is defined as in (75). I f  p(Am (z N)) <  1, where

«4m(2?jv) — (M(Z'N) ® I ni)  di&g(Aifi ® A ij0, A iti ® .. •, AtSttN^i ® A ^ ^ - i ) ,

then the HJLS in (94) is MS stable.

Proof: Let 0(fc) =  (z (k ) ,N (k )) and rewrite the jump linear system in (94) as

x(k +  1) =  Ae(k)x(k), (95)

where 9(k) takes values from £5  X-I(N. As in Theorem IV.4.2, consider the conditional 

expectation

E { l { f l ( f e + l ) = ( e . , j ) } l « ^ f c } l { f l ( f c ) = ( e r , i ) }  =

( n  — 1 Z s 1

S  S  P r( 0 (fc +  !)  =  (es» i)l0 (fc) =  (er , i) ,9 (k  -  1) =  ( e ^ ,  i fc- i ) ,
r o = l  *o=0 r f c _ i = l i f c _ i = 0

• • • , 0 ( 0 )  =  ( e r o ,* o ) } l { f l ( i k ) = ( r , i ) , e ( f c - l ) = ( e r fc_ 1 ,i f c - i ) , . . . ,0 (0 )= (e r0><o)}-

Fix any in itia l condition [x j ZoV- A procedure similar to the one leading to (92) 

yields

P r{0 (fc+  1) =  (es,j) \9 (k) =  (er , i) ,0 (k  -  1) =  ( e ^ j ,  i fc- i) ,  • • ., 0(0) =  (ero, i0)}

=  Pr{0(fc +  1) =  (es, j ) , x ( k  +  l )  =  Aerii- - -Aer(piox|0(fc) =  (er ,i),

x(k) =  Aerk i ik l ■ ■ ■ Aero,iox , . . .  ,0(0) -  (ero, i0) ,x(0) =  x}. (96)

Note that this conclusion is valid under Assumption IV.3.1, since both x{k)  and z(k) 

are functions for N (k  — 1) , . . . ,  7V(0), which in turn are independent of [x j 5q]t . Now, 

let y(k) =  [x(A:)T z{k)T]T, and observe that (y(k), N (k ))  =  (x(k),0(k)), for every 

k >  0. Next, observe that

y ( k  +  l )  =  F ( y ( k f i N ( k ) ) ,
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where F  is a measurable function given by 

F (x ,z , l)  =

ts Zn~ 1
Xv ArjX l { z=er}].{i—iy
r= l i=0 

. <=0 j=0
for every x € R", 2 € Es, and 2 G leN • Hence, Theorem IV.2.1 implies that 

{(j/(/c), N (k)),  k > 0} and {(*(£), 0(k)), k >  0} are Markov chains in Y  x XiN. 

Consequently, (96) can be reduced as follows:

Pr{0(/c +  1) =  (es,j) \0 (k) =  (er , *), 6{k -  1) =  ( e ^ ,  **_i) , . . . ,  0(0) =  (ero,z0)}

=  Pr{0(fc +  l )  =  (es, j ) , x ( k  +  1) =  Aer<i ■ ■ ■ AeroMx\0{k) =  (er ,i),

x(k) — Aer k l j k_ 1 • • ■ AerQj 0x } . 

Next, note that the Markov kernel of {(y(k), N (k )),  k >  0} is given by
In — 1

P(i/,Af)(([exr ] , i ) ,B  x C x D) =  ^ 2  ^B(Aertier ) l c { S i^ x)er ) l D(j)p^j ,
3 = 0

so the conditional probability above can be reduced to

Pr{0(A; +  1) =  (es,j) \9 (k)  =  (er , i) ,0 (k  -  1) =  (e ,.^ , *fc_i),. . . ,  0(0) =  (ero, i 0)}

=  P(i/>w)(Q rfc_1 ’ fce!- r° ° ] > *) ’ {Aer,iAerk itik_1 • • • AerQti0x }  x {eTa}  X { j } ^

=  ■ * - { e r . } ( ‘S 't,V > (J4 « r fc _ 1 , i fc_ 1 - A e r o , j0 S ) e r ) P f j

Now, Aerjt iiik_1 ■ ■ ■ Aerg<iox e Ri for some set Rt. Thus,

, P AAer^.ik -1 • --Ae^ioX) =  P (a,) <  m a x i  P (a,) \  =  M (r><)>(aJ),
(r,i),(sj) * 0 (r,i),(sj) l& tv (M ,( s j)  J

and therefore

Pr{0(A; +  1) =  (es,j) \0 (k) =  (er , i), 0{k -  1) =  (erfc_1, **_ i), — , 0(0) =  (ero, i0)}
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This in turn implies that

E { l { f l ( f c + l ) = ( e 3, j ) } | ^ i t } l { e ( A ; ) = ( e r ,i)} <  ^ ( r , i ) , ( S,j) l { 0 ( f c ) = ( e r ,i)} •

Note that this conclusion is independent of x. Thus, M(2)tv) is an upper bound m atrix 

in the sense of Definition III.5.1, and Theorem II I .5.2 implies that if  p ( A m (z n )) <  1 

then the HJLS is MS stable, completing the proof. ■

The last result of this chapter follows.

Theorem  IV .4 .4  Consider the stochastic dynamical system {Z +, Y, d, © }  associated 

with the canonical HJLS in (93). Assume that {N (k ) ,  k > 0 }  is a Markov chain and 

that Assumption IV.3.1 holds. Let and A m (z N) be defined as in Theorem

IV-4-3. I f  p(A m(z n]) < 1 then the canonical HJLS in (93) is MS stable.

Proof: Consider any stochastic motion in S w ith in itia l condition [x j Zq] t . For this 

in itia l condition, Theorem IV.4.3 shows that if  p ( A m (z n)) <  1 then E{||®(A;)||2} —> 0 

as k —> oo. But (93) and (94) are A-equivalent. Thus, it  follows from Theorem C.2.1 

that E{||a;(A;)||2} —► 0 as k —> oo. Since this is true for every stochastic motion in S, 

then the HJLS in (93) is mean square stable. ■

R em ark IV .4 .2  The constants M r<s and in Theorems IV .4-2 and IV-4-3

must be computed in order to apply the stability criteria. To do so, select constants 

on 6  Ri with I € I u and Ri G R n \ ^ .  Next, compute the sets { P ( q o ) ,  . . . ,  P (a ^_ i ) }
r,s r,s

andi ,  P ,(ao),--- , ,  P (o ^ - i ) } -  Finally, set M r<a =  max{P(a0) , . . . ,  P (a ^_ i ) }  

and M {r4UsJ) =  max{ P (a0), . . P ( a ^ ) } .
( )  ( r , t ) , ( s j )
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TABLE IV : Summary of Main Results in Chapter IV.

Technique Theorem Summary

cr-algebra recombi
nation

IV.2.1 Shows the Markov property for the solution of 
non-linear difference equations w ith Markov in
puts

Invariant Subspaces IV.4.1 Testable sufficient MSS condition for canonical 
HJLS’s

Apply Theorem 
III.5.2

IV.4.2 Testable sufficient MSS condition for canonical 
HJLS’s w ith i.i.d. inputs

IV.4.4 Testable sufficient MSS condition for canonical 
HJLS’s w ith Markov inputs

The next chapter illustrates the modeling capabilities of the HJLS formalism and 

the usefulness of Theorems IV.4.1, IV.4.2 and IV.4.3 in accessing stability properties. 

The application is an AFTI-F16 aircraft control system deployed on a fault tolerant 

computer.

IV.5 CHAPTER SUMMARY AND CONCLUSIONS

This chapter has established that the state process of a HJLS constitutes a Markov 

chain in a metric space. Specific Markov kernels for the processes {(y(k), N (k )) ,  k >  

0} and {y (k ) ,k  >  0} were derived assuming that {N (k ) ,k  >  0} is, respectively, a 

Markov chain or an i.i.d. process. The analysis of the evolution of the probability 

measures of these processes, and led to two testable sufficient MS stability

conditions, Theorem IV.4.1. The analysis of the kernels associated w ith these pro

cesses, P(y,N) and Py, led to two testable sufficient MS stability conditions for canonical
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HJLS’s, Theorems IV.4.2 and IV.4.4, which are two of the main contributions of this 

dissertation. The latter was developed using the concept of A-equivalency, which is 

further developed in Appendix C. The main results of this chapter are summarized 

in Table IV .
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CHAPTER V 

SIMULATION EXAMPLE

V .l INTRODUCTION

This chapter aims to accomplish two goals. The first goal is to demonstrate that 

HJLS’s constitute a valuable modeling tool for digital control systems deployed on 

computers equipped w ith  advanced fault-tolerant mechanisms. The second goal is 

to illustrate the usefulness and lim itations of Theorems IV.4.1, IV.4.2 and IV.4.3 in 

accessing stability characteristics. The first goal is attained by introducing a HJLS 

model for a specific Advanced Recovery Mechanism (ARM). This ARM combines the 

best features of two well-known fault recovery mechanisms, rollback recovery and cold- 

restart, and makes use of the data, models, and concepts described in (Tejada et al. 

2007). The second goal is attained by analyzing the MS stability of the aforementioned 

HJLS using the tools introduced in Chapter IV  (Tejada et al. 2007). These conclusions 

of this analysis are then verified via Monte Carlo simulations.

This chapter is organized as follows. Section V.2 motivates the need for fault 

recovery mechanisms and summarizes the basic features of rollback and cold-restart 

recovery. I t  also provides a brief summary of the dynamical models proposed in 

(Tejada et al. 2007) to study the effect of these recovery mechanisms on digital control 

systems. Section V.3 motivates and introduces the particular ARM under considera

tion. This section also provides the HJLS model for the ARM. Finally, the stability 

analysis of this HJLS is performed in Section V.4 using the stability tests of Chapter

IV . Monte Carlo simulations are used to verify the theoretical predictions.
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V.2 ON FAULT RECOVERY MECHANISMS AND THEIR  

DYNAMICAL MODELS

V.2.1 Motivation and Background

The fault-tolerant community usually classifies the faults in  a computer platform  

by either their impact (local or global), their duration (transient or permanent) and 

their origin (internal or externally-induced) (see Johnson 1989). Transient localized 

faults, regardless of their origin, are handled w ith standard fault-tolerant provisions, 

such as trip le  modular redundancy or error correcting codes, which are very effective 

in removing the effects induced by the faults, while operating unobtrusively. These 

provisions, however, are not effective against global (or pervasive) faults, which are 

able to affect several locations of the computer platform at once. These faults, called 

Common Mode Faults (CMF’s), are usually handled w ith special fault recovery mech

anisms that remove the faults by executing systematic recovery procedures. These 

procedures require the host computer to temporarily stop while the corrections are 

made. Consequently, the activity of an fault recovery mechanism impacts the overall 

behavior of the computer platform and its users. In particular, if  the computer is 

executing a digital control law, it  is possible for the closed-loop system to become 

unstable if  the recovery mechanism is activated too frequently. Understanding this 

phenomena is of particular importance for life-critical applications such as commer

cial aircraft control systems or nuclear power plant controllers, which are subject to 

CMF’s induced by, for example, lightning, radar beams, or nuclear electromagnetic 

pulses (cf. Tejada et al. 2007, Gray et al. 2000).

Section V.3 presents a novel ARM that combines features of both rollback and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

cold-restaxt recovery. These classical recovery mechanisms are described next based 

on the work of (Tejada et al. 2007).

Rollback Recovery

This is an information redundancy technique consisting of three steps: checkpoint

ing, fault detection, and reload-and-retry. Checkpointing is a process that periodically 

stores a copy of the most relevant information from the computer platform ’s memory 

and registers into special protected memory. From a digital control system perspec

tive, the relevant information corresponds to the value of the controller’s state vector.

Fault detection is a continuous process that identifies the presence of a computer 

faults and triggers the reload-and-retry mechanism when necessary. The specific 

method used to detect the faults and the speed and coverage of the detection process 

varies depending on the particular hardware implementation. However, from a dig ita l 

control system perspective, it  can be assumed that the reload-and-retry mechanism 

is triggered immediately after the faults appear in the computer platform. That is, 

there is no delay between the appearance of a fault and its detection.

Reload-and-retry is the process that eliminates the effect of the faults in  the com

puter platform. After being triggered, this process stops the checkpointing process, 

if  active, freezes the computer platform ’s output ports and ceases all computing ac

tivities. Next, the information in the memory and registers of the computer platform  

is replaced by the information stored in the last completed checkpointing process. 

Finally, the output ports are freed and the computing activity is restarted. From a 

d igital control system perspective, this process amounts to freezing the controller’s 

output signals, reloading the controller’s state vector w ith the latest error-free value,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

and then resuming normal operation.

Cold-Restart Recovery

This recovery technique is similar to rollback but simpler. Unlike rollback, cold-restart 

does not make use of the checkpointing operation, only the fault detection and reload- 

and-retry processes described above. Prom a digital control system perspective, the 

cold-restart process consists of freezing the controller’s output signals, setting the 

controller’s state vector to zero, and then resuming normal operation.

The net effect of rollback or cold-restaxt on a digital control system is an abrupt 

change of dynamics. When the control system is linear, the overall system behavior 

can be modeled as a jump linear system (Tejada et al. 2007), which is described next.

V .2.2 Dynamical Models of Digital Control Systems Deployed in Fault 

Recoverable Computers

I t  was shown in (Tejada et al. 2007, Gray et al. 2000) that the detection and 

removal of CMF’s can be modeled by a two-state Markov chain, {N (k ) ,k  >  0}, 

N (k )  € {0 ,1 }. This process interacts w ith the closed-loop system by changing its 

parameters. Specifically, when no faults are present in the computer, N (k ) =  0, the 

jo in t dynamics of the closed-loop system and the recovery mechanism are represented 

by a nominal state matrix, Ao. When faults are present, N (k ) =  1, the recovery 

mechanism is active and the jo in t dynamics are given by a perturbed state m atrix, 

A\. Finally, after the faults are removed, the system returns to its nominal dynamics. 

Clearly, the overall system behavior can be represented by the following Markov jump
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FIG. 15: D igita l closed-loop system under consideration.

linear system.

x{k  +  1) =  A N(k)x{k), x(0) =  x 0. (97)

The specific structure of the matrices A0 and A\ depends on both the dynamics of 

the closed-loop system and the specific recovery mechanism under consideration. The 

digital closed-loop system under consideration is shown in Figure 15. The plant and 

the controller are represented, respectively, by the state space models (Ap, Bp, Cp) and 

{Ac, Bc, Cc). When the reference signal, r(k), is set to zero, the closed-loop dynamics 

are given by

®CL(k +  l )  =  (*)

where Ac, = Ccp - l f CJ and *« .(* ) =  [*J (fc) € Mn. Here x p(k) € Mnp

and x c(k) € R "c denote, respectively, the plant and the controller state vectors w ith 

n =  np +  nc. To capture the effect of the recovery mechanism on the closed-loop 

system, this state space model must be enlarged to include an extra state vector, 

x r(k). As explained in (Tejada et al. 2007), the extra state vector is used both to
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store checkpoint information and to enable the reload-and-retry process. The state 

matrices A0 and A i for both rollback and cold-restart recovery, are given below:

'  A> - B pCc o' Ap 0 - B pCc
Rollback: a II BcCp Ac 0 IIn 0 0 In e

0 Inc 0 0 0 Inc

' - B pCc o' X 0 ~ B pCc
Cold-Restart: ■̂ OCR BcCp Ac 0 1 -^ICR 0 0 0

0 Inc 0 0 0 Inc

Note from (98) that the state vector in (97), x(k), is given by x(k) =  

[ajp(fc) x^(k) x j (fc)]T € Rnp+2nc. Also, note that AoRB and A0cr are identical.

The MS stability of (97) can be determined through the MS stability test in 

(Costa et al. 2005). Using this test, it  was shown in (Tejada et al. 2007) that rollback 

usually has better stability properties than cold-restart. I t  was found that rollback 

usually remains stable for higher probabilities of faults, that is, for larger values of 

P r{N (k )  =  1|N (k  -  1) =  0} and Pr{IV(A;) =  1|N (k  -  1) =  1}. On the other 

hand, it  also requires a more complex hardware implementation and higher power 

requirements. Thus, in some situations it  is better to combine the benefits of both 

approaches. An example of such a situation is introduced in the next section.

V.3 AN  ADVANCED FAULT RECOVERY MECHANISM

Consider a low-power application such as a satellite or an unmanned aerial vehicle. 

The lifetime of such high-performance devices is proportional to the availability of 

electrical power. Thus, their computer platforms should be designed to balance good
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performance and minimal energy consumption. In terms of resilience to CFM’s, this 

tradeoff is addressed by following the strategy:

•  To save power, the cold-restart circuits should be active (and the rollback cir

cuits should be powered down) in situations of low CMF’s incidence. The 

converse should be done in high CMF’s incidence conditions.

•  The rollback circuits should be active (and cold-restart’s inactive) when the 

performance of the closed-loop system is below a prescribed threshold.

The focus of this example is on the second part of this strategy. It  is assumed tha t 

the powering up and down of the rollback or cold-restart circuits is instantaneous, 

and that a recovery mechanism cannot be powered down while it  is active. The 

performance metric of interest is the size of the state vector’s norm. Thus, the 

closed-loop system has good performance whenever ||a;(A;)|| < a, where a is a fixed 

performance boundary. In the absence of faults, the nominal dynamics are given by 

j4orb =  ^oCr- In the presence of faults, the system’s dynamics are given by j41cr 

when the performance is good and by v liRB when it  is bad. Clearly, the supervisor 

takes decisions based on information from the closed-loop system. Thus, the overall 

system behavior can be modeled w ith the following canonical HJLS:

x (k  +  1) =  Az(k)x(k), x(0) =  x 0

z(k +  1) =  Sjv(k),v(k)z (k), (99)
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where x(k) =  [x*(k) x*(k )  a;J(A:)]T, Az(k) is given by

A)rb =  Aqc r , when z(k) =  ei

when z(k) =  e2

,4irb , when z(k) =  e3,

v(k) is the output of the A /S  map given by

U{k) =  Xp(x{k)) =  l {||*(fc)||>a} (100)

and the structure of the supervisor’s FSM is given by the state transition diagram in 

Figure 16. In this Figure, the circles represent the current state of the FSM, z(k). 

They also represent the current output symbol since 6{k) =  z(k). The arcs between

value of the FSM’s input pair, (N (k ), v(k)), that enable such transition (the x repre

sents a don’t care condition). Note that u{k) =  0 whenever the performance is ‘good’ 

and u(k) =  1 whenever it  is ‘bad’. Hence, the FSM remains in state e\ whenever 

no CMF’s are detected. Upon their detection, N (k ) =  1, the FSM transitions to 

state e2 or e3 depending on, respectively, the good (u(k) =  0) or bad (v(k) =  1) 

closed-loop system performance. The FSM remains in state e2 (or e3) while the effect 

of the faults is removed and returns to state e\ after the recovery is finished.

Note that =  { 0, 1} and E5 =  Eo =  {e i,e 2,e3}, where e* € R3 for

i =  1,2,3. It  is easy to show that the FSM’s state transition diagram in Figure 16 is 

equivalent to the state evolution equation in (99) provided that the state transition

the circles represent the valid state transitions. The labels on the arcs indicate the
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Ox

lx

FIG. 16: The example’s FSM structure. Inside each circle, e* represents the current 
state and output symbol. The labels over the arcs represent the value of the FSM’s 
inputs, (N (k ),i/(k )), that triggers the state transition (the x represents a don’t care 
condition).

matrices are given by

’i 1 l" 0 0 o' 0 0 o'

© II i
3 ii 0 0 0 03 o II 1 1 0 , Sltl = 0 1 0

0 0 0 1 o 0 1 1 0 1

Equations (99)-(101) completely determine the HJLS’s parameters for this example. 

The next section studies the stability of this example.

V .4  S T A B IL IT Y  A N A LY S IS  OF T H E  A D V A N C E D  R E C O V E R Y  

M E C H A N IS M

V.4.1 T heore tica l S ta b ility  A na lysis

To simplify the analysis, {N (k ), k >  0} is assumed to be an i.i.d. process w ith 

in itia l distribution [pgV Pi ] ,  where p£ =  Pr {N (k )  =  0}, p f  =  Pr{AT(A:) =  1}, and

[ N  N T

PoN PlN . Theorem IV.4.2 provides a sufficient
Po P i J

mean square stability test for the HJLS in (99)-(101). The test requires computing
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p(AMz), where

A Mz =  {MJ <g> / „ 2) d iag(^! ® A u . . . ,  A3 <g> A3).

In this example, A\ — A0cr =  A )RB, A2 — A ic r, A3 =  A irb , and M z =  [MTt3] is given 

by (see (77))

M z =

N  N  N
Po Pi Pi 
Po Pi 0
Po 0 p?

Note that computing p(Amz) takes into consideration the structure of the FSM and 

the probabilities associated w ith of {N (k ) ,k  >  0}. I t  also contains information 

pertaining to the jump linear closed-loop system. It  does not, however, take into 

account the A /S  map. More specifically, it  does not take into account the parameter 

a, which plays a significant role in the behavior of the HJLS. To see this, observe 

that a divides the closed-loop system’s phase space into two regions: Ro =  {x  € Kn : 

||a:|| < a } and i?i =  {x  G Mn : ||x|| >  a }. When a =  oo, Ri is empty and x(k ) G Ro 

for all k >  0. This in turn implies that u(k) =  0 for all k >  0, which restricts the 

supervisor’s operation to only states e\ and e2. That is, the ARM behaves as a simple 

cold-restaxt recovery mechanism. On the other hand, when a =  0, Ro is empty and 

u{k) =  1 for all k >  0. Thus, the supervisor only commutes between states e\ and e3, 

and the ARM behaves as a simple rollback recovery mechanism. These observations 

can be formalized using Theorem IV.4.1. For instance, when a =  oo, Ro becomes 

a common invariant subspace (clearly, xo E Ro =  M"). This implies that the HJLS 

behaves as a JLS driven by a FSM (see Figure 3) whose behavior is given by the state 

transition diagram in Figure 17. In this case, the HJLS’s mean square stab ility can
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0

FIG. 17: The restricted operation of the 
supervisor when a =  oo. The labels over 
the arcs show the value of N (k ) {u{k) =  0 
for all A: >  0).

0

FIG. 18: The restricted operation of the 
supervisor when a  =  0. The labels over 
the arcs show the value of N (k ) (v(k) =  1 
for all k > 0).

be determined by computing p(Aii(iCR), where

'A i id c n  ( I I  ®  I-n 2 )  d i a g ( y l o CR (8> ■^Ocr) - ^ I c r  ®  " ^ Icr*  ^ I r b  ®  ^ I r b )

with nZCR - rP0"p ?  0 
Po P i 0 

Lp  ̂ o pff.
. That is,

•AiidcR —

Pt) - ^ O c r  ®  ^ O c R  Po ^ l c R  ®  P o A lR B  ®  ■ ^ I r b

P i a ocr ®  •̂ OCR P l A  ICR® •^lcR 0

0 Pi -^Irb ®  -^1rb>0

which in turn implies that

Let 4̂cr — P o r^ 0 C R ® ^ ° C R  P o , - ^ l C R ® '^ 1C R

p f *  ^ ° C R ® ^ U c r  P i  ^ 1 C r ® ^ 1 (
. By Corollary 3.11 in (Tejada et al. 2007),

C R  UC R  •’ I C R  ‘ C R  .

p(«4cr) characterizes the mean square stability of a digital closed-loop system run by 

a computer platform equipped only w ith cold-restart. Hence, it  follows that when 

a =  oo and the probability of faults is small, the mean square stab ility of the HJLS 

is sim ilar to that of a system equipped w ith cold restart only.
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When a =  0. the HJLS’s mean square stability can be determined by computing 

p(AudRB), where

•AiidfiB

I t  is easy to show that in this case 

p(AidRB) -  max

Po -^Orb ®  ^Orb P o ^ Ic r  ®  ■̂ ICR Po ^lRB ®  ■^Irb
0 P i  A iCR ® •^ICR P l A lRB ®  •^Irb 

P l A O r b  ®  4 ) r b  0  P ? A I r b  ®  ^ I r b

n ( P o  -^Orb ®  -^oRb P o -^Irb ®  -^Irb^ 66 A 1 \
"  ( r f A *  «  A to  e  A . J  ' '  (p‘ '4,“  ® j4 l» ) /  '

Again, let ] • “ ld ° bserve that if the Probability of

faults is small then p(AiaKB) ~  p(«4rb)- In  this case, the HJLS’s mean square stab ility  

is equivalent to that of a system equipped w ith  rollback only.

Finally, observe that whenever a =  0 or a =  oo, the process { z(k ), A; >  0} becomes 

a Markov chain because {N (k ), k >  0} is an i.i.d. process (see Lemma IV.4.1). Thus, 

the HJLS behaves as a MJLS, and the logarithm of its second moment approaches a 

linear asymptote (Tejada et al. 2007). That is,

lim  log10(E{||*(A ;)||2}) »  klog10(p(AiidcR)) (a =  oo)k—►oo

lim  log10(E{|ja;(A:)||2}) «  fclog10(p (^ i(iRB)) (a =  0).
AC—>00

As explained in (Tejada et al. 2007), the intercepts for these asymptotes can be fixed 

arbitrarily. In  light of these comments, it  is expected that as a  varies from 0 to 

oo, the lim it behavior of log10(E{||a;(A;)||2}) should vary from &log10(p(.Aii<iRB)) to 

A: log10(p(̂ 4*<dCR)). Also, p(ARB) usually remains below 1 for larger values of pff than 

p(-4cr)- Thus, for a large enough the HJLS should be MS stable for a  =  0 and 

unstable for a  =  oo. This observation suggests that p ( A m z) <  1 only when both 

p(Andcn) < 1 and p(AudRB) < 1. These conclusions, however, cannot be drawn from
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FIG. 19: D igital jump linear closed-loop system considered for Monte Carlo simula
tions.

the theory introduced in Chapter IV . Nevertheless, these conclusions were confirmed 

through Monte Carlo simulations as explained next.

V.4.2 Monte Carlo Simulations

Figure 19 shows the specific system considered for numerical analysis. The plant 

corresponds to the sampled data equivalent of the longitudinal dynamics of an A FT I- 

F16 aircraft (Friedland 1986). The controller is an observer-based regulator deployed 

in a computer equipped w ith the ARM. The data for this example was taken from 

(Tejada et al. 2007). The observer-based digital regulator dynamics are given by

x c(k +  1) =  Apx c(k) +  Bpu(k) +  L (yp -  Cpx c) 

y c(k) =  x c(k),

where u (k ) =  r(k) — K x c(k), and L  is the output injection m atrix. The nominal 

closed-loop discrete-time dynamics are given by

Ad. —
Ap -B p K

-LC p  A p - B p K - L C p
(102)
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where K  is the state feedback (pole-placement) matrix. The sampling period was set 

to T  =  0.004 sec., the nominal continuous-time closed-loop poles were placed at 

{ —0.2 ±  j0.9798, —0.01 ± j0 .0995}, and the observer’s discrete-time poles were chosen 

to be five times faster than the plant’s closed-loop poles.

The spectral radii p ( A m z), p(AndcR)> and p{AadRR) were computed for several 

values of =  P r{N (k ) =  0}. The radii are shown in Figure 20. As expected, the 

HJLS equipped w ith ‘only’ rollback (a =  0) behaves better than when it  is equipped 

w ith ‘only’ cold-restaxt (a =  oo). That is, p{AadRR) remains below 1 for a wider 

range of values of p$ than p{AadcR)- When a G (0, oo), the stab ility of the system 

can be assessed by testing if  p ( A m z) < 1. In this case, the bottom  plot in Figure 20 

shows that the HJLS is stable when P r{N (k )  =  0} > 0.9999.

Two Monte Carlo simulations of the HJLS were performed. Each simulation 

comprised 500 runs of 1000 seconds (250,000 samples). In both cases, p$ =  0.99994, 

zq =  ei, and x0 — [0 1 0 0 0 0 0 0 0 0 0 0]T (angle of attack perturbed by 1 

radian (Tejada et al. 2007)). The top plot presents the simulation results for a =  0, 

while the bottom plot shows the simulation results for a  =  1000 (both in blue). 

The linear fit of the simulation data was also plotted (black). As expected, the 

linear fit of the simulation data closely approximates the asymptotes (red) given by 

3.7172 +  £log10(p(.4i«iRB)) (top) and 4.4841 +  <log10(p (^ irfcR)) (bottom). Figure 21 

shows that the linear fit and the asymptote nearly overlap. Hence, in both cases the 

simulation of the HJLS behaved as expected.
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FIG. 20: Top: Spectral radius of A mz, AadCR, and AadRB as a function of =  
Pr {N (k )  =  0}. Bottom: A magnification of the region 0.9998 < Pq < 1 .
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FIG. 21: Monte Carlo simulation results. Each simulation comprised 500 runs of 1000 
seconds. In both cases, pff =  0.99994, Zo =  ei, and xq =  [0 1 0 0 0 0 0 0 0 0 0 0]T. In  
the top plot a =  0, while in the bottom plot a =  1000.
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CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH

V I.l CONCLUSIONS

The main contributions of this dissertation are the introduction of hybrid jump 

linear systems as a relevant class of discrete-time, stochastic hybrid systems; a variety 

of stability analysis methods for this class; and the application of HJLS’s to study a 

real-world example: an AFTI-F16 digita l flight controller deployed on a fault tolerant 

controller.

I t  was shown in Chapters I I  and V that hybrid jump linear systems constitute a 

suitable framework to study systems which combine both continuous and symbolic 

dynamics. Through this framework, it  is possible to model and analyze the behavior 

of complex supervisory control systems and other hybrid systems of practical interest.

Chapter I I I  introduced a suitable stability analysis framework for HJLS’s. A l

though this framework is not entirely new (see Hou & Michel 20016), it  was the first 

time this framework was employed to develop testable sufficient mean square stability 

conditions for discrete-time stochastic hybrid systems. A number of sufficient stabil

ity  tests were introduced. The most important results are listed at the end of Chapter 

III. I t  was also shown that some of these tests can be applied to general discrete-time 

switched systems.

The use of Markov kernel techniques to study discrete-time stochastic hybrid 

systems constitutes an entirely new approach. I t  was shown in Chapter IV , that
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the state processes of HJLS’s constitute Markov chains. Consequently, the Markov 

kernels of these state processes can be used to deduce the stability characteristics 

of the associated HJLS’s. The techniques and concepts used to derive the results in  

Theorems IV.4.2 and IV.4.4 can also be used to establish the ergodicity of HJLS’s. 

This in turn could lead to less conservative stability conditions or the study of the 

stability of HJLS’s through Monte Carlo simulations.

The stability conditions in Theorem IV.4.4 can be extended to a larger class of 

HJLS’s. Such an extension, however, would require significant algebraic manipula

tions and would not contribute any new concepts or techniques. Therefore, it  has not 

been included in this dissertation.

The ability of HJLS’s to model and study real-world applications was demon

strated through the analysis of the effects of an advanced recovery mechanisms on 

the stability of digital closed-loop systems. An AFTI-F16 example was presented. In 

this example, the aircraft’s digital flight controller was assumed to be deployed in a 

fault tolerant computer subject to a harsh environment. The computer was equipped 

w ith a novel advanced recovery system, which selects the best fault recovery proce

dure based on the performance of the closed-loop system. The analysis of such a 

recovery scheme was not possible w ith the tools currently available in  the literature.

V I.2  F U T U R E  R ESEAR C H

The body of work presented in this documents can be extended in many directions.

•  Although the stability conditions in Theorems IV.4.2 and IV.4.4 include infor

mation about the number of quantization regions created by ip (see Chapter
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II), the relative size of these regions is not taken into consideration. More sim

ulation experiments are necessary to assess, for example, if  the probability that 

the closed-loop system’s state vector visits certain quantization region is pro

portional to the relative size of this region. A theoretical characterization may 

be also possible using more advanced tools for analyzing Markov chains.

•  The relation between HJLS (or DSHA) and discrete-time PDP’s suggested by 

A. Bemporad and coauthors (Bemporad & D i Cairano 2005) needs to be for

malized. This would enable one to study discrete-time PDPs w ith the tools 

introduced here and to study HJLS w ith the tools available for PDPs.

•  The ergodicity of HJLS needs to be explored. I t  is known that when a Markov 

chain in a metric space is mean square stable, it  is also weakly convergent 

and ergodic (Hernandez-Lerma & Lasserre 2003). Since the stability of any 

ergodic system can be studied through Monte Carlo simulations, it  is im portant 

to characterize the conditions under which a HJLS is ergodic (mean square 

stability is a sufficient but not a necessary condition).

•  The connection between DSHA and HJLS’s needs to be further studied. A 

DSHA can be translated into the MLD formalism and formally verified. In 

principle, this implies that HJLS’s can also be formally verified. This, however, 

needs to be studied further since HJLS’s are not deterministic but stochastic 

models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



143

BIBLIOGRAPHY

Antsaklis, P., Koutsoukos, X. &; Zaytoon, J. (1998), ‘On hybrid control of complex 

systems: A survey’, Eur. J. Automat 32(9-10), 1023-1045.

Arnold, L. (1974), Stochastic Differential Equations: Theory and Applications, John 

W iley & Sons, New York.

Arnold, L. &; Kleinmann, W. (1982), Qualitative theory of stochastic systems, in  

A. T. Bharucha-Reid, ed., ‘Probabilistic Analysis and Related Topics, Vol 3’, 

Academic Press, New York, pp. 1-79.

Belcastro, C. M. (1997), Closed-loop HIRF experiments performed on a fault tolerant 

flight control computer, in ‘Proc. of the 16th DASC D ig ita l Avionics Systems 

Conference’, Philadelphia, PA, pp. 4.1-40-54.

Bemporad, A. & D i Cairano, S. (2005), Optimal control of discrete hybrid stochastic 

automata, in M. Morari & L. Thiele, eds, ‘Hybrid Systems: Computation and 

Control HSCC 2005’, Lecture Notes in Computer Science 3414, Springer Verlag, 

pp. 151-167.

Bemporad, A. & Morari, M. (1999), ‘Control of systems integrating logic, dynamics, 

and constraints’, Automatica 35(3), 407-427.

Billingsley, P. (1995), Probability and Measure, Third Edition, John W iley &  Sons, 

New York.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



144

Costa, 0 . L. V. &; Fragoso, M. D. (1993), ‘Stability results for discrete-time linear 

systems w ith Markovian jumping parameters’, Mathematical Analysis and Ap

plications 179,154-178.

Costa, O. L. V., Fragoso, M. D. & Marques, R. P. (2005), Discrete-Time Markov 

Jump Linear Systems, Springer, London.

Daafouz, J., Riedinger, P. &  lung, C. (2002), ‘S tability analysis and control synthesis 

for switched systems: A switched Lyapunov function approach’, IEEE Trans. 

Automat. Contr. 47(11), 1883-1887.

Davis, M. H. A. (1993), Markov Models and Optimization, Chapman & Hall/CRC, 

New York.

DeCarlo, R. A., Branicky, M. S., Petterson, S. & Lennartson, B. (2000), ‘Perspectives 

and results on the stability and stabilizability of hybrid systems’, Proceedings of 

the IEEE  88(7), 1069-1082.

Ehrhardt, M. & Kleinman, W. (1982), ‘Controllability of linear stochastic systems’, 

Systems & Control Letters 2(3), 145-153.

Fang, Y. &; Loparo, K. A. (2002), ‘Stochastic stability of jump linear systems’, IEEE  

Trans. Automat. Contr. 47(7), 1204-1208.

Fang, Y., Loparo, K. A. &  Feng, X. (1995), ‘S tability of discrete time jump linear 

systems’, Journal of Mathematical Systems, Estimation, and Control 5(3), 275- 

321.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ferrari-Trecate, G., Cuzzola, F. A. & Morari, M. (2003), ‘Lagrange stability and 

performance analysis of discrete-time piecewise affine systems w ith logic states’ , 

Int. J. Control 76(16), 1585-1598.

Friedland, B. (1986), Control System Design, An Introduction to State-Space Methods, 

McGraw-Hill, New York, NY.

Friedman, A. (1982), Foundations of Modem Analysis, Dover Publications Inc., New 

York, NY.

Gray, W. S., Gonzalez, O. R. & Dogan, M. (2000), ‘S tability analysis of d ig ita l linear 

flight controllers subject to electromagnetic disturbances’, IEEE Trans. Aerosp. 

Electron. Syst. 36(4), 1204-1218.

Gurvits, L. (1995), ‘S tability of discrete linear inclusion’, Linear Algebra and its Ap

plications 231(1), 47-85.

Hassibi, A., Boyd, S. P. & How, J. P. (1999), A class of Lyapunov functionals for 

analyzing hybrid dynamical systems, in  ‘Proc. of the 1999 American Control 

Conference’, Arlington, VA, pp. 2455-2460.

Heemels, W. P. M. H., Schutter, B. D. & Bemporad, A. (2001), ‘Equivalence of hybrid 

dynamical models’, Automatica 37(7), 1085-1091.

Henzinger, T. A. (1996), The theory of hybrid automata, in ‘Proc. of the 11th Annual 

Symposium on Logic in Computer Science’, New Brunswick, NJ, pp. 278-292.

Hernandez-Lerma, O. & Lasserre, J. B. (2003), Markov Chains and Invariant Proba

bilities, Birkhauser Verlag, Boston, MA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146

Hess, R. (1997), Computing platform architectures for robust operation in the pres

ence of lightning and other electromagnetic threats, in ‘16th DASC D igital 

Avionics Systems Conference’, Philadelphia PA, pp. 4.3-9.16.

Hess, R. & Belcastro, C. M. (2001), Design and verification of robust architectures for 

electronic systems, in ‘Proc. of the 2001 International Conference on Lightning 

and Static E lectricity’, Seattle, WA.

Hou, L. & Michel, A. N. (2001a), ‘Moment stability of discontinuous stochastic dy

namical systems’, IEEE Trans. Automat. Contr. 46(6), 938-943.

Hou, L. & Michel, A. N. (20016), ‘S tability preserving mappings for stochastic dy

namical systems’, IEEE Trans. Automat. Contr. 46(6), 933-938.

Ji, Y. & Chizeck, H. J. (1990a), ‘Controllability, stabilizability, and contininuous- 

time Markovian jump linear quadratic control’, IEEE Trans. Automat. Contr. 

AC -35(7), 777-788.

Ji, Y. & Chizeck, H. J. (19906), ‘Jump linear quadratic Gaussian control: steady state 

solution and testable conditions’, Control Theory Adv. Tech. 6(3), 289-319.

Ji, Y., Chizeck, J., Feng, X. & Loparo, K. A. (1991), ‘S tability and control of discrete

time jump linear systems’, Control-Theory and Advanced Technology 7(2), 247- 

270.

Johnson, B. (1989), Design and Analysis of Fault-Tolerant Digital Systems, Addison 

Wesley Publishing Co, Reading, MA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



147

Koutsoukos, X., Antsaklis, P. J., Stiver, J. A. k  Lemmon, M. D. (2000), ‘Supervisory 

control of hybrid systems’, Proceedings of the IEEE  88(7), 1026-1049.

Kubrusly, C. S. k  Costa, O. L. V. (1985), ‘Mean square stability conditions for discrete 

stochastic bilinear systems’, IEEE Trans. Automat. Contr. 30(11), 1082-1087.

LaSalle, J. P. k  Lefschetz, S. (1961), Stability by Lyapunov’s Direct Method with 

Applications, Academic Press, New York, NY.

Liberzon, D., Hespanha, J. k  Morse, S. (1995), ‘S tability of switched systems: a 

Lie-algebraic condition’, Systems & Control Letters 37(3), 117-122.

Malekpour, M. k  Torres, W. (2000), Characterization of a flight control computer 

w ith rollback recovery, in ‘Proc. of the 19th DASC D igital Avionics Systems 

Conference’, Philadelphia, PA, pp. 3.C.4-1-8.

Meyn, S. k  Tweedie, R. L. (1993), Markov Chains and Stochastic Stability, Springer- 

Verlag, New York, NY.

Michel, A. N. k  Porter, D. W. (1972), ‘On practical stability and fin ite time stab ility 

of discontinuous systems’, IEEE Transactions on Circuit Theory 19(2), 123-129.

M itra, R., Tarn, T. k  Dai, L. (2001), Stability results for switched linear systems, in 

‘Proc. of the 2001 American Control Conference’, Arlington, VA, pp. 1884-1889.

Molchanov, A. P. k  Pyatnitskiy, Y. S. (1989), ‘Criteria of asymptotic stability of 

differential and difference inclusions encoutered in control theory’, Systems &  

Control Letters 13(1), 59-64.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

Morozan, T. (1976), On the stability of stochastic discrete systems, in ‘Control the

ory and Topics in Functional Analysis: Lectures Presented at an International 

Seminar Course at Trieste from 11 Sept. to 29 Nov. 1974’, International Atomic 

Energy Agency, Vienna, pp. 225-254.

Nummelin, E. (1984), General Irreducible Markov Chains and Non-Negative Opera

tors., Cambridge University Press, New York, NY.

Papoulis, A. (1991), Probability, Random Variables, and Stochastic Processes, Third 

Edition, McGraw-Hill, New York, NY.

Patilkulkarni, S., Herencia-Zapana, H., Gray, W. S. &  Gonzalez, O. R. (2004), On 

the stability of jump-linear systems driven by finite-state machines w ith Marko

vian inputs, in ‘Proc. of the 2004 American Control Conference’, Boston, MA, 

pp. 2534-2539.

Rugh, W. J. (1996), Linear System Theory, Second Edition, Prentice Hall, Upper 

Saddle River, NJ.

Shiryaev, A. N. (1995), Probability, Second Edition, Springer, New York, NY.

Sontag, E. (1981), ‘Nonlinear regulation: the piecewise linear approach’, IEEE Trans. 

Automat. Contr. AC-26(4), 346-358.

Srichander, R. & Walker, B. K. (1993), ‘Stochastic stability analysis for continuous

time fault tolerant control systems’, Inter. J. of Control 57(2), 433-452.

Tejada, A. (2002), Analysis of error recovery effects on digital flight control systems, 

Master’s thesis, Old Dominion University.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tejada, A., Gonzalez, O. R. & Gray, W. S. (2007), ‘S tability of digital control systems 

implemented in error-recoverable computers’, International Journal of Control. 

Under review.

Torrisi, F. D. h  Bemporad, A. (2004), ‘HYSDEL-a tool for generating computational 

hybrid models for analysis and synthesis problems’, IEEE Trans. Contr. Syst. 

Technol. 12(2), 235-249.

Xu, X. & Antsaklis, P. J. (2003), Practical stabilization of integrator switched sys

tems, in ‘Proc. of the 2003 American Control Conference’, Denver, CO, pp. 2767- 

2772.

Ye, H. & Michel, A. N. (1998), ‘S tability theory for hybrid dynamical systems’, IEEE  

Trans. Automat. Contr. 43(4), 461-474.

Zhai, G. & Michel, A. N. (2002), ‘On practical stability of switched systems’, Inter

national Journal of Hybrid Systems 2(1), 141-153.

Zhang, H., Gray, W. S. & Gonzalez, O. R. (2005), Performance analysis and validation 

of a recoverable flight control system in a simulated neutron environment, in 

‘Proc. of the 2005 Guidance, Navigation and Control Conference’, San Francisco, 

CA. Paper 2005-6430.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

150

SOME ELEMENTS FROM MEASURE THEORY

A .l BASIC CONVENTIONS AND DEFINITIONS

Let 0, and $  denote arbitrary sets w ith elements u  and (f>, respectively, and let 

their various subsets be denoted by {u> : • • •} and {0  : • ■ •} (or, if  needed to add 

clarity, by {uj G f2 : • • • } and {(j) € $ : • • •  }).

Definition A.1.1 A measurable space is a pair (fl, & ) ,  where Q is an arbitrary set, 

and A? is a cr-algebra of subsets ofQ.

Definition A. 1.2 A function f  : —> fl' defined between two measurable spaces,

(Q, A?) and ( fl', & ') ,  is called an A?/^'-measurable function i f  fo r every B  6 A?', the 

set S f2 : / ( ^ )  €E B }  € & .

Remark A.1.1 Observe the following.

1. Let AS(M.n) denote the Borel algebra over Rn, where <^(Rn) — AS(R) <g> 

^ (R n_1) fo r any n > 1, and <8> represents the direct product. In  the sequel, 

AS (W1) /  AS (Mf)-measurable functions w ill be called Borel functions. Measurable 

(or Borel) functions w ill be denoted by lowercase letters f,g , and h.

2. In probabilistic settings, an A?/AS(R )-measurable function is also called a ran

dom variable. Similarly, an A?/AS(Rn)-measurable function is called a random 

vector, and an A?/ A?'-measurable function is called an A?/ A?'-measurable ran

dom element.
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3. Throughout the dissertation, it  is assumed that every random variable, vector, 

or element and stochastic process is defined over the same underlying proba

bility space ( f2, & ,  Pr).

4. To simplify the notation, the reference to the fields w ill be dropped i f  they 

are evident from the context. Thus, instead of referring to f  as an 

measurable function’ we w ill call it  a ‘measurable (or Borel) function’. Like

wise, an l& / -measurable random element’ w ill be called simple a ‘random 

element’.

A .2 SOME PROPERTIES OF cr-ALGEBRAS

Let <3 be any sub cr-algebra of & .  A random element x  : Q —► f l ' is called (S- 

measurable if  for every B  € the set {u  : x (u ) e B } 6 &. The smallest cr-algebra 

respect to which x  is measurable is denoted by a(x). The following subsections 

introduce the properties of cr(a;).

A .2.1 Structure

Theorem A .2.1 (Theorem 20.1, Billingsley 1995) Let x  =  (a?i,. . . ,  x n) be a vector 

of random variables, X i.

(i) The a-algebra a (x) =  a (X \ , . . . ,x n) consists exactly of the sets {u> G : 

x (uj) G B } fo r B  G ^ (R n).

(ii) The random variable y  is a (x)-measurable i f  and only i f  there exists a mea

surable function f  : Rn —► R such that y(w) =  f ( x .. .  , x n(u))) fo r  all 

oj G f2.
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The previous theorem can be generalized as follows.

Theorem A .2.2 Let x  : Cl —► 17' be a random element. The a-algebra, a(x),  consists 

exactly of the sets u  : x{u> € H ) fo r H  € .

A.2.2 Combination

Definition A .2.1 Let C andV  be two a-algebras of subsets of Cl. The binary oper

ation between C and V  is defined as

C m v  =  a (C n v ) ,

where CC\T> =  {C  C\D : C E C,D  € T>} and a(C ft  T>) denotes the smallest a-algebra 

generated by the sets inC H 'D .

I t  follows readily from the definition that fh is commutative and associative. More

over, C V  can also be defined in terms of unions of sets from C and V  as shown in 

the next lemma.

Lemma A.2.1 Let C andV be two a-algebras of subsets of Cl. ThenCffiD =  a(C\JT>), 

where C U V  =  { C u D : C e C , D G  T>}.

Proof: Observe that for every C G C and D  € T> it  follows that C f l D  € C1+1 T>. Since 

C (?l T> is a cr-algebra, then C C\ D  =  C \J D  E. C &\V. This shows that a(C U D ) C  

C ft) T>. Conversely, observe from their definitions that C fl  T> C  C U T>. Consequently, 

C m V  =  a (C n V ) C a(C U  V). Thus, C & V  =  a(C (JV). •

The FR operation can be used to combine (T-algebras induced by random variables 

as described below.
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Lemma A .2.2 For any two random variables X i , x 2, cr(xi) R a(x2) =  a ( x i , x 2).

Proof: Let H  G a(xi)fRa(x2). Then I f  =  H i DH2, where H i G cr(®i) and H2 G <r{x2). 

That is, H\ =  {oj : X i(u) G 5 i}  and H2 =  {a ;: x 2(u>) G B2} for some B i ,B 2 G & (R ). 

Thus, it  follows that

H  =  : Xi(uS) G -Bi} n {tu : x 2( u j )  G B2J

=  {uj : (xi(uj),x2(u)) G  Bi x B2} G a ( x i , x 2),

since Bi x B2 G ^ (K 2). But H  is arbitrary, so cr{xi) R a(x2) C a ( x i , x 2).

To show the converse argument, define Q =  { H  G <^(R2) : {u> : ( x i (u ) , x 2(uj) )  G 

H }  C a(x i )  R a (x2)} and observe that Q is itself a a-algebra. I t  is clear from 

its definition that Q  C ^ (R 2). Moreover, observe that for every B i , B 2 G ^ (R 1) it 

follows that B i x B 2 G G, since {u> : (* i(u ;), x 2{ui)) G Bxx B 2} =  £cf 1{ B i )C\x 2 1(B2) G 

a(a:i) Ra(a:2). Now, let cr(Bi x B2) denote the smallest a-algebra generated from sets 

of the form B ix B 2 and observe that «^(R2) =  a (B ix B 2) C cr(G) =  Q C <^(R2). That 

is, Q =  ^ (R 2). This in tu rn  implies that {a ; : ( X i (lj) , x 2(uj) )  G H }  C a (x i)  R a (x 2)} 

for every H  G & (R 2). This fact and Theorem A.2.1 show that a ( x i , x 2) C a { x i)  R 

a [x 2), completing the proof. ■

R em ark A .2.1 Let x i , x 2, and *3  be random variables, and let y x =  (y u , . . . ,  y ln) 

and y 2 =  (y2i i  • • • > Vin) be rectors of random variables.

(i) Observe from Theorem A.2.1, the definition of R, and Lemma A.2.2 that 

o ( x i , x 2, * 3) =  a(cci) R a (* 2, * 3) =  a ( x i , x 2) R a (x2, x 3).

(ii) A similar derivation shows that cr(y1,y 2) =  a (yn , . . . ,  y ln, y 21, . . . ,  y 2n) =
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Both arguments can be extended inductively to any finite number of random variables 

or random vectors. This remark plays an important role in the following collection of 

results.

A .2.3 S im p lifica tio n  o f cr-Algebras

Theorem  A .2.3 Let x  =  (a ii,. . .  , x n) be a vector of random variables, and let f  : 

R" —> R be a measurable function. I f  y  =  f { x )  then cr(y, x) =  a(x).

Proof : Observe from Theorem A.2.1 that <r(y) is composed of exactly all the sets 

of the form {u  : y(tu) £ B }, B £ ^ (R 1). Moreover, for every B £ ^ (R 1) it  

follows that {a; : y(u>) £ B } =  {uj : x (lo) £ / _1(5 )}. Thus, a(y) C u{x)  and 

a(y) U a{x) =  a(x). Finally, note from Lemmas A.2.1 and A.2.2 that a(y, x)  =  

<j{y) ffl a(x) =  cr(a(y) U cr(x)) =  a(a(x)) =  a(x),  which completes the proof. ■

This result can be extended to the case when y  is a vector-valued function of x  

as follows.

Theorem  A .2.4 Let x  =  ( x i, . . . ,  x „)  be vector of random variables and F  : Rn —► 

Rm be a Borel function. I f  y  — F(x)  then a (y ,x )  =  a(x).

Proof: First, note that F  — ( / i,  • • •, / m), where f i  : Rn —* R, i  =  1 , . . . ,m  are 

measurable functions. Next, observe that y  =  (y r, . . .  , y m), where y { =  f i ( x )  and 

i  — 1 ,. . . ,m . Thus, it  follows from Theorem A.2.3 that a{y i ,x )  =  a(x) for every 

i  =  1 ,..., m. Thus, Remark A.2.1 yields

a(x)  =  a iy f)  ffl a(x) =  <r(yx) ffl o fa )  ffl <r(x)

=  <r{V\) ffl • ■ ■ ffl <r(ym) ffl a(x),
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which in turn implies that a(x) =  a(y) o’(x) =  a(y ,x ) .  ■

A .3  O N IN D E P E N D E N C E  A N D  E X P E C T E D  V A LU E S

A . 3.1 Independence

D e fin itio n  A .3.1 Let *#i, i  =  1 ,... ,n  be a set of sub a-algebras of & .  Also, let 

Xi : f l  —► Qi be & f& i  random elements fo r i  =  1 ,..., n.

(i) The a-algebras *#\,. . . ,  *#n are independent ifP r {B 1 f l -  • -r \Bn} =  P r {S i} .......

P r{B n} for all Bi € %, i  =  1,2,. . . ,n.

(ii) The random elements X \ , . . . ,  x n are independent i f  a (x i ) , . . . ,  a(xn) are in 

dependent.

(iii) A random variable y  and the stochastic process 3£ =  {a;*} are independent i f  

fo r every finite integer n >  1 and every sequence of integers 0 <  t\ < ■ • • < 

tn < oo it  follows that a(y) and a (x t l , . . .  , x tn) are independent.

R em ark A .3.1 Let*# and £> be independent sub a-algebras of & .  Clearly, i f  x  and 

y  are, respectively, *#-measurable and @-measurable random elements, then x  and y  

are independent.

A .3.2 Expected Values

D e fin itio n  A .3.2 Let £ be an integrable random variable defined on over (f2, & ,  Pr).

(i) The expected value of £, E {£ }, is the (extended) real number given by E {£ } =

f ( i  P.
n

(ii) Let #  c  &  be a a-algebra. The conditional expectation of £ with respect of*#, 

E { * m  is an (extended) random variable such that
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•  m m  is Sf -measurable.

•  For every G G *£

J t &  =  J  E{£|<?}dP.
G G

Note that E{£|Sf} is unique up to sets in <£ of measure zero.

Lemma A.3.1 The following are standard results from the literature (cf. Shiryaev 

1995).

(i) Let x  and y  be independent random variables. Then E { x y }  =  E {x }E {y }.

(ii) Let x  =  (a?i,. . ., x n) be a vector of random variables. I f x i s  independent of a 

random variable y, then so is each x*. Furthermore, E { x y }  =  E {x }E {y } .

(iii) Let and ^ 2  be a-algebras such that C & 2. I f  x  is an integrable random 

variable then

E {E {x | ^ ! } | ^ 2} =  E {E {x |J?2}|J? i } =  E { x | ^ } .

(iv) For any & i-measurable random element x, E {x |J? i} =  x.

The following theorem and its corollaxy is used for proving the results in Chapter IV .

Theorem  A .3.1 Let x  be a vector of random variables, and let y  and z be two 

random elements such that z is independent o f ( x ,y ) ,  i.e., a(z) is independent from  

a(x), a(y), and a(x ,y) .  Then it  follows that E {x |y z } =  E {x |y }.

Proof : First, note from the definition that /E {x |y z }d P  =  /x d P  for every G G
G G

a(y, z). Next, recall that a(y, z) =  a(y) a(z), so G =  Gi f l G 2 for some Gi  G a(y)  

and G2 G a(z). Thus,

J  xdP  =  J  x l {G}dP =  E { x l{G}} =  E {x 1 {Gi}1{G2}},
g  n
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where 1{.} denotes the Dirac function. Note that x l { Glj  and 1{g2} are, respectively, 

a(x, y)-measurable and er(z)-measurable functions. Thus, the hypothesis and Re

mark A.3.1 imply that x l { Gl} and 1{g2} are independent, which in turn gives that

J  E {x \y z }  dP =  J  xdP  =  E { x l{G l}} E { l{G2>}. (103)

G G

Next, observe that J  E {x |y }d P  =  f  xdP  for every Gi € cr{y). This last expres-
G i G\

sion can be rewritten as E {E {x |y } lGl} =  E { x lGl}. Clearly, E { x |y } lGl is cr(y)- 

measurable. Thus in (103)

J  E {x |y z }d P  =  E {E {x |y } l{Gl}} E { l{G2}>
G

=  E {E (x |y } l{G l}l { G2}}

=  E {E {x |y } l{G}}

=  J  E {x |y } dP.
G

The conclusion above holds for every G € a(y,z),  which proves that E {x |y }  is a 

version2 of E {x |y z }, i.e., E {x |y z } =  E {x |y }. ■

C o ro lla ry  A .3.1 Let N (k )  be a discrete-time Markov chain in  Mm and xo a 

second order random vector. I f  x 0 is independent from N (k ) then E{JV(fc +  

l ) \ N ( k ) , . . . ,  N ( 0), xo} =  E{1V(A; +  1)|JV(fc),. . . ,  JV(0)}.

Proof: Let x =  N (k  +  1), y  =  (N (k ) , . . . ,  JV(0)), and z =  x 0. By hypothesis, Xo 

is independent from (N (k  +  1), N ( k ) , . . . ,  iV (0)) =  (x, y). Thus, z is independent 

from (x, y) and the result follows from Theorem A.3.1. ■

2A random variable, / ,  is called a version of E{a;|y} if they differ only in sets of Pr-measure zero 
(p. 445, Billingsley 1995).
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APPENDIX B

PROOF OF THEOREMS IV.2.2 AND IV.2.4

The proof of Theorem IV.2.1 relies on Theorems IV.2.2 and IV.2.4, which are 

proven in the following two sections.

B .l PROOF OF THEOREM IV.2.2

The proof of Theorem IV.2.2 is presented here. I t  relies on three facts about 

system (65), which under the conditions of Theorem IV.2.1 are verified first.

Fact(i): The cr-algebra generated by the jo in t process (x (k ) ,N (k ) )  can be simplified 

as follows:

a (x (k ) ,N (k ) , . . . ,  x ( 0 ) , N (0)) =  a (N (k ) , . . . ,  N ( 0), x(0)).

Fact(ii): For any integrable random variable £,

E{£\x(k), N ( k ) , . . . ,  *(0 ), N (  0)} =  E { £ \ N ( k ) , N ( 0 ) , x ( 0 ) } .

Fact(iii): E { N ( k  +  l )\x(k),  N ( k ) }  =  E { N ( k  +  1)|N (k ) } .

Fact (i) is at the core of the proof of Theorem IV.2.2. I t  establishes that a ll the 

probabilistic information is contained in x(0) and N ( i ) ,  i =  0 , . . . ,  k. That is, no new 

information can be obtained by considering the variables x(i),  i =  0 , . . . ,  k, when 

a:(0) and N ( i ) ,  i  =  0 , . . . , k ,  are available. Fact (i) is proven in Subsection B.1.1 

(Theorem B.1.1). I t  makes use of the binary operator fB and standard results on the 

structure of cr-algebras induced by random variables (see Appendix A). Facts (ii) and
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(iii) are proven in Subsection B.1.2 (Theorems B.1.2 and B.1.3). Finally, the proof of 

Theorem IV.2.2 is presented in Subsection B.1.3.

B.1.1 Proof of Fact (i)

Theorem B.1.1 Consider system (65) under the conditions of Theorem IV.2.1. I t  

follows that

a(x(k), N ( k ) , . . . ,  *(0 ), N ( 0 ) ) = a ( N ( k ) , . . . ,  N (  0), x(0)). (104)

Proof: Note that x(k) =  Fk(x(k — 1), N ( k  — 1)), k >  1. I t  follows from Theorem

A.2.4 that a(x(k), x(k  — 1), N ( k  — 1)) =  cr(x(k — 1), N ( k  — 1)). T riv ia lly then (104) 

holds for k =  1. Now, suppose it  holds up to some fixed k =  i  — 1. Then

a (x ( i ) ,N (n ) , . . . ,  x(0), N ( 0 ))

=  a(N( i ) )  R cr(x(i), x (n — 1), JV(i — 1) , . . . ,  a;(0), iV (0))

=  a(N( i ) )  f+) a(x( i) , x ( i  — 1), N ( i  — 1)) R a(x( i  — 2) , N ( i  — 2 ) , . . . ,  a;(0), 1V(0)) 

=  a (N ( i ) )  R a(x( i  — 1), N ( i  — 1)) R a(x( i  — 2) , N ( i  — 2) , . . . ,  a:(0), IV (0))

=  a (N ( i ) )  R cr(x(i — 1 ) , N ( i  — 1), . . . ,  *(0 ), N(0))

=  a (N ( i ) )  R a ( N ( i  — 1), . . . ,  1V(0), *(0 ))

=  a (N ( f ) , . . . , x (0 ) ,N (0 ) ) .

Thus (104) also holds for k =  i, and therefore by induction for all k >  1. ■
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B.1.2 Proofs of Facts (ii) and (iii)

Theorem B.1.2 Consider system (65) under the conditions of Theorem IV.2.1. 

Then, fo r any integrable random variable

E{£| x(k), N ( k ) , . . . ,  x(0), N(0)} =  F { t \N ( k ) , . . . ,  N (  0), x(0)}.

Proof : Observe that the integrability of £ ensures E{£jcc(fc), N ( k ) , . ..  , x (0 ),lV (0 )} 

is well defined and

J  E {£ \x (k ) ,N (k ) , . . . , x (0 ) ,N (0 ) }d P  =  J  £dP,
B B

for every B E a(x(k), N ( k ) , . . .  ,x(0), N(0)).  But Theorem B.1.1 shows that 

cr(x(k), N ( k ) , . . . ,  x(0), N{0))  =  a ( N ( k ) , .. .  ,N(0) ,x(0)) .  Thus, for every such B

J t d P  =  J  E{£| iV(fc),. . . ,  iV (0), x (0 )} dP,
B B

and the result follows. ■

Theorem B.1.3 Consider system (65) under the conditions of Theorem IV.2.1. 

Then,

E { N ( k  +  l)|ic(A;), N { k ) }  =  E { N ( k  +  1)| N {k ) } .

Proof : First, note that a(x (k ) ,N (k ) )  is comprised of sets of the form { oj : 

(x(k,u),N(k,u>)) E H } ,  H  e <^(R” ) <8> & (R m). F ix any H  E <^(Rn) <g> ^ (R m) 

and observe that

{uj : (x(k,cj) ,N(k,uj))  E H }  =  {u  : x (k ,u )  E H i } n  {u : N ( k ,u )  E H2}, (105)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



161

for some Hi  G & (R n) and H2 G 3§(Rm). Next, note that (65) yields

x(k) =  Fk- i ( x ( k  -  1), N ( k  -  1))

=  Fk- i ( F k- 2(x(k -  2), N ( k  -  2)), N ( k  -  1))

=  i rfc_1(Ffe_2(Ffc_3(x(A: -  3), N ( k  -  3), N ( k  -  2)), N ( k  -  1))

=  Fk_i(Fk_2( . .. (F0(*(0 ), N(0)),  JV(1)) . . . , N ( k -  2)), N ( k  -  1))

=  G (N (k  — 1 ) , ,  AT(0), *(0 )),

where G is the indicated composition of the functions Fo,. . . ,  Fk~\. Thus, (105) can 

be expressed as

{ u : { x ( k ,u j ) ,N (k ,u j ) ) e H }

=  {w : (N ( k  -  l .w ) , . . . ,  JV(0,u;), *(0 ,tu )) G G '1̂ ) }  n {a; : N (k ,  u)  G H 2}

=  { u : ( N ( k , u J) , . . . ,N (0 ,u j ) ,x (0 ,u ; ) )e H 2 x G_1(F i)}.

Since G is measurable, it  follows that

H2 x G ~ \ H X) G ^ (M m) ® ® ^ (R m) ® ^(M n),
k+1 copies

which in turn implies that {u> : (x (k , u>), N (k ,  u>)) G H } G a ( N ( k ) , . . . ,  1V(0), *(0 )). 

But since H  is arbitrary, it  follows that cr(x(k), N ( k )) C a ( N ( k ) , . . . ,  1V(0), £c(0)). 

This conclusion, Lemma A.3.1, Corollary A.3.1, and the Markov property of N ( k ) 

yield

E{1V(A; +  l ) \ x ( k ) ,N (k ) }  =  E{E{1V(A; +  1)|JV(A:),. . . ,  1V(0), x(0)} \x (k) , N ( k ) }

=  E {E { N ( k  +  1)|JV(*),. . . ,  AT(0)}|*(A:), N ( k ) }

=  E {E { N ( k  +  l ) \N (k ) } \x (k ) ,  N (k ) } .
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Finally, note that E { N ( k  +  l ) \N ( k ) }  is a(lV(A:))-measurable. Also note that 

a(N(k))  C a(x(k) ,N(k)) ,  so E { N  (k +  1) \N (k)} is also a(x(k), iV(fc))-measurable. 

Thus, Lemma A.3.1 yields E {E {iV (fc+ l)|iV (A :)}|x(A :), N (k ) }  =  E {iV (/c +  1)|7V(A;)}, 

and the result follows. ■

B.1.3 Proof of Theorem IV.2.2

Proof: First, observe f ( N ( k  +  1)) is an integrable random variable for any bounded 

Borel function /  : Rm —» R. Thus, Theorem B.1.2 yields

E { f ( N ( k  +  l))|*(fc ), N ( k ) , . . . ,  *(0 ), N (0 ) }

=  E { f ( N ( k  +  1))| N ( k ) , N (  0), ®(0)}. (106)

Next, note that f ( N ( k  +  1)) is o (N (k  +  Immeasurable (Theorem A.2.1), so 

a ( f ( N ( k  +  1)), N ( k ) , . . . ,  N(0))  C a (N (k  +  1) , . . . ,  N(0)).  Furthermore, this and 

the hypothesis of Theorem IV.2.2 imply that aj(0) is independent of (f ( N ( k  +  

1 ) ) ,N ( k ) , . . . ,  N ( 0)). Hence, (106), Theorem A.3.1, and the Markov nature of N ( k ) 

yield

E { f ( N ( k  +  l))|aj(fc), N ( k ) , x ( 0 ) ,  N (  0)} =  E { f ( N ( k  +  1))| N ( k ) , . . . ,  N (0 ) }

=  E { f ( N ( k  +  l ) ) \N (k ) } .  (107)

From Theorem B.1.3, cr(x(k), N (k ) )  C a ( N ( k ) , . . . ,  JV(0), x 0). Thus, the argument 

in  the proof of Theorem B.1.3 yields E{/(1V(A; +  l))|a;(A;), N ( k ) }  =  E { f ( N ( k  +  

l))|iV (A ;)}, which together w ith (107) confirm identity (66). ■
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B.2 PROOF OF THEOREM IV.2.4

Proof : Observe that Ti. is a linear space since any linear combination of elements from 

H  yields a bounded Borel function that satisfies (67), as a consequence of the linearity 

of the conditional expectation.

Now, to prove (i) in Theorem IV.2.3, suppose /(</>) =  a for all 0 € $  and some 

a 6 R. Note that f (x (k) ,  N (k ) ,  N ( k  + 1)) is a constant random variable. Also, recall 

that for any cr-algebra E { / | ^ }  =  a (a.e.) (p. 215, Shiryaev 1995), which in turn 

implies that /  satisfies (67). Since this is true for any a € R, then H  contains all the 

constant functions.

To prove (ii), suppose that { / „ }  6 H  converges uniformly to / ,  and let Ln be fin ite 

constants such that |/n(0)| < Ln for all 0 6 $ . Next, fix  e > 0 and observe from the 

hypothesis that there exists N(e) such that |/n(0) —/(0 )| < e for all n >  N(e) and for 

all 0 6 $ . In particular, |/jv(e)(0) — /(0 )| <  e implies that |/(0)| < Tjv(e) + e f° r every 

^  6 $. Note that the uniform convergence of { / „ }  implies that it  also converges 

pointwise almost everywhere to / .  This in turn shows /  is measurable (Corollary 

2.2.4, Friedman 1982). Hence /  is a bounded Borel function.

Set L  =  Ljv(c) +  e and observe that — /(</>)| < e, n >  N(e) implies

that |/„(0 )| < L  +  e for all (j> G $  and all n >  N(e). Next, define the func

tion g : $  —* R as g(<f>) =  m ax{L i , . . . ,  Ljv(£)- i, L +  e}, for a ll 0 6 $ ,  and let 

Vn =  fn(x(k), N (k) ,  N ( k  +  1)) and y  =  g (x ( k ) ,N (k ) ,N (k  +  1)). Observe that 

{Vn} converges pointwise to f ( x ( k ) , N ( k ) , N ( k  +  1)), that \yn\ < y, and that 

E {y } =  m ax {L i , . . . ,  Ljv(e)-1, L +  e} <  oo. Hence, it  follows that for any cr-algebra 

Sf, E {y n|^ }  converges to E { f (x (k ) ,  N (k) ,  N ( k  +  1))|S?} (p. 218, Shiryaev 1995).
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Thus,

lim  E {y n\x(k), N ( k ) , . . . ,  x(0), N (0) }
n—»oo

=  E { /( * (* :) , N(k) ,  N ( k  +  1))|*(A ), N ( k ) , . . . ,  *(0 ), JV(0)}. 

But { / „ }  € H.  Thus, (67) implies that

lim  E { y n\x(k), N ( k ) , ®(0), IV (0)} =  lim  E {y n|*(A;), N ( k ) }
n—* oo 7i—*oo

=  E { f (x (k ) ,  N ( k ) , N ( k  +  l))|a(fc), N (k ) } .

Hence, /  G  H, and (ii) follows.

To prove (iii), let { / „ }  be a monotone sequence of functions in H  such that 

0 < f n < M  < oo, and note that { / „ }  converges pointwise to a function / ,  which is 

in turn a bounded Borel function. Thus, (iii) follows by using the same argument as 

in (ii).

To verify (iv), consider the set C composed of a ll the bounded separable functions 

c : <E> —» R of the form c{(j>) =  61(7 )62(A), 4> =  (7 , A), where 61 : Rn x Rm —v R and 

62 : Rro —> R are bounded Borel functions.

I t  is necessary to show that if  c(4>), d(<f>) € C then c{4>)d{4>) G C, and that C C  Ji. 

Note that c{4>)d(4>) =  (6i( 7 )d i(7 ))(c2(A)d2(A)). But c i(7 )d i(7 ) and C2(A)d2(A) are 

real, bounded Borel functions in, respectively, R" x Rm and Rm. Thus c((f>)d(<(>) G  C.

Finally, to see that C G  'H, recall from (p. 216, Shiryaev 1995) that if  £ and rj are 

random variables such that E{|£|} < 00, < 00, and if  rj is -measurable,

then E {£ 77|Sf} =  r/E {^|S f}. Thus, let c(<j>) =  61(7 )62^ )  G  C, (p =  (7 , A), and observe 

from Theorem IV.2.2 that
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E{c((x(k), N (k ) ) ,N (k  +  1))|*(A:), N ( k ) , x(0), N (  0)}

-  E {cx(x(A0, N(k))c2(N (k  +  1))| x(k), N ( k ) , x(0), N (  0)} 

=  £i(x(k), N (k ) )E {c2(N (k  +  1))| x(k), N ( k ) , x ( 0 ) ,  N ( 0 )}

=  ci(x(k), N  (k))E{c2( N  (k +  l))|x(fc), N ( k ) }

=  E{c i {x (k ) ,N {k ) )c2(N (k  +  l))|x(fc), N { k ) }

=  E{c((x(k) ,N(k) ) ,  N ( k  +  l))|x(fc), N (k ) } .

Thus, c satisfies (67). Since this is true for every c EC, then C E H  and (iv) follows.

This completes the proof. ■
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APPENDIX C 

A-EQUIVALENCE

C .l IN T R O D U C T IO N

This appendix formalizes the concept of A-equivalence in the sense of Definition 

3.2 in (Patilkulkarni et al. 2004). The discussion is based on the concepts developed 

on Chapter IV , some of which w ill be stated here w ithout proof.

D e fin itio n  C.1.1 Two jump linear systems

x(k  +  1) =  Ae(k)x{k) (108)

and

x(k  +  1) =  A^k)x(k),  (109)

are said to be A -equ iva len t if, fo r every k >  0, Ae(k) =  v̂>(fc)-

Note that the processes {6(k),k  >  0} and {ip(k), k >  0} does not need to take on

values from the same symbol set. Also note that, under A-equivalence, if  * (0 ) =

£c(0) =  xQ then x(k) =  x(k)  for all k >  0. Thus it  is expected that the lim it behavior 

of x(k)  and x(k)  should also be the same, as show in the following theorem.

Theorem  C.1.1 (Theorem 3.3, Patilkulkarni et al. 2004) Let the jump linear sys

tems (108) and (109) be A-equivalent. Then, (108) is MSS i f  and only i f  (109) is 

MSS.
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This theorem was proved in (Patilkulkarni et al. 2004) assuming that (0(fc), k >  0} 

and {<p(k), k >  0} were the output processes of compatible FSM’s. In what follows, 

this theorem w ill be proven in the context of HJLS’s.

C.2 A -E Q U IV A LE N C E  OF H JLS ’s

A-equivalency can be defined in the context of HJLS’s as follows.

D e fin itio n  C.2.1 Two HJLS’s are said to be A-equivalent i f  their respective jump 

linear closed-loop systems are A-equivalent.

Consider the following HJLS’s

x (k  +  1) =  Az(k)x{k) 

z(k  +  1) =  SN(k)Mx{k))z(k)

i v- i

U ̂  = Rn- (110)
t=o ieZ/„

and

x(k  +  1) =  Az(k),N(k)X(k)

z{k  ~F 1) — <S'7V(A:),V’(*(fc)) '̂( '̂) 
tu- 1

r!>{x) =  Y ,  ft) , 1J Ri = W l . ( I l l )
i=0 i€Xtv

Note that both HJLS’s have the same A /S  map. The following lemma is triv ia l.

Lem m a C.2.1 Suppose that Az(k) =  As(k)tN(k) =  Ai, whenever z(k) =  z(k) =

e*. Then, the jump linear systems embedded in the HJLS’s (110) and (111) are A- 

equivalent provided that x(0) =  x(0) =  x0 and z(0) =  z(0) =  z0.
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Note that under the conditions of Lemma C.2.1 both the jump linear systems and 

the FSM’s are A-equivalent. This sets the conditions for the next theorem.

Theorem  C.2.1 Consider the HJLS’s (110) and (111) under the conditions of 

Lemma C.2.1 and Assumption IV .3.1. Then, fo r any fixed £0 and z0 it  follows that 

limfe_0E{||x(A:)||2} =  0 i f  and only i/lim fc_>oE{||a;(A;)||2}  =  0.

Proof: The idea behind the proof is to show that =  p% for every A: >  0. This

in turn shows that E {||x(/c)||2} =  E {||x(/c)||2} for every k >  0, which proves the 

theorem.

First, observe that under the conditions of Lemma C.2.1 /xg =  /xg =  6X0. Next, recall

from Chapter IV  that y{k) =  [x(A;)T z(k)T]T and from Theorem IV.3.2 that 

pl(B)  =  ^ ’N)( B x E s x I eN) =

ts —1 is iN — 1

Now, let y(k) — [x(/c)T z(k)T]T. Observe that a derivation sim ilar to the one leading

1=0

Thus, it is possible to compute as follows:

ESXI<JV R» '- 0
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/ < J V - 1

2  1B(A2,iX0) lc ( S i^ Xo)z ) lD{ l ) p ^ 0z’N){di x dz)

=  ^ ’^ ( { ( e r o ^ o W M A r o . io ^ o )  2 ! l c ( 5 to^ ( Io )ero) lo ( O P iI /
ro=l io=0 /=0

=  E  E  C{(e.0, i o ) } teP < *).
r o = l  io = 0

Note that in the previous expression, due to the conditions of Lemma

C.2.1 and Assumption IV.3.1. Also, P (x0) is defined as in (75). Thus, re-
( ro , io) ,(C ,£>y

peating the procedure leading to Theorem IV.3.2 yields

/.<?•">(£> x C x D )  =

E E - E  E  ^ ' " ’ ( { (^ .<0) } ) ,  . p  . , w ,  p
, . *  ■ n ( ro ,» o ) , ( r i ,u )  ( r i ,* i ) , ( r 2 ,t2)

r o = l  io = 0  r j t _ i = l  i fc_ i=0

P (Ae ■ ■ ■ A- inx) P (Ae„ 4 • • • ACr iox)

6A'rk_1,ik_1 -A*r0, iA B )-

Recall that the jump linear systems in (110) and (111) are A-equivalent. Thus, for 

any ft >  0 it  follows that Ark^k — ATk. Using this equality in the expression above, 

and replacing C =  E5 and D  =  le N yields

4 ( B )  =  ti<i ’N)( B x X s x I eN) =

l s  t -N - 1 i s  ^ JV -1

E E - E  E  ^ ’({(e^.io)}), P (*) P
ro=l to=0 rjt_i=l ifc_i=0

, w S ^ er-k-3 "  ’ ^ 0  ̂ ^ A«rk 1 -Aer0x ( B ) -  (H4)(rk -2 ,tk-2 ),(rk -l^ k -l) * 6 k- 1 0
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Comparing (112) and (114) clearly shows that / i%{B) =  p%(B) for every k >  0 and 

every B  G & (R n) (except, possibly, on sets of measure zero). Clearly,

e{II*M!I2} = /  IW|Vj(<fc) = J M V'(<k) = E {ll*(*)f}.
R n Rn

which in turn implies that lim/t_o E{||x(/c)||2} =  0 if  and only if  lim fc_o E{||x(fc)||2} =  

0. -

C o ro lla ry  C.2.1 Under the conditions of Theorem C.2.1, (110) is MSS i f  and only 

i f  (111) is MSS.

Proof: (Sufficiency) The assertion follows immediately by observing that (110) is MSS 

when limjt_>oE{||x(fc)||2} =  0 for every in itia l condition [x j Zq]t and every in itia l 

distribution (i$. This in turn implies that lim*_o E{||*(fc)||2}  =  0 for every in itia l 

condition [x j zJ]T and every in itia l distribution [Iq , making (111) MSS.

(Necessity) The converse argument is completely analogous. ■

Corollary C.2.1 is the equivalent for HJLS’s of Theorem 3.3 in (Patilkulkarni 

et al. 2004). It  shows that the MS stability of (110) can be analyzed uding (111).

C .3 A -E Q U IV A LE N C E  OF G E N E R A L M O O R E -T Y P E  H JLS ’S A N D  

C A N O N IC A L  H JLS ’S

Chapter I I  introduced a procedure to build an A-equivalent canonical HJLS for 

any HJLS w ith an embedded Moore-Type FSM equipped w ith a non-isomorphic
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output map. Specifically, it  was claimed that the HJLS

x(k  +  1) =  Aw(z(k))x(k) 

z(k +  1) =  SN(k),i>(x(k))z {k)

e „ - i

i>(x) =  £  i l {x€iuh (J  Ri =  IT , (115)
i= 0 i € l tl/

w ith a non-isomorphic output map w, and the canonical HJLS

x(k  +  1) =  Az(k)x(k)

z(k +  1) =  SN(k),i>(x(k))z{k) 

tv- i
x ) =  X  |J  ^  =  Rn, (116)

i= 0  ieX/„

are A-equivalent provided that Az^  =  A{ whenever zu(z(k)) =  i. This claim can be 

proven as is Lemma C.2.1. More importantly, it  is also possible to show that their

mean square stabilities are equivalent. To see this, observe that a procedure sim ilar

to the one leading to (114) yields

M B )  =
£3 ^  J gg g jy_I

E E -  X  X  / ^ ( { ( ^ o ) } )  p (x) p (a ^  )* )•• •
•T T i  i n  -  1 • n (n>,«0 ), r i , . i )  ( r i , * i ) , ( r 2 ,*a)r 0= l  io = 0  r f c _ i = l t f e _ 1= 0

' ••A^ r 0)X)SAm(erk^..Am(ero)̂ B ) ,  (117)

and

4 ( B )  =

E E - " E  £ /‘Si,'v,( { ( ^ . i o ) } ) ( p . , (*) ,  . p  , a „ 0x) - - -
n „ -1 i n (ro,io),(n,ii) (r i ,» i ) , ( ra ,» a )r o = l  zo=0 r f c _ ! = l  tfe_x=0

,r i frr < (118)
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Since Ax^) =  Ait whenever zv(z(k)) =  i, then Aerk =  A j7(erfc) for every k >  0. Thus, 

H* =  which in tu rn  shows that Theorem C.2.1 and Corollary C.2.1 also hold for 

systems (115) and (116).

Rem ark C.3.1 The preceding discussion justifies the following conclusion: A ll the 

stability results derived fo r canonical HJLS in Chapters I I I  and IV  are also valid fo r  

general Moore-type HJLS’s.
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