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ABSTRACT

The governing equations describing water level 
oscillations in a closed surge tank with compressed air 
at the top of the tank are a set of nonlinear ordinary 
differential equations if the hydraulic system is 
analyzed as a lumped system. These oscillations are 
stable or unstable depending on the parameters of the 
plant and the type and magnitude of the disturbance.

The present available stability criterion has been 
developed by linearizing the governing equations and 
is, therefore, valid only for small disturbances.

In the research reported herein, the governing 
equations are normalized to reduce the number of 
parameters from nine to four and the stability of 
oscillations is studied by using the phase plane method 
which allows inclusion of nonlinear terms in the 
analysis and, therefore, would be valid for small and 
large disturbances.

Four cases of turbine flow demand are investigated. 
These are: constant discharge, constant gate opening,
constant power and constant power combined with constant 
gate opening. Singularities of the governing equations 
are determined and analyzed in each case and stability 
criteria are developed. For illustration purposes,
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Driva Hydroelectric Power Plant System in Norway is 
analyzed and phase portraits are presented.

These investigations show that the oscillations 
are always stable for the case of constant discharge 
and of constant gate opening. For the constant power 
case, oscillations are stable only if the system 
parameters satisfy certain criteria. For a combination 
of constant power and constant gate opening, it has been 
found that stability criteria for constant power are valid 
for heads greater than rated head and for constant gate 
opening for heads less than the rated head.
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NOMENCLATURE 
= Constants;

2A = Horizontal area of surge tank, m  m ;s 2A_£ = Cross-sectional area of tunnel, m m ;
2g = Acceleration due to gravity, in m/s ;

hf = Head losses in tunnel, in m;
H = Gross head=upstream reservoir level-g tail-water level, in m;
k = Coefficient of tunnel head loss, hf =

k Q 1Q | ;
L = Tunnel length, in m;
n = Exponent in the polytropic gas equation;
p = Gauge pressure of enclosed air, in m;
p = Atmospheric pressure, in m;
cl

q = Normalized turbine flow;
3Q = Tunnel flow, in m /s;
3= Turbine flow in m /s;vtur

t = Time, in s;
T = Period of oscillations, in s;

3¥ = Volume of enclosed air, m  m ;
x = Normalized discharge;
xg = x- coordinate of singular point;
y = Normalized tank-water-surface level;
yg = y-coordinate of singular point;
z = Water-surface level in the tank below the

upstream reservoir level, in m;
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i x

Z
Subscripts
"o"
"s"
Greek Letters 
*1, x 2

Amplitude of oscillations, in m.

Initial steady-state values; 
Singular point

Characteristics roots
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CHAPTER 1 
LITERATURE REVIEW

1.1 Open Surge Tanks
Surge tanks have been used to control the undesirable 

transient. In hydroelectric power plants, they have been 
used to reduce the amplitude of pressure fluctuations by 
reflecting the incoming pressure waves and to improve the 
regulating characteristics of a hydraulic turbine. An up­
stream surge tank in a hydropower plant acts as a storage 
for excess water during load reduction and it provides water 
during load acceptance. Therefore, the water is accelerated 
or decelerated in the tunnel slowly, and the amplitude of 
the pressure fluctuations in the system is reduced.

Figure 1.1 shows a schematic of a hydroelectric power 
plant system. When the flow in the tunnel is steady, the 
water surface in the tank is lower in elevation than that 
in the upstream reservoir due to friction loss. Load 
changes produce disturbances in the hydraulic system 
resulting in two types of oscillation: long period, e.g.,
oscillation of water surface in the surge tank and short 
period, e.g. water hammer. These oscillations are 
stable or unstable depending upon the parameters of the
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FIG. 1.1 SCHEMATIC DIAGRAM OF HYDROELECTRIC 
PLANT WITH AN OPEN SURGE TANK
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plant and the type and magnitude of the disturbance.
Oscillations are said to be Stable if they dampen 

to the final steady state in a reasonable time [1] and 
unstable if their magnitude increases with time.

While designing a surge tank, it is necessary to 
determine the maximum and minimum elevation of the water 
surface in the tank, rate of damping of the oscillations 
and their frequencies. In addition to oscillatory insta­
bility discussed above, a condition called tank drainage 
has to be avoided. In case of a sudden increase in power 
demand and improperly designed surge tank, the water in 
the tunnel does not accelerate fast enough to meet the 
turbine demand. Therefore, the surge tank supplies the 
required flow resulting in a continuous drop in the tank 
water level until it drains.

Surge tank stability and design have been studied 
by a number of investigators. Because of the presence of 
nonlinear terms in the differential equation describing 
the water level oscillation in the tank following a change 
in power demand, a closed-form solution is not available. 
Therefore, they are analyzed by linearizing them and 
numerical methods are used to integrate them.

The dynamic and continuity equations for a simple 
surge tank may be written as [2]:
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in which
Q = tunnel discharge;
Qtur = turbine discharge;
At = tunnel cross-sectional area;
A = horizontal cross-sectional area of thes

surge tank;
z = instantaneous water level in the tank;
k = coefficient of head losses, hf, in the

2tunnel (h^ = kQ ); 
g = acceleration due to gravity;
t = time; and
L = tunnel length.
For the case of a simple surge tank, Thoma [14] using 

Eqs. 1.1 and 1.2 and assuming very small oscillations and 
a constant power condition, developed his classical 
stability criterion. Thoma's analysis is based on the 
following assumptions:

1. The turbine governor maintains a constant power 
output;

2. The surge tank oscillations are small;
3. The turbine efficiency is constant;
4. Pressure losses in the penstock are negligible;
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5. Velocity head in the tunnel is neglected;
6. Head losses in the tunnel are determined from the 

steady flow formula;
7. Power station is isolated, i.e., it is not con­

nected with another station; and
8. Highly sensitive governor which reacts immediately. 
Based on the above assumptions, Thoma demonstrated that

the oscillations are unstable if the tank area is less than 
a minimum. This minimum area is called Thomals area or 
Thoma's condition for oscillations of perpetually constant 
amplitude. The Thoma‘s formula for the tank area

in which,
ATh = the critical surge tank area by Thoma;
VQ = steady state velocity in tunnel;
g = acceleration of gravity;
L = length of tunnel;
A^ = tunnel cross-sectional area;
k = coefficient of tunnel head loss
H = net head; ando
N = stability factor
If N = 1.0, then the surge tank area is the critical 

area and oscillation is perpetual with constant amplitude.

(1.3)

or
(1.4)
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If N is less than 1.0, oscillations are unstable and if N 
is greater than 1.0, oscillations are stable.

Several investigators, such as Jaeger [3], Paynter [4], 
Marris [7], Ruus [6] and Chaudhry [2], have undertaken 
studies to determine the validity of Thoma*s Formula; and 
to investigate effect of large oscillations on stability 
as discussed in the following paragraphs.

Jaeger [3] expanded analytically Thoma's Formula to 
allow for large oscillations by introducing the ratio 
Z*/Hq , where Z* is the maximum surge neglecting friction 
in tunnel. He developed a formulae

V LA *
A s = 2 §  -  2 t 1 + ° ‘ 482S 2g kv H Hoo o

which gives surge tank area larger than Thoma's area. This 
formula may be simplified as

As - ATh (1 + °-5 f 1 (1-5)o
in which

Z* = v ^LA/gA o t 3 s
Jaeger stated that when the surges are large, addi­

tional losses occur at the base of the surge shaft where 
the water is diverted from the tunnel into the shaft, or 
from the shaft into the tunnel. These losses have stabiliz­
ing effect. Jaeger's analytical approach to the problem 
has been confirmed by Frank [9] who used a graphical 
solution.

Paynter [4] analyzed the phenomena of large oscilla-
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tions by means of an analog computer and presented his 
formula:

kv 2 kv 2 kv 2
~ir ~  = 2 - p -  - -h2-' <l -6>o o

To account for large oscillations, Marris [5], employ­
ing phase plane method analyzed the stability of a surge 
tank without neglecting the nonlinear terms in the govern­
ing equation. His non-dimensional form of the equation of 
motion for a simple surge tank operating under the condi­
tion of constant hydraulic power is shown to have two sin­
gular points: One of them accounts for small displacement
phenomena and the other accounts for the occurrence of 
drainage due to insufficient power being available at the 
turbine. Marris investigated the stability of the two 
singular points by means of Liapunoff's theorem (29) and 
concluded that the occurrence of drainage is due to insuf­
ficient tank size and due to conduit friction which pro­
hibits acceleration to the flow velocity demanded by the 
turbine.

Ruus [6], using a digital computer, studied the 
stability of the simple surge tank for the case of large 
oscillations. In his analysis, he considered constant 
power output as well as constant gate opening. Other 
assumptions by Thoma were kept the same.

In case of a constant power condition, it is assumed 
that the turbine gates can be opened to any value to main­
tain constant power. However, on actual installations 
once gates reach their fully open position, they cannot be
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opened more. Therefore, a constant power will only be 
maintained if the net head on the turbine is more than or 
equal to the rated head.

In his analysis, Ruus made two approximations with re­
spect to the relationship between the turbine discharge and 
the net head. Above the rated head, the head-discharge re­
lationship is represented by qHn = constant. Below the 
rated head, two approximations are presented:

1. A parabola expressed by the equation qH^ = con­
stant?. and

2. A straight line which is represented by the equa­
tion:

H - H
q = qr U  + k -Sg— E>

in which: q = turbine discharge; qr = rated discharge;
Hn = rated head; and k = numerical constant equals 
to 0.62.
The actual head-discharge curve for the range below 
the rated head is supposed to be located between 
the above two curves.
Due to these approximations, the results are mainly 
applicable for preliminary calculations of the 
stability of a simple surge tank.
In general, Ruus [6] shows that the relative rated
head, H /H (H = gross head), has a substantial r g g
effect on the stability of a surge tank, and that 
for the values of the head below the rated head, 
the difference in head-discharge relationships has 
a relatively minor effect on the stability of the 
tank.
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The computer analyses results by Ruus agree very 
closely with those derived by Frank [9] by 
graphical methods for a constant power. The 
restriction on the turbine gate opening under 
heads lower than the rated head causes rapid 
damping of large oscillations in the surge tank. 
Ruus concluded that small oscillations rather than 
large ones are critical to surge tank stability, 
and should be considered in determining the neces­
sary tank area. Therefore, increasing the surge 
tank area is not required for damping of large 
oscillations.

Marris [7] and Sideriades [8] used the phase plane 
method to study the nonlinear differential equation 
for a simple surge tank for the case of constant power. 
Marris obtained the solution curves of the equation 
near each of its singularities and investigated the 
types of instability to be expected. He demonstrated 
that Thoma*s criterion does not hold for large 
oscillations.
Chaudhry and Ruus [ 2] #- also utilized the phase plane 
technique to study the stability oscillations for the 
following cases:

a. Constant flow,
b. Constant gate opening,
c. Constant power, and
d. Constant power combined with full gate opening.
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They derived the following conclusions from their 
studies:

1. Stable oscillations always occur in the cases of 
constant flow and constant gate opening. This 
result was obtained earlier by investigators 
using other analysis approaches.

2. For the case of an ideal governor, which insures 
constant power but can open the gates only to 
their specified maximum limit, the phase plane 
is divided into two parts:
a. The region in which power can be maintained 

constant; and
b. The region of maximum gate opening in which 

power cannot be maintained constant.
The solution trajectories in the region of con­
stant power correspond to the stable oscillations 
if Ag > At^, and to the unstable oscillations if 
Ag < The solution trajectories in the
latter region are always stable. Hence, the 
oscillations, large or small, are stable if 
Ag > A T^. For Ag < ATji, the solution trajec­
tories in the phase plane correspond to stable 
oscillations in the region defined in (b) and 
to unstable oscillations in the region defined 
in (a). Due to these stabilizing and destabili­
zing effects, a solution trajectory correspond­
ing to perpetual oscillations is obtained, which 
in the phase-plane terminology is called a limit
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cycle. The region enclosed by the limit cycle 
depends upon the stabilizing effect of the con­
stant gate opening and upon the destabilizing 
influence of the governor. The oscillations 
inside the limit cycle are unstable, and their 
amplitude increases until it is equal to that of 
the limit cycle. The oscillations outside the 
limit cycle are stable, and their amplitude 
decreases until it is equal to that of the limit 
cycle.

3. The danger of drainage of the surge tank for the 
case of constant power combined with constant gate 
opening is considerably less than that indicated 
by the stability analysis assuming constant power 
only.

1. 2 Closed Surge Tanks
Surge tanks (air chambers, air vessels, air bottles, 

etc.) have been used as devices for controlling surges in 
pumping plants [11,12] for about 50 years.

Because of recent advances in technology [16], it is 
economically feasible nowadays to excavate the headrace 
tunnel of a hydropower development at slopes as much as 
one in eight. Thus a straight inclined tunnel may be used 
from the intake to the powerhouse. In such a case, it 
becomes attractive to provide a surge tank with closed top 
[1] instead of a conventional surge tank in which the shaft 
is excavated to the free surface. Such surge tanks were 
used about 60-70 years ago in small power plants in the
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U.S.A., but were discontinued because of problems with 
governing stability [10]- These problems were most 
probably due to the governor and not due to the surge 
tank. However, major credit goes to the Norwegian 
engineers who have used these tanks at several large power 
plants, eight of which are operating satisfactorily.

Svee [16] investigated the stability of closed surge 
tanks. His solution for the governing differential equa­
tions was based upon the theory of small oscillations, 
therefore, the nonlinear terms were neglected.

Figure 1.2 shows schematic of a hydroelectric power 
plant with a closed surge tank. A chamber partly filled 
with compressed air has been used replacing the convention­
al open surge tank. In the case of an instantaneous load 
change in the power plant, the mass of water will start 
to discharge into the chamber raising the air pressure.
The growing excess pressure, together with the friction 
drag along the tunnel walls will exert a steadily growing 
retarding force on the flowing water until the water in the 
chamber will flow back. The water level in the chamber will 
then oscillate with damped motions around a new equilibrium.

Equations describing the water level oscillations in 
a closed or open surge tank are nonlinear. The stability 
criteria for open surge tank has been developed without 
neglecting the nonlinear terms. However, because of the 
very recent introduction of the closed surge tanks for 
application in hydroelectric power plants, no criteria has
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FIG . 1.2 SCHEMATIC DIAGRAM OF A HYDROELECTRIC 
POWER PLANT WITH A CLOSED SURGE TANK
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yet been developed in which nonlinear terms in the govern­
ing equations are included. The presently available 
stability criteria have been developed by applying the 
theory of small oscillations [16 ], and by making the same 
assumptions as for the analysis of stability of an open 
surge chamber.

To investigate the stability, Svee [16] assumed a 
small disturbance imposed on the hydraulic system in steady 
conditions, an approach similar to that used by Thoma [14]- 
According to this approach it is imagined that a water layer 
of thickness a z  is placed on the water surface in the surge 
tank at stationary conditions. The effect of such an equi­
librium disturbance is then investigated. The basic equa­
tions were derived based on the following assumptions:

1. Turbine governor maintains constant power in all 
phases of oscillations.

2. The inertia of the water in the surge chamber is 
neglected in the direction normal to the tunnel 
axis.

3. The water mass in both the shaft and the chamber 
is neglected.

4. No time lag exists between a water level alter­
ation in the surge chamber and its effect on the 
acceleration of the tunnel water mass.

5. Velocity is constant across the tunnel area.
6. Expansion and contraction of the enclosed air is 

mathematically modelled during the transient state
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conditions by the polytropic equation for a per­
fect gas, i.e., PVn = constant, in which P =
instantaneous pressure of air cushion and ¥• = 
instantaneous volume of air cushion.

7. The water mass, dm, that enters the tunnel from 
the shaft during oscillation has no velocity 
component in the direction of the tunnel before 
entering the tunnel.

8. The A values are very small, but finite deviations 
from the respective stationary values. Small 
terms of second or higher order are neglected.

The following equations are also used:

¥ = ¥ + 4 ¥ = ¥  + A 4zo o s
Based on the above assumptions and equations and the 

basic equations, Svee derived the following three equations, 
viz, Dynamic, Continuity and Regulation (constant power) 
equations:

v = v + Avo
z = z + Az o
q = qQ + Aq 
n = nQ + An 
P = PQ + Ap

2av Av +o
VoAs d (Az) 
gAfc dt (1.7)

(1.8)
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1.6

q q v
E Aq = A . - £ ■ Az - g.0,.0 Av (1.9)

in which A, E and are constants. By eliminating Av and 
Aq in the above equations, a second order differential 
equation in Az with constant coefficients will result 
from which Svee derived the following stability criterion:

nP
{As) " ATh (1 + I T *  {1-10)cr o

in which,
(A ) = critical area of the closed surge tank;
s cr

n = the exponent in the polytropic gas equation;
a = distance between the surge chamber roof and o

the water level in a surge chamber with
vertical walls and a horizontal roof
(= — )V A 1 s

Accordingly, if the critical area of a surge chamber 
with an enclosed compressed air cushion is to be determined, 
the critical area of an open surge tank should be calculated 
first, then the critical area of the enclosed surge tank is 
given by Eq. 1.10. This procedure is only possible when 
determining critical areas for small oscillations.

Eight high pressure head power plants with the air 
cushion design have been constructed in Norway. The 
problem of air leakage from the chamber is one major 
concern. The amount of air escaping from the chamber
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appears to be the only uncertain factor as far as the 
practical aspects of the closed surge tank solution. The 
air loss was found to increase with increased turbulence 
in the chamber [17]. No cavitation has been developed in 
the turbines, and it was found that the presence of the 
air chamber reduced cavitation risks.

Mathematical modelling of the expansion and con­
traction of air in the closed chamber during the transient 
state conditions has been under dispute. The debate is 
about applying the polytropic equation for a perfect gas,
i.e., p¥n=constant. For isothermal behavior, n=1.0 
and for purely adiabatic behavior n=l.4.

An average value of n=1.2 has been widely used and 
has been found to yield satisfactory results when compared 
with the field analysis. However, Graze [18, 19] who 
developed a rational heat transfer equation has severely 
criticized the use of polytropic gas equation calling its 
use theoretically incorrect and stating that n=1.2 does 
not necessarily give conservative results.

To compare the two approaches, the computed results 
for Driva power plant were compared. These results are for

3a flow reduction of 30 m /s to zero. The air pressure 
variation computed by the rational heat transfer equation 
was taken from Ref. 20 while the results for the polytropic 
gas equation were computed for n=1.4 [31] . It has been 
found that there is close agreement between the results of the 
two approaches [31].
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As discussed above, the stability criteria and 
numerical methods have been developed for open surge tanks, 
for both small and large oscillations. However, available 
stability criteria for closed surge tank have been 
developed by linearizing the governing equations. This 
criteria, developed by Svee [16], is therefore applicable 
only for small oscillations.

In the research reported herein, the stability of 
oscillations is studied by using the phase plane method 
in which nonlinear terms of the governing equation are 
retained. This method, which has been successfully 
applied [2, 7, 8] in investigating stability of a simple 
surge tank, is used particularly in connection with non­
linear differential equations. All the singular points 
of the governing equations will be determined and analyzed 
to establish stability criteria for different possible 
cases of turbine flow demand. For illustration purposes, 
Driva hydroelectric power plant system [17] will be used.
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CHAPTER 2 
PHASE PLANE METHOD

2.1 INTRODUCTION
The basic problems to be studied in a nonlinear system

are:
1. To determine the equilibrium conditions of the 

system and to analyze their stability.
2. To investigate the transition of the system from 

one stable state of motion to another.
3. To investigate the dependence of the solution 

curves on the system parameters.
One technique for studying these problems is to represent 
the motion of the nonlinear system in phase plane.
2.2 ELEMENT OF THE METHOD

Let us consider a differential equation:

+ f (*, fe. - o (2.1)
at

dx dxin which f (x, may be a nonlinear function of x and
dxLet v = y = then, Eq. 2.1 can be rewritten in the form 

of two first order differential equations as follows:

§£ = -f (x,y) (2.2)

P = ydt y
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Equation 2.2 is a special case of a more general nonlinear 
system of the form:

|£=Q<x,y)
(2.3)

If the functions P(x,y) and Q(x,y) are independent of 
time, then system 2.3 is said to be autonomous. If x,y are 
orthogonal cartesian coordinates, where y = dx/dt represents 
the rate of change of coordinate x, then to each time t^ 
(i.e., one state of the system) there corresponds a point in 
the xy-plane. Conversely, to every point of the xy-plane 
where the functions P and Q are defined there corresponds 
one and only one state of the system. Therefore, the xy- 
plane is called the state plane or the phase plane. The 
point in the phase plane which corresponds to a given state 
of the system is called the representative point.

When the state of the system changes to a new state 
there will be a new representative point. To a continuing 
change in the state of the system there corresponds a motion 
of the representative point in the phase plane. The curve 
described by the representative point provides a solution 
x(t) and y(t) of the system of Eq. 2.3. This curve or solu­
tion is called a solution curve or trajectory. Thus, a 
solution curve or trajectory depends on the position and the 
velocity of the system.

By a complete trajectory of a dynamical system, it 
means a curve which is composed of all representative points
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the system passes through in the course of time. The speed 
of the representative point in the phase plane is the state 
speed v, or the phase velocity where:

V = /(lf)2 + (§t)2 = /p2(x'y> + (2.4)
When the velocity (^) and the acceleration = ^^r) are 
simultaneously equal to zero, the system will be in an 
equilibrium state. According to Eq. 2.4 the state speed 
will have to be zero at those points for which the following 
conditions are simultaneously satisfied:

P(x,y) = 0
(2.5)

Q (x,yj = 0 
By eliminating dt from Eq. 2.3, then

<2-6’
which is the differential equation for the trajectories. If 
in Eq. 2.6, P = 0, Q ^ 0, we may interchange and write
3X D^  = — , in which case the integral curves (trajectories) are 
given in the form x = ay.

It should be noted that Eqs. 2.3 and 2.6 are equiva­
lent, i.e., they have the same integral curves with the dif­
ference that Eq. 2.6 gives a geometrical curve without any 
reference to what.happens in time, whereas Eq. 2.3 in addi­
tion tells how this curve is described in time and direction 
by the representative point. The solution of the differen­
tial equation 2.6 can always be expressed in the form: [26]

F(x,y) = Constant (2.7)
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If the value of the constant is held fixed, Eq. 2.7 is 
the equation of a curve in the phase plane. This curve may 
be connected or it may consist of several disconnected com­
ponents. Such a curve is called an integral curve of Eq.
2.6 [26]. Each integral curve is composed of one or more 
trajectories.

Though every point of the plane for which the state 
speed is not zero, i.e., the functions P(x,y) and Q(x,y) 
are not both zero, there will pass one and only one trajec­
tory or integral curve [26,27]. Eq. 2.6 may be thought of 
as a "flow" in the phase plane defined by the velocity-vec- 
tor field. The direction of motion at each point being 
specified by this vector, it follows that the integral 
curves which are tangent at every point to this vector are 
completely determined by this requirement. Since P(x,y) and 
Q(x,y) satisfy Cauchy's - Lipschitz conditions for the 
uniqueness of the solution of 2.6 [26,27] two integral 
curves will not have a common point, i.e., two trajectories 
will not cross each other.

The phase velocity or the state speed will be zero at 
those points of the phase plane for which condition 2.5 is 
satisfied and, where the slope of a solution curve is not 
defined. These points are stationary points of the flow.
The integral curve passing through a stationary point con­
sists only of the point itself. Such points are called 
singular points and can be interpreted as the equilibrium 
states of the dynamical system in question.
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At any point x,y for which P and Q do not vanish simul­
taneously is called an ordinary point of Eq. 2.6.

Thus, a singularity is always a point of equilibrium 
since both ^  and ^  are zero. However, the resulting 
equilibrium may be stable or unstable.

To know the behavior of the solution in the entire 
phase plane we must know the type of the singularity and in 
particular the behavior of the solution or the trajectories 
near the singular points. Therefore, it is necessary to 
investigate first the nature of the states of equilibrium 
of a system.

2.3 TYPE OF SINGULAR POINTS AND STABILITY
Lyapunov [29] defines stability of an equilibrium state 

in a dynamical system as follows: Given an arbitrary e -
neighborhood of the equilibrium state, one can always find 
a corresponding 6e - neighborhood such that a representative 
point located at the initial moment in the latter neighbor­
hood never reaches the boundary of the e - neighborhood.
In other words, an equilibrium condition is said to be 
stable if upon slight disturbance, the departure from this 
condition remains small. For example, if the coordinates
of the singular points of Eq. 2.6 are x , y ; then it is re-s s
quired to have a solution that is valid in the neighborhood
of this singular point x , y to examine the stability ofs s
this equilibrium condition.

A singular point belongs to one of the following types:
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(c )  NODE (d) SADDLE

FIG. 2.1 T Y P E S  OF S ING ULAR POINTS
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1. A vortex is a singular point surrounded by closed 
trajectories or integral curves as shown in Fig. 
2.1a.

2. A focus is a singular point with spiral-like tra­
jectories, Fig. 2.1b.

3. A node is a singular point where the integral cur­
ves have the same slope, Fig. 2.1c.

4. A saddle is a singular point with hyperbola-like 
trajectories, Fig. 2.Id.

According to the above definitions, a vortex is a 
stable singular point, i.e., stable equilibrium condition, 
while a saddle point represents an unstable condition. A 
focal point and a nodal point may be either stable or un­
stable depending on whether the trajectories are directed 
toward or away from the singular point. Point is stable if 
trajectories are directed toward the singular point and un­
stable if trajectories are directed away from the singular 
point.

To study the nature of solutions in the neighborhood
of a singularity, let x = x + u, y = y + v, where u and vs s
are small variations from the singular point. Expand the 
functions P and Q in Eq. 2.6 into Taylor's series about xg,

ys; >2
0<x,y> = Q(xs, ys) + || v + i-fi

s 3x
2u

7 (2.8)
+ P  v2 +3y
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Since by definition of a singular point Q(x , y ) =s s
P(x , y ) = 0; therefore Eqs. 2.8 and 2.9 may be written as 

Q(x,y) = cu + dv + cu^ + dv^ + • • • (2.10)
i « " 2  11 2P(x,y) = au + bv + au + bv + • • • (2.11)

and Eq. 2.6 becomes:
i ' » 2  " 2

d y  _  d v  _ cu + dv + cu + dv + • • •
dx “ du “ ^ " 2 ^ " 2 . (2 .1 2 )au + bv + au + bv + • • *

1 1 , 1 11 11 „  n
where a, b, c, d, a, b, c, and d are real constants which 
represent the values of the first and second derivatives of 
the functions P and Q evaluated at the singular point

v  ys*
Since we are interested in investigating the nature of 

solutions in the neighborhood of the singular point, the 
linear terms in u,v are important in determining this nature 
and the second order terms can be neglected. The type of 
singularity depends only upon the linear terms, provided 
these terms are present if nonlinear terms are present [30]. 
This is the case of a simple singularity.

IIIn other words, if a 5̂  0 in Eq. 2.12, the singularity 
is a simple one if a £  0. This condition applies in both 
numerator and denominator and for both terms including u 
and v.
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Therefore, with a simple singularity the solution in 
its neighborhood will depend on Eq. 2.12 with only the 
linear terms i.e.,

Eq. 2.13 is equivalent to the following two simultaneous 
first-order equations:

The characteristic equation for Eq. 2.14 is expressed as

The general solution of the equation in the form of Eq. 2.13

in which A, B, C and D are constants.
Therefore, from the above solution, it is obvious that 

the integral curves and the type and the character of the 
singular points are determined by the roots of the charac­
teristic equation. The roots as defined in Eq. 2.16 depend 
on the values of the coefficients in Eq. 2.14.

dy _ dv cu + dv
dx du au + bv (2.13)

(2.14)

X^ - (a + d) X  + (ad - cb) = 0 (2.15)
with the roots

X1
(a + d) + /(a + cl)2 + 4 (ad - cb) 

2
(2.16)

X2
(a + d) - /(a + d) ̂  + 4 (ad - cb) 

2

u = Ae + B e
(2.17)

v = Ce + D e
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Accordingly, if a + b ^ 0, ad - cb ^ 0 and (a + d)^ ^
• 1 • '(ad - cb). The following types of equilibrium states can 

exist [26]:
1. If ^  and X2 are real and negative, singularity is 

a stable node.
2. If X^ and X2 are real and positive, singularity is 

an unstable node.
3. If X^ and X2 are real and with different signs, 

singularity is a saddle point?
4. If X^ and X2 are complex conjugates with Real |x| >

0, singularity is an unstable focus.
5. If X^ and X2 are complex conjugates with Real |X| < 

0, singularity is a stable focus.
Thus, Eq. 2.14 can be used [26] to determine the char­

acter and stability of the equilibrium state of the nonlinear 
system represented by Eq. 2.3. If the real parts of both 
roots of the characteristic equation are zero, or if one 
root is zero and the other is negative, Eq. 2.14 cannot be 
used to determine the stability of the equilibrium state.

The above cases of the equilibrium states can be dis­
played in a diagram called p-q plane as shown in Fig. 2.2. 
First assume that

p = - (a + d)
I I | *q = ad - cb

Thus, the characteristic Eq. 2.15 can be rewritten as
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> p > o  , ( p - 4 q ) >  o
q <  o stable nodes

saddle
points o , ( p2-  4 q ) <o  

f  stable foci

I  p <  o , (p -4 q )< o  
unstable foci

a = p2-  4q =o —
p < o , (p2-4 q  )> o  
unstable nodes

FIG. 2 .2  CASES OF EQUILIBRIUM STATES 
IN A p - q  PLANE
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+ pX + q = 0 (2.18)
with its roots

= -P ± /p2 ~ 4q (2.19)
2

For the part in the q-p plane where q < 0, the singular 
points will be saddle points, and the equilibrium state will 
be unstable. When q > 0 and p > 0, this corresponds to 
stable nodes and stable foci.

In the plane where q > 0 and p < 0, the singular points
2will be unstable nodes or unstable foci. If A = p - 4q, 

this curve will separate foci from nodes.

2.4 METHOD OF CONSTRUCTING THE TRAJECTORIES 
Method of Isocline:

For a nonlinear dynamical system represented by an 
equation similar to Eq. 2.3, and where analytical solution 
is difficult or impossible, considerable insight into the 
qualitative aspects of the solution as well as some quanti­
tative information can be obtained by a study of the inte­
gral curves plotted on the phase plane.

The basic graphical method is known as the method of 
isocline which is explained as follows:
Let the dynamical system be governed by

So that the integral curves are
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y

/  4-

FIG. 2.3 METHOD OF CONSTRUCTING 
TRAJECTORIES
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dy _ Q(x,y) 
dx P(x,y)

where the function P and Q may be nonlinear functions of 
the variables x and y.

If it is assumed that

d^ _ Q(ff.fY,) - p (x,y) = Constant = c (2.20)dx P(x,y)
then this equation describes a curve which passes through 
points in the x-y plane for which the slopes dy/dx of the 
integral curves are the same. This curve is called an 
isocline. At the singularity, the slope of the integral 
curves is not defined since the value of dy/dx is indeter­
minate and isoclines will intersect at this point. More 
isoclines can be plotted assuming different values for c, 
so that

P (x,y) — ^l r c2 ' c3 ' . . .  (2.21)
On each curve F (x,y) = c, small line segments having 

the same slope dy/dx = c can be drawn. These slopes define 
the directional field of tangents to the integral curves in 
a certain region of the plane. Thus, the isocline method 
makes it possible to show graphically the general behav­
ior of the solution especially in the case of nonlinear 
differential equation where the solution cannot be found 
explicitly.

We start at a point (x. y ) or at an arbitrary points s
A on the isocline for which c = c^, and pass through it a 
line with slope c1- Then we pass a line with slope c2
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through the same point. Divide the distance between the 
points of intersection of these lines and the isocline cor­
responding to c = c2 into two equal parts and denote the 
midpoint by B. The line segment AB is taken as an arc of 
the integral curve between these two isoclines. For more 
exact construction of this part of the integral curve it is 
necessary to choose values of c^ and c2 which are closer to 
each other. The construction is then continued in a similar 
way, starting with the point B.

2.5 CONSERVATIVE SYSTEMS
Assume we have a dynamical system.which is represented 

by the following nonlinear differential equation:

f  = f(x) (2.22)
dt

As an equivalent to system to Eq. 2.22, put

(2.23)

and then

(2.24)

Thus, the integral curves will be represented by
dy = f (x) 
dx y (2.25)

or
ydy = f(x) dx

By integration it follows that
35 y2 - Jf (x) dx = h (2.26)

in which h is the constant of integration.
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If this assumed dynamical system represents a mechani­
cal system, then g (x) = -/f(x)dx can be considered as poten- 
tial energy, and h  y can be considered as kinetic energy 
with mass equal to unity-. Thus, equation 2.26 can be 
written in the form

\  y2 + g (x) = h
or

% y^ = h - g(x) (2.27)
where the constant h represents the total energy. This type 
of system is known to be a conservative system.

From Eq. 2.25, integral curves which have vertical 
tangents will intersect the x-axis, and from Eq. 2.27 the 
integral curves will be symmetric relative to the x-axis. 
Also, from Eq. 2.25 the integral curves have a horizontal 
tangent at the point x^ which are the roots of f(x) = 0, 
where y ^ 0 at these points. Singular points will exist if 
these two equations are simultaneously satisfied, i.e.,

y = 0 and f (x) = 0 
According to Eq. 2.27 it follows that for all x for which 
h - g(x) < 0 there will be no real integral curves.

For a given value of h Eq. 2.27 represents a real tra­
jectory in the phase plane as long as h - g(x) > 0.

Assume that z = g(x), then on the x-z plane construct 
the function z = g(x) and the line z = h (i.e., the differ­
ence h - g(x)) as shown in Fig. 2.4a.

It is obvious that real motions occur for the values 
of x which are located to the left of the point of inter-
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g(x)

y, = /  h - g ( x )

( a )

(b)

FIG. 2 .4  a ! x - z  plane (z=g(x) and the line z=h)  

FIG. 2 .4  b : PHASE PLA N E x ,y  = y / / T

FIG.  2.4 CONSERVATIVE SYSTEM
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section of the line z = h and the curve z = g(x) .
According to Eq. 2.27,

y//2 = ± /h - g(x) (2.28)

Therefore, on the phase plane (x, y^) the integral curve 
will have the form shown in Fig. 2.4b. If the energy con­
stant changes from h to h p  a similar integral curve can 
be drawn as shown by the broken lines.

If the potential energy is a minimum, i.e., z = g(x) 
has a minimum value, integral curves will be as shown in 
Fig. 2.5.

If h = hQ , the integral curve degenerates to a point 
where the state speed is zero and the point is therefore 
a singularity. Closed integral curves surrounding the 
singular point represent all values of h > hQ and corres­
pond to periodic motion in this system. This central 
singular point is stable in the sense of Lyapunov [26,29],

If the potential energy has a maximum value h = hQ = 
g(x), the integral curves consist of four trajectories 
called separatrices which meet at point A as shown in Fig. 
2.6b. Other trajectories will not pass through the point 
A. If h > hQ the trajectories are above and below the 
point A. If h < hQ trajectories will be to the right and 
to the left of the point which is classified as a saddle 
point.
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fl(x)

(a )

( b)

FIG. 2 .5  PERIODIC MOTION
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y,

(a )

(b)

FIG. 2 . 6  SEPARATRICES
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Assuming that z = g(x) is an analytic function for all 
values of x and that h is a fixed value, the.possible 
motions on the phase plane will be as follows [26]:

1. The curve z = g(x) does not intersect the line
z = h anywhere. There will be no motion anywhere 
on the phase plane if the line z = h lies below 
the curve z = g(x). This is due to the fact that 
y is imaginary. As a result, motion is not possi­
ble with this value of total energy h. If the 
line z = h lies above the curve z = g(x), Eq. 2.27 
shows that two symmetrical branches of the integral 
curve will exist on the phase plane. The represen­
tative point will approach either x = 00 or x = -°°. 
Such trajectories are called divergent.

2. The line z = h intersects the curve z = g(x) but is 
nowhere tangent to it. For all values of x for 
which g(x) > h motion does not exist. For all x 
for which g(x) < h trajectories will be either 
closed arcs corresponding to periodic motions or 
infinite arcs corresponding to divergent motions.

3. The line z = h has several points of tangency with 
the curve z = g(x). Possible trajectories are of 
the following forms:
a) Isolated points, in the neighborhood of which 

there are no trajectories for the given h.
When h increases, there will be a closed tra-
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jectory and when it decreases, there will be 
imaginary trajectories,

b) Simple closed trajectories which correspond to 
periodic motions or self-intersecting trajec­
tories which correspond to separatrices. These 
points are where the line z = h is tangent to 
the curve z = g(x) at its maxima. By increas­
ing h we get an integral curve which surrounds 
the whole separatrix; by decreasing h we get 
closed trajectories as shown in Fig. 2.7.

g(x)

FIG. 2.7 POSSIBLE TRAJECTORIES
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c) Trajectories which pass to infinity. These
trajectories are also separatrices because with 
variations in h we get basically different tra­
jectories.

2.6 INTEGRAL CURVES FOR A PENDULUM
To illustrate the methodology of the phase plane tech­

nique and the construction of the integral curves (trajec­
tories) , the motion of a simple pendulum will be investi­
gated.

The motion of a pendulum is described by the equation 
2

— ^  + k2 sintj) = 0 (2.28)
dt

in which,
k = constant = g/L;
(j) = the angle of the pendulum with the vertical;
L = the length of the pendulum; and 
g = acceleration of gravity.

It is assumed that Eq. 2.28 represents a frictionless sys­
tem.

Let

then we can write

d<}>
w “ dt '

dw , 2  . .
dt = "k Sin<1)

(2.29)
d<j> _ 
dt W

From the preceeding discussion, if z = g(<j>) then
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2g(<f>) = / k sin<f> dtf>

= -k2 cos<J)
According to Eq. 2.27, the equation for the integral 

curves can be written as
h  w2 = h + k2 cos<j) (2.30)

2The function z = g (x) = -k cos<J> is shown in Fig. 2.8.
It has minimum values at <j> = 0, ± 211, ± 411, . . . These
minima correspond to integral curves degenerated to points 
in the phase plane where the phase velocities are zeros, 
i.e., correspond to singular points called centers. Con­
sidering Lyapunovs definition of stability, these singular 
points are stable, surrounded by closed trajectories which 
correspond to periodic motions. The function Z = g(<j>), has 
maxima for the values cf> = ± II, ± 311, ± 511, . . .  On the 
phase plane, they correspond to unstable equilibrium states
which are represented by saddle points.

From the previous discussion (Figs. 2.5, 2.6 and 2.7) 
and from the character of the trajectories for any fixed 
value of the total energy 'h1, the motions of the pendulum 
can be explained on the phase plane for different possible 
cases as follows:

1. If the line z = h on the (j>-w plane intersect the
2 2curve z = g(<j>) so that in Eq. 2.30 k > h > -k , 

the trajectories are closed, surrounding singular 
points which are centers. These trajectories 
represent the periodic oscillation of the pendulum,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

gOP)

A B

/ 1 \ / [ ' y - z = g ( f )

“ 2 -  /  ! \ /  ! \  2 tt ,
i /  -  \
1 /  \

/  *Tr \  I t/  \  | L z =
_ i_y v

C

z=b>k" 

z = k2

z = - k 2 

z = h < -k 2

(a )  Function z = k cos*p
w

divergent trajectory

divergent trajectory

(b )  T r a j e c t o r i e s

FIG. 2 .8  TRAJECTORIES FOR A 
SIMPLE PENDULUM
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i.e., the pendulum cannot reach the upper position
(unstable position at <J> = H.)

22. If the line z = h = k , i.e., the line is tangent
to the curve Z = g(<J>) at the points A and B on the
<j>-w plane, this will give rise to two saddle points
at A and B on the phase plane (Fig. 2.8). These
trajectories are called separatrices.

23. If the line z = h = -k , i.e., line is tangent to 
the curve z = g(<J>) at the point c in the <|>-z plane. 
This curve is similar to that in Fig. 2.7 where the 
closed trajectory shrinks to one point which is a 
center.

24. If the line z = h < -k , i.e., the line lies below
the curve z = g((J>) and does not intersect the curve
anywhere. In this case the trajectory which shrunk
to a center will disappear and real motions of the
pendulum do not exist.

25. If the line z = h > k , i.e., the line lies above
the curve z = g(<j>) and does not intersect with it
anywhere. There will be two symmetrical branches 
of the integral curve which are divergent. Since 
the <j) coordinate is periodic, the motion of the 
representative point along the trajectories cor­
responds to a clockwise or counterclockwise rota­
tion of the pendulum about its suspension point.
In other words, the pendulum rotates all the time 
in the same direction and its velocity w keeps the
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same sign but fluctuates in values between the 
minimum at <f> = 0, 211, 411, . . . and maximum at
4> = II, 311, 511, . . .

The physical significance of this analysis can be il­
lustrated if we consider a pendulum that has been acted on
by an external moment. If the moment is small, the pendu­
lum oscillates about the new position of equilibrium as long 
as (j> is less than n/2. If the moment is large enough, the 
pendulum may swing over its upper unstable position of 
equilibrium and a rotary motion will result. If, however, 
the moment was such that the kinetic energy gained by the 
pendulum is equal to its potential energy, the pendulum will 
rotate to its upper position and will stay at this position.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

CHAPTER 3
GOVERNING EQUATIONS FOR A CLOSED SURGE TANK SYSTEM
3.1 INTRODUCTION

Fig. 3.1 shows the schematic of a closed surge tank 
system. A rapid gate opening or closure due to increase 
or decrease in power demand will cause flow variations 
which in turn results in the oscillations of the water 
surface in the closed chamber. When the mass of water 
starts to discharge into the chamber, the air pressure will 
gradually increase which in addition to wall friction will 
exert an increasing retarding force on the flowing water 
until the water in the chamber will flow back.

To derive the governing equations (dynamic and conti­
nuity equations), the following assumptions are made:

1. The inertia of the liquid in the surge tank is 
small relative to that of the liquid in the tunnel 
and therefore can be neglected.

2. No time lag exists between the water level change 
in the surge chamber and its effect on the acceler­
ation of the water mass in the tunnel.

3. The head losses in the system during the transient 
state can be computed by using the steady-state 
formula for the corresponding flow velocities, i.e.,
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FIG. 3.1 SCHEMATIC DIAGRAM OF A HYDRAULIC 
SYSTEM WITH AN ENCLOSED SURGE TANK
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if is the instantaneous head loss in the tunnel, 
then h^ can be expressed by

hf = k Q2 (3.1)

in which, Q represents the discharge through the 
tunnel.

4. Liquid is incompressible and tunnel walls are 
rigid.

5. Tunnel cross-section is constant. If this is not 
the case, then the actual tunnel cross-section may 
be replaced by an equivalent-area tunnel, i.e.,

N L.
Ae = Le//.̂ , AT i=1 l

in which subscript e refers to equivalent tunnel 
and N = total number of cross sections.

6. Velocity distribution over the tunnel cross-section 
is uniform.

7. The minor losses and the velocity head are usually 
small compared to the head losses due to friction 
and, therefore, are neglected.

8. Air expansion and contraction in the chamber follow 
a polytropic law for perfect gasses, i.e.,

(p  + p a > =  <pe  + p a > * on

in which,
p = pressure of enclosed air;
p_ = atmospheric pressure (p„ << p);

a  a

V = air volume in the chamber;
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n = the exponent in the polytropic gas equa­
tion-

p = absolute pressure of enclosed air at the 
steady state; and

¥■ = air volume in the chamber at the steady
state.

Since atmospheric pressure is very small relative to 
the pressure of the enclosed air in the chamber*, there­
fore, it will be neglected and the poly tropic law for per­
fect gas becomes

3.2 DYNAMIC EQUATION
A freebody diagram of the tunnel having constant cross 

sectional area is shown in Fig. 3.2. Forces acting on the 
liquid are

Thus, the resultant force acting on the liquid in the tunnel 
is

* In Driva Hydroelectric Power Plant the ratio of atmos­
pheric air pressure to the pressure of the enclosed air 
is less than 2%.

(3.2)

(3.3)

F 2 = YAt (Hr + L sinS - z + P) (3.4)

(3.5)

F^ = yA^ L sin6 (3.6)

Zf ± = YHrAt + yAt L sine

t YAt (Hr + L sin6 - z + P) (3.7)
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in which
At = cross-sectional area of the tunnel;
Hr = water surface height in the reservoir;
L = tunnel length;
z = water level in the surge tank below the 

reservoir level (positive downward);
Y = specific weight of water;
0 = tunnel slope from the horizontal; and
p = pressure of enclosed air.

The mass of the liquid element = ^ A^L in which g =
acceleration due to gravity. According to Newton's Second
Law of Motion

_ dtavl _ m dv
dt dt
d(Q/A. )

= m ----- —  (3.8)
dt

d(Q/Aj 
9 “t-J dt

= 1  a L ---

From Eqs. 3.7 and 3.8, it follows that 
Y d (Q /A  )
£ A. L ----- —  = YH A. + y a . L sin0g r dt r ^

-  YA^.(Hr + L sin0 - z + P)

- YAth£

which upon simplications becomes

_ ! _ f r  = + z _ P . h£ (3’9)
in which h^ = kQ|Q| = the instantaneous frictional head in 
the tunnel, and Q is the tunnel discharge. To account for 
the reverse flow, expression for hf was written as kQ |Q(-
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If the air pressure in the tank would become zero, the 
dynamic equation (Eq. 3.9) would become identical to the 
dynamic equation for an open surge tank.

3.3 CONTINUITY EQUATION
Based on the principle of conservation of mass, the 

continuity equation at the junction of the tank and the 
tunnel (Fig. 3.1) may be written as

in which
Q. „ = turbine flow; tur
Ag = cross-sectional area of the surge tanks;

In both Eqs. 3.9 and 3.10, we do not have spatial 
variations, i.e., variations with respect to x, and the 
tunnel discharge and the water surface elevation in the 
chamber are only expressed as a function of time. This is 
due to the assumption that the liquid and the tunnel are 
rigid. Accordingly, Eqs. 3.9 and 3.10 are a set of ordi­
nary .differential equations. However, due to the presence 
of the frictional term kQ|Q|, Eq. 3.9 is nonlinear.

3.4 OSCILLATIONS AMPLITUDE FOR A FRICTIONLESS SYSTEM 
Assume that the surge tank system is frictionless, 

i.e., k in Eq. 3.9 is zero. Also, assume that the initial

or
(3.10)

and
t time in seconds
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steady-state turbine flow Qq is instantaneously reduced to 
zero at t = 0. Thus

at t < 0 , Qtur = Qq (3.11)

and at t > 0 , Qtur = 0  (3.12)

Therefore, for a frictionless system,. Eq. 3.1 becomes
gA.g  = __E (Z _ P ) (3.13)at L

and from initial condition Eq. 3.12, Eq. 3.10 would become

—  = - —  (3 14)dt A )s
Differentiating Eq. 3.14 with respect to t, we obtain

(3.15)d2z _ 1 dQ
,.2 A dt dt s

Substituting Eq. 3.13 into Eq. 3.15, we get
,2 gA,= ----£ (z _ p) (3.16)
dt2 LAS

If P = 0, Eq. 3.16 becomes

d2z gAt+ — —=• z = o (3.17)
dt2 l a s

gAt Let --- = c.LAS
The general solution for the homogeneous equation 3.17

is
z = A cos/c t + B sin/c t (3.18)

Using the initial condition at t = 0, z = 0, in Eq. 
3.18, we obtain A = 0 and Eq. 3.18 becomes

z = B sin/c t (3.19)
, , dz QoNOW at t = 0, M  = - 5 - ,
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from Eq. 3.19

or

and therefore,
- 2° =A

S

QB = ----—  (3.20)
Asv^

Substituting this into Eq. 3.19, we obtain
Qz = - ----- sin/c t (3.21)

A /c s
By substituting the value of c, we get the general solution

Q,
—  Sin ' LA

/gAt l/rT tAs gA^ S

LAs
or

Qo /gAt— —  sin t (3.22)
gAtAs ' - s

L
z will be maximum if

fgA.
sin ''l a- = 1 •

S

Therefore,
z = |/̂  A (3.23)s-O / gAt.

where Z = the maximum amplitude of oscillation in an open 
surge tank.

3.5 PERIOD OF OSCILLATION
Eq. 3.23 represents periodic oscillations with the 

period of oscillation
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T = 211 /LA /gA (3.24)s t

3.6 NORMALIZATION OF THE GOVERNING EQUATIONS
In order to minimize the number of parameters in the 

governing equations which describe the oscillation of the 
water level in a closed surge tank, the dynamic and conti­
nuity equations will be normalized. The two equations,
Eqs. 3.9 and 3.10 are

f t  = TT (z - p - V

= - ——  (O - Q ) dt A turs
Let

and

in which

y = z/Z
x = Q/Qq (3.25)

<3 - ^tur^o

t = 2nt/T

Z = maximum amplitude of the water surface os­
cillation. in a frictionless open-surge tank 
system, and

Qq = initial steady state discharge
From Eq. 3.25, it follows that

z = Zy
Q = Qq X

(3.26)
®tur ~ ^o g 

T
t “ 2ff T
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Substituting this in the dynamic equation and simpli­
fying

Therefore,

dQ = d (°ox) _ _fo_ ta 
dt - <,,1^, - T/2H dT

T/2I dt ” (2y " p kQo x lx l)
or

dx
dT

gA T ~
21Eq- ^  - p - kQo x lx l> (3.27)

Since we have

Z = Qo 1/ gAtAs
and

T = 211 /LA /gA
S u

and by substituting them in Eq. 3.27 and simplifying, we
obtain

dx 
dx

According to Fig. 3.3

P kQo (3.28)

V -  =  V - - A (z - z) o s o
since

n
pV = p V  *  o

n

Dividing Eq. 3.29 by V n
(3.29)

rVo - V zo - z ,~
v_

n

(3.30)

[1 - As (z0 - z)/^Q]n
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Datum-Reservoir 
Water Elevation
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A  Z

FIG. 3 .3  SCHEMATIC DIAGRAM SHOWING 
THE RELATION BETWEEN z B 
-V- IN A CLOSED TANK
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By expanding, the term [l - As (z0 “ z)/^0]n

p = Po[l - As (zo - z)/*o] 

n(z - z)A
= p0 [l + --- 2 ^ --- 2 + . . .] (3.31)

Since (zQ - z)Ag = AV- and A¥/Vq << 1.0, therefore Eq. 3.31
can be reduced to

n(z - z)A
P = PQ[1 + ---^ ----- -] (3.32)

Divide Eq. 3.32 by Z and substitute for z = Zy

p n(z - Zy)AE = l°[i + __ 2___ 1_S]Z Z L ¥• Jo
p np z A np ZA y^o . ^o o s o sJ
Z Z V - Z V -o o

and then, we get

|  = (a;L - a2y) (3.33)

in which

and

p nz A
ax = — ■ (1 + .̂i?...S) (3.34)

np A *o c
l2 Va0 = - (3.35)

Let
a3 = kQ^/Z = hf /Z (3.36)

o
Substituting Eqs. 3.33 and 3.36 into the dynamic equation 
(Eq. 3.28), we finally obtain

= -a1 + (1 + a2)y - a3x2 (3.37)
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Now, substitute Eq. 3.26 into the continuity equation 
(Eq. 3.10) and proceed in the same manner by substituting 
for T and Z and simplifying, Eq. 3.10 becomes

= -x + q (3.38)

To summarize, the dynamic and the continuity equations 
in the non-dimensional form are:

§£ = -aL + (1 + a2)y - a3x2 

- -  + «
in which the constants a ^  a2 and a3 are previously defined 
(Eqs. 3.34, 3.35 and 3.36) in terms of the initial steady- 
state parameters p , z q ,  Qq and VQ , the area of the surge 
tank A , the friction coefficient k, the maximum amplitude 
of oscillations of an open surge tank Z and the exponent in 
the polytropic gas equation n.

The term q in the continuity equation will be defined 
according to the demand condition. This is discussed 
in the following section.

3.7 FLOW CONDITIONS
Four cases of turbine flow demand for simple surge 

tank have been investigated by Chaudhry and Ruus [2] .
These cases are:

a) Constant Flow: Practically, there is no way of
keeping the turbine discharge constant during the 
surge condition. In the case of a very high head
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installation where oscillations in the surge tank 
are a small fraction compared to the static head, 
an approximation of a constant flow is possible 
and accurate results can be achieved from rela­
tively simple analysis. Therefore, in this case 

Q ^ r = constant 
and since, in this case, 2tur = Qq therefore,

q = 1 . (3.39)
b) Constant Gate Opening; This case occurs during 

downsurges when the gates have been opened to the 
maximum position while the governor is regulating 
for constant power or when the plant is under 
manual control after a change in load demand or 
when the governor is inoperative due to a malfunc­
tion.
Under this condition the turbine discharge Qtur
can be approximated as follows: At the steady
state and from Pig. 3.4,

H = H - (z - P) n g

Therefore,
H - (z - p)

o = —2---:------   otur H - he o
g o

Then, by substituting for z = Zy and dividing by 
Z, we obtain
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^turq = - q—o
H - Zy + P

= gH - h f (3'40)
9 fo

Hq/Z - y + P/Z
H /Z - h /Z 
y o

Substituting from Eqs. 3.33 and 3.36, Eq. 3.40 be­
comes

a4 “ Y + “ a2)y
q  = -------------------------------

a4 " a3
ax + a4 - (1 + a2)y

(3.41)

a4 " a3
in which

a4 = Hg/Z (3.42)

c) Constant Power;
In this case the turbine governor regulates the 
flow in such a manner that maintains constant 
power input if the turbine efficiency is to be 
considered constant. Following a load increase 
the governor opens the gates, additional water is 
withdrawn from the surge tank and the water level 
is lowered. Accordingly, the net head on the tur­
bine is reduced and therefore, the governor has to 
open the gates further to maintain a constant 
power. No restriction on the turbine-gate opening 
is assumed, which implies that the turbine dis-
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charge can be increased to any required amount to 
keep the power constant.
It has been found that in an open surge tank sys­
tem where the turbine is governed automatically 
for a constant hydraulic power, unstable oscilla­
tions are possible [1,2].
The governor action of a turbine is represented 
by the equation

Therefore, by substituting for Hn into Eq. 3.43,

Thus, from Eqs. 3.44 and 3.45, Eq. 3.43 becomes

If it is assumed that the efficiency of the tur­
bine Vi1 does not change with changes in water 
level in the tank or in the gate opening

Pw constant (3.43)
o o

since

o

o
we obtain

Pw o
(3.44)

and
(3.45)

- hf0> = " QturIP + IHg - 2)1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

n H - h„
tur qo fq =
Q0  P + (H_ - Z )  

go
Dividing the numerator and the denominator of the 
above expression for q by Z, substituting for z = 
Zy and simplifying, we obtain

Q H g  / Z  -  h f  / Ztur yo o
Qo P/Z + H /z - y 

yo

(al"a2Y) + a4 " Y
or

q = ax + a^ - (l+a2)y (3,46)

in which, a ^  a2, a3 and a4 are constants and as 
defined previously by Eqs. 3.34, 3.35, 3.36 and 
3.42.

d) Constant Power Combined With Constant Gate Opening: 
Analysis of this case depends upon the relation 
between the turbine discharge and the rated head. 
This will be discussed in Chapter 4.
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CHAPTER 4 
PHASE PLANE ANALYSIS

4.1 INTRODUCTION
The differential equations governing the oscillations 

of the water level in a surge tank are nonlinear. The 
usual approach to solve these equations has been to linear­
ize them by neglecting all the nonlinear terms or by lin­
earizing the nonlinear terms. The stability of open surge 
tank has been studied without neglecting the nonlinear 
terms. Marris [7] and Sideriadas [8 ] used the phase plane 
method to investigate the stability of a simple surge tank 
for the case of constant power. Chaudhry and Ruus [2], 
also, utilized the phase plane technique to investigate the 
stability of oscillations for four cases: constant flow,
constant gate opening, constant power, and constant power 
combined with constant gate opening.

Most of the tank stability investigations have been 
for open surge tanks. Because of the recent introduction 
of closed surge tanks for application in hydroelectric 
power plants, very little work has been done to establish 
a stability criterion for a closed surge chamber.

The main objective of this chapter is to develop a 
stability criterion for a closed surge tank system by using
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non-linear analysis so that it would be valid for both small 
and large oscillations. The stability of these tanks will 
be investigated by the phase plane method which allows in­
clusion of nonlinear terms in the analysis. This method has 
been described in Chapter 2. This method is particularly 
used in connection with non-linear differential equations, 
since a closed form solution is not available.

Singularities of the governing equations will be deter­
mined and analyzed to develop the stability criteria for 
four cases of turbine flow demand which has been investiga­
ted for open surge tank by Chaudhry and Ruus [2].
4.2 SINGULARITIES

A. Constant Flow
As derived in Chapter 3, the normalized governing 

equations are

is an equilibrium condition since dx/dT=0 and dy/dx =0

(3.37)

(3.38)

in which

By eliminating x, Eqs. 3.37 and 3.38 reduce to
dy _ _______ -x + g (4.1)2-a1 + (l+a2)y - a3x

A point (x , y ), where s s
(4.2)

and 2 0 (4.3)
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at this point. Mathematically this point is called a
singular point as has been indicated in Chapter 2.

Therefore, to determine the singularities, the two
equations 4.2 and 4.3 should be solved for x and y .s s
From equation 4.2 we get

xs = q = 1 . (4.4)
Substituting Eq. 4.4 in Eq. 4.3, and solving for y ,
we obtain -a^ + (l+a 2 )yg - a^ = 0. Then,

a + a
Ys =--1 (4.5)1 + a2

Therefore, for the case of constant flow condition, 
there exists one singularity with the following coor­
dinates :

xs = 1.0

al + a3y_ = ■ (4.6)s 1 + a2
An equilibrium condition is said to be stable if, upon 
slight disturbance, the departure from this condition 
remains small. Otherwise, the equilibrium condition is 
said to be unstable. To determine whether this singu­
lar point is stable or not, it is required to find a 
solution which is valid in the neighborhood of this 
singular point. If such a solution shows that upon 
being displaced to a new position in this neighborhood
x and y will approach the singular point (x ,y ), thens s
the singular point is stable. If x and.y will recede
further from the singularity x ,y , then the singu-s s
larity is unstable.
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Therefore, to study this singularity and its neigh­
borhood, let

u = x - x_

and

in which

v = y - y

dy = Q(x,y) 
dx P(x,y)

Q(x,y) = -x + 1 . 0 (4.7)

P(x,y) = + (1 + a2)y - a3x (4.8)

By expanding the two functions Q and P into Taylor's 
series about the point (xg, y ), we get

Qlx,y> = a<xB , ys) + |§ (x - xe)

8Q
3y (y - Y s> +

and

P(x,y) = P(xB, yB) + § (x - xB)

3P
3y (y - ys) +

(4.9)

(4.10)

Since by definition Q(x , y )  = P ( x  , y ) = 0, ands s s s
by taking the partial derivatives of the two functions 
Q and P, and neglecting higher power of u and v since 
u and v are small, Eqs. 4.9 and 4.10 become

Q(x,y) = -u
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and
P(x,y) = -2a3xgu + (1 + a2)v 

and accordingly,
dy _ dv _ _______ ^u_
dx du -2a0x u + (1 + a0)v 3 s 2

(4.11)

The general form of Eq. 4.11 as defined in Chapter 
2 is:

i ' i> 2 " 2dy _ cu + dv + cu + dv + • • • , * n 0 %
dx ~ i ' " 2  " 2au + bv + au + bv + • • •

In the case of a simple singularity, where both 
linear and higher power terms in u and v are present 
in the denominator or in the numerator, or both, the 
higher-power terms can be neglected because their ef­
fect on the solution in the neighborhood of the sin­
gularity is small as compared to that of the linear 
terms. In the case of non-simple singularity where 
the linear terms are missing, the higher-power terms 
cannot be neglected.

Therefore, Eq. 4.12 can be rewritten as

dy = dv = cu + dv ..
dx du Au + lov

This is equivalent to the two equations

= cu + dv (4.14)dt
and

= au + bv (4.15)

The characteristic roots of the two equations as deter­
mined in Chapter 2 are:
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X X2 = %[(a + d) ± A  + d)2 + 4 (be - ad)] (4.16)

The two equations 4.11 and 4.13 are similar. By 
comparison, we find out that in the case of a constant 
flow condition

a = -2a_x„3 s
b = (1 + a2) 
c = -1.0 
d = 0

, ' i *By substituting the values of a, b, c and d into Eq. 
4.16, the characteristic roots become

Xr X2 = h l ( ~ 2 a 3 ) ±  /(-2a3)2 + 4[ (1 + a2) (-1)
(4.17)

= [-a3 + /4a 2 - 4(1 + a2)]

Now, according to the criteria established in 
Chapter 2, singularity is stable if one of the follow­
ing conditions are satisfied:

1. A^ and A2 are real and negative.
2. A^ and A2 are complex conjugates with negative

real parts.
Singularity is unstable if one of the following condi­
tions is satisfied:

1. A^ and A2 are real and have positive signs.
2. A^ and A2 are real and with different signs.
3. A^ and A2 are complex conjugates with positive

real parts.
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2If > (1 + a2) , both roots are real and have the same
negative sign. In such case, singularity is a stable 

2node. If a^ < (1 + a2)/ the roots are complex conju­
gates with negative real parts. The singularity is, 
therefore, a stable focus.

Eqs. 3.34, 3.35 and 3.36 in Chapter 3 define the 
constants a^, a2 anĉ  a 3 as follows

p nz A
_  o /i .i. os.al “ Z“ (1 + — )o

nPoAs 
2 * 0

and

a3 = hf /Z o
From the definition of a^, the first condition for

stable node implies that h^ > Z.
o

Comparison between the two conditions for stable 
node and stable focus shows that the condition for 
stable focus requires less friction than the condition 
for stable node.

From Eq. 4.17, if 4(1 + a2) < 0, and A2 are 
real but with opposite signs. In this case singularity 
is a saddle. However, since a2 is always positive, 
therefore, this condition is impossible.

In general, if
~ nP A

(hf /Z)z > (1 + ° s) (4.18)
o o
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we get a stable node.
If

(hf /Z)2 < (1 +
o

(4.19)
o

we get a stable focus. A saddle is impossible in this 
case as previously discussed.
B. Constant Gate Opening

This mode of operation occurs if the governor has 
opened the wicket gate to full open position while 
trying to maintain constant power, or when the tur­
bine is under manual control after a change in load.

The turbine characteristics in reference 15 show 
that the flow through a Francis turbine operating at 
full gate and at constant speed is approximately pro­
portional to the net head. Hence, neglecting penstock 
losses and velocity head, q can be defined as shown in 
Chapter 3 (Eq. 3.41),

where a^, a 2 , a^ and a4 are constants and as previous­
ly defined.

The normalized governing equations are

Substituting the value for q in Eq. 3.38, we get

a + a4 - (1 + a2)y

(3.37)

(3.38)

,4 - (1 + a2)y 
a4 " a3
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By eliminating dT from Eqs. 3.37 and 3.38, we obtain
a1 + a4. - (1 + a2)y

-x +
g .  ------------------  (4-20)

-a^ + (1 + a2)y - a3x

To determine the singularities, we have to solve 
the following equations:

ai + a4 " (1 + a?>Y«,—x + — ---- - --------- -— - = 0 (4.21)
a4 “ a3

and

Let

and

-a1 + (1 + a2)ys - a3xs2 = 0 (4.22)

(a1 + a4) = A

(a4 - a3) = B (4.23)

(1 + a2) = C
Substituting into Eq. 4.21 and 4.22,

A - cy-x +  S. = 0 (4.24)
S B

~ai + cys - a3xs2 = 0 (4.25)

Simplifying Eq. 4.24, we get
-Bxs + A - cys = 0

from which
A - Bx

y = ------ E (4.26)s c
From Eq. 4.25 we get

a j. 2al + a3xs
ys °  c (4-27>
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Therefore, according to Eqs. 4.26 and 4.27 and by sim­
plifying, we obtain

a ->x 3 + Bx - A + a. = 0 (4.28)3 s s ±
substituting the values for A and B into Eq. 4.28 

a3xs2 + (a4 ~ a3)xs - al - a4 + al = 0
Thus,

xs2 + <57 - 11 xs - ^  = 0 <4-29)
The solution of this quadratic equation is

xsl' xs2
-(^i - 1) ± /(^i - 1) + 4

3___________ ^3___________ ^3
2

a4 2By expanding the term (---- 1) under the square root
a3

and simplifying the solution for the two roots, we ob­
tain,

xsl = 1-°
and (4.30)

Xs2 “ a3

Substituting xgl and xs2 into Eq. 4.27, we obtain
a.. + a_

*si = - i T - q  (4*31)

a 4. 2
al + a3 ("

,  =

1 + a2

aI + a4/a3
1 + a2
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ala3 + a4" a3 (l+a2) (4.32)

Accordingly, for this condition of constant gate 
opening, Eq. 4.20 has two singular points

[ 1.0 , till1 1
*- 1 + a„ -12

and 2
aja3 ^ a 

3 ' 1 + a2

Following the same procedure as previously outlined,

a . a.a^ + a „ 14 1 3  4
~ a3 ' 1 + a. J

a, + a. - (1 + a„)y 
Q(x,y) = -x + — ------2--------- —̂  (4.33)

a4 " a3
and

P(x,y) = -a^ + (1 + a2)y - a3x2 (4.34)
By expanding the two functions Q and P around x , y ,s s
considering Q(x , y ) = P(x , y ) = 0 and substituting 

s  s  s s

u = x - x , v = y - y ,  therefore 
s  s

- a  + a )
Q(x,y) = -u + ---------- v + • • • (4.35)

a4 “ a3
and

P(x,y) = -2a3xgu + (1 + a2)v + • • • (4.36)

Then
1 + a2 

-u - -------  v
*Z = ~ a3
dx -2a3xgu + (1 + a2)v (4.37)

When Eq. 4.37 is compared with the general form 
(Eq. 4.13), one obtains
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The two singular points are analyzed as follows:
al + a31. First Singularity: [1. , .■ ■- ■± + a2

Substituting Eq. 4.39 into Eq. 4.16, the char­
acteristic roots become 

f l+a„
~

(4.40)

/ 1+a2 
- / < 2a 3 + aj=af

1+a
) - 4|_(l+a2)+2a3 (- 21 

=ar>J4 3 J

The characteristic'roots A^ and A2 are real with 
a negative sign if the following condition is sat­
isfied:

1+a n
2a, + ---- -
■ 3 a4_a3 J

> 4 [(l+a2)+2a3(5^ ) ]
L4 3

Expanding the left hand side of the inequality and 
simplifying we obtain

2
(4.41)

1+a,
(2a,------ -

3 a4~a3
) > 4(l+a2)

If the inequality 4.41 is satisfied, the singular­
ity is a stable node.
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If this inequality is not satisfied, then the roots
are complex conjugates with negative real parts and
hence the singularity is stable focus.
If the system is assumed to be frictionless, i.e.,
a, = hp /Z = 0, then the characteristic roots be- 

o
come

1+a, /  1+a,2_ 2  ±1/ (_ 2 , _ 4(i+a2) (4.42)

Singularity is a stable node if

1+a, 2
<-a^> > 4(1+a2>

or by simplifying, the condition for a stable mode 
becomes

l+a2 > 4a^

2If (l+a2) < 4a^, singularity is a stable focus.
Therefore, it can be concluded that the first 

singularity is always stable. If a2 = 0, i.e., 
pQ = 0 (open surge tank) the same results hold. 
This confirms the results obtained by Chaudhry and 
Ruus [10] who investigated the stability of open 
surge tank system by the phase plane method tech­
nique .

23. 3_ a_ + a .
2. Second Singularity: [- —  ,   — ]a3 33 (l+a2)

The characteristic roots, in this case are
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Singularity is stable node or focus if the follow­
ing condition is satisfied:

l+a~
2a < i-Zi^ (4.44)4 a 4 a 3

and unstable node or focus if

l+a9
2a, > — — ^  (4.45)4 a 4- a 3

However, since xg2 <  0 and since Eqs. 3.37 and 
3.38 are not valid for x < 0, therefore, this sin­
gularity is virtual.

C. Constant Power
The normalized governing equations are

1 1 = ^ +  (l+a2)y - a3x2 (3.37)

=  -dx
and for the constant power condition

- x + q (3.38)

a4 a3   — f-— (3.46)al + a 4 “ (l+a2)y 
By substituting Eq. 3.46 into Eq. 3.38 and eliminating 
dx, we obtain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To determine the singularities, the following two 
equations should be simultaneously solved:

and

Let

a4 - a3—x +  -----   —  = 0 (4.47)s &1 + a4 - (l+a2)ys

-a., + (1 + a2)ys - a3xg2= 0 (4.48)

and

a4 - a3 = A

a^ + a4 = B (4.49)

1 + a 2 = C
From Eqs. 4.47 and 4.49, we obtain

A
cs B - cyx = =-£--- (4.50)

s
Substituting Eq. 4.49 into Eq. 4.48 and simplifying,
y can be defined as follows:■*s

y = —  + —  x  ̂ (4.51)^s c c s
From Eq. 4.50, we obtain

y = I' (4.52)
2  s c cx s

It follows from Eqs. 4.49, 4.51 and 4.52 and after sim­
plifying that

a3 (xg3-l) - a4 (xg-l) = 0 (4.53)
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Eq. 4.53 shows that xgl = 1.0 is one solution of 
the equation

a3Xs3 " a4xs + a4 " a3 = 0 (4*54)
Dividing Eq. 4.54 by (xg-l) , we obtain

2 a 4x + x + (1 - — ) = 0 s s a3

from which the two remaining roots are determined. The 
two roots are

xs2' s3 = 32 -1 ± /l- (4.55)

By substituting xgl = 1 and Eq. 4.55 in Eq. 4.51, it 
follows that

si
al + a3 
1 + a,0

ll + a3/4 [-1 ±>/1-4 1 -
s2, s3 (4.56)

1 + a,

Accordingly, for the case of constant power condi­
tion, there are three singularities (xg ,̂ yg-̂) ,

(xs2' yS2} and (xs3' y s3}-
To determine the type of singularities, we follow 

the same procedure outlined in the two cases of con­
stant flow and constant gate opening.

The two functions Q(x,y) and P(x,y) are

Q(x,y) = -x + a 4 ~ a 3
a1 + a4 - (l+a2)y (4.57)
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P(x,y) = -a^ + (l+a2)y - a3x2 (4.58)

Expanding P and Q around x , y and assuming thatS S
u = x - x and v = y - y and considering that P (x ,y ) s s s s
= Q(xs ,ys) = 0, then

(l+a2)(a4-a3)

g . % < ^ 2 > y . 3 2 V (, 59)
-2a3xgu + (l+a2)v

From Eq. 4.59 and by comparing it with Eq.. 4.13, it 
follows that

Ia = -2a0x„3 S

b = (1+a )
(4.60)

c = -1.0
, (l+a9)(a.-a,)
d = ------- ---- ---—

[a1+a4 - (l+a2)ys]2

in which x and y stand for the three singularity co- s s
ordinates.
1. First Singularity; x̂sl,yŝ

The characteristic roots for this singularity are

A]_,A2 = h l - A  ±  /A2-4B] (4.61)
in which

A = 2a3 - (l+a2)/(a4-a3)

B = (l+a2) - 2a3 (l+a2)/(a4-a3)

2If A > 4B and 4B > 0, both roots are real and there­
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2fore the singularity is a node. If A < 4B, both roots 
are complex conjugates and the singularity is a focus. 
If 4B < 0, i.e.,

4[(l+a2) - 2a3 (l+a2)/(a4-a3)] < 0 ,

both roots are real but with opposite signs and there­
fore singularity is a saddle. By simplifying this in­
equality, it reduces to

2a3 > (a4-a3) (4.62)

Substituting expressions for the constants a3 and a4
and simplifying inequality 4.62 becomes h^ > . In

o "
other words, for a saddle point to exist a large head 
loss has to exist. However, such a large head loss is 
not economically feasible and accordingly this case is 
of academic interest only.

It follows from Eq. 4.61 that the node or focus 
will be stable if

l+a9
2a, > -— (4.63) 

4 3
By substituting expressions for a2, a3, a4 and Z, the 
condition for stable node or focus becomes

Q2 L nP A
=• _k" "T  (1 + - S - *  ) (4.64)s 2gAthf_<Hg-hf ) -  •

o  J  o  
For perpetual oscillations

Q2 L nP A
(V or -  2gAthf ^ -S T T  (1 + M.«s>
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For an open surge tank, i.e., pQ = 0, Eq. 4.65 is 
reduced to the expression for the well-known Thoma area

(A, open. = A, Qi L
cr Thoma 2gAthf (H -hf ) (4.66)

Let a = distance between the roof of the tank and the o
initial-steady-state tank water level, i.e., a„ = V - /A .J o o s
Substituting this into Eq. 4.65, the following expres­
sion for stable oscillations is obtained

nP„
(V  = <ASs cr s

open > (1 + -r^)cr o
(4.67)

which is the same expression as obtained by Svee [16]
by using a linearized analysis.
2. Second Singularity: (x_n,y_„)s z  s z

-1 + 1/ -3 +
3 J

al + a3/4 -1 + |/l-4 (1 - -i)
3 J

s2 1 + a,

(4.68)

Substituting Eq. 4.68 into Eq. 4.60 and replacing a^, 
a2, a3 and a4 by their expressions, we obtain

a = "2a3Xs2
h, / 4H

- / - 3 + H T

(4.69)

and
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d =
(1 + a2)(a4 - a3)

a1 + a4 - (l+a2)-
al + a3/4 -1 + ,/ 1-4 1 ----

3 i
1 + a«

1 +
nP A o s

] [Hct - hf ] /z
H hf
_ £ L _________£Z 4Z -1 + / 4H 

i/ —3 + ^
-,2 2

V

(4.70)

nP A
H- - hfJ

H 1 +

I Ib and c remain the same as in Eq. 4.60.
This singularity will be a stable node if

and
(a + d) < 0

i i o i i  i i-(a + d) < 4 (be - ad) < 0
Singularity will be a stable focus if

and
(a + d) < 0

i i ?  i i  i i- (a + d) > 4 (be - ad) < 0
If 4 (be - ad) > 0, singularity will be a saddle. 

Eq. 4.69 shows that a is a real number since

(4.71)

(4.72)

H > hp 
9  f However, a will be negative if 4H^/hf >1.0

and positive if 4H /h- < 1.0. Since H >> h£ , the
9  d fo  *  o  ,

latter case is practically impossible and therefore a
will always be negative.
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Eq. 4.70 shows that cl is always positive. Accord­
ingly, from the first condition of inequalities 4.71 
and 4.72, singularity will be a stable focus or node 
if d < 0 or if |d| < |a|.
3. Third Singularity

xs3

‘l + a3/4 [-1 ■ V ~

(4.73)
4a,

3 +
3

s3 1 + a-

Following the same procedure in the preceding singular­
ity, we obtain

a = h^ /Z 
o

1 +
4H 

-3 +
hfo

(4.74)

and

d =

nP A
4(1 + -^_£) (H - h )Z 

o y o

H - h-g f ,

4H
-3 + h f

V

(4.75)

Since in this case a and d are both always positive,
. 'therefore (a + d) > 0 and the condition of stability 

for a node or a focus is not satisfied.
ii ii

This singularity will be a saddle if 4 (be - ad) > 0, 
For typical installations, it will be found in Chapter 
5 that this singularity is a saddle.
D. Constant Power Combined With Constant Gate Opening 

In the case of constant power, it has been assumed
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that the turbine gates can be opened to any value to 
maintain constant power. In reality, however, there 
is a restriction on the turbine gate opening. The 
gates cannot be opened beyond their fully open position 
and therefore the turbine discharge q cannot be in­
creased indefinitely to maintain constant power as the 
level in the surge tank falls.

Fig. 4.1 shows the relation between the turbine 
discharge and the rated head. For net heads greater 
than the rated head, i.e., for y > -y . (in which yQ = 
final steady state water level in the tank) the gover­
nor operates the gates in such a manner that turbine 
discharge corresponding to constant power is obtained. 
For net heads less than the rated head, i.e., y <-yo 
the governor keeps, the gate open at the maximum value 
and the discharge through the gate is determined by the 
maximum gate characteristics (Fig. 4.1). In this case 
the discharge is less than that required for constant 
power, and therefore, power output cannot be maintained 
constant and the oscillations should be analyzed based 
on the constant gate opening flow condition.

Accordingly, the phase plane is divided into two 
regions:

1. constant power region for y > ~ Y Q t an(3-
2. constant gate opening for y < -y0 »

There are five singular points: two in the con­
stant gate opening condition and three in the constant
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a l + a 3power condition. The singular point at (1., — --- )l+a2
which is common to both the constant gate opening and 
constant power regions is called a compound singular­
ity. The five singular points have been previously 
analyzed for the two conditions of constant gate open­
ing and constant power.

For y < -y (region of maximum gate opening), the
a 1+3.3compound singular point (1 ., is always stable.

For y > -y (region of constant power), it may be
stable or unstable depending upon whether Eq. 4.65 is
satisfied or not. In other words, if the surge tank
area A is greater than (A ) , the oscillations are

s cr
stable whether they are large or small. However, if
A is less than (A ) , the oscillations may be stable,
s cr

unstable or of constant magnitude depending upon the
stabilizing action of the gate and the point from which 
the trajectory emanates. The case of oscillations with 
constant magnitude is represented in phase plane by the 
limit cycle. The trajectories emanating inside the 
limit cycle are unstable and their amplitude increases 
until it is equal to that of the limit cycle. The os­
cillations outside the limit cycle are stable and their 
amplitude decreases until it is equal to that of the 
limit cycle.
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CHAPTER 5
PHASE PLANE ANALYSIS FOR

DRIVA HYDROELECTRIC POWER PLANT
5.1 INTRODUCTION

The system to be analyzed is the surge tank at
the Driva hydroelectric power plant in Norway (17). In
this system a closed surge tank, instead of conventional,
has been used. Fig. 5.1

The main parameters of this system are as follows:
L = Tunnel length = 18,800 m

2A^ = Tunnel section = 20.5 m
2Ag = Surge Tank Cross-Sectional Area = 780 m

3Vq = Air Volume at the initial Steady State = 5,000 m 
PQ = Compressed Air Pressure at the Initial State =

386 m
3Qo = Turbine discharge at the initial state = 30 m /s

and Z = h_ + P = 408 m. o f  oo
Using Maning's formula to determine hf , assuming n =

o
.028,

Q = - AR2 ^ 3 S32 o n
n 2Since, D =20.5, therefore, D = 5.11 m and R = 1.28.

Substituting for A , R, S and n in Maning's formula,
2/3 hf

3 0 = 7028 (20‘5) 4 ) (18,800)
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Reservoir A+=20.5 m

A =780m

FIG. 5.1 SCHEMATIC DIAGRAM FOR THE 
HYDRAULIC SYSTEM OF DRIVA 
POWER PLANT SYSTEM

08m  

Hg=4l8m
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Therefore, hf = 22 m. Since, 408 = 22 + P , therefore,

= 386 m. From Eq. 3.23 o ^
Z = Q /  Lo gA. At s

_ on /  18,800________ ... .
0 9.81(20.5) (780) “ 10,4 m

5.2 COMPUTATIONS OF THE CONSTANTS a2, a3 and a4

From Eqs. 3.34, 3.35, 3.36 and 3.42, and assuming n
in the polytropic gas equation is 1.4,

nz Aai - V z 11 + O
(1 + -U 4 j 40_8,)7.80, . 3344386

10.4 ' 5000

a, = n P A / V
2 O S O

1.4(386)780 Q. , 
5000

a_ = h_ /Z 
o
22

-  =  2.110.4
and

a4 = Hg/Z

= ±!§_ = 4010.4 —
5.3 PHASE PLANE ANALYSIS

A. Constant Flow:
In this case there is one singular point. Its co­

ordinates are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

xs = 1.0

a l  + a 3
ys 1 + a2

= 3344 + 84.3 ,q - 
1 + 84.-3

From Eq. 4.16, the characteristic roots are:

=  +  ^  ±l/(a + d)2 + 4(bc - ad)]
in which

a = -2a3 = -2(2.1) = -4.2 
b = (1 + a2) = 1 + 84.3 = 85.3

c = -1.0
and

d = 0
Substituting these numerical values in the equation 
for the characteristic roots, we obtain:

Al' A2 = ^-4.20 ± ] /  (4.20) 2 - 4 (85.3)]

which indicates that both roots are complex conjugates 
with negative real parts. Therefore, singularity is a 
stable focus.

• iSince in this flow condition d = 0 and c is nega­
tive, therefore Eq. 4.16 becomes

ll' A2 = 1 l/(a)2 “ 4 (be) ]

Phase portraits will be shown in Chapter 6 to il­
lustrate the cases of stable focus and node for dif­
ferent flow conditions.
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B. Constant Gate Opening:
In Chapter 4, it has been found that this flow

an +condition has two singular points: (1.,  ̂+ -) and
a4 ala3 + a42 (- — ;— +   ) . By substituting the numerical
3 2

values for the constants a^ through a^, the coor­
dinates of the two singular points become (1., 39.2) 
and (-2.1, 39.4).

1. First Singularity: (1., 39.2)
From Eq. 4.39, the parameters of the charac­

teristic roots are:
a = -2a_x„ = -4.2 3 s
b = 1 + = 85.3

c = -1.0
and

i l+a«

and the characteristic roots become

\ 2  = %[-(&.45) ± /(-6.45) 2 - 379]

which indicates that both roots are complex con­
jugates with negative real parts. Therefore, sin­
gularity is a stable focus.
2. Second Singularity: (-2.1, 39-4)

From Eq. 4.39, the parameters of the charac­
teristic roots are the same as for the first sin­
gularity except for a which becomes 8.82.
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The condition for a stable focus or a stable 
■ >node implies that (a + d) should be less than
i 1zero. In this case a + d is positive. Accord­

ingly, this singular point is not stable. How­
ever, since x q  < 0 and since Eqs. 3.37 and 3.38 
are not valid for x < 0, therefore, this singular­
ity is virtual.

C. Constant Power:
From the preceding analysis in Chapter 4 of this 

condition, it has been found that there are three sin­
gular points: (xsl, ysl), (xs2, ys2) and (x^, y^) .
By substituting the numerical values for the constants 
a^, a2, a^ and a^ into Eqs. 4.55 and 4.56, the coor­
dinates of the three singular points become:
(1,, 39.2), (3.78, 39.2) and (-4.78, 39.14).

1. First Singularity: (1, 39.2)
From Eq. 4.60, the parameters of the charac­

teristic roots equation can be determined as 
follows:

a = 2a,x^ = -4.2 3 S

b = d + a 2) = 85.3 
c = -1.0 

, (1 + a2) (a4 - a3)
d = ------------------- =j- = 2.0

[*! + a4 - (1+a2)ys^ 
and the characteristic roots become 
An/ A, = { (-2.2) ± /(-22) 2 + 4[(-85.3) - (4.2) (2)]}
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from which it is obvious that and are com­
plex conjugates and have negative real parts. Ac­
cordingly, singularity is a stable focus.
2. Second Singularity: (3.78, 39.2)

Prom Eq. 4.68, the parameters of the equation
i iof the characteristic roots are: a = -15.9, b =

85.3, c = -1.0 and d = 2.5. Substituting these 
parameters in Eq. 4.16, we.obtain

*2 = ± v̂ 2765]
Therefore, the roots are complex conjugates with 
negative real parts. Accordingly, the singular 
point is a stable focus.
3. Third Singularity: (-4.78, 39.14)

From Eqs. 4.73, 4.74 and 4.75, we obtain a = 
20.1, b = 85.3, c = -1.0 and d = 1.57. Since the

i 1condition of stable focus or node (a + d < 0) is 
not satisfied, therefore singularity is not stable. 
Singularity in this case is a saddle. However, 
since Eqs. 3.37 and 3.38 are not valid for x < 0, 
therefore, this singularity is virtual.

D. Constant Power Combined With Constant Gate Opening: 
In this case there are five singular points: two

in the constant gate opening region and three in the 
constant power region as has been discussed in Chapter
4. The five singular points have been analyzed for 
each condition separately.
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If the net head is greater than the rated head,
i.e., y > -y , the governor operates the gates in such 
a manner that turbine discharge corresponding to con­
stant power is obtained. The analysis in this case 
is similar to that of the constant power condition in 
which we have found that three singular points exist. 
The first singular point (1, 39.2) which is common to 
both constant power and constant gate opening found to 
be a stable focus. The second singularity (3.78, 39.2) 
is, also, found to be a stable focus. The third sin­
gularity is a saddle, however, it is virtual since 
Eqs. 3.37 and 3.38 are not valid for x < 0.
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CHAPTER 6 
PHASE PORTRAITS

6.1 Introduction
The phase portraits for the four flow conditions

analyzed in the preceding chapters may be plotted by
the method of isoclines, details of which are given
in Chapter 2. To obtain the phase portraits, the
isoclines are first plotted and the solution trajectories
are then drawn.

Phase portraits for Driva hydroelectric power plant,
Norway, have been plotted using the actual values of the
parameters of the power plant. However, to illustrate
the effect of high friction on a system, phase portrait
for each flow condition has been plotted assuming a
high friction value h^ .

o
6.2 Phase Portraits for Constant Flow

A. hf /Z = 2.1 and h,. /Hg = .05: 
o o

The equation of the integral curves has been
defined in Chapter 4, Eq. 4.1 as

dy _ - x + q _______  ' 2dx - a1 + (1 + a0) y - a3 x

Let ------ j = m (6‘1)- a1 + (1 + a2) y - a3 x

in which m is a constant.
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Substituting the values for a^, a ^ ,  a^ and q and 
rearranging, Eq. 6.1 can be rewritten in the form:

y-insH1* 39-2 + •02x2
2m  which the term in x can be neglected so that

* “ + 39-2 (6-2>
For each assumed value of m, Eq. 6.2 describes a curve

(isocline) which passes through points in the x—y plane
for which the slopes dy/dx of the integral curves are
the same. At the singularity (x , y ) the slope of

s  s

the integral curves is not defined since the value of
dy/dx is indeterminate and isoclines will intersect
at this point. Assuming different values for m, more
isoclines can be plotted. On each isocline F (x,y) = m,
small line segments with the same slope dy/dx = m have
been drawn in Figure 6.1. These slopes define the
directional field of tangents to the integral curves in
a certain region of the plane.

Figure 6.1 shows the phase portrait for the actual
existing friction of the Driva power plant.

B. hf /Z = 9.6 and hf /Hg = .24: 
o o

The actual friction loss h^ has been found in
o

Chapter 5 to be 22 m. If a high friction is assumed, 
singularity will become a stable node instead of a stable 
focus.

Assume h_ is increased to 100 meters and z re- 
fo

mained the same. Since z = 408 = lu + p , therefore, p^o f o o
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focus

( a )  hfo / Z  = 2.1 hf o / Hg= .05

FIG. 6.1 PHASE PORTRAIT FOR CONSTANT FLOW
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node

28 1.4 x

(b) hy Z =  9.6 ,hf0 / Hg = .24

FIG. 6.2 PHASE PORTRAIT FOR CONSTANT FLOW
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will become equal to 308 meters. The constants a^, a2 and 
a^ are expressed in terms of pQ . Consequently their new 
values are determined as follows:

z A
^  = pQ/Z (1 + -gr-S) = 1914

np A ro c
‘2 V.= ~ - S - = 67.3

a^ = h^ /Z = 9 . 6
o

By substituting for a^, a2, a3 and q into Eq. 6.1 and 
rearranging, we obtain

y = ~ X-,-+ -1- + 28.02 + 0.14 x2 (6.3)J 68.3m
At x = 1., Eq. 6.3 gives
y = 28.16 1 s
Therefore the new coordinates of the singular point 

are (1., 28.16).
Figure 6.2 shows the phase portrait for the constant 

flow condition but with high friction as it has been 
discussed in Chapter 4 and has been indicated by the 
inequality 4.18.
6.3 Phase Portraits for ConStaiit Gats Opening

A. For hf /Z = 2.1 and h ' /H = .05: 
o o g

Let dy/dx in Eq. 4.20, Chapter 4 equals to m. Therefore,

a. + a. - (1 + a,) y
_  x +  -4 — ---------

4 3 - = m  (6.4)2- a. + (1 + a0)y - a-x1 u  1 2 1 3
By substituting expressions for a^ through a^ into 

Eq. 6.3 and rearranging, we obtain
y = o-jir ^ o£- 6--̂. [2.lmx2 - x + 89.3 + 3344m] (6.5)2 • 2 O t  o j « j Itl
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FIG. 6.3 PHASE PORTRAIT FOR CONSTANT 
GATE OPENING
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FIG. 6.4 PHASE PORTRAIT FOR CONSTANT 
GATE OPENING
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Figure 6.3 shows the phase portrait for the actual
parameters of the power plant system.

B. For hf /Z = 9.6 and h,. /H . = .24: 
o o g

Assuming hf is increased to 100 meters and zq remained the
same, pQ becomes equal to 308 meters and a^, a2 and a^
will be the same as determined in the preceding article.
Substituting these values in Eq. 6.4, we obtain the new
isoclines equation

y = 2.25-^-8573a [9-62mx2 -  x + 64-3 + 1914ml  (6-6)
Figure 6.4 shows the phase portrait for the condition of
constant gate opening with high friction.
6.4 Phase Portraits for Constant Power

A. For hf /Z = 2.1 and hf /H = .05 
o o g

The isoclines are dy/dx = m = constant so that from
Eq. 4.46 we will have

a, + a. - (1 + a„)y
1 4  *  =  m  (6.7)2- ax + (1 + a2) y - a3x

Substituting the values for a ^  a2, a3 and a4 and simplify­
ing, Eq. 6.7 can be rewritten in the form

y ^ - B y - C = 0  (6.8)
in which

B = (78.87 + ^  X 2  -  X )

and C = (-1555.24 - .977 x2 + .465 |  - .005/m)
The solution of the quadratic Eq. 6.8 is
y = 3s (B ± / B2 + 4C) (6.9)

The phase portrait for this condition is shown in Figure
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(a)  hf o / Z  = 2.1 , h f o / H g = .05

FIG. 6.5 PHASE PORTRAIT FOR CONSTANT POWER
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(b) hfo/Z = 9.6 , hfo/Hg = .24

FIG. 6.6 PHASE PORTRAIT FOR CONSTANT POWER
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6.5. The singular point is shown to be a stable focus.
B. For h,. /Z = 9.6 and h,. /H = .24 f f go o ^

Following the same procedure outlined in the
two previous flow conditions, Eq. 6.7 yields a quadratic
equation similar to Eq. 6.8 but with different values
for the parameters B and C. In this case B and C are
defined as follows:

B = (56.63 + .141 x2 - .0146 -) , andm
C = (-801.72 - 4.03x2 + .419 -  - •°.065)m m
Under this flow condition and with the assumption 

of a system with high friction, the singular point will 
change from a stable focus to a stable node as shown in 
the phase portrait, Figure 6.6.
6.5 Phase Portraits for Constant Power Combined with 

Constant Gate Opening
For this combined governing case, the phase plane 

is divided into two regions:
1. Constant power region where y > -y 

(see Figure 4.1), and
2. Constant gate opening region where y <  -y .

al + a3 °The singular point at (1., v  ---) is common toJL T  clX
both the constant gate opening and constant power 
conditions and is called a compound singularity.

Phase portraits for this case are shown in Figures 
6.7 and 6.8.
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FIG. 6.7 PHASE PORTRAIT FOR CONSTANT POWER 
COMBINED WITH CONSTANT GATE OPENING
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( b)  h f o / Z  = 9 . 6  , h f 0 / H g = .24

FIG. 6.8 PHASE PORTRAIT FOR CONSTANT POWER
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SUMMARY AND CONCLUSIONS
The governing equation describing the water level 

oscillations in a closed surge tank with compressed air 
at the top have been derived. These equations consist of 
a set of nonlinear ordinary differential equation with 
nine parameters. To reduce the number of parameters from 
nine to four, the governing equations have been normalized.

The usual approach to solve these equations has been 
to linearize them by neglecting or linearizing the non­
linear terms.

The stability of oscillations in these closed surge 
tanks is investigated by the phase-plane method which 
allows inclusion of nonlinear terms in the analysis. The 
following four cases of turbine flow demands were con­
sidered: Constant discharge, constant gate opening,
constant power and constant power combined with constant 
gate opening. All singularities have been analyzed for 
each case and stability criteria have been developed.

The following conclusions can be drawn from the 
preceding analyses:

1. Oscillations are always stable in the case of 
constant discharge.

2. In the case of constant gate opening, there are 
two singular points: The first singular point which is
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of practical importance is either a stable focus or a
2stable node. It is a stable node if (1 + a^) > 4 a^ and

2a stable focus if (1 + a2) < 4 . Therefore, this
singularity is always stable. The second singularity is 
virtual since the governing equations are not valid for 
x < 0.

3. For the constant power case, there are three 
singular points. The first and the second singular points 
are found to be either stable nodes or stable foci if the 
parameters of the hydraulic system satisfy the following 
equation:

Q2 L nP A
/— v _  O  / ̂  , o s»
s cr " 2g A. h- (H - h- ) U  V ’

fo g fo °
In addition, unstable oscillations are possible if

h_ is greater than i H . However, such a large head loss 
o g

is not economically feasible and accordingly this case
is of academic interest only. The third singular point
has been found to be a saddle. However, it is a virtual
singularity since the governing equations are not valid
for x <0.

4. In the case of constant power combined with 
constant gate opening, there are five singular points, 
two in the constant gate opening region and three in the

al+a3constant power region. The first singularity (1., -j-- '+  a )

for both conditions is common. Stability analysis for 
this case depends upon whether the turbine gate has reached 
their fully open position or not. This can be determined
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from the relation between the turbine discharge and the 
rated head. For heads greater than the rated head, 
stability analysis will be the same as that for constant 
power, i.e., two stable singular points and one virtual. 
For heads less than the rated head, stability analysis 
will be the same as that for constant gate opening,
i.e., one stable singular point and one virtual singular 
point. For y <  - yQ (region of maximum gate opening) 
the common singular point which is called a compound 
singularity is always stable. For y > - yQ (region of 
constant power), it may be stable or unstable depending 
upon whether the stability criterion (Eq. 4.65) is 
satisfied or not. In other words, if the surge tank 
area A is greater than (A ) , the oscillations areS S CjT

stable whether they are large or small. However, if As
is less than (A ) , the oscillations may be stable,S Cl

unstable or of constant magnitude depending upon the
stabilizing action of the gate and the point from which
the trajectory emanates. If Ac < i K K r  and y <  -S S C 1C o
the solution trajectories in the phase plane show stable
oscillations. However, if A (A ) and y >  - y ,s s c r  1 -*o
stability criterion is not satisfied and oscillations 
are unstable due to these stabilizing and destabilizing 
effects, a solution trajectory corresponding to perpetual 
oscillations is obtained and in the phase plane 
terminology is called a limit cycle. The trajectories 
emanating inside the limit cycle are unstable and their
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amplitude increases until it is equal to that of the 
limit cycle. The oscillations outside the limit cycle 
are stable and their amplitude decreases until it is 
equal to that of the limit cycle.

5. Results obtained from the analysis of the first 
singularity for the case of constant power agree with 
the results obtained by Svee by linearizing the governing 
equations. The phase plane method which is used herein 
provides stability criteria not only for one singularity, 
but for all possible singularities of the governing 
equations representing each of the four flow demand 
conditions. In other words, this technique investigates 
the transition of the nonlinear system from one stable 
state of motion to another.

6. The critical area of the closed surge tank 
depends on the initial air pressure in the chamber and 
the distance from the water elevation surface to the
top of the tank. For fixed initial air pressure the larger 
this distance, the smaller the critical area. This 
distance would be determined based on the topography 
of the site.

Since the studies herein are for one closed surge 
tank in a hydroelectric power plant, it would be interest­
ing to investigate the effect of a series of closed surge 
tanks on the stability of the system.
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