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ABSTRACT

PARALLEL-VECTOR DESIGN SENSITIVITY ANALYSIS 
IN STRUCTURAL DYNAMICS

Yongxing Zhang 
Old Dominion University, 1991 
Director: Dr. Due T. Nguyen

In this study, the design sensitivity analysis is for the purpose of providing 

constraint derivative information for structural optimization under dynamic loads. 

Various existing formulations are reviewed, and the direct differentiation method is 

justified as the best one for design sensitivity analysis in structural dynamics. An 

alternative formulation for design sensitivity analysis with direct differentiation 

method is developed. The alternative formulation works efficiently with the reduced 

system of dynamic equations, and it eliminates the need for expensive and 

complicated eigenvector derivatives, which is required in the existing reduced system 

formulation. The relationship of the alternative formulation and the existing reduced 

system formulation is established originally, and it is proven analytically that the two 

approaches are identical, when the transformation is exact, i.e, when all the modes 

are included. The alternative approach is accurate, simple, and efficient.

Eigenvectors are used as the base vectors in system reduction for both 

dynamic response analysis and the design sensitivity analysis. Lanczos algorithm is
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used for eigensystem solutions. A modified mode acceleration method is presented, 

thus, not only the displacements but also the velocities and accelerations are shown 

to be improved.

The accuracy of the dynamic response is checked by comparing with the 

original full system solution, and the accuracy of the sensitivity information is verified 

by comparing with the sensitivity information obtained by finite difference method 

of the original full system. Numerical studies have verified that the alternative 

formulation proposed could yield excellent accuracy. Numerical studies also show 

that the modal acceleration method could very effectively reduce the computation 

cost for both dynamic response analysis and design sensitivity analysis.

An efficient parallel-vector algorithm for design sensitivity analysis in large- 

scale structural dynamics is developed. Parallel computation can be achieved in both 

the global and local levels. The developed parallel-vector algorithm is then 

implemented in the Cray 2 and Cray Y-MP parallel computers using a parallel 

Fortran language called Force. The efficiency of the parallel-vector algorithm is 

illustrated by analyzing of large-scale structural systems and making comparison with 

the sequential version of the algorithm.
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1. INTRODUCTION

1.1 Overview

During the last twenty years, the rapid development of high speed digital 

computers, including parallel and vector computers, and of the finite element method 

have greatly increased the range and complexity of structural problems which can be 

solved. However, difficulties still remain in the computational solution of the large 

structural systems because of large storage requirements and long computational 

time. As a result, much research has been directed on the development of efficient 

techniques with structural analysis and design for large structural systems [1].

Research has indicated that computers with parallel and vector processing 

capability can perform  computations much faster than the traditional scale sequential 

computers [2, 3, 4]. Because of this computational speed advantage, new algorithm 

and application software should incorporate computational methods that exploit such 

technology. In practice, it is very important to maintain reasonable computing cost 

for any analysis such that inexpensive reanalysis become possible. Thus, 

improvements in numerical techniques and developments of efficient parallel-vector 

algorithms, which significantly reduce the computational cost, are very useful.

1
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The field of parallel-vector computing is relatively young. The first Cray 1, 

a pipelined vector processor, was delivered in 1976. Low-cost multiprocessors were 

not available before 1984. In the past ten years, parallel-vector computing has had 

a great impact on engineering computation. Many claim we are entering "the decade 

of parallel computer". Experts have pointed [5] that the emerging of supercomputers 

and parallel computers is going to cause a revolution in the scientific and engineering 

computations. And there is an urgent need to re-evaluate the existing sequential 

algorithms, to establish their suitability for parallel computers, and to develop 

numerical algorithms for parallel computers. It was also stated [ 5 ] that parallel 

computing is more than a different way of executing existing sequential programs, it 

offers a new challenge for numerical algorithm designers, applied mathematicians 

and computer scientists.

With regard to the topic of this study, sensitivity analysis is emerging as a 

fruitful area of engineering research. The reason for this interest is the recognition 

of the variety of uses for sensitivity derivatives, which range from automatic control 

theory to the analysis of large-scale psychological systems. Some of the areas where 

sensitivity analysis has been applied include: 1) system identification, 2) development 

of insensitive control systems, 3) use in gradient-based optimization algorithms, 4) 

approximation of system response to a change in a system parameter, and 5) 

assessment of design changes on system performance. The design sensitivity analysis 

( D S A ) of this study is for the purpose of providing constraint derivative information 

for structural optimization under dynamic loads.

2
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In the past twenty years, researchers have devoted much efforts in DSA of 

structural systems. The DSA for static structural systems have become considerable 

maturity, and a  large amount of work has been carried out in structural optimization 

and DSA in static systems [6]. However, algorithms and theory of optimization and 

DSA in structural dynamics are still in the development stage.

It is well known that, in many practical problems, dynamic loading cases are 

more critical than the static ones. The time dependent loadings, which produce time 

dependent responses, increase the complexity and the level of computing expense for 

both the dynamic response analysis and DSA: instead of having a set of coupled 

algebraic equations in static system, a set of coupled second order differentiation 

equations occur, where accurate solutions are far more difficult to obtain and the 

solution procedure must be carried for various time steps, within the load duration, 

in an iterative manner.

Some of the important previous work in the area of optimal design and DSA 

in structural dynamics is briefly reviewed and discussed in Section 1.2.

1.2 Review of Previous Pertinent Work

The DSA in structural dynamics has attracted considerable interest since the 

middle of 1970’s, when the structural dynamic optimization emerged [7, 8, 9]. The 

first paper in structural optimal design under dynamic responses was published in 

1970 by Fox and Kapoor [8]. In 1972, Pierson [7] conducted a survey of optimal

3
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structural design under dynamic constraints. Feng, Arora, and Haug [10] proposed 

an algorithm for optimal design subject to dynamic loads in 1977, where, finite 

element, modal analysis and a generalized steepest descent method are employed, 

and point-wise dynamic constraints are treated as equivalent integral constraints.

Hsieh and Arora [11] presented a worst-case design procedure, in which the 

constraints are imposed at all local maximum responses, both direct differentiation 

and adjoint variable formulation are discussed. Structural DSA with general 

boundary conditions are presented by Hsieh and Arora for static as well as dynamic 

problems [12, 13]. A hybrid formulation for treatment of the dynamic constraints 

were proposed by Hsieh and Arora [14]. Sensitivity analysis of discrete structural 

system is reviewed by Adelman and Haftka [6], where both static and dynamic 

problems are discussed, variety of procedures of obtaining the DSA information, such 

as, the analytical method, adjoint variable method, Green’s function method, finite 

difference method, and the FAST ( Fourier Amplitude Sensitivity T e s t) method are 

presented. An active set RQP algorithm was presented for dynamic response 

optimization by Lim and Arora [15]. Sequential quadratic programming was applied 

to optimal design for dynamic systems by Tseng and Arora [16]. Shape design 

sensitivity of dynamic structures were presented by Meric [17]. Developments by 

Arora and Haug [18, 19] , Mroz, Haftka [20, 21], and Haug, Choi, KomKov [22] 

provided the mathematical foundation of structural DSA. Linearization method [23] 

was applied to dynamic system optimization in 1983. In some finite element codes 

a version of structural design sensitivity has been incorporated. For example, the

4
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design sensitivity and optimization algorithm were developed using ADINA [ 24 ] for 

physically and geometrically non-linear structures. However, only static problems 

were treated. Ritz sequence is applied to continuum DSA of structural dynamics 

response by Choi and Wang [25]. Recent developments in DSA is reviewed by 

Haftka and Adelman [26].

Recently, William H. Greene [27] carried out a study of DSA in linear 

transient structural analysis. In his study, both forward finite difference and central 

finite difference methods are used to calculate the sensitivity information. System 

reduction techniques are applied, where mode displacement method, mode 

acceleration method, and the Ritz-Wilson-Lanczos method are used. Eigensystem 

solutions are obtained by subspace iteration method. In his work, eigenvector (or, 

base vector) derivatives are needed for DSA, which is very expensive and 

complicated. Greene proposed a fixed-mode semi-analytical formulation, where it 

is assumed that the base vectors are not a  function of the design variables. The 

fixed-mode semi-analytical formulation significantly simplified the calculation, 

however, it suffers from the accuracy problem.

Little work for development of effective parallel-vector algorithm has been 

carried out for the sensitivity analysis as indicated in Nguyen and Niu’s paper [28]. 

To the author’s best knowledge, no information in the literature could be found on 

the proposed parallel-vector DSA in structural dynamics.

5
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1.3 Objective and Scope

The major objective of this dissertation research is to develop an effective 

parallel-vector algorithm for DSA in large-scale structural dynamics. This 

dissertation research focusses at two levels. The first level is the primary focus on 

innovation in algorithms for the DSA in structural dynamics; The second level lies 

in the development of an efficient parallel-vector algorithm to deal with structure of 

sufficiently large-scale. The parallel-vector algorithm developed is implemented in 

Cray 2 (NASA Langley) and Cray Y-MP (NASA Ames) supercomputers using a 

parallel-Fortran language Force [29]. The accuracy of the algorithm is verified 

through numerical examples. The effectiveness and efficiency of the parallel-vector 

algorithm will be demonstrated through analysis of large-scale structural systems.

In the this research, linear dynamic structure systems are studied with finite 

element formulation [30, 31]. In large-scale structural design, a large number of 

degree-of-freedom (DOF) must be considered, to accurately describe the response 

of a  complex structure to dynamic loads. This results in large number of equations 

of motion for the system. Therefore, system reduction techniques [30, 32, 33] are 

commonly used.

When applying the system reduction techniques, various base vectors, such as, 

eigenvectors [ 30 ], Ritz vectors [34], Lanczos vectors [35], could be used. The Ritz 

vectors perform very well in structural dynamic response analysis when the loading 

can be separated as the function of space and time, and are also applied [25] to DSA

6
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in structural dynamics. However, based on the author’s study, it is understood that 

the Ritz vectors are load dependent vectors, due to the complete difference between 

the dynamic loading and the pseudo-loading term in the right hand side of the design 

sensitivity equation (see Chapter 3), the application of Ritz vectors to DSA in 

structural dynamics may lead to the inaccuracy problem. Even though the Ritz 

vectors cost less as compared to the eigenvectors obtained by the Lanczos algorithm, 

the eigenvectors are believed to be more accurate for DSA in structural dynamics. 

The most popular eigen-problem solving algorithms for large-scale structures are the 

subspace iteration method [30] and Lanczos method [3,35]. The Lanczos algorithm 

is used in this study due to its efficiency. Since eigenvectors are used as base vectors 

for the reduction of the number of DOF in both structural dynamic response analysis 

and DSA, the reduced system equations are decoupled. The Duhamel integral 

formula [36] is the most suitable one to solve the decoupled system. As an 

alternative, the implicit integration techniques [37, 38, 39] could also be applied. 

Among those implicit integration methods, the Newmark method is the most 

promising candidate. The modal displacement method (MDM) [36], modal 

acceleration method (MAM) [36, 40], force derivation method (FDM) [40, 41, 42] 

are reviewed. A  modified modal acceleration method ( MMAM ) is presented, 

which could improve not only the displacements, as the MAM does, also improves 

the velocities and the accelerations. However, due to the difficulty of applying 

MMAM to DSA, the MMAM is not recommended for DSA. Therefore, MAM is 

used for the solution of both structural dynamic responses and the DSA.

7
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The DSA is bounded to elastic structures with fixed geometry. The design 

variables describe the cross-sectional properties, such as, cross-sectional area, 

moment of inertia, member thickness, element size, etc. The state variables arise 

from the dynamic analysis, which are time independent and include those such as, 

displacement, velocity, stress, etc., of the analyzed structure.

There are two different strategies [18, 20] for sensitivity analysis: the direct 

differentiation method (DDM) and adjoint variable methods (AVM). The selection 

of a DSA method for iterative optimal design, particularly for large-scale structures 

in the parallel-vector computation environment, is also very critical. The direct 

differentiation method is more suitable for developing parallel codes, since each set 

of sensitivity equations corresponding to a design variable is independent. In 

addition, it is believed that the DDM has its advantages over the AVM for DSA in 

structural dynamics.

The DSA could be carried out with either the original full system or the 

reduced system. It is obvious that, for large-scale structural systems, the DSA based 

on a reduced system is more computational advantage than the one based on the 

original structural system. However, the existing reduced system formulation requires 

eigenvector derivatives, which are very expensive and complicated, since system of 

equations with singularity has to be dealt with. Among the methods of eigenvector 

derivatives [42, 43, 44, 45, 46], which include the modal method, modified modal 

method and the Nelson’s method. Nelson’s method is the most promising algorithm

8
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according to investigation of this study. Further, a parallel-vector Nelson’s algorithm 

is developed in this study.

As mentioned above, the existing reduced system formulation leads to an 

efficient procedure of DSA in structural dynamics. However, it involves the 

eigenvector derivatives, which are complicated and very expensive in computation. 

It is desirable to develop a better approach. Here, an alternative formulation for 

DSA is developed in which the eigenvector derivatives are avoided. The relationship 

between the DDM DSA based on reduced system and the alternative formulation is 

originally established in this work. The equivalency of the two approaches could be 

analytically proved when the transformation from the original full system to the 

reduced system is exact, that is, if the number of eigenvectors used is equal to the 

size of the original full system. The alternative formulation has several advantages: 

1) it works with reduced system, 2) it is efficient and suitable for parallel computing, 

3) it is not only simple, it is also accurate, 4) it is valid for both linear and nonlinear 

cases provided the system reduction technique is applicable; it can be applied to 

FEM formulation as well as distributed parameter structural dynamic DSA.

The entire algorithm, from eigensystem solution, reduction of the structural 

dynamic system through dynamic response calculation to sensitivity analysis, is 

parallel-vectorized to an efficient one. To fulfill this objective, various standard 

techniques of achieving parallelism are used, which provides both global 

parallelization and local parallel-vectorization for the developed algorithm. Related 

matrix algebra algorithms are modified, since none of the existing sequential

9
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algorithms could be adopted directly without modification, and some of them have 

been rewritten completely. Numerical examples are provided to demonstrate the 

accuracy of the algorithm developed. The efficiency is illustrated by analyzing large- 

scale structures.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. LARGE-SCALE STRUCTURAL DYNAMIC ANALYSIS

2.1 Introduction

In structural analysis and design, the dynamic responses are often more critical 

than the static responses. The dynamic equilibrium equation from the finite element 

formulation [30] could be presented as:

M Z + C Z + K Z = Q(t) (2*1)

where, M, C, and K are the mass matrix, damping matrix, and stiffness matrix 

respectively, each of them has the dimension of n x n. Z, Z, and Z represent the 

acceleration, velocity, and displacement vectors, Q(t) is the nodal load vector.

Eq. (2.1) could be solved for the dynamic responses, Z, Z, and Z, either by 

direct integration method, which include the central difference method, Houbolt 

method, Wilson method, and Newmark method, or by indirect method, such as the 

mode superposition method [30]. It is well known that system reduction techniques 

are extensively used in large-scale linear structural dynamics, which yield efficient 

solutions with desirable accuracy provided sufficient base vectors are applied.

11
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2.2 Eigensystem Solution in Structural Dynamics

The solution of an eigensystem is very important in structural dynamics and 

vibration problems, which could provide the condition number of the stiffness matrix, 

give the fundamental frequencies for design needs. Particularly, in this study, the 

eigensystem solution provides frequency constraints and an eigenvector matrix which 

meets the needs of the system reduction in both dynamic response analysis and DSA. 

Besides, the solution of an eigensystem is also a very expensive task. A lot of 

research have been devoting in this research area.

The generalized eigen-problem could be presented as

(2.2)
K <J> = A M <|>

where, K and M is the stiffness and mass matrices. A is a diagonal matrix which 

contains the eigenvalues, and <j> is the eigenvector matrix.

A variety of eigensystem solution methods have been developed and well 

documented in the literature [47]. The methods can be mainly classified as three 

categories: transformation method, determinant search methods and iterative 

methods.

The transformation methods include those of Jacobi method, Householder’s 

transformation, and QR transformation. In general, these methods are applied when 

the matrices involved are comparatively small in size and somewhat fully populated, 

or when they have a large bandwidth. Those methods find all the eigenvalues of the

12
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eigensystem, while the eigenvectors could be obtained by a process of inverse 

transformation.

The determinant search method is suitable when the eigensystem has a very 

small bandwidth, and when only a few eigenvalues are required. The method is 

basically to solve the eigenvalue characteristic polynomial equations.

The iteration methods are very effective for the solution of large eigensystems 

with sparse and banded matrices involved, particularly in the situation of fewer 

eigenpairs are sought. These methods have been commonly applied in practice for 

large-scale structural dynamics and vibration problems. Vector iteration method, 

subspace method, and Lanczos method are in this group. The most widely applied 

ones are the subspace iteration method and the Lanczos method, which are further 

discussed in the coming sections.

2.2.1 The Subspace Iteration Method

The subspace iteration method of the generalized eigen-problem was originally 

proposed by K. J. Bathe [30]. To find the lowest p eigenvalues and their 

corresponding eigenvevctors, the basic subspace iteration method consists of the 

computational steps of:

Step 1. Establish q starting iteration vectors, which span the starting subspace 

Ej. The number of the starting vectors, q, should be greater than the numbers of the

13
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eigenvalues, m, required. In practice, the selection of q is recommended as q = 

min{ 2p, p + 8 }.

Step 2. Perform subspace iterations. The simultaneous inverse iteration is 

used on the q vectors, and Ritz analysis is employed to extract optimum eigenvalue 

and eigenvector approximations at the end of each inverse iteration.

a). For k = 1, 2,..., iterate from subspace Ek to subspace Ek+1:

K Xk+1 = M Xk (2.3)

b). Calculate the projections of the matrices K and M onto Ek+1:

Kk„  = X V , K Xw  (2-4)

Mk.i -  XTk.i M Xw
(2.5)

(2.6)

c). Solve for the eigensystem of the projected matrices:

^ k + l  Q k + l =  ^ k + l  Q k+l -^k+1

d) Calculate an improved approximation to the eigenvectors:

Xk.! = Xt . , Q w  (2.7)

Step 3. Convergence check and Sturm sequence check. If not converged, go 

to step 2. After iteration convergence, use the Sturm sequence check to verify that 

the required eigenvalues and corresponding eigenvectors have been obtained.

14
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2.2.2 The Lanczos Algorithm

Lanczos algorithm for the solution of generalized eigen-problem has been 

receiving considerable attention in recent years due to its computational efficiency

[3,35]. The Lanczos method can be considered as a means of constructing an 

orthogonal set of Lanczos vectors, which is Krylov sequence with the Gram-schmidt 

orthogonalization at each step for use in the Rayleigh Ritz procedure. The Rayleigh 

Ritz procedure with M-orthonormal basis of the Lanzcos vectors leads to a  standard 

eigen-problem of a tridiagonal matrix, Tni

where eTm = (0, 0, 0, ...,1), Qm is a nxm orthogonal matrix with columns qj, i = 1, 2, 

3,..., m. By solving the following reduced eigensystem

Tm

'« !  P 2 
P2 « 2 P3

P3 a 3 (2.8)

through the following three-term recurrence:

(2.9)

or, in the matrix from:

[K-1 M] Qm -  Qffi Tffi = |  0,0,...Tm }
(2.10)

15
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t z = e zm (2.11)

the eigensolution of Eq. ( 2.2 ) can be obtained as

_1
e

(2.12)

X = Qm Z
(2.13)

For most structural engineering problems, only a few lowest frequencies and 

the corresponding eigenvectors are sought ( i.e., m < < n ), which leads to a 

significant savings in number of operations. The step-by-step computational Lanczos 

algorithm is given as follows:

1. Factorization stiffness matrix K = L LT, and form the starting vector:

(2.14)
Y0 * °> <lo = 0

2. Compute

( 2 - 1 5 )

3. Compute

P i
(2.16)

4. Compute

16
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P, = M q, (2.17)

5. Applying Lanczos iteration: For j = 1, 2, 3, Do 

Yja. v, = K _1 P.

b. Yj = Tj -  Pj q,.!

“ j = < M *j -  Pj Yj

d. Yj " Yj -  “j q,

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

e. Pj = M Yj

f- Pj+1 = K  M Yj = / p 7  Yj 

Reorthogonalization of qj+1

Yj -  ?! <2-24>
g' * *  = P'*1 = ̂

6. If necessary solve Tj Z = 0 Z, converged? (if no, go to step 5)

7. Eigenvector transformation X = Qj Z

17
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2.2.3 The Justification of the Methods

Research about the justification of the two approaches of obtaining the 

eigensystem solution has been carried out in the literature, and some of the results 

are quoted below.

The first study [3] provides for an example to find the natural frequencies and 

mode shapes of a high-speed research aircraft. The finite element model has 1646 

DOF, and a half-bandwidth of 323. For finding 20 eigen-pairs with 62 iteration steps, 

the CPU time in the Cray Y-MP computer for Lanczos method is 37.8 seconds while 

the subspace method takes 63.18 seconds. And some more examples are provided 

in reference [3].

Also, in other studies [48], it is pointed out that a good Lanczos algorithm is 

an order of magnitude faster and therefore less costly than basic subspace iteration 

in both the number of required matrix-vector operations and CPU time.

Therefore, the Lanczos algorithm is applied in this study for its efficiency.

2.3 The System Reduction Techniques

As mentioned before, the dynamic analysis of a large-scale structural system 

is a very expensive and time consuming task. This is true because a huge number of 

DOF must be considered to accurately present the behavior of a structure under 

dynamic loads. A  very large number of equations of motion for the system analyzed

18
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results, and both the solution of large system of equations and the eigen-problem 

solutions are required. Besides, the solution is an iterative procedure for the time 

history of loading. It is inefficient to directly use time step integration techniques 

[49] to solve such a large system. Therefore, system reduction techniques are usually 

applied.

The base vectors used for the system reduction techniques could be 

eigenvectors, Ritz vectors, Lanczos vectors, etc.; those will be discussed in the coming 

section.

2.3.1 The Various Base Vectors

For the reduction of the system equations in structural dynamics, various 

vectors, such as eigenvectors, Ritz vectors and Lanczos vectors could be applied.

The eigenvectors represent the mode shape of the structure. Procedures of 

obtaining the eigenvectors has been discussed in previous section (see section 2.2).

The key idea of the Ritz vector method [34, 50] is to select an 

orthonormalized Ritz basis in Krylov space that depends on the spatial distribution 

of the load. The advantages of this method is that no iteration is involved. The Ritz 

vector reduction method is declared as the one which has better efficiency and yields 

results of comparable accuracy or even better accuracy than those obtained from 

exact eigenvectors [34,50]. The disadvantage of the Ritz vectors is load dependency, 

which could cause inaccuracy under complicated load cases, especially when the
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separation of spatial and temporal functions of the loading become difficult or 

impossible. Although the block Ritz vector method [50] were suggested to overcome 

this disadvantage, the effectiveness of the method needs further investigation. The 

procedure of obtaining the m,h lowest Ritz vectors could be presented as follows: 

Step 1. Factorization of the stiffness matrix

K = L Lt

Step 2. Solve for the first Ritz-vector Xx

a), solve for Xx’

K X /  = f

(2.25)

(2.26)

b). Normalize solution with respect to mass matrix

Xl = X* (2.27)

\ZX/T M x [

Step 3. Solve for additional Ritz vectors (i = 2, 3, ..., 2m)

a). Solve for X-’

, (2.28) 
K X[ = M X ^

b). compute for j=  1, 2, ..., i-1

C. = X}T M X/
(2.29)
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c). make new vector orthogonal to previous Ritz vectors by

// / ^  , (2-30)
X." -  X,' -  £ ; ; | c1 x1

d). normalize vector with respect to mass matrix

X. = *■" <2JI>
/ x / '1 M X,"

Step 4. (Optional) Orthogonalize Ritz vectors X = ( Xj, X2, X2m) with 

respect to stiffness matrix

(2.32)
K = XT K X

(2.33)
M 7 = XT M X = I

Solve

( K ' -  Oj2 M 7 ) Zj = 0 (2-34)

The final Ritz vectors

(2.35)
X° = X z
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The Lanczos vectors are similar to the Ritz vectors. The generating of the 

Lanczos vectors is based on the Lanczos algorithm described in Section 2.2.2, 

detailed information is documented in reference [3, 35, 50].

2.3.2 The Mode Displacement Method

The mathematical understanding of system reduction methods, which are all 

base vector superposition methods, is recognized as a change of basis to a 

computationally more effective system of equations through the base vector matrix 

<j>. This base vector matrix 4> transforms the n-nodal point displacements to m-nodal 

generalized displacements, where m< <n, prior to the applying of the step-by-step 

implicit integration. The method could be represented as follows:

First, we introduce a new variable u through the transformation of

(2.36)
Z = <|>u 

with m < < n.

Substituting Eq. (2.36) into Eq. (2.1) yields

(2.37)
M4>i i  + C < j ) u + K ( f > u  = Q(t) 

premultiplying both sides of the above equation by <j>T gives

)̂T M <])u + <j)T C<J)u + <j)T K (})u = <j)T Q(t) (2.38)

which is then rewritten as
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_  _  _  _  (2.39)
M u  + C u + K u  = Q(t)

with the definition of

_  (2.40)
M = <|>T M <J)

(2.41)
C = <j>T C <j)

(2-42)
K = <j>T K <|>

(2-43)
Q = <i> Q

Once the response of the reduced system is obtained, the response of the 

original system could be easily calculated by using the transformation Eq. (2.36).

If the transformation matrix <t> is an eigenvector matrix associated with the 

undamped free vibration problem of

(2.44)
M Z + K Z  = 0 

Provided the eigenvectors are M-orthonormalized, we then have
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<j>T M <|> = A
(2.45)

(2.46)
<|»T K <|> = I

where, A presents a  diagonal matrix with the eigenvalues for diagonal elements, and 

I is a identity matrix. Thus, we have a decoupled system, then the reduced system 

of Eq. (2.39) could be rewritten as

nxj Ui + c{ Uj + kj Uj = pt(t)

or,

(2.47)

2 _ Pi (2.48)
ii- + 2 C- u. u. + a), u. =i i i i i _mi

where,

2 _ ki (2.49)Uj -  —
“ i

and,

0)1 = ^  ^  = (2.50)

The solution of Eq. (2.48) could be obtained by the Duhamel integral as
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where

and,

Uj = e -c, t f ̂ (0) + Uj(0) Ci
—— - sui Wpj t + Uj(0) cos coDt

CODi

nii Od-
f '  P;(t) e"Ci (,_T) sin coDi (t-x) dx

J  0 (2.51)

Uj = -CjCOjUj + eC i ‘ [(Uj(0) + Uj(0) Ci u,) cos com t 

-  <oa  u.(0) sin WDi t ]

1 C  [ UDi P,(T) e “‘ Zi (t T) C0S WDi(t_T)] d XJ O
“ i WDi

ii; = —  Pj(t) -  2 Cj O); Uj -  COj2 Uj (2.53)
“ i

<■>»= ®i / n ?  ( 2 -5 4 )

Finally, the dynamic response of the original system could be obtained by

(2.55)
Z = <t> u

(2.56)
Z = <{> u
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Z = <J> u (2.57)

2.3.3 The Mode Acceleration Method

The mode displacement method may fail to give an accurate solution, even 

when static load is applied. Frequently, the convergence is slow and many modes 

would be needed to give an accurate mode displacement solution (see Chapter 5). 

This difficulty can be alleviated by using of the mode acceleration method. Because 

of the improved convergence properties of this method, fewer natural frequencies 

and modes are required from the eigen-solution. Obviously, the method itself 

requires more computational efforts than the mode displacement method. However, 

as shown latter in Chapter 5, this can be compensated, or, even over compensated 

by the less computation in the eigensolution, since obtaining of eigensolution is very 

expensive.

Let’s recall Eq. (2.48)

.. „ . . 2 Pi <2 <2*58>Uj + 2 ^  ^  + o>j2 Uj = —  = — —
m* mi

The static solution of the above problem is
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4>iT Q (2.5 9)

or

(2.60)

nij a>2

It is clear that if the spatial distribution of the forcing function is such that the 

higher modes are significantly excited, such modes must be included in the analysis. 

Meanwhile, if the higher-mode frequency is much larger than the highest frequency 

content of the applied loading, then the response in the higher mode is essentially 

static. Thus, the total response could be approximated by the addition of the 

dynamic response of the first m modes and the static response of the remaining m + 1 

to n modes, i.e.,

making use of Eq. (2.58), which could be rewritten as

)  +  <f>-

(2.63)

since
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(2.64)

so,

(2.65)

or,

Z = K '1 Q -  <t> (CT2 u + £T2 C u) (2.66)

were, A is a diagonal matrix containing the eigenvalues.

Because the above equation involves the superposition of modal acceleration, 

the method is often referred to as the mode acceleration method. Numerical studies 

show that the MAM could significantly improve the accuracy of the displacement in 

some cases, which is to be presented in Chapter 5.

2.3.4 The Modified Mode Acceleration Method

In the mode acceleration method only displacements are modified. This 

section presents the expressions to modify also the velocities and accelerations. The 

motivation is an attempt to improve the results of DSA in structural dynamics 

through the improvements of velocities and accelerations also.

The Eq. (2.61) could be rewritten as
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(2.67)

Thus,

(2.68)

(2.69)

Numerical studies (see Chapter 5) show that the proposed Eq. (2.68) could 

significantly improve the accuracy of velocity. However, Eq. (2.69) does not behavior 

so well, due to the loss of significance by a higher derivative. Fortunately, from 

numerical experiments we found that in MDM/MAM the velocity and the 

acceleration vectors are almost in the same accuracy. Thus by using the information 

of the improved velocity of MMAM, we then could improve the acceleration in 

MMAM. Numerical examples are shown in Chapter 5.

2.3.5 The Force Derivation Method

In addition to the MDM and MAM, there is the force derivation method 

(FDM). The FDM was originally proposed by Leung [40], and it was investigated 

that the MAM could be derived by integrating by parts with respect to time the 

integral form of the MDM. Then, integrating the integral formula two more times
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yields a higher order model method than the MAM. The higher model-method is 

called the FDM, due to the formulation consists of a term of the forcing function as 

well as a  term of time-derivatives of the forcing function, which provides successively 

higher-order approximations to the higher and neglected modes.

The detailed derivation and description of the method is given in references 

[40, 41]. It is declared that, for some cases, the FDM could provide more accurate 

solution, or could reduce the number of modes used.

2.3.5 The Justification of the Methods

The MAM has been shown to be very effective in structural dynamics. It is 

also simple to apply, since it essentially superimposes the static and mode 

displacement solutions. The FDM requires much more computational effort, 

approximately 24 x B x N x N more than the MAM (with B = half-bandwidth, N = 

number of DOF). The MMAM presented could improve not only displacements, but 

also velocities and accelerations. However, MMAM could not be applied to DSA, 

like MAM is, due to the difficulty of obtaining the derivative for the pseudo-load for 

DSA. Because of this inconsistency, the DSA information could not be significantly 

improved. Therefore, MAM is select for the this study. Some numerical experiments 

have been conducted to illustrate the MMAM, which are presented in Chapter 5.
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2.4 Direct Integration Schemes

The direct integration techniques could mainly be classified as explicit 

integration schemes [49], implicit integration schemes [39], and the mixed methods 

[37].

The most commonly used explicit integration scheme is the central difference 

method, which is a conditionally stable method. The condition of stability requires 

that the step size of time be less than T/7r, where T is the period of the highest 

mode.

The implicit integration methods are similar to the explicit ones. The major 

difference is that the equation of motion is formed at next time point instead of the 

current one. Houbolt’s method, Wilson-0 method, and Newmark method are typical 

examples.

A  step-by-step solution procedure [ 30 ] using Newmark method is presented 

as follows:

A. Initial Calculations:

1. Form stiffness matrix K, mass matrix M, and damping matrix C.

2. Initialize Z0, Z0, and Z0.

3. Select time step size At, parameters a  and 5 , and calculate 

integration constants:

8 * 0.50; a  ^ 0.25( 0.5 + 8 )2 

ao = l / ( a  At2); ax = 8/(cc At); a2 = l / ( a  At); a3 = 1/(2 a )  - 1;
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a4 = 8 / a  - 1; a5 = 0.5 A t ( 5 /a  - 2); a6 = A t( 1 - 8); a7 = 6 At;
A  *

4. Form  effective stiffness matrix K: K = K  + ao M + ax C.

5. Factorize K: K = LDLX

B. For each time step do:

1. Calculate effective loads at time t  + A t :

^t+At = ^t+At + a2 Z, + a3 Z,)

+ C (at Z, + a4 Z, + a5 Z,)

2. Solve for displacements at time t  + A t :

LDLt Zt+At = Rt+At

3. Calculate accelerations and velocities at time t  + A t :

Zt + A t =  &0 (  ^ t + A t  '  )  "  a 2 -  a3 Zt

^t+At = + a6 - a7 Zl+A,
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3. DESIGN SENSITIVITY ANALYSIS IN STRUCTURAL DYNAMICS

3.1 Introduction

A optimization problem of structural dynamics could be presented as follows,

Minimize <p0( Z, £, b ) = g( f, b ) + f '  f( Z, b, t ) d t (3.1)
J 0

where <p0 is the cost function presented in a generalized form, C is the fundamental 

frequency of the structure, and b is a vector of design variable.

Subject to:

a). Constraints:

Si = [  <Pi( Z, b, t ) dt (3-2)

g, -  v 2( Z, b, t  ) | ^  <3'3)

b). State equations:

(3.4)
M Z + C Z + K Z = Q( b,t ) 

with initial conditions of
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(3.6)

(3.5)
Z ( 0 )  = Zv  Z( 0 ) = Z0

and,

( K -  A M ) <j) = 0

Taking the first variation of Eq. (3.2), we have

,  fT  t ^ aip,(Z,b,.) (3.7)
ei JO 5b az

By introducing the Dirac-delta function, Eq. (3.3) could be written as 

g2 = / flT <P2(Z,b,t) 8 (t-tj) dt 

A first variation of Eq. (3.8) yields

(3.8)

•«. ■ / :

or,

8<p2(Z,b,t) 5<p2(Z,b,t)
---------------  ob +   oZ

8b 8Z
8 (t-t;) dt

(3.9)

8<p2(Z,b,t) 8(p2(Z,b,t) (3.10)

' - ' 6b + _ ^ l- ' 5Z

Here, both integral-type and point-wise type constraint functions are discussed. 

Usually, there are two types of constraints in a structural dynamic optimization 

problem: the first type is time independent, such as, frequencies, lower and upper 

bounds; the second type is time dependent, which is generated from structural 

dynamic responses, such as displacements, velocities, accelerations and stresses, etc.
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The sensitivity analysis of the first type constraints is easy and straight forward. 

However, obtaining the derivatives of the time dependent constraints requires much 

more efforts. Thus, only the time dependent constraints are further discussed, which 

are in the general form of Eqs. (3.2) and (3.3).

To obtain the DSA information in structural dynamics, the same approach of 

system reduction technique is used as to compute dynamic response, which is 

presented in Chapters 2. Thus, one always performs sensitivity analysis with the 

reduced system in order to produce efficient computational work.

There are basically two approaches [18, 20] available for D SA  i.e., the direct 

differentiation method ( DDM ) and the adjoin variable method ( AVM ). These 

methods are briefly discussed in the following sections for structural dynamic 

problems.

3 . 2  T h e  D i r e c t  D i f f e r e n t i a t i o n  M e t h o d

Taking the first variation of Eq. (3.4) gives

M 8Z + C 8Z + K 8Z = R(t) 8b ( 3 .1 1 )

where

( 3 .1 2 )

From first order Taylor series expansion, one has
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6Z q 6b
(3.13)

substituting eq. (3.13) into Eq. (3.11) yields,

M q  + C q + K q  = R(t)
( 3 .1 4 )

with the initial condition of

q(0) = 0, q(0) = 0
( 3 .1 5 )

which are derived from the initial conditions of the dynamic equilibrium equations.

Obviously, Eq. (3.14) and (3.15) are in the same form as Eq. (3.4) and (3.5). 

Therefore any method used to solve for state variable Z in Eqs. (3.4) and (3.5) could 

be used to solve for q.

Once we have obtained the q, the design sensitivity could then be computed 

by Eqs. (3.7) and (3.10) for the constraints gx and g2i respectively,

dt
( 3 .1 6 )

and,

dg2 _ d<P2(Z,b,t) d<P2(Z,b,t)

db ~ db + &L q ,=ti

( 3 .1 7 )
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3.3 The Adjoint Variable Method

For this method, an adjoint variable vector, A(t), is introduced. Pre-multiplying 

Eq. (3.11) by AT(t) and further integrating over the time interval 0 to T, one has,

j *  XT [ M 8Z + C 8Z + K 8Z] dt = J T XT R(t) 8b dt (3.18)

Integrating by parts the first and the second terms in Eq. (3.18) respectively,

J  XT M 6Z dt = XT M 8Z -  XT M 8Z |J + XT M 8Z dt (3.19)

and

XT C 8Z dt = Xr C 8Z |J -  | oT Xr C 8Z dt (3.20)

It should be noticed that 5Z(0) and 5Z(0) vanish due to the initial condition of 

dynamic equilibrium equations.

Now we set,

(3.21)
XT M 8Z |t  = 0

(3-22)
XT C 8Z| = 0

and
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At M 8Z |t = 0 

Since 5Z(0) and 5Z(0) are arbitrary, so

A(T) = A(T) = 0 

Thus, Eq. (3.18) becomes,

[ XT M - i T C + XT K ] 8Z dt = | oT XT R(t) 8b dt 

Let the adjoint variable vector be defined as the solution of

3<Pk tM X(t) -  C A(t) + KX(t) = (— )
3Z

By setting

t = T -  t ,  A(t) = y(t)

and

<Pi(Z,b,t) = q»/1(Z,b,T)

Eq. (3.26) becomes

3(p/,(Z,b,x) „
M y (t) + C y(T) + K y(t) = [ v * ]T

oZ

with the initial condition of

38

(3.23)

(3.24)

(3.25)

(3.26)
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(3.28)

(3.29)
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(3.30)
y(0) = 0 , r n  = o

It should be noted that Eqs. (3.29) and (3.30) are in the same form as Eqs. 

(3.4), (3.5) as well as Eqs. (3.14) and (3.15). Thus, same techniques could be applied 

to solve for y(T). As soon as the adjoint variable vector is obtained, the design 

sensitivity of constraints can be calculated without difficulties.

Substituting Eq. (3.26) into Eq. (3.25),

[T I’SjPi 5Z dt = rr  aX gb dt
Jo az Jo

(3.31)

I dZ

and, inserting Eq. (3.31) into Eq. (3.7) leads to,

d<Pj /*T _ 3 < P j(Z ,b ,t)  . T r>/N i  j  ( 3 -3 2 )
= r  + R(t) i &

j o  ahdb J° 3b 

For the point-wise constraints <p2, similarly as for the DDM, the adjoint 

system of equations could be derived as

M X(t) -  C X(t) + K X(t) = [j -(p3 - L - - ] T 6(t-tj) (3.33)
3Z

and

A.(T) = 0, A.(T) = 0

then, apply the similar manipulation as in Eqs. (3.27) and (3.28), one has

(3.34)
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(3.35)

with the initial condition of

y(0) = y(0) = 0
(3.36)

Eqs. (3.35) and (3.36) are once more in the same form as Eqs. (3.4) and (3.5). 

Once A(t) is computed, the design sensitivity of <p2 could be obtained by using Eq.

It should be indicated that the solution of adjoint variable vector in AVM 

involves the backwards integration, since when t=0, t  = T, and when t = T, r = 0. 

So, the integration is carried out from r  = T to r = 0. While, in the DDM, the 

integration for obtaining q is a forward integrating process.

3.4 The Methods Justification for DSA in Structural Dynamics

With the discussion from previous chapters, it can be seen that the DDM is 

more suitable for applying in parallel codes, since each set of sensitivity equations 

corresponding to a design variable is independent. In the DSA, it is found that the 

DDM is suitable for DSA in structural dynamics. The situation, here, of DSA in

(3.10),

(37)
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structural dynamics is quite different from those in the static case, where, the choice 

of DDM  or AVM is accomplished by comparing the number of design variables and 

the number of constraints. The adoption of DDM for this study is based on several 

advantages: 1) both DDM DSA and dynamic response analysis use forward 

integration, and, thus, have consistent accuracy consistency, while the AVM uses 

backward integration and there is inconsistent; 2) there is no need to store the time- 

dependent response history, which saves computer memory space; 3) no interpolation 

is required; and 4) DDM is suitable for parallel computation. Therefore, the DDM 

is adopted for DSA in this study.

3.5 DSA Based on the Original Full System

Let beRk be the vector of design variables. Taking the derivatives of both 

sides of Eq. (3.4) with respect to the design variable bj, one obtains

M d Z + c d Z + K - ^ = R ( t )
(3.38)

db; db; db:

where

R ( t )  -  
db, db db. db..

(3.39)

with the initial conditions
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(3.40)

Thus, any time integration techniques can be directly applied to Eqs. (3.38)

and  (3 .40) to  solve fo r th e  d esign  sensitiv ity  v ec to rs  o f

dZ dZ , dZ—  , —  and —
dbj dbj dbj

3.6 The Reduced System Formulation

Taking the derivatives of both sides of Eq. ( 2.39 ) with respect to the design 

variable bj, one obtains

(3.41)

where:

(3.42)

Realizing Eq. (2.40), one can calculate in Eq. (3.42) as

(3.43)

Similarly,
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It should be pointed out that, when eigenvector matrix is used as base vector 

matrix, Eq. (3.33) gives a null matrix, and Eq. (3.34) equals the derivatives of 

eigenvalues.

The recovery of physical sensitivities of displacements is processed by 

dZ . du dd>—  = <J> —  + —  u (3.46)
dbj dbj dbj

The derivatives of velocities and accelerations for the original full system could be 

obtained with similar expressions as Eq. (3.46).

It should be noted that base vector derivatives is required in calculation of 

Eqs. (3.43) through (3.46). A lot of research effort have been devoted in the area 

of eigenvector derivatives [ 42, 43, 44, 45, 46 ]. Variety of the eigenvector derivative 

methods are reviewed in the following section. The calculation of eigenvector 

derivatives, however, is very tedious and requires a  lot of computational time. 

Therefore, it is desirable to have an alternative formulation for DSA of the reduced 

dynamic equations without requiring the eigenvector derivatives, which is developed 

and presented in Section 3.8.
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3.7 Sensitivity Calculation for Eigen-problems

3.7.1 Introduction

The DSA for eigen-problems could be used in providing dynamic constraints 

sensitivity (as seen in the last section), in approximating a new vibration mode shape 

due to a perturbation in a design variable, determining the effect of design changes 

on the dynamic behavior of a structure, and in tailoring mode shapes to minimize 

displacements at certain points on a structure. The determination of eigenvalue 

derivatives is a  straight forward and simple calculation. However, the calculation of 

the eigenvector derivatives is found to be much more involved and complicated. 

Mainly, there are four methods available: The finite difference method, the modal 

method, the modified modal method, and the Nelson’s method. There are two other 

methods which are considered alternatives to Nelson’s method, one is called the 

direct approach, while the other is called the iterative approach.

Before the introducing of various techniques, the technical background for 

eigen-system derivatives is first reviewed.

The generalized eigen-problem could be expressed as:

(3.47)
( K -  A M ) <j> = 0

The condition of normalization:
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M 4>j = 1 (3.48)

The eigenvalue derivatives could be computed as

^  = *Ti (3-49)dbj 1 db. 1 dbj J

where bj is the ith design variable.

Differentiating Eq. (3.47) with respect to a design variable bi( we have

dfo dX. dK dM
[ K -  X. M 1 —  = — - M <J). -  —  <J). + A.. ----  <b. n

1 3 dbj dbj 1 dbj 3 1 dbj 1 (3.50)

It is obvious that a direct solution of Eq. (3.50) is impossible since ( K - I M )  

is singular. However, we can use the following methods [42, 44] to overcome this 

difficulty and solve Eq. (3.50).

3 . 7 .2  T h e  F i n i t e  D i f f e r e n c e  M e t h o d

A step-by-step procedure of the finite difference method is presented as 

follows:

Do for each design variable:

a. Solve Eq. (3.47) for (old)

b. perturbed the ith design variable by

•̂ i(new) — ^i(old) + Abj

c. solve Eq. (3.47) again for ^  (nw)
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d. Approximate the eigenvector derivative by finite difference method

d<t>j 4>j (new) (old)
Abi

It should be mentioned that, for this method, the choosing of Abi is very 

critical to the accuracy. And the re-calculation of the eigen-problem is required for 

each design variable, which is very time consuming.

3.7.3 The Modal Method

The modal method approximates the eigenvector derivatives as a linear 

combination of mode shapes (eigenvectors),

del): (3.51)

where

A;ijk for k * j (3.52)

For k = j, Eq. (3.48) is differentiated to obtain

(3.53)

substituting Eq. (3.51) into Eq. (3.53), we have
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V  = fork  = j <3'54)

This method could be really expensive if a large number of modes are needed 

to accurately represent the mode shape derivatives.

3 . 7 .4  T h e  M o d i f i e d  M o d a l  M e t h o d

The modified modal method was developed to reduce the number of modes 

needed to represent the derivative by including an additional term in the linear 

combination of the system mode shapes. The idea of the method, in fact, is adopted 

from mode acceleration method in structural dynamic response analysis.

First, by neglecting the term Aj M , we solve Eq. (3.50) for j ,

which is the pseudo-static solution for , i.e.

i
d b .

= K '1
/s

M  -  *  ♦  JL 4  ( 3 .5 5 )
db j db j J d b j J  J

Then Eq. (3.51) is modified by adding the above pseudo-static solution,
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To obtain Aijk , the coefficients for the modified modal method, we substitute 

Eq. (3.56) into Eq. (3.50), and pre-multiply the results by <|>£ , we then have,

( dK ^ dM 
db: j dbs

\  ~ [̂k])
for k * j

(3.57)

and

A = <|).T Q *  <j).O^j An for k = j (3.58)
2 ‘J dBj

It is showed that the modified modal method converges faster than the modal 

method [44].

3.7.5 The Nelson’s method

The method proposed by Professor Richard B. Nelson [42] expresses the 

eigenvector derivatives in terms of a complementary solution Cj 4>j and a particular 

solution Vj, with Cj an undetermined coefficient, i.e.
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Substituting Eq. (3.59) into Eq. (3.50) to obtain

(K -  M) Vj = Fj (3.60)

where

" i  M -  *  + jl
3bj 3bt 1 Sbj

(3.61)
4>j

Since (K - X M) is a singular matrix, we transform Eq. (3.60) into K Vj = Fj, 

which is then a non-singular one, and we could solve for Vj. Here, K is modified by 

zero the k,h row and column, except for the kth diagonal element, and all the other 

elements remain unaltered, and Fj is obtained by zeroing the k,h element of Fj. Note 

that in the solution, the kth element of Vj is zero, i.e. Vk = 0. Then, we substitute Eq. 

(3.59) into Eq. (3.53), which yields

<J>jT M (V. + q  (ty = b (3.62)

with

b '  i  * ?  f  ° -63>

Thus

Cj = b -  4>jT M Vj (3.64)

Finally, the eigenvector derivatives are obtained by Eq. (3.59).
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Numerical computation showed [44] that the Nelson’s method is the most 

efficient one among the methods presented. Although due to the use of the DDM 

alternative formulation developed, which avoids the requirement of the eigenvector 

derivatives, here a  parallel-vector Nelson’s algorithm is presented for future study 

and implementation, which is one of the author’s future research target.

3.7.6 The parallel-vector algorithm for the Nelson’s method

DO 1 J  = 1, NUMODES 

K = K - k  M (Parallel/vector)

Search for the maximum value element in the jth eigenvector, and label it "k".

(Parallel)

Modify K to a non-singular matrix. (Parallel)

Factorize K (Parallel-vector)

For each design variable DO (parallel):

Parallel DO 2 NV=1,NUMDV ( = No. of design variables) 

Compute Fj (Vectorization)

Solve for K V. = Fj (Vectorization)

Evaluate b  = - |  <J>jT <j>j (Vectorization)

Calculate C = b - VjT M <J>j (Vectorization)

Obtain = y. + Cj <|>j (Vectorization)
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2 End parallel DO

1 CONTINUE

3.8 An Alternative DSA Formulation

In this section, an alternative formulation for DSA in structural dynamics 

which avoids eigenvector derivatives in computation is developed and presented.

Let the derivative of the displacement response with respect to the design 

variable bj be expressed as a linear combination of the eigenvectors,

in which R  has been defined in Eq. (3.39). Pre-multiplying <J>T to both sides of Eq.

(3.68), one has

(3.65)

The first and second time derivatives of Eq. (3.65) are given as

(3.66)

(3.67)

Substituting Eqs. (3.65) through (3.67) into Eq. (3.4), one obtains

M< & q  + C $ q + K $ q = R ( t ) (3.68)
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where M, C and K have been defined previously in Eqs. (2.40) through (2.42), and
A  ,
R is given by

R ( t ) = $>T R(t) (3-70)

Substituting Eq. (3.39) into Eq. (3.70), one obtains

(3.71)dQ
dbj ( dbj dbj dbj j

Substituting Eq. (2.36) into Eq. (3.71), one has

R ( t ) = $ T f ^ - f ^ M $ u  + ^ $ u  + - ^ $ u ) l  (3.72)
dbj dbj dbj dbj j

Thus, in this alternative formulation, the step-by-step procedure of calculating 

4 ^ - , - P -  and - P -  is summarized as follows:db j dbj d b j

Step 1: Calculating the eigenvector matrix <j>;

Step 2: Computing M, C and K according to Eqs. (2.40) through (2.42);

Step 3: Computing R according to Eq. (3.72);

Step 4: Using any time integration techniques to solve for q, £  and q as

shown in Eq. (3.69);

Step 5: Calculating and according to Eq. (3.65) through

Eq. (3.67).
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As can be seen from the above step-by-step procedure, the tedious 

computation of eigenvector derivatives is avoided.

3.9 Relationship Between the Reduced and Alternative Formulations

In this section, the relationship between the existing reduced system 

formulation and the alternative formulation presented in the previous section is 

established. The equivalency of the two formulations is analytically proved. 

Pre-multiplying both sides of Eq. (3.65) by <J)T M, one has

q = <j>T M dZ
db.

(3.73)

Taking derivative of Eq. ( 2.36 ) with respect to the design variable bj, one obtains

dZ d<J> , du—  = —21 u + <p —
db. dbt dbj

substituting Eq. (3.74) into Eq. (3.73), one obtains

(3.74)

q = <|>T M d<t> i du—— u + <b —
dh db

\  1 1 /

(3.75)

or
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Eq. (3.76) establishes the relationship between the conventional reduced 

system formulation and the alternative formulation.

In the following, it is analytically proved that Eqs. (3.41) presented in Section

3.6 are equivalent to Eqs. (3.69) derived in Section 3.8.

Substituting Eq. (3.76) into Eq. (3.69) gives

M —  + C —  + K —  = R* ( t ) (3.77)
dbj dbj dbj

where,

R* ( t  ) = R ( t ) -  (m <j)T M - ^  u + C <j)T M —  u + K <J>T M u 
[ V  d b j d b j *  d b ,  ;

(3.78)

and the vector R(t) has been defined in Eq. (3.72).

Comparing Eq. (3.77) with Eq. (3.41), it can be seen that if one can prove that 

R*(t) in Eq. (3.77) is identical to R(t) in Eq. (3.41), then it follows that the two 

formulations are identical.

Taking the derivatives of both sides of Eq. ( 2.43 ) with respect to the design 

variable bj, one gets,

dQ = Q + at (3.79)
dbj dbj dbj

Substituting Eq. (3.79) and Eqs. (3.43) through (3.45) into Eq. (3.42) yields
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Regarding to the alternative formulation, now let’s substituting Eq. (3.72) into 

Eq. (3.78) and realizing that <|>T M <|> = I ( an identity matrix ), and <J) M 4>T = I 

also, when the matrix <J> includes all the modes. Then we have

R '(t) = <f>T -3?db -  <t>T 

-  <i>T

{ dM ... dC . .  dK . ©u + —  <bu + —  q> u
db. db; db;1 > 1 /

' M ^ i ( i + C ^ u + K # u '
db. db. db.

(3.81)

Eq. (3.80) can be re-arranged into

R( t ) . * T d Q  t
db, db,

d(j)T
db;

( M<J)U + C<j>u + K<J)u )

-  <\>T 

- d > T

f dM ... dC . .  dK .—  (bu + —  <bu + —  <pu
dbj dbj dbj

c * u  + k ^ u 1
db; db; db;

(3.82)

Since the second and the third terms in Eq. (3.82) are canceled each other, 

it is proved that Eq. (3.81) and Eq. (3.82) are therefore identical.
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3.10 The Mode Acceleration Method in Design Sensitivity Analysis

The idea of applying MAM to DSA in structural dynamics is directly adopted 

from the dynamic response analysis, which was presented in Chapter 2, where the 

MAM was applied as a means of improving the displacement in the cases of static 

component is significant or when the higher modes are excited. The same logic is 

applied here to enhance the accuracy of the design sensitivities. The use of the 

MMAM to improve the velocities and the accelerations has been presented in 

Chapter 2. However, the application of MMAM will lead to inconvenient third and 

fourth time derivatives in the pseudo-load expression in DSA equations. Thus, the 

MAM is applied to DSA in structural dynamics, which is presented as follows:

By manipulating Eq. (3.38), one could have,

rt1WII

81 /
R - * C *  1

\

J* db, db, >

= K '1 R -  ( 4> O '2 <j)T ) M <j> —  -  ( <{> Q~2 <|>T ) ( a M + p K ) c|> —
dbj dbj

=K-1 R -  <(> Q~2 —  -  a 4> Q"2 —  -  P <|> —  
db; db; db

(3.83)

Thus,

dZ
db;

= K"1 R -  <f> 0-2 + (a q -2 + p j ) du
db; db,

provided proportional damping is applied.
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3.11 Design Sensitivity Analysis of Stresses

In finite element analysis [30, 31], when the nodal displacement vector has 

been determined, the element stresses could be calculated by using the stress-strain 

relationship as,

o -  E e  (3*85)

where, o is the stress vector, E is the elastic-coefficient matrix, or, called elasticity

matrix, and e is the element strain vector.

The displacement vector is presented as

u  = N Z (3.86)

in which, N is the shape function matrix, and Z is the nodal displacement vector.

The strain vector is then obtained by

e = B Z  (3-87)

where, B is obtained from the shape function matrix N through appropriate 

differentiation.

Thus, the element stresses could be expressed as

o = E e  = E B Z  = S Z  (3*88)

in which, S is defined as the stress matrix.
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A. Stress DSA based on the original system:

Taking derivatives of Eq. (3.88) with respect to a design variable bj, one has 

—  = —  Z + S —  (3.89)
dbj dbj dbj

which gives the stress derivatives for the formulation based on the original system.

B. Stress DSA based on the reduced system:

In the reduced system formulation, since

Z = <J> u (3.90)

so,

o = S <J> u (3.91)

Taking derivatives of Eq. (3.91) with respect to a design variable yields,

= S<J> —  + —  <j> u + S u (3.92)do
dbj '  T db. db. ' " db,

It could be seen that in the stress derivatives for the reduced system 

formulation eigenvector derivatives are involved.

C. Stress DSA with the alternative formulation:
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Substituting Eq. (3.65) into Eq. (3.89) yields

^  Z + S 4> q (3.93)
dbj dbj

or,

i £  = ^  *  u + S <|> q (3.94)
dbj dbj

in which, there are no eigenvector derivatives involved. Therefore, the alternative 

formulation also has advantage over the reduced system formulation in computation 

of the stress derivatives.
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3.12 Design Sensitivity for Non-linear Structural Dynamics

For nonlinear structural dynamics problems the equation of motion can be 

represented as

M (Z, b) Z + C (Z, b) Z + K (Z, b) Z = Q(t) <3*95)

In many practical situations, system reduction methods could be applied [ 51, 

52, 53] to nonlinear structural dynamic problems. Substituting Eq. ( 2.36 ) into Eq. 

(3.95) and with some manipulating, one obtains

M (u, b) ii + C (u, b) li + K (u, b) u = Q(t) <3*96)

where, the definitions of the matrices M, C, and K, as well as Q, could be refer to 

Eqs. (2.40) through ( 2.43 ).

3.12.1 Formulation Based On the Original System

Taking the derivatives of both sides of Eq. (3.95) with respect to the design 

variable vector b;, one obtains

M —  + C —  + K —  = R(t) (3.97)
3b. 3b. 3bj

Where,
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The above three equations present the DSA formulation with the original 

system in non-linear structural dynamics.

3.12.2 Formulation Based On the Reduced System

To obtain the DSA formulation based on the reduced system, we take the 

derivatives of both sides of Eq. (3.96) with respect to the design variable bi5

M —  + C —  + K —  = R(t) (3.100)
3b. 3b. 3b.

Where

3K
3u

u (3.101)
3u 3u

—  u + — u + — u 
3b.. 3b, 3b.

(3.102)

and
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abj

«  =$T 
3b,

' dM oM 5Z n 
Sbj + 5Z Sbj

.  *  *Txyf ^$  +  M $  + ----
abj abj

faK + ax. az'
ab, + az ab,

1 l /

.  a $ T „ .$  +  K $  + K —
ab, abs

ac 3M n 3K 
—  = a   + p
ab, abt abs

(2.103)

(3.104)

(3.105)

in which, provided the Rayleigh damping is applied.

3.12.3 An Alternative Formulation Based On the Reduced System

Substituting Eqs. (3.66) through (3.68) into Eq. (3.97), and pre-multiplying <j>T 

to both sides of the equation, one obtains

M q + C q  + K q  = R(t) (3.106)

Where

(3.107)

(3.108)

It should be noted that Eq. (3.76), which established the relationship between 

the reduced and alternative formulations, is still valid for nonlinear systems, provided 

that the system reduction techniques are applicable.

Thus for design sensitivity analysis of nonlinear structural dynamics problems, 

once can solve q, 4 , and q from Eq. (3.106). The unknown design sensitivity
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variables, , and can then be solved from Eqs. (3.66), (3.67) and
OD^ OJDĵ

(3.68). Thus with the alternative formulation for nonlinear structural dynamic the 

DSA could be conducted without the calculating the derivatives of eigenvectors.

For DSA of linear structural dynamic systems, it has been proved analytically 

in Section 3.9 that the alternative formulation and reduced system formulation are 

equivalent, provided the transformation from the original system to the reduced 

system is exact.

For DSA of nonlinear structural dynamic systems, it could also be proved 

analytically that the reduced and alternative formulations are equivalent, provided 

the transformation is exact. The proof is presented in Appendix A.
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4 .  T H E  P A R A L L E L - V E C T O R  D S A  A L G O R I T H M

4 . 1  I n t r o d u c t i o n

We are in a decade of supercomputers. Human beings have a  very long 

history of use computing devices. Abacus was the original computer invented in 

ancient China. Since the first electronic computer was invented in the early 1950’s, 

computer performance [54] has increased over the past three decades by a factor of 

10 every five years. The electric computers have gone through five generations of 

developments. For the first generation, electro-mechanical relays or vacuum tubes 

were used to implement logical and memory, and all the programming was done in 

machine language. The second generation used transistors, printed circuits, and 

magnetic core memory, and assembly language was used. The third generation is 

characterized by the use of small-scale and medium-scale integrated circuits, and 

semi-conductor memory began to replace magnetic core memory. The IBM 

system/360 series are well known examples of this generation. The fourth generation 

uses large-scale integration and VLSI to construct logical and memory units. Most 

of the operation systems are time shared and the use of virtual memory is available. 

Then vectorizing compilers for pipelined vector processors appeared as the fifth

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



generation. Cray 1 is a  typical example of this generation. It is believed that the 

Cray 2 and Cray Y-MP is for another generation, which has not only vectorization 

for each CPU, also, with multi-parallel processors.

In this study, the supercomputer Cray 2 and Cray Y-MP are used to 

implement the parallel-vector algorithm developed. Cray 2 and Cray Y-MP are 

shared memory multi-processor systems with 4 and 8 processors respectively. Each 

Cray-2 and Cray Y-MP CPU is a high-speed vector processor with specialized 

pipelined functional units which can be utilized in parallel to perform high-speed 

floating point computations.

Basically, there are three approaches [55] for designing a parallel-vector 

algorithm: a) detect and exploit any inherent parallelism in an existing sequential 

algorithm; b) invent a new parallel algorithm; c) adapt another parallel algorithm 

that solves a similar problem. As far as the author’s knowledge, there is no parallel- 

vector algorithm available in the literature for DSA in structural dynamics. However, 

in the mathematical view point, all the numerical algorithms, for example, solution 

of the simultaneous system equations, solution of the eigensystem, multiplying a 

matrix with a vector, etc., are all existing sequential algorithms. Therefore, the first 

approach is adopted in this study. The parallel Fortran language Force [ 29 ] is used 

to implement the developed parallel-vector algorithm in Cray-2 and Cray Y-MP high 

performance computers.
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42 The Parallel Fortran Language Force

The Force is a portable parallel fortran language developed by Jordan [29], 

with which the programmer, insulated from process management is left free to 

concentrate on the synchronization issues of parallel programming.

The following is a quick glance of the Force language, detailed information 

is given in reference [29].

The Force macro declares that start of a parallel main program has the 

following syntax:

Force < name > of < nproc> ident <me >

then followed by variable declarations, the body of the parallel program. Instead 

ending the main program with "Return" and "End", the Force main program ends 

with " Join" and " End". For example,

Force DSA of NP ident ME 

< declarations >

End declarations

C Force body 

Join 

End
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Where, NP is a  user named shared integer variable containing the number of 

processors executing the program. ME is a user named private variable which 

contains a unique index for each processor, numbered between 1 and NP.

The parallel subroutines are declared in the format of

Forcesub <nam e> (<  param eter list >) of <nproc> ident <M E> 

for example,

C  Matrix multiplication subroutine: C = A*B

Forcesub MULT(A,B,C,N1,N2,M1) of NP ident ME

INTEGER N1,N2,M1

R EA L A(N1,N2),B(N2,M1),C(N1,M1)

Private INTEGER I,J,K 

End declarations

C Initialize C

Pre2do 100 I = 1,N1; J = 1,M1 

C(i,J) = 0.0

100 End presched DO

C Multiplication process

Presched DO 300 I = 1,N1 

DO 200 J = 1,M1
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DO 200 K=1,N2 

200 C(I,J)= C(I,J)+ A(I,K)*B(K,J)

300 End presched DO

RETURN 

END

To call the Force subroutine, Forcesub, instead of using "CALL", "Forcecall" 

is used. For example,

Shared REAL A(100,50),B(50,100),C(100,100)

Private N1,N2,M1 

End declarations

Forcecall MULT(A,B,C,N1,N2,M1)

Most of the Fortran statements are valid in Force. Different from the 

Fortran, in a Force program, variables (including arrays) need to be declared as 

either "Shared" or "Private". When a variable is declared "Shared", only one copy of 

it is maintained by all the processors, i.e., all the processors communicate through 

shared memory locations. If a variable is "Private", then each processor has its own 

storage space for the variable, even though the variable is named only once in the
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main program. Besides, there are synchronous variables in a Force program. The 

common format for variable declarations is

Declared-type <Type> < Variable list > 

for example,

Shared Real A(1000), B(1000)

Private Real TT(1001)

Private Integer I, J  

Shared Logical OK 

Async Real X

The parallel Do-loops are identified by "Presched DO", "Selfsched DO", etc., 

for example,

Presched DO 2 1 = 1, LL 

DO 1 J = 1,MM 

A(I,J) = FLOAT(I,J)

1 CONTINUE

2 End presched DO

Selfsched DO 3 J = 1,LM
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C(J)=0.0

IF ( J  .GT. LM /2) CALL HARDJOB(C(J))

3 End Selfsched DO

It should be mentioned that, in the parallel Do-loop, the computation work 

for the Do-loop variable i must be independent of each other, otherwise the parallel 

Do-loop is misused. The difference between the "Presched DO" and the "selfsched 

D O ’ is in the way of assigning the computing task to be taken cared by which 

processor. One is pre-scheduled, and the other is determined during the executing 

of the parallel Do-loop, in order to assign evenly the computing loads to each 

processor.

Synchronization is realized through "Barrier", "Critical", "Consume", "Copy",

etc.

4.3 Techniques and Skills Related to Vectorization

The performance of programs executing on vector computers could be 

significantly improved when the number of accesses to memory is reduced. Unrolling 

Fortran Do-loops [56], followed by substitutions and eliminations in the unrolled 

code, can reduce the number of loads and stores. Some other skills, as making the 

long vector length, eliminating If Statements from Do-loops, are also important.
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Here, two subroutines are presented to illustrate the idea behind the 

techniques of loop-unrolling and the vector-unrolling.

The first example is implementing the operation of a matrix-vector 

multiplication with level-8 loop-unrolling, where, the matrix is full populated and 

unsymmetric.

Forcesub MVMULP(A,B,C,IROWA,JCOLA,LL,MM) of NP ident ME 

REAL A(LL,MM),B(1),C(1)

INTEGER IROWA,JCOLA,LL,MM 

Shared INTEGER ND,NEND,NL1 

Private INTEGER J 

End declarations

C

Barrier

N D =JC O LA /8 

NEND = (ND-1)*8 + 1 

NL1=ND*8+1 

DO 1 I= l,IR O W A  

1 C(I) = 0.0 

End barrier 

C ** Level-8 loop-unrolling, with parallel do:

Presched DO 3 J = 1,NEND,8
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DO 2 I= l,IR O W A  

C (I)= C (I)+ A(I, J)*B(J)

1 +A (I,J+ 1)*B(J+1)

2 +A(I,J+2)*B(J+2)

3 +A(I,J+3)*B(J+3)

4 + A (I,J+ 4)*B(J+4)

5 +A(I,J+5)*B(J+5)

6 +A(I,J+6)*B(J+6)

7 + A(I, J +7) *B(J+7)

2 CONTINUE

3 End presched DO 

C

Barrier 

End barrier 

C ** Taking care left-over:

Presched DO 5 J=N Ll,JCO LA  

DO 4 I = l,IROWA

C (I)= C (I)+ A(I, J) * B( J)

4 CONTINUE

5 End presched DO 

Barrier
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End barrier

RETURN

END

The second example implements the multiplication of a transposed matrix 

with a vector with level-8 vector unrolling, provided the matrix is un-symmetric and 

full populated.

Forcesub MTVP(A,B,C,IROWA,JCOLA,LL,MM) of NP ident ME 

REA L A(LL,MM), B (l), C(l)

INTEGER IROWA,JCOLA,LL,MM 

Shared INTEGER ND,NEND,NL1 

Private INTEGER I 

End declarations

C

Barrier

N D =JC O LA /8 

NEND = (ND-1)** + 1 

N L 1=N D *8+1 

DO 1 I = l,JCOLA 

1 C(I)=0.0

End barrier
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C ** Level-8 vector unrolling, with parallel do:

Presched DO 3 I = 1,NEND,8 

D O  2 J = l,IROW A 

C (I)= C (I)+ A(J,I) * A(J,I) * B(J) 

C (I+ 1)= C (I+  1)+A(J,I+ 1)*A(J,I+ 1)*B(J) 

C (I+ 2 )= C (I+ 2 )+ A (J,I+2) * A (J,I+ 2)*B(J) 

C (I+ 3 )= C (I+ 3 )+ A(J,I+3) * A( J ,I+ 3)*B(J) 

C (I+ 4 )= C (I+ 4 )+ A(J,I+4) * A (J,I+ 4)*B(J) 

C (I+ 5 )= C (I+ 5 )+ A(J,I+5) * A( J ,I+ 5) *B(J) 

C (I+ 6 )= C (I+6) + A(J,I+6) * A(J,I + 6) *B(J) 

C (I+ 7 )= C (I+ 7 )+ A(J,I+ 7)*A(J,I + 7)*B(J)

2 CONTINUE

3 End presched DO 

Barrier

End barrier

C ** Taking care of left-over:

Presched DO 5 I=NLl,JCOLA 

DO 4 J = l,IROW A

4 C (I)= C (I)+ A(J,I) * B( J)

5 End presched DO

C

Barrier
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End barrier 

C RETURN 

END

4 . 4  O v e r v i e w  o f  t h e  A l t e r n a t i v e  D S A  A l g o r i t h m

An effective algorithm for DSA in structural dynamics has been built up 

through the studies presented in the previous chapters. The algorithm is presented 

here in a flow chart as shown in Fig. 4.1.
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FEM  Problem Formulation 
M Z + C Z + K Z  = Q ( t )

I.e.  : Z (0)  = Z°,  Z ( 0 )  = z°

1'
Eigensystem Solutio 

( K -A, M
n ( Lanczos Method) 
) * = 0

System Reduction 
(j)T K  M = <t)T M <j>,C =  <J)T M (|) 

Q ( t )  = <l>T Q ( t ) _____________
K  =

Dynamic Response Analysis ( MAM ) 
M i i + C u  + K u  = Q ( t )

I . C . :  u  (0)  = 4>T M Z ( 0 ) ,  u  (0)  = <|)T M Z°

DSA of Eigenvalues

dX
db

i  = <j>T i  ^  {  d b i
dK , dM i ^
dbT d b T 1 ^

DSA of Time Dependent Constraints 
( Alternative Formulation )

M q  + C q  + K q  = R ( t )

dQ -  f-dM 4,
db, { db i  v

I . e .  I- q ( 0 )  1 = 0, q ( 0 )  = 0 
d z = <b q,  e t c .

F i g . 4 .1  F lo w  C h a r t  o f  D S A  i n  S t r u c t u r a l  D y n a m i c s
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4.5 Designing of the Parallel-Vector Algorithm

The parallel-vector algorithm is developed by exploring the parallelism of the 

design sensitivity algorithm in both global and local levels. Also, the vector 

computing is effectively employed in the algorithm to achieve high computational 

efficiency.

4 .5 .1  G l o b a l  P a r a l l e l i z a t i o n

The idea of realizing the global parallelization is illustrated by the flow chart 

shown in Fig. 4.2. In a sequential algorithm, the dynamic response analysis is carried 

out first, and then followed by the DSA computation. Here, in the parallel 

algorithm, the dynamic response analysis and the DSA are applied at the same time. 

Thus, if 2 processors are applied, the global parallelization could be realized, i.e., 

processor 1 and 2 could carry out dynamic response analysis and DSA in parallel.
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FEM Problem Formulation
M Z  + C Z + K Z  = Q ( t )  

I . C . :  Z( 0 )  = Z°,  Z ( 0 )  = Z°

Eigensystem Solution ( Lanczos Method) 
___________( K -A. M) <{> =__0___________

System Reduction 
K = <t>T K < ^  M = <J)t M <J),C = <j)T M $  

_Q ( t )  = 4>T Q ( t ) ___________________________

Dynamic Response Analysis ( MAM )
M u  + C u + K u  = Q ( t )

I . C . :  u  (0)  = <|>T M Z (0 ) , u  (0 ) = <j)T M Z°
DSA of Time Dependent Constraints

Fig.4.2 Flow Chart of DSA in Structural Dynamics: Global and Local 
Parallelization

' r

DSA of Eigenvalues

( Alternative Formulation )
M q  + C q  + K q  = R ( t )
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4.5.2 Local Parallelization and Vectorization

Besides the global parallelization, the local parallelization is applied at 

different levels of computation in various portion of the DSA algorithm. 

Vectorization techniques are practiced through all the subroutines in order to assist 

achieving the goal of developing an efficient parallel-vector algorithm ( see Fig. 4.2).

4 .5 .3  T h e  P a r a l l e l - V e c t o r  E q u a t i o n  S o l v e r

A parallel-vector equation solver [2] is incorporated with this parallel-vector 

algorithm. The parallel-vector solver is developed based on Choleski method for the 

solution of symmetric, sparse, large scale system of equations. The matrix involved 

in the system of equations are stored in row-wise skyline form. The solver has taken 

use of the variable-band storage scheme to reduce the number of the operations in 

the Choleski factorization. The algorithm employs parallel computation in the 

outermost Do-loop and vector computation via the loop unrolling techniques in the 

innermost Do-loop.

4 . 5 .4  T h e  P a r a l l e l - V e c t o r  E i g e n s y s t e m  S o l v e r

Parallel-vector eigen-solver [3] developed based on the Lanczos algorithm is 

applied. The Lanczos method has been presented in Chapter 2. The parallel-vector
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version of the Lanczos algorithm is developed by exploring the inherent parallelism 

and make use of the vector computation.

4 .5 .5  P a r a l l e l - V e c t o r  M a t r i x  V e c t o r  M u l t i p l i c a t i o n

The matrix vector multiplication is also a very commonly used operation in 

most of the structural engineering problems. Especially, for large-scale structure 

systems in which matrices with huge size are involved, the matrix-vector 

multiplication becomes a very costly computation task. Therefore, it is of great 

importance to develop parallel-vector matrix-vector multipliers also.

There are basically three types of matrix-vector multiplications, which is 

classified according to the storage of the matrices.

A. Symmetric. Banded Sparse Matrix:

For this type of matrices, the row-wise skyline storage is used. In order to 

apply the level-8 loop-unrolling technique, the matrix is virtually divided into many 

blocks, and each block is modified to have block height of 8. By doing this, the 

algorithm could be well vectorized with both vector unrolling and loop unrolling. The 

storage scheme and the block dividing are shown in Fig. 4.3. The small shaded 

triangular areas are called the left-overs, which is then manipulated with 

parallelization and vectorization.
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Row 1

Row 9

Row 17

Symmetry

M -  [ Row 1, Row 2, Row n ]

Figure 4.3 Storage Scheme and Block Dividing of the Symmetric, Banded 

Sparse Matrix
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B. Full Populated. Unsvmmetric Matrices

When the matrices involved are full populated and unsymmetric, the level- 

eight loop-unrolling techniques are applied. The matrices are divided column-wise 

into many strips of width equal to eight, and saxpy operations applied. Unlike in the 

conventional multiplication of a matrix with a vector, where the result vector are 

obtained directly by multiplying each row of the matrix to the vector (dot-product 

operations). Instead, here, the result vector are obtained by keep adding of the 

partial results (saxpy operations). If the total number of the columns could not 

divide evenly by eight, then the remainder is called left-over, which should be taken 

cared.

C. The Matrix Transpose Multiply to a Vector

Here, obviously, we are talking about unsymmetric, full populated matrices. 

We still divide the width of the matrix into many blocks with width of eight, and then 

apply vector-unrolling. Instead of performing dot-product one column each time and 

get one element of the result vector, in the vector-unrolling method, the vector is 

fetched once and made use for eight times by performing the eight columns in the 

block to multiply the vector, thus, we obtained eight elements for the result vector 

at each time.
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In this chapter, parallel-vector computing background and a  parallel Fortran 

language, Force, are reviewed; important techniques for vector computing are 

presented. A  parallel-vector algorithm for DSA in structural dynamics is developed. 

The parallel-vector algorithm is then implemented in a  Force code, PVDSASD 

(Parallel-Vector DSA in Structural Dynamics) [57]. The numerical studies are 

presented in the following chapter, with various examples to illustrate the accuracy, 

efficiency, and effectiveness of the algorithm.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. NUMERICAL STUDIES

The parallel-vector algorithm for DSA in structural dynamics presented in 

previous chapters is implemented in a parallel Fortran ( Force ) code, PVDSASD. 

Beam, two-dimensional frame, and three-dimensional frame examples are analyzed 

in this chapter to illustrate the accuracy, and efficiency of the algorithm developed. 

Before discussing the numerical examples, let’s first define the error norms.

5 . 1  T h e  D e f i n i t i o n  o f  E r r o r  N o r m s

To evaluate quantitatively the accuracy of the dynamic response and DSA 

information obtained with the alternative formulation developed, error norms are 

defined in this section.

The relative displacement error norm is defined as

T v
( 5 .1 )

where,

8 4
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6  = Uf -  u a (5.2)

in which ur is the displacement vector obtained from the solution of the original full

system, and ua is the approximate displacement vector calculated from the reduced 

system.

Similarly, the error norms for velocity, acceleration, and stress vectors are 

defined by replacing the displacement vector with the velocity, acceleration, and the 

stress vector respectively.

The error norms for DSA results are also defined in the similar manner as the 

dynamic responses. For example, the error norm for displacement derivatives is 

defined as,

where, (du/db)ffdm is the derivative of displacement vector obtained using finite 

difference method, by perturbing the design variable when solving the original full 

system. And (du/db)a is the approximate displacement derivative obtained by the 

alternative DSA algorithm developed, which works with the reduced system.

2
e du -  ------- ------------

db ( du’j ( du)
\d b jffdm vdbjg .^

( 5 .3 )

in which

( 5 .4 )
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The error norms of stress derivatives are defined similarly as the one of the 

displacement derivatives, by replacing the displacement derivative vector with the 

stress derivative vector.

52  B e a m  E x a m p l e s

In this section two beam examples are illustrated.

5 .2 .1  T h r e e - E l e m e n t  C a n t i l e v e r  B e a m

An aluminum cantilever beam [36] is modeled with three finite elements, as 

shown in Fig. 5.1. The beam is at rest at t = 0 when a 10 lb concentrated mass is 

suddenly attached at the tip of the beam.

This small problem is mainly used to verify the correctness of the code 

developed for dynamic analysis. It also demonstrates the effectiveness of the MAM 

in comparing with the MDM. Table 5.1 gives the deflections at the tip of the 

cantilever for the first 20 time steps. The second column presents the solution 

quoted from Reference [26], which is obtained with one mode by linear acceleration 

method. The third, fourth, and the fifth columns show the results obtained by MDM 

with one, three and nine modes are applied respectively, where Duhamel integral 

method is used. The sixth column presents the solution by one mode MAM using
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Duhamel integral. The correctness is verified by comparing with the deflections 

given in column one. Results also show the effectiveness of the MAM.

Table 5.2 also presents the tip deflections of the cantilever, which are obtained 

by Newmark method. The second column lists the results by solving the full system 

using Newmark integration method, which is then compared with the solutions by 

MDM with one mode and three modes, and the solution by MAM with one mode.

The CPU time for using the Newmark method and the Duhamel integral 

method is about the same, and a quantitative comparison will be given in Section 

5.3.2.
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P(t)

P(t)

10

E  = l.OxlO6 psi, p = 2.591X10"4 lb-sec2/in4, m = 0.02591 lb-sec2/in  

A = bh = 1 in2, I=8.333xlO'2 in4 

Time step A t = 0.005 second.

F i g u r e  5 .1  A  T h r e e - E l e m e n t  C a n t i l e v e r  B e a m
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Table 5.1 Tip Deflection of the Three-Element Cantilever Beam
( Duhamel Integral Method )

Time
(Second)

1 Mode 
Linear Acc.[26]

1 Mode 
MDM

3 Modes 
MDM

9 Modes 
MDM

1 Modes 
MAM

0.005 -0.0443 -0.0442565 -0.04437877 -0.0443489 -0.044348919

0.010 -0.17406 -0.1733987 -0.17357099 -0.173572 -0.17357219

0.015 -0.37822 -0.37684161 -0.37691373 -0.376914 -0.37691389

0.020 -0.64013 -0.63791043 -0.63791404 -0.637915 -0.63791478

0.025 -0.93821 -0.93520713 -0.93531971 -0.935321 -0.93532096

0.030 -1.24796 -1.2443643 -1.2445334 -1.24453 -1.2445338

0.035 -1.54388 -1.5400425 -1.5400963 -1.54010 -1.5400969

0.040 -1.80162 -1.7980069 -1.7980175 -1.79802 -1.7980186

0.045 -1.99998 -1.9971139 -1.9972443 -1.99724 -1.9972448

0.050 -2.12263 -2.1210442 -2.1212031 -2.12120 -2.1212038

0.055 -2.15949 -2.1596399 -2.159675 -2.15968 -2.1596758

0.060 -2.10751 -2.1097377 -2.1097579 -2.10976 -2.1097585

0.065 -1.97098 -1.9754277 -1.9755731 -1.97557 -1.9755740

0.070 -1.76113 -1.7677184 -1.7678641 -1.76786 -1.7678649

0.075 -1.49523 -1.5036343 -1.5036551 -1.50366 -1.5036554

0.080 -1.19516 -1.2048205 -1.2048563 -1.20486 -1.2048572

0.085 -0.88560 -0.89576888 -0.89592858 -0.895930 -0.8959296

0.090 -0.59203 -0.60181021 -0.60194136 -0.601942 -0.60194151

0.095 -0.33860 -0.34703830 -0.34704933 -0.347050 -0.34705026

0.100 -0.14617 -0.15233507 -0.15238875 -0.152390 -0.15238997
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Table 52 Tip Deflection of the Three-Element Cantilever Beam
( Newmark Method)

Time 
( Second)

Full System 
Solution

1 Mode 
MDM

3 Modes 
MDM

1 Modes 
MAM

0.005 -0.0438102 -0.0436613 -0.0438087 -0.043794

0.010 -0.171206 -0.171115 -0.171206 -0.171203

0.015 -0.372078 -0.372054 -0.372077 -0.372142

0.020 -0.630405 -0.630232 -0.630405 -0.630320

0.025 -0.924807 -0.924771 -0.924806 -0.924859

0.03 -1.243193 -1.23186 -1.23193 -1.23194

0.035 -1.52681 -1.52665 -1.52681 -1.52674

0.040 -1.78533 -1.78533 -1.78533 -1.78541

0.045 -1.98709 -1.98696 -1.98709 -1.98705

0.050 -2.11536 -2.11525 -2.11536 -2.11534

0.055 -2.15983 -2.15982 -2.15983 -2.15991

0.060 -2.11724 -2.11707 -2.11724 -2.11716

0.065 -1.99050 -1.99045 -1.99050 -1.99053

0.070 -1.79026 -1.79021 -1.79026 -1.79026

0.075 -1.53269 -1.53253 -1.53269 -1.53262

0.080 -1.23826 -1.23825 -1.23826 -1.23826

0.085 -0.931285 -0.931168 -0.931284 -0.931283

0.090 -0.636242 -0.636115 -0.636240 -0.636202

0.095 -0.376952 -0.376947 -0.376952 -0.377034

0.100 -0.174783 -0.174768 -0.174781 -0.174709
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Now, for the same cantilever beam, we alter the loading as Q(t) = 10 sin( 100 

t). The purpose of this example is to illustrate the effectiveness of MMAM, which 

could not only improve the displacements, as the MAM does, but also improve the 

velocities and accelerations. The deflection at the tip is plotted in Fig. 5.2. Fig. 5.3 

shows the displacement error norm for MDM and MAM (or, MMAM) with different 

numbers of modes used.

The velocity and acceleration error norms are presented in Fig. 5.4, which 

shows the effectiveness of MMAM in comparing with the MDM/MAM. The 

dynamic response error analysis results discussed above are also given in Table 5.3.

The displacement derivative error norm is shown in Fig. 5.5. It can be seen 

clearly that the MAM works well for improving the displacement derivatives. 

However, the improvement by MMAM on the derivatives of the velocity and 

accelerations is about 1.0%, which is not significant. This is because that the 

MMAM involves time derivatives of the loading function, which is difficult to apply 

with the DSA, i.e. we used MMAM for computing dynamic responses, and MAM for 

DSA. This inconsistency results in the unsatisfactory improvement of the DSA 

information for velocities and accelerations by the MMAM. The DSA error norm 

analysis results are also listed in Table 5.4.

The Error Norm analysis results for stresses and the stress derivatives are 

presented in Table 5.5, and plotted in Figs. 5.6 and 5.7. The effectiveness of the 

MAM in improving the stresses and stress derivatives are shown clearly.
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Figure 5.2 Tip Deflections of the Three-Element Cantilever Beam 
( P = 10 sin 100 t )
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* The acceleration error norm is approximately equal to the velocity error norm.
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T a b l e  5 .3  D i s p l a c e m e n t ,  V e l o c i t y ,  a n d  A c c e l e r a t i o n  E r r o r  N o r m  A n a l y s i s  o f  t h e  T h r e e - E l e m e n t  C a n t i l e v e r  B e a m

(  P  =  1 0 .0  s i n  1 0 0  t )

Numbers 
of Modes

M[DM MAM MMAM

Displ. 
Error Norm

Velo.& Accel. 
Error Norm

Displ. 
Error Norm

Velo.& Accel. 
Error Norm

Displ. 
Error Norm

Velo.& Accel. 
Error Norm

1 6.4825032E-02 6.4825032E-02 1.1939333E-02 6.4825032E-02 1.1939333E-02 2.970076E-02

2 2.8286435E-03 2.8286435E-03 6.1673865E-05 2.8286435E-03 6.1673865E-05 1.506388E-03

3 6.3388509E-04 6.3388509E-04 3.0787227E-06 6.3388509E-04 3.0787227E-06 3.424297E-04

4 5.5817412E-04 5.5817412E-04 2.2844017E-06 5.5817412E-04 2.2844017E-06 3.016930E-04

6 3.0000000E-06 3.0000000E-06 3.0000000E-06
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0 . 4 0

0 . 3 0

0.20

. 2  0.10

0.00
5 . 01.0 2.0 3.0 4 . 00.0

Num ber of Modes

Figure 5.5 Displacement Derivative Error Norm of 
the Three-Element Cantilever Beam 

( P = 10 sin 100 t )
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Table 5.4 DSA Error Norm Analysis of the Three-Element Cantilever Beam
( P = 10 sin 100 t )

Number
of

Modes

MDM MAM

Error Norm 
dZ/db

Error Norm 
dZ/db ;dZ/db

Error Norm 
dZ/db

Error Norm 
dZ/db;dZ/db

1 5.8629844E-01 5.8626306E-01 2.1025986E-01 6.4825032E-02

2 2.8676460E-02 2.8686689E-02 1.3268246E-03 2.8286435E-03

3 6.5579695E-03 6.5587518E-03 3.2010480E-04 6.3388509E-04

4 5.7858866E-03 5.7829854E-03 2.2844017E-06 3.0426885E-04

6
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T a b l e  5 .5  E r r o r  N o r m  A n a l y s i s  o n  S t r e s s e s  a n d  S t r e s s  D e r i v a t i v e s  o f  t h e  T h r e e - E l e m e n t  C a n t i l e v e r  B e a m

(  P  =  1 0  s i n  1 0 0  t )

Number of 
Modes

MDM MAM

ea ® da
db

®a ® da 
db

1 4.6251949E-02 1.1793927E-01 2.9993000E-03 5.0919000E-03

2 2.7495382E-03 6.0807772E-03 1.0481478E-04 4.7678016E-04

3 1.7129520E-03 3.8662389E-03 1.3262279E-05 6.7624600E-05

4 1.6269400E-03 3.8465666E-03 1.0318229E-05 6.4257013E-05
VOoo
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Figure 5.6 Stress Error Norm of the Three-Element Cantilever Beam 
( P = 10 sin 100 t )
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5.2.2 A 200-Element cantilever Beam

To illustrate also the computation efficiency, it is necessary to analyze larger 

size problems. In this section, a cantilever beam modeled with 200 elements is 

analyzed, which is shown in Fig. 5.8.

It can be seen from Table 5.6 that MAM with two modes could provide an 

accurate DSA result with only 0.18% error ( CPU time = 0.62 second); while it 

needs 12 modes to be applied for MDM to achieve an approximate same accuracy 

of 0.22% error for DSA information ( CPU time = 1.028 second ). The 

displacement error norm is plotted in Fig. 5.9, and the displacement derivative error 

norm is shown in Fig. 5.10. The MAM is very effective for this problem in both 

dynamic response analysis and DSA.

The lowest two frequencies are: w, = 54.2414 Hz, = 459.927 Hz. The

dA> dA*
corresponding eigenvalue derivatives are: — 1 = 6466.5097547, and — I =

d b  d b

2758407.695274.

The parallel-vector computing efficiency is presented in Table 5.7.
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T a b l e  5 .6  A l g o r i t h m  A c c u r a c y  a n d  E f f i c i e n c y  A n a l y s i s  w i t h  t h e  2 0 0 - E l e m e n t  C a n t i l e v e r  B e a m

H*
©u>

Number
of

modes

ERROR NORM ( MDM ) ERROR NORM ( MAM )

Z dZ/db Operation
Counts

CPU Time 
( Sec .)

Z dZ/db Operation
Counts

CPU Time 
( S ec .)

1 2.37908E-2 2.37982E-2 5.3075M 0.539734 4.61268E-4 8.44013E-3 5.4408M 0.56144

2 1.78398E-3 2.5269 IE-3 9.1297M 0.596162 7.85988E-6 1.77720E-3 9.28478M 0.61979

4 3.28058E-4 2.26059E-3 16.9044M 0.682011

6 3.66098E-5 2.25162E-3 24.8527M 0.784407

8 1.7265 IE-5 2.25161E-3 32.9747M 0.869184

10 1.00314E-5 2.25161E-3 41.2703M 0.940331

12 7.29572E-6 2.24220E-3 49.7397M 1.028230
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Figure 5.9 Displacement E rror Norm of the 200-Element Cantilever Beam
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105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.7 Parallel-vector Computation Efficiency 

with the 200-Element Cantilever Beam

NP Time (Second) Efficiency Speed Up

1 0.56144 100.00% 1.0

2 0.32689 85.88% 1.72

Total Number of Operation = 5.441 M 

Computer Used: Cray Y-MP ( Sabre ) 

Time Measured By: Tsecond
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5.3 Two-Dimensional Frame examples

Two two-dimensional frames are analyzed in this section.

5.3.1 A Simple Two-Dimensional Frame

A simple two-dimensional frame, as shown in Fig. 5.11, is modeled with eight 

finite elements.

Error norm analysis was conducted and the results are shown in Table 5.8 and 

Table 5.9 for dynamic response and DSA respectively. Fig. 5.12 shows the 

displacement error norm, Fig. 5.13 plots the velocity error norm. The error norm for 

displacement derivatives are shown in Fig. 5.14. Results presented in this example 

show that the MAM is a very effective method, and the proposed alternative 

formulation yields excellent accuracy.

The error norms for stresses and the stress derivatives are listed in Table 5.10, 

are plotted in Fig. 5.15 and Fig. 5.16, respectively. It is illustrated clearly that the 

MAM improves the accuracy of stresses and stress derivatives significantly through 

the improvement of the displacements.

The lowest four eigenvalues and their corresponding derivatives with respect 

to the design variable r, which is the radius of the circular cross-section, are 

presented in Table 5.11.
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E =  10.0X106 psi, p =  4.0X10'5 lb-sec2/in4

Figure 5.11 A Simple Two-dimensional Frame
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T a b l e  5 .8  D y n a m i c  R e s p o n s e  E r r o r  N o r m  A n a l y s i s  o f  t h e  S i m p l e  T w o - D i m e n s i o n a l  F r a m e

Numbers 
of Modes

MlDM MAM MMAM

Z
Error Norm

z
Error Norm

Z
Error Norm

z
Error Norm

z
Error Norm

z
Error Norm

1 0.4892 0.4892 0.7271 0.4892 0.7271 0.0865

2 0.0990 0.0990 0.01354 0.0990 0.01354 0.04761

3 0.02558 0.02558 0.00131 0.02558 0.00131 0.01329

4 0.007662 0.007662 0.000124 0.007662 0.000124 0.0041
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Table 5.9 DSA Error Norm Analysis of the Simple Two-Dimensional Frame

Numbers
of

modes

MDM MAM MMAM

Error Norm 
dZ/db

Error Norm 
dZ/db = dZ/db

Error Norm 
dZ/db

Error Norm 
dZ/db = dZ/db

Error Norm 
dZ/db

Error Norm 
dZ/db = dZ/db

1 0.5987426 0.5987426 1.000000 0.5987425 1.000000 0.5987425

2 0.1595410 0.1595410 0.0320652 0.1595410 0.0320652 0.1595410

3 0.0427056 0.0427056 0.0032651 0.0427010 0.0032651 0.0427010

4 0.0131046 0.0131046 0.0003120 0.0130907 0.0003120 0.0130907

5 0.0037604 0.0037604 0.0000500 0.0037607 0.0000500 0.0037607

6 0.0018047 0.0018047 0.0000108 0.0017992 0.0000108 0.0017992

8 0.0006504 0.0006504 0.0000016474 0.00064365 0.00000146 0.00064395
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Figure 5.12 Displacement Error Norm of the Simple Two-Dimensional Frame
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Figure 5.13 Velocity E rror Norm of the Simple Two-Dimensional Frame
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Figure 5.14 Displacement Derivative Error Norm of 
the Simple Two-Dimensional Frame
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Table 5.10 Stress and Stress Derivative Error Norm Analysis of the Simple Two-Dimensional Frame

Number of 
Modes

MDM MAM

e 6a
db

® da
db

1 5.5520965 IE-01 1.2615298IE +00 1.63996264E-01 3.70340746E-01

2 5.8848253 IE-02 1.40313660E-01 4.87675678E-03 3.53684330E-02

3 2.77103538E-02 5.59812578E-02 1.65608339E-03 3.34960236E-02

4 6.95740350E-03 3.75760283E-02 1.82951845E-04 3.25964212E-02
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Figure 5.15 Stress E rror Norm of the Simple Two-Dimensional Frame
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Figure 5.16 Stress Derivative Error Norm of the Simple Two-Dimensional Frame
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T a b l e  5 . 1 1  E i g e n v a l u e s  a n d  E i g e n v a l u e  D e r i v a t i v e s  

o f  t h e  S i m p l e  T w o - D i m e n s i o n a l  F r a m e

Number Eigenvalue Frequency ( Hz )

1
2
3
4

4869.91206
101982.961
1106121.49
9358851.94

11.1066
50.8258
167.3871
273.4389

dA.1
db = 324.55517, d l^

db = 67810.3844,

dA3
db = 732854.7861,

dA4
db = 1911436.6938
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5.3.2 An 18-Bay 25-Stoiy Two-Dimensional Frame

An 18-bay 25-story two-dimensional frame, shown in Fig. 5.17 is analyzed in 

this section. This frame has 494 nodes, consists of 925 beam elements. Each nodes 

has three DOF. Both dynamic response analysis and DSA are carried out, and the 

error norm analysis is conducted.

Error norms for displacements and displacement derivatives are presented in 

Table 5.12a. W hen one mode is used to approximate the response, the error norm 

associated with MAM is larger than the one by MDM. If more than one mode are 

used, the MAM yields much better accuracy. For instance, MAM with four modes 

gives only 0.19% error for displacement vector, while, MDM with 20 modes produces 

1.79% error. The displacements and displacement derivatives error norms are 

further plotted in Fig. 5.18a and Fig. 5.19 respectively. Table 5.12b shows the 

velocity and acceleration error norms. Table 5.12b illustrates that MMAM 

signicantly improves the velocity and acceleration vectors. The velocity and 

acceleration error norm are also plotted in Fig. 5.18b.

The stress and stress derivative error norms are presented in Table 5.13, and 

plotted in Figs. 5.20 and 5.21.

To illustrate the efficiency of MAM versus MDM, the CPU time for both 

cases are recorded, which are shown in Table 5.14, and plotted in Fig. 5.22. It can 

be seen clearly that the MAM gives much better accuracy with fewer modes used, 

and it also significantly reduces the computation time.
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The lowest 20 eigenvalues and the eigenvalue derivatives of the lowest 

eigenvalue are presented in Table 5.15.

The parallel-vector computation efficiency is presented in Table 5.16, which 

is conducted in Cray Y-MP high performance computer. The wall-clock time 

measured using Timef for one processor is close to the time measured by Tsecond: 

for example, 2.336 seconds by using Tsecond, while 2.355 seconds by using Timef. 

When multi-processors are request, the CPU time recorded by using Tsecond is 

roughly the same for different runs. For instance, 1.227 seconds, 1.333 seconds, 1.367 

seconds, for using two processors; 0.8909 seconds, 0.9334 seconds, 0.9402 seconds for 

three processors. However, the CPU time recorded by using Timef varies a lot for 

different runs. For example, when two processors are used, with different three runs, 

the time recorded are 1.80 seconds, 1.9534 seconds, 2.3278 seconds; when three 

processors are request, 1.784 seconds, 2.1092 seconds, and 3.3782 seconds. Thus, 

using Timef to measure the CPU time will not be accurate unless under dedicate 

computing environment. However, it is expected that in the truly dedicated 

computing environment, using either Tsecond or Timef should give about the same 

CPU time. The computational time by using Newmark method and the Duhamel 

integral method is roughly the same. For instance, when 20 modes are applied, in 

Cray 2 (Voyager), the Newmark method takes 3.5345 seconds, while the Duhamel 

integral takes 3.5942 seconds. And their parallel performance is about the same.
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Figure 5.17 An 18-Bay 25-Story Two-Dimensional Frame 
( P(t) = 1000 sin 100 t )
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T a b l e  5 . 1 2 a  D i s p l a c e m e n t  a n d  D i s p la c e m e n t  D e r i v a t i v e  E r r o r  N o r m  A n a ly s i s  

o f  t h e  1 8 - B a y  2 5 - S t o i y  T w o - D i m e n s i o n a l  F r a m e  

(  4 9 4  n o d e s ,  9 2 5  e l e m e n t s ,  1 4 2 5  D O F  )

Number
of

Modes

MDM MAM

ez e  dZ/db ez £dZ/db

1 1.46015E-01 1.48038E-01 2.28155E-01 5.07135E-01

4 2.63286E-02 2.6348IE-02 1.85422E-03 2.66839E-03

10 2.06270E-02 2.07616E-02 3.3011 IE-04 4.57390E-04

20 1.79353E-02 1.81785E-02 1.39492E-04 1.99745E-04

T a b l e  5 . 1 2 b  V e l o c i t y  a n d  A c c e l e r a t i o n  E r r o r  N o r m  A n a l y s i s  

o f  t h e  1 8 - B a y  2 5 - S t o r y  T w o - D i m e n s i o n a l  F r a m e  

(  4 9 4  n o d e s ,  9 2 5  e l e m e n t s ,  1 4 2 5  D O F  )

Number of 
Modes

Velo. & Accel. Error Norm

MDM & MAM MMAM

1 1.46015E-01 4.11475E-02

4 2.63286E-02 1.36999E-02

10 2.06270E-02 1.I0691E-02

20 1.79353E-02 9.66767E-03
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Figure 5.18a Displacement Error Nor of
the 18-Bay 25-Story Two-Dimensional Frame
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* Velocity Error norm and the acceleration error norm are the same.
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T a b l e  5 . 1 3  S t r e s s  a n d  S t r e s s  D e r i v a t i v e  E r r o r  N o r m  A n a l y s i s  

o f  t h e  1 8 - B a y  2 5 - S t o r y  T w o - D i m e n s i o n a l  F r a m e  

(  4 9 4  n o d e s ,  9 2 5  e l e m e n t s ,  1 4 2 5  D O F  )

Number 
of Modes

MDM MAM

£ da 
db

£<7 £ da 
db

1 3.22185E-01 5.07589E-01 3.38276E-01 6.03404E-01

4 1.14610E-01 2.67104E-01 4.4493IE-03 1.03542E-02

10 1.07666E-01 2.44914E-01 1.73338E-03 4.15386E-03

20 9.76454E-02 2.11302E-01 8.51913E-03 2.52437E-03
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Table 5.14 CPU Time Comparison of MAM Versus MDM
with the 18-Bay 25-Stoiy Two-Dimensional Frame 
( 494 nodes, 925 elements, 1425 DOF )

Computer used: Cray-2 (Voyager )

Number of 
Modes

CPU Time ( Tsecond )

MDM MAM

1 2.6992884 2.8205487

2 2.8333591 2.9509871

4 3.0656696 3.1828010

10 3.5871777 3.7515778

20 4.6694767 4.8081796
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Table 5.15 Eigenvalues and Eigenvalue Derivatives
of the 18-Bay 25-Stoiy Two-Dimensional Frame

Mode Number Eigen-frequency ( Hz )

1 0.147601E+02
2 0.478619E+02
3 0.9066H E +02
4 0.129870E+03
5 0.14457IE +03
6 0.169977E+03
7 0.204021E+03
8 0.222585E+03
9 0.252227E+03

10 0.290483E+03
11 0.328321E+03
12 0.344924E+03
13 0.366085E+03
14 0.402779E+03
15 0.432956E+03
16 0.438629E+03
17 0.461602E+03
18 0.475123E+03
19 0.492173E+03
20 0.510032E+03

dX,
d b 1

dX2
dE J

= 2575.45135 

= 34280.5312
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Table 5.16 Parallel-Vector Computation Efficiency
of the 18-Bay 25-Stoiy Two-Dimensional Frame

NP Time (Second) Efficiency Speed-up

1 2.3358 100% 1.00

2 1.2278 95.12% 1.90

3 0.8909 87.39% 2.62

Compiled in Cray Y-MP (Saber, NASA Langly R.C.), run at Cray Y-MP 
(Reynolds, NASA, Ames);
Time measured by: Tsecond

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 Three-Dimensional Frame Examples

In this section, a  flexible offshore structure, a typical three-dimensional frame, 

and a CSI design [57] model are studied.

5.4.1 A Flexible Offshore Structure

A flexible offshore platform shown in Fig. 5.23 is modeled as a three- 

dimensional frame with 48 DOF [50], as shown in Fig. 5.24.

Table 5.17 shows error norms of the displacements, velocities for MDM and 

MAM with different numbers of modes applied. This structure is of 48 DOF, when 

10 modes are applied, the error norms are 100% for both MDM and MAM. While 

when 12 modes are used, the MDM yields a  error norm of 71.0%, and the MAM 

with a error norm of 20.8%, for the displacements. The error norm for DSA 

information are presented in Tables 5.18 and 5.19. It can be seen that 12 to 14 

modes are needed to obtain a acceptable accuracy of the DSA information. The 

error norm information is also plotted in Fig. 5.25, Fig. 5.26, and Fig. 5.27. The 

lowest 20 eigenvalues and the eigenvalue derivatives of the two lowest eigenvalues 

are listed in Table 5.20. It should be noticed that the eigen-frequency has a big jump 

(from 0.404Hz to 99.547Hz) from the 11th lower frequency to the 12th one, which 

represents the change from bending to axial modes of vibration. This is due to 

insufficient elements used in the finite element model. Increasing number of 

elements for the vertical members would eliminate this kind of phenomenon.
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Water depth = 160’

Wave height =

Wave period = 9 sec
160’

( c> = 0.6981 rad/sec )

Four faces of the structure are identical 

Vertical members: D = 4", t = 1.5"

Horizontal members: D = 2", t = 0.5"

E = 29000ksi Deck weight = 2000 kips ( Asymmetric )

Figure 5.23 A Flexible Steel Offshore Structure
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Typical Frame:

Section A -A

23j O

Pl(t)

Y

Plane View

Z 0

X

X
100"

Pi(t) = 59.5 sin(-cot + 2.0) k 

P2(t) = 19.3 sin(-cot + 2.0) k

Figure 5.24 A Simplified Model of the Flexible Offshore Structure
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Table 5.17 Dynamic Response Error Norm Analysis of the Offshore Steel Structure

Numbers 
of Modes

MlDM MAM M MAM

Error Norm 
of Displ.

Error Norm 
of Veloc.

Error Norm 
of Displ.

Error Norm 
of Veloc.

Error Norm 
of Displ.

Error Norm 
of Veloc.

10 1.0 1.0 1.0 1.0 1.0 1.0

12 7.07039E-01 7.07039E-01 2.08538E-01 7.07039E-01 2.08538E-01 7.06639E-01

14 2.67366E-03 2.67366E-03 1.26325E-03 2.67366E-03 1.26325E-03 2.67255E-03

16 2.67365E-03 2.67365E-03 1.26325E-03 2.67365E-03 1.26325E-03 2.67255E-03

18 1.75654E-04 1.75654E-04 8.73305E-05 1.75654E-04 8.73305E-05 1.75654E-04

20 1.74582E-04 1.74582E-04 8.68329E-05 1.74582E-04 8.68329E-05 1.74511E-04



Table 5.18 DSA Error Norm of the Offshore Structure
( With Respect to Design Variable One )

Number 
of modes

M]DM MAM

Error Norm 
of dZ/db

Error Norm 
of dZ/db

Error Norm 
of dZ/db

Error Norm 
of dZ/db

10 1.0 1.0 1.0 1.0

12 7.0716567E-01 7.0716536E-01 7.00262E-01 7.07165E-01

14 2.3138859E-02 2.3120125E-02 2.31388E-02 2.31196E-02

16 2.3138860E-02 2.3120144E-02 3.99325E-03 2.31196E-02

18 1.4597171E-03 1.4751136E-03 4.64125E-04 1.4751 IE-03

20 1.3636388E-03 1.3801533E-03 4.59564E-04 1.37986E-04

Table 5.19 DSA Error Norm of the Offshore Structure 
( With Respect to Design Variable Two )

Numbers 
of Modes

MlDM MAM

Error Norm 
of dZ/db

Error Norm 
of dZ/db

Error Norm 
of dZ/db

Error Norm 
of dZ/db

14 9.6451044E-03 9.6680986E-03 1.155956E-03 9.668360E-03

18 8.2814553E-04 8.2838469E-04 6.9250216E-05 8.283228E-04

20 8.2642312E-04 8.2666201E-04 6.9250123E-05 8.266021E-04
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Figure 5.25 Displacement E rror Norm of the Flexible Offshore Structure
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Table 5.20 Eigenvalues and Eigenvalue Derivatives 
of the Offshore Structure

Number Eigenvalue Frequency ( Hz )

1 0.936090104E-01 0.486943919E-01
2 0.104328885E+00 0.514070167E-01
3 0.120123943E+00 0.551613529E-01
4 0.686421969E+00 0.131860800E+00
5 0.277109582E+01 0.264938999E+00
6 0.288713960E+01 0.270429466E+00
7 0.329843880E+01 0.289050906E+00
8 0.331244816E+01 0.289664094E+00
9 0.335007894E+01 0.291304800E+00

10 0.595928577E+01 0.388523440E+00
11 0.646588479E+01 0.404700835E+00
12 0.391212421E+06 0.995466013E+02
13 0.391329959E+06 0.995615544E+02
14 0.392087165E+ 06 0.996578314E+02
15 0.11927883IE +07 0.173820825E+03
16 0.293910254E+07 0.272852218E+03
17 0.29397144IE +07 0.272880618E+03
18 0.293997465E+07 0.272892696E+03
19 0.404791830E+07 0.320210810E+03
20 0.417676288E+07 0.325267019E+03

dA.1
d b 1

= -5.455322746E-03,
dA..,
db2

= -9.674249656E-02

dA.2
dE; = -3.702377222E-03,

dA,2
db2

= -1.199867522E-01

5.4.2 A Six-Story Eight-Bay Three-Dimensional Frame
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5.4.2 A Six-Story Eight-Bay Three-Dimensional Frame

In this section, a  typical three-dimensional frame, as shown in Fig. 5.28, with 

six stories and eight bays, and 756 degree of freedom, is studied.

Table 5.21 shows the error norm for dynamic response and DSA for both 

MDM and MAM, with different numbers of nodes applied. CPU time for some 

typical runs are recorded for comparing the efficiency of MDM with MAM. The 

error norms are also plotted in Fig. 5.29 and Fig. 5.30 for displacements and the 

derivatives of displacements respectively. The CPU time, in Cray Y-MP ( Sabre, 

NASA Langley), for MDM and MAM with different modes applied is shown in Fig. 

5.31.

It can be clearly seen that the MAM could provide better accuracy with less 

modes used than the MDM, and MAM gives better efficiency also. For instance, 

when 40 modes are applied, the MDM gives 50.8% error norm for displacements, 

and 50.1% error norm for the displacement derivatives, the CPU time used is 2.88 

seconds. While, with 40 modes applied, the MAM yields much better accuracy, the 

error norms are 7.3% and 7.0% respectively for the displacements and the derivatives 

of the displacements, and the CPU time is 2.976 seconds.

The lowest 70 eigenvalues and the eigenvalue derivatives of the two lowest 

eigenvalues are presented in Table 5.22.

The parallel vector computation efficiency of analyzing this problem is shown 

in Table 5.23. The computer used is Cray Y-MP, the time is measured using Tsecond.
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Figure 5.28 A Typical Three-Dimensional Frame
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Table 5.21 Algorithm Accuracy and Efficiency Analysis with 
the Six-Story Eight-Bay Three-Dimensional Frame 

( DOF = 700 )

Number
of

modes

ERROR NORM ( MDM ) ERROR NORM ( MAM )

Z dZ/db Operation
Counts

CPU Time 
( Sec.)

Z dZ/db Operation
Counts

CPU Time 
( Sec.)

6 0.988330 1.0 0.988330 1.0 67.42100M 1.630024

8 0.684358 0.6783 0.716320 0.704161 79.86822M 1.723475

10 0.639893 0.6328 0.475347 0.465665 92.60575M 1.825641

12 0.612137 0.6044 0.341039 0.332155 105.6336M 1.903676

14 0.609188 0.6014 105.7871M 1.887691 0.327966 0.318315 118.9517M 1.980821

20 0.570868 0.5626 0.203264 0.195735 160.4794M 2.205218

40 0.508044 0.5012 292.6026M 2.878850 0.132882 0.129853 318.5051M 2.975665

50 0.405746 0.3977 347.2525M 3.083454 7.27891E-2 6.9663 IE-2 408.3201M 3.178930

60 0.380164 0.3718 461.3456M 3.185253 6.01111E-2 5.71532E-2 505.3927M 3.281309

70 0.350048 0.3417 553.8819M 3.286124 5.36730E-2 5.06626E-2 609.7229M 3.408275
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Figure 5.29 Displacement Error Norm of the Six-Stoiy Eight-Bay 
Three-Dimensional Frame
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for the Six-Story Eight-Bay Three-Dimensional Frame
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Table 5.22 Eigenvalues and Eigenvalue Derivatives of
the Six-Story Eight-Bay Three-Dimensional Frame

Number Eigen-Frequency(Hz) Number Eigen-Frequency(Hz)

1 0.572611E+01 36 0.875992E+02
2 0.829902E+01 37 0.886950E+02
3 0.111081E+02 38 0.913655E+02
4 0.184677E+02 39 0.931257E+02
5 0.265546E+02 40 0.952263E+02
6 0.306910E+02 41 0.960364E+02
7 0.345493E+02 42 0.985877E+02
8 0.355950E+02 43 0.101159E+03
9 0.388953E+02 44 0.101978E+03

10 0.416819E+02 45 0.103179E+03
11 0.450212E+02 46 0.104649E+03
12 0.458277E+02 47 0.106149E+03
13 0.472004E+02 48 0.107032E+03
14 0.493625E+02 49 0.108682E+03
15 0.497159E+02 50 0.109527E+03
16 0.541969E+02 51 0.114825E+03
17 0.581508E+02 52 0.115120E+03
18 0.605358E+02 53 0.117124E+03
19 0.625017E+02 54 0.118449E+03
20 0.631007E+02 55 0.119285E+03
21 0.651839E+02 56 0.119791E+03
22 0.670239E+02 57 0.121779E+03
23 0.694373E+02 58 0.124463E+03
24 0.717013E+02 59 0.126171E+03
25 0.720210E+02 60 0.129554E+03
26 0.726173E+02 61 0.130917E+03
27 0.739466E+02 62 0.133768E+03
28 0.745699E+02 63 0.136344E+03
29 0.756607E+02 64 0.140725E+03
30 0.768734E+02 65 0.142837E+03
31 0.790121E+02 66 0.146310E+03
32 0.813189E+02 67 0.151438E+03
33 0.827175E+02 68 0.154684E+03
34 0.830653E+02 69 0.158034E+03
35 0.846688E+02 70 0.162699E+03

"db
= 46.377344

dA,2
d b

24.133193
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T a b l e  5 .2 3  P a r a l l e l - V e c t o r  C o m p u t a t i o n  E f f i c i e n c y  o f  t h e  

S i x - S t o r y  E i g h t - B a y  T h r e e - D i m e n s i o n a l  F r a m e  

( 1 4  M o d e s ,  M A M )

NP Time Efficiency Speed Up

1 1.98082113 100% 1.00

2 1.08386757 91.38% 1.83

3 0.75541916 87.41% 2.622

Total Number of Operation = 160.648 M 

Computer Used: Cray Y-MP ( Sabre ) 

Time Measured By: Tsecnd
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5.4.3 Three-Dimensional CSI Design Model

A three-dimensional finite element model to study Control-Structure 

Interaction (CSI) [58] is shown in Fig. 5.32. The structure has 1647 beam elements, 

537 nodes with six DOF per node, with totally 3096 D OF and 17 design variables.

The original data for this model is slightly altered by the author: Some of the 

D O F are fixed to avoid rigid body motion; Most of the cross-sections are ring shape 

in the original data, the other types of cross-sections (i.e. angles, etc.) are converted 

into ring sections.

The error norm analysis is conducted for MDM, MAM, and MMAM, with 

different number of modes applied. The operation counts and CPU time are also 

recorded for each runs. The results are presented in Tables 5.24 and 5.25. Error 

Norms of displacement, velocity, and acceleration vectors are plotted in Figs. 5.33 

and 5.35. Displacement derivative error norm for a typical design variable is 

presented in Fig. 5.34. From table 5.24, it can be seen that when 30 modes are 

applied: MDM gives error norm of 15.89% for the displacements and 16.77% for the 

displacement derivatives, and the CPU time used is 6.146 seconds; while, MAM 

yields error norm of 1.84% for displacements and 2.60% for the derivatives of the 

displacements, and the CPU time used is 6.308 seconds. The CPU time for the DSA 

computation with MDM versus MAM is also plotted in Fig. 5.36. It is illustrated 

that, by Table 5.25 and Fig. 5.35, the MMAM developed in this study can signficantly 

improve the accuracy of velocity and acceleration vectors.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The lowest 40 eigenvalues are shown in Table 5.26.

The parallel-vector computing efficiency is shown in Table 5.27. The computer 

used is Cray Y-MP, time is measured using Tsecond.
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Number of D.O.F 3096

Maximum bandwidth 108

Number of elements 1647

Number of nodes 537

F i g u r e  5 . 3 2  T h e  C S I  D e s i g n  F i n i t e  E l e m e n t  M o d e l

1 5 1
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T a b l e  5 .2 4  A l g o r i t h m  A c c u r a c y  a n d  E f f i c i e n c y  A n a l y s i s  w i t h  t h e  T h r e e - D i m e n s i o n a l  C S I  D e s i g n  M o d e l

UiN>

Number
of

modes

ERROR NORM ( MDM ) ERROR NORM ( MAM )

Z dZ/db. Operation
Counts

CPU Time 
( Sec.)

Z dZ/db Operation
Counts

CPU Time 
( Sec.)

4 1.0 1.0 — — 1.0 1.0 ------ —

8 0.589504 0.643229 245.5907M 3.49062 0.343344 0.513812 874.9878M 3.68806
12 0.403425 0.416261 1275.602M 4.45026 0.139704 0.173171 1294.869M 4.64660

16 0.391966 0.400710 1695.791M 4.77253 0.126149 0.152441 1717.221M 4.97816

20 0.331218 0.353003 2117.833M 5.20209 9.53464E-2 0.121760 2142.042M 5.43492

30 0.158937 0.167747 3181.044M 6.14599 1.83897E-2 2.60357E-2 3214.900M 6.30769

40 0.103614 0.102164 4255.832M 7.54099 6.01313E-3 6.79009E-3 4303.196M 7.72477



T a b l e  5 . 2 5  V e l o c i t y  a n d  A c c e l e r a t i o n  E r r o r  N o r m s

o f  t h e  T h r e e - D i m e n s i o n a l  C S I  D e s i g n  M o d e l  

( M M A M  V e r s u s  M D M / M A M )

Number of 
Modes

Velo. & Accel. Error Norm

MDM & MAM MMAM

8 5.89504E-01 1.84500E-01

20 3.31218E-01 1.40078E-01

40 1.03614E-01 5.37279E-02

1 5 3
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* Velocity error norm and the acceleration error norm are the same.
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Table 5.26 Eigenvalues of the CSI Design Model

Number Eigen-Frequency(Hz)

1 0.116070E+02
2 0.143949E+02
3 0.145239E+02
4 0.157429E+02
5 0.381830E+02
6 0.394871E+02
7 0.508478E+02
8 0.542062E+02
9 0.624059E+02

10 0.648400E+02
11 0.734292E+02
12 0.755228E+02
13 0.760329E+02
14 0.793875E+02
15 0.818006E+02
16 0.888392E+02
17 0.928983E+02
18 0.949426E+02
19 0.101190E+03
20 0.101916E+03

Number Eigen-Frequency(Hz)

21 0.105169E+03
22 0.108988E+03
23 0.115615e+03
24 0.117691E+03
25 0.121541E+03
26 0.126516E+03
27 0.127841E+03
28 0.134522E+03
29 0.145428E=03
30 0.150936E+03
31 0.157011E+03
32 0.161472E+03
33 0.169400E+03
34 0.178729E+03
35 0.182048E+03
36 0.184844E+03
37 0.192432E+03
38 0.198713E+03
39 0.199323E+03
40 0.206673E+03
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Table 5.27 Parallel-Vector Computation Efficiency
with the CSI Design Model ( 40 Modes, MAM )

NP Time Efficiency Speed Up

1 6.9804118 100% 1.00

2 3.8493594 90.67% 1.81

3 2.7916512 83.35% 2.50

4 2.4137 72.30% 2.89

Total Number of Operation = 44589.723 M 

Computer Used: Cray Y-MP ( R eynolds) 

Time Measured By: Tsecond
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6. CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusion Remarks

The direct differentiation method is justified as the best for design sensitivity 

analysis in structural dynamics. An alternative formulation for design sensitivity 

analysis with direct differential method is developed in this study. The alternative 

formulation works efficiently with the reduced system, it avoids the expensive, 

complicated, and tedious computation of the eigenvector derivatives which is 

required in the existing reduced system formulation. It is demonstrated that the 

alternative formulation is accurate, simple, and very efficient. The relationship 

between the alternative formulation and the existing reduced system formulation is 

initially established by the author. It is further analytically proved that the 

alternative formulation and the reduced system formulation are mathematically 

equivalent, when the transformation from the original full system to the reduced 

system is exact, i.e., when all the modes are included.

System reduction technique is applied with eigen-vectors as the base vectors. 

The eigenvectors are obtained by an efficient Lanzcos algorithm. Both the dynamic 

response analysis and design sensitivity analysis are conducted efficiently working
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with the reduced system. It is shown that mode acceleration method performs well 

in both dynamic response analysis and the design sensitivity analysis. A modified 

modal acceleration method is presented, which improves not only the displacements, 

as the mode acceleration method does, but also the velocities and the accelerations.

A  parallel-vector algorithm for design sensitivity in structural dynamics is 

developed, which serves both global and local parallelization, also makes use the 

advantage of the vector computing. The effective algorithm developed is then 

illustrated through several examples for its accuracy and efficiency. The accuracy 

of the algorithm developed is appreciated by comparing with the information from 

the solution of the original full system. The efficiency is showed by analyzing large- 

scale structure in high performance computers Cray 2 and Cray Y-MP.

6.2 Notes for Future Research

Some of the possible extensions of this work and some ideas for future 

research are discussed in this section.

1) It has been shown that the alternative formulation is accurate, efficient, and 

simple to apply. Further research could be conducted to compare quantitatively the 

efficiencies and accuracies of the alternative formulation versus the existing reduced 

system formulation. The alternative formulation does not require eigenvector 

derivatives, thus, it obviously has much better efficiency than the existing reduced 

system formulation. Further research could be conducted to compare quantitatively
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the computational efficiency of the two approaches. It is analytically proven that the 

two formulations are equivalent, when the transformation is exact. However, besides 

the approximation introduced by system reduction, both formulations involve some 

other different kinds of approximation. For the existing reduced system formulation, 

error could be produced in the process of obtaining eigenvector derivatives. It is well 

known that the eigenvectors converge in a much slower rate than the eigenvalue do. 

On the other hand, when the alternative formulation is applied, error could be 

introduced from the assumption of Eq. (3.64), i.e. the displacement derivative of the 

original system is approximated as matrix-vector product of the eigenvector matrix 

with the reduced system displacement derivatives. Thus, the numerical accuracy 

comparison of the two approaches could be a valuable research topic. Research on 

quantitative comparison of both accuracy and efficiency of the two formulations could 

provide practical guidance for DSA in structural dynamics. Also, it deserves further 

investigation under the parallel-vector computing environment.

2) In this study, the eigenvector derivatives are avoided since the alternative 

formulation is selected. The study of the eigenvector derivatives could be a  potential 

research topic also. This area has attracted great amount of research interests [42, 

43, 44, 45]. Numerical comparison [44] has been made for various techniques of 

eigenvector derivatives. However, it is valuable to re-evaluate their performance in 

parallel-vector computation environment.

3) For both alternative formulation and existing reduced system formulation, 

which could be applied in conjunction with the MAM, certain number of modes
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(eigenvectors) is required to obtain DSA solutions with an acceptable accuracy. 

Although the number of modes required is problem dependent, and the convergence 

criteria could be very complicated to establish, further research work on mode 

convergence is needed to provide some criteria to serve as a guidance for DSA in 

structural dynamics.

4) With the study of the DSA in structural dynamics, it is natural for the 

future research to conduct dynamic structural optimization. More important, there 

are many interesting topics in structural optimization under dynamic loads which 

deserve further study, as for example, the treatment of point-wise time dependent 

state variable constraints.

5) Only linear structures are discussed in this study. The alternative 

formulation could be valid for non-linear dynamic structural system also, provided 

the modal reduction technique could be applied. This study is limited to fixed 

geometry problem. DSA for Shape optimization under dynamic loads is another 

interesting topic for the author to learn, and hopefully conduct some research work 

on it in the future.
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APPENDIX A RELATION BETWEEN THE ALTERNATIVE AND REDUCED 

SYSTEM FORMULATIONS FOR DSA IN STRUCTURAL DYNAMICS

In this appendix, it is to be proven that the alternative and the reduced system 

formulations are equivalent, provided the transformation from the original system to 

the reduced system is exact.

Recalled Eq. (3.100)

+ c - ^ -  + K—  = R(t) (A l)
dbj 5b. dbj

which is the DSA equation for the reduced system formulation.

Substituting Eqs. (3.102) through (3.105) into Eq. (A.1), and using the relation 

of Eq. (3.78), (3.38), and (2.36), one obtains the right hand side ( R.H.S. ) of Eq. 

(A.1) as

. T 5M dZ *  aC q > --------------Z  + —
az db, dz

3 L t + ® L 3 L z  
5b; 5Z 0b;

(A.2)
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Recalling Eq. (3.101) and noticing the relation in Eq. (2.43), the left hand side

(L.H.S.) of Eq. (A.1) can be written as,

L.as. = m  — + c  —  + ic —
5bj dbj ab, (A3)

Thus, Eq. ( A.1 ) becomes,

M —  + C —  + K —  -  
ab. abj abj

'  aQ _ (3M1 + ^ z  + - z ) labj [abj abj ab.1 /J

■ t  3M az a  ac az *  3K az „
CD ——  —— ^  4* ——  Z  “ “  2

az 3b. az ab; az ab:
(A.4)

«t>’ M —  ii + C —  u + K—  u
abs abj ab.

Recall Eq. ( 3.106 ), which is the DSA equation for the alternative formulation,

M q  + C q + I q  = R(t) (A'5>

where, £  and R are defined in Eqs. ( 3.107 ) and ( 3.108 ).

Substituting the expressions for K and R into Eq. ( A.5 ) yields,

M —  + C —  + <1>T ( K + Z + —  Z + —  z ]  <J) —
abj ab. { az az az J ab,

= < t > T

5Q ( m t  + *  z  + «z]l
ab. { a* ab. abj 1 1 / .

-  4)1 M-̂  ii + C —  u + f K + Z + —  Z + — z ) — u
ab, abj ( az az az ) abj

Eq. ( A.6 ) then could further be rewritten as

(A.6)
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Since Eq. ( 3.73 ), Eq. ( A.7 ) could be written as

M —  +■ C —  + K ^
5b, 5b;

=

4>T

5Q
5b:

z  + *  z  + JKZ
5b:

5M 5Z £  +
5Z 5b;

-  <i>T M
Sb,

5bi 5b,

5C 5Z * + 5K 5z
5Z

-----  Zj
5b, 5Z 5b,

C + K —  u
5b, 5b,

(A.8)

Eq. ( A .8 ) is identical to Eq. ( A.3 ). Thus, we have proved that the reduced and the 

alternative formulations are equivalent.
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