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ABSTRACT

METHODOLOGY FOR ANALYZING AND CHARACTERIZING 
ERROR GENERATION IN PRESENCE OF AUTOCORRELATED 

DEMANDS IN STOCHASTIC INVENTORY MODELS

Rafael Diaz 
Old Dominion University, 2007 

Director: Dr. John A. Sokolowski

Most techniques that describe and solve stochastic inventory problems rely upon the 

assumption of identically and independently distributed (IID) demands. Stochastic 

inventory formulations that fail to capture serially-correlated components in the demand 

lead to serious errors. This dissertation provides a robust method that approximates 

solutions to the stochastic inventory problem where the control review system is 

continuous, the demand contains autocorrelated components, and the lost sales case is 

considered. A simulation optimization technique based on simulated annealing (SA), 

pattern search (PS), and ranking and selection (R&S) is developed and used to generate 

near-optimal solutions. The proposed method accounts for the randomness and 

dependency of the demand as well as for the inherent constraints of the inventory model.

The impact of serially-correlated demand is investigated for discrete and 

continuous dependent input models. For the discrete dependent model, the autocorrelated 

demand is assumed to behave as a discrete Markov-modulated chain (DMC), while a 

first-order autoregressive AR(1) process is assumed for describing the continuous 

demand. The effects of these demand patterns combined with structural cost variations on 

estimating both total costs and control policy parameters were examined.
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Results demonstrated that formulations that ignore the serially-correlated 

component performed worse than those that considered it. In this setting, the effect of 

holding cost and its interaction with penalty cost become stronger and more significant as 

the serially-correlated component increases. The growth rate in the error generated in 

total costs by formulations that ignore dependency components is significant and fits 

exponential models.

To verify the effectiveness of the proposed simulation optimization method for 

finding the near-optimal inventory policy at different levels of autocorrelation factors, 

total costs, and stockout rates were estimated. The results provide additional evidence 

that serially-correlated components in the demand have a relevant impact on determining 

inventory control policies and estimating measurement of performance.
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NOMENCLATURE

General

H Mean

a  Standard deviation

k Order process for any positive integer

n Length of a Discrete time series

Euclidean space, composed by ^-dimensional vector space over R 

/  Objective function

S A subset of the Euclidean space Rrf

Random components

A finite collection of d  random components (£p £2,...,£rf)

F(£) Joint cumulative distribution function (CDF) of a <i-dimensional random

vector £ .

fj Multivariate time series = 1,2,...|

p tj Transition probability matrix

nt Stationary probability

<j) Autocorrelation factor

p  Correlation factor

/ ( £ )  Expected value of the system performance measure

TV (£, cci) Performance of a simulation model observed (output response)

co Vector of the stochastic effects of the system
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viii

Inventory model

i Period

n Period planned horizon

s Minimum reorder point for inventory

S  Maximum inventory level

x, Initial inventory level at the beginning of period i

z, Quantity of items ordered to resupply inventory at period i

wt The amount of inventory on-hand at period i

y i Inventory level after ordering ( x,. + z,) at period i

dl Demand at period i

c Cost of ordering per inventory unit

h Holding cost per inventory unit

C(0) Minimal holding cost

p  Penalty cost per inventory unit

<pc(J;) Probability density function of the stochastic demand

(pD (£) Probability mass function of the stochastic demand

O(a) Cumulative distribution function of the demand

X Delivery lag

/(x ,)  The expected total costs for periods i through n if the amount of

inventory on-hand at the beginning of period i is x .

CR Critical Ratio.

P(C) Error generated in the costs function.
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fi(s, S ) Error generated in the inventory policy

Simulated Annealing, Pattern Search, and Ranking and Selection

j  Iteration

Xj Accepted state (accepted candidate solution)

y  Nominated state (proposed candidate solution)

H(Xj) : Objective function evaluating state Xj.

T Temperature

a  Acceptance function

X Decision Space

r ,, r2,... Temperatures from a cooling schedule

lk Stage length k ,h stage

Z Accepted candidate solution

Sj Step length.

n0 Initial sample size,

h A  constant that depends on the number of alternatives

A Number of alternatives

1 -  9 Desired confidence level,

Sf Sample variance of the n0 observations,

ct Significant difference specified by the user

Nt Additional replications
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1

1 INTRODUCTION

1.1 Thesis Statement

A simulation optimization technique based on Simulating Annealing enhanced with 

Pattern Search and Ranking and Selection can be used to approximate solutions to 

stochastic inventory models that consider autocorrelated demands. Failing to capture the 

probabilistic properties of input processes that exhibit autocorrelated components 

generates errors that can be characterized using regression analysis.

1.2 Problem Statement

In the enterprise, control and inventory management have been recognized as a critical 

area that can significantly affect a firm’s performance (Silver, 1985)1. Failing to properly 

characterize its inventory systems can lead a firm to poor inventory management. As a 

result, the enterprise may be reporting results far below optimal performance. When 

characterizing an inventory system where demands are uncertain, stochastic inventory 

modeling provides techniques to characterize, analyze, and solve problems associated 

with the optimal distribution of scarce resources. A key risk factor that can be hidden or 

ignored is the presence of certain types of dependency in the stochastic demands. In 

solving stochastic inventory problems, a variety of methodological and analytical tools 

are available (Silver, 1985; Bernard, 1999; Stadtler & Kilger, 2002). The effectiveness of 

many of these techniques depends upon their assumptions. In the stochastic inventory 

setting, some simplifying assumptions are critical to the efficacy of a given technique. 

Most techniques rely upon the assumption of identically and independently distributed

1 Citation and reference list format for this manuscript are taken from the American Psychological 
Association.
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(IID) demands when describing and solving stochastic problems (Biller & Soumyadip, 

2004). As demonstrated in the literature, techniques that attempt to solve stochastic 

problems reliant upon IID data can be misleading in estimating measures of performance 

(Melamed, Hill, & Goldsman, 1992; Ware, Page, & Nelson, 1998). Further, in the 

enterprise, these miscalculations may have a significant impact on critical issues such as 

facility planning or policy making2.

Many frameworks have been created to aid inventory managers in finding the 

optimal inventory policy. The IID assumption predominates in most analyzed inventory 

models. Deriving analytical solutions to stochastic inventory problems that present 

dependency components can be very difficult due to complicated multivariate time series 

integration. In addition, inventory managers may face challenges in recognizing and 

correctly modeling discrete or continuous autocorrelated demand. Inventory systems are 

characterized either as lost sales systems, where unmet demand results in the customer 

seeking the goods elsewhere, or backlog systems, where the fulfillment of the demand is 

simply delayed. In inventory planning and control, policy-making is a critical factor that 

directly impacts the operation of the enterprise (Silver, 1985).

In this dissertation, the impact of ignoring this demand dependency component is 

quantified and analyzed for the lost sales case. A simulation optimization technique is 

developed and used to generate near-optimal solutions to the described complex problem. 

Specifically, the inventory problem is characterized as a stochastic Dynamic 

Programming (DP) problem. The solution technique employed finds approximately near-

2 Inventory policy involves deciding appropriate stock levels, reorder points and quantities. It has a direct 
effect on planning and resource distribution (Silver, 1985).
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3

optimal inventory control policies using an extension of Simulated Annealing (SA) that 

combines Pattern Search (PS) and Ranking and Selection (R&S).

1.3 Motivation

This part of the dissertation provides details as to why considering dependency issues in a 

certain class of inventory problems is relevant to the literature. Further, this section 

explains the importance of considering these dependency issues in terms of policy

making in continuous control systems that consider the lost sales case.

1.3.1 Inventory control and the stochastic demand

The significant impact of inventories on the balance sheet is well known in the enterprise. 

In general, senior management perceives inventory as a large potential risk. Silver (1985) 

indicates that diverse factors that include merchandise stocked in excess, obsolescence, 

inflation, technological changes, fluctuations in the demands, and business cycles support 

this view. Thus, corporate management is constantly challenged by the rewards and 

inconveniences of carrying inventory. Corporate strategy relates to decision making in 

planning and inventory control in the sense of distributing resources and interacting with 

multiple functional areas. For example, while production and sales management forces 

toward keeping higher inventory, finance and accounting management pressure 

downward inventory levels. In inventory settings, complexities can be associated with 

the type of items to be produced, the nature of the demand, and the multiple interactions 

with other functional areas. Silver (1985) states:

“...inventory management is therefore a problem of coping with large numbers and with 

a diversity of factors external and internal to the organization”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As a result, decision systems and rules must be designed to rationalize, 

coordinate, and control such physical and conceptual issues. Thus, any inventory 

manager must be able to provide answers to the following questions (Taha, 2002; Hillier 

& Lieberman, 2001; Silver, 1985):

1. When an item should be ordered;

2. How much of the item should be requested on any particular order;

3. How often the inventory status should be determined.

In this sense, many inventory models and frameworks have been designed to 

provide answers to these questions. These techniques vary according to the types of 

conditions and interactions present in the inventory system. When the manager has 

relatively little or no uncertainty regarding the demand, order quantity decision systems 

prevail. Order quantity decisions answer the question of how large a replenishment 

quantity should be under rather stable conditions. When the manager recognizes the 

uncertain nature of the demand, additional factors have to be considered. These factors 

include deciding between lost sales versus backorders and continuous versus periodic 

review. Periodic review specifies the review interval, which is defined as the time that 

elapses between two consecutive moments at which the stock level is known. In 

continuous review systems, inventory level is always known.

This dissertation describes a situation where the inventory model contains 

dependent stochastic components in the demand and considers an order-up-to-level (s, S) 

control system, where s is the inventory level that triggers ordering and S  is the target 

inventory for a reorder action.
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5

1.3.2 Stochastic autocorrelated demand

The autocorrelation function of a random process describes the correlation between 

successive random observations of the process. Effects of autocorrelation have been 

extensively studied by the research community in a large variety of settings. In inventory 

models, autocorrelation components in demands, lead time, and a combination of the two 

have also been investigated (Johnson & Thompson, 1975; Ray, 1980; Ray, 1981; Ray, 

1982; Zinn, Marmorstein, & Chames, 1992; Marmorstein & Zinn, 1993; Chames, 

Marmorstein, & Zinn, 1995; Urban, 2000; Urban, 2005). These authors have presented 

significant evidence that autocorrelation has a significant impact when estimating 

inventory control parameters. Moreover, autocorrelated demand and service processes are 

critical features of modem failure-prone manufacturing systems (Bertsimas & 

Paschalidis, 2001). As a result, a diverse collection of techniques and considerations have 

been developed to mitigate the negative effect of this type of dependency in specific 

inventory settings. Presence of autocorrelation components in stochastic demand can be 

positive or negative. On the one hand, positive autocorrelation implies that if the current 

demand is above (or below) the expected demand, the next demand will also tend to be 

above (or below) the expected demand. In other words, demand exhibits runs of above 

and below average levels. On the other hand, although less frequently encountered, 

negative autocorrelation means that the current demand will be followed by a demand on 

the opposite side of the expected demand. Positive autocorrelated demands were reported 

in the work of Erkip and Hausman (1994), who examined the inventory/warehouse of a 

major national supplier of consumer products and discovered autocorrelations of about

0.7. More recently, Lee, So, and Tang (2000) analyzed the effects of grocery store
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6

weekly sales and found autocorrelations from 0.26 to 0.89. In the same work, they 

asserted that high serial correlated demand is observed in the electronics retail industry as 

well. Although negative autocorrelated demands have been reported as “extremely rare in 

practice” (Zinn et al., 1992), they have been found and studied. Examples of negative 

autocorrelated demand include the work of Magson (1979), in which spare parts are 

considered, and the work of Ray (1980), who analyzed actual monthly sales quantities of 

a specific product manufactured for the food industry with serial correlation of -0.33.

Nonetheless, dealing with autocorrelation components in inventory systems is 

very difficult and sometimes intractable due to complicated multivariate integration. 

Generally, stochastic inventory models assume that the random variables involved follow 

some specific continuous distribution with IID observations (Charnes et al., 1995). 

Considering and analyzing the effect of autocorrelations in the stochastic demand in 

continuous inventory control systems that consider lost sales is an open research 

question. In this sense, studying and analyzing the errors generated by models that ignore 

dependency benefits practitioners and the research community. Thus, a method that 

considers the complex multivariate component of the demand in an inventory system 

controlled by a continuous (s, S) review method and in the view of the lost sales case, 

while approximating near-optimal solutions, is the subject of this dissertation.

1.4 Filling the literature gap, research goals and questions

Sections 1.1 to 1.3 provided a brief overview in which a problem in the inventory control 

area is described. Specifically, considering a stochastic autocorrelated demand and the 

inventory setting described above, there exists some indication that there is an open 

research issue concerning the methods and techniques used to derive solutions to these
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problems. In this sense, an overview of the research questions related to this topic is 

presented in this section. Chapter 2 explores the literature review that substantiates the 

evidence of this research gap. Thus, in this section a general idea of the research goals, 

questions, and how this gap is filled is presented below.

The goal of this research is to investigate the effects of autocorrelation 

components on demands for a certain class of stochastic inventory problems. Thus, errors 

caused by ignoring the dependency components can be characterized. A simulation 

optimization technique capable of generating near-optimal solutions considering 

dependent autocorrelated input data is developed. This framework can be applied to a 

given complex inventory problem that presents certain characteristics as indicated in 

section 3.2. The motivations and potential benefits cited in section 1.2 resulted in the 

primary research questions of this dissertation. These research questions include: (1) To 

what extent can a method that allows handling and solving inventory models that pose 

autocorrelated demands be built using a simulation optimization approach? (2) To what 

extent is the difference between results obtained by stochastic inventory methods that 

assume IID demands and those that do not significant? (3) What is the structural effect of 

the dependency issue on the cost and the inventory control policy as the autocorrelation 

amplifies? (4) What is the behavior (characterization) and significance of the error 

generated between solution methods that assume IID demands and those that do not? (5) 

How can these results be validated?

From these questions, more focused objectives are developed and are used to 

guide this research effort. These objectives include:
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1. Developing sampling techniques that allow one to represent and generate 

autocorrelated and correlation-free sample input data.

2. Developing a simulation optimization heuristic in which near-optimal inventory 

policies and measure of performance can be determined considering autocorrelated 

components.

3. Analyzing and discussing the potential effects of autocorrelation factors in measuring 

performance and deriving near-optimal control inventory policies.

4. Characterizing the errors generated by those methods that ignore dependencies in a 

certain class of inventory problems.

5. Providing a validation mechanism to verify that the inventory policy obtained using 

the aforementioned heuristic corresponds to a near-optimal solution that considers 

dependency issues.

1.5 Research Approach Overview

The method used to characterize errors generated by dependency-ignoring methods 

consists of four fundamental parts that include: model formulation, dependency 

representation and sampling, simulation optimization technique, data generation, and 

error characterization. Each part is subdivided into sections that form the methodological 

framework of this research. Figure 1 summarizes the aforementioned strategy and its 

main components.
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This research presents a stochastic searching technique based on Markov Chain 

Monte Carlo3 (MCMC), namely, SA combined with PS and R&S to investigate the 

effects of autocorrelation components on a certain class of stochastic inventory problems.

When probabilistic distributions are intractable, MCMC overcomes this limitation 

by generating a sample sequence where each decision point has the desired distribution 

(Fishman, 2005). In this research, the impact of serially-correlated demand is investigated 

for discrete and continuous dependent input models. For the discrete dependent model, 

the autocorrelated demand is assumed to behave as a DMC, while an AR(1) process is 

assumed for describing the continuous demand.

To generate correlated and correlation-free demands for the DMC model, the 

transition and the invariant probability distribution were considered respectively. A set of 

transition probabilities was assumed for the DMC stationary model. From each transition 

matrix, autocorrelation components were quantified. By using well-known properties of 

stationary Markov chains, the invariant distribution, which represents the correlation-free 

case, was obtained. For the AR(1), demands were generated using a first-order 

autoregressive AR(1) process in which errors are distributed normally. The 

autocorrelation factor equal to zero represented the IID case, while autocorrelation factors 

other than zero represented the correlated case.

In the approach used in this research, the stochastic inventory problem with 

dependency is stated in terms of a stochastic DP formulation. The DP formulation allows 

one to represent and evaluate the objective function in terms of the multivariate 

component of the dependent demand.

3 Convergence properties are discussed on Fishman (2005)
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Figure 1 Overview of the Research Approach
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The process of searching for a near-optimal solution was based on the exploratory 

mechanics of SA. This probabilistic local search technique permits direct sampling of 

tractable and intractable probabilistic distributions. Furthermore, it estimates solutions to 

the objective function by randomly generating a location in the feasible space and 

applying randomized (SA) and deterministic (PS and R&S) rules to decide whether to 

move to a new location on the path to a solution. A combination of PS and R&S enhances 

the search process by deterministically proposing and evaluating additional locations and 

possible solutions distributed around the neighborhood of the proposed solution.

To investigate and compare the effects of serially-correlated demands in the 

inventory setting described above, eight experiments were designed in terms of varying 

cost factors. The average total costs of the system and the near-optimal (s ,S ) policy were 

defined as the response of each experiment. Main effects and two-way interaction per 

cost factor were determined. In addition, each experiment was evaluated in terms of the 

effect of the autocorrelation factor.

To test the significance of the difference between the correlated and correlation- 

free cases, ANOVA tests were conducted. To find the errors generated by dependency- 

ignoring methods in the average total costs and the (s , S ) policy, the absolute differences 

were calculated between the correlated and correlation-free cases as the autocorrelation 

component varied. Finally, the error characterization between the two cases was 

accomplished by applying regression analysis.

To validate and verify that the proposed algorithm produced near-optimal 

solutions, total costs, stockouts, and replenishment rates were analyzed.
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• An analysis and a suggested set of actions for dealing with autocorrelated 

components in the discrete and continuous stochastic demands from the inventory 

management perspective.

1.6 Dissertation Organization

This dissertation is organized as follows.

• Chapter 2. Background and Literature Review. In this section relevant 

research in inventory theory, dependence input modeling, and simulation 

optimization is presented.

• Chapter 3. Model. In this section, a detailed description and the considerations 

used to develop the stochastic inventory model are presented. It includes the 

stochastic DP formulation of the problem and the models and algorithms used to 

derive the correlated and correlation-free cases.

• Chapter 4. Method. In this chapter, a comprehensive description of the heuristic 

used to approximate solutions to the described problem is provided.

• Chapter 5. Numerical Analysis. The experimental design is discussed and 

presented. Experimental results obtained from applying the heuristic to the 

problem are presented and summarized.

• Chapter 6. Conclusions and Future Work. In this section, results are 

generalized, and managerial implications and conclusions are stated. In addition, 

future work to extend the present research effort is described.
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1.5 Contributions

This dissertation provides a methodological framework that identifies, characterizes, and 

analyzes the error generated by dependency-ignoring techniques in stochastic inventory 

problems that considers a lost sales case in a continuous review control system and 

presents serially correlated demands. While the particular application in this dissertation 

is inventory problems, the approach can also be applied to other stochastic problems in 

which the input probability distribution presents relevant autocorrelation components.

This research study not only builds upon the existing inventory and optimization 

literature, but also introduces methods and models not used before to solve complex 

inventory problems. Specifically, the primary contributions of the reported work include:

• A methodological framework capable of recognizing, analyzing, and 

approximating solutions to a certain class of inventory problems with 

autocorrelated demands.

• A novel stochastic local search technique, based on SA combined with PS and 

R&S, capable of deriving results for stochastic problems that present probability 

distributions that contain dependencies in their input data.

• A characterization of the bias generated by estimations obtained between methods 

that assume IID and those that consider structural dependency in a certain class of 

stochastic inventory problems.

• An experimental analysis of the effects of ignoring autocorrelated components on 

the demands of stochastic lost sales inventory problems.
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2 BACKGROUND AND LITERTATURE REVIEW

This chapter provides a review of past research relevant to this study. First, it considers 

an overview of the essentials of the inventory theory. Next, the models that consider 

stochastic demand and those that have considered autocorrelated demands in their 

formulation are presented. Then, available simulation optimization techniques to 

implement near-optimal solutions are provided.

2.1 Stochastic inventory models

Inventory models are representations that allow one to determine answers to the essential 

questions presented in section 1.3.1 that include when and how much of an item should 

be ordered and how often the inventory status should be determined.

Several factors influence the decision of using a specific model. Most critical 

factors include: the nature of the demand; the type of item (A-B-C)4 ; and the interaction 

with other areas. As indicated, in the stochastic settings, backlogging and periodicity of 

the review of the stock level determine the type of models to be considered. In this 

section, background information regarding inventory control whose demand is 

probabilistic is presented. First, the concept of backlogging is presented. Next, an idea of 

review control systems is offered. Afterward, relevant aspects of the Order-point and 

order-up-to level (s, S) system are provided.

4 A-B-C classification refers to a categorization o f items into three classes according to the dollar usage 
(Krajewski & Ritzman, 2004)
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2.1.1 Lost sales and related inventory costs

Consider an organization that supplies a single item and needs to make decisions about 

how many items to keep in inventory for each of n time periods. The number of periods 

for which the company would like to schedule its inventory is known as the planning 

horizon.

Dreyfus & Law (1977) defined the dynamic inventory system as a probabilistic 

inventory control model that poses certain specific features. The system is essentially 

characterized by:

• The demand for the item in period i denoted by Di .

• The probability that Dt - d  represented by p t ( d ) .

• The on-hand stock x, before the ordering period i .

• The amount of item ordered z, in time i , which arrives in i +A; A is the delivery lag;

• The amount of inventory on-hand and on order y, (inventory position) after ordering 

period i . Therefore, y, = x, + z ,. The amount of inventory on-hand w, , or safety 

stock, without including what is on order in period i after the order from period 

i -  A, z ^  has been delivered but before the demand occurs .

• wt is the real amount of inventory available to satisfy the demand in period i . If 

delivery lag A = 0 , then w, = y i .

Figure 2 illustrates the sequence of these events.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 6

*«

|----------------------- 1----------------------1----  Hold  1

/ Order z t y t =w,- Demand dt i+1

Figure 2 Inventory Events

Many authors have used similar representations to study inventory with 

backlogged assumptions. Several authors have emphasized the limited research available 

on lost sales inventory models (Feng & Suresh, 1999; Johansen & Hill, 2000; Toktay, 

Wein, & Zenios, 2000; Urban, 2005).

As indicated by Silver (1985), in most practical situations, one finds a 

combination of backlogging and lost sales cases. However, theoretical models provide 

reasonable approximations. Thus, both cases determine how the safety stock is 

configured. In this regard, in a period i when a stockout takes place, the value of the net 

stock, defined by what is on-hand less backorders, depends on the value that the 

backorder assumes. Thus, independently of the situation, when the demand is stochastic, 

there is a probability of stockout. Several authors have considered this situation and have 

researched different criteria to establish safety stock levels (Silver, 1985; Tersine, 1988; 

Banks, Carson, & Nelson, 1996; Bernard, 1999). Most popular criteria for establishing 

safety stock include the use of common factor such as using common time supply; the 

costing of shortages; introducing service level parameters; and the effect of disservice on 

future demand. Thus, in order to manage the opportunity costs of stockouts, firms must

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

maintain a level of safety stock that balances the loss of sales and customer goodwill 

(Zinnetal., 1992).

2.1.2 Review of the stock level: Continuous or periodic

The frequency of review of the stock level is one of the factors that defines the selection 

of determined control system. Moreover, if the stock level is always known, the system is 

categorized as continuous; if the stock level is reviewed at certain time intervals, the 

system can be classified as periodic. Silver (1985) summarizes advantages and 

disadvantages of both review systems indicating that periodic reviews allow coordination 

of replenishment, reasonable prediction of the workload to issue replenishment orders, 

and accurate prediction of spoilage in slow-moving perishable items. In a continuous 

review system, since orders may occur anytime, workload prediction is less accurate. 

Also, a continuous review model is considered more expensive in terms of updating costs 

and reviewing errors. This is true, since there are more transactions to record and, in case 

of errors, to review. Nonetheless, the major advantage of continuous over periodic review 

systems is that the former requires less safety stock to provide the same service level. 

Since the review systems are periodically monitored, the inventory system requires more 

safety stock as protection, since inventory levels may drop significantly between two 

consecutives periods.

Dreyfus and Law (1977) point out that there are three costs related to operating a 

given inventory system. Cost of ordering c, (z) include those costs of ordering z items in

period i and incurred at the time of delivery i + X . There is a holding cost ht, if net

inventory on-hand after demand has occurred or w, -  dj is higher than zero, thus
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hi(wi - d t). A Penalty cost, p(dt -  wt) and a minimal holding cost C(0) are incurred if 

there is a shortage. Other costs related to those where the length of a period is sufficiently 

long and the interest rate of the invested capital is sufficiently large include discount 

costs. In this dissertation discount factors are not considered. Details of the cost 

components will be explained in section 3.2.2.

2.1.3 The order-point, order-up-to-level (s, S) control system

As indicated by (Silver, 1985; Tersine, 1988; Banks et al., 1996; Bernard, 1999), the 

(5 , S ) control system is one of the most commonly found continuous stochastic control 

systems where replenishment is made whenever the inventory position drops to the order 

point s or lower. Furthermore, the replenishment quantity is variable and is used to raise 

the inventory position to the order-up-to-level S . Figure 3 depicts the behavior of a 

(s, S ) control system. Notice that inventory level is initialized at the maximum inventory 

level S. Then, the stochastic demand depletes the inventory until it reaches the reorder 

point s. An order Zj is placed up-to-S level. Then, the depleting cycle begins again.

Notice that before period 2, the inventory level reaches the reorder point and uses safety 

stock to satisfy the demand. If the demand exceeds the inventory level, the unfilled 

portion is not backlogged, but is lost.
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Inventory X(i)

S

s
0

21 i

Figure 3 Continuous inventory control system (s, S)

2.2 Inventory models and the autocorrelated demand

The autocorrelation function of a random process describes the correlation between the 

processes at different points in time. Consider dt as the value of the demand process at 

time i (where / may be an integer for a discrete-time process). For a discrete time series 

of length n {dl,d2,...,dn} with known mean and variance, an estimate of the 

autocorrelation may be expressed as

^  =  7— 7— t  Z  W  “  dt+i -  M)(n-k)cr  t i

where fj, is the mean, cr is the standard deviation, and k is the order process for 

any positive integer k < n. For example, if the autocorrelation is calculated for a first- 

order process, then k  = 1.

In essence, autocorrelation components may be present in a positive or negative 

fashion. On the one hand, positive autocorrelation implies that there is a sequence of unit
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times that the current demand is above the expected demand. As a result, variability of 

the demand increases systematically. On the other hand, negative autocorrelation means 

current demand above average in a time unit is followed by a demand that is below the 

average per time unit. An example of positive autocorrelated demand can be found in 

Erkip & Hausman (1994) where the effects of sales incentives for an item were 

considered in an actual multi-echelon inventory system of a major national producer and 

supplier of consumer products. In this regard, the sales incentive produced an increase in 

the current demand above the expected demand. Zinn et al. (1992) considered a positive 

autocorrelated demand for sweaters after a spell of cold weather that caused sales to be 

above average for several days. A negative serially correlated demand example can be 

found in Magson (1979) where the author describes a situation in ordering engineering 

spares that present highly negatively correlated monthly demands.

Figures 4, 5, and 6 show a set of IID, negative, and positive autocorrelation 

demands for an AR(1) process whose expected demand is 2,500 units, an error normally 

distributed mean 0, and standard distribution of 300 units or A(0,3002) .
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Figure 4. IID demand
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Figure 5. Negative Autocorrelated demand
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Figure 6. Positive Autocorrelated demand
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When autocorrelated demand exists, positive cases have been commonly found in 

inventory settings. As mentioned, negative autocorrelated demand, although theoretically 

possible and found in some cases (Magson, 1979; Ray, 1980), is considered to be 

extremely rare in practice (Zinn et al., 1992).

Early work in analyzing inventory demand that is not IID can be attributed to 

Veinott (1965) and Veinott & Wagner (1965). First, Veinott et al. (1965) considered a 

multi-period single product nonstationary review inventory problem in which the 

demands in different periods are independent but not necessarily identically distributed. 

Later, Veinott (1965) removed the independency assumption to provide conditions that 

ensured that the base stock ordering policy was optimal and that the base stock levels in 

each period were easy to calculate.

Later on, Johnson et al. (1975), based on Veinott (1965), proved optimal policies 

for stationary and nonstationary demand for an ARMA processes.

Ray (1980) studied the case of first-order autoregressive demand patterns and 

three different distributions of lead time. As a result, the author concluded that in the 

presence of the negative autocorrelation, assumptions of independence might lead to over 

provision of stock, in cases of positive autocorrelation the under provision will be very 

significant. Furthermore, the author stated that this condition worsens as the expected 

lead time increases. Later on, Ray (1981) derived a method for calculating the reorder 

level (ROL) of a stock control system when the demands are correlated and the lead time 

is random. In this sense, the proposed method requires determining the first four 

moments of the total demand in the lead time. Then, these moments are used to find 

approximate percentiles of the distribution. Finally, the author uses both of these to
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evaluate the ROL corresponding to a required service level. Afterwards, Ray (1982) 

considers the modifications required when the ARIMA model.

An, Fotopoulos, & Wang (1989) derived solutions for calculating reorder points 

(ROPs) of an inventory system based on the Pearson system. This system was derived 

from the exact first four moments of lead-time demand for an AR(1) and an MA(1) 

demand structure where the arbitrary lead-time is independent of the demand.

Zinn et al. (1992) analyzed the effect of autocorrelated demand on the level of 

customer service provided by a firm. They found that observed stockouts are appreciably 

more frequent and larger; the effect of autocorrelation on stockouts is directly related to 

the variability of customer demand and inversely related to the variability of lead time 

from suppliers. Thus, they quantified the effect of autocorrelated demand on stockouts. 

Later, Marmostein et al. (1993) investigated and found a relevant impact of the effect of 

autocorrelation on the safety stock required to achieve a managerially prescribed level of 

customer service. Thus, they quantified the conditional effect of autocorrelation on safety 

stock requirements.

Chames et al. (1995) considered a periodic-review inventory for deterministic 

lead times and a covariance-stationary stochastic demand process. They derived a method 

for setting the inventory safety stock to achieve an exact desired stockout probability 

when the autocovariance function for Gaussian demand is known.

Inderfurth (1995) demonstrated that serial and cross-correlation in demand 

product have contrary effects on the distribution of safety stocks over the manufacturing 

stages and that overlooking it can lead to significant divergence from the optimal buffer
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policy. He presented a procedure for integrated multilevel safety stock optimization that 

was applied to arbitrary serial and divergent systems.

Urban (2000) analyzed the effect of serially-correlated demand on the 

determination of appropriate reorder levels. The author argues that previous research has 

investigated this effect on the required levels of safety stock while ignoring its effect on 

the expected demand during lead time. In his paper, the author investigated the 

determination of accurate reorder levels for first-order autoregressive and moving 

average demand processes. Finally, the author concluded that experimentation indicates 

that existing approaches of managing serially-correlated demand can result in both 

excessive inventories and shortages for high levels of autocorrelation.

Urban (2005) developed a periodic-review model that considers two types of 

dependencies that influence the demand, serial correlation, and the amount of inventory 

displayed to the customer. As a result, the author developed a methodology based on an 

adaptive, base-stock policy founded on the critical fractile.

The methods described above are exact or bound approximations developed to 

provide solutions to the inventory problem. As a result, when faced by more complex 

situations, these methods contain restrictive assumptions. Thus, as recommended by 

Silver (1985), near-optimal methods can be used to solve these representations with a 

high probability of converging to reliable solutions. In the next section, the simulation 

heuristics for generating near-optimal solution are explored.
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2.3 Optimum-seeking Heuristic

This section is subdivided into two parts, dependence-input-modeling techniques and 

simulation optimization methods. In the dependence input modeling section, methods for 

constructing fully and partially specified joint distributions are provided. In the second 

part, an overview of simulation optimization is given while emphasizing in stochastic 

local search heuristics. Then, fundamentals for SA, PS, and R&S are presented.

2.3.1 Introduction

To illustrate the context of the optimum-seeking process, a summary of the work of 

Avriel (2003), Boyd Stephen & Vandenberghe Lieven, (2004), and Papalambros & Wilde 

(2000) is presented as follows.

In an optimization problem, one seeks to minimize or maximize a real function by 

choosing values of real or integer variables from an allowed set.

In general, a function /  is called an objective function from some set S , which

is generally a subset of the Euclidean space R " . This space is often limited by of a set of 

constraints. These constraints are usually expressed as equalities or inequalities that have 

to be satisfied. The elements of S are known as feasible solutions (candidate solutions). 

In a set of feasible solutions, an optimal solution is a solution that can minimize or 

maximize the objective function. When the feasible region or the objective function of 

the problem does not present convexity5, there may be several local minima and maxima. 

Most heuristics proposed for solving non-convex problems cannot make the distinction 

between local optimal solutions and global optimal solutions. The existence of

5 The feasibility solution space is said to form a convex set if  the line segment joining any two distinct 
feasible points also falls in the set (Taha, 2002).
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derivatives is not always assumed and many methods were devised for specific situations. 

The basic classes of optimization methods include combinatorial methods, derivative-free 

methods, first-order methods, and second-order methods. The most popular methods 

include: Linear programming, Integer programming, Stochastic programming, and

Dynamic programming. The most common methods that include those that do not 

assume the existence of derivatives are Gradient descent steepest descent or steepest 

ascent, Nelder-Mead method, and Interior point methods.

2.3.2 Dependence Input modeling 

2.3.2.1 Introduction

Biller et al. (2004) provide an overview of dependency modeling for stochastic 

simulation in which essential elements, along with associated techniques, are discussed. 

In the next paragraphs, a summary of basics and general approaches presented in their 

tutorial, along with additional references, is provided.

2.3.2.2 Essentials

• is a finite collection of d  random components in which each 

component has a distribution function in K .

• The joint or multivariate distribution is the random vector associated to a probability 

distribution in the .

• The joint cumulative distribution of a ^-dimensional random vector £ is defined as 

F(£') = p (% ^  % Y p(£\  ^  ^  O  for any flxed "-vector = (£ ,£ ,-> & ) ' •
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• The joint distribution determines the behavior of £ . It describes the distribution of 

its stochastic component, termed the marginal distributions. Also, it determines their 

stochastic relationships. If and only if the random variables of the joint (cumulative 

density function) CDF is the product of the marginal CDFs, they are identically 

independent; otherwise, they are dependent.

• The two most popular measures of dependency in input data include the product- 

moment correlation and the fractile correlation, whose sample analog is the Spearman 

or Rank correlation.

• The multivariate time series | j ,  where = l,2,...j is a joint distribution, can be

expressed in terms of the stochastic distributions of the individual stochastic variables 

of . This form relies on the concept of autocorrelation or the correlation between

observations contained by the series. Section 2.2 defines and describes the demand 

autocorrelation for an inventory model.

2.3.2.3 Dependence-input-modeling techniques

In general, techniques for dependence input modeling can be categorized into two 

families: those where the joint distribution function available (fully specified) and those 

where the distribution has been partially specified. The type of multivariate process that 

captures dependencies among a certain number of random variables is jointly called a 

random vector and is composed of independent samples of identically distributed 

stochastic vectors. The other type captures the temporal dependence that occurs over time 

and is conventionally analyzed as time series.
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In this dissertation, multivariate time series expressed as the autocorrelated 

demand in the inventory system is analyzed.

Biller et al. (2004) present a summary of common methods for constructing 

partially specified joint distributions, which are usually devised by providing the 

marginal distributions and their dependence measures. Thus, they assert that there are two 

main groups, those methods that are based on transformation-based univariate generation 

procedures and those that include mixture models. The Transformation Based Methods 

include ARTA, NORTA, and VARTA Processes, Chessboard Distributions, Vine Copula 

Method, and TES Processes. The Autoregressive-To-Anything (ARTA) processes 

designed by Cario (1996), define a time series with marginals via the transformation, 

where the base process is a stationary and Gaussian autoregressive of order with the 

representation. Normal-To-Anything (NORTA) is a related method for obtaining random 

vectors with arbitrary marginal distributions and its correlation matrix is described in 

Cario & Nelson (1997). The purpose is to transform a multivariate normal vector into the 

specified random vector. The NORTA method can be seen as expanding the ARTA 

process further than an ordinary marginal distribution. The VARTA framework created 

by Biller & Nelson (2003) integrate the theory behind the ARTA and NORTA processes. 

The reader is referred to the aforementioned authors to obtain detailed descriptions for 

such procedures.

The Chessboard Distributions, Vine Copula Method, TES Processes family can 

also be used to represent stochastic vectors with arbitrary marginals and a certain rank 

correlation values by component-wise transformations of the random vector. Ghosh & 

Henderson (2002) proposed a class of copulas called the chessboard distributions. Ghosh
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et al. (2002) showed that the constraints on the probabilities that ensure that a given 

function /  is a bivariate density function and matches a given rank correlation are 

linear. Melamed et al. (1992) described the Transfer-Expand-Sample (TES) as a sequence 

of serially-correlated uniforms generated using an autoregressive process to be used as a 

base process. The TES process can reach the full range of possible lag-1 serial 

correlations for a certain marginal distribution and can regularly match serial correlation 

factors at higher lags. Hill & Reilly (1994) provided mixture models where the essential 

idea was to mix the distributions that correspond to zero correlation and an extremal 

correlation.
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2.3.3 Simulation Optimization

2.3.3.1 Introduction

Tekin & Sabuncuoglu (2004) assert that a simulation model is typically a descriptive 

model of the system, i.e. it describes the behavior of the system under consideration, 

which assists in understanding the dynamics and complex interactions among the 

elements of a given system. They argued that simulation by itself lacks optimization 

capability. Simulation results have typically been replications with a set of observations, 

rather than an optimal solution to the problem. Optimal solutions are usually developed 

by prescriptive or normative models (i.e., linear programming, and dynamic 

programming). Thus, incorporating optimization features in simulation systems removes 

its major limitation and, therefore, makes it more a prescriptive tool. Since the problems 

that can be solved by simulation optimization vary in terms of the number and structure 

(i.e. discrete or continuous, quantitative or qualitative) of decision variables and shape of 

the response function, there is no single method to solve all of these problems. 

Consequently, researchers are forced to develop more robust techniques that can handle a 

larger class of problems. Figure 7 provides a classification scheme for simulation 

optimization from Tekin et al. (2004). In this representation, Tekin et al. (2004) 

distinguish two types of optimization methods categorized in terms of the response 

surface. Specifically, they stated local methods for unimodal surface and global search 

for multi-modal response surface. Notice, however, that many authors assume a different 

perspective when describing the optimum-seeking method. For example, Fishman (2005), 

Aarts et al. (2003), and Hoos et al. (2005) present optimization techniques expressed in 

terms of local and global moves throughout the decision space.
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Optimization Problems

Local Optimization Global Optimization

•Evolutionary Algorithms

•Tabu Search

•Simulated annealing

•Bayesian/sampling
algorithms

•Gradient Surface Method

•Ranking and Selection 

•Multiple Comparison 

•Ordinal Optimization 

•Random Search

Discrete Decision Space Continuous Decision Space 

•Response Surface
Methodology

•Finite Difference Estimates 

•Perturbation Analysis

•Frequency Domain
•Simplex/Complex
Search

•Single factor method

•Likelihood Ratio Estimates 

•Stochastic Approximation

•Hook-Jeeves Pattern 
Search

Figure 7 Simulation Optimization - Classification scheme (Tekin & Sabuncuoglu, 2004).

2.3.3.2 Searching techniques and stochastic local search

Combinatorial optimization is a branch of optimization that solves instances of problems 

that are believed to be hard in general by exploring the usually large solution space of 

these instances. Combinatorial optimization algorithms achieve this by reducing the 

effective size of the space and by exploring the space efficiently. Combinatorial 

optimization algorithms are typically concerned with problems that are NP-hard6. These 

problems involve finding groups or assignments of a discrete, finite set of objects that 

satisfy certain conditions or constraints. Combinations of these solution components form 

the potential solution. Thus, combinatorial problems can be regarded as optimization

6 NP-Hard (Nondeterministic Polynomial-time hard) which are known to be at least as hard as problems in 
NP." (Hoos & Stutzle, 2005) provided a brief discussion regarding NP-Hard and NP-complete problems.
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problems where solutions of a given instance are specified by a set of logical conditions. 

These solutions can be evaluated according to an optimal objective function whose goal 

can be to minimize or maximize a function value.

A well-accepted way of solving most optimization problems involves searching 

for solutions in the decision space of its candidate solutions. However, the set of 

candidate solutions for a given process is usually very vast. Thus, efficiently searching 

candidate solutions in a vast decision space becomes an issue. Hoos et al. (2005) 

summarize three common ways of dealing with NP-hard problems: (1) find a relevant 

subclass that can be solved efficiently; (2) use efficient approximation algorithms; (3) use 

stochastic approaches. They also added:

“for many problems where exponential time complexity is unavoidable, or 

even incomplete, can still be dramatically more efficient than others and 

hence make it feasible to solve the problem for practically interesting 

instance sizes. This is where heuristic guidance, combined with 

randomization and probabilistic decisions can make the difference.”

Based on these strategies and depending upon the degree of complexity of the 

problem, many authors have created or combined searching techniques to efficiently 

explore such decision space. The essential idea is to iteratively produce and evaluate 

candidate solutions in the terms of the objective function. The way in which candidate 

solutions are generated determines the searching technique. As a result, two fundamental 

approaches have been developed for searching algorithms, local search and global search 

(Aarts & Korts, 1989; Osman & Kelly, 1996; Fishman, 2005; Hoos et al., 2005). Global 

search techniques traverse the search space to eventually find a solution; local search
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starts at one location and moves to a new location and does not guarantee the optimal 

solution.

The searching mechanisms and the rules in generating and selecting candidate 

solutions are the two most important features that define local search techniques.

• The two main search mechanisms to explore the decision space include perturbative
n

or constructive searching (Hoos et al., 2005).

• Rules for generating or selecting candidate solutions can be deterministic, random, or 

a combination of the two. Stochastic rules can be subdivided into random- 

deterministic and random-random (Fishman, 2005).

Many well-known local search methods use random rules to generate or select 

candidate solutions for a given problem. These search methods are called stochastic local 

search (SLS) (Hoos et al., 2005). Typical SLS components include the search space, 

solution set, and neighborhood. In addition, an initialization and step function from the 

underlying process may exist. The evaluation function maps each search position in such 

a way that an optimum corresponding to the solution is determined. Often, the objective 

function is used as an evaluation function such that the values of the evaluation function 

correspond directly to the quantity to be optimized. Other components associated with

S » • •  • • • QSLS methods include dealings with local minima and intensification and diversification

7 Perturbative is referred to the process o f  transforming current candidate solution into a new one by 
modifying one or more o f  the corresponding solution component, which is perturbing a candidate solution 
on the search space. Constructive is referred to the task o f generating candidate solutions by iteratively 
extending partial candidates solutions, which can be formulated as search where the goal is to obtain a good 
candidate solution (Hoos et al., 2005).
8 Local minima are position in search space from which no single search step can achieve an improvement 
with the evaluation function (Fishman, 2005).
9 Intensification is referred to search strategies that aim to greedily improve solution quality or the chances 
of finding a solution in the near future by exploiting the guidance by the evaluation function.
Diversification strategies attempt to prevent search stagnation by making sure that the search process
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of the technique (Hoos et al., 2005). They categorized stochastic local search techniques 

in four groups: simple SLS, hybrid local search, population-based search, and 

evolutionary algorithms.

• Simple SLS. In a Simple SLS the step function is modified such that the search 

process can perform worsening steps that help it to escape from local minima. Simple 

SLS considers randomized and probabilistic improvement and techniques, including 

the hill-climbing algorithm, simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 

1983), simulated tempering (Marinari & Parisi, 1992), and stochastic tunneling 

(Wenzel & Hamacher, 1999). In dynamic local search techniques, the evaluation 

function is modified whenever local minima are found. This modification is 

performed in such a way that further improvement steps become possible by 

assigning penalty weights with individual solution components. Thus, the penalties of 

some solution components are increased. Techniques include guided local search by 

Voudouris & Tsang (1999).

• Hybrid SLS. Hybrid SLS methods refer to combinations of simpler SLS. These 

methods include iterated local search, greedy randomized adaptive search procedures, 

and adaptive iterated construction search. The hybrid SLS - Iterated local search 

techniques (Loureno, Martin, & Stutzle, 2003) combines procedures for local 

searching, perturbing, and accepting solutions. Iterated local search techniques 

include Large Step Markov chains (Martin, Otto, & Feltem, 1991), and Chained local 

search (Martin & Otto, 1996).

achieves a reasonable coverage when exploring the search space and does not get stuck in relatively 
confined regions that do not contain (sufficiently high-quality) solutions (Hoos et al., 2005).
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• Population-based SLS. These methods are characterized by simultaneously 

exploring potential solutions rather than one candidate per search step. Population- 

based SLS methods include the Ant colony optimization technique. The Ant colony 

optimization is based on aspects of the pheromone-based trial-following behavior. In 

essence, population agents indirectly communicate via distributed, dynamically 

changing information known as pheromone trails. These pheromone trails reflect the 

collective search experienced by the ants in their attempts to solve a given problem 

instance. In other words, the interaction among individual elements of potential 

solutions is through the indirect modification of a common memory (pheromone 

trails). Dorigo & Stutzl (2004) provide detailed metaheuristics for Ant colony 

optimization.

• Evolutionary algorithms. They transfer the principle of evolution through mutation, 

recombination, and selection of the fittest, which leads to the development of species 

that are better adapted for survival in a given environment to combinatorial 

optimization. They are iterative, population-based approaches that start with a set of 

candidate solutions and repeatedly apply a series of three genetic operators, namely 

selection, mutation, and recombination. Thus, the current population is replaced by a 

new set of candidate solutions are known as generations. Evolutionary algorithms 

include the entire family of genetic algorithms (Holland, 1975; Goldberg, 1989) and 

evolutionary strategies (Fogel, Owens, & Walsh, 1966; Schwefel, 1981). For 

discussion of evolutionary algorithms, the reader is referred to (Back, 1996).

In Table 1 the most popular local search approaches are compared (Aarts et al., 1989;

Aarts & Lenstra, 2003; Osman et al., 1996; Hoos et al., 2005).
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Heuristic Basic Description Advantage/Disadvantage Basic algorithm

SA

Annealing means to heat and then cool. Its search technique 
incorporates processes analogous to heating and cooling to 
coerce a sample path to converge to a solution in the optimal 
solution set. A good example includes an ingot, which is a 
solid block whose atoms have arranged themselves in a 
crystalline structure x with corresponding energy H(x) . 
Heating the ingot sufficiently converts it to a molten state, 
energizing its atoms (increasing H(x)) so that all possible 
crystalline configurations are equally likely. As the molten 
ingot cools, its atoms lose energy. If  cooling proceeds at a 
sufficiently slow rate, the atoms combine into a configuration 
that gives the solidified ingot its greatest structural strength. If 
cooled too rapidly, the atoms combine to a crystalline 
configuration x corresponding to one of the local minima in 
H(x) , leaving the solidified ingot with less structural 

strength.

• Successfully applied to a wide range of 
problems.

• Randomized nature enables asymptotic 
convergence to optimal solution.

• Easy to implement and capable o f handling 
almost any optimization problem.

• It is able to improve upon the relatively poor 
performance of local search by replacing the 
deterministic selection by probabilistic choices.

•  Theoretical knowledge makes a robust approach. 
Convergence has been easily proved by 
describing the ergodic properties o f the sample 
path.

•  Convergence typically requires exponential time, 
which implies high costs of running time.

• Determine initial candidate solution
• Set initial temperature according to annealing 

schedule
•  While termination condition is not satisfied:

- Probabilistically select a new neighbor
-If new neighbor satisfies probabilistic 
acceptance criterion (depending on the 
temperature): accept 

-Update temperature according to annealing 
schedule.
-Repeat.

Tabu Search

To escape from local minima, tabu search systematically uses 
memory for guiding the search process. The simplest method 
consists of an iterative improvement algorithm enhanced with 
a form of short-term memory that enables it to escape from 
local minima. It uses a best improvement strategy to select the 
best neighbor of the current candidate solution in each search 
step. It forbids steps to recently visited search positions by 
memorizing previous candidate solutions and ruling out any 
step that would lead back to these steps.

• It must be tailored to the details o f the problem.
• There is little theoretical knowledge that guides 

the tailoring process. No clean proof of 
convergence.

• Remarkable efficiency for many problems.

• Determine initial candidate solution
• While termination criteria is not satisfied: 

-Determine set o f non-tabu neighbors o f candidate 
solution
-Choose a best improving solution in the 
neighborhood
-Update tabu attributes based on new accepted 
solution.
-Repeat.

Genetic
Algorithm

Genetic algorithms are implemented as a simulation in which a 
population of abstract representations (called chromosomes) of 
candidate solutions to an optimization problem evolves toward 
better solutions. The evolution usually starts from a population 
of randomly generated individuals and occurs in generations. 
In each generation, the fitness of every individual in the 
population is evaluated; multiple individuals are stochastically 
selected from the current population (based on their fitness), 
and modified (recombined and possibly mutated) to form a 
new population. The new population is then used in the next 
iteration o f the algorithm.

• It can be intuitively understood.
• It may fail in finding satisfactory solutions.
• However, the algorithm combines two different 

strategies: a random search by mutation and a 
biased search by recombination o f the string 
contained in the population.

•  Determine initial population
•  Assign a fitness value to each string in the 

population
- Pick a pair o f  strings for breeding
- Put offspring produced in temporary population 
(mating pool)
-If the temporary population is not full, then repeat 
last step.
- Replace the current population with the temporary 
population and portion of the current population
- If the termination criterion is not met, repeat the 
fitness assignment process.

Table 1 Comparison of most popular local search techniques
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2.3.4 Fundamentals for Simulated annealing (SA), Pattern Search (PS), and 

Ranking and Selection (R&S)

This section provides an overview and basic elements of the heuristic used in this 

dissertation. The essential concepts and components of SA, PS, and R&S are provided. 

As a result, the foundations of the SAPSRS algorithm (named using the initials of each 

method) will be set down.

2.3.4.1 Simulated Annealing (SA)

Annealing is a search technique that incorporates processes analogous to heating and 

cooling to coerce a sample path to converge to a solution in the optimal solution set.

To conduct a search for a near-optimal solution, SA employs a specialized form 

of Hastings-Metroplis (HM) sampling (Fishman, 2005), which is a rejection sampling 

algorithm used to generate a sequence of samples. The HM sampling can generate 

samples from any probability distribution and requires only that a function proportional 

to the density can be calculated at the incumbent. The most frequently encountered form 

of SA states that a candidate solution depends on the previous state to generate a

proposed sample according to U < e~lH(yhH(xJ-lWT _ Thus, the assessment process evaluates 

a potential candidate solution in accordance with:

Iy if
x

lxy_j Otherwise

Where x j  is the previous state, y  is the potential candidate solution, T is a scheduled 

temperature, and x . is the accepted candidate solution.

Fishman (2005) summarizes the most essential components of SA as follows.
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2.3.4.1.1 Nominating candidate solutions

SA introduces the concept of nominating candidate solutions. Nominating candidate 

solutions is referred to as the process of randomly generating new states x . (candidate

solutions) in the decision space per iteration. In general, it frequently produces a new 

candidate solution xy in the neighborhood of the previous neighbor xH . When exploring

the decision spaces, at a given temperature T , small moves are more likely to be accepted 

than large ones if H(Xj ) is close to a minimum. Thus, convergence to a solution is more 

probable.

2.3.4.1.2 Cooling, terminating, and other components

As indicated previously, in SLS there is no guarantee of finding an optimal solution, 

regardless of the length of the sample path. However, by progressively reducing T , 

convergence can be accomplished. In SA this is achieved by the cooling process. Many 

studies have been devoted to analyzing and proposing cooling schedules that exploit and 

speed up the convergence properties.

In general, a large value of T increases the probability that x. = y  in the

acceptance function above. Conversely, small values of T decrease that probability. The 

temperature T influences the speed of convergence to equilibrium. Specifically, the 

speed of convergence tends to directly increase with an increase in T . A small T induces 

slow convergence to an equilibrium distribution concentrated in a small region in % that
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includes %mm. Overall, the cooling process in conventional SA is composed of four

components: initial temperature; temperature gradient; stage length; and stopping rule.

• The initial temperature is referred to when determining that T is large enough to 

initiate the searching process. One approach relies on the empirical acceptance rate 

computed from sample-path data. As T increases, the probability distribution 

becomes more uniform, and the acceptance rate increases. In other words, proposed 

candidate solutions have a high probability of being accepted due the large 

temperature.

• Temperature gradient is related to a variable quantity that describes in which direction 

and at what rate the temperature changes given a particular value. One practice for 

choosing rx,r2,... is the assignmentrk+l = a r k where 0 < a  < 1 and 0.80 < a  < 0.99.

• Stage length refers to the issue of how long sampling can be executed given a certain 

temperature. Since each successive lowering temperature leads to the convergence of 

a new equilibrium, lk should be taken so thatlk+l —lk < lk+2 ~lk+l, k  = 1,2,.... After the 

kth stage, an inspection of the sample path H(xlk+]),...,H(xlt) provides insights for 

assessing the adequacy of the warm-up interval lk+] -  lk.

• Stopping rule refers to the termination criteria for ending the SA process. Monitoring

the obtained sample path data H(xl),...,H(xlt) allows visualizing rules to stop the

sampling process. Some termination rules include: observing certain propensity to 

concentrate in a relatively small neighborhood (Kolinski & Skolnick, 1994); no 

change in the objective function value during a given number of stages (Aarts et al.,
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1989); and the number of acceptances having fallen below a specific value 

(Kirkpatrick et al., 1983).

In this dissertation, SA is used to stochastically generate, propose, and evaluate 

potential solutions throughout the search process. In addition, a eombination of the 

termination mechanism described above is used to stop the search process. For further 

information about SA, the reader is referred to (Davis, 1987; van Laarhoven & Aarts, 

1987; Otten & van Ginnenken, 1989; Aarts et al., 1989; Aarts et al., 2003; Pham & 

Karaboga, 2000).

2.3.4.2 Pattern Search (PS)

Pattern search is a direct search technique that considers the direct evaluation of objective 

function values and does not require the use of derivatives. As indicated by Sriver & 

Chrissis (2004), the basic idea is to explore the decision space using a finite set of 

directions defined per iteration. The step length parameter and the direction set define a 

mesh centered in relation to the current iterate (the candidate solution). From the mesh, 

test points are selected, assessed, and contrasted to the candidate solution in order to 

decide on the next iterate. If an enhancement is found in the resultant values of the 

objective function, the iteration is confirmed successful and the mesh is preserved. If no 

improvement is found, the mesh is redefined and a new set of candidate solutions is built. 

They assert that a critical aspect of generating the mesh is related to the direction set. 

This allows any vector creating from the incumbent to be shaped as a nonnegative linear 

combination. Lewis & Torczon (1996) provide more details of the direction set where a 

positive spanning set concept is defined. Thus, if the gradient of the objective function is
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nonzero, at least one component of the direction set is assumed to descent direction 

(Sriver & Chrissis, 2004). In Figure 8 , a candidate solution jc and the test points

{a,b,c,d} are shown in two dimensions with the search directions defined by the step 

length 8} .

a
A

xi

k

k .
W

—  J
Sj1f

c

Figure 8 Example of Pattern Search

Torczon (1997) formally asserted that to define a pattern two components are 

necessary: the basis matrix and the generating matrix. The basis matrix can be any 

nonsingular matrix A e R"*" while the generating matrix is Ck e Z n/p, where p  > 2 n . 

Thus, the generating matrix can be decomposed into the following components.

c , = [ f t  - f t  4 ]  =  [ T f .  4 ]

This requires that QK e Q c  Z"x" where Q is a finite set of nonsingular matrices. 

In addition, it requires that Lk e z n'/ ( p ~2n) and contains at least one column that can have 

zeros. Thus, Torczon (1997) defined a pattern PK by the columns of the matrix 

PK =ACk .

Since both the basis matrix A and the generating matrix CK have rank n , the 

columns of PK span R " . Then, the partition of the generating matrix CK can be used to 

partition PK as follows:
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PK =ACk =[AQK ~AQk ALk] = [AXk ALk\

Finally, the author defined a trial step s'k as:.

Sk ~ ^k^Ck

where c[represents a column of CK =^c\ ■■■ ck J, the component Ac 'kdetermines the 

direction of the step, 8k is the step length parameter at iteration k . Thus, considering a 

given incumbent xk, a trial point is simply defined as any point of the form:

K =xk +s‘k-

Proofs of convergence for this algorithm, commonly called coordinate search, can 

be found in Torczon (1997). In this dissertation, PS is used to deterministically generate 

the mesh according to a gradient (step-size) and a given set of rules. In addition, the 

coordinate search with fixed step lengths is considered for the PS piece of the SAPSRS 

procedure. Variations of this fundamental algorithmic strategy can be found under 

numerous names, including compass search, alternating directions, alternating variable 

search, axial relaxation, coordinate search, and local variation (Kolda, Lewis, & Torczon, 

2004).

2.3.4.3 Ranking and selection (R&S)

R&S was introduced by describing a problem in which the objective is to select the 

population containing the largest mean for some population statistic from a set of k 

normal populations (Bechhofer, Dunnett, & Sobel, 1954). This population was referred to 

as the “best” (Law & Kelton, 2000).
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When mean performance is investigated, the typical indifference zone (IZ) 

procedure is commonly used. Nelson, Swann, Goldsman, & Song (2001) summarize this 

IZ procedure as follows. First, for each alternative, obtain a number of observations of 

the performance measures of interest and calculate measures of variability of the 

observations. Next, based on the measure of variability, the numbers of options, and the 

desired confidence level, calculate the total number of observations required from each 

option to guarantee that a user-specified significant difference in performance can be 

revealed at the desired confidence level. Finally, obtain the prescribed number of 

additional observations from each option and decide on the one with the best 

performance (Nelson, Swann, Goldsman, & Song, 2001). Let n0 be the initial sample 

size, h a constant that depends on the number of alternatives A ,  1 - 0  be the desired 

confidence level, Sf be the sample variance of the n0 observations, and d" the practically

significant difference specified by the user. Then, the procedure provided by Rinott 

(1978a) defines the number of additional replications to compare performance measures 

and to reach a decision, assuming that the number of observations is independent and 

normally distributed, as given by:

f  h S ,  ' I

2 "

U *  J

Goldsman (1985) explored the use of standardized time series theory to determine 

variance estimators for R&S methodologies; the R&S problem was formulated as an 

multi-stage optimization problem in which clearly inferior designs are discarded in the 

earlier stages (Chen, 1995; Chen, Chen, & and Dai, 1996; Chen, Chen, and Dai, & 

Yucesan, 1997; Chen, Yuan, Chen, Yucesan, & Dai, 1998). A Bayesian analysis for
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selecting the best simulated system was provided by (Chick, 1997). A comparison 

between Bayesian and other approaches for selecting the best system was given by Inoue 

& Chick (1998). Chick and Inoue (1998) extended Chick’s (1997) work to the study of 

sampling costs and value of information arguments to improve the computational 

efficiency of identifying the best system. In this research study, IZ procedures are used.

In this dissertation, R&S is used to evaluate and select the best candidate solution 

amongst the proposed candidate generated by the PS step.

In this chapter, relevant work from the literature has been discussed and 

summarized. There are many differences between the methods traditionally used to solve 

inventory models and methods used in this research. In general, traditional methods lack 

the capability of incorporating and handling autocorrelated demand. This dissertation 

solves the stochastic inventory problem, where the control review system is continuous, 

the demand contains autocorrelated components, and the lost sales case is considered. 

The proposed simulation optimization method accounts for the randomness and 

dependency of the demand as well as the inherent constraint of the inventory model. 

Although some work has been done in stochastic inventory models that considers 

autocorrelated demands, none of the research considered a continuous review model with 

DMC and AR(1) demand process along with the lost sales case. This dissertation 

considers these situations and provides a validated method to solve them.
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3 THE INVENTORY MODEL

3.1 Introduction

In this chapter, a mathematical representation of the stochastic inventory model that 

presents autocorrelated components is provided. This mathematical model is based on the 

continuous review control policy (s,S) and the lost sales case. In addition, the sampling 

mechanisms to represent and obtain the discrete and continuous probability distribution 

are presented.

3.2 Mathematical model

3.2.1 Introduction

In this subsection, the mathematical model is described. First the general assumptions are 

stated. Then, the problem is formulated as DP characterization. Finally, the DP 

formulation that deals with discrete and continuous random variables is presented.

3.2.2 Assumptions

Consider an inventory problem over an infinite horizon, where

1. Each application involves a single item.

2. The inventory level is under continuous review, so its current value is always known.

3. A (s ,S ) policy is used. As a result, the only decision to be made is to choose s 

an d S .

4. The demand for withdrawing units from inventory to sell them is uncertain t, . The 

probability distribution for the continuous case is known to be first-order 

autoregressive AR(1) while in the discrete case it is Markovian-modulated according 

to a given transitional probability p tj.
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5. If a stockout occurs before the order is received, the excess of demand is lost. In other 

words, given a certain demand, demand is partially covered with existing inventory 

while the unfilled portion is lost.

6. Since transportation can be assumed to be provided by the same company, i.e. in a 

grocery company that provides the item, no setup cost is incurred each time that an 

order is placed.

7. The cost of the order c is proportional to the order quantity z ,.

8. No discount costs are considered.

9. A certain holding cost h is incurred for each unit in inventory per unit time.

10. When a stockout occurs, a certain shortage cost /?is incurred for each unit lost per 

unit time. In addition, a minimal holding cost C(0)is incurred every time that the 

system reaches the zero level.

11. Replenishment occurs immediately.

12. Demand occurs instantaneously at the start of the period immediately after the order 

is received.

13. Setup costs are assumed only for the model that considers AR(1) demands.

3.2.3 Deterministic formulation

In general, finding a solution to the problem can be formulated as solving a DP model 

where the minimization of the total expected cost is given by the interaction generated by 

the demand component over the ordering, shortage, and holding costs. The deterministic 

formulation assumes that the demand values are known. In the next section, this 

assumption is relaxed, allowing the component demand to be unknown but described
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according to a probabilistic distribution. The deterministic formulation is presented as 

follows.

The model determines the optimal value of order quantity y  that minimizes the 

sum of the expected purchasing c, holding h,  and shortage costs p  plus an 

administrative cost associated to operating the inventory system without any item C(0). 

In general, given the demand Z) for period i and the optimal y  (= y ) , the inventory 

policy calls for ordering y  -  x if x> y ;  otherwise, no order is placed.

In terms of the (s , S) control policy, the constraints presented in (2) -  (8) shape 

the course of actions in evaluating the objective function where s indicates the inventory 

level that triggers ordering, and S  is the target inventory for a reorder action, and CR

(1)

subject to

S -  xi If x, < s
0 Elsewhere (2)

if  (y,_ A ) -  o 
If (A “ T, ) -  o

(3)

Pr(y, < 0) > Critical Ratio (4)

5 > 1,000 (5)

S  <7,000 (6)

S > l . \ 0 s (7)

D>  0 (8)
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represents the critical ratio as a constraint for calculating the required service level (see 

section 3.2.5.3).

3.2.4 Formulating the problem as a Dynamic Programming model

A policy is a rule that specifies which action to take at each point in time. In general, the 

decisions specified by a policy depend on the current state of the system. A policy is 

defined as a function that assigns an action to each state, independent of previous states, 

previous actions, and a given time. In the dynamic programming framework, it is a policy 

that is independent of time. The DP formulation of an inventory problem allows one to 

iteratively find solutions that improve the optimal policy search process. It can capture 

the simulation optimization process and allows a flexible representation of the various 

elements that compose the inventory formulation. For example, DP incorporates the 

penalization constraint in its recursive equation. In the stochastic case, it allows an 

intuitive representation of both discrete and continuous random parameters. For these 

reasons, many authors prefer to formulate their inventory models using DP formulations.

In this research study, the stochastic lost sales inventory problem is formulated as 

a DP problem. In the following paragraphs, the deterministic and stochastic formulations 

are presented in detail.

3.2.5 Detailed DP formulations

The amount of inventory to acquire depends on the probability distribution of demand D . 

A balance is needed between the risk of being short, and thereby incurring shortage costs, 

and the risk of having an excess, thereby incurring the wasted costs of ordering and 

holding excess units (Hillier et al., 2001). This is accomplished by minimizing the
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expected value of the sum of these costs. As a result, from Equations (1) -  (8), in terms of

DP, the cost incurred if the demand is D is given by

C(D,,y ,) = c(y, - x , )  + p max{0,D, ~y,) + h max {0,y, - Dj} (9)

Since the demand is a stochastic variable with probability distribution PD (d ) , the 

cost is also a stochastic variable. As a result, the expected cost variable for a single period 

is given and represented by C(y) as follows.

00

C(y,) = E[C(D, ,y ,)] = £ (c(y, - x t) + p max{0,d , - y , }  + h max{0,y, - d,}PD(d,)) (10)
d=0

C(y,)= E[C(D„y,)] = c (y , -x , )  + f lp(,dl - y , ) P M )  + f , H y , (H )
d=0 d

The function C(y) depends upon the probability distribution of d . Normally, a 

representation of this probability distribution is difficult to find (Hillier et al., 2001; Taha, 

2002). Thus, for the continuous random variable D , let 

(pCD (£): probability density function of the stochastic demand 

0(<a) : cumulative distribution function of the demand (CDF)

a

So,
0

For the discrete random variable D , let

(pDD (£): probability mass function of the stochastic demand

O(a) : cumulative mass function of the demand (CMF)

0
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Thus, the optimal service level is obtained by minimizing the CDF/CMF of C{y) 

in the continuous and discrete cases respectively. This value can be found either by 

solving its mathematical expression or by finding the area under the curve by simulation 

optimization. In this research, the simulation optimization approach is used to 

approximate the CDF/CMF function.

3.2.5.1 Continuous formulation case

The CDF is the probability that a shortage will not occur before the period ends. This 

probability is referred to as the service level being provided by the order quantity. Thus,

the corresponding expected cost is given by:

00

C(y,) = E(C(D„y,)) = f c ^ . y , ) ^ , ) ^  (12)
y,

CO
C(yl) = E(C(Di, y i)) = j(c(y,  - x ,  ) + (/>(£ - J , )  + c(0))m ax{0,£ -  y,)  + hmax{0, y , - Q < p CD(^)d^  (13)

y,

oo yt

C(y,) = ciy, -  x,) + jOK£, - y ,) + c(0))f e ( £ +  \h(y, - 4 , ( £ ) < / £  (14)
y, 0

3.2.5.2 Discrete formulation case

Accordingly, the CMF represents the probability that a shortage will not occur before the 

period ends in the discrete case where discrete demands can take place. It is expressed as 

follows.

/(* ,)  = Minŷ x
#=0

(15)

3.2.5.3 Service level based on critical ratio

Service level in the constraints can be expressed in many different ways. It can be 

formulated either by minimizing the ordering cost subject to satisfying some customer
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service-level criterion or by assuming a penalty cost for each stockout and unsatisfied 

demand (Silver, 1985). In this research study, the penalty costs assumption is considered 

and is defined by Treharne & Sox (2002):

h*CR
p =  (16)

(1-CK)

When the holding cost is held constant at h -1  and the penalty cost is calculated to 

match the critical ratio CR ,a  CR close to 1 indicates a high penalty cost or a high service 

level. In essence, the function of the penalty criterion is defined in such a way that at the 

end of every period, the net inventory will be not negative. For a discussion of different 

service constraints, the reader is referred to (Silver, 1985).

3.3 Modeling autocorrelated demand

In this section, specific probabilistic representations of autocorrelated data in the forms of 

DMC and AR(1) processes are presented. Further, an arbitrary Markovian-modulated 

demand and specific parameters for the first-order autoregressive AR(1) is given. 

Sampling algorithms for both cases are also provided.

3.3.1 Generating discrete Markov-modulated demand

A DMC is a model that allows the representation of discrete values according to a 

transition and invariant probability distributions. Markov-modulated demand modeling is 

a popular method for representing demands. Many applications have used it in 

acquisition sequences analysis (Prinzie & Van den Poel, 2006), in describing priority 

demands (Cohen, Kleindorfer, & Lee, 1988), and in considering the effects of promotions 

in a periodic inventory model. (Cheng & Sethi, 1999).
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In this research, a DMC demand is considered to describe the discrete case of the 

stochastic demand where autocorrelations can be modeled from the transition probability 

matrix. From this matrix and by using well-known properties of Markov chains, the 

stationary (invariant) distribution is derived. This stationary distribution is commonly 

referred to as the correlation-free case. Thus, for each given transitional distribution 

matrix that represents the autocorrelated case, invariant distributions are derived.

3.3.1.1 Transition probability matrix

Consider the inventory formulation from section 3.2.5.2 where four types of arbitrary 

discrete demands can occur and be represented according to a given transition probability 

matrix as illustrated in Figures 9 and 10 respectively.

Pro

Figure 9 Transition probability graphical representation

1 0  0 0

= P\ 0 *12 0 °

V 0 *21 *23  0
0 0 0 1

Figure 10 Matrix 1- Probabilistic transition distribution
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In this stationary case, the inventory demand can be represented according to the 

aforementioned arbitrary transitional probability distribution. The form of this transitional 

probability expresses the degree of autocorrelation among their states. Basawa (1972) 

studied the asymptotic behavior of estimating autocorrelation in a simple Markov chain. 

In this research study, serial correlation is calculated using the traditional form provided 

in section 2.2. This autocorrelation is determined from the given DMC and according to 

different combinations of the values presented in the transitional probabilities.

3.3.1.2 Deriving invariant probability distribution

The transition probability of a given Markov Chain is presented as a way to represent 

serially-correlated demand. However, as indicated previously, in order to analyze 

whether ignoring dependency has an effect on estimating the minimal costs and the (y S) 

policy, the correlation-free representation of the DMC must be derived. The stationary 

distribution is obtained from the transition probability matrix and by using common 

properties of ergodic10 Markov chains. The reader is referred to Durret (1999), who 

provides a succinct discussion of these concepts and properties.

Consider

(18)

(19)

10 For a succinct discussion o f ergodicity (Behrends, 2000)
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7T0 =  0 +  x xp x 0 +0 + 0 

A = A A l + 0  + A A l + 0  

A  = 0  + ^ ,A 2 + 0  + ^ 3 2  
^ ■ 3 = 0  +  0  +  x 2p 22 +  0

(20)

TTq +  TTj +  7t2 +  TTj — 1 (21)

A i = 1 

A o + A 2 =1 (22)
A l + A s  =1 

A 2 = l

Assuming p l2 = p 21 = 0.1, p l0 = p 23 = 0.9, and p0l = p 32 = 1 , then 

A  = P i 0

K \ = A A l  + A A l  (23)

A = ( A A o ) A i + A A i

Assuming that p 10 = 0.9 and Ai = 1 > then

A = ( l-0 .9 )  = 7r2/?2i

Considering that

A i  = 1 — P23 1 A  ~ A  A3and
/?21 =1 — 0.9 = 1 ;r3 = 0.9;r2

Substituting

(25)
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then

1 =  * o /> 01  +  n \ ( A o  +  Pn  )  +  n 2 (Pjl ~ P 2 3  ) +  ^ 3 2  

1 = x 0p ol + nx (pxo + p n ) +  nx (p2l + P 23) +  n3p 32

l = XoPoi+2xx+X3Pn 

2n\ — 1— n0p 0\ — it3p 32 

2nx = 1 - n x- n 2p 2x - 0.9n 2 

2nx= \ - n x + 0. \kx -  0,9nx

' ■ - n  (26)

By following this method, the next invariant distribution values, shown in Tables 2 and 3 

were obtained.
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Transition Probabilities
Pn = Pn 0.1 0.2 0.3 0.4

P  23 = P l  0 0.9 0.8 0.7 0.6
Invariant Probabilities

Individual Cumulative Individual Cumulative Individual Cumulative Individual Cumulative

^ 0 0.237 0.222 0.206 0.188

X\ 0.263 0.500 0.278 0.500 0.294 0.500 0.313 0.500

n 2 0.263 0.763 0.278 0.778 0.294 0.794 0.313 0.813

^ 3 0.237 1.000 0.222 1.000 0.206 1.000 0.188 1.000

Table 2 Invariant distribution values derived from given Transition probability distribution values. Part I: p12=0.1-0.4.

Transition Probabilities

Pn  =  Pn 0.5 0.6 0.7 0.8 0.9

P 2 3  = Pn 0.5 0.4 0.3 0.2 0.1
Invariant Probabilities

Individual Cumulative Individual Cumulative Individual Cumulative Individual Cumulative Individual Cumulative

* 0 0.167 0.143 0.115 0.083 0.045
Kx 0.333 0.500 0.357 0.500 0.385 0.500 0.417 0.500 0.455 0.500
7T2 0.333 0.833 0.357 0.857 0.385 0.885 0.417 0.917 0.455 0.955

^ 3 0.167 1 . 0 0 0 0.143 1 . 0 0 0 0.115 1 . 0 0 0 0.083 1 . 0 0 0 0.045 1 . 0 0 0

Table 3 Invariant distribution values derived from given Transition probability distribution values. Part II: pi2=0.5-0.9.



57

3.3.1.3 Algorithm to generate correlation-free DMC

The following algorithm generates stationary time series demand given the values of the 

invariant probability distribution nD and discrete demand .

Given the values of the number of period i , the invariant probability distribution nD , 

and the discrete values of the stochastic demand = {a,b,c,d}.

1. Initialization: Generate arbitrary <— from i;D = {a, b, c, d)

2. Generate n  from a uniform distribution.

3. Generate new according to:

a for [0, zr0)
b for [7r0, n a + n x)
c for [tj:0 + n x, + n x + n 2)
d  elsewhere

4. Repeat steps 2 and 3 until a given number of iteration i is completed.

Since the probability of a PMF has to add up to one, the unit interval [0,1] can be 

divided into subintervals with widths equal to the individual values given by the PMF. In 

this case the subintervals can be generalized as [0, zr0) , [zr0, zr0 + 7tx) ,

[k0 +nx,7r0+7tx+K2), [K0+Trx+k2,X\- These values are shown in Tables 2 and 3 where 

both the individual and cumulative probabilities are presented. When a random number 

U is generated from a uniform distribution, it will be uniformly distributed over the 

interval [0,l ] . As a result, when C/[0,l] is generated, it will fall in the first subinterval

with probability 7t0 -  0 = 7t0, in the second subinterval with probability tv0 + nx -  = k x,
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in the third subinterval with probability n0 + nx + 7t2 -  -  n x = n2, and in the fourth

1 — 7Tq +  T̂j +  712 =  ^ 3  •

To illustrate the workings of sampling the correlation-free DMC, consider the
§

case from Table 2 when p 23 = p lQ = 0.6. The probability mass function (PMF) was 

derived according equations (18) -  (26), so the PMF took the form of:

p(Z = Z) =

0.188 for £ = * = 1,000
0.313 for £ = £> = 2,000
0.313 for 4 = b = 3,000
0.188 for £ = c = 4,000

Once again, because the probabilities of PMF have to add up to 1 and subdividing 

the unit interval into subintervals using the values of PMF, the obtained subintervals are: 

[0,0.188),[0.188,0.5),[0.5,0.813),[0.813,l ] . Thus, when a £/[0,l] is generated, it will

fall in the first subinterval with probability 0.188-0=0.188, second subinterval with 

probability 0.5-0.188 = 0.313, third subinterval with probability 0.813-0.5 = 0.313, and in 

the fourth subinterval with probability 1 - 0.813 = 0.188.

3.3.1.4 Algorithm to generate correlated DMC Demand

The following algorithm generates stationary time series demand given the values of the 

transition probability distribution p{j and discrete stochastic demand £  .

Given the values of the number of period i , the transition probability distribution p  ,

and the discrete values of the stochastic demand = {a,b,c,d} ,

Initialization: Generate arbitrary £M <— £  from ={a,b,c,d}
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1. Generate p  from a uniform distribution.

2. Generate new £(. according to:

a. If = a then J;i =b;

fa for [0, p M)
b. If = b , then j

c elsewhere

u p  <h p \b for t0’p ^c. If t ,  = c , then E, -  \
I d  elsewhere

d. If E-i -  d  then £, = c ;

4. Repeat steps 2 and 3 until a given number of periods i are completed.

Similar to the rationale of DMC stationary distribution sampling, the transition 

distribution sampling uses the concept of generating £/[0,l] from a uniform distribution

and dividing the unit interval [0,1] into subintervals with widths equal to the individual

values given by the probability mass function. However, given the transitional matrix, the 

associated probabilities to a known state conforms its PMF. Indeed, per each state this 

PMF adds up to one. In other words, depending on the current state there are a given 

number of probabilities that add up to one and are assumed to be the PMF. These 

probabilities are shown in Tables 2 and 3.

To illustrate the mechanics of this algorithm, consider the case that the current 

state is b -  2,000 . Given the transition structure used in section 3.3.1.1, the future state is

either a or c with associated probabilities of pba = 0.6 and pbc = 0.4 respectively. Then, 

the subintervals are [0, p ba) and [pha,\]■ In other words, for the selected example,
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[0,0.6) and [0.6,1]. As a result, when t/[0 ,l] is generated, it will fall in the first

subinterval with probability 0.6 -  0 = 0.6 and in the second subinterval with probability 

1-0.6 = 0.4.

3.3.2 Generating Autoregressive AR (1) demand

3.3.2.1 Introduction

An autoregressive AR(1) model is a representation that allows one to model continuous 

demand. AR(1) has been used by most authors that have considered autocorrelated 

components in the demand (Ray, 1980; Ray, 1981; Erkip & Hausman, 1994; Inderfurth, 

1995; Lee, So, & Tang, 2000; Urban, 2000; Urban, 2005). Based on real data, these 

authors argue that AR(1) is representative of the autocorrelated process exhibited in a 

certain class of serially-correlated demand streams.

The autoregressive order-1 AR(1) considers a sequence of identically distributed, 

but autocorrelated data (Banks et al., 1996).

+ i~M) + et (27)

For i - 1,2,..., where s j are IID with p  -  0 and variance c r , and -1 < <j> < 1.

The autocorrelation takes the form of:

Ph = corr(£t, £i+h ) = p h , while ph = (j)h (28)

Estimation of the parameter </> is given by the fact that ( j ) -px-  corr(dn dM)the lag-1 

autocorrelation; as result the lag-1 correlation is given by the autocovariance.
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cov(£, 4 , )  = J -  £  (4, -  £[<?])«„, -  £ [ f  ]) (29)
« - l t r

if  m i = o,

I  cov(£ ,£+1) (30)

Finally, // and variance er2 are given by // = £ and er2 = <r2( l - ^ 2) respectively 

The next algorithm presents a method of sampling from a given AR(1) distribution 

(Banks et al., 1996):

3.3.2.2 Algorithm to generate stationary AR(1)

Given the values of the parameter autocorrelation^, the m ean//, and variance of the 

error a ] .

1. Generate the stochastic ei from the normal distribution with mean 0 and cr2.

2. Set £  = / /  + 0(£._1 - / / )  + £,.

3. Set / = / +1 and go to 2

Where the error sj is assumed to be normally distributed. The algorithm used to generate 

normally distributed observations was the Polar method taken from Law et al. (2000).
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4 METHOD

4.1 Introduction

This chapter provides a description of a methodology for solving the stochastic inventory 

problem introduced in Chapter 3. First, preliminaries for the SAPSRS methodology are 

provided. Then, details of the SAPSRS based methodology that is used for solving the 

stochastic inventory problem are presented. Recall that SA is one of the most widely 

used probabilistic heuristics for approximating solutions to complex problems. Once a 

potential candidate is proposed by SA, PS and R&S executes a near-neighborhood 

exploration. Benefits of exploring a near-neighborhood can be two-fold: a. Obtaining and 

evaluating candidate solutions that may report a better performance, and b. Improving the 

process of avoiding local minima. By using PS, one can deterministically define 

additional candidate solutions. R&S is used as a statistical method to evaluate and select 

the best performance from a pool of potential candidate solutions.

4.2 Preliminaries

Consider the following optimization problem

min / ( £ )  (31)

s.t. £ e E (32)

where / ( £ )  = £[vP(^,<y)] is the expected value of the system performance measure 

estimated by / ( £ ) ,  which is obtained from j  sample performance T  •(£,») of a 

simulation model observed under an instance of discrete or continuous feasible input
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parameters £ constrained within a set of feasible S e M 1'.  a  is a vector of random 

elements that represents the stochastic effects of the system.

The complexity in this problem is that / ( £ )  is an implicit function of the decision 

parameters in which an observation of the random variable can only be obtained by 

simulation. As a result, the simulation model is considered as a black-box process, which 

takes an input vector £ and produces the output response ¥ (£ , co) . In the research 

community, a vast number of search methods that uses black-box simulation are 

available. Among these approaches, one can find combinatorial optimization techniques.

In this dissertation, a new iterative method for simulation optimization based on 

SA, PS, and R&S is presented. The method combines SA, to randomly generate and 

accept potential candidate solutions, with PS, to systematically explore the candidate 

solutions neighborhood, and R&S, to select the best of the proposed neighbors. This 

method resembles simulated tempering (Marinari et al., 1992) in the sense that once a 

candidate solution is obtained, it executes another exploration of its neighborhood with 

an additional iteration. A similar work that combines SA and R&S was developed by 

Ahmed & Alkhamis (2002) in which the neighborhood exploration is performed 

according to a customized function. The R&S method used in their simulation 

optimization algorithm is based on Dudewicz and Dalai’s technique (Law et al., 2000).
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4.3 The Heuristic

4.3.1 Approximating solutions by using the SAPSRS algorithm

Whereas SA candidate solutions are simply accepted or rejected according to an 

evaluation function in each iteration, SAPSRS explores and evaluates the neighborhood 

of an accepted solution. In this regard, SAPSRS incorporates statistical knowledge of the 

response of generated candidate solutions and their associated neighbors by including 

Patten Search combined with Ranking and Selection.

Fundamentally, SA consists of two steps. The first step randomly produces a 

candidate solution in the decision space. The second step randomly chooses to accept the 

nominated location. SAPSRS adds two additional steps. Given the selected candidate 

solution at the end of the second step, the third deterministically produces and assesses 

the candidate’s neighbors using a pattern search procedure. The fourth step picks the best 

candidate solution by using a Ranking and Selection procedure.

While solutions generated by SA can be trapped in a local minimum, SAPSRS 

increases the probability of an escape from it. As in simulated tempering algorithms 

(Marinari et al., 1992; Fishman, 2005), by generating additional neighbors to potentially 

accepted candidate solutions, SAPSRS generates a sample path that presents more 

variations and accuracy than using traditional SA alone. In addition, by including R&S 

as an evaluation tool, the probability of selecting the best candidate solution, considering 

the inherent randomness of the observed demand, is guaranteed.
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4.3.2 The SAPSRS Algorithm

The proposed approach integrates PS and R&S in a typical SA procedure to enhance the 

quality of obtained candidate solutions. A detailed description of each step is provided in 

the following paragraphs.

As in traditional SA, an initial experimentation can be performed to obtain the 

maximum temperature parameter that maximizes a given acceptance function. At the 

same time, stage length, temperature gradient, number of stages, and parameters for the 

IZ procedure must be provided.

The algorithm initiates the SA step whereby the procedure randomly samples a 

probability distribution and a uniform distribution to proceed with an evaluation step. The 

evaluation step consists of accepting or rejecting a candidate solution. The assessment 

function is reliant on the theory of the Boltzmann probability density function in which 

for every high temperature, each candidate solution (state) has an equal probability of 

being the current state while for low temperature values, only states with low energies 

have a high probability of being the current state. In other words, if the temperature is 

high enough, acceptance of candidate solutions is high and if the temperature is low, 

acceptance is low. Up to this point, traditional SA would basically accept or reject a 

proposed state (nominated candidate solution) and a new iteration would take place. 

However, in this procedure, after a candidate solution is probabilistically accepted, the 

evaluation process is refined by an extended procedure whose goal is to explore and 

evaluate the nearest-neighborhood of the potential candidate solution.

The PS step deterministically generates a given number of neighbors, producing a 

mesh that is composed of test points that pose a distance of step length 8  from the
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potential candidate solution. These neighbors have a response mean sufficiently close to 

the response mean of the candidate solution. Subsequently, a R&S step is used to 

evaluate such neighbors. In this sense, the response of each point is initially evaluated 

according a given n0 sample size. In addition, a measure of variability per test point is

obtained. The number of additional replications AT is then calculated. As a result, each 

test point is replicated and responses are determined. Finally, the batched mean of each 

response is sorted. The candidate solution with the lowest response is assumed to be the 

best.

Because SAPSRS swap between displacement and temperature, the induced 

Markov chain is not reversible. Nonetheless, adjusting the algorithm to include the 

scheme: temperature, displacement, temperature, displacement, etc. would ensure 

reversibility. Thus, as in simulated tempering, the reversibility can facilitate the analysis 

of convergence. The setup for SAPSRS is greater than for SA, requiring the user to also 

specify the step-size and indifferent zone parameters.

As indicated in section 4.2. (Ahmed & Alkhamis, 2002) used SA combined with 

R&S. However, the main differences between SAPSR&S and SARS (Ahmed et al., 

2002) are how each algorithm generates and evaluates candidate solutions. In SARS, a 

candidate solution is generated from an accepted solution (incumbent) and according to 

certain specific function. Then, measures of performance based on R&S are obtained for 

both the incumbent and a candidate solution. Notice that since R&S is applied, the 

obtained measures inherently contain user-specified IZ parameters (Dudewicz & Dalai, 

1975). Finally, these measures are used to accept or reject such a candidate solution based 

on the Boltzmann probability distribution. In contrast, in the SAPSRS algorithm, at each
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iteration, candidate solutions are generated in two ways: randomly and deterministically. 

First, as traditional SA, a candidate solution is selected uniformly at random, and then 

pre-accepted according to Metropolis condition (see section 2.3.4.1). Next, the 

neighborhood of the pre-accepted candidate solution (incumbent) is systemically 

explored by generating a finite set of neighbors using a Pattern Search algorithm. Finally, 

both the incumbent and neighbors are evaluated using the IZ procedure by Rinott 

(1978b). Thus, the best candidate solution is obtained from the alternative set presented 

during the neighborhood exploration. In summary, SARS uses R&S to improve the 

quality of the measures of performance to be evaluated by SA, while SAPSRS improves 

candidate solutions obtained from applying traditional SA by using a PS and R&S step.
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SAPSRS Algorithm

Objective: To estimate / minand an element in %mm given: acceptance function a ,  stage 

length {/, <l2 <...}, k-stages, maximum temperature r, , step length S , h , n0.

1. i = 1 and k = 1

2. Assigns an initial state x0, and f mm = / ( x 0)

3. Repeat:

SA:

a. while k < r :

b. while i < lk

c. Randomly sample y  from the given distribution.

d. Randomly sample U from £7(0,1)

e. If U < m in |l,e_[/(>')''/(;CM)]/:r| ,x ). = y  

PS:

f. Deterministically generate n additional neighbors (test points) to

x using step length 8 .

g. Calculate / (x*) per potential neighbor.

R&S:

h. Select x* pairs within ±5% (IZ)

i. Determine additional replications Ni per test point. 

j.  Execute replications per each competing alternative. 

k. Select the best x* pair.

I. If f ( Xj) < / min, / min = HiXj ),  and Z = Xj 

m . y' = y + l ,  

n. k - k  +1,

o. rk -  a rk_x or until termination criteria is satisfied or k > r

4. is the estimated solution.
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4.3.3 Applying the heuristic to the stochastic inventory problem

This section presents the SAPSRS algorithm to approximate near-optimal solutions to

stochastic inventory systems. The steps of the proposed approach are as follows.

1. Perform an initial experiment to obtain the maximum temperature parameter that 

maximizes a given acceptance function.

2. Given constraints from Equations (2) -  (8), generate arbitrary initial (sn S^) 

candidate solution.

3. Determine costs /(*,.) Equation (1) using arbitrary (s, S ) .

4. Generate U from U(0,1).

5. Evaluate objective function according to:

U < m i n j l , ^ ^ ' ^ ^ ^ } , ^ , ^ )  = ( s ,S' )

6. If a candidate solution is accepted, explore a local neighborhood of the candidate 

solution by generating a given pairs of (s , S) (policy solutions) with step-size of ±5.

7. Determine costs /(x ,)  using each new neighbor pair (s, S) and select pairs that have

costs of ±5% compared to the original candidate solution (Indifference Zone).

8. If all costs are above the original costs generated by candidate solution, this is 

accepted as a final solution. Otherwise, determine additional replications and replicate 

each pair that reported lower costs.

9. After replications, if obtained costs are below cost from original (a,M,S'|._1) , then 

select the lowest cost and corresponding pair as a final solution. Otherwise, select the 

original (si,S j)as final.
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10. Repeat until stopping criterion is met.

Figure 11 illustrates the SAPSRS algorithm applied to the stochastic inventory 

problem. Then the SAPSRS algorithm is presented for the inventory 

problem.

Probabilistic
Displacement

Deterministic
Displacement

Evaluate

Reject

Accept

Pattern Search

Ranking and 
Selection

Neighbors = 0

False
True

Termination

False
True

End

Accept initial solution

(s,S)

Select neighbors with f(x,) 
within 5%

Randomly sample 
(s, S) from a 

given distribution

Randomly (/from  U(0,1)

Determine additional 
replications, replicate, 

and select the best

(s,S)

Deterministically 
generate 9 neighbors 

and determine f(x)

Figure 11 Flow Diagram for the SAPSRS Algorithm
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5 NUMERICAL ANALYSIS

5.1 Introduction

In this chapter, experimental results and numerical analyses are presented. The main 

purpose of this chapter is to present and conduct experimental procedures that allow one 

to answer the research questions presented in Chapter 1. To achieve this purpose, a set of 

experiments was designed and performed according to the experimental procedures that 

are presented in the next section. The experimental procedure is designed in terms of the 

experimental design, analysis and evaluation of results, and characterization of the error 

generated between the correlated and correlation-free cases. Obtained results and 

statistical analysis are presented and analyzed in sections 5.3 -  5.7.

5.2 Experimental procedure

In this section, the analysis strategy and techniques to analyze and test a series of 

hypotheses related to the effect of serially-correlated components on demands are 

provided.

5.2.1 Overview of the Experimental procedure

To examine and evaluate the effects of ignoring autocorrelated components on the 

demand for inventory control models, the analysis process was subdivided into five 

stages. Figure 12 illustrates and details the aforementioned procedure. This process can 

be summarized as follows.

1. Experimental design. Experimental design provides guidance to determine the 

importance and behavior of factors and interactions on the studied inventory system.
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In this stage, dependent and independent variables are selected as well as levels and 

responses that will be analyzed. In terms of the inventory system, the varying factors 

and potential interactions are defined in terms of the cost structure and autocorrelation 

factors while the responses are quantified in terms of average total cost and near- 

optimal control policies.

2. Analyzing and evaluating responses. Responses are obtained by applying the 

SAPSRS algorithm to the inventory problem. In addition, assessment of the level of 

significance is conducted in order to evaluate whether any relevant differences exist 

between correlated and correlation-free cases.

3. Main effects and two-way interactions. The main effects and two-way interactions 

of the costs structure (ordering, shortage, and holding) are determined. Notice that 

main effects and two-way interactions are calculated for each autocorrelation level. 

Then, ANOVA tests are conducted to evaluate the significance of each interaction 

and effect.

4. Error characterization. The errors generated in the selected measures of 

performance are determined, described, and evaluated in this stage. Regression 

Analysis is used to describe the behavior of error by experiment. ANOVA is used to 

evaluate the significance level of these errors.
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Figure 12 Detailed Numerical Analysis Procedure
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5. Verification and validation. In this stage, the results obtained using the SAPSRS 

algorithm are validated by quantifying and comparing total costs, stockout, and 

replenishment rates. To verify that a model implementation accurately represents its 

conceptual description, the number of times that a solution improved upon the new 

evaluation process is measured and compared.

5.3 Experimental design

5.3.1 Determining dependent and independent variables

Three independent variables and three dependent variables are adopted in a series of 

simulation experiments. The independent variables include ordering costs, shortage cost, 

and holding cost. The dependent variables include the average total cost of the inventory 

system and the near-optimal policy that minimizes the average total cost. The near- 

optimal policy is composed of two dimensions: the reorder point “s” and the maximum 

inventory level “S.” However, as pointed out by Law et al. (2000), in order to 

conveniently analyze the inventory system, instead of considering ordering “up-to-S” it is 

convenient to reparameterize the decision in terms of order quantity D. The order 

quantity is defined as the difference between the “up-to-S” level and the reorder point. In 

other words D = S - s . Each experiment is evaluated in terms of autocorrelation level.

5.3.2 Design of Experiments

In addition to the three design factors identified above, two classes of stochastic 

autocorrelated demands have been considered to design these experiments (see section 

3.3). First, an AR(1) process is considered for representing stochastic continuous demand 

in which mean, autocorrelation factor, and error distribution are known. Secondly, a
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DMC is considered for modeling a stochastic discrete demand where each discrete value 

is represented by a state.

Based on the demand and probabilistically generated control policies (5 , S ) using 

the algorithm SAPSRS, near-optimal policies and average total cost are calculated. The 

inventory level at the reorder points act as a trigger for adjusting the ordered quantities in 

order to minimize the total inventory costs. Further, the experiments are designed to 

evaluate the effects of each cost component per autocorrelation factor. As a result, along 

with the autocorrelation parameters, the three selected factors and corresponding levels 

are presented in Tables 4 and 5. A full-factorial design for these factors and levels 

required a 23 design which implies a 48 trial experiment per correlation factor. Each 

simulation rim was of 20,000 periods conditional upon the autocorrelation level and the 

reaching of the termination criteria. The simulation run length corresponded to the stage 

length of the SAPSRS algorithm. The runs included five replications of all combinations: 

Ordering costs (2 levels), penalty costs (2 levels), holding costs (2 levels), autocorrelation 

levels (10 levels for AR(1) and 18 levels for MC subdivided into correlated (9 levels) 

and correlation-free cases (9 levels)).

Factor Name - +

1 Ordering Cost ( c ) 1 2
2.1. Penalty ( p ) 5 19
2.2. Cost @ Invent 0 100 200

3 Holding Cost ( h ) 0.5 2.5

Table 4 Design factors

The value for h was selected based on Lee et al. (2000) where a retail inventory 

is analyzed assuming a continuous autocorrelated demand AR(1). The magnitude of the
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penalty p  value was derived using the approach of service level based on critical ratio 

discussed in section 3.2.5.3. From assuming a service level with a critical ratio near one 

led the system to provide a service level of about 97% while a penalty cost of $19 per 

unit. Then, a relaxation of this condition, which portrays a situation where an inventory 

system selects a critical ratio that is not close to one, derived in a lower penalty cost of $5 

per unit. Taha (2002) asserted that is nonsensical to purchase an item whose penalty is 

higher than the ordering cost. As a result, based on literature statements, ordering costs c 

was assumed to be lower than p , with its lowest level at $0.5 per unit and its highest 

level at $ 2.5 per unit.

</> Factors
Experiment c p+C h c x (p+C) c x h (p+C) x h

A - - - + + +
B + - - - - +
C - + - - - -
D + - + + -
E - - + + - -
F + - + - + -
G - + + - - +
H + + + + + +

Table 5 Experiment Design

In addition to the factors and levels described above, the inventory system that 

considered the AR(1) model included an ordering fee or a setup cost of $24 each time 

that an order was placed.

5.3.3 Input and parameter data

The specific input variables integrated in the simulation model are specified in table 6 as 

follows. Notice that Table 4 provides two levels of input data, specifically, for the 

inventory model and the SAPSRS algorithm such that given information is processed and
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output data is generated. Figure 13 provides a view of the diverse points where input data 

are included and processed.

Input Type Description

1. Inventory model

1.1. Demand distribution:

1.1.1 Discrete demand modeled as Markov Chain 
according to section 3.3.1.

1.1.2 Continuous demand modeled as AR(1) process 
described in section 3.3.2.

1.2 Costs (Table 4):

1.2.1 Ordering

1.2.2 Holding

1.2.3 Penalty

1.3 Maximum / minimum inventory level allowed in the 
system (5  = 1,000; S = 8,000).

2. SAPSR&S algorithm

2.1 SA

2.1.1 Maximum temperature (based in acceptance > 98% )

2.1.2 Temperature Gradient r, = 0.85 * rM

2.1.3 Length of the stage (20,000 periods)

2.1.4 Stopping criteria (combination of (.s', S') ±10%, 
average costs ±5%, and t j <100 units)

2.2 Pattern search

2.2.1 Step Size for reorder §x ± 15% and resupply level 
Ss ±15%

2.2.2 Number of neighbors to explore per iteration = 9

2.3 Ranking and selection.

2.3.1 Indifference zone value 5%.

2.3.2 h based on the indifference value and the number of 
neighbor to explore 3.619

2.3.3 Initial number of replications «0 = 20

Table 6 Input data
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Figure 13 Input data processing
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free demands are generated. Based upon the demand, the inventory control is determined. 

Inventory levels fluctuate with the values of demand in each period, therefore, making it 

a stochastic function. Specific input data for the stochastic distribution include:

a) AR(1) Model

• Parameters for the AR(\) function included the mean of the demand, fi -  2500, and

the error s  is normally distributed according to A.(0,3002) .

• Positive autocorrelation includes the 0.1. to 0.9 increments in intervals of 0.1 units.

b) DMC model

• The discrete values for the Markovian demands include d;D = {1000,2000,3000,4000}. 

It behaves according to a given p tJ, where p l0 -  p 23, p n = p 2l, and p Qi = p32 = 1.

• Invariant distributions were derived from their transition probability distribution.

Autocorrelation values were obtained from each given transition probability 

distribution.

• For the values used in the transition probability distribution and the derived invariant 

distribution, the reader is referred to section 3.3.1.2.

c) Simulated Annealing

To apply SA to the stochastic inventory problem, the following parameters must be 

specified: the state space, the objective function, the candidate generator procedure, the 

acceptance probability function, and the annealing schedule.

Section 3.2.3 provides the objective function and constraints that restrict the 

decisions space of the problem. The candidate generator procedure assumes that (s , S) 

candidate solutions are drawn from a uniform distribution restricted by the constraints
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stated in section 3.2.3. The acceptance of a candidate solution is dictated by the 

Boltzmann probability density function presented in section 2.3.41.

In general, parameters of the annealing schedule were derived from extensive 

preliminary experimentation. The rationale behind each value is presented as follows.

The maximum temperature was determined from a preliminary simulated 

annealing sampling experiment in which the acceptance rate shows values above 99%. 

The approach of the empirical acceptance rate is based on the Hasting-Metropolis 

sampling method in which the acceptance of candidate solutions is computed from 

sample-path data. As the temperature increases, the probability distribution of the sample 

path grows to be more uniform. As a result, acceptance increases. Thus, acceptance 

values close to 100% implies that the unobservable probability distribution of the sample 

path is close to uniform (Fishman, 2005). A temperature gradient of a  = 85% from tested 

ranges between 0.80 < a  < 0.99 yielded to a smooth cooling schedule that progressively 

minimized the acceptance function. The stage length was selected to be 20,000 periods so 

output data was collected when the system reached the steady state. Finally, the stopping 

rule was derived from a combination of established well-known rules (Kirkpatrick et al., 

1983; Aarts et al., 1989; Kolinski et al., 1994) that include observing certain propensity 

of accepted candidate solutions (s , S) to concentrate in a relatively small neighborhood 

±5%; no change in the objective function, specifically, the total average cost value 

during 15 consecutive stages did not improve more than ±5%; and the number of 

acceptances having fallen below a specific value 1(T6.

d) Pattern Search
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The method of coordinate search with fixed step lengths is perhaps the simplest and most 

intuitive of all the pattern search methods. According to Torczon (1997), a PS algorithm 

for a minimization problem with two variables can be summarized as follows: Try steps 

to the East, West, North, and South. The final coordinates of these steps compose the 

basis matrix. If one of these steps lead to a reduction in the function, the improved 

incumbent becomes the new iterate. If none of these steps yields improvement, try again. 

Typically, the coordinate search is defined so that the basis matrix is the identity matrix 

/ .  Nonetheless, knowledge of the problem led to a different choice for the basis matrix 

and the magnitude of step size S .

In the context considered in this dissertation, a different coordinate system is 

studied. In this sense, the variables (s , S ) that define the incumbent are known to differ 

by several orders of magnitude. Thus, the generating matrix Ck =C  contains in its 

column all possible combinations of (s,S ). As a result, C has p  = 3" columns. In 

particular, the columns of C contain the equivalent of what corresponds to the identity 

matrix I  and - I  as well as a column of basic (s , S ) . Since C is fixed across all 

interactions of the method, there is no need for an update algorithm. For n = 2 , the total 

neighbors to be explored are 32 = 9 . I n  other words, 9 trial points constitute the 

neighbors to be explored. In this sense, the C matrix with all combination of (s,S) is 

given by:

C =
s s s+ s s s s+ s ' s+
S S  S  S ' S + S + S ' S ' S
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where the positive and negative sign indicate an increase and decrease in the magnitude 

of the incumbent for the reorder point s and maximum inventory S  respectively. The step 

size was selected on extensive preliminary runs where different step lengths were 

evaluated. As a result, the magnitude of 15% for both the reorder point and maximum 

inventory level step sizes provided the best echelon that shows significant improvement 

in the evaluation of the measures of performance (see section 5.7.3). Moreover, these 

lengths demonstrated the best enhancement in terms of the times that a candidate solution 

improved upon the ranking and selection evaluation. The issue of avoiding a poor choices 

of step lengths is discussed in Kolda et al. (2004).

e) Ranking and Selection

As indicated, in this study the IZ procedure (Rinott, 1978b) was selected to evaluate the 

neighbors of a potential candidate solution. The number of alternatives k is determined 

using a PS step. In this case, the number of alternatives to be compared is k = 9. As 

mentioned in section 2.3.4.2, the d* parameter represents the value where a user is 

indifferent. In this problem, the probability of correct selection was assumed to be 95%, 

therefore, the magnitude of d* is 5%. The magnitude of the initial number of replications 

n0 was based on various assertions of the literature including Law et al. (2000) in which 

at least 20 replications are required to be able to calculate the additional number of 

necessary replications to compare them. Considering the parameters of k , d *, n{), and 

the table for constants for selection procedures from Law et al. (2000), the required 

h = 3.619 value was determined.
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5.4 Analyzing and evaluating response

One of the main objectives of this research is to determine and evaluate the effects of 

autocorrelated demands on average cost and near-optimal (s,S) policy for the given 

stochastic inventory model. This is accomplished by:

1. Determining the near-optimal policy per autocorrelation factor via SAPSRS 

algorithm using the input data according to the experiments described in section 5.3.

2. Determining the response of the system to the different levels of input data per 

autocorrelation factor.

3. Testing whether there is a significant difference in the minimum average total cost 

and the near-optimal inventory policy between the correlated and correlation-free 

cases.

In this subsection, the responses and effects for the DMC and AR(1) cases per 

correlation factor are presented. Then, hypotheses for evaluating the significant 

difference are stated. Finally, results of the ANOVA tests are presented.

5.4.1 Response of the inventory system DMC Case

To illustrate the response of the system, an experiment is selected and presented. In 

Appendix A .l, Tables A. 1.1 - A. 1.7 summarize the rest of the responses produced per 

experiment. Column P01 corresponds to the values of the transition probability described 

in section 3.3.1.1 and presented in Tables 2 and 3. Notice that as discussed in section

3.3.1.1 the autocorrelation value of <j> was obtained from each transition probabilities 

distribution presented on Tables 2 and 3. Table 7 summarizes the computational results 

obtained for the experiment coded as F in section 5.3.2. The table reports the minimum
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average cost and near-optimal policy obtained for the correlated and correlation-free 

cases considering DMC demands. It is apparent that differences between the average total 

costs “Cost_Dep” and “Cost CF” are substantial. Furthermore, the difference between 

the ordered quantities “D Dep” and “D CF” for both cases is considerable as well. As 

the autocorrelation increases, the differences between costs and reorder points for the 

correlated and correlation-free case also increase. Similar results were obtained for the 

rest of the experiments. Notice that the order quantity “D_Dep” increases by reducing the 

reorder point s, and keeping the up-to level S quantity to similar levels for both the 

correlation-free and the dependency cases. The significance of these differences is tested 

in the section 5.4.3.

P01 4> Cost Dep s Dep Sdep Cost CF s CF S C F D Dep D CF
0.10 -0.15 6,394.22 1626 3002 6,505.39 2501 3001 1376 500
0.20 0.13 6,509.96 1562 3002 6,716.83 2468 3001 1440 533
0.30 0.29 6,608.50 1507 3002 6,895.95 2501 3001 1494 500
0.40 0.38 6,690.88 1528 3002 7,050.32 2349 3001 1474 652
0.50 0.45 6,766.83 1480 3003 7,184.79 2502 3002 1523 500
0.60 0.49 6,831.02 1425 3003 7,299.11 2418 3001 1578 584
0.70 0.53 6,887.74 1485 3004 7,403.02 2400 3003 1519 603
0.80 0.56 6,713.82 805 3004 7,492.90 2502 3002 2199 500
0.90 0.64 6,541.69 595 3011 7,574.97 2444 3001 2415 557

Table 7 Effects of autocorrelated DMC demands 

5.4.2 Response of the inventory system AR(1) Case

Table 8 summarizes the computational results obtained for the experiment labeled G in 

section 5.3.2. It reports the average total cost and near-optimal inventory policy for 

correlated </> and IID cases but considers AR (1) demands instead. In Appendix A.2, 

responses obtained for the rest of the experiments are reported. Compared to the DMC 

demand case, it is clear that the differences between the average total costs and the 

ordered quantity are substantial for both cases. However, notice that unlike the discrete
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cases, the order quantity increases by reducing the reorder point s, and increasing the up- 

to level S  quantity. As the autocorrelation increases, the differences also increase. These 

differences are tested in the next subsection. In addition, observe that even though the 

autocorrelated component is considered, the obtained total costs are higher as the 

autocorrelation increases. In section 5.7.2, the effect of ignoring the autocorrelation 

components and using the inventory policy designed for the IID situation is determined 

as the serial correlation increases.

* Cost s S D
IID = 0 3,789.09 2202 2854 651

0.1 3,795.28 2219 2856 637
0.2 3,815.09 1970 2866 896
0.3 3,845.03 2030 2871 841
0.4 3,901.62 2390 2888 498
0.5 3,979.33 2221 2907 686
0.6 4,096.55 2169 2949 780
0.7 4,280.87 1968 2992 1024
0.8 4,591.31 1626 3104 1477
0.9 5,098.00 1807 3290 1483

Table 8 Effects of autocorrelated AR(1) demands

5.4.3 Testing the significance for the DMC and AR(1)

The underlying assumptions for a one-way analysis of the variance (ANOVA) include:

• The data set consists of k random samples from k populations.

• Each population has a normal distribution and the standard deviation is identical, 

so that o’, = cr2 =... = u k .

The null hypothesis for the test in one-way analysis claims that the k populations 

(represented by the k  samples) all have the same mean value while the alternative 

hypothesis claims that are not all the same. Thus, the following hypotheses are tested:
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Hypothesis Statement Expression

1

The autocorrelated demand does not change 
the average total cost of the inventory system. H<) • M lI D  =  M A u to c o rre la te d

The autocorrelated demand does change the 
average total cost of the inventory system ^ a  '  M l l D  ^ M A u to c o rre la te d

2

The autocorrelated demand does not change 
the s reorder point for the inventory system H 0 : h  = ju,U '  *’ //£> ' •> Autocorrelated

The autocorrelated demand does change the s 
reorder point for the inventory system H  : u ^  u“ ~ Sl[D r  S Autocorrelaled

3

The autocorrelated demand does not change 
the D quantity of items reordered per period 
for the inventory system

H0 • M d iid  Autocorrelaled

The autocorrelated demand does change the D 
quantity of items reordered per period for the 
inventory system

H o ' M d iid  ^  M D Aulacomlaled

Table 9 Hypothesis testing autocorrelation

The ANOVA analyses were conducted for each response. Results are summarized 

in Tables B.l and B.2 in appendix B. To illustrate the ANOVA test results, significance 

values from two experiments, F for the DMC, and G, for the AR(1) are presented in 

Tables 10 and 11 respectively.

P-value Hypothesis P-value Hypothesis P-value Hypothesis
P01 <!> Cost Ho Ha s Ho Ha D Ho Ha
0.10 -0.15 6.26E-07 Reject Accept 0.00066 Reject Accept 0.000594 Reject Accept
0.20 0.13 4.65E-11 Reject Accept 0.000263 Reject Accept 0.000243 Reject Accept
0.30 0.29 3.06E-16 Reject Accept 1.89E-08 Reject Accept 2E-08 Reject Accept
0.40 0.38 2.8E-13 Reject Accept 0.003486 Reject Accept 0.003612 Reject Accept
0.50 0.45 1.75E-16 Reject Accept 0.001825 Reject Accept 0.001844 Reject Accept
0.60 0.49 2.5E-16 Reject Accept 6.17E-06 Reject Accept 6.17E-06 Reject Accept
0.70 0.53 5.25E-15 Reject Accept 0.003887 Reject Accept 0.003768 Reject Accept
0.80 0.56 4.4E-13 Reject Accept 3.84E-05 Reject Accept 4.26E-05 Reject Accept
0.90 0.64 6.65E-13 Reject Accept 1.75E-10 Reject Accept 1.77E-10 Reject Accept

Table 10 P-values MC demand
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P-value Hypothesis P-value Hypothesis P-value Hypothesis
Autoc. Cost Ho Ha s Ho Ha D Ho Ha

0.10 1.43E-10 Reject Accept 0.846 Accept Not Accepted 0.849 Accept Not Accepted
0.20 1.90E-15 Reject Accept 0.668 Accept Not Accepted 0.709 Accept Not Accepted
0.30 8.89E-19 Reject Accept 0.610 Accept Not Accepted 0.702 Accept Not Accepted
0.40 1.78E-21 Reject Accept 0.317 Accept Not Accepted 0.416 Accept Not Accepted
0.50 6.36E-24 Reject Accept 0.720 Accept Not Accepted 0.942 Accept Not Accepted
0.60 5.87E-21 Reject Accept 0.252 Accept Not Accepted 0.466 Accept Not Accepted
0.70 1.09E-24 Reject Accept 6.65E-01 Reject Accept 2.83E-01 Reject Accept
0.80 3.38E-23 Reject Accept 2.54E-02 Reject Accept 1.12E-03 Reject Accept
0.90 3.71E-24 Reject Accept 4.02E-02 Reject Accept 1.08E-04 Reject Accept

Table 11 P-values and hypothesis testing AR(1) demand

5.4.4 Output Analysis

Based upon the p-values obtained from the ANOVA test at a significance level of 0.05, 

and represented in Tables 10 and 11, the following conclusions are drawn.

Regarding the inventory model that considered DMC demand, the existing 

difference between the correlated and correlation-free case for the total cost, near-optimal 

inventory policy, and order quantity are all highly significant. As a result, the alternative 

hypotheses that claim that these differences are relevant are accepted. Concerning the 

AR(1) case, the obtained p-values for evaluating the differences in average cost are 

significant while the degree of significance increases as the autocorrelation component 

increases. As a result, all the hypotheses that claim differences between the IID and the 

dependency case are accepted. The p-values obtained for the reorder point and quantity 

order measures for lower to medium autocorrelation levels (0.1- 0.6) indicate that there is 

no relevant difference. However, for the same measures, highly significant differences 

were obtained for high levels of autocorrelation factors (0.7 -  0.9). As a result, the 

alternative hypotheses that claim such differences are accepted for the medium-high to 

high levels of autocorrelation factors.
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As demonstrated in Appendix B, similar values were obtained per experiment. As 

a result, comparable conclusions can be drawn by observing such values. In-depth 

exploration and analysis is addressed in the rest of this chapter.
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5.5 Main Effects and Two-way Interactions

In this section, the effects of individual design factors on the experiments and the 

interactions among the various factors for both correlated and correlation-free cases are 

determined and analyzed. The view used to analyze these main effects and interactions 

follows the traditional analysis approach, in which the main effects are determined first 

followed by determining two-way interactions (Kleijnen, 1987; Law et al., 2000). Test 

hypotheses are presented for DMC and AR(1) cases. A total of eight experiments were 

conducted per correlation factor for two levels of variable changes in ordering, shortage, 

and holding costs as mentioned in section 5.3.2. Each experiment was performed five 

times per correlation factor. As indicated previously, the response variables are the 

average of the total costs of the inventory system, the reorder point s, and order quantities 

D.

5.5.1 Determining main effects and two-way interaction of the experiment per 

correlation factor

The main effects assess the average change in the response as a result of a change in an 

individual factor, with this average calculated over all possible combinations. However, 

the effect of a given factor may depend in some way on the level of some other factor. 

Changes in these factors and their interactions may be significant and have an effect on 

the average cost and the selected (s , S)  policy.

Table 12 and 13 report the main effects and two-way interaction values obtained 

for the DMC and AR(1) case. Further, these effects and interactions are stated in terms of 

the average total cost, the reorder points, and the order quantities per autocorrelation 

factor.
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P 01 $ Effect CostDep sDep Ddep CostCF sCF DCF
0.1 -0.149 1 2453.90 109.80 -0.55 2453.98 -3.55 -0.10

2 449.51 516.00 499.15 449.43 441.05 500.10
3 4646.70 -2105.60 -2008.20 5004.14 -1493.80 -2003.60

1X2 21.32 -3.90 0.25 22.79 41.05 0.40
1X3 1226.33 88.50 0.55 1226.66 78.25 0.20
2X3 178.31 -631.30 -496.65 178.48 -421.65 -498.00

0.2 0.13 1 2416.16 109.20 -2.55 2414.79 12.55 -5.25
2 613.90 592.20 493.65 613.77 463.95 492.65
3 6001.35 -1757.20 -2029.00 6659.59 -1503.80 -2035.00

1X2 41.82 -14.80 2.45 40.25 -41.55 5.65
1X3 1207.97 69.70 2.65 1206.41 -34.45 5.65
2X3 534.25 -443.70 -489.85 535.37 -449.65 -489.65

0.3 0.29 1 2411.51 105.60 1.00 2414.21 -70.30 2.40
2 794.32 81.90 7.30 793.09 37.30 6.20
3 7305.62 -3588.80 -3982.40 8222.55 -2959.60 -3980.00

1X2 28.16 10.10 0.40 29.91 15.70 2.40
1X3 1162.44 -5.60 0.30 1164.38 15.20 1.90
2X3 793.33 -16.90 4.60 794.34 -28.70 6.20

0.4 0.38 1 2426.17 -96.10 0.95 2427.70 -13.05 -0.45
2 780.62 459.80 499.65 779.79 476.95 500.05
3 7758.03 -1603.60 -2007.80 8896.77 -1910.60 -2001.40

1X2 72.81 -55.10 -0.15 71.57 15.65 0.45
1X3 1177.95 8.80 -0.15 1178.90 -4.45 -0.65
2X3 780.54 533.10 500.15 780.54 479.65 499.75

0.5 0.45 1 2414.04 -75.75 1.55 2427.92 66.85 6.35
2 701.10 527.15 498.75 689.60 350.85 494.45
3 7883.03 -1682.60 -2009.80 9163.88 -1845.40 -2025.80

1X2 85.02 -90.75 -0.15 94.63 61.85 4.55
1X3 1167.31 -114.05 -0.15 1178.79 61.95 4.65
2X3 699.51 489.15 499.45 689.49 319.05 494.95

0.6 0.49 1 2405.29 -66.20 2.10 2405.57 -30.00 0.00
2 632.79 538.50 498.10 633.45 438.00 500.10
3 7987.97 -2275.20 -2011.60 9481.70 -1716.40 -2003.20

1X2 93.70 -260.50 -0.60 93.20 -27.80 0.20
1X3 1156.84 -214.00 0.10 1156.17 -60.20 -0.70
2X3 632.65 541.10 500.80 633.71 407.90 499.80

0.7 0.53 1 2396.18 27.70 0.60 2396.88 -27.30 0.20
2 572.68 551.10 499.10 572.69 461.20 500.30
3 8084.41 -1954.80 -2002.80 9725.73 -1714.40 -2002.40

1X2 101.95 63.70 0.20 102.49 18.50 0.60
1X3 1147.72 95.70 0.00 1147.51 -13.30 0.50
2X3 573.09 571.30 498.50 572.98 404.60 498.80

0.8 0.56 1 2330.04 -196.35 -6.50 2387.84 -24.85 0.05
2 576.42 901.35 504.80 519.30 391.65 500.05
3 7955.18 -2564.60 -1980.40 9938.72 -1771.00 -2005.40

1X2 167.25 81.55 -9.40 110.88 -24.65 0.25
1X3 1085.67 -134.35 -9.30 1139.10 -24.65 0.25
2X3 574.31 683.35 508.60 519.13 391.45 499.85

0.9 0.64 1 2336.33 -197.45 3.60 2380.78 -12.35 0.10
2 579.05 871.55 492.60 471.36 402.95 500.00
3 7140.06 -3898.20 -2008.00 10133.48 -1837.80 -2003.60

1X2 144.81 106.25 -3.60 118.47 8.75 -0.30
1X3 1106.43 45.45 -3.20 1132.44 -20.05 -0.60
2X3 562.01 67.95 498.80 471.43 371.45 500.10

Table 12 Obtained values MC main effect and two-way interaction
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$ Effect/Interaction CostDep s D

0 1 2472.59 90.80 -104.80
2 319.98 229.00 21.60
3 2709.43 -989.20 -102.80

1X2 16.57 -57.90 66.60
1X3 1221.20 -20.10 3.20
2X3 229.97 -38.40 78.30

0.1 1 2472.53 -170.70 154.10
2 321.26 337.00 -81.70
3 2721.46 -744.40 -336.40

1X2 16.67 97.80 -90.60
1X3 1221.09 -68.80 47.90
2X3 230.92 86.20 -51.20

0.2 1 2472.20 178.60 -197.40
2 326.88 264.60 -3.90
3 2764.23 -423.20 -686.00

1X2 16.91 245.30 -234.90
1X3 1220.86 218.80 -233.70
2X3 234.41 -71.90 108.00

0.3 1 2472.00 -57.50 37.50
2 334.00 187.00 77.70
3 2832.51 -1780.80 643.60

1X2 18.14 116.20 -98.90
1X3 1220.77 -35.50 19.00
2X3 239.49 -36.90 82.70

0.4 1 2469.67 40.45 -60.70
2 348.69 268.65 2.20
3 2953.24 -1591.40 408.80

1X2 18.48 -181.55 188.30
1X3 1219.06 -42.05 24.10
2X3 249.66 70.75 -33.60

0.5 1 2467.59 111.85 -131.30
2 368.49 279.05 14.50
3 3121.33 -857.40 -380.40

1X2 19.79 -169.15 185.20
1X3 1217.74 -10.85 -3.70
2X3 263.44 69.45 -24.00

0.6 1 2463.74 -97.75 81.55
2 398.74 443.15 -128.55
3 3375.93 -2374.60 1096.20

1X2 21.67 21.15 -10.75
1X3 1215.13 -167.85 149.25
2X3 283.70 23.25 18.15

0.7 1 2458.93 122.95 -152.35
2 445.30 431.35 -72.85
3 3774.25 -1814.20 317.80

1X2 24.55 -172.25 198.65
1X3 1211.47 -19.25 3.65
2X3 317.47 73.65 -30.95

0.8 1 2449.79 3.70 -45.90
2 527.10 357.60 80.70
3 4439.79 -1915.60 169.60

1X2 30.01 -49.80 86.90
1X3 1205.17 -112.50 97.60
2X3 374.11 108.00 -64.00

0.9 1 2445.76 -32.40 21.60
2 671.71 528.00 37.30
3 5615.01 -1883.20 -539.20

1X2 85.03 -22.10 63.50
1X3 1205.46 -35.70 27.80
2X3 471.35 104.30 -42.50

Table 13 Obtained values AR main effect and two-way interaction
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5.5 Evaluating significance of main effects and two-way interactions

In this section, hypothesis tests are conducted to determine the significance of the levels 

of the individual factors and their interactions. In essence, the null hypothesis for the one

way analysis test claims that the effects of individual factors and their interactions have

the same mean value while the alternative hypothesis claims that not all are the same.

5.5.1 Main Effect Hypotheses

Hypothesis Statement Expression

1

H0: Levels of factor ‘Ordering cost’ per correlation
factor does not change the average total cost of the 
inventory system.

H o '■ ftocnD = ftoc Aulocomlalllt

H a : levels of factor ‘Ordering cost’ per correlation
factor does change the average total cost of the 
inventory system

Ha • ftoCUD ^  ftoc

2

H 0\ Levels of factor ‘Shortage cost’ per correlation 
factor does not change the average total cost of the 
inventory system.

Ho '■ ftscUD = ftsC Aulocomlaud

H a : Levels of factor ‘Shortage cost’ per correlation
factor does change the average total cost of the 
inventory system

H a ' f̂ SCUD ^  ft SC Aulocorrelau,d

3

H 0: Levels of factor ‘Holding cost’ per correlation
factor does not change the average total cost of the 
inventory system.

H<> '■ ftHC,m = ftHC Aulocotrelated

H a : Levels of factor ‘Holding cost’ per correlation
factor does change the average total cost of the 
inventory system

Hn : u,rr * uHr
a  IID Aulocorrelaled

Table 14 Hypotheses simple effects
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5.5.2 Two-way Interaction hypotheses

Hypothesis Statement Expression

1

H0 : Levels of interaction between ‘Ordering cost’ 
and ‘Shortage cost’ per correlation factor does not 
change the average total cost of the inventory 
system.

H 0 '■ M i X 2 , id -  V \ X 2  AltlocomlaUd

H a : Levels of interaction between ‘Ordering cost’
and ‘Shortage cost’ per correlation factor does 
change the average total cost of the inventory 
system.

H a '• f J \ X 2 UD *  Li \ X 2 A u to c o M

2

H 0: Levels of interaction between ‘Ordering cost’ 
and ‘Holding cost’ per correlation factor does not 
change the average total cost of the inventory 
system.

H 0 '■ A 1X3„ d =  V \ X 3 A m m la u d

H a : Levels of interaction between ‘Ordering cost’ 
and ‘Holding cost’ per correlation factor does 
change the average total cost of the inventory 
system.

'■ V l X 3 „ D *  ^ 1 X 3  Au,m h l e d

3

H0 : Levels of interaction between ‘Shortage cost’
and ‘Holding cost’ per correlation factor does not 
change the average total cost of the inventory 
system.

'• M 2 X 3 iid ~  M 2 X 3  Aulocomlaud

H a : Levels of interaction between ‘Shortage cost’
and ‘Holding cost’ per correlation factor does 
change the average total cost of the inventory 
system

H a '■ M 2 X 3 llD *  ^ 2 X 3  A lllm laied

Table 15 Hypotheses two-way interactions

Results of the ANOVA tests conducted for each factor and their interactions are 

presented in Table 16 for the DMC case and Table 17 for the AR(1) case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

P 01 Effect/Interaction COST REORDER D
0.1 1 0.99402 0.65782 0.65569

2 0.99317 0.76959 0.76615
3 1.40E-90 0.01752 0.01807

1X2 0.72385 0.67464 0.67433
1X3 0.93641 0.92372 0.92600
2X3 0.96751 0.05121 0.04876

0.2 1 0.89366 0.70566 0.71278
2 0.98940 0.61629 0.61811
3 1.34E-142 0.32252 0.30994

1X2 0.70542 0.80270 0.77874
1X3 0.70757 0.33115 0.31534
2X3 0.78729 0.95568 0.95399

0.3 1 0.79285 0.49200 0.48741
2 0.90437 0.86162 0.86464
3 1.50E-172 0.01460 0.01471

1X2 0.67365 0.95828 0.97306
1X3 0.64091 0.84595 0.85706
2X3 0.80888 0.91223 0.89996

0.4 1 0.88163 0.74551 0.74071
2 0.93600 0.94656 0.94766
3 1.94E-192 0.23095 0.22019

1X2 0.76413 0.50890 0.51066
1X3 0.81832 0.90150 0.90479
2X3 0.99942 0.61768 0.61879

0.5 1 0.17756 0.57743 0.58931
2 0.26349 0.49102 0.50051
3 2.66E-203 0.52477 0.56524

1X2 0.02138 0.15500 0.16621
1X3 0.00607 0.10123 0.10929
2X3 0.01646 0.11313 0.12131

0.6 1 0.97818 0.88749 0.88069
2 0.94917 0.69452 0.68797
3 1.48E-217 2.98E-02 3.19E-02

1X2 0.90503 0.03063 0.03048
1X3 0.87151 0.15179 0.14792
2X3 0.79835 0.21424 0.21569

0.7 1 0.94553 0.82980 0.83058
2 0.99946 0.72535 0.72112
3 2.59E-226 0.34792 0.34744

1X2 0.89701 0.67293 0.66885
1X3 0.96001 0.30918 0.30487
2X3 0.97942 0.12047 0.11821

0.8 1 5.51E-08 0.50289 0.51821
2 7.70E-08 0.04736 0.04885
3 5.90E-244 2.16E-03 1.52E-03

1X2 7.52E-31 0.32174 0.27775
1X3 1.39E-28 0.30609 0.34792
2X3 6.29E-30 0.00686 0.00841

0.9 1 2.28E-05 0.46967 0.46013
2 4.40E-21 0.06808 0.06318
3 2.07E-282 5.08E-14 4.95E-14

1X2 1.21E-09 0.36289 0.34481
1X3 1.87E-09 0.54082 0.52308
2X3 1.20E-56 4.97E-03 4.97E-03

Table 16 P-values MC main effect and two-way interaction
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0.1 1 0.9989 0.4379 0.4505
2 0.9778 0.7484 0.7631
3 0.7938 0.4676 0.4958

1X2 0.9937 0.2105 0.2071
1X3 0.9930 0.6944 0.3281
2X3 0.9405 0.3157 0.2888

0.2 1 0.9932 0.7943 0.7870
2 0.8807 0.9158 0.9407
3 0.2349 0.0946 0.0907

1X2 0.9790 0.0157 0.7190
1X3 0.9783 0.0557 0.8664
2X3 0.7263 0.7869 0.9971

0.3 1 0.9896 0.6597 0.6781
2 0.7606 0.9007 0.8700
3 0.0084 0.0201 0.0310

1X2 0.9014 0.1618 0.2982
1X3 0.9731 0.9011 0.3684
2X3 0.4537 0.9903 0.3798

0.4 1 0.9494 0.8811 0.8976
2 0.5329 0.9063 0.9549
3 0.0000 0.0756 0.1373

1X2 0.8807 0.3194 0.0165
1X3 0.8659 0.8594 0.3405
2X3 0.1227 0.3792 0.8702

0.5 1 0.9134 0.9501 0.9384
2 0.2927 0.8818 0.9835
3 4.76E-15 0.6955 0.4185

1X2 0.8000 0.3701 0.0583
1X3 0.7850 0.9405 0.9557
2X3 9.34E-03 0.3849 0.4477

0.6 1 0.8474 0.5757 0.5868
2 0.0888 0.5251 0.6614
3 3.43E-28 6.90E-05 6.40E-04

1X2 0.6878 0.5239 0.8110
1X3 0.6328 0.2345 0.4108
2X3 4.41E-05 0.6190 0.2532

0.7 1 0.7665 0.9239 0.8896
2 0.0073 0.5481 0.7829
3 3.65E-46 1.55E-02 0.2211

1X2 0.5301 0.3570 0.1843
1X3 0.4438 0.9945 0.5337
2X3 2.55E-10 0.3667 0.9801

0.8 1 0.6203 0.7959 0.8635
2 0.0000 0.7026 0.8631
3 2.32E-68 6.74E-03 0.4273

1X2 0.2909 0.9479 0.8988
1X3 0.2083 0.4564 0.2410
2X3 8.61E-21 0.2388 0.8430

0.9 1 0.5600 0.7145 0.7123
2 5.24E-12 0.3753 0.9635
3 4.87E-94 8.86E-03 0.2044

1X2 3.37E-07 0.7727 0.9717
1X3 0.2164 0.8998 0.6283
2X3 4.36E-38 2.51E-01 0.3317

Table 17 P-values AR main effect and two-way interaction
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For each of the observed main effects and two-way interaction, it is important to 

understand the direction and the magnitude of the effect.

For the DMC and the AR(1) cases, the magnitude of the effects of the cost 

structure on the average total cost in descending order was the holding costs (3), the 

ordering cost (1), and the penalty cost (2). The magnitude of the interactions, in 

descending order, was ordering and holding costs (1X3), penalty and holding costs 

(2X3), and ordering and penalty costs (1X2). However, in general, as the autocorrelation 

increased, from the perspective of main effects, the effect of holding costs (3) became not 

only stronger but also very significant. From the point of view of two-way interactions, 

the penalty and holding costs (2X3) interaction become stronger and significant as the 

autocorrelation increases. Ordering and holding costs (1X3) and ordering and penalty 

costs (1X2) demonstrated high level of significance at higher levels of autocorrelation 

factors. A detailed explanation is presented in the next sections.

5.5.3 Analysis of the main effects inventory with DMC and AR(1) demands 

Based on an overall assessment of the factors that produce the major effect on the system 

performance (Tables 19 and 20), results indicate that holding cost (3) is the individual 

factor that has the highest impact on the inventory system for all measures of 

performance. Tables 18 and 19 provide the values obtained for the effect of holding costs 

on cost average, reorder point, and order quantities.
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<p CostDep s D
-0.149 4646.7 -2105.6 97.4
0.13 6001.348 -1757.2 -271.8
0.29 7305.624 -3588.8 -393.6
0.38 7758.03 -1603.6 -404.2
0.45 7883.03 -1682.6 -327.2
0.49 7987.972 -2275.2 263.6
0.53 8084.414 -1954.8 -48
0.56 7955.176 -2564.6 584.2
0.64 7140.058 -3898.2 1890.2

Table 18 Factor 3 - Holding costs simple effect on DMC demands

<P CostDep s D
0 2709.43 -989.20 -102.80

0.1 2721.46 -744.40 -336.40
0.2 2764.23 -423.20 -686.00
0.3 2832.51 -1780.80 643.60
0.4 2953.24 -1591.40 408.80
0.5 3121.33 -857.40 -380.40
0.6 3375.93 -2374.60 1096.20
0.7 3774.25 -1814.20 317.80
0.8 4439.79 -1915.60 169.60
0.9 5615.01 -1883.20 -539.20

Table 19 Factor 3 - Holding costs effect on AR(1)

From the viewpoint of individual measure of performance, in average costs, the 

major effect of holding cost (3) is followed by the ordering (1) and penalty (2) cost 

respectively. However, when the autocorrelation component is considered and 

progressively increases, the behavior of these costs is modified. In this sense, the effect of 

holding costs (3) becomes stronger as the autocorrelation increases, the impact of 

ordering (1) costs becomes weaker, and the effects of penalty cost (2) become stronger. 

In addition, when the results of significance were incorporated in the analysis, statistical 

results demonstrated that holding costs were significant for all autocorrelation levels in 

the MC chain case, while relevant from lower to higher values of autocorrelation in the
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AR(1) case. Figures 14 and 15 presents the values obtained for the behavior of the effect 

of holding cost on total costs.
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Figure 14 Behavior of holding costs per autocorrelation factor. MC case
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Figure 15 Behavior of holding costs per autocorrelation factor. AR(1) Case

From the reorder point perspective, the main effect values did not present a clear 

behavior. Nonetheless, trends in the behavior of the individual effect allow one to 

identify the tendency of the reorder point as the autocorrelation increases. This can be 

summarized as follows:
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• The effect of the ordering cost on the reorder point shows a decreasing behavior. As 

the autocorrelation increases, the effect becomes weaker.

• The effects of penalty costs on reorder point shows an increasing behavior. As the 

autocorrelation increases, the effect becomes stronger. The higher the penalty costs, 

the higher the reorder points. Magnitude of the effect was relatively low for most 

autocorrelation levels. However, it became more relevant as the correlation increased.

• The effect of holding costs on reorder point is strongly negative. Results reported that 

such magnitude was the highest. As the autocorrelation increases, the negative effects 

of holding cost on reorder points force the system to select lower reorder points.

In addition, the significance test indicates that the holding cost is significant for 

almost all levels of serially-correlated factors for both AR(1) and DMC cases 

respectively. Figures 16 and 17 provide the values obtained for the behavior of the effect 

of holding cost on reorder points.
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Figure 16 Behavior of the holding costs effect on Reorder point "s" MC
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Figure 17 Behavior of the holding costs effect on Reorder point "s" AR(1)

From the order quantity point of view, the main effects of ordering and penalty 

costs were erratic and chaotic. In addition, the magnitude of such effects was relatively 

not significant.

The effects of holding costs on the order quantity posed a diffuse tendency to 

increase. However, at higher levels of autocorrelation, the magnitude became relevant. 

This suggests that an increase in holding costs leads to increased order quantity. The 

analysis of the variance revealed that the effect of holding costs on the order quantity was 

significant for almost all the levels of autocorrelation factor. The two-way interaction 

analysis provides more proof that supports these findings.

5.5.4 Analysis of two-way interactions for the inventory with DMC and AR(1) 

demands

Based upon the results obtained from the two-way interactions, the interaction between 

factors was present for all measures of performance.

In the average costs performance, the interaction between ordering and holding 

cost (1X3) has the highest magnitude and becomes weaker as the autocorrelation
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increases. As the autocorrelation increases, the inventory system is enforced to hold 

fewer items. As a result, the magnitude of the interaction becomes weaker.

The interaction penalty and holding costs (2X3) is positive and becomes stronger 

as the autocorrelation increases. As the autocorrelation increases, variability increases, 

therefore, increasing the probabilities of being penalized. Thus, the effects of holding 

costs depend upon the levels of penalties. As the correlated component increases, not 

only does this interaction lead the costs higher, but it is also very significant for almost all 

levels of autocorrelation.

Finally, the ordering and penalty costs (1X2) interaction is positive and becomes 

stronger as the autocorrelation increases. However, the magnitude of this interaction is 

relatively low. As the autocorrelation increases, this interaction drives total costs higher. 

Statistical tests showed that that this interaction was highly significant for higher levels of 

autocorrelation values.

Tables 20 and 21 present the interaction between penalty and holding costs for the 

DMC and AR(1) cases. Figures 18 and 19 provide the scatter plots for such interactions.

2X3 Two-factor

<P Cost Dep s D
-0.149 178.312 -631.3 134.65
0.13 534.246 -443.7 -46.15
0.29 793.334 -16.9 21.5
0.38 780.5445 533.1 -32.95
0.45 699.5115 489.15 10.3
0.49 632.653 541.1 -40.3
0.53 573.0855 571.3 -72.8
0.56 574.306 683.35 -174.75
0.64 562.0085 67.95 430.85

Table 20 Two-way interaction shortage and holding cost -  MC Case
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2X3 Two-factor

<P Cost Dep s D
0 229.97 -38.40 78.30

0.1 230.92 86.20 -51.20
0.2 234.41 -71.90 108.00
0.3 239.49 -36.90 82.70
0.4 249.66 70.75 -33.60
0.5 263.44 69.45 -24.00
0.6 283.70 23.25 18.15
0.7 317.47 73.65 -30.95
0.8 374.11 108.00 -64.00
0.9 471.35 104.30 -42.50

Table 21 Two way interaction shortage and holding costs -  AR(1) Case
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Figure 18 Behavior o f two-way interaction 2X3 on average cost per autocorrelation factor -  MC
Case
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Figure 19 Behavior of two-way interaction 2X3 on average cost per autocorrelation factor -AR(1)
Case

From the reorder point viewpoint, the obtained values for the ordering and penalty 

costs (1X2) and ordering and holding cost (1X3) interactions did show an erratic 

behavior. Nonetheless, for the penalty and holding costs (2X3) interaction, a positive 

trend as the autocorrelation increased was identified. Statistical tests show significance 

for this interaction at higher levels of autocorrelations. Figures 20 and 21 provide the 

scatter plots for such interactions.
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Figure 20 Behavior of two-way interaction 2X3 on average reorder point per autocorrelation
factor. MC Case
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Figure 21 Behavior of two-way interaction 2X3 on average reorder point per autocorrelation
factor. AR(1) Case

From the quantity order dimension, the behavior of ordering and penalty costs 

(1X2) and penalty and holding costs (2X3) interactions was not clear. However, the 

ordering and holding cost (1X3) interactions presented a tendency to increase as the 

autocorrelation increased. According to results obtained in the statistical tests, neither the 

ordering and penalty costs interaction (1X2) nor the ordering and holding cost (1X3) 

were significant. Only the interaction between penalty and holding costs (2X3) for the 

DMC case was significant for high autocorrelation values.

Main effects and two way interaction for the rest of the factors are presented in 

Appendices C.l and C.2. In addition to this analysis, a characterization of the effects and 

interactions that presented a uniform behavior is presented in Appendices D.l and D.2.
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5.6 Error characterization

Errors between the stochastic inventory for the IID and autocorrelated cases were 

determined using the minimum average cost obtained and the near-optimal inventory 

policy. In this section, the error characterizations are derived from the output data and 

presented for the DMC and AR(1) demand cases.

5.6.1 Error characterization using regression analysis

The errors generated in the cost function J3(C) were derived by the following formula:

where CCF represents the cost assuming correlation-free demand while CAutocor 

corresponds to the costs generated considering dependencies.

The errors generated between inventory near-optimal policies were

determined using the Euclidean distance stated in terms of the continuous review policy:

where (sCF,SCF) represents the inventory control policy that ignores dependency while 

(sAutocarAutocar) corresponds to the inventory policy that considers dependencies.

Regression analysis was used to characterize the errors between the two 

situations.

5.6.1.1 Error characterization - DMC Analysis

For the stochastic inventory model that presented DMC demands, performance measures 

and error characterization were investigated. To illustrate the analysis, the experiment G 

was investigated. Notice that similar analyses were performed on the rest of the

/? ( C ) = |Q ,- C Autocor (33)

0 ( S * , S * ) =  y j l Autocor Autocor (34)
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experiments presented in Appendix E.l. Table 23 summarizes the computational results 

of applying the SAPSRS algorithm to the stochastic inventory problem. The table reports 

the near-optimal (s*,S*) policy and the associated cost found for the correlation-free case 

and for the autocorrelated cases. In addition, the table reports values for the cost and 

inventory policy errors generated, /3(C) and /3(s*,S*), between the correlation-free and 

dependent cases using Equations 33 and 34 respectively.

P01 CostDep SDep Sdep CostUD sIID SIID P (C ) P (s* ,S*)
0.10 -0.15 4,591.43 1296 3005 4,702.28 2503 3004 110.84 1207
0.20 0.13 5,282.78 1622 3006 5,493.86 2504 3004 211.09 882
0.30 0.29 5,871.43 1615 3013 6,153.65 2508 3010 282.22 893
0.40 0.38 5,896.59 2572 4002 6,252.40 3335 4002 355.81 763
0.50 0.45 5,834.04 2627 4001 6,206.26 3022 3981 372.22 395
0.60 0.49 5,782.42 2534 4001 6,253.31 3335 4002 470.89 802
0.70 0.53 5,736.96 2643 4002 6,253.16 3322 4002 516.20 679
0.80 0.56 5,695.75 2665 4034 6,253.12 3335 4002 557.37 670
0.90 0.64 5,485.48 1643 4001 6,253.48 3251 4002 768.00 1608

Table 22 Costs and Policy Error MC - Experiment G

Notice that in Table 22, as the autocorrelation increases, the near-optimal reorder 

point s * tends to decrease while the near-optimal level of the items to be ordered S*  is 

kept to the same level. As a result, as the autocorrelation increases, the order quantity 

increases. Figure 22 shows the scatter plot, the trend line, and the equation for the 

characterization of the /3(C) error generated by ignoring autocorrelation components in 

determining (s*,S*) inventory control policy. The error (3(C) behaves as an exponential

function and, as indicated by the R2 factor, the characterization has the capability of 

including up to 98% of the errors generated per autocorrelation factor.
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Figure 22 Costs Error Behavior MC

Consistent with other research, the autocorrelation factor has a significant impact 

on performance measures. As the autocorrelation amplifies, the cost of the inventory 

system increases as well. Moreover, as the autocorrelation increases, the error in the 

costs component y3(C) also increases. The predictive equation shows that errors 

generated in the cost component grow approximately exponentially in (j) . This equation 

can explain up to 98% of the cost differences between ignoring and considering the 

dependency component.

Regarding the error generated in the near-optimal inventory policy (s*, S *), 

empirical data indicate that its behavior is chaotic. As a result, characterization or 

description of the error was not viable.

5.6.1.2 Error characterization - AR(1) Analysis

Similar to the inventory model that considered DMC demands, error 

characterization were obtained, in the AR(1) case. To illustrate this investigation, the 

experiment ‘G’ was selected. Results for the rest of the experiments are presented in
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Appendix E.2. Table 23 reports the computational results of applying the SAPSRS 

algorithm to the stochastic inventory model using the selected setting.

4> Cost s* S* P (C ) P ( s*,S* ) D
IID = 0 3,789.09 2202 2854 0.00 0.00 651

0.1 3,795.28 2219 2856 6.19 15.62 637
0.2 3,815.09 1970 2866 26.00 230.54 896
0.3 3,845.03 2030 2871 55.94 162.86 841
0.4 3,901.62 2390 2888 112.53 150.60 498
0.5 3,979.33 2221 2907 190.24 189.37 686
0.6 4,096.55 2169 2949 307.46 305.69 780
0.7 4,280.87 1968 2992 491.78 432.54 1024
0.8 4,591.31 1626 3104 802.22 558.16 1477
0.9 5,098.00 1807 3290 1,308.91 1,247.88 1483

Table 23 Costs and Policy Error AR(1) - Experiement G

Notice that from Table 23, as the autocorrelation increases, the near-optimal 

reorder point s * tends to decrease while the level S  * increases. Observe that the order 

quantity increases as the autocorrelation increases.
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Figure 23 Costs Error Behavior AR(1)

Figure 23 shows the scatter plot, trend line, and the equation for the 

characterization of the (3(C) error generated by ignoring autocorrelation components in 

determining near-optimal (s*9S*) inventory control policy. The/?(C) error behaves as
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an exponential function and, as indicated by the R2 factor, the characterization has the 

capability of explaining up to 96% of the errors generated per autocorrelation factor. As 

the autocorrelation amplifies, the cost of the inventory system increases as well.

Tables E.1.1 -  E.2.8 in Appendix E show the experimental results obtained for 

error characterization of the near-optimal inventory policy. As in the DMC case, the 

behavior of the inventory policy error can be described as chaotic and ambiguous. 

However, the policy error obtained from experiment G presented a uniform behavior that 

made it possible to represent and obtain its description. Figure 24 illustrates the scatter 

plot and the equation for the characterization of the error generated by ignoring 

autocorrelation components J3(s*,S*). The error (3(s*,S*) behaves as an exponential

function and, as indicated by the R2 factor, the characterization has the capability of 

fitting up to 74% of the errors generated per autocorrelation factor.
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1, 200.00  -

1, 000.00  -

800.00 -

600.00 -

400.00 -

200.00  -

0.00
0.80.2 0.4 0.6

Figure 24 Inventory Policy Error Behavior

Similar values were obtained for (3(C) and (3(s*,S*) in the rest of the 

experiment presented in Appendix E. Aside from experiment G in the DMC demand
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case, most of the policy errors /3(s*,S*) presented a chaotic behavior. As a result, they 

could not be characterized.

In the next section, significance tests are conducted to validate the relevance of 

the obtained errors.

5.6.2 Error Evaluation - ANOVA test

To evaluate the significance of the error obtained in the costs and in the near-optimal 

inventory policy, a set of hypotheses are stated and tested using ANOVA. The 

hypotheses are presented in Table 24 as follows.

Hypothesis Statement Expression

1

H 0: The Error presented in the cost /3(C) per 
experiment is not significant. H<> ■ M p ( C ) _ C F  =  M /3 (C )_ A lilo co rreh le d

H a : The Error presented in the cost /3(C) per 
experiment is significant. ' M p ( C ) _ C F  ^ A 3 (C ) Autocorrelated

2

H 0: The Error presented in the near-optimal 
inventory policy /3(s*,S*) per experiment is not 
significant.

H0 ■ M { I (S* ,S ') CP =

Ha : The Error presented in the near-optimal 
inventory policy /3(s*,S*) experiment is 
significant.

'■ M p ( s *,S*)CF * V f l ( s * ,S * ) AMXOr„ w

Table 24 Hypothesis for error evaluation

Each hypothesis was tested per experiment and autocorrelation factor. Relevant 

interactions between autocorrelation factors and experiments were revealed. Results 

presented in Tables 25 and 26 indicated that there were significance interaction between 

these two factors.
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Dependent variable Interaction P-value
P(C) Autocorrelation* Experiment <0.0001
0(s*,S*) Autocorrelation* Experiment <0.0001

Table 25 Interaction between autocorrelation and experiment for costs and policy errors - DMC

Dependent variable Interaction P-value
P (Q Autocorrelation* Experiment <0.0001
P(s*,S*) Autocorrelation*Experiment <0.0001

Table 26 Interaction between autocorrelation and experiment for costs and policy errors - AR(1)

Both inventory models with AR(1) and DMC Demands were evaluated. Tables 

F.l -  F.4 in Appendix F show the p-values obtained for the rest of the experiments. To 

illustrate the significance of these errors, the IID for the AR(1) case and (j> = 0.1 for the 

DMC demand case are tested against the rest of the autocorrelation levels per experiment 

(pairwise comparison). Tables 27 and 28 show the resultant p-values for the cost and 

policy errors for the AR(1) case. Tables 29 and 30 provide the obtained p-values for the 

cost and policy errors for the DMC case.
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Experim ent

R ef 0 A B C D E F G H

0.1 0.931304 0.927706 0.920897 0.912796 0.843177 0.859183 0.765565 0.770789
0.2 0.798992 0.802639 0.698999 0.707429 0.465108 0.506025 0.211113 0.216559
0.3 0.545247 0.556107 0.408821 0.423709 0.086795 0.12826 0.007386 0.005162
0.4 0.268883 0.302496 0.12908 0.137779 0.00126 0.004466 1.15E-07 1.6E-07

IID 0.5 0.058904 0.081574 0.010147 0.012692 8.07E-08 1.94E-06 5.96E-18 1.18E-17
0.6 0.00291 0.006649 4.68E-05 7.33E-05 6.26E-17 1.09E-13 3.43E-38 3.15E-37
0.7 2.11E-06 1.18E-05 2.33E-10 6.17E-10 1.77E-35 4.21E-29 2.05E-72 5.52E-71
0.8 7.45E-14 5.15E-12 7.03E-23 4.52E-22 4.21E-69 3.17E-58 1.3E-122 1.2E-120
0.9 2.38E-34 2.35E-30 2.08E-53 2.85E-52 1.4E-128 1.1E-103 1.4E-182 4E-191

Table 27 P-values for Error in costs per Experiment and autocorrelation factor AR(1)

Experiment

Ref A B C D E F G H
0.1 0.205544 0.039003 0.163647 0.08902 0.047609 0.000731 0.268425 0.015704
0.2 0.009642 0.001282 0.102242 0.775973 0.016218 0.052341 0.057414 0.028596
0.3 0.007843 0.189082 0.006177 0.696552 0.347581 0.000547 0.000925 0.00479
0.4 0.149683 0.445137 0.065602 0.544169 0.019006 0.123852 0.20922 0.000334

IID 0.5 0.040629 0.555708 0.049749 0.131707 0.38221 0.522482 0.511119 0.116185
0.6 0.011717 0.075626 0.049729 0.529342 0.410175 6.51E-05 0.004047 0.386404
0.7 0.061316 0.11824 0.029174 0.044016 0.00101 0.055978 4.51E-05 0.023823
0.8 0.002131 0.006046 0.083449 0.021239 5.42E-05 1.51E-07 0.000229 0.016973
0.9 0.006913 0.021201 1.08E-05 7.12E-05 7.19E-06 2.15E-07 0.006509 0.004961

Table 28 P-values for Error in inventory policy per Experiment and autocorrelation factor AR(1)
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Experiment

Ref P 01 A B C D E F G H
0.1 0.2 0.242676 7.6E-06 0.401112 0.217905 5.2E-131 1.4E-92 2.06E-75 2E-87

0.3 0.023658 3.59E-10 0.038607 0.011487 4E-143 2.3E-169 1.14E-91 1.2E-102
0.4 0.000648 2.83E-13 0.001474 0.000133 1.1E-155 1.4E-179 4.9E-108 2.1E-118
0.5 2.19E-06 2.66E-16 6.14E-06 4.64E-07 1.5E-168 1.2E-189 1.1E-138 2.5E-134
0.6 1.8E-09 4.16E-22 7.74E-09 4.29E-11 2.6E-181 1.7E-200 3.2E-143 1.1E-150
0.7 7.37E-14 1.29E-27 1.62E-13 3.38E-16 1.3E-194 1.1E-212 6.4E-162 1.6E-166
0.8 2.32E-19 1.34E-34 4.48E-19 1.56E-21 9.7E-209 3.9E-225 7.6E-178 3.3E-185
0.9 2.01E-27 8.7E-44 9.55E-27 1.14E-29 1.8E-223 1.7E-238 1.7E-197 3.6E-202

Table 29 P-values for Error in costs per Experiment and autocorrelation factor MC

Experiment
Ref P 01 A B C D E F G H
0.1 0.2 0.021658 1.87E-05 0.68816 0.796806 0.005171 0.409411 5.27E-07 1.02E-07

0.3 0.000436 3.17E-08 0.32519 0.299867 7.38E-05 7.5E-07 8.58E-07 8.19E-07
0.4 0.018047 7.67E-10 0.298386 0.311597 0.000669 5.29E-06 1.77E-05 1.19E-05
0.5 0.014895 7.39E-08 0.852337 0.894194 1.62E-05 1.08E-05 8.45E-06 2.73E-05
0.6 0.004986 9.86E-06 0.383444 0.356937 2.25E-05 5.99E-08 7.14E-06 0.000117
0.7 0.059942 3.27E-10 0.314695 0.105792 1.23E-05 5.5E-06 0.000134 7E-05
0.8 0.015797 7.52E-07 0.614156 0.341949 0.000111 6.02E-07 0.000106 3.07E-06
0.9 0.152384 2.75E-07 0.3823 0.585639 2.06E-05 2.61E-07 0.030801 3.73E-05

Table 30 P-values for Error in inventory policy per Experiment and autocorrelation factor MC
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From the results obtained in Tables 27-30, one can conclude that most of the 

errors found in the costs and inventory policy are significantly different. These results are 

in accordance with the results obtained in evaluating significant difference between 

ignoring and considering correlated demands. In general, as the autocorrelation level 

increases, the errors become more significant. For lower levels of autocorrelation, results 

report a mix of cases, where certain experiments show no relevant difference while other 

experiments demonstrate highly significant differences. In all cases, middle and high 

levels of autocorrelation reported high levels of significant differences. Table 31 

summarizes major findings in the outcome of the ANOVA test evaluations.

Demand Error Experiments Description

AR(1)
P(C)

A,B,C, F, D, H Becomes significant at medium levels of ^
E, G Becomes significant from lower levels of (j)

P(s*,S*) A,B,D,E,F Most of the (j) are significant but erratic
C, G Becomes significant from lower levels of (j)

MC
P(C) All Becomes significant from lower levels of (j)

p(s*,S*) C,D Do not become significant
A, B,E,F,G,H Becomes significant from lower levels of (j)

Table 31 Significance test summary

5.6.3 Error characterization - Description

Once the errors have been determined and significance tests have been conducted, 

attempts to describe such behavior can be performed using traditional statistical tools. 

Visual inspection of the scatter plots from Figures 22 -  24 considering both types of 

demands indicate that:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

1. Cost Errors (3(C) present a uniform behavior that can be characterized. The behavior 

of the error can be described by a linear model using regression analysis. However, an 

exponential model seems to fit better with data behavior. Therefore, a nonlinear 

regression method is used.

2. Most of the policy errors (3(s*, S*) show an increasing erratic behavior. However, 

only results from two experiments, more specifically E and G from the AR(1) case, 

presented uniform behaviors that can be described.

As mentioned in remark 1, nonlinear regression techniques to characterize these 

errors are advisable. Devore (2004) provides a regression method with transformed 

variables in which the obtained value is transformed by a linearization method. In this 

case, the transforming method is described as follows.

Function Transformation to linearize Lineal form

y  = aePx y ' = ln(y) y ' = \n(a) + j3x

Where y  is dependent variable, a  is the interception point, (3 is the slope (y  increases 

if (3 >0, or decreases if (3 <0 ), and y ' is the dependent variable transformed.

Tables G.1.1 -  G.1.6 in Appendix G show the linearization process and the 

regression analysis for the errors generated in estimating the average total cost (3(C). 

Parameters for the exponential equations were automatically generated using the trend 

line function from MS Excel.
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EXP EQUATION R2
A y = 32.142e2 1705x 0.9966
B y = 31,306e2'3793x 0.9913
C y = 31,432e2'2028x 0.9956
D y = 31.31 le 22582x 0.9949
E y = 149.9e24359x 0.9671
F y = 145.6e2 6463x 0.956
G y = 150.54e23298x 0.9832
H y = 152.49e23483x 0.9877

Table 32 Cost Error Description for DMC demand

EXP EQUATION R2
A y = 1.3077e49471x 0.9907
B y = 1.6371 e5 8101x 0.9800
C y = 2.0823e60337x 0.9690
D y = 2.1737e5.9358x 0.9744
E y = 4.1542e6 1395x 0.9680
F y = 3.8246e6 0407x 0.9560
G y = 6.6683e6 1759x 0.9629
H y = 6.5507e62118x 0.9629

Table 33 Cost Error Description for AR(1) demand

Similar reasoning was used to characterize the error generated by the inventory 

policy for experiments E and G from the inventory model that considered AR(1)

EXP EQUATION R2
E ■ y = 78.719b1 7661x 0.5405
G y = 33.702e38063x 0.7433

Table 34 Inventory Policy Error Description for AR(1) demand

Notice that values for R2 from Tables 32 and 33 are above 95%, which indicate a 

good fit of the estimated original nonlinear model to the observed responses. Table 34 

indicates that the linear model for experiment G can explain up to approximately 75% of 

the obtained errors.
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5.7 Validation and verification

5.7.1 Introduction

In the preceding sections, the effects of ignoring the autocorrelation components have 

been determined through applying the SAPSRS algorithm, which accounts for this 

component. This section deals with validating and verifying the purpose and workings of 

the proposed heuristic.

5.7.2 Validation

Validation is the process of determining the degree to which a model (and data) is an 

accurate representation of the real world from the perspective of the model’s intended 

usage (DOD, 1996). SAPSRS is intended to generate and provide near-optimal inventory 

policies that minimize total costs considering the autocorrelated DMC and AR(1) 

demands. To accomplish this goal, two additional variables, stockout and replenishment 

rates, are considered. The stockout rate is referred to as the average of the times that the 

system has not able to totally satisfy a given demand per period of time, in other words, 

when the inventory level reaches zero. The replenishment rate is referred to as the 

average of the times that the inventory level reaches the reorder point triggering an order. 

Some authors have demonstrated that for some continuous demand distributions, as the 

autocorrelation increases, the stockout increases as well (Zinn et al., 1992; Chames et al., 

1995; Urban, 2000). This is apparent since as the autocorrelation component increases 

the variability increases while decreasing the probability of facing certain demands (Zinn 

et al., 1992). To demonstrate this point, experiment D from the AR(1) case is considered.
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Assuming that the inventory policy is near-optimal for the IID case, the stockout 

and the replenishment rates are determined. Thus, if autocorrelation factors are ignored, 

and the obtained policy is assumed to be near-optimal for the system, the increasing 

autocorrelation levels lead to an increasing variability that pushes total costs and stockout 

rates higher. Table 35 shows results obtained for assuming the IID inventory policy to be 

near-optimal (2521, 3082) at different levels of autocorrelation factors.

Auto Cost Stockout Replenishment
IID 5,372.6 0.021 0.9999
0.1 5,380.5 0.027 0.9999
0.2 5,381.9 0.029 0.9999
0.3 5,395.2 0.033 0.9999
0.4 5,409.75 0.039 0.9999
0.5 5,447.62 0.050 0.9999
0.6 5,498.25 0.070 0.9999
0.7 5,615.38 0.090 0.9997
0.8 5,866.12 0.130 0.9890
0.9 6,687.92 0.200 0.9860

0.95 8,217.31 0.260 0.9850
0.99 18,196.85 0.454 0.9853

Table 35 Effects of using policy obtained assuming IID in stockout and replenishment rates

Notice how the autocorrelation factor leads to an increase in total costs and 

stockouts as the autocorrelation increases while replenishment is kept ordering almost all 

the time.

As a result, given the nature of the demand, the inventory model, and the behavior 

of the stockout and replenishment rates, the following proposition may prove that the 

policy found by the heuristic leads to a better approximation than would be obtained by 

ignoring the autocorrelation factors.
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Proposition

I f  the proposed simulation optimization procedure finds a near-optimal inventory policy 

considering serially-correlated demands, stockouts in the inventory system should be kept 

controlled to a certain level as the autocorrelation increases.

Evidence

Table 36 shows the proposed near-optimal inventory policy with the associated stockout 

and replenishment rates by autocorrelation factor.

Auto Cost s S D Stockout Replan
IID 5,370.93 2521 3082 561 0.0210 0.9999
0.1 5,373.20 2246 3082 836 0.0210 0.9999
0.2 5,378.72 2572 3099 527 0.0270 0.9999
0.3 5,387.55 2571 3107 536 0.0250 0.9999
0.4 5,401.80 2576 3133 557 0.0220 0.9999
0.5 5,422.93 2308 3167 859 0.0230 0.9999
0.6 5,454.29 2663 3222 559 0.0240 0.9999
0.7 5,503.32 2299 3320 1021 0.0210 0.9997
0.8 5,587.05 1951 3491 1540 0.0210 0.989
0.9 5,753.69 2119 3865 1745 0.0270 0.986

Table 36 Stockout, ordering, and replenishment rate for obtained near-optimal policy - AR(1) case

From Table 36, notice how the stockout rate is kept fairly constant with variations 

<0.01 throughout the exposed autocorrelation factor level. The replenishment rate barely 

decreases as the autocorrelation factor increases suggesting that even though there is an 

improvement in the stockout rate, the highly noisy demand keeps the inventory system 

ordering most of the time.
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5.7.3 Verification

Verification is the process of determining that a model implementation accurately 

represents the developer’s conceptual description and specifications (DOD 1996). In this 

dissertation, it is argued that the algorithm SAPSRS enhanced traditional SA. This 

enhancement incorporates PS and R&S into the searching and evaluation process. The 

enhancement of this technique was defined and measured by the number of times that a 

candidate solution improved upon the evaluation process. Tables 38 and 39, and Figures 

25 and 26 present the values and a pie chart representing such information.

S A P S R S -A R (1 )

Exp %
A 0.3885
B 0.3453
C 0.3666
D 0.3408
E 0.4569
F 0.4277
G 0.4160
H 0.4098

Table 37 Portion o f candidate solutions enhanced by SAPSRS algorithm per Experiment

SAPSRS for AR(1) Case

39%

■ Enhanced 
□ Regular61%

Figure 25 Overall Portion of candidate solutions enhanced by SAPSRS algorithm
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SAPSRS  
Correlated DMC

Exp %
A 0.6053
B 0.5996
C 0.6218
D 0.6177
E 0.5963
F 0.5613
G 0.5564
H 0.5374

Table 38 Portion o f candidate solutions enhanced by SAPSRS algorithm for DMC Case

SAPSRS - Correlated Markovian Case

41%

59%

■  E n h a n c e d  

□  R eg u la r

Figure 26 Overall Portion of candidate solutions enhanced by SAPSRS algorithm - correlated
DMC demand

Notice that the new SAPSRS algorithm reported a 40%-60% improvement in 

evaluating and selecting candidate solutions. Further, given a candidate solution produced 

by SA, PS with R&S proposed, evaluated, and selected a candidate solution that reported 

a better performance.
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6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions from the Proposed Research Questions

In accordance with the structure of the research questions proposed in this study 

summarized in section 1.4, the first research question addresses methodological 

frameworks that allow handling and solving stochastic inventory models that present 

dependency in their input variables. The second and third questions address the impact of 

considering dependency issues in traditional measures of performance in inventory 

models, namely total cost, reorder points, and order quantity. The fourth research 

question addresses the description of the error generated by methods that ignore 

dependency issues. The fifth question proposes a validation mechanism to verify that the 

obtained inventory policy represents a near-optimal policy.

Notice that these research questions have cumulative effects, moving from a 

general belief toward a contingent view. When the SAPSRS algorithm is designed and 

implemented in section 4.3.3, the first research question is addressed. When the algorithm 

is used and results are generated and presented in sections 5.4 and 5.5, the implications 

for the second, third, and fourth research questions become self-explanatory. Once the 

differences are obtained and effects are determined, the error is characterized in section 

5.6. Finally, in section 5.7, the effectiveness of the proposed algorithm in obtaining near- 

optimal inventory policy is validated by comparing costs and stockout rates. In addition, 

statistical information concerning improvements in the evaluation step of SAPSRS 

algorithm using PS and R&S is presented.
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6.2 Implications and Discussion

Through a detailed analysis of the cost and inventory policy impact upon stochastic 

inventory lost sales models that ignore continuous and discrete autocorrelated demands, 

this study suggests several points.

I. Inventory stochastic models that ignore AR(1) or DMC may lead to misleading 

inventory policies that result in higher total cost.

In other words, ignoring autocorrelation components leads to overestimating total 

costs in the inventory system. Tests of significance support these findings. Thus, 

methods that fail to consider autocorrelated demands lead to an erroneous inventory 

policy.

Regardless of the type of dependent demand considered, the error in the costs of 

ignoring this component is significantly relevant and increases as the autocorrelation 

increases. From the reorder level perspective, as the serial-correlated is incremented, 

the reorder point is lower compared to the one obtained by the correlation-free 

demand. This is true for both for both autocorrelated AR(1) and the DMC case. The 

order quantity also increases as the autocorrelation widens. Reorder points and order 

quantities present significant differences for all values between the correlated and 

correlation-free in the DMC case. For the AR(1) case, all costs were significantly 

different while the differences obtained in reorder points and order quantity were 

significant at higher levels of autocorrelation.
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II, The effects o f  holding costs and the interaction o f ordering and holding costs have the 

most relevant impact.

Another issue relates to the main effects and interactions observed in total costs, 

reorder points, and order quantity as the autocorrelation varies. From the analysis of 

the main effects, holding costs represent the factor that has a major impact on the 

studied inventory models. The obtained values reported that the effect becomes 

stronger as the correlation component increases. For the total costs, holding costs 

become stronger, driving it higher as the autocorrelation increases. In addition, the 

effect of holding costs is strongly negative on the reorder point while positive on the 

order quantities. In other words, the higher the autocorrelation, the lower the obtained 

reorder point and the higher the order quantity. On the one hand, as the 

autocorrelation increases, holding costs make the inventory system more expensive, 

which pushes reorder points lower in order to minimize total costs. On the other hand, 

the lower reorder point enforces the increase in order quantity. The effect of the 

holding cost factor on total costs, and reorder point is significant for almost all levels 

of autocorrelation components in both cases. The individual impact of the penalty 

costs and ordering cost increases and decreases respectively for both cases. These 

factors are only significant at higher levels of autocorrelation for the DMC case.

The analysis of two-way interactions indicates that in total costs, the ordering- 

holding cost interaction poses the highest magnitude and becomes weaker as the 

autocorrelation increases. In addition, penalty-ordering and penalty-holding costs 

become stronger and make total costs higher. However, only the interaction between 

penalty and holding costs is significant. The effect that holding cost has on total costs
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depends upon the levels of penalty costs and vice versa. As a result, there is further 

indication that in order to observe increase or decrease in total costs, both penalty and 

holding costs must be set at comparable levels. Additional significant interactions 

were observed at the highest levels of autocorrelation for ordering-penalty and 

ordering-holding costs only for the DMC case. This suggests that at such dependency 

levels, the effects of each factor on total costs depend upon the effect of one on 

another. For the reorder points and order quantities, the description of interactions 

shows an erratic behavior. Only the penalty-holding cost interaction consistently 

shows significance at higher levels of autocorrelation. This reinforces the view that 

the impact of such interaction is significant in the inventory model.

III. Errors generated in total cost, reorder, and order quantity can be quantified and 

characterized.

A third point relates to analyzing the error produced in the cost, reorder, and order 

quantity of the (.s', S) policy. Above, it was mentioned that there are significant 

differences between methods that ignore dependency and those that acknowledge it; 

the produced errors were quantified and characterized. ANOVA tests were conducted 

to evaluate the significance of these errors. As a result, most experiments show a 

significant difference that increases as the serially-correlated component increases. As 

predicted, costs error behaved in an exponential fashion. Most of the errors obtained 

for near-optimal policies presented an erratic behavior. Only policy errors presented 

in two of eight experiments that presented AR(1) demands showed a uniform 

behavior that could be characterized as an exponential function. In the DMC case, 

differences between correlated and correlation-free cases were tested using ANOVA.
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Most of the experiments showed significant differences at higher levels of 

autocorrelation while half of them posed significant difference from lower to higher 

levels. This supports findings that the (.s’, S) policy is not optimal for inventory 

systems that do not assume IID demands (Iyer & Schrage, 1992).

IV. Empirical validation and verification o f SAPSRS heuristic.

The effectiveness of the algorithm was analyzed by demonstrating its ability to obtain 

near-optimal policies. To verify this, total costs and stockout rates were compared. 

The First-autoregressive AR(1) case was selected to validate and verify the algorithm.

Total costs and stockouts rates were obtained by ignoring the autocorrelation 

factor while using the near-optimal inventory policy found for the IID case. As 

expected and consistent with other research (Zinn et al., 1992; Charnes et al., 1995; 

Urban, 2000), the empirical evidence demonstrated that as the autocorrelation 

component increases and is ignored, total costs and stockouts increase. In addition, an 

increasing level of stockouts along with high reorder points and lower ordered 

quantities forces the inventory system to constantly order items. This keeps 

replenishment rates high as well.

When autocorrelation was ignored, service level in terms of stockouts was 

decreased by almost 50% from 98% while total cost increased nearly three times. By 

using the near-optimal policy suggested by SAPSRS and considering the 

autocorrelation factor, service level was kept around 98% while total cost increased 

only a little.
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V. The SAPSRS algorithm reported a 40%-60% improvement in evaluating and 

selecting candidate solutions.

A final point involves the efficiency of the presented algorithm. The efficiency of 

this technique was defined and measured by the times that a candidate solution 

improved upon the evaluation process. As a result, the new SAPSRS algorithm 

reported a 40%-60% improvement in evaluating and selecting candidate solutions. 

Specifically, given a candidate solution generated by SA, PS combined with R&S 

proposed and selected a solution that reported a better performance between 40 and 

60 % of the time.

6.3 Managerial Implications

This study suggests that modeling and solving stochastic inventory models that ignore 

serially-correlated components in the demands when they are present lead to serious and 

significant errors. From the obtained empirical data and the analysis described above, 

implications for a manager that suspects that the facing demand contains autocorrelated 

components include:

1. Observe the behavior of the demand and determine if it contains autocorrelation 

components. Visual inspection, Durbin-Watson statistics, and calculating the sample 

autocorrelation function are generally recommended techniques to detect 

autocorrelated components (Neter, Wasserman, & Kutner, 1990; Zinn et al., 1992; 

Pinder, 1996).

2. If autocorrelation components are identified, the manager may use the method 

presented in this study to mitigate the effects of autocorrelation. In general, the
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empirical results of applying this method suggest that to mitigate the effects of 

autocorrelation, the manager may

a. Make the reorder point smaller.

b. Increase the order quantity.

c. Evaluate stockouts and decide whether to increase replenishment rates.

The rationale behind this reasoning can be explained as follows. From the

experiments, for the analyzed lost sales inventory model, holding costs dominate and 

become stronger and highly significant as the autocorrelation increases. As a result, 

reducing minimum stock or reorder levels implies a reduction in holding cost. Increasing 

the order quantity leads to increasing ordering costs. However, the empirical data shows 

that the effects of ordering costs on total cost decreases as the autocorrelation increases. 

Therefore, as demonstrated in the results obtained in the DMC case, a reduction in the 

reorder point combined with an increase on the ordered quantity reported better 

performance of the inventory system. Nonetheless, in parallel, stockout rates should be 

monitored. If they are not significant, empirical evidence demonstrates that replenishment 

rates will decrease. However, if stockouts are present and are significant, the 

replenishment rate will be high as well.

Empirical results indicate that managers may obtain a better performance of their 

inventory system by acknowledging that autocorrelated components may be present in 

the inflow demand and by following the described actions.
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6.4 Summary

Stochastic lost sales inventory models that present autocorrelated demands are very 

common in competitive markets. The error characterization presented in this research 

provides insights into how autocorrelated demand affects the estimation of total costs and 

control policies. Acknowledging these errors results in a requirement for a correction 

method for countering the effects of autocorrelated demand. As a result, inventory 

control policies that recognize and deal with dependency components need to be set 

efficiently in order to satisfy customer demands. In this dissertation, a method to 

approximately solve the inventory problem that presents autocorrelated demand has been 

developed. To model and solve this complex inventory problem, a simulation 

optimization technique called SAPSRS was developed and implemented. This approach 

combined and adapted three well-known heuristics that include SA, PS, and R&S.

The SAPSRS algorithm was implemented in a computer program that was 

developed using the C++ language. This program is subdivided into three parts. One 

piece models and generates autocorrelated demands from a Discrete Markov Chain 

distribution and from an AR(1) continuous process. A second part includes a simulation 

model that represents and mimics the behavior of a lost sales inventory model. Finally, 

the third part of the program includes the algorithm that explores a decision space and 

proposes, evaluates, and selects candidate solutions. Extensive numerical analysis to test 

the efficiency of the methodology has been used.

Managerial implications include recognizing the effects of autocorrelation in the 

stochastic demand and using the SAPSRS algorithm to obtain more realistic and reliable 

control policy settings.
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6.5 Future Research Directions

In this section, specific research directions following from this dissertation are discussed:

1. Studying other inventory models

The inventory model studied in this research includes the lost sales case and assumes 

immediate replenishment. The described situation can be found in food retailers in 

which replenishment of items occur overnight. If the backlogging case is considered 

and different replenishment rules are set, the mechanics of the inventory model must 

be changed. In this sense, other types of retailers, such as department store may 

experience a delay in receiving certain class of order. This delay in which lead times 

are larger than zero changes the mechanics of the inventory system.

2. Studying the effect of autocorrelation demand in other inventory policies

This research was designed to study the effects of autocorrelations in terms of the 

continuous (s, S) policy. However, there are many inventories that use other types of 

policy, i.e. a combination of periodic and continuous review policy (Q, s, S). The 

effect of autocorrelation might be different and a different set of rules to face the 

autocorrelated demand may be required. As a result, the workings of setting and 

evaluating the proposed inventory policy must be changed.

3. Studying other types of stochastic dependent demand

The studied autocorrelated demand is either DMC or continuous AR(1). However, in 

the inventory model, other types of dependent demand with seasonal effects might be 

present, i.e. ARIMA. If additional dependency is considered, the algorithms for data
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generation have to include such additional sources of dependency. Thus, the near- 

optimal policy and measures of performance could be more realistic.

4. Investigating the effects of high autocorrelations and obtaining their 

characterizations

As demonstrated, in the DMC case, individual cost components and their interaction 

have a high impact on the performance of the system. These components are related 

in such a way that they affect each other with certain significant magnitude. Further 

research is required to describe the behavior of the system at high levels of the 

serially-correlated components. This would allow focusing and managing those 

factors that most influence the system.

5. Applications of this methodology to other areas and fields

This study solves the problem of an inventory system that presents autocorrelated 

demands. However, other similar problems may be faced in different areas and fields 

where autocorrelation components could be present in the input processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



132

7 REFERENCES

Aarts, E. & Korts, J. (1989). Simulated Annealing and Boltzmann Machines. A Stochastic 
Approach to Combinatorial Optimization and Neural Computing. Wiley.

Aarts, E. & Lenstra, J. K. (2003). Local Search in Combinatorial Optimization. 
University Press.

Ahmed, M. A. & Alkhamis, T. M. (2002). Simulation-based optimization using simulated 
annealing with ranking and selection. Computers & Operations Research, 29, 
387-402.

An, B.-G., Fotopoulos, S. B., & Wang, M.-C. (1989). Distribution for an Autocorrelated 
Demand by the Pearson System and a Normal Approximation. Naval Research 
Logistics, 36, 463-477.

Avriel, M. (2003). Nonlinear Programming: Analysis and Methods. Dover Publishing.

Back, T. (1996). Evolutionary Algorithm in Theory and Practice. New York, NY: Oxford 
University Press.

Banks, J., Carson, J., & Nelson, B. (1996). Discrete-event System Simulation. (2 ed.) 
Prentice Hall.

Basawa, I. V. (1972). Estimation of the Autocorrelation Coefficient in Simple Markov 
Chains. Biometrika, 59, 85-89.

Bechhofer, R. E., Dunnett, C. W., & Sobel, M. (1954). A Two-Sample Multiple Decision 
Procedure for Ranking Means of Normal Populations with a Common Unknown 
Vfiance. Biometrika, 41, 170-176.

Behrends, E. (2000). Introduction to Markov chains with special emphasis on rapid 
mixing. Vieweg.

Bernard, P. (1999). Integrated inventory management. John Wiley and Sons.

Bertsimas, D. & Paschalidis, I. C. (2001). Probabilistic Service Level Guarantees in 
Make-To-Stock Manufacturing Systems. Operations Research, 49, 119-133.

Biller, B. & Nelson, B. (2003). Modeling and generating multivariate time-series input 
processes using a vector autoregressive technique. ACM Transactions on 
Modeling and Computer Simulation, 13, 211-237.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

Biller, B. & Soumyadip, G. (2004). Dependence modeling for stochastic simulation. In
(pp. -161).

Boyd Stephen & Vandenberghe Lieven (2004). Convex optimization. Cambridge 
University Press.

Cario, M. C. & Nelson, B. (1997). Modeling and generating random vectors with 
arbitrary marginal distributions and correlation matrix. Technical Report, 
Department of Industrial Engineering and Management. Department of 
Industrial Engineering and Management Sciences, Northwestern University.
Ref Type: Generic

Cario, M. C. & Nelson, B. (1996). Autoregressive to anything: Time-series input 
processes for simulation. Operations Research Letters, 19, 51-58.

Charnes, J. M., Marmorstein, H., & Zinn, W. (1995). Safety Stock Determination with 
Serially Correlated Demand in a Periodic-Review Inventory System. The Journal 
o f the Operational Research Society, 46, 1006-1013.

Chen, C. H. (1995). An effective approach to smartly allocate computing budget for 
discrete event simulation. In In Proceedings o f the 34th IEEE Conference on 
Decision and Control, (pp. 2598-2605). Piscataway, N.J.: IEEE.

Chen, C. H., Chen, H. C., & and Dai, L. (1996). A gradient approach for smartly 
allocating computing budget for discrete event simulation. In (pp. 398-405). 
Piscataway, N.J.: IEEE.

Chen, C. H., Yuan, Y., Chen, H. C., Yucesan, E., & Dai, L. (1998). Computing budget 
allocation for simulation experiments with different system structures. In 
Proceedings o f  the 1998 Winter Simulation Conference. M. Abrams, P. Haigh, 
andJ. Comfort, (pp. 735-741). Piscataway, N.J.: IEEE.

Chen, H. C., Chen, C. H., and Dai, L., & Yucesan, E. (1997). New development of
optimal computing budget allocation for discrete event simulation. In (pp. 334- 
341). Piscataway, N.J.: IEEE.

Cheng, F. & Sethi, S. P. (1999). A Periodic Review Inventory Model with Demand 
Influenced by Promotion Decisions. Management Science, 45, 1510-1523.

Chick, S. E. (1997). Selecting The Best System: A Decision-theoretic Approach. In (pp. 
326-333).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134

Cohen, M. A., Kleindorfer, P. R., & Lee, H. L. (1988). Service Constrained (s, S)
Inventory Systems with Priority Demand Classes and Lost Sales. Management 
Science, 34, 482-499.

Davis, L. (1987). Genetic Algorithms and Simulated Annealing. Pitman - Morgan 
Kaufmann publisher.

Devore, J. L. (2004). Probability and statistics for engineering and the sciences. (Sixth 
ed.) Duxbury Thomson Brook/Cole.

DOD, D. o. D. (1996). Instruction 5000.61, M&S Validation, Verification & 
Accreditation.

Dorigo, M. & Stutzle, T. (2004). The ant colony optimization meta-heuristic. Cambridge, 
MA: MIT Press.

Dreyfus, S. a. & Law, A. M. (1977). The art and theory o f  dynamic programming, (vols. 
130) Academic Press.

Dudewicz, E. J. & Dalai, S. R. (1975). Allocation of observations in ranking and 
selection with unequal variances. Sankhya, 37, 28-78.

Durret, R. (1999). Essentials o f  Stochastic Processes. Springer-Verlag.

Erkip, N. K. & Hausman, W. H. (1994). Multi-Echelon vs. Single-Echelon Inventory 
Control Policies for Low-Demand Items. Management Science, 40, 597-602.

Feng, C. & Suresh, P. S. (1999). Optimality of state-dependent (s, S) policies in inventory 
models with Markov-modulated demand and lost sales. Production and 
operations management, 8, 183.

Fishman, G. A. (2005). A first course o f Monte Carlo Simulation. Thompson Bookstore.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial Intelligence Through 
Simulated Evolution. New York, NY.

Ghosh, S. & Henderson, S. G. (2002). Chessboard Distributions and Random Vectors
with Specified Marginals and Covariance Matrix. Operations Research, 50, 820- 
834.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine 
Learning. Reading, MA: Addison-Wesley.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

Goldsman, D. (1985). Ranking and selection procedures using standardized time series.
In Proceedings o f  the 17th Conference on Winter Simulation. D. T. Gantz, G. C. 
Blais, and S. L. Solomon, Eds. (pp. 120-124). New York, NY: ACM Press.

Hill, R. R. & Reilly, C. H. (1994). Composition for multivariate random variables. In (pp. 
332-339).

Hillier, F. & Lieberman, G. (2001). Introduction to Operations Research. (7 ed.)
McGraw Hill.

Holland, J. H. (1975). Adaption in Natural and Artificial System. Ann Arbor, MI: The 
University of Michingan Press.

Hoos, H. H. & Stutzle, T. (2005). Stochastic Local Search: Foundations and 
Applications. Morgan Kaufmann Publishers.

Inderfurth, K. (1995). Multistage Safety Stock Planning with Item Demands Correlated 
Across Products and Through Time. Production and operations management, 4, 
127-144.

Inoue, K. & Chick, S. E. (1998). Comparison of Bayesian and frequentist assessments of 
uncertainty for selecting the best system. In (pp. 727-734).

Iyer, A. Y. & Schrage, L. E. (1992). Analysis of the Deterministic (s, S) Inventory 
Problem. Management Science, 38, 1299-1313.

Johansen, S. G. & Hill, R. M. (2000). The (r,Q) control of a periodic-review inventory 
system with continuous demand and lost sales. International Journal o f  
Production Economics, 68, 279-286.

Johnson, G. D. & Thompson, H. E. (1975). Optimality of Myopic Inventory Policies for 
Certain Dependent Demand Processes. Management Science, 21, 1303-1307.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated 
Annealing. Science, 220, 671-680.

Kleijnen, J. (1987). Statistical tools for simulation practitioners. New York: Marcel 
Dekker.

Kolda, T. G., Lewis, R. M., & Torczon, Y. (2004). Optimization by Direct Search: New 
Perspectives on Some Classical and Modem Methods. SIAM Review, 45, 385-482.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136

Kolinski, A. & Skolnick, J. (1994). Monte Carlo simulations of protein folding. Proteins: 
Structure, Functions, and Genetics, 18, 353-366.

Krajewski, L. & Ritzman, L. (2004). Operations Management Strategy and Analysis. (7 
ed.) Prentice Hall.

Law, A. M. & Kelton, D. (2000). Simulation Modeling and Analysis. (3 ed.) McGraw 
Hill.

Lee, H. L., So, K. C., & Tang, C. S. (2000). The Value of Information Sharing in a Two- 
Level Supply Chain. Management Science, 46, 626-643.

Lewis, R. M. & Torczon, V. (1996). Rank ordering and positive bases in pattern search 
algorithms. NASA Research center. Report ICASE 96-71.
Ref Type: Generic

Loureno, H., Martin, O., & Stutzle, T. (2003). Iterated Local Search. In (pp. 320-353).

Magson, D. W. (1979). Stock Control When the Lead Time Cannot be Considered 
Constant. The Journal o f the Operational Research Society, 30, 317-322.

Marinari, E. & Parisi, G. (1992). Simulated tempering: A new Monte Carlo methods'. 
Europhysics Letters.

Marmorstein, H. & Zinn, W. (1993). A conditional effect of autocorrelated demand on 
safety stock determination. European Journal o f Operational Research, 68, 139- 
142.

Martin, O. & Otto, S. (1996). Combining simulated annealing with local search 
heuristics. Annals o f  Operations Research, 63, 57-75.

Martin, O., Otto, S., & Feltern, E. W. (1991). Large-Step Markov Chains for the 
Traveling Salesman Problem. Complex Systems, 5, 299-326.

Melamed, B., Hill, J. R., & Goldsman, D. (1992). The TES methodology: modeling 
empirical stationary time series. In (pp. 135-144). New York, NY, ACM Press.

Nelson, B. L., Swann, J., Goldsman, D., & Song, W. (2001). Simple Procedures for
Selecting the Best Simulated System When the Number of Alternatives Is Large. 
Operations Research, 49, 950-963.

Neter, J., Wasserman, W., & Kutner, M. (1990). Autocorrelation in time series data. In 
Applied Linear Statistical Models (3 ed., pp. 484-504). Irwin.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

Osman, I. & Kelly, J. (1996). Meta-Heuristics: Theory and Applications.

Otten, R. H. J. M. & van Ginnenken, L. P. P. P. (1989). The Annealing algorithm. Kluwer 
Academic Publisher.

Papalambros, P. & Wilde, D. J. (2000). Principles o f Optimal Design: Modeling and 
Computation. Cambridge University Press.

Pham, D. T. & Karaboga, D. (2000). Intelligent optimization techniques. Genetic 
algorithm, tabu search, simulated annealing, and neural networks. Springer.

Pinder, J. P. (1996). Nonlinear Dynamical Systems and Inventory Management. 
Managerial and Decision Economics, 17, 27-43.

Prinzie, A. & Van den Poel, D. (2006). Investigating purchasing-sequence patterns for 
financial services using Markov, MTD and MTDg models. European Journal o f 
Operational Research, 170, 710-734.

Ray, W. D. (1982). ARIMA Forecasting Models in Inventory Control. The Journal o f the 
Operational Research Society, 33, 567-574.

Ray, W. D. (1981). Computation of Reorder Levels When the Demands are Correlated 
and the Lead Time Random. The Journal o f the Operational Research Society,
32, 27-34.

Ray, W. D. (1980). The Significance of Correlated Demands and Variable Lead Times 
for Stock Control Policies. The Journal o f the Operational Research Society, 31, 
187-190.

Rinott, Y. (1978a). On Two-stage Selection Procedures and Related Probability- 
Inequalities. Communications in Statistics, A7, 799-811.

Rinott, Y. (1978b). On two-stage selection procedures and related probability-
inequalities. Communications in Statistics - Theory and Methods, 7, 799-811.

Schwefel, H. (1981). Numerical Optimization o f Computer Models. Chichester, UK: John 
Wiley & Sons.

Silver, E. (1985). Decision systems for inventory management and production planning, 
2nd edition, (1985). (2 ed.) John Wiley and Sons.

Sriver, T. A. & Chrissis, J. W. (2004). Combined pattern search and ranking and 
selection for simulation optimization. In (pp. -653).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

Stadtler, H. & Kilger, C. (2002). Supply Chain Management and Advanced Planning - 
Concepts, Models, Software and Case Studies. (2 ed.) Springer-Yerlag.

Taha, H. (2002). Operations Research, An Introduction. (7 ed.) Prentice Hall.

Tekin, E. & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review 
on theory and applications. HE Transactions, 36, 1067-1081.

Tersine, R. (1988). Principles o f Inventory and Material management. (3 ed.) North 
Holland.

Toktay, L. B., Wein, L. M., & Zenios, S. A. (2000). Inventory Management of 
Remanufacturable Products. Management Science, 46, 1412-1426.

Torczon, V. (1997). On the Convergence of Pattern Search Algorithms. SIAM Journal on 
Optimization, 7, 1-25.

Treharne, J. T. & Sox, C. R. (2002). Adaptive Inventory Control for Nonstationary 
Demand and Partial Information. Management Science, 48, 607-624.

Urban, T. L. (2000). Reorder Level Determination with Serially-Correlated Demand. The 
Journal o f the Operational Research Society, 51, 762-768.

Urban, T. L. (2005). A periodic-review model with serially-correlated, inventory-level- 
dependent demand. International Journal o f Production Economics, 95, 287-295.

van Laarhoven, P. J. M. & Aarts, E. (1987). Simulated Annealing: theory and 
applications. D. Reidel Publishing Company.

Veinott, A. F., Jr. (1965). Optimal Policy in a Dynamic, Single Product, Nonstationary 
Inventory Model with Several Demand Classes. Operations Research, 13, 761- 
778.

Veinott, A. F., Jr. & Wagner, H. M. (1965). Computing Optimal (s, S) Inventory Policies. 
Management Science, 11, 525-552.

Voudouris, C. & Tsang, E. (1999). Guided local search and its application to the traveling 
salesman problem. European Journal o f Operational Research, 113, 469-499.

Ware, P. P., Page, T. W., & Nelson, B. (1998). Automatic modeling of file system
workloads using two-level arrival processes. ACM Transactions on Modeling and 
Computer Simulation, 8, 305-330.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

Wenzel, W. & Hamacher, K. (1999). Stochastic Tunneling Approach for Global
Minimization of Complex Potential Energy Landscapes. Physical Review Letters, 
82, 3003-3006.

Zinn, W., Marmorstein, H., & Chames, J. M. (1992). The Effect of Autocorrelated 
Demand on Customer Service. Journal o f Business Logistics, 13, 173.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDICES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A R e s p o n se s  f o r  M a r k o v ia n -m o d u la te d  a n d  AR(1) c a s e s  

Appendix A.I. Responses: Markovian Case

a. Experiment description

Experiment c p+C h
A 1 5*(#items) +100 0.5
B 2 5*(#items) +100 0.5
C 1 19*(#items) +200 0.5
D 2 19*(#items) +200 0.5
E 1 5*(#items) +100 2.5
F 2 5*(#items) +100 2.5
G 1 19*(#items) +200 2.5
H 2 I9*(#items) +200 2.5

b. Response

P01 <P CostDep sDep Sdep CostllD sllD SllD ddep diid
0.10 -0.15 2,978.27 1407 3008 3,001.64 2497 3004 1601 507
0.20 0.13 3,169.52 1433 3024 3,212.75 2340 3031 1591 691
0.30 0.29 3,192.08 2292 4001 3,250.35 3298 4002 1709 704
0.40 0.38 3,178.56 2503 4003 3,250.54 3335 4002 1500 667
0.50 0.45 3,166.57 2375 4003 3,250.02 3277 4002 1629 724
0.60 0.49 3,155.09 2341 4004 3,250.04 3257 4002 1663 745
0.70 0.53 3,145.49 2581 4003 3,250.18 3279 4002 1421 723
0.80 0.56 3,136.55 2408 4005 3,250.40 3336 4003 1597 667
0.90 0.64 3,127.15 1941 4004 3,250.72 3296 4002 2063 706

Table A.1.1 Response Experiment A

P01 CostDep sDep Sdep CostllD sllD SllD ddep diid
0.10 -0.15 5,433.43 1450 3006 5,456.29 2334 3004 1556 670
0.20 0.13 5,585.91 1512 3014 5,629.51 2434 3009 1502 575
0.30 0.29 5,690.22 2515 4003 5,750.01 3127 4003 1488 876
0.40 0.38 5,675.00 2293 4005 5,748.13 3318 4002 1712 685
0.50 0.45 5,660.02 2451 4007 5,748.27 3287 4005 1555 718
0.60 0.49 5,652.00 2637 4008 5,748.84 3317 4003 1372 686
0.70 0.53 5,642.42 2445 4004 5,748.92 3251 4002 1559 751
0.80 0.56 5,625.28 2284 4010 5,747.87 3336 4003 1727 667
0.90 0.64 5,586.96 1456 4018 5,747.40 3312 4003 2562 692

Table A.1.2 Response Experiment B
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P01 <P CostDep sDep Sdep CostllD SllD SllD ddep diid
0.10 -0.15 3,227.44 2592 4002 3,250.30 3221 4001 1410 781
0.20 0.13 3,208.57 2418 4003 3,250.43 3302 4002 1584 700
0.30 0.29 3,192.93 2359 4004 3,250.07 3335 4002 1645 667
0.40 0.38 3,178.19 2360 4003 3,250.24 3312 4002 1642 691
0.50 0.45 3,166.95 2511 4003 3,250.16 3335 4002 1492 667
0.60 0.49 3,155.60 2738 4002 3,250.40 3335 4002 1264 667
0.70 0.53 3,146.20 2334 4003 3,250.40 3306 4003 1669 697
0.80 0.56 3,136.12 2620 4003 3,250.59 3336 4003 1384 667
0.90 0.64 3,128.60 2546 4005 3,250.05 3336 4003 1459 667

Table A.1.3 Response Experiment C

P01 CostDep sDep Sdep CostllD sllD SllD ddep diid

0.10 -0.15 5,726.67 2560 4003 5,749.53 3336 4003 1443 667
0.20 0.13 5,706.17 2599 4003 5,748.64 3300 4003 1403 703
0.30 0.29 5,691.36 2645 4006 5,747.79 3222 4003 1360 781
0.40 0.38 5,675.52 2288 4004 5,746.94 3336 4003 1716 667
0.50 0.45 5,662.82 2392 4006 5,748.34 3293 4003 1614 710
0.60 0.49 5,651.76 2235 4005 5,747.95 3299 4004 1770 705
0.70 0.53 5,640.90 2652 4005 5,748.12 3337 4004 1353 667
0.80 0.56 5,629.94 2508 4004 5,748.03 3337 4004 1497 667
0.90 0.64 5,619.60 2459 4005 5,747.93 3335 4002 1546 667

Table A.1.4 Response Experiment D

P01 <P CostDep sDep Sdep CostllD sllD SllD ddep diid
0.10 -0.15 3,984.21 1441 3001 4,097.65 2427 3001 1560 575
0.20 0.13 4,177.65 1393 3002 4,384.50 2454 3001 1609 547
0.30 0.29 4,339.95 1539 3002 4,627.01 2502 3002 1463 500
0.40 0.38 4,480.61 1400 3002 4,835.65 2389 3003 1602 614
0.50 0.45 4,602.25 1527 3003 5,016.45 2502 3002 1477 500
0.60 0.49 4,704.75 1332 3002 5,173.19 2482 3003 1669 521
0.70 0.53 4,796.21 1421 3004 5,312.99 2464 3003 1583 539
0.80 0.56 4,876.98 1237 3004 5,436.46 2502 3002 1767 500
0.90 0.64 4,618.44 717 3010 5,547.03 2502 3002 2293 500

Table A .I.5 Response Experiment E

P01 <P CostDep sDep Sdep CostllD sllD SllD ddep diid
0.10 -0.15 4,591.43 1296 3005 4,702.28 2503 3004 1708 500
0.20 0.13 5,282.78 1622 3006 5,493.86 2504 3004 1384 500
0.30 0.29 5,871.43 1615 3013 6,153.65 2508 3010 1398 501
0.40 0.38 5,896.59 2572 4002 6,252.40 3335 4002 1430 667
0.50 0.45 5,834.04 2627 4001 6,206.26 3022 3981 1375 959
0.60 0.49 5,782.42 2534 4001 6,253.31 3335 4002 1468 667
0.70 0.53 5,736.96 2643 4002 6,253.16 3322 4002 1358 680
0.80 0.56 5,695.75 2665 4034 6,253.12 3335 4002 1369 667
0.90 0.64 5,485.48 1643 4001 6,253.48 3251 4002 2358 751

Table A.1.6 Response Experiment G
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P01 9 CostDep sDep Sdep CostllD sllD SllD ddep diid
0.10 -0.15 7,042.65 1540 3003 7,156.58 2463 3003 1463 540
0.20 0.13 7,701.13 1630 3005 7,905.73 2447 3004 1376 557
0.30 0.29 8,252.34 1561 3014 8,544.17 2512 3018 1454 506
0.40 0.38 8,397.22 2341 4002 8,754.24 3316 4002 1660 685
0.50 0.45 8,336.28 2413 4001 8,753.17 3322 4002 1589 680
0.60 0.49 8,284.24 2383 4001 8,753.31 3256 4002 1618 745
0.70 0.53 8,238.52 2508 4001 8,754.18 3273 4002 1494 729
0.80 0.56 8,196.51 2547 4001 8,753.12 3235 4001 1454 767
0.90 0.64 7,956.76 1548 4002 8,754.09 3244 4002 2454 758

Table A.1.7 Response Experiment H
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Appendix A.2. Response: AR(1)

9 Cost s S D
0 2,781.31 2018 2869 851

0.1 2,783.10 2223 2864 640
0.2 2,786.60 2054 2879 824
0.3 2,793.88 2277 2896 619
0.4 2,804.29 2204 2907 703
0.5 2,820.64 2065 2926 861
0.6 2,843.56 2155 2945 790
0.7 2,881.54 1879 3016 1136
0.8 2,943.68 1620 3123 1503
0.9 3,067.84 1673 3364 1690

A.2.1 Response Experiment A

9 Cost s S D
IID 5,284.09 2240 2875 635
0.1 5,285.98 2020 2872 853
0.2 5,289.28 1974 2871 897
0.3 5,296.32 2233 2889 656
0.4 5,305.52 2369 2902 533
0.5 5,320.34 2310 2916 606
0.6 5,340.77 2295 2950 654
0.7 5,376.46 2164 2988 824
0.8 5,432.90 1852 3068 1216
0.9 5,548.45 1680 3358 1678

A.2. 2 Response Experiment B

9 Cost s S D
IID 2,874.50 2272 3083 812
0.1 2,876.56 2498 3095 596
0.2 2,882.10 2129 3100 970
0.3 2,891.66 2386 3115 729
0.4 2,906.07 2393 3144 751
0.5 2,928.15 2486 3171 685
0.6 2,960.14 2627 3219 592
0.7 3,010.34 2460 3315 855
0.8 3,095.51 2020 3488 1468
0.9 3,263.32 2081 3864 1783

A.2.3 Response Experiment C
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9 Cost s S D
IID 5,370.93 2521 3082 561
0.1 5,373.20 2246 3082 836
0.2 5,378.72 2572 3099 527
0.3 5,387.55 2571 3107 536
0.4 5,401.80 2576 3133 557
0.5 5,422.93 2308 3167 859
0.6 5,454.29 2663 3222 559
0.7 5,503.32 2299 3320 1021
0.8 5,587.05 1951 3491 1540
0.9 5,753.69 2119 3865 1745

A.2. 4 Response Experiment D

9 Cost s S D
IID 3,275.46 1882 2584 702
0.1 3,279.57 2016 2591 575
0.2 3,290.63 2007 2587 580
0.3 3,311.10 1998 2596 598
0.4 3,342.97 1679 2597 918
0.5 3,389.43 1745 2597 851
0.6 3,458.99 1797 2615 818
0.7 3,568.17 1341 2627 1286
0.8 3,748.96 1212 2667 1455
0.9 4,120.12 1115 2743 1628

A.2. 5 Response Experiment E

9 Cost s S D
IID 5,684.72 1958 2533 575
0.1 5,688.41 1683 2535 852
0.2 5,698.54 1954 2536 582
0.3 5,716.36 1695 2528 834
0.4 5,744.14 1958 2547 590
0.5 5,785.33 2062 2536 474
0.6 5,845.91 1419 2557 1138
0.7 5,942.01 1647 2543 896
0.8 6,099.29 1086 2563 1476
0.9 6,360.97 1088 2644 1556

A.2. 6 Response Experiment F

9 Cost s S D
IID 6,270.99 2019 2845 826
0.1 6,277.04 2326 2850 524
0.2 6,296.68 2376 2850 475
0.3 6,329.42 1963 2874 911
0.4 6,382.19 1925 2872 947
0.5 6,459.31 2284 2904 620
0.6 6,573.23 1980 2935 955
0.7 6,754.85 2030 2980 950
0.8 7,059.37 1603 3091 1487
0.9 7,669.22 1660 3351 1691

A.2. 7 Response Experiment H
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B  E v a l u a t io n  o f  sig n ific a n c e  o f  the  r e spo n se s

B.l. P-values for Responses. Markovian Demand

P-value Hypthesis P-value Hypthesis P-value Hypthesis
Experiment POI Autocorrelation Cost Ho Ha s Ho Ha d Ho Ha

0.10 -0.15 6.26E-07 Reject Accept 0.00066 Reject Accept 0.000594 Reject Accept
0.20 0.13 4.65E-11 Reject Accept 0.000263 Reject Accept 0.000243 Reject Accept
0.30 0.29 3.06E-16 Reject Accept 1.89E-08 Reject Accept 2E-08 Reject Accept
0.40 0.38 2.8E-13 Reject Accept 0.003486 Reject Accept 0.003612 Reject Accept

A 0.50 0.45 1.75E-16 Reject Accept 0.001825 Reject Accept 0.001844 Reject Accept
0.60 0.49 2.5E-16 Reject Accept 6.17E-06 Reject Accept 6.17E-06 Reject Accept
0.70 0.53 5.25E-15 Reject Accept 0.003887 Reject Accept 0.003768 Reject Accept
0.80 0.56 4.4E-13 Reject Accept 3.84E-05 Reject Accept 4.26E-05 Reject Accept
0.90 0.64 6.65E-13 Reject Accept 1.75E-10 Reject Accept 1.77E-10 Reject Accept
0.10 -0.15 1.54E-07 Reject Accept 6.11E-05 Reject Accept 6E-05 Reject Accept
0.20 0.13 4.08E-10 Reject Accept 8.57E-06 Reject Accept 9.67E-06 Reject Accept
0.30 0.29 1.92E-10 Reject Accept 5.65E-05 Reject Accept 5.5E-05 Reject Accept
0.40 0.38 1.51E-11 Reject Accept 0.001248 Reject Accept 0.000127 Reject Accept

B 0.50 0.45 2.62E-12 Reject Accept 1.55E-07 Reject Accept 2.48E-07 Reject Accept
0.60 0.49 1.68E-13 Reject Accept 6.42E-05 Reject Accept 6.58E-05 Reject Accept
0.70 0.53 3.99E-11 Reject Accept 0.001883 Reject Accept 0.002227 Reject Accept
0.80 0.56 1.91E-12 Reject Accept 1.83E-05 Reject Accept 1.53E-05 Reject Accept
0.90 0.64 7.93E-10 Reject Accept 3.2E-07 Reject Accept 3.26E-07 Reject Accept
0.10 -0.15 8.74E-11 Reject Accept 1.84E-11 Reject Accept 1.05E-07 Reject Accept
0.20 0.13 3.7E-13 Reject Accept 0.000396 Reject Accept 0.000373 Reject Accept
0.30 0.29 2.7E-15 Reject Accept 0.000511 Reject Accept 0.000498 Reject Accept
0.40 0.38 9.19E-13 Reject Accept 0.000158 Reject Accept 0.000164 Reject Accept

C 0.50 0.45 1.28E-13 Reject Accept 4.29E-06 Reject Accept 4.54E-06 Reject Accept
0.60 0.49 1.65E-09 Reject Accept 0.07219 Reject Accept 0.133545 Reject Accept
0.70 0.53 2.11E-15 Reject Accept 0.001601 Reject Accept 0.00151 Reject Accept
0.80 0.56 3.13E-13 Reject Accept 1.2E-05 Reject Accept 1.25E-05 Reject Accept
0.90 0.64 2.35E-16 Reject Accept 0.000156 Reject Accept 0.000149 Reject Accept
0.10 -0.15 8.5E-08 Reject Accept 0.014762 Reject Accept 0.014277 Reject Accept
0.20 0.13 6.01E-10 Reject Accept 0.000131 Reject Accept 0.000137 Reject Accept
0.30 0.29 2.19E-10 Reject Accept 0.000477 Reject Accept 0.000469 Reject Accept
0.40 0.38 2.23E-12 Reject Accept 1.8E-05 Reject Accept 1.76E-05 Reject Accept

D 0.50 0.45 4.22E-14 Reject Accept 9.79E-05 Reject Accept 9.48E-05 Reject Accept
0.60 0.49 1.64E-12 Reject Accept 9.01E-05 Reject Accept 8.78E-05 Reject Accept
0.70 0.53 1.89E-10 Reject Accept 0.000162 Reject Accept 0.000142 Reject Accept
0.80 0.56 1.44E-11 Reject Accept 4.69E-07 Reject Accept 3.77E-07 Reject Accept
0.90 0.64 1.33E-17 Reject Accept 0.000644 Reject Accept 0.000615 Reject Accept

Table B.l P-Values Markovian Demand
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P-value Hypthesis P-value Hypthesis P-value Hypthesis
Experiment P01 Autocorrelation Cost Ho Ha s Ho Ha d Ho Ha

0.10 -0.15 3.75E-09 Reject Accept 6.66E-06 Reject Accept 6.58E-06 Reject Accept
0.20 0.13 8.66E-15 Reject Accept 6.33E-07 Reject Accept 6.29E-07 Reject Accept
0.30 0.29 1.07E-17 Reject Accept 0.001069 Reject Accept 0.001069 Reject Accept
0.40 0.38 8.18E-16 Reject Accept 0.000123 Reject Accept 0.000121 Reject Accept

E 0.50 0.45 6.54E-17 Reject Accept 0.000438 Reject Accept 0.000443 Reject Accept
0.60 0.49 1.02E-18 Reject Accept 9.5E-05 Reject Accept 9.32E-05 Reject Accept
0.70 0.53 7.25E-18 Reject Accept 0.000103 Reject Accept 0.0001 Reject Accept
0.80 0.56 4.01E-18 Reject Accept 4.57E-09 Reject Accept 3.97E-09 Reject Accept
0.90 0.64 1.62E-16 Reject Accept 2.01E-12 Reject Accept 1.65E-12 Reject Accept
0.10 -0.15 1.09E-09 Reject Accept 0.000141 Reject Accept 0.000137 Reject Accept
0.20 0.13 2.55E-14 Reject Accept 2.21E-05 Reject Accept 2.27E-05 Reject Accept
0.30 0.29 2.08E-15 Reject Accept 0.000111 Reject Accept 0.000114 Reject Accept
0.40 0.38 4.61E-15 Reject Accept 0.000141 Reject Accept 0.000141 Reject Accept

F 0.50 0.45 1.72E-15 Reject Accept 3.62E-06 Reject Accept 4.14E-06 Reject Accept
0.60 0.49 2.04E-17 Reject Accept 4.34E-05 Reject Accept 4.42E-05 Reject Accept
0.70 0.53 6.41E-18 Reject Accept 0.000406 Reject Accept 0.000375 Reject Accept
0.80 0.56 6.36E-17 Reject Accept 5.48E-08 Reject Accept 5.78E-08 Reject Accept
0.90 0.64 1.08E-15 Reject Accept 1.67E-10 Reject Accept 1.96E-10 Reject Accept
0.10 -0.15 9.68E-07 Reject Accept 3.45E-05 Reject Accept 3.14E-05 Reject Accept
0.20 0.13 1.08E-12 Reject Accept 0.000256 Reject Accept 0.00023 Reject Accept
0.30 0.29 2.79E-14 Reject Accept 0.000187 Reject Accept 0.000193 Reject Accept
0.40 0.38 4.01E-19 Reject Accept 1.37E-06 Reject Accept 1.44E-06 Reject Accept

G 0.50 0.45 1.62E-19 Reject Accept 0.000812 Reject Accept 0.000785 Reject Accept
0.60 0.49 5.64E-17 Reject Accept 4.11E-07 Reject Accept 4.02E-07 Reject Accept
0.70 0.53 4.24E-17 Reject Accept 0.002372 Reject Accept 0.000926 Reject Accept
0.80 0.56 1.35E-17 Reject Accept 0.000799 Reject Accept 0.000808 Reject Accept
0.90 0.64 1.33E-17 Reject Accept 6.46E-09 Reject Accept 6.55E-09 Reject Accept
0.10 -0.15 8.13E-09 Reject Accept 0.000338 Reject Accept 0.000334 Reject Accept
0.20 0.13 1.08E-13 Reject Accept 1.96E-09 Reject Accept 2.02E-09 Reject Accept
0.30 0.29 1.39E-12 Reject Accept 0.000155 Reject Accept 0.000178 Reject Accept
0.40 0.38 5.88E-22 Reject Accept 4.8E-06 Reject Accept 4.5E-06 Reject Accept

H 0.50 0.45 1.56E-22 Reject Accept 3.72E-05 Reject Accept 3.74E-05 Reject Accept
0.60 0.49 3.9E-20 Reject Accept 0.000485 Reject Accept 0.000479 Reject Accept
0.70 0.53 2.07E-19 Reject Accept 0.000424 Reject Accept 0.000431 Reject Accept
0.80 0.56 1.37E-19 Reject Accept 2.92E-05 Reject Accept 2.9E-05 Reject Accept
0.90 0.64 6.96E-19 Reject Accept 3.85E-07 Reject Accept 4.04E-07 Reject Accept

Table B.l P- Values Markovian Demand
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B.2. P-values for Responses. AR(1) demand

P-value Hypothesis P-value Hypothesis P-value Hypothesis
Exp f Cost Ho Ha s Ho Ha d Ho Ha

0.10 1.43E-10 Reject Accept 0.846 Accept Not Accepted 0.849 Accept Not Accepted
0.20 1.90E-15 Reject Accept 0.668 Accept Not Accepted 0.709 Accept Not Accepted
0.30 8.89E-19 Reject Accept 0.610 Accept Not Accepted 0.702 Accept Not Accepted
0.40 1.78E-21 Reject Accept 0.317 Accept Not Accepted 0.416 Accept Not Accepted

A 0.50 6.36E-24 Reject Accept 0.720 Accept Not Accepted 0.942 Accept Not Accepted
0.60 5.87E-21 Reject Accept 0.252 Accept Not Accepted 0.466 Accept Not Accepted
0.70 1.09E-24 Reject Accept 6.65E-01 Reject A ccept 2.83E-01 R eject A ccept
0.80 3.38E-23 Reject Accept 2.54E-02 Reject A ccept 1.12E-03 Reject A ccept
0.90 3.71E-24 Reject Accept 4.02E-02 Reject Accept 1.08E-04 Reject Accept
0.10 4.80E-09 Reject Accept 0.678 Accept Not Accepted 0.674 Not Reject Not Accepted
0.20 1.34E-09 Reject Accept 0.517 Accept Not Accepted 0.495 Not Reject Not Accepted
0.30 3.05E-16 Reject Accept 0.654 Accept Not Accepted 0.720 Not Reject Not Accepted
0.40 2.00E-18 Reject Accept 0.257 Accept Not Accepted 0.356 Not Reject Not Accepted

B 0.50 5.89E-25 Reject Accept 0.281 Accept Not Accepted 0.422 Not Reject Not Accepted
0.60 1.78E-20 Reject Accept 0.232 Accept Not Accepted 0.460 Not Reject Not Accepted
0.70 1.62E-21 Reject Accept 4.50E-01 Reject A ccept 8.95E-01 Reject A ccept
0.80 7.68E-23 Reject Accept 1.25E-01 Reject A ccept 1.43E-02 Reject A ccept
0.90 5.51E-20 Reject Accept 5.34E-03 Reject Accept 9.50E-06 Reject Accept
0.10 9.80E-08 Reject Accept 0.189 Accept Not Accepted 0.203 Accept Not Accepted
0.20 1.42E-13 Reject Accept 0.515 Accept Not Accepted 0.443 Accept Not Accepted
0.30 1.50E-15 Reject Accept 0.930 Accept Not Accepted 0.793 Accept Not Accepted

C 0.40 3.63E-19 Reject Accept 0.988 Accept Not Accepted 0.727 Accept Not Accepted
0.50 2.10E-20 Reject Accept 0.146 Accept Not Accepted 0.443 Accept Not Accepted
0.60 3.41E-22 Reject Accept 0.231 Accept Not Accepted 0.230 Accept Not Accepted
0.70 5.36E-24 Reject Accept 2.33E-01 Reject A ccept 7.82E-01 Reject A ccept
0.80 7.42E-23 Reject Accept 3.42E-03 Reject Accept 4.61E-06 Reject Accept
0.90 1.85E-22 Reject Accept 1.14E-02 Reject Accept 6.96E-08 Reject Accept
0.10 2.95E-04 Reject Accept 0.004 Accept Not Accepted 0.004 Not Reject Not Accepted
0.20 4.12E-13 Reject Accept 0.583 Accept Not Accepted 0.499 Not Reject Not Accepted
0.30 7.46E-17 Reject Accept 0.356 Accept Not Accepted 0.252 Not Reject Not Accepted
0.40 4.25E-17 Reject Accept 0.263 Accept Not Accepted 0.981 Not Reject Not Accepted

D 0.50 2.73E-18 Reject Accept 0.220 Accept Not Accepted 0.077 Not Reject Not Accepted
0.60 2.03E-19 Reject Accept 0.883 Accept Not Accepted 0.240 Not Reject Not Accepted
0.70 3.38E-25 Reject Accept 0.044 Reject Accept 0.001 Reject Accept
0.80 4.18E-24 Reject Accept 2.30E-09 Reject Accept 6.00E-12 Reject Accept
0.90 6.70E-22 Reject Accept 2.50E-07 Reject Accept 1.54E-12 Reject Accept

Table B.2 P-Values AR(1) Demand
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P-value Hypothesis P-value Hypothesis P-value Hypothesis
Exp 9 Cost Ho Ha s Ho Ha d Ho Ha

0.10 1.44E-07 Reject Accept 0.523 Accept Not Accepted 0.546 Not Reject Not Accepted
0.20 3.43E-16 Reject Accept 0.378 Accept Not Accepted 0.388 Not Reject Not Accepted
0.30 3.60E-18 Reject Accept 0.460 Accept Not Accepted 0.503 Not Reject Not Accepted
0.40 1.33E-25 Reject Accept 0.448 Accept Not Accepted 0.410 Not Reject Not Accepted

E 0.50 5.89E-25 Reject Accept 0.108 Accept Not Accepted 0.096 Not Reject Not Accepted
0.60 2.67E-25 Reject Accept 0.398 Accept Not Accepted 0.307 Not Reject Not Accepted
0.70 6.81E-27 Reject Accept 1.69E-02 Reject Accept 1.02E-02 Reject Accept
0.80 7.98E-29 Reject Accept 2.15E-05 Reject Accept 7.33E-06 Reject Accept
0.90 3.71E-24 Reject Accept 9.26E-06 Reject Accept 1.20E-06 Reject Accept
0.10 1.02E-07 Reject Accept 0.330 Accept Not Accepted 0.434 Accept Not Accepted
0.20 1.11E-12 Reject Accept 0.611 Accept Not Accepted 0.606 Accept Not Accepted
0.30 1.07E-15 Reject Accept 0.156 Accept Not Accepted 0.163 Accept Not Accepted
0.40 5.35E-19 Reject Accept 0.850 Accept Not Accepted 0.821 Accept Not Accepted

F 0.50 3.15E-16 Reject Accept 0.798 Accept Not Accepted 0.774 Accept Not Accepted
0.60 1.06E-21 Reject Accept 0.039 Accept Not Accepted 0.037 Accept Not Accepted
0.70 2.85E-20 Reject Accept 6.54E-02 Reject Accept 6.18E-02 Reject Accept
0.80 3.45E-22 Reject Accept 4.89E-05 Reject Accept 4.16E-05 Reject Accept
0.90 4.66E-21 Reject Accept 2.48E-05 Reject Accept 8.15E-06 Reject Accept
0.10 7.05E-09 Reject Accept 0.589 Accept Not Accepted 0.583 Not Reject Not Accepted
0.20 1.07E-15 Reject Accept 0.247 Accept Not Accepted 0.223 Not Reject Not Accepted
0.30 1.83E-10 Reject Accept 0.583 Accept Not Accepted 0.529 Not Reject Not Accepted
0.40 6.43E-23 Reject Accept 0.290 Accept Not Accepted 0.405 Not Reject Not Accepted

G 0.50 1.27E-24 Reject Accept 0.897 Accept Not Accepted 0.872 Not Reject Not Accepted
0.60 3.38E-27 Reject Accept 0.919 Accept Not Accepted 0.538 Not Reject Not Accepted
0.70 4.47E-24 Reject Accept 9.57E-02 Reject Accept 2.59E-02 Reject Accept
0.80 2.05E-27 Reject Accept 4.05E-04 Reject Accept 1.71E-05 Reject Accept
0.90 1.62E-09 Reject Accept 1.15E-02 Reject Accept 3.85E-04 Reject Accept

' 0.10 1.68E-06 Reject Accept 0.049 Accept Not Accepted 0.050 Accept Not Accepted
0.20 8.55E-16 Reject Accept 0.111 Accept Not Accepted 0.112 Accept Not Accepted
0.30 4.09E-19 Reject Accept 0.718 Accept Not Accepted 0.609 Accept Not Accepted
0.40 8.14E-24 Reject Accept 0.527 Accept Not Accepted 0.439 Accept Not Accepted

H 0.50 4.65E-27 Reject Accept 0.138 Accept Not Accepted 0.261 Accept Not Accepted
0.60 4.41E-26 Reject Accept 0.719 Accept Not Accepted 0.385 Accept Not Accepted
0.70 2.07E-28 Reject Accept 0.890 Accept Not Accepted 0.393 Accept Not Accepted
0.80 3.42E-28 Reject Accept 1.50E-03 Reject Accept 4.47E-05 Reject Accept
0.90 2.68E-31 Reject Accept 2.91E-03 Reject Accept 2.85E-06 Reject Accept

Table B.2 P-Values AR(1) Demand.
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Appendix C.l Main Effects and two-way interaction. Markovian demand

<p CostDep sDep ddep
-0.149 2453.904 109.8 - 110.35
0.13 2416.164 109.2 - 111.75
0.29 • 2411.508 105.6 - 104.6
0.38 2426.1695 - 96.1 97.05
0.45 2414.0355 - 75.75 77.3
0.49 2405.289 - 66.2 68.3
0.53 2396.1805 27.7 - 27.1
0.56 2330.039 - 196.35 189.85
0.64 2336.3325 - 197.45 201.05

2500 y=-126.54x+ 2445.5 
R2 = 0.5949

2400

2350-

0.2 0.4- 0.2 0 0.6 0.8

200

♦ s *  ♦

♦

'°-2 -100 

-200 

-300

I 0.2 £ * * < 0 . 6  0.8

y = -394.95X + 114.68
R2 = 0.6144 *  *

C.1.1 Main effect. Ordering C.1.1.1 Main effect. Ordering on Total costs C .1.1.2 Main effect. Ordering on Reorder

■°-2« -100
-200

<P CostDep sDep ddep
-0.149 449.515 516 - 16.85
0.13 613.904 592.2 - 98.55
0.29 794.324 81.9 - 74.6
0.38 780.6175 459.8 39.85
0.45 701.1045 527.15 - 28.4
0.49 632.793 538.5 -40.4
0.53 572.6795 551.1 -52
0.56 576.422 901.35 - 396.55
0.64 579.0485 871.55 - 378.95

C.1.2 Main effect. Penalty

C .l. 3 Main effect. Holding

1000-

800- ♦ ♦
, ___ i ---------

— ♦♦ ♦
* 400 y = 120.37x + 588.96

200- R2 = 0.0736
o I I i i

-0.2 0.2 0.4 0.6 0.8

1000

y = 398.27x + 412.99
Fjjusaar'

-0.2 o 0.2 0.4 0.6 0.8

100
4

' ♦  u 
-0.2 -100

-200-

-300-

-400-

-500-

.  ' ♦ ♦ ♦
1 ♦ 0.2 ♦  0.4 0.6 0.8

♦  ♦

C.1.2.4 Main effect. Penalty on Total costs C.1.2.5 Main effect. Penalty g on Reorder C.1.2.6 Main effect Penalty on order 
Qnt

<P CostDep sDep ddep
-0.149 4646.7 - 2105.6 97.4
0.13 6001.348 - 1757.2 - 271.8
0.29 7305.624 - 3588.8 - 393.6
0.38 7758.03 - 1603.6 - 404.2
0.45 7883.03 - 1682.6 - 327.2
0.49 7987.972 - 2275.2 263.6
0.53 8084.414 - 1954.8 -48
0.56 7955.176 - 2564.6 584.2
0.64 7140.058 - 3898.2 1890.2

-0.5

y = 4148.4X + 5665.1 
R? = 0.7846 -3000

-4000
y=-1014.7x- 2006.8 

R2 < 0.5-5000

C .l.3.8 Main effect, holding on Reorder

2500 -,
2000 ♦
1500 y = 9448.1X2 - 3302x - 426.7

1000 = 0.774 /

500

y  +  .
-0.2 - K T o.6 0.8

-1000-1

C.l.3.7 Main effect holding on Total costs C .l.3.8 Main effect, holding on Reorder C.l.3.9 Main effect holding on order Qnt
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<p CostDep sDep Ddep
-0.149 21.321 -3.9 4.15
0.13 41.815 -14.8 17.25
0.29 28.162 10.1 -9.7
0.38 72.8125 -55.1 54.95
0.45 85.0215 -90.75 90.6
0.49 93.699 -260.5 259.9
0.53 101.9545 63.7 -63.5
0.56 167.251 81.55 -90.95
0.64 144.8065 106.25 -109.85

200
150

100 -

-0.5 0.5-50

C.1.4 Two-way. Ordering and penalty 1X2 C .l.4.1 Two-way 1X2 on Total costs

<P CostDep sDep Ddep
-0.149 1226.325 88.5 -87.95
0.13 1207.967 69.7 -67.05
0.29 1162.44 -5.6 5.9
0.38 1177.9495 8.8 -8.95
0.45 1167.3095 -114.05 113.9
0.49 1156.837 -214 214.1
0.53 1147.7175 95.7 -95.7
0.56 1085.674 -134.35 125.05
0.64 1106.4305 45.45 -48.65

C.1.5 Two-way. Ordering and holding 1X3

y = -156.07x+1217.4
1250

1200 -

0 0.2 0.4 0.6 0.8

C.l.5.1 Two-way 1X3 on Total costs

<P CostDep sDep Ddep
-0.149 178.312 -631.3 134.65
0.13 534.246 -443.7 -46.15
0.29 793.334 -16.9 21.5
0.38 780.5445 533.1 -32.95
0.45 699.5115 489.15 10.3
0.49 632.653 541.1 -40.3
0.53 573.0855 571.3 -72.8
0.56 574.306 683.35 -174.75
0.64 562.0085 67.95 430.85

C.1.6 Two-way. Penalty and holding 2X3

800 -
600 - ♦♦ ♦

4  200 -

-0.2 02 0.4 0.6

C.l.6.1 Two-way 2X3 on Total costs
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C.l.4.2 Two-way 1X2 on Reorder

400 -i

200 -

-0.5 -200

C.1.4 J  Two-way 1X2 on order Qnt

200 - 
♦
n

■°-5-200 

-400 -

▼ ̂  I I
) fts 1 ♦

C.l.5.2 Two-way 1X3 on Reorder

1000 - 

500 - 
n *

-0.5 -5qp^< 

-1000 -

f *  0.5 1
y = «08.4x-394.15 

R2 = 0.6827

y= 12.556X-46.04 
R2=0.0987

400

200

0

-200

C.l.5-3 Two-way 1X3 on order Qnt

600
400
200

-200
-400

C.l.6.2 Two-way 2X3 on Reorder C.l.6.3 Two-way 2X3 on order Qnt
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Appendix C.2
<p CostDep s d
0 2472.59 90.80 -104.80

0.1 2472.53 -170.70 154.10
0.2 2472.20 178.60 -197.40
0.3 2472.00 -57.50 37.50
0.4 2469.67 40.45 -60.70
0.5 2467.59 111.85 -131.30
0.6 2463.74 -97.75 81.55
0.7 2458.93 122.95 -152.35
0.8 2449.79 3.70 -45.90
0.9 2445.76 -32.40 21.60

Main Effects and two-way interaction. AR(1) demands

y  =  - 5 0 .2 2 8 X 2 +  15 .2 7 5 X  ■ 
2471.9  

Ft2 = 0.99032475.00  -i
2470.00
2465.00
2460.00  -
2455.00  -
2450.00 -
2445.00 -
2440.00

0.5

A u to co rre la tio n

Reorder level

200.00 -| ♦
100.00 , ♦ ♦

♦

-100.00 ) ♦ 0.5* 1

-200.00 - ♦

Autocorrelation

200.00 

100.00 -

Order Quantity 

♦
♦

♦  ♦
Q

-100.00 1

-200.00 ■ 

-300.00 ■

; * 0 .5  * 1  
♦  ♦

♦

Autocorrelation

C.2.1 Main effect. Ordering C .2.1.1 Main effect. Ord. on Total costs C .2.1.2 Main effect. Ord. on Reorder C.2.1.3 Main effect. Ord. on order Qnt

V CostDep s d
0 319.98 229.00 21.60

0.1 321.26 337.00 -81.70
0.2 326.88 264.60 -3.90
0.3 334.00 187.00 77.70
0.4 348.69 268.65 2.20
0.5 368.49 279.05 14.50
0.6 398.74 443.15 -128.55
0.7 445.30 431.35 -72.85
0.8 527.10 357.60 80.70
0.9 671.71 528.00 37.30

Total C

8oo.ooy- 
600.00 - 

»  400.00 - 
200.00 -

ost

= 684.73X2 - 288.22x + 
340.77 *

r2

0.5 1 

Autocorrelation

Reorder

600.00

400.00 -

200.00 ^

level

y= 269.56x + 211.24 
R2 = 0.5747^

♦ ____ ■

♦

0.5 1 

Autocorrelation

Order Quantity

100.00 n ♦ ♦
0.00 J1

-100.00 - )♦ 0.5 ♦ 1 
♦

-200.00 J

Autocorrelation

C.2.2 Main effect. Penalty C.2.2.1 Main effect. Pen. on Total costs C.2.2.2 Main effect Penalty g on Reorder C.2.2.3 Main effect Penalty on order Qnt

<P CostDep s d
0 2709.43 -989.20 -102.80

0.1 2721.46 -744.40 -336.40
0.2 2764.23 -423.20 -686.00
0.3 2832.51 -1780.80 643.60
0.4 2953.24 -1591.40 408.80
0.5 3121.33 -857.40 -380.40
0.6 3375.93 -2374.60 1096.20
0.7 3774.25 -1814.20 317.80
0.8 4439.79 -1915.60 169.60
0.9 5615.01 -1883.20 -539.20

Total Cost

6000.00

5000.00 
«  4000.00 -

3000.00 -

y= 5608.7X2 - 2318.9x + 
2875.8 

R2 = 0.9684 ♦

0.5 1 
Autocorrelation

Reorder le\el

0.00

- 1000.00

- 2000.00
= -1469.5x- 776*12

-3000.00 J

Autocorrelation

Order Quantity

1500.00
1000.00 1 

500.00
0.00 

-500 
-1000.00

.uu ^-------

.00 

.00 j
<?5 ♦ 1

Autocorrelation

C.2.3 - Main effect. Holding C.2.3.1 - Main effect, hold, on Total costs C.23.2 Main effect, holding on Reorder C.2.33 Main effect, holding on order Qnt
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<p CostDep s d
0 16.57 -57.90 66.60

0.1 16.67 97.80 -90.60
0.2 16.91 245.30 -234.90
0.3 18.14 116.20 -98.90
0.4 18.48 -181.55 188.30
0.5 19.79 -169.15 185.20
0.6 21.67 21.15 -10.75
0.7 24.55 -172.25 198.65
0.8 30.01 -49.80 86.90
0.9 85.03 -22.10 63.50

C.2.4 Two-way. Ordering and penalty 1X2

<P CostDep s d
0 1221.20 -20.10 3.20

0.1 1221.09 -68.80 47.90
0.2 1220.86 218.80 -233.70
0.3 1220.77 -35.50 19.00
0.4 1219.06 -42.05 24.10
0.5 1217.74 -10.85 -3.70
0.6 1215.13 -167.85 149.25
0.7 1211.47 -19.25 3.65
0.8 1205.17 -112.50 97.60
0.9 1205.46 -35.70 27.80

C.2.5 Two-way. Ordering and holding 1X3

«■» 50.00

Total C o s t

= 147.35X2 - 86.576X + 23.748 ♦
R2 = 0.7365

0 0.2 0.4 0.6 0.8 1

Autxorrelation

C.2.4.1 -Two-way 1X2 on Total costs

1225.00 
1220.00j
12 15.00 -
1210.00  -

1205.00
1200.00

Total C ost

y  =  -2 8 .3 1 5 x 2 +  6 .1 9 0 8 x  + 
1221.1 

1.9679

0 .5  1

A utocorrelation

C.2.5.1 -Two-way 1X3 on Total costs

<P CostDep s d
0 229.97 -38.40 78.30

0.1 230.92 86.20 -51.20
0.2 234.41 -71.90 108.00
0.3 239.49 -36.90 82.70
0.4 249.66 70.75 -33.60
0.5 263.44 69.45 -24.00
0.6 283.70 23.25 18.15
0.7 317.47 73.65 -30.95
0.8 374.11 108.00 -64.00
0.9 471.35 104.30 -42.50

C.2.6 Two-way. Penalty and holding 2X3

5 0 0 .0 0
4 0 0 .0 0

' 3 0 0 .0 0  -|
200.00

Total C o s t 

y  =  4 7 1 .2 5 x 2 -  1 9 7 .6 7 x  +
244.1 

R2 = 0 .9 6 7

0 .5  1

A u to co rre la tio n

C.2.6.1 -Two-way 2X3 on Total costs
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O r d e r  Q u a n tity  

500.00 -|

o 0.00 %  i
-500.00 -® °-5 1

A u to c o r re la tio n

C.2.4.2 Two-way 1X2 on Reorder C.2.4.3 Two-way 1X2 on order Qnt

400.00

200.00-
t / i

0.00

-200.00

R eorder level

y = -121.36x + 25.231 

* R2 = 0.135

T  * » *  < - ♦  1
) 0.5* 1 

Autocorrelation

C.2.5.2 Two-way 1X3 on Reorder

200.00

100.00-
t / i

0.00- 

-100.00J

R eorder level

y = 99.318X2 + 52.662x - 
13.164

-  i | |

♦ * 0.5 1 

A utxorre la tion

Order Quantity

200.001

0.00
-200.00 -

-400.00J

Autocorrelation

C.2.5.3 Two-way 1X3 on order Qnt

Order Quantity

200.00 - y =  -62.424x2 - 6 8 .4 x i  52.661
100.00 - ♦  ♦  R2 = 0.3616

o -------- t

-100.00 0.5 1 

Autocorrelation

Reorder level

y=202. Ex2 - 368.09x +90.797
400.00 R!=0.1725
200.001 ♦

m 0.001 ------- .---- ♦_ > ♦ i
-200.001 ♦0*5 ♦ 1
-400.00 J

Autocorrelation

C.2.6.2 Two-way 2X3 on Reorder C.2.6.3 Two-way 2X3 on order Qnt
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D  C h a r a c t e r iz a t io n  o f  th e  b e h a v io r  o f  m a in  e ffe c t s  a n d  t w o - 
w a y  INTERACTIONS AS THE AUTOCORRELATION INCREASES 

D.l Markovian Case

Table C.1.1 -  C .l.6 and charts C. 1.1.1 -  C .l.6.3 illustrate how the main effects and the 
interaction between factors behaves as the autocorrelation increases. The behaviors are 
described by the equations presented in tables D. 1 and D.2.

Factor Effect EQUATION/TREND R A2
Cost 1 y = -126.54x + 2445.5 0.5949

2 Increasing Too chaotic
3 y = 4148.4x + 5665.1 0.7846

s 1 y = -37.859x4- 158.23 0.6929
2 Increasing <0.5
3 Decreasing <0.5

d 1 y = 37.944x- 158.64 0.6957
2 Decreasing <0.5
3 y = 9448.1x2 -3 3 0 2 x - 426.7 0.774

Table D. 1 - Equations and R A2 of the main effects MC

Factor Interaction EQUA TIO N/TREND R A2

Cost 1x2 y =  170.53x421.168 0.7109

1x3 y = -156.07x4 1217.4 0.7616

2x3 Increasing Too chaotic

s 1x2 Diffuse

1x3 Diffuse

2x3 y = 1608.4x - 394.16 0.6827

d 1x2 Diffuse

1x3 Diffuse

2x3 y =  1608.4x-394.16 0.6827

Table D. 2 - Equations and R A2 of the two-way interaction
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D.2. AR(1) Case

Table C.1.1 -  C. 1.6 and charts C. 1.1.1 -  C.l .6.3 show the behavior of main effects and 
two-way interaction for the AR(1) case. The behaviors are described by the equations 
presented in tables D.3 and D.4.

Factor Effect EQUATION / TREND R A2

Cost 1 y = -50.228x2 + 15.275x + 2471.9 0.9903
2 y = 684.73x2 - 288.22x + 340.77 0.9656
3 y = 5608.7x2 - 2318.9x + 2875.8 0.9684

s 1 Diffuse
2 y = 269.56x + 211.24 0.5747

3 y = -1 4 6 9 .5 x -776.12 0.5

d 1 Diffuse
2 Diffuse
3 Diffuse

Table D. 3 - Equations and RA2 of the main effects

Factor Interaction EQUATION / TREND R A2
Cost 1X2 y = 147.35x2 - 86.576x + 23.748 0.7365

1X3 y = -28 .315x2+ 6.1908x+ 1221.1 0.9679

2X3 y = 471.25x2 - 197.67x + 244.1 0.9679

s 1X2 Decreasing <.5

1X3 Decreasing < 5

2X3 Increasing <.5

d 1X2 Diffuse
1X3 Increasing < 5

2X3 Decreasing < 5
Table D. 4 - Equations and RA2 of the two-way interactions
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Appendix E .l. Errors -  M ar iovian-mot
P01 4 P ( C ) P (s*,S*)
0.10 -0.15 23.37 1090
0.20 0.13 43.24 907
0.30 0.29 58.26 1006
0.40 0.38 71.98 832
0.50 0.45 83.45 903
0.60 0.49 94.94 916
0.70 0.53 104.69 698
0.80 0.56 113.85 929
0.90 0.64 123.57 1355

E.1.1 Errors generated in experiment A

-0.20 0.00 0.20 0 .4 0 0 .6 0 0 .8 0

A u to c o r r e la t io n

1600  
1400  
1200 

1000 

800  
600  
400  
200 

 0-

P ( s *  S *  )

0 .20  0.40

A u tocorre la tion

E.l.l.l Errors generated in estimating costs. Experiment A E.l.1.2 Errors generated in policy. Experiment A

P01 <P P ( C ) Q( s*,S*)
0.10 -0.15 22.86 884
0.20 0.13 43.60 922
0.30 0.29 59.79 613
0.40 0.38 73.13 1025
0.50 0.45 88.25 836
0.60 0.49 96.85 681
0.70 0.53 106.51 806
0.80 0.56 122.59 1052
0.90 0.64 160.44 1856

E.1.2 Errors generated in experiment B

P01 </> P ( C ) B(s*,S*)
0.10 -0.15 22.86 629
0.20 0.13 41.86 883
0.30 0.29 57.15 976
0.40 0.38 72.05 951
0.50 0.45 83.21 825
0.60 0.49 94.80 598
0.70 0.53 104.20 972
0.80 0.56 114.47 716
0.90 0.64 121.45 790

E.13 Errors generated in experiment C

«  C)

I

-0.20 0.00 0.20 0 .4 0 0 .6 0 0 .8 0
A u to e o r r e  la tio n

E.1.2.1 Errors generated in estimating costs. Experiment B

EKC)

A u to e o r r e  lation

E.1.3.1 Errors generated in estimating costs. Experiment C

2000  
1800 • 
1600 • 
1400 • 
1200 • 

I  1 000•  
80 0  • 
60 0  • 
40 0  • 
2 0 0  -

♦  ♦
♦ ♦♦

•0 .20 0 .00  0 .20 0 .40  0.60  0 .80

E.l.2.2 Errors generated in policy. Experiment B

P( s * , s * )

1200

1000 ♦ ♦ ♦
800 ♦ ♦

I * 600
♦

♦
400

200

-0.20 0 .00 0.20 0.40 0.60 0.80

A utoeorre lation

E.l.3.2 Errors generated in policy. Experiment C
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P01 P ( C ) P(s*,S*)
0.10 -0.15 22.86 776
0.20 0.13 42.47 701
0.30 0.29 56.43 577
0.40 0.38 71.42 1047
0.50 0.45 85.51 901
0.60 0.49 96.18 1064
0.70 0.53 107.22 685
0.80 0.56 118.08 829
0.90 0.64 128.33 877

E.l .4 Errors generated in experiment D

P01 <t> P ( C ) P(s*,S*)
0.10 -0.15 113.44 985
0.20 0.13 206.85 1061
0.30 0.29 287.07 963
0.40 0.38 355.05 989
0.50 0.45 414.20 975
0.60 0.49 468.44 1150
0.70 0.53 516.78 1042
0.80 0.56 559.48 1265
0.90 0.64 928.59 1785

E.1.5 Errors generated in experiment E

P01 0 P ( C ) P (s*,S*)
0.10 -0.15 111.17 875
0.20 0.13 206.87 906
0.30 0.29 287.44 994
0.40 0.38 359.44 821
0.50 0.45 417.96 1022
0.60 0.49 468.09 992
0.70 0.53 515.29 915
0.80 0.56 779.08 1697
0.90 0.64 1,033.29 1849

E.1.6 Errors generated in experiment F

y = 31.311e*-2S#2* 
R2 = 0 .9949 .

I

-0.20 0.00 0.20 0.40 0.60 0.80

A u tocorre la tion

E.1.4.1 Errors generated in estimating costs. Experiment D

P< C)

•0.20 0.00 0.20 0.40 0.60 0.80

E.l.5.1 Errors generated in estimating costs. Experiment E

P( C)

y = 145.6ejl

-0.20 0.00 0.20 0.40 0.60 0.80

Autocorrelation

E.l.6.1 Errors generated in estimating costs. Experiment F

p< S% S‘  )

1200

1000 - ♦  ♦

♦  ♦
»  800 ♦

♦  ♦
1  600 ♦

400 •

200

-0 .20  0 .00  0 .20 0 .40  0 .60  0.80

A u to c o rre la tio n

E.1.4.2 Errors generated in policy. Experiment D
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1800 

1600 - 
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1200 - 
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♦

♦
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P01 <t> 0 ( C ) 0(s*,S*)
0.10 -0.15 110.84 1207
0.20 0.13 211.09 882
0.30 0.29 282.22 893
0.40 0.38 355.81 763
0.50 0.45 372.22 395
0.60 0.49 470.89 802
0.70 0.53 516.20 679
0.80 0.56 557.37 670
0.90 0.64 768.00 1608

E.1.7 Errors generated in experiment G

P01 $ 0 ( C ) 0  (s*,S*)
0.10 -0.15 113.93 923
0.20 0.13 204.60 817
0.30 0.29 291.83 951
0.40 0.38 357.02 975
0.50 0.45 416.89 909
0.60 0.49 469.08 873
0.70 0.53 515.66 765
0.80 0.56 556.61 688
0.90 0.64 797.33 1696

E.1.8 Errors generated in experiment H
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E.l.7.2 Errors generated in policy. Experiment GE.l.7.1 Errors generated in estimating costs. Experiment G

C)

E.l.8.1 Errors generated in estimating costs. Experiment H E.1.8.. Errors generated in policy. Experiment H
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Appendix E.2. Errors -  AR(1) demand
<p P( C ) P(s*,S*)
0 0.00 0.00

0.1 1.79 205.39
0.2 3.50 36.01
0.3 7.28 258.29
0.4 10.42 184.78
0.5 16.35 25.36
0.6 22.92 122.27
0.7 37.98 95.73
0.8 62.14 363.59
0.9 124.16 191.81

E.2.1 Errors generated in experiment A

$ P ( C ) P( s*,S*)
IID 0.00 0.00
0.1 1.88 220.19
0.2 5.19 265.75
0.3 12.23 9.88
0.4 21.43 127.61
0.5 36.25 60.35
0.6 56.68 11.01
0.7 92.37 52.49
0.8 148.81 357.89
0.9 264.36 493.67

E.2.2 Errors generated in experiment B

4 P ( C ) P(s*,S*)
IID 0.00 0.00
0.1 2.06 226.79
0.2 7.60 142.00
0.3 17.16 113.11
0.4 31.57 117.02
0.5 53.66 207.58
0.6 85.64 345.13
0.7 135.85 129.96
0.8 221.01 119.81
0.9 388.82 338.90

E.23 Errors generated in experiment C

1 4 0 .0 0
1 2 0 .0 0  - 
1 0 0 .0 0  -

3 8 0 .0 0  - 
S  6 0 .0 0  -
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E.2.1.1 Errors generated in estimating costs. Experiment A
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E.2.2.1 Errors generated in estimating costs. Experiment B
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E.23.1 Errors generated in estimating costs. Experiment C
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* f KC) 0(s*,S*)
IID 0.00 0.00
0.1 2.27 274.79
0.2 7.79 50.40
0.3 16.62 47.16
0.4 30.87 46.00
0.5 52.00 206.35
0.6 83.36 115.20
0.7 132.39 178.20
0.8 216.12 527.44
0.9 382.76 121.57

£.2.4 Errors generated in experiment D

4 P( C) 0fs*,S*>
IID 0.00 0.00
0.1 4.11 133.54
0.2 15.17 123.67
0.3 35.64 110.18
0.4 67.51 192.08
0.5 113.97 75.66
0.6 183.53 162.77
0.7 292.71 454.74
0.8 473.50 474.58
0.9 844.66 353.35

£.2.5 Errors generated in experiment E

4> P( C) M s *  S ' )
IID 0.00 0.00
0.1 3.68 275.18
0.2 13.81 13.22
0.3 31.64 261.29
0.4 59.41 59.41
0.5 100.61 27.12
0.6 161.19 513.71
0.7 257.29 173.64
0.8 414.56 766.47
0.9 676.25 547.34

E.2.6 Errors generated in experiment F

P ( C )

y  = 2 .1 7 3 7 e s 93S 
R 2 = 0 .9 7 4 44 0 0 .0 0

3 0 0 .0 0

“  2 0 0 .0 0
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E.2.4.1 Errors generated in estimating costs. Experiment D
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E.2.5.1 Errors generated in estimating costs. Experiment E
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$ P( C) P(s*,S*)
IID 0.00 0.00
0.1 6.19 15.62
0.2 26.00 230.54
0.3 55.94 162.86
0.4 112.53 150.60
0.5 190.24 189.37
0.6 307.46 305.69
0.7 491.78 432.54
0.8 802.22 558.16
0.9 1,308.91 1,247.88

2.000.00 i
1,500.00 -
1 .000.00 

500.00 -
0.00

P(C)

y = 6.6683es-1759x 
FP = 0.9629

0.2 0.4 0.6 0.8

E.2.7 Errors generated in experiment G E.2.7.1 Errors generated in estimating costs. Experiment G

p( s*,S*)

1,500.00
y = 33.7O2e3 8063x ♦  

R2 = 0.7433 /1 , 000.00  -

500.00

0.00
0.2 0.4 0.80.6

E.2.7.2 Errors generated in estimating policy. Experiment

P( C) P (s*,S*)
IID 0.00 0.00
0.1 6.05 306.74
0.2 25.69 355.87
0.3 58.43 15.99
0.4 111.20 59.10
0.5 188.32 186.44
0.6 302.24 299.77
0.7 483.87 483.73
0.8 788.39 669.95
0.9 1,398.23 1,351.41

E.2.8 Errors generated in experiment H
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E.2.8.. Errors generated in estimating costs. Experiment H
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F P a ir w is e  C o m p a r iso n  o f  E r r o r s  G e n e r a t e d  B e t w e e n  
C o r r e l a t e d  a n d  C o r r e l a t i o n - f r e e  f o r M a r k o v ia n - m o d u la t e d  

a n d  AR(1) C a se s  

F.l. Pairwise comparison of errors generated in estimating total costs considering 
Markov-modulated demands

Experiment
Ref P 01 A B C D E F G H
0.1 0.2 0.242676 7.6E-06 0.401112 0.217905 5.2E-131 1.4E-92 2.06E-75 2E-87

0.3 0.023658 3.59E-10 0.038607 0.011487 4E-143 2.3E-169 1.14E-91 1.2E-102
0.4 0.000648 2.83E-13 0.001474 0.000133 1.1E-155 1.4E-179 4.9E-108 2.1E-118
0.5 2.19E-06 2.66E-16 6.14E-06 4.64E-07 1.5E-168 1.2E-189 1.1E-138 2.5E-134
0.6 1.8E-09 4.16E-22 7.74E-09 4.29E-11 2.6E-181 1.7E-200 3.2E-143 1.1E-150
0.7 7.37E-14 1.29E-27 1.62E-13 3.38E-16 1.3E-194 1.1E-212 6.4E-162 1.6E-166
0.8 2.32E-19 1.34E-34 4.48E-19 1.56E-21 9.7E-209 3.9E-225 7.6E-178 3.3E-185
0.9 2.01E-27 8.7E-44 9.55E-27 1.14E-29 1.8E-223 1.7E-238 1.7E-197 3.6E-202

0.2 0.3 0.27052 0.053585 0.2171 0.191568 4.96E-07 3.74E-96 1.21E-06 1.37E-06
0.4 0.023483 0.002116 0.018452 0.008786 1.28E-23 9.8E-113 8.91E-22 3.35E-22
0.5 0.000297 4.61E-05 0.000201 0.000109 3.21E-47 1.3E-128 1.05E-64 9.63E-45
0.6 8.08E-07 7.42E-09 5.88E-07 4.46E-08 7.52E-73 3.1E-145 1.2E-71 7.91E-71
0.7 1.12E-10 5.21E-13 3.19E-11 1.26E-12 2.6E-99 2.6E-163 2.7E-100 1.6E-96
0.8 9.92E-16 7.59E-19 1.87E-16 1.44E-17 4.7E-126 4.9E-181 4.3E-124 7.3E-126
0.9 2.16E-23 3.15E-27 7.5E-24 2.42E-25 3.9E-152 2E-199 2.9E-152 2.8E-151

0.3 0.4 0.241517 0.24559 0.258198 0.184812 1.54E-08 3.19E-08 1.04E-07 4.69E-08
0.5 0.01103 0.028634 0.011968 0.009401 1.97E-28 3.21E-26 1.22E-46 7.98E-27
0.6 0.000102 7.43E-05 0.000133 2.21E-05 1.64E-54 6.54E-52 6.4E-54 3.78E-53
0.7 5.2E-08 4.33E-08 3.49E-08 3.08E-09 4.13E-83 2.27E-82 8.53E-85 9.05E-81
0.8 1.48E-12 4.83E-13 7.47E-13 1.14E-13 2.2E-112 7.1E-112 9.2E-111 9.2E-113
0.9 9.62E-20 1.18E-20 9.42E-20 6.17E-21 8.4E-141 5.1E-141 2.3E-141 2.3E-140

0.4 0.5 0.167221 0.301051 0.163715 0.19968 2.88E-10 4.75E-09 8.83E-27 1.2E-09
0.6 0.006033 0.004591 0.006528 0.003091 4.28E-33 4.92E-31 7.9E-34 1.64E-32
0.7 1.41E-05 1.15E-05 8.43E-06 2.69E-06 4.39E-63 9.05E-63 3.28E-66 2.67E-61
0.8 1.66E-09 5.79E-10 7.17E-10 4.17E-10 2.43E-95 3.35E-95 1.12E-94 2.09E-96
0.9 4.45E-16 5.81E-17 3.29E-16 1.02E-16 8.9E-127 2.3E-127 2.6E-128 8.1E-127

0.5 0.6 0.168106 0.069677 0.180096 0.090515 8.32E-12 1.34E-11 0.04906 4.88E-12
0.7 0.002632 0.000696 0.001867 0.000532 3.84E-39 1.21E-40 3.4E-23 3.17E-38
0.8 2.08E-06 1.56E-07 1.09E-06 4.06E-07 4.66E-74 1.35E-75 3.01E-54 4.33E-76
0.9 4.16E-12 6.9E-14 3.4E-12 5.84E-13 2.8E-109 2.5E-111 2.92E-95 5E-110

0.6 0.7 0.099549 0.109029 0.073548 0.0721 8.61E-15 3.12E-16 8.12E-17 8.04E-14
0.8 0.000616 0.000438 0.000327 0.000563 1.62E-48 1.85E-50 5.69E-47 2.16E-50
0.9 1.29E-08 4.34E-09 8.84E-09 1.33E-08 9.08E-88 2.5E-90 4.58E-89 2.43E-88

0.7 0.8 0.071309 0.052155 0.066647 0.093559 2.56E-19 1.87E-19 6.43E-16 4.47E-22
0.9 3.51E-05 1.24E-05 4.75E-05 6.73E-05 IE-59 7.09E-61 9.55E-59 1.4E-61

0.8 0.9 0.017329 0.013019 0.022793 0.018821 1.37E-24 1.54E-25 1.91E-27 1.81E-23
F. 1 - P-values for Error in costs per Experiment and autocorrelation factor MC
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F.2. Pairwise comparison of errors generated in estimating inventory policy 
considering Markov-modulated demands

Experiment
Ref P 01 A B C D E F G H
0.1 0.2 0.021658 1.87E-05 0.68816 0.796806 0.005171 0.409411 5.27E-07 1.02E-07
0.1 0.3 0.000436 3.17E-08 0.32519 0.299867 7.38E-05 7.5E-07 8.58E-07 8.19E-07
0.1 0.4 0.018047 7.67E-10 0.298386 0.311597 0.000669 5.29E-06 1.77E-05 1.19E-05
0.1 0.5 0.014895 7.39E-08 0.852337 0.894194 1.62E-05 1.08E-05 8.45E-06 2.73E-05
0.1 0.6 0.004986 9.86E-06 0.383444 0.356937 2.25E-05 5.99E-08 7.14E-06 0.000117
0.1 0.7 0.059942 3.27E-10 0.314695 0.105792 1.23E-05 5.5E-06 0.000134 7E-05
0.1 0.8 0.015797 7.52E-07 0.614156 0.341949 0.000111 6.02E-07 0.000106 3.07E-06
0.1 0.9 0.152384 2.75E-07 0.3823 0.585639 2.06E-05 2.61E-07 0.030801 3.73E-05
0.2 0.3 0.21242 0.183287 0.166426 0.435522 0.229468 3.1E-05 0.9198 0.67466
0.2 0.4 0.944748 0.045156 0.522665 0.20462 0.534683 0.000167 0.443831 0.316266
0.2 0.5 0.888157 0.242381 0.556951 0.696205 0.117949 0.000308 0.550961 0.231995
0.2 0.6 0.60285 0.883213 0.203457 0.238807 0.136986 3.38E-06 0.576686 0.121012
0.2 0.7 0.674634 0.031582 0.159933 0.17339 0.103769 0.000173 0.208112 0.154905
0.2 0.8 0.905297 0.480868 0.365452 0.488134 0.271188 2.56E-05 0.230739 0.483411
0.2 0.9 0.382886 0.362717 0.636395 0.773509 0.131404 1.23E-05 0.003312 0.204237
0.3 0.4 0.238836 0.498293 0.043551 0.041049 0.560574 0.675422 0.505931 0.559868
0.3 0.5 0.268377 0.871066 0.424817 0.242283 0.716243 0.562019 0.620098 0.437461
0.3 0.6 0.466698 0.236252 0.910402 0.050809 0.774335 0.613458 0.64723 0.257343
0.3 0.7 0.096019 0.409323 0.982747 0.559742 0.669167 0.669096 0.246673 0.315275
0.3 0.8 0.25915 0.530445 0.631 0.930974 0.918954 0.963798 0.272154 0.778495
0.3 0.9 0.034553 0.673147 0.063829 0.622523 0.757847 0.829564 0.00453 0.394773
0.4 0.5 0.943131 0.401333 0.220417 0.379301 0.344684 0.871913 0.865308 0.846428
0.4 0.6 0.651957 0.06321 0.056523 0.927589 0.385219 0.355823 0.835433 0.581905
0.4 0.7 0.624797 0.882246 0.041372 0.00884 0.313154 0.993078 0.621113 0.673156
0.4 0.8 0.960385 0.192553 0.123086 0.050311 0.631006 0.642588 0.664467 0.762739
0.4 0.9 0.346323 0.27212 0.867662 0.119991 0.373529 0.526192 0.028951 0.788467
0.5 0.6 0.704137 0.30649 0.492889 0.430422 0.938786 0.278293 0.969591 0.721073
0.5 0.7 0.575243 0.32362 0.412398 0.080218 0.949102 0.87875 0.506851 0.819497
0.5 0.8 0.982715 0.641827 0.750417 0.278824 0.641795 0.531847 0.546336 0.620255
0.5 0.9 0.311106 0.795192 0.289438 0.497748 0.955987 0.426703 0.018697 0.940506
0.6 0.7 0.347439 0.045027 0.893279 0.011443 0.888164 0.351332 0.482789 0.897468
0.6 0.8 0.688127 0.576735 0.712992 0.061861 0.697697 0.645672 0.5213 0.394147
0.6 0.9 0.164149 0.445125 0.081546 0.143065 0.982763 0.771843 0.016891 0.777629
0.7 0.8 0.590095 0.146931 0.615716 0.503014 0.596817 0.636389 0.951716 0.469393
0.7 0.9 0.650385 0.212842 0.06082 0.28251 0.905257 0.520551 0.090147 0.877953
0.8 0.9 0.321541 0.837075 0.168748 0.684961 0.681786 0.865107 0.07931 0.568632

F. 2 P-values for Error in inventory policy per Experiment and autocorrelation factor MC
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F.3. Pairwise comparison of errors generated in estimating total costs considering 
AR(1) demands

Experiment
Ref A B C D E F G H
IID 0.1 0.931304 0.927706 0.920897 0.912796 0.843177 0.859183 0.765565 0.770789
IID 0.2 0.798992 0.802639 0.698999 0.707429 0.465108 0.506025 0.211113 0.216559
IID 0.3 0.545247 0.556107 0.408821 0.423709 0.086795 0.12826 0.007386 0.005162
IID 0.4 0.268883 0.302496 0.12908 0.137779 0.00126 0.004466 1.15E-07 1.6E-07
IID 0.5 0.058904 0.081574 0.010147 0.012692 8.07E-08 1.94E-06 5.96E-18 1.18E-17
IID 0.6 0.00291 0.006649 4.68E-05 7.33E-05 6.26E-17 1.09E-13 3.43E-38 3.15E-37
IID 0.7 2.11E-06 1.18E-05 2.33E-10 6.17E-10 1.77E-35 4.21 E-29 2.05E-72 5.52E-71
IID 0.8 7.45E-14 5.15E-12 7.03E-23 4.52E-22 4.21 E-69 3.17E-58 1.3E-122 1.2E-120
IID 0.9 2.38E-34 2.35E-30 2.08E-53 2.85E-52 1.4E-128 1.1E-103 1.4E-182 4E-191
0.1 0.2 0.866224 0.873503 0.77381 0.790375 0.594165 0.625719 0.340508 0.344565
0.1 0.3 0.60393 0.618509 0.467345 0.489796 0.129539 0.178808 0.017071 0.012068
0.1 0.4 0.307889 0.346925 0.155917 0.169094 0.002433 0.007609 5.15E-07 6.81 E-07
0.1 0.5 0.071327 0.098635 0.013401 0.017111 2.22E-07 4.41 E-06 5.23E-17 9.7E-17
0.1 0.6 0.003821 0.008672 7.03E-05 0.000114 2.58E-16 3.5E-13 4.76E-37 4.08E-36
0.1 0.7 3.16E-06 1.75E-05 4.18E-10 1.16E-09 9.97E-35 1.87E-28 2.69E-71 6.91 E-70
0.1 0.8 1.32E-13 9.1E-12 1.54E-22 1.07E-21 2.36E-68 1.54E-57 9.6E-122 9.1E-120
0.1 0.9 5.05E-34 5.07E-30 5.06E-53 7.62E-52 5.1E-128 4.1E-103 5.6E-182 1.5E-190
0.2 0.3 0.726059 0.734747 0.660208 0.670842 0.324637 0.390898 0.149968 0.115562
0.2 0.4 0.394465 0.43443 0.257372 0.266892 0.012136 0.028681 3.92E-05 4.8E-05
0.2 0.5 0.101819 0.135381 0.028584 0.033869 2.91 E-06 3.72E-05 4.06E-14 6.84E-14
0.2 0.6 0.006387 0.013591 0.000218 0.000315 1.06E-14 7.96E-12 1.98E-33 1.53E-32
0.2 0.7 6.8E-06 3.44E-05 2.18E-09 5.19E-09 1.02E-32 1.09E-26 1.08E-67 2.67E-66
0.2 0.8 4.01 E-13 2.44E-11 1.48E-21 8.41 E-21 2.5E-66 1.21E-55 7.1E-119 6.8E-117
0.2 0.9 2.18E-33 1.96E-29 6.67E-52 8.29E-51 1.8E-126 1.7E-101 5.2E-180 1E-188
0.3 0.4 0.616001 0.657699 0.487803 0.492704 0.125519 0.181646 0.006733 0.011444
0.3 0.5 0.197937 0.247777 0.079519 0.089091 0.00019 0.00099 3.61 E-10 1.23E-09
0.3 0.6 0.017213 0.032904 0.001074 0.00143 6.8E-12 1.36E-09 4.33E-28 9.53E-27
0.3 0.7 3.12E-05 0.000136 2.44E-08 5.14E-08 4.59E-29 1.19E-23 3.51 E-62 3E-60
0.3 0.8 3.81 E-12 1.89E-10 4.39E-20 2.15E-19 1.48E-62 2.66E-52 1.9E-114 5.3E-112
0.3 0.9 4.48E-32 3.39E-28 3.46E-50 3.77E-49 1.3E-123 1.25E-98 5.5E-177 1.4E-185
0.4 0.5 0.431214 0.475518 0.287917 0.309167 0.025828 0.047941 0.000214 0.000238
0.4 0.6 0.059315 0.090285 0.009592 0.011891 4.82E-08 1.49E-06 1.12E-18 4.5E-18
0.4 0.7 0.000233 0.00071 8.36E-07 1.58E-06 1.41 E-23 3.89E-19 1.3E-51 2.24E-50
0.4 0.8 8.44E-11 2.45E-09 7.92E-18 3.45E-17 1.27E-56 4.35E-47 8.3E-106 7.7E-104
0.4 0.9 3.27E-30 1.35E-26 1.76E-47 1.78E-46 5.2E-119 4.45E-94 4.2E-171 2E-180
0.5 0.6 0.270216 0.325535 0.124201 0.13171 0.000896 0.003753 3.56E-08 8.17E-08
0.5 0.7 0.003578 0.007204 9.19E-05 0.00013 3.26E-16 4.54E-13 4.25E-37 5.36E-36
0.5 0.8 7.86E-09 1.14E-07 1.47E-14 4.23E-14 6.55E-48 2.16E-39 2.85E-93 2.78E-91
0.5 0.9 2.47E-27 4.58E-24 2.42E-43 1.61E-42 4.1E-112 3.77E-87 1.2E-162 1.6E-172
0.6 0.7 0.068118 0.086408 0.016083 0.018721 2.62E-07 5.28E-06 4.77E-17 1.21E-16
0.6 0.8 2.17E-06 1.24E-05 2.67E-10 5.57E-10 5.62E-35 2.05E-28 5.96E-73 2.14E-71
0.6 0.9 2.01 E-23 1.07E-20 2.12E-37 1.05E-36 2.7E-101 1.38E-76 6.2E-149 4.5E-160
0.7 0.8 0.00296 0.006874 5.14E-05 6.82E-05 1.61E-16 3.76E-13 9.67E-39 1.2E-37
0.7 0.9 2.39E-17 3.18E-15 2.41 E-28 6.9E-28 4.54E-83 4.79E-59 9.6E-125 6.1E-138
0.8 0.9 5.82E-09 5.43E-08 1.27E-14 1.86E-14 4.3E-50 7E-30 4.3E-75 6.45E-93

F. 3 P-values for Error in costs per Experiment and autocorrelation factor AR(1)
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F.4. Pairwise comparison of errors generated in estimating inventory policy 
considering AR(1) demands

Experiment
Ref 0 A B C D E F G H
IID 0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.205544
0.009642
0.007843
0.149683
0.040629
0.011717
0.061316
0.002131
0.006913

0.039003
0.001282
0.189082
0.445137
0.555708
0.075626
0.11824

0.006046
0.021201

0.163647
0.102242
0.006177
0.065602
0.049749
0.049729
0.029174
0.083449
1.08E-05

0.08902
0.775973
0.696552
0.544169
0.131707
0.529342
0.044016
0.021239
7.12E-05

0.047609
0.016218
0.347581
0.019006
0.38221

0.410175
0.00101
5.42E-05
7.19E-06

0.000731 
0.052341 
0.000547 
0.123852 
0.522482 
6.51 E-05 
0.055978 
1.51E-07 
2.15E-07

0.268425
0.057414
0.000925
0.20922

0.511119
0.004047
4.51 E-05
0.000229
0.006509

0.015704
0.028596
0.00479
0.000334
0.116185
0.386404
0.023823
0.016973
0.004961

0.1 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.182642
0.160363
0.860697
0.431784
0.206214
0.542743
0.068474
0.148007

0.240413
0.449861
0.19175

0.139104
0.771822
0.613021
0.490043
0.808065

0.808423
0.174659
0.65204

0.566734
0.566619
0.427278
0.733836
0.002278

0.156301
0.189301
0.272765

0.8459
0.282702
0.752097
0.542738
0.021014

0.668747
0.295513
0.712457
0.266348
0.245361
0.184545
0.03622

0.010483

0.144384
0.935377
0.062684
0.005923

0.525
0.13652

0.050811
0.059665

0.425236
0.026099
0.881155
0.652445
0.074923
0.002661
0.009259
0.104016

0.818443
0.680613
0.231891
0.394051
0.119428
0.87464
0.977002
0.689048

0.2 0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.943
0.24694

0.583783
0.945075
0.468223
0.622718
0.908876

0.054153
0.013491
0.008232
0.143527
0.093466
0.627936
0.351515

0.264515
0.834821
0.741011
0.740883
0.581191
0.922261
0.004897

0.916031
0.747392
0.220929
0.730407
0.083329
0.043153
0.000218

0.140905
0.952688
0.124129
0.112351
0.368004
0.094904
0.032593

0.123484
0.685969
0.192038
0.036547
0.976574
0.000698
0.000895

0.151772
0.516955
0.212511
0.32372

0.026458
0.069718
0.406065

0.521502
0.154408
0.533263
0.183932
0.942771
0.840915
0.528982

0.3 0.4
0.5
0.6
0.7
0.8
0.9

0.219044
0.535712
0.888351
0.425581
0.674094
0.965736

0.581602
0.468215
0.641291
0.802506
0.148704
0.318211

0.364007
0.431898
0.431998
0.572107
0.308461
0.087181

0.828472
0.263155
0.810974
0.103749
0.055143
0.000324

0.157542
0.947707
0.907719
0.018014
0.00178

0.000339

0.052159
0.004631
0.579139
0.116529
0.061112
0.071417

0.037816 
0.007611 
0.654195 
0.42836 

0.701896 
0.545745

0.432582
0.206631
0.049315
0.569148
0.659617
0.990838

0.4 0.5
0.6
0.7
0.8
0.9

0.541296
0.276099
0.664802
0.099431
0.203417

0.86147
0.309473
0.423194
0.04643

0.121816

0.90289
0.902755
0.731435
0.911662
0.009087

0.366624
0.982041
0.158113
0.088618
0.000713

0.139233
0.126334
0.337342
0.083807
0.028111

0.367398
0.012767
0.707677
0.000155
0.000204

0.548654
0.102586
0.004265
0.014086
0.139669

0.041059
0.006129
0.176161
0.220865
0.425889

0.5 0.6
0.7
0.8
0.9

0.631926
0.858981
0.298706
0.507826

0.233913
0.329522
0.030448
0.085321

0.999864
0.824916
0.815803
0.012825

0.378672
0.609942
0.422085
0.012438

0.959859
0.015097
0.001429
0.000265

0.000741
0.202194
3.36E-06
4.63E-06

0.025938
0.000573
0.002331
0.038218

0.479515
0.487214
0.410216
0.210773

0.6 0.7
0.8
0.9

0.511465
0.5749

0.854527

0.829106
0.327198
0.594153

0.825049
0.815671
0.012831

0.16482
0.092884
0.000772

0.013151
0.001204
0.000219

0.034019
0.186418
0.210897

0.215378
0.406329
0.875793

0.161448
0.126385
0.050644

0.7 0.8
0.9

0.223848
0.401095

0.232075
0.454174

0.649744
0.02319

0.769572
0.046015

0.439771
0.214081

0.000629
0.000807

0.68215
0.163141

0.897405
0.576959

0.8 0.9 0.705731 0.654518 0.00657 0.08826 0.637711 0.94386 0.323949 0.667949
F. 4 P-values for Error in inventory policy per Experiment and autocorrelation factor AR(1)
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G L in e a r iz a t io n  P r o c e s s  f o r  M a r k o v ia n -m o d u la te d  a n d  AR(1)

Appendix G.l -  Linearization process -  Markovian demand case

P01 4 P( C) P(s*,S*) Ln p ( C) Ln P(s*,S*)
0.10 -0.15 23.37 1090 3.151 6.994
0.20 0.13 43.24 907 3.767 6.810
0.30 0.29 58.26 1006 4.065 6.914
0.40 0.38 71.98 832 4.276 6.724
0.50 0.45 83.45 903 4.424 6.805
0.60 0.49 94.94 916 4.553 6.820
0.70 0.53 104.69 698 4.651 6.548
0.80 0.56 113.85 929 4.735 6.834
0.90 0.64 123.57 1355 4.817 7.212

____________________________G .l.l .  Linearization. Experiment A
Regression Statistics_________

Multiple R 0.998305421
R Square 0.996613713
Adjusted R
Square 0.996129957
Standard Error 0.033434256
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 2.3029 2.3029 2060.1607 0.0000
Residual 7 0.0078 0.0011
Total 8 2.3108

Standard
Coefficients Error tStat P-value Lower 95%

Intercept 3.470176983 0.0209 166.2748 0.0000 3.4208
Autocorr 2.170468666 0.0478 45.3890 0.0000 2.0574

G.l .2. Regression Analysis. Experiment A

P01 4 P ( C ) P (s*,S*) LnP( C) Ln P(s*,S*)
0.10 -0.15 22.86 884 3.129 6.784
0.20 0.13 43.60 922 3.775 6.827
0.30 0.29 59.79 613 4.091 6.418
0.40 0.38 73.13 1025 4.292 6.932
0.50 0.45 88.25 836 4.480 6.728
0.60 0.49 96.85 681 4.573 6.523
0.70 0.53 106.51 806 4.668 6.692
0.80 0.56 122.59 1052 4.809 6.959
0.90 0.64 160.44 1856 5.078 7.526

___________________________G.1.3. Linearization. Experim ent B
Regression Statistics__________

Multiple R 0.995627125
R Square 0.991273372
Adjusted R Square 0.990026711
Standard Error 0.058995827
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 2.7675 2.7675 795.1426 0.0000
Residual 7 0.0244 0.0035
Total 8 2.7919

Coefficients Standard Error t Stat P-value Lower 95%
Intercept 3.443808338 0.0368 93.5156 0.0000 3.3567
Autocorr 2.379332291 0.0844 28.1983 0.0000 2.1798

G.1.4. Regression Analysis. Experiment B
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P01 0 P( C) 13 (s*,S*) Ln/ i ( C) Ln 0 ( s*,S*)
0.10 -0.15 22.86 629 3.129 6.443
0.20 0.13 41.86 883 3.734 6.784
0.30 0.29 57.15 976 4.046 6.884
0.40 0.38 72.05 951 4.277 6.858
0.50 0.45 83.21 825 4.421 6.715
0.60 0.49 94.80 598 4.552 6.393
0.70 0.53 104.20 972 4.646 6.880
0.80 0.56 114.47 716 4.740 6.574
0.90 0.64 121.45 790 4.800 6.672

G.l.S. Linearization. Experiment C

_______ Regression_Statistics________
Multiple R 0.997780492
R Square 0.995565911

Adjusted R Square 0.99493247
Standard Error 0.038850032
Observations 9

ANOVA
df SS MS F Significance F

Regression 1 2.3722 2.3722 1571.6782 0.0000
Residual 7 0.0106 0.0015

Total 8 2.3827

Coefficients Standard Error tS ta t P-value Lower 95%
Intercept 3.447834273 0.0243 142.1744 0.0000 3.3905
Autocorr 2.202847864 0.0556 39.6444 0.0000 2.0715

G.1.6. Regression Analysis. Experiment C

P01 </> P( C) 0(s*,S*) L n p ( C ) Ln Q( s*,S* )
0.10 -0.15 22.86 776 3.129 6.654
0.20 0.13 42.47 701 3.749 6.553
0.30 0.29 56.43 577 4.033 6.358
0.40 0.38 71.42 1047 4.269 6.954
0.50 0.45 85.51 901 4.449 6.804
0.60 0.49 96.18 1064 4.566 6.970
0.70 0.53 107.22 685 4.675 6.529
0.80 0.56 118.08 829 4.771 6.720
0.90 0.64 128.33 877 4.855 6.776

G .l.7. Linearization. Experiment D

 ______ Regression Statistics_________
Multiple R 0.959885864
R Square 0.921380872
Adjusted R Square 0.910149568
Standard Error 10.65857432
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 9319.8140 9319.8140 82.0369 0.0000
Residual 7 795.2364 113.6052
Total 8 10115.0504

Coefficients Standard Error tStat P-value Lower 95%
Intercept 29.99522891 6.6532 4.5084 0.0028 14.2628
Autocorr 138.0749593 15.2444 9.0574 0.0000 102.0277

G.1.8. Regression Analysis. Experiment D
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P01 0 P( C) P(s*,S») L n p ( C ) Ln P( s*,S* )
0.10 -0.15 113.44 985 4.731 6.893
0.20 0.13 206.85 1061 5.332 6.967
0.30 0.29 287.07 963 5.660 6.870
0.40 0.38 355.05 989 5.872 6.897
0.50 0.45 414.20 975 6.026 6.883
0.60 0.49 468.44 1150 6.149 7.048
0.70 0.53 516.78 1042 6.248 6.949
0.80 0.56 559.48 1265 6.327 7.143
0.90 0.64 928.59 1785 6.834 7.487

G.1.9. Linearization. Experim ent E

_________Regression_Statistics_________
Multiple R 0.983393012
R Square 0.967061815
Adjusted R Square 0.96235636
Standard Error 0.118800584
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 2.9006 2.9006 205.5193 0.0000
Residual 7 0.0988 0.0141
Total 8 2.9994

Coefficients Standard Error tStat P-value Lower 95%
Intercept 5.009973352 0.0742 67.5590 0.0000 4.8346
Autocorr 2.435881653 0.1699 14.3359 0.0000 2.0341

G.1.10. Regression Analysis. Experim ent E

P01 0 P( C) P( s*,S*) Ln P( C) Ln P( s*,S*)
0.10 -0.15 111.17 875 4.711 6.774
0.20 0.13 206.87 906 5.332 6.809
0.30 0.29 287.44 994 5.661 6.902
0.40 0.38 359.44 821 5.885 6.711
0.50 0.45 417.96 1022 6.035 6.930
0.60 0.49 468.09 992 6.149 6.900
0.70 0.53 515.29 915 6.245 6.819
0.80 0.56 779.08 1697 6.658 7.436
0.90 0.64 1,033.29 1849 6.940 7.522

G .l . 11. Linearization. Experiment F

_________ Regression Statistics_________
Multiple R 0.972426541
R Square 0.945613377
Adjusted R Square 0.93784386
Standard Error 0.167710349
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 3.4233 3.4233 121.7081 0.0000
Residual 7 0.1969 0.0281
Total 8 3.6201

Coefficients Standard Error tS ta t P-value Lower 95%
Intercept 4.980883568 0.1047 47.5787 0.0000 4.7333
Autocorr 2.646250433 0.2399 11.0321 0.0000 2.0791

G.1.12. Regression Analysis. Experiment F
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P01 </> 0 ( C ) 0( s*,S*) Ln 0 ( C ) Ln 0 ( s*,S*)
0.10 -0.15 110.84 1207 4.708 7.096
0.20 0.13 211.09 882 5.352 6.782
0.30 0.29 282.22 893 5.643 6.795
0.40 0.38 355.81 763 5.874 6.638
0.50 0.45 372.22 395 5.919 5.979
0.60 0.49 470.89 802 6.155 6.687
0.70 0.53 516.20 679 6.246 6.520
0.80 0.56 557.37 670 6.323 6.507
0.90 0.64 768.00 1608 6.644 7.383

G.1.13. Linearization. Experiment G

_______ Regression Statistics________
Multiple R 0.991539249
R Square 0.983150082

Adjusted R Square 0.980742951
Standard Error 0.080602534
Observations 9

ANOVA
df SS MS F Significance F

Regression 1 2.6535 2.6535 408.4323 0.0000
Residual 7 0.0455 0.0065

Total 8 2.6990

Coefficients Standard Error tS ta t P-value Lower 95%
Intercept 5.01420191 0.0503 99.6597 0.0000 4.8952
Autocorr 2.329807473 0.1153 20.2097 0.0000 2.0572

G .l.14. Regression Analysis. Experiment G

P01 4 0 ( C) 0  (s*,S*) Ln 0 ( C ) Ln 0( s*,S*)
0.10 -0.15 113.93 923 4.736 6.827
0.20 0.13 204.60 817 5.321 6.706
0.30 0.29 291.83 951 5.676 6.858
0.40 0.38 357.02 975 5.878 6.882
0.50 0.45 416.89 909 6.033 6.812
0.60 0.49 469.08 873 6.151 6.772
0.70 0.53 515.66 765 6.245 6.640
0.80 0.56 556.61 688 6.322 6.533
0.90 0.64 797.33 1696 6.681 7.436

G.1.15. Linearization. Experiment H

_______ Regression Statistics________
Multiple R 0.993824634
R Square 0.987687404

Adjusted R Square 0.985928461
Standard Error 0.069288169
Observations 9

ANOVA
df SS MS F Significance F

Regression 1 2.6958 2.6958 561.5235 0.0000
Residual 7 0.0336 0.0048

Total 8 2.7294

Coefficients Standard Error tStat P-value Lower 95%
Intercept 5.027123286 0.0433 116.2323 0.0000 4.9249
Autocorr 2.348304134 0.0991 23.6965 0.0000 2.1140

G.1.16. Regression Analysis. Experim ent H
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0 Cost js r c j P(s*,S*) Lnf i ( C) Ln P( s*,S*)
0 2,781.31 0.00 0.00 0 0

0.1 2,783.10 1.79 205.39 0.582 5.325
0.2 2,786.60 3.50 36.01 1.252 3.584
0.3 2,793.88 7.28 258.29 1.985 5.554
0.4 2,804.29 10.42 184.78 2.343 5.219
0.5 2,820.64 16.35 25.36 2.794 3.233
0.6 2,843.56 22.92 122.27 3.132 4.806
0.7 2,881.54 37.98 95.73 3.637 4.562
0.8 2,943.68 62.14 363.59 4.129 5.896
0.9 3,067.84 124.16 191.81 4.822 5.256

_____________________G.2.1. Linearization. Experiment A
Regression Statistics________

Multiple R 0.990057895
R Square 0.980214636
Adjusted R Square 0.977388155
Standard Error 0.041181165
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 0.588128781 0.5881288 346.79687 3.19526E-07
Residual 7 0.011871219 0.0016959
Total 8 0.6

Standard
Coefficients Error tStat P-value Lower 95%

Intercept -0.073272141 0.033705769 2.1738754 0.066237 -0.152973619
X Variable 1 0.168708641 0.009059406 18.622483 3.195E-07 0.147286549

G.2.2. Regression Analysis. Experiment A

$ Cost P( C) P(S*,S*) L n p ( C ) Ln P( s*,S* )
IID 2,874.50 0.00 0.00 0 0
0.1 2,876.56 2.06 226.79 0.724 5.424
0.2 2,882.10 7.60 142.00 2.029 4.956
0.3 2,891.66 17.16 113.11 2.843 4.728
0.4 2,906.07 31.57 117.02 3.452 4.762
0.5 2,928.15 53.66 207.58 3.983 5.336
0.6 2,960.14 85.64 345.13 4.450 5.844
0.7 3,010.34 135.85 129.96 4.912 4.867
0.8 3,095.51 221.01 119.81 5.398 4.786
0.9 3,263.32 388.82 338.90 5.963 5.826

____________________ G.2.5. Linearization. Experiment C
Regression Statistics________

Multiple R 0.984388056
R Square 0.969019844
Adjusted R Square 0.964594107
Standard Error 0.315853817
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 21.84335617 21.843356 218.95109 1.54179E-06
Residual 7 0.698345435 0.0997636
Total 8 22.5417016

Standard
Coefficients Error t Stat P-value Lower 95%

Intercept 0.733466479 0.229462478 3.196455 0.0151402 0.190874327
X Variable 1 6.0337048 0.407765524 14.796996 1.542E-06 5.069493243

G.2.6. Regression Analysis. Experiment C
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Cost p  (C ) P(s*,S*) L n p ( C ) Ln P(s*,S*)
IID 5,370.93 0.00 0.00 0 0
0.1 5,373.20 2.27 274.79 0.822 5.616
0.2 5,378.72 7.79 50.40 2.053 3.920
0.3 5,387.55 16.62 47.16 2.811 3.853
0.4 5,401.80 30.87 46.00 3.430 3.829
0.5 5,422.93 52.00 206.35 3.951 5.330
0.6 5,454.29 83.36 115.20 4.423 4.747
0.7 5,503.32 132.39 178.20 4.886 5.183
0.8 5,587,05 216.12 527.44 5.376 6.268
0.9 5,753.69 382.76 121.57 5.947 4.800

_____________________G.2.7. Linearization. Experiment D
Regression Statistics________

Multiple R 0.987131364
R Square 0.974428331
Adjusted R Square 0.970775235
Standard Error 0.281518907
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 21.13995205 21.139952 266.74044 7.86058E-07
Residual 7 0.554770264 0.0792529
Total 8 21.69472231

Standard
Coefficients Error tS ta t P-value Lower 95%

Intercept 0.776426865 0.204518744 3.7963604 0.0067467 0.292817229
X Variable 1 5.935760559 0.363439346 16.33219 7.861 E-07 5.076363683

G.2.8. Regression Analysis. Experiment D

<t> Cost P( C) P (s*,S*) L n p ( C ) Ln P( s*,S*)
IID 3,275.46 0.00 0.00 0 0
0.1 3,279.57 4.11 133.54 1.413 4.894
0.2 3,290.63 15.17 123.67 2.720 4.818
0.3 3,311.10 35.64 110.18 3.574 4.702
0.4 3,342.97 67.51 192.08 4.212 5.258
0.5 3,389.43 113.97 75.66 4.736 4.326
0.6 3,458.99 183.53 162.77 5.212 5.092
0.7 3,568.17 292.71 454.74 5.679 6.120
0.8 3,748.96 473.50 474.58 6.160 6.162
0.9 4,120.12 844.66 353.35 6.739 5.867

G.2.9. Linearization. Experiment E

_______ Regression Statistics_______
Multiple R 0.983883237
R Square 0.968026225
Adjusted R Square 0.963458543
Standard Error 0.326674116
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 22.61625523 22.616255 211.92942 1.7226E-06
Residual 7 0.747011845 0.106716
Total 8 23.36326708

Standard
Coefficients Error tS ta t P-value Lower 95%

Intercept 1.424125211 0.237323243 6.0007827 0.0005418 0.862945316
X Variable 1 6.139524307 0.42173447 14.557796 1.723E-06 5.142281465

G.2.10 Regression Analysis. Experiment E
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0 Cost P( C) P Ln P( C) Ln P( s*,S*)
IID 5,684.72 0.00 0.00 0 0
0.1 5,688.41 3.68 275.18 1.304 5.617
0.2 5,698.54 13.81 13.22 2.626 2.582
0.3 5,716.36 31.64 261.29 3.454 5.566
0.4 5,744.14 59.41 59.41 4.085 4.085
0.5 5,785.33 100.61 27.12 4.611 3.300
0.6 5,845.91 161.19 513.71 5.083 6.242
0.7 5,942.01 257.29 173.64 5.550 5.157
0.8 6,099.29 414.56 766.47 6.027 6.642
0.9 6,360.97 676.25 547.34 6.517 6.305

G.2.11. Linearization. Experiment F

 Regression Statistics
Multiple R 0.982632853
R Square 0.965567324

Adjusted R Square 0.960648371
Standard Error 0.333972934
Observations 9

ANOVA
df SS MS F Significance F

Regression 1 21.894366 21.894366 196.29527 2.23476E-06
Residual 7 0.780765444 0.1115379

Total 8 22.67513144

Standard
Coefficients Error tS ta t P-value Lower 95%

Intercept 1.341453562 0.242625711 5.5289011 0.0008793 0.767735331
X Variable 1 6.040745814 0.431157204 14.010541 2.235E-06 5.021221764

G.2.12. Regression Analysis. Experiment F

0 Cost P( C) P(s*,S*) Ln P( C) Ln P( s*,S*)
IID 3,789.09 0.00 0.00 0 0
0.1 3,795.28 6.19 15.62 1.823 2.748
0.2 3,815.09 26.00 230.54 3.258 5.440
0.3 3,845.03 55.94 162.86 4.024 5.093
0.4 3,901.62 112.53 150.60 4.723 5.015
0.5 3,979.33 190.24 189.37 5.248 5.244
0.6 4,096.55 307.46 305.69 5.728 5.723
0.7 4,280.87 491.78 432.54 6.198 6.070
0.8 4,591.31 802.22 558.16 6.687 6.325
0.9 5,098.00 1,308.91 1,247.88 7.177 7.129

________________________ G.2.13. Linearization. Experim ent G
Regression Statistics _____

Multiple R 0.981279012
R Square 0.9629085
Adjusted R Square 0.957609714
Standard Error 0.354872496
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 22.88512804 22.885128 181.72248 2.90239E-06
Residual 7 0.881541419 0.1259345
Total 8 23.76666946

Standard
Coefficients Error tStat P-value Lower 95%

Intercept 1.897357792 0.257808891 7.3595514 0.0001547 1.287737071
X Variable 1 6.175911274 0.458138422 13.480448 2.902E-06 5.092586825

G.2.14. Regression Analysis. Experiment G
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0 Cost P( C) P( s*,S*) L nP( C) LnMs ' . S * )
IID 6,270.99 0.00 0.00 0 0
0.1 6,277.04 6.05 306.74 1.800 5.726
0.2 6,296.68 25.69 355.87 3.246 5.875
0.3 6,329.42 58.43 15.99 4.068 2.772
0.4 6,382.19 111.20 59.10 4.711 4.079
0.5 6,459.31 188.32 186.44 5.238 5.228
0.6 6,573.23 302.24 299.77 5.711 5.703
0.7 6,754.85 483.87 483.73 6.182 6.182
0.8 7,059.37 788.39 669.95 6.670 6.507
0.9 7,669.22 1,398.23 1,351.41 7.243 7.209

G.2.15. Linearization. Experim ent H

Regression Statistics
Multiple R 0.981257752
R Square 0.962866777
Adjusted R Square 0.957562031
Standard Error 0.35714588
Observations 9
ANOVA

df SS MS F Significance F
Regression 1 23.15223298 23.152233 181.51043 2.91389E-06
Residual 7 0.892872259 0.1275532
Total 8 24.04510524

Standard
Coefficients Error tS ta t P-value Lower 95%

Intercept 1.879574178 0.259460467 7.244164 0.0001708 1.266048105
X Variable 1 6.211847951 0.461073349 13.472581 2.914E-06 5.121583508

G.2.16. Regression Analysis. Experiment H
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