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ABSTRACT

EFFECTS OF ELEVATED ATMOSPHERIC C 02 ON SCRUB- 
OAK ROOT CARBON POOLS AND SOIL MICROBIAL 

PROCESSES

Alisha Lea Pagel Brown 
Old Dominion University, 2006 

Director: Dr. Frank P. Day

The levels of atmospheric C 0 2 are rising and this affects the growth of plants and 

the ecosystems in which they reside. Plants take up additional C from the atmosphere and 

have potential to sequester C in the soil. I investigated the sequestration of C 

below ground and the microbial processes that control C retention in the soil. This study 

was conducted in a Florida scrub-oak ecosystem, where CO2 levels have been elevated to 

twice ambient since 1996 in open top chambers. There were eight replicates of ambient 

CO2 chambers and eight replicates of twice-ambient CO2 levels. The chambers were 

blocked according to the vegetation present at the beginning of the study and the site was 

burned prior to construction of the chambers. Soil cores were taken to investigate the 

effects of elevated CO2 on soil biomass pools, microbial response and nutrient 

limitations. Elevated CO2 did not affect total biomass of roots as of May 2002. There was 

less biomass of the smallest roots (< 0.25 mm) in elevated CO2 in the top 10 cm. The C 

and N contents of root and organic matter pools reflected the trends in biomass. N 

concentration was lower for < 0.25 mm and 1-2 mm roots in the upper portion of the soil. 

Dissolved organic C and soil pH were unaffected in elevated CO2 . An oxygen biosensor 

system was used to examine microbial function in the scrub-oak soils. Microbial response 

was affected by CO2 treatments. The soil microbial communities had greater N limitation
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in elevated CO2 than ambient CO2 , while the litter community was unaffected. The 

rhizosphere community had greater P limitation in elevated CO2 than ambient CO2 . 

Substrates for the microbes derived from roots and litter grown in elevated CO2 seemed 

to have more energy available to microbes, but this was dependent upon N conditions. 

Overall, there was greater nutrient limitation of microbial activity in elevated CO2 than 

ambient CO2 , but the scrub-oak ecosystem was nutrient limited regardless of CO2 

conditions preventing full use of the potential C available for energy.
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CHAPTER I 

INTRODUCTION

Carbon dioxide, one of the greenhouse gases that may lead to an increase in global 

temperature, has been on the rise for the better part of two centuries (IPCC, 2001). This 

rise in the concentration of atmospheric CO2 is linked to anthropogenic activities, 

including agriculture, burning of fossil fuels, cement manufacturing and deforestation. A 

large amount of carbon was removed from the rapid biogeochemical C cycle during the 

Carboniferous Epoch when organic matter was buried in sediment to be transformed 

slowly into fossil fuels(Kump et al., 2004). Industrial society has tapped into this C 

reservoir as an energy source and is rapidly translocating C from the long-term geological 

carbon cycle to the rapid, short-term biogeochemical cycle.

Rising atmospheric CO 2 concentrations

Atmospheric C 0 2 concentrations before 1750 were estimated to be 280 ± 10 ppm (IPCC,

2001), but in following years concentrations increased by 100 ppm. NOAA Climate 

Monitoring and Diagnostics laboratory reported in their 2002-2003 summary that 

atmospheric C 0 2 concentrations ranged from 373 ppm in the South Pole, Antarctica 

Observatory to 377 ppm at Barrow Alaska Observatory in 2003 (Conway et al., 2003), 

with the American Samoa Observatory (374 ppm) and Mauna Loa, Hawaii, Observatory 

(376 ppm) falling in that range. A more recent report gave a concentration of 380 ppm 

(Sabine et al., 2004). The majority of this increase can be pinpointed between 1980 and

This dissertation follows the format of Plant and Soil.
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the present. From 1980 -  1989, the rate of increase was 3.3 ±0.1 Pg C / yr (Prentice et 

al., 2001). The rate decreased only slightly to 3.2 ± 0.1 Pg C/yr from 1990-1999 (Prentice 

et al., 2 0 0 1 ).

Rates of CO2 input into the atmosphere were estimated at 5.4 ± 0.3 Pg C / yr from 

1980-1989 and 6.3 ± 0.4 Pg C / yr from 1990-1999 (Prentice et al., 2001) from burning of 

fossil fuels and cement manufacturing. Deforestation in the 1980’s was estimated to have 

contributed 0.6 to 2.5 Pg C / yr (Prentice et al., 2001) to the atmosphere in the form of 

CO2 , but due to the difficulty of estimating deforestation contributions, there are no rates 

yet available for the 1990’s. Less than half of CO2 released into the atmosphere remains 

there, and consequently, atmospheric CO2 concentration is less than what it could be due 

to human activities.

The Earth’s oceans and terrestrial systems serve as sinks for anthropogenic C 0 2. 

Carbon dioxide is dissolved into ocean water and utilized by phytoplankton and can be 

precipitated into the sediment as organic detritus, calcium carbonate or remain in 

solution. Oceans cover 71% of the Earth’s surface and have potential to take up all of the 

carbon dioxide that humans have released into the atmosphere(Kump et al., 2004). 

However, because a majority of the ocean water cycles slowly, this would not be possible 

for several thousand years (Sabine et al., 2004). Currently, most of the CO2 taken up by 

the ocean is confined to the thermocline, while only about 7% of anthropogenic CO2 has 

made it to depths greater than 1500 m (Sabine et al., 2004). Between 1800-1994, oceans 

are estimated to have taken up 118 ± 19 Pg of anthropogenic C (Sabine et al., 2004).

Some predict that as oceans dissolve more CO2 , the rate will decrease. Estimates support 

that theory, where between 1980 -1989 the ocean took up CO2 at a rate o f -1.9 ± 0.6 Pg
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C / yr, but between 1990 -  1999 the rate was reduced to -1.7 ± 0.5 Pg C / yr (IPCC, 

2001).

Terrestrial systems have also taken up a significant portion of CO2 released into 

the atmosphere due to human activities. In the 1980’s -0 .2  ± 0.7 Pg C / yr were estimated 

to be taken up by terrestrial ecosystems, while in the 1990’s -1 .4  ± 0.7 Pg C / yr were 

estimated to be taken up (IPCC, 2001). The amount taken up by terrestrial systems did 

not exceed the amount released due to land use change. Overall terrestrial systems were a 

net source, but have potential to change from a source to a sink.

Climate change

Carbon dioxide is a greenhouse gas, which means its molecular structure allows it to trap 

long wave radiation that would normally pass through the atmosphere to space. This 

essentially heats the atmosphere to a temperature higher than would otherwise be 

expected. Greenhouse gases have allowed life-supporting conditions to come about 

earlier than otherwise possible because without their heat absorbing capacity, Earth 

would have been frozen until the solar radiation of the sun increased (Kasting, 1993). 

However, that was 4 bya, and, currently, levels of C 0 2 are higher than they have been in 

the past 420,000 yrs and probably as far back as 20 million yrs (IPCC, 2001). The 

existing living organisms have all evolved in lower atmospheric C 0 2 concentrations than 

current levels. As a greenhouse gas, C 0 2 has potential to disrupt global climate by raising 

temperature, melting sea ice, which raises sea levels, increasing droughts, and slowing or 

halting the oceanic conveyor belt of warm water that helps distribute heat evenly over the 

planet. These dire predictions have led to an increased interest in the fate of C 0 2 released
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into the atmosphere. Interest has been focused on terrestrial systems because 

heterogeneity of terrestrial landmasses makes predictions and estimations of response to a 

rise in atmospheric CO2 difficult. Many studies have been initiated in the last decade in a 

variety of ecosystems with the goal of predicting long-term reactions of terrestrial biomes 

to future levels of atmospheric CO2 .

Terrestrial system uptake of CO2

In terrestrial systems there are two mechanisms for removal of CO2 from the atmosphere. 

Carbon dioxide diffuses into precipitation forming carbonic acid, followed by the 

weathering of mineral rocks, which removes C from precipitation and forms mineral 

compounds that enter the long-term geological cycle (Siever, 1974). The other 

mechanism is uptake of CO2 by plants and incorporation into biomass. This process and 

subsequent mineralization and microbial assimilation via decomposition are of great 

interest. These processes remove CO2 from the atmosphere, thereby reducing the effect 

on climate. It is also the least predictable mechanism for CO2 removal from the 

atmosphere, as plants are dependent upon climate, water availability, nutrient abundance 

and a myriad of other factors for growth. To further complicate ability to predict plant 

response, C 0 2 can directly or indirectly affect these factors. For example, as a greenhouse 

gas, C 0 2 can cause increased temperatures, perhaps allowing some plants to grow faster 

and take up greater amounts of C 0 2. Or an increase in temperature may also lead to 

drought, killing plants and thereby reducing potential uptake of CO2 . In addition to 

predicting a plant’s potential to take up CO2 , it is also necessary to predict how quickly 

plant-produced biomass will be decomposed and respired back into the atmosphere.
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Elevated atmospheric C 0 2 concentration has potential to alter plant production, 

but many plants are water limited and must balance water loss through stomates with 

intake of C 0 2 (Bazzaz, 1990). In elevated atmospheric C 0 2, stomates were opened for a 

shorter period of time in order to take up the same amount of C 0 2 (Bazzaz, 1990; Eamus 

and Jarvis, 1989). Elevated atmospheric C 0 2 increased plant water use efficiency (WUE) 

(Ceulemans and Mousseau, 1994). Plants increased biomass production because water 

limitation was eased and C 0 2 was more readily available to be incorporated into biomass 

(Ceulemans and Mousseau, 1994).

However, one problem plants encounter in elevated atmospheric C 0 2 is nutrient 

limitation. Most plants are limited by one or more nutrients, but this limitation may be 

more pronounced when water limitations are removed. This can cause changes in quality 

of biomass produced in elevated atmospheric C 0 2, affecting decomposition and 

herbivory.

Once C has been removed from the atmosphere, for it to remain out of the 

atmosphere it must enter long-term soil C storage. There are three forms in which plant 

carbon can reach the soil; aboveground litter, root litter, and root exudates (Matamala and 

Schlesinger, 2000). Plants respond differently to various environmental conditions, 

allocating new carbon differently and this impacts microbial communities (Bemston and 

Bazzaz, 1996b). Some plants in high nutrient soils, may invest C in aboveground 

biomass, increasing future litter fall. Others, in low nutrient conditions, may invest C in 

root biomass to increase exploration of soil volume for exploitation of nutrient resources 

(Chapin et al., 1987; Matamala and Schlesinger, 2000). Still others may increase 

rhizosphere exudates to stimulate phosphate releasing bacteria (O’Neill, 1994). The
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particular stresses of a plant will dictate investment of excess carbohydrates produced in 

elevated atmospheric CO2 . The form of the carbohydrate leaving the plant and moving 

into the soil and soil surface may dictate how microbial communities utilize it. Lower 

quality tissue (higher C:N) may decompose slower (Rastetter et al., 1992). Rhizosphere 

exudates may be lost from the system through percolation or incorporated into microbial 

biomass for short term cycling before being respired back to the atmosphere.

Microbial communities may be indirectly affected by elevated atmospheric CO2 

through plant responses. As plants exhibit greater NPP in elevated CO2 than ambient 

CO2 , there may be an increase in quantity of growth substrate for microbes, which will 

have an effect on microbial community structure and cycling of C (Bemston and Bazzaz, 

1996b). There can also be an altered quality of growth substrate influencing subsequent 

growth and community structure of dependent microbes. In addition to changes in growth 

substrates, there may also be changes in the soil environment that can affect microbial 

communities. Increases in plant WUE can increase soil moisture, causing increases in 

decomposition rates (Field et al., 1995). Plant exploitation of soil nutrients may leave 

microbial communities more nutrient limited, causing them to turn to recalcitrant humus 

with low C:N, and thereby reducing long-term C storage in the soil. On the other hand, 

microbes may become nutrient starved and decomposition may slow. Responses of the 

plant can change soil biogeochemical cycling, thereby changing microbial community 

function or composition. There are two control points between removal of CO2 from the 

atmosphere and long-term storage in the soil. Plant uptake of CO2 and incorporation of C 

into biomass is the first. The second is decomposition of biomass by soil microbial
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communities. Studies of elevated atmospheric CO2 on ecosystems investigate factors that 

influence those two control points to some degree.

Overview of elevated atmospheric CO2 studies

Effects of elevated atmospheric CO2 on plant growth have been studied for many years, 

but many early studies were done in greenhouse containers under optimal conditions. 

Response trends under those conditions were applicable to few ecosystems, so it was 

necessary to conduct studies under more realistic conditions. Now there are sufficient 

numbers of CO2 studies on ecosystems that some short-term predictions can be made, but 

the long-term responses are varied and dependent on environmental conditions of 

individual ecosystems.

The earliest studies revealed immediate responses of plants at the leaf and cellular 

level. In a review of plant responses to elevated C 0 2, Bazzaz (1990) stated that elevated 

C 0 2 reduced or eliminated photorespiration, and reduced stomatal conductance, which 

increased plant water use efficiency. Greenhouse managers have long known increased 

C 0 2 stimulated plant growth, but in the natural system, this stimulation may be limited by 

nutrients or water (Bazzaz, 1990).

Many studies have shown stimulation of photosynthesis at the molecular level has 

increased production of aboveground biomass (Delucia et al., 1999; Niklaus et al., 2001; 

Saxe et al., 1998). This increase in foliage has led to increased litter fall in several studies 

(Finzi et al., 2002; Niklaus et al., 2001; Schlesinger and Lichter, 2001). In systems where 

N limitation may have been present, increased C uptake changed foliage tissue quality by 

reduced N concentration (Cotrufo et al., 1998b; Curtis and Wang, 1998; Korner and
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Amone, 1992; Owensby et al., 1993) or increased C:N ratio (Cotrufo et al., 1994; Niklaus 

et al., 1998; Rouhier et al., 1994). Some studies have shown the C:N ratio was altered 

before leaf senescence so it was no longer different from leaf litter grown in ambient CO2 

(Hall et al., 2005a; Hall et al., 2005b; Hirschel et al., 1997), while others have shown that 

high C:N remains and slows decomposition (Cotrufo et al., 1994).

Belowground production of plants is stimulated in elevated CO2 . Root biomass 

was enhanced by elevated CO2 in many studies (Bemston and Bazzaz, 1996a; Jongen et 

al., 1995; King et al., 2001; Lipson et al., 2005; Matamala and Schlesinger, 2000;

O ’Neill, 1994; Wiemken et al., 2001). Also, many researchers predicted increased root 

exudation that consequently affected microbial communities in elevated atmospheric CO2 

(Allen et al., 2000; Bazzaz, 1990; Paterson et al., 1997; Pritchard and Rogers, 2000). 

Others have found stimulation of rhizodeposition in elevated atmospheric CO2 (Norby, 

1994; Paterson et al., 1996; Zak et al., 1993). Canadell et al. (1996) and Cheng and 

Johnson (1998) found a 60% increase in root-exuded carbon in elevated CO2 . Similar 

results were obtained in a mixed grass experiment, where elevated CO2 caused a 56% 

increase in root respiration, turnover and exudation (Hungate et al., 1997). These 

increases in carbon allocation were also predicted to increase carbon loss from the soil, 

leaving roots unchanged by elevated CO2 (Higgins et al., 2002; Komer and Amone,

1992). The increases in surface litter, root biomass and rhizodeposition did not always 

lead to increased soil C. Soil C pools have been affected in various ways by treatment of 

plant ecosystems with elevated CO2 . Soil C or organic matter increased in some systems 

(Billes et al., 1993; Gorissen, 1996; Ineson et al., 1996; Schlesinger and Lichter, 2001; 

Williams et al., 2000), decreased in others (Cardon et al., 2001; Heath et al., 2005), or
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remained unchanged (Billings and Ziegler, 2005; King et al., 2001; Niklaus et al., 1998; 

Niklaus et al., 2001; Rice et al., 1994).

The amount of C input into soil was not the only important CO2 induced change 

in soil systems; the quality of leaf litter and roots can alter soil C and N content as well as 

microbial C and N content. There has been less exploration of the C:N ratio of roots, but 

responses have varied with reduced N concentration (Cotrufo et al., 1998a; Janssens et 

al., 1998), as well as increased C:N ratio (Jongen et al., 1995), while others have found 

C:N ratio unaffected (Matamala and Schlesinger, 2000; Rouhier et al., 1994). A greater 

soil C:N ratio was found in ponderosa pine in elevated CC^than ambient CO2, as well as 

lower N concentration (Johnson et al., 2000). Hu et al. (2001) also found lower soil N in 

California grasslands, whereas Williams et al. (2000) found greater soil N in tall grass 

prairie in elevated CO2 than ambient CO2 .

Soil microbial communities are unlikely to be directly affected by increased 

atmospheric CO2 , but they will be indirectly affected through changes in quantity and 

quality of organic energy sources and through changes in competition for nutrients. 

Microbial biomass increased in some ecosystems in elevated C 0 2 treatment (Diaz et al., 

1993; Hu et al., 2001; Williams et al., 2000; Zak et al., 1993), while others exhibited no 

change in microbial biomass (Billings and Ziegler, 2005; Niklaus et al., 2001; 

Schortemeyer et al., 1996; Wiemken et al., 2001). Microbial C:N ratio and N were also 

affected by elevated atmospheric C 0 2. Lower microbial C:N ratio (Niklaus et al., 1998) 

and greater microbial N (Williams et al., 2000) were found. Also higher C:N (Hu et al.,

2001) and lower microbial N (Hungate et al., 1996a), and in some cases no changes 

(Allen et al., 2000), have been observed.
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Elevated CO2 causes a variety of changes in microbial processes, leading to 

variations in the C cycle. In a review, Zak et al. (2000) found responses of soil microbes 

were greatly variable in every aspect studied. Responses of the soil system are dependent 

on soil moisture, climate, pH, soil types and so on.

Florida scrub-oak

A Florida scrub-oak ecosystem was chosen for the current study because it has a mature 

nutrient cycle and experiences nutrient and water limitations. Which limitation has the 

greatest effect and can elevated atmospheric CO2 stimulate plants under these limiting 

conditions? In this system, the response of plants to elevated atmospheric CO2 under the 

combined effect of these limitations can be observed. This system is also fire maintained, 

which presents the opportunity to predict the effects of elevated atmospheric CO2 on a 

system depending on belowground C storage for regeneration. Could these plants 

potentially store excess C in roots and then regenerate faster in elevated atmospheric CO2 

following fire?

Study site description

The experimental site was located on Merritt Island at Kennedy Space Center on the 

eastern coast of Florida, USA (28o38’N-80°42’W at an elevation of 0-3 m above sea 

level). There were two soil types on the site; Paolo sand and Pomello sand. The Paolo 

sand (Spodic Quartzipsamments) is a matrix with rapid permeability, low water capacity, 

low natural fertility, low amounts of organic matter, and strong to medium acidity 

(Huckle et al., 1974). The parent materials were thick beds of eolian sand (Schmalzer and
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Hinkle, 1990). The Pomello sand (Arenic haplo humods) is a matrix with layered 

permeability, low available water, low natural fertility, low amounts of organic matter, 

and strong to very strong acidity (Huckle et al., 1974). The parent materials were thick 

beds of marine sand (Schmalzer and Hinkle, 1990). The acidic pH of the soils, which was 

3.75 to 4 in the top 15 cm and 4.25 from 16 to 30 cm deep (Schmalzer and Hinkle, 1991), 

has potential to limit some nutrients in the system. Possible limitations at pH below 4 are 

N, P, S, B, C, Mg, Fe, Ca, and Mo (Taiz and Zeiger, 1998). The climate is subtropical, 

with the wet season occurring from May to October. The coldest month is January with 

an average daily temperature of 15.72 °C and a low of 11.8°C (Huckle et al., 1974; 

Mailander, 1990). The warmest month is August with an average daily temperature of 

27.61 °C and a high of 32.6°C (Huckle et al., 1974; Mailander, 1990). The mean annual 

rainfall for Merritt Island is 131 cm, but can range from 77.5 to 217.7 cm annually 

(Mailander, 1990).The plant community is made up of 76% Quercus myrtifolia, 15% Q. 

geminata, 7% Q. chapmannii, Serenoa repense, and Lyonia ferreginea. The dominant 

oaks are C3 and clonal. At the initiation of the study, the community was ten years post 

bum.

The scrub-oak was burned in February of 1996 and again prior to the construction 

of experimental chambers. According to previous studies, the scrub-oak system takes 

longer than three years to recover to pre-bum vegetation. In other previously burned sites 

on Merritt Island, pH increased between 6  and 12 months post-bum (Schmalzer and 

Hinkle, 1991). For the first 18 months post-bum, P, K, Mg, Na, and Fe decreased, but 

returned to pre-bum levels (Schmalzer and Hinkle, 1991). In contrast, Al and Cu 

increased for 18 months post-bum, but returned to pre-bum levels (Schmalzer and
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Hinkle, 1991). There was also a delayed increase in nitrate and ammonium, which 

extended 24 months post-bum (Schmalzer and Hinkle, 1991). While this fire was 

deliberately set and maintained, central Florida has one of the highest frequencies of 

thunderstorms in the world, which may contribute to the natural unsuppressed fire regime 

(Schmalzer and Hinkle, 1991).

Experimental design for study

The treatments were manipulated in open topped chambers (OTC’s) (Drake et al., 1989). 

The OTC’s were octagonal, with sides of 139.9 cm, a diameter of 356.6 cm, and a height 

of 365 cm. There were eight chambers with elevated (2x ambient) CO2 air blown in, eight 

chambers with ambient air blown in, and eight chamberless reference plots. Treatment 

was initiated on May 14, 1996. The type of pre-bum vegetation determined the chamber 

sites. Blocks were designated according to similarity of pre-bum vegetation composition 

(Figure 1). Minirhizotron tubes were inserted into the soil at this time. Minirhizotrons are 

clear tubes constructed of cellulose acetate butyrate. They allow the periodic 

measurement of root length in a non-destructive way with the use of a specially designed 

camera. Major areas of investigation by a team of researchers included monitoring 

photosynthetic rates, community evapotranspiration, community structure for plants and 

insects, allocation of biomass, and accumulation of carbon.

Effects of elevated CO2 on Florida scrub-oak

The open topped chambers erected over the Florida scrub-oak were continuously exposed 

to ambient and twice ambient CO2 for over ten years. The most immediate effects of
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Figure 1. Site map of open top chambers in the Florida scrub-oak. Roman numerals 
represent the blocking of the chambers according to the vegetation present before 
construction of the chambers.

elevated CO2 on the scrub-oak were observed in the photosynthetic rates and 

aboveground biomass. Elevated CO2 stimulated photosynthetic rates of Quercus 

geminata by 73% and Quercus mytifolia by 51% for the period of July 23 to August 22, 

1996 (Li et al., 1999). In this same period, there was significantly greater accumulation of 

starches (264%), and sugars (54%) in elevated CO2 than ambient CO2 for Q. myrtifolia, 

but not Q. geminata and reduction of Rubisco activity by 40% in Q. myrtifolia, but not <2- 

geminata (Li et al., 1999). The increase in photosynthesis led to a relative increase in 

aboveground biomass in elevated CO2 chambers of 44% (May 1996 to January 1997)

55% (January 1997 to January 1998), 6 6 % (January 1998 to January 1999) and 75%
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(January 1999 to January 2000) (Dijkstra et al., 2002). By 2000, however, the responses 

were species specific, where Quercus myrtifolia had significantly greater biomass in 

elevated CO2 than ambient CO2 , Quercus chapmannii tended to have greater biomass in 

elevated CO2 and Quercus geminata was unaffected in elevated CO2 (Dijkstra et al.,

2002). From February to June of 2000, measurements showed leaf area index in elevated 

C 0 2 was consistently higher, ranging from 20% (winter) to 55% (summer) (Hymus et al.,

2002). By April of 2001, elevated CO2 caused a 138% increase in aboveground biomass, 

a 31% increase in the O horizon accumulation, 82% increase in aboveground C and a 

significantly greater net increase in ecosystem C (Johnson et al., 2003).

As is often found for leaf litter chemistry, a decline in overall N and increase in 

C:N ratio of live leaf tissue was shown in elevated CO2 (Hall et al., 2005b). Elevated CO2 

also caused a decline in herbivory of live leaf tissue by some insect groups (Hall et al., 

2005b). Leaf litter contained higher condensed tannins (Hall et al., 2005a), reduced 

cellulose and hemicellulose concentrations in elevated C 0 2 (Hall et al., 2006). Carbon 

dioxide did not affect the concentration of N, C:N ratio, lignin or phenolics in leaf litter 

(Hall et al., 2006). Despite greater accumulation in the O horizon in elevated CO2 after 

seven years of exposure (Johnson et al., 2003), leaf litter fall declined in 2000 -  2002 

(Hungate et al., 2006). Carbon dioxide history of leaf litter did not affect decomposition 

outside the chambers; however, in elevated CO2, decomposition rates increased between 

18-36 months of exposure (from November 2003 to May 2005) (Hall et al., 2006).

Elevated C 0 2 altered N cycling and several other nutrients in the scrub-oak. A 

nitrogen fixing plant, Galactia elliotti, was stimulated in elevated CO2 and the rate of N 

mineralization was reduced, leading to a lower rate of nitrate recovery in the first 14
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months of the study (Hungate et al., 1999). However, in the 2001-2002 year, elevated 

CO2 depressed N fixation by Galactia elliotti (Hungate et al., 2004), where it had 

previously stimulated fixation. This was perhaps due to increased shading or limitation of 

Mo or Fe (Hungate et al., 2004). There was a significant decrease in P and N 

concentrations in aboveground tissues, but the total biomass content for these two 

elements was greater in elevated C 0 2 (Johnson et al., 2003). The plant accumulation of N 

had initially been stimulated by elevated C 0 2, but in years 4 - 7 ,  the response declined 

(Hungate et al., 2006). Investigations into scrub-oak roots showed significantly decreased 

C:N ratio (Schortemeyer et al., 2000). Belowground there was no change in N in 

microbial biomass in the first 14 months (Hungate et al., 1999). There was, however, an 

increase in the specific rate of ammonia immobilization (Hungate et al., 1999) and a 

significant decrease in the nitrate leaching rate for 1996-1997, but this decrease was not 

evident later in the study (Johnson et al., 2001a). The leaching rates of N H / and 

NO3+ N H / were not affected, but the available soil P was significantly reduced in 

elevated C 0 2 (Johnson et al., 2001a). As the study progressed, a lower level of available 

N, Zn and extractable P was shown in the soils in elevated C 0 2 (Johnson et al., 2003). It 

was suggested that declines later in the study were due to progressive N limitation 

(Hungate et al., 2006), where N becomes unavailable as it is incorporated into live plant 

tissue. The soil microbes and plants begin to suffer from greater N limitation in elevated 

C 0 2.

Elevated C 0 2 initially stimulated belowground standing biomass and turnover, 

but these effects disappeared later in the study. By December of 1997, root length 

density (mm/cm2) monitored by minirhizotron tubes was significantly greater in elevated
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CO2 (21.36 mm/cm2) than ambient CO2 (7.53 mm/cm2) (Dilustro et al., 2002). Root 

production, mortality, and turnover significantly increased in elevated CO2 during the 

initial part of the study (Dilustro et al., 2002). Root decomposition was not altered by 

elevated CO2 (Dilustro et al., 2001). The root system reached closure in the third year of 

the study and there was no longer a significant CO2 effect on root length density from 

year 3 of the study to year 7 (Day et al., 2006).

Soil C and soil moisture were both affected by elevated CO2 . Evapotranspiration 

was reduced in elevated CO2 from January 1998 to August 1998 despite the increased 

biomass and leaf area index, and consequently, there was an increase in surface soil water 

(Hungate et al., 2002). Soil C seemed to vary both temporally and spatially. After a one- 

year period, less soil C accumulated in buried soil bags in the elevated CO2 soil than 

ambient (Schortemeyer et al., 2000). There was a significantly higher amount of soluble 

C in the rhizosphere soil in elevated CO2 for the soil sampled on July 9, 1998, but after 

heavy rains, this higher concentration had moved into the bulk soil when sampled on July 

23, 1998 (Schortemeyer et al., 2000). Johnson et al. (2003) found no significant effects of 

CO2 on soil C and in the most recent measurement from soil cores taken in 2002, no 

effect on soil C was found (Pat Megonigal P. C.).

Soil microbes, especially fungal components, were affected by elevated CO2 . In 

soil samples taken on July 9, and July 23, 1998, rhizosphere activity was depressed 

during the first sampling period, but unaffected during the second (Schortemeyer et al., 

2000). Rhizosphere microbial C and N and bacterial numbers were unaffected by CO2 

treatment during these sampling dates (Schortemeyer et al., 2000). For soil samples taken 

from June 1998 to May 2000, there was greater ectomycorrhizal colonization frequency
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in elevated CO2 than ambient, but this did not increase ectomycorrhizal mass (Langley et 

al., 2003). In 2000, an increased level of ergosterol, an indicator of fungal biomass, was 

detected in bulk soil and root fractions (Klamer et al., 2002). Using DNA as an indicator, 

a shift in composition of Basidiomycetes was detected in the rhizosphere soil, but not the 

bulk soil, while species richness was unaffected (Klamer et al., 2002). From soil cores 

taken in 2002, microbial respiration in the 0-10 cm fraction was 7-19% lower in elevated 

CO2 , but this was not significant (Pat Megonigal P. C.).

Objectives of current study

The overall goal of this work was to increase the current understanding of conditions 

imposed on microbial communities by plant reactions to atmospheric CO2 , and conditions 

affecting microbial community utilization of dead plant organic matter for energy.

The first objective was to increase knowledge about deposition of organic matter 

into the soil. This included estimates of root biomass, course soil organic matter and 

dissolved soil carbon. This, with information gathered by other researchers, should give a 

clearer picture of the organic matter available as an energy source for microbes and the 

potential for long-term carbon storage. In chapter 2, methods for investigating root 

biomass and soil organic matter are described and results are shown.

The second objective was to investigate plant derived changes in the belowground 

biogeochemical pools of C, N, and P. This included the C:N ratio of root tissue and 

organic matter. These potential changes are discussed in chapter 2. Elevated atmospheric 

CO2 may have altered the P dynamics of the system. Increased deposition into the 

rhizosphere may alter the pH of soils. In elevated CO2 , microbes may follow plant trends
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and increase NUE (nitrogen use efficiency) and exhibit higher C:N. Progressive nitrogen 

limitation may affect microbial communities in elevated atmospheric CO2 . Knowledge 

about the change in biogeochemical pools is imperative for understanding microbial 

utilization of organic energy sources. Changes in the microbial environment are presented 

in chapter 5.

The third objective was to test microbial community nutrient limitations. Nutrient 

limitations can have an impact on microbial growth, utilization of organic matter for 

energy and recycling nutrients for the ecosystem. If the microbial communities are unable 

to function because of progressive nutrient limitation, the ecosystem’s nutrient cycling 

and production could slow as nutrients are locked away in biomass that is sluggishly 

being decomposed. Or, nutrient limitation of microbes may allow a build up of organic 

matter in the soil, leading to long term C storage. In another scenario, the microbes may 

begin to break down C already in the recalcitrant soil pool because of its low C:N ratio, 

reducing the current level of C storage and increasing atmospheric CO2 levels. 

Investigating changes in microbial community function as a result of the changes to 

environment, nutrients and energy sources is the final step in predicting how microbial 

communities might respond in the long term as decomposers in elevated atmospheric 

CO2 . Effects of elevated CO2 on microbial nutrient limitation and function are discussed 

in chapter 5.

Hypotheses

It was hypothesized that stimulated biomass production in elevated CO2 would lead to 

greater coarse soil organic matter mass, C and N content. The percentage of C and N, and
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C:N ratio in the coarse soil organic matter would not be affected by elevated CO2 . It was 

believed there would be greater production of root biomass in elevated CO2 and this 

would lead to greater amounts of dead root mass. The C and N content should reflect the 

biomass and dead root mass. The C percent would not be altered in the live roots, but the 

percent N would be less, causing lower C:N ratio. The dead roots would not have a 

different percent C or N or a different C:N ratio. Soil cores were taken to collect the root 

material and organic matter necessary to test these hypotheses and the results are 

presented in chapter 2.

Over the course of the study, it was hypothesized that there had been a shift 

towards larger roots in elevated CO2 for greater C storage. This hypothesis was addressed 

in chapter 3 using the minirhizotron data collected over the course of the full study.

It was hypothesized plants would increase rhizodeposition to increase nutrient 

release from the soil. This would increase the dissolved organic C and change the pH of 

the rhizosphere soil, but not the bulk soil. The increased plant litter and increased 

rhizodeposition would lead to greater microbial biomass, C, N, and activity in elevated 

CO2 . The reduced quality of roots as an energy and nutrient source for microbial activity 

would lead to energy and nutrient limitations of the microbes. Progressive N limitation of 

the system would cause greater N limitation of the microbial communities. Stimulation of 

rhizodeposition would increase P availability in the rhizosphere in elevated CO2 . 

Microbial communities would adapt to these limitations and acclimate to the substrates 

from their CO2 history. Chapter 4 demonstrates the techniques used to investigate the 

nutrient limitations and functions of microbial communities, without the influence of
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CO2 , Following the background investigation, the above hypotheses concerning the effect 

of elevated CO2 on microbes were tested and the results are presented in chapter 5.
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CHAPTER II 

ROOT BIOMASS AND NUTRIENT POOLS

Introduction

Root biomass is often stimulated by elevated C 0 2 (Bemston and Bazzaz, 1996a; Jongen 

et al., 1995; Lipson et al., 2005; Matamala and Schlesinger, 2000; O’Neill, 1994; 

Wiemken et al., 2001). This can be driven by a greater need for nutrients to support more 

biomass (Chapin et al., 1987), causing plants in elevated C 0 2 to invest more carbon into 

root systems for further exploitation of the soil (Matamala and Schlesinger, 2000).

Carbon invested into the root system has a more direct route for entering long-term C 

storage in the soil than C deposited at the soil surface as leaf and stem litter. Stimulation 

of plant activity by elevated C 0 2 may lead to increased C storage in the soil, increasing 

sink potential (Canadell et al., 1996) and having a negative feedback on potential 

influence of elevated C 0 2 on climate. Many studies on elevated C 0 2 have included the 

root system to some extent in observing effects of elevated C 0 2 on plant ecosystems, but 

detailed information on the root system is often scarce. When roots were sampled for 

effects of elevated C 0 2, they were often treated as a single unit, or at best differentiated 

by coarse versus fine roots and rarely by live or dead. Similar to differing functions of 

leaves and stems, fine and coarse roots have differing functions of nutrient/water 

collection and support/storage respectively. Lumping roots together may be a mistake 

when interpreting plant response. Also, sampling often has not differentiated effects by 

depth. In this study the energy values and nutrient content (C, N, P) were explored over a 

range of size classes of live roots and differences among live roots, dead roots, and soil 

organic matter. The biomass and C and N composition of roots were quantified over a
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depth range of one meter. The hypotheses that elevated CO2 would increase coarse root 

biomass and decrease tissue quality (i.e. raises C:N and C:P) but increase energy value (i 

e. calories / g) of live root biomass, while dead root tissue would be unaffected by CO2 

treatment were addressed. Fine roots in this study observed with minirhizotrons were 

initially stimulated by CO2 (Dilustro et al., 2002), but this stimulation decreased in later 

years as the root system reached closure (Day et al., 2006). The minirhizotron technique 

only sampled fine roots and was a measure of root length, not biomass. It was suspected 

there might be additional C storage in larger roots not observed by the minirhizotrons. A 

plant in elevated CO2 may have more C to store in larger roots, providing an advantage 

after a bum. In addition to exploring differences in biomass, nutrient dynamics and 

energy values of the root system, evidence of progressive N limitation was examined.

Methods

Root extraction and processing

In the spring of 2002, five points were randomly located along five radiating transects in 

each chamber from which 7 cm diameter cores were removed in 10 cm increments to a 

meter depth. Larger roots were removed from the soil with a 1 mm mesh sieve, and the 

sieved soil was divided among several researchers for different analyses. A known 

percentage was kept in order to pick the remaining fine roots and extrapolate to the full 

core. The sieved roots were dried for two hours at 70° C to remove excess moisture and 

refrigerated at 4° C to prevent decay until further processing. The roots were sorted by 

hand into live root size classes of < 0.25 mm, 0.25 -  1 mm, 1 - 2  mm, 2 mm -  1 cm, > 1 

cm, dead roots, and unidentifiable organic matter.
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All seven classes were dried at 70° C for 48 hr and weighed. Because the root 

samples were not washed, a correction value for clinging soil was obtained using the 

methods described by Janzen et al. (2002). Briefly, a subsample was washed and 

analyzed separately for C content and compared to unwashed samples. T These numbers 

were then used to obtain conversion values that were applied to the 0.25 -  1 mm, 1 -  2 

mm, 2 mm -  1 cm, and > 1 cm root size classes, correcting for adhering minerals. This 

correction value was 97%, which was multiplied by the weight of the unclean roots to 

obtain a corrected weight. Organic matter, dead roots and < 0.25 mm roots were 

corrected for sand contamination using the percentage of sand remaining after the 

samples were combusted in a calorimeter (see below). Organic matter was corrected for 

23.18% sand content and dead roots were corrected for 5.82% sand content. The finest 

root class (< 0.25 mm) corrections were more complex. The fine roots from the top 10 cm 

were corrected using a 32.82% sand content from bomb calorimetry, while the < 0.25 

mm roots from the 11-100 cm depths were corrected using the 3% correction from the 

Janzen et al. (2002) method. This seemingly high percent is due to sand clinging to the 

fine roots and mycorrhizal filaments in the top 10 cm. These especially fine roots and 

mycorrhizae were not present in lower depths. The < 0.25 mm roots were also removed 

from the soil portion saved from the sieved material. The miniscule roots were removed 

from a subset of chambers using a dissecting microscope. These fine roots were dried and 

weighed to approximate the root biomass underestimated by sieving. These estimates 

were extrapolated back to the full core and added to the < 0.25 mm root size class to get a 

total estimate of biomass.
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Calorimetric analysis

The root samples from the five cores from each chamber were combined into depth 

categories (0-10 cm, 11-30 cm, 31-60 cm, and 61-100 cm) and ground. Approximately 

0.75 g of roots from the 0-10 cm depth category from each chamber was mixed with DI 

water to make a paste, which was pressed into a pellet, dried at 70° C for 48 hrs, and 

weighed. The pellet was combusted under pressurized pure O2 in a 1341 Plain Jacket 

Bomb Calorimeter (Parr Instrument Co.). The residual sand and ash were subtracted from 

the initial mass of the pellet and the caloric value of the roots was determined on an ash 

free basis.

C and N  analysis o f roots and organic matter

Once root biomass was obtained from the cores, the roots were combined into depth 

classes of 0-10, 11-30, 31-60, 61-100 cm and then ground and analyzed for C and N by 

Dumas combustion (NC 2100; CE Elantech, Lakewood, New Jersey, USA), followed by 

continuous flow isotope ratio mass spectrometry (DELTAplus -XL; Themoelectron 

Corporation, Bremen, Germany) at the Colorado Plateau Stable Isotope Laboratory. The 

percentages were applied to the biomass measurements to calculate C and N standing 

pools in the root system.

P analysis o f roots and organic matter

Half a gram of dried roots from the top ten cm of soil taken in 2002 was measured into a 

crucible and ashed in a Thermoclyne muffle furnace at 500° C for 6 hrs. The cooled ash 

was suspended in 1 ml of concentrated H2SO4. Using phenolphthalein indicator, 50 pL of
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H2SO4 suspension was neutralized with 2 N NaOH solution. The neutralized solution was 

brought to a 10 ml volume with deionized distilled H2O and divided into two 5 ml 

portions. The control portion was acidified with 1 ml 5 N H2SO4. The phosphorus in the 

sample portion was assayed by adding 1 ml of absorbic acid reagent (50 ml of 5 N 

H2SO4, 5 ml pottasium antimonyl tartrate solution, 15 ml of ammonium molybdate 

solution, and 30 ml of 0.01 M absorbic acid). The color was allowed to develop in the 

same period of time as a standard curve (more than 10 minutes and less than 30 minutes) 

before measurement on a spectrophotometer at 880 nm. The absorbance of the control 

sample was subtracted from the sample absorbance before conversion to P concentration. 

This adjusted absorbance was compared to a standard curve and converted back to ug P 

g '1 material.

Statistical analyses

A split-plot MANOVA was used to analyze root biomass. Vegetation composition at the 

initiation of the study in 1996 was used to determine the block, and one of the two 

chambers within each vegetation block was assigned as elevated CO2 or ambient CO2 . 

The different size classes represented the multiple response variables. ANOVAs were 

used as a follow up for significant MANOVA results and the Least Square (LS) means 

procedure was used to interpret significant ANOVA interactions using SAS (SAS 

Institute 1990). Depth was not a factor in the calorimetric or phosphorus data sets, so the 

data were analyzed using a MANOVA.
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Results

Root biomass and caloric values

There was no significant CO2 effect on root biomass (P = 0.2665) overall (Figure 2), but 

there was a significant depth effect and CO2 by depth interaction (P < 0.0001). ANOVAs 

of all the root size classes and organic matter showed a significant CO2 by depth 

interaction (P < 0.0001) in the smallest size class (< 0.25 mm) and a non-significant CO2 

by depth interaction (P = 0.067) for the dead roots. All other classes were not significant, 

with a range of P values between 0.24 and 0.99. The LS means analysis showed in the 0- 

10 cm depth increment, elevated CO2 plants have significantly less biomass (498 g m'2) 

invested in < 0.25 mm roots than ambient CO2 plants (737 g m'2) (Figure 3a). There was 

no significant difference at any other depth. Fine roots picked from the sieved soil were 

less than 1 g m'2 to a meter depth. Since it was a subsample, there were not enough 

replicates to run a separate statistical analysis. However, the means reflected the patterns

seen in the total biomass for this category with the ambient CO2 treatment having 0.91 g

2 2 
m' and the elevated having 0.77 g m' . Due to the difficulty of recovering very fine roots

in the sieved material, this portion is neglected in belowground biomass studies. This

sample constituted 0.014 % of the root biomass in the ambient treatment and 0.012 % in

the elevated treatment. This amount was negligible and did not affect the validity of

future studies at this site if not recovered.

Dead roots followed the same pattern of biomass distribution as the < 0.25 mm

roots, with decreased amount of biomass in the 0-10 cm depth increment for the elevated

CO2 treated plants (Figure 3b). There was no significant effect of elevated CO2 on the
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caloric value (calories g '1) of live roots, dead roots and organic matter in the top 10 cm of 

soil (Table 1). Calories g '1 decreased as root size increased.

Table 1. Calories per g of roots and organic matter from the top 10 cm of soil.

CO2 Levels Ambient Elevated
<0.25 mm roots 5209 ±71 5105 ± 94
0.25-1 mm roots 5001 ± 68 4947 ± 35
1 -2 mm roots 4817 ± 47 4879 ± 50
2-10 mm roots 4613 ± 32 4589 ± 36
Dead roots 4797 ± 97 4920 ± 77
Organic matter 5341 ± 90 5316 ± 73

C and N  concentration

Similar to biomass, there were no elevated CO2 effects on C concentration (g C / g 

material) (P = 0.067) or N concentration (g N / g material) (P = 0.238) at the MANOVA 

level, but there was a significant CO2 by depth interaction for N concentration (P = 

0.0027). An ANOVA showed there was a significantly lower percent N in the < 0.25 mm 

roots in elevated CO2 in the 0-10 cm and 11-30 depths (Figure 4a). There was also a 

similar trend in the 1-2 mm roots, but only in the 0-10 cm depth (Figure 4b)

C and N  content

The MANOVA showed no significant elevated CO2 effect on C content (g m"2) (P = 

0.5445) or N content (g m'2) (P = 0.0878), but there was a significant CO2 by depth.
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Figure 2. Below ground biomass (g m'2) to a meter depth from soil cores taken in May 
2002. Live root size classes by diameter are < 0.25mm, 0.25 -  1 mm, 1 -  2 mm, 2-10 
mm, > 1cm. Unidentifiable matter and leaf litter make up the organic matter category.

interaction for both C and N content (P < 0.0001). For C content (g m'2), ANOVAs 

showed a significant C 0 2 by depth interaction (P < 0.0001) in the smallest size class (< 

0.25 mm) roots and a non-significant C 0 2 by depth interaction (P = 0.064) for the dead 

roots. For N content (g m"2), there was a significant C 0 2 by depth interaction (P <

0.0001) in the smallest size class (< 0.25 mm) and a significant C 0 2 by depth interaction 

(P = 0.044) for the dead roots. All other classes were not significant with P values 

ranging between 0.25 and 0.99. The C and N content in the < 0.25 mm roots and dead 

roots reflected trend shown in the biomass, where there was less C and N in elevated C 0 2 

plots than ambient C 0 2 treated plots in the 0-10 cm depth (Tables 2, 3, and 4).

< 0.25 mm roots 
0.25-1 mm roots

K'Y'i 1 -2 mm roots 
I I 2-10 mm roots
11 I II > 1 cm roots 

Dead roots 
y / / x Organic Matter
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Figure 3. Biomass of roots < 0.25 mm in diameter (a) and dead roots (b) to a meter depth 
from soil cores taken in May 2002. Error bars represent one standard error.
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Figure 4. Percent N content of roots < 0.25 mm (a) and 1-2 mm (b) in diameter. Error 
bars represent one standard error.
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Table 2. Carbon content of live roots (g C m '2) for different diameter classes of <0.25mm, 0.25 -  1 mm, 1 -  2 mm, 2-10 mm, > lcm  for 
10 cm depth increments ± standard error.

C g m-2 _____< 0.25 mm roots 0.25 -1 mm roots  1 - 2 mm roots_____  _____ 2-10 mm roots_____  _______> 1cm roots

Depth (cm) Ambient Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient Elevated

0-10 426 ± 37.4 266 ± 12.1 81 ±5.7 94 ±9.4 68 ±9.7 95 ± 34.6 181 ±26.0 207 ± 42.5 521 ± 179.9 480 ±173.9

11-20 75 ± 3.7 56 ±5.4 41 ±3.5 53 ±8.0 51 ±7.0 69 ± 17.5 129 ±22.1 141 ± 19.6 277 ± 190.3 263 ± 92.9

21-30 46 ± 1.2 31 ±3.6 27 ± 3.6 26 ± 2.2 36 ±3.5 35 ± 9.2 81 ± 18.8 69 ±21.9 94 ± 54.6 9 ±8.6

31-40 41 ±1.7 34 ± 3.0 21 ± 1.8 23 ± 2.6 27 ± 3.5 39 ± 7.8 69 ± 16.1 45 ± 10.9 31 ±21.8 14 ±13.9

41-50 31 ± 1.5 32 ± 2.9 19 ±2.2 19 ±2.6 30 ±5.5 33 ±7.6 82 ± 30.4 54 ± 18.24 42 ± 30.9 23 ±22.5

51-60 26 ± 1.8 22 ± 2.2 18 ± 1.2 21 ±2.7 29 ±4.6 41 ±11.4 50 ±21.3 96 ±43.3 0 28 ±21.5

61-70 28 ± 1.1 22 ± 0.8 18 ± 1.4 14 ±1.7 27 ±5.4 38 ± 11.6 61 ± 12.3 113 ±27.8 0 0

71-80 14 ± 0.7 20 ± 0.6 13 ±2.4 13 ±2.2 27 ± 6.4 34 ± 9.4 64 ± 18.3 61 ± 13.2 0 18 ±18.2

81-90 15 ±0.8 15 ±0.4 10 ± 1.0 12 ±0.8 28 ± 9.7 33 ±7.4 59 ± 17.9 75 ± 16.5 0 6 ±6.4

91-100 13 ±0.7 11 ±0.3 15 ± 2.4 11 ±2.5 46 ±23.8 25 ± 6.0 53 ±11.8 67 ± 9.8 0 0
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Table 3. Nitrogen content of live roots (g N m ') for different diameter classes of <0.25mm, 0.25 -  1 mm, 1 -  2 mm, 2-10 mm, >lcm  
for 10 cm depth increments ± standard error.

N g m-2 < 0.25 mm roots 0.25 -1 mm roots 1 -2  mm roots 2-10 mm roots > 1cm roots

Depth (cm) Ambient Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient Elevated

0-10 11.2 ± 1.04 6.4 ± 0.42 1.24 ±0.10 1.34 ±0.13 0.77 ± 0.09 0.95 ±0.33 2.22 ± 0.32 2.55 ± 0.36 5.30 ± 1.97 4.06 ± 1.46

11-20 1.4 ±0.10 1.2 ± 0.13 0.52 ± 0.06 0.66 ±0.10 0.43 ± 0.05 0.56 ± 0.07 1.09 ±0.17 1.07 ±0.14 2.26 ± 1.59 2.01 ± 0.74

21-30 0.9 ± 0.03 0.6+0.06 0.34 ± 0.05 0.33 ± 0.03 0.31 ±0.03 0.28 ± 0.07 0.72 ±0.17 0.56 ± 0.20 0.74 ± 0.46 0.07 ± 0.07

31-40 0.8 ± 0.03 0.7 ±0.04 0.28 ± 0.03 0.27 ± 0.03 0.22 ± 0.03 0.28 ± 0.05 0.47 ±0.11 0.30 ± 0.07 0.22 ±0.15 0.12 ±0.12

41-50 0.6 ± 0.03 0.7 ±0.04 0.25 ± 0.03 0.23 ± 0.03 0.24 ± 0.05 0.23 ± 0.04 0.48 ±0.14 0.37 ±0.11 0.39 ± 0.30 0.15 ±0.15

51-60 0.5 ± 0.02 0.5 ± 0.03 0.24 ± 0.02 0.25 ± 0.03 0.24 ± 0.05 0.29 ± 0.06 0.28 ± 0.09 0.65 ± 0.26 0 0.31 ±0.24

61-70 0.6 ± 0.03 0.5 ± 0.02 0.22 ± 0.02 0.17 ±0.02 0.21 ±0.05 0.27 ± 0.08 0.32 ± 0.06 0.60 ±0.14 0 0

71-80 0.3 ± 0.02 0.5 ± 0.02 0.18 ±0.04 0.16 ±0.02 0.21 ±0.06 0.25 ± 0.06 0.31 ±0.08 0.32 ± 0.06 0 0.16 ±0.16

81-90 0.3 ± 0.02 0.4 ± 0.02 0.13 ±0.01 0.16 ±0.01 0.22 ± 0.08 0.24 ± 0.05 0.28 ± 0.08 0.41 ±0.09 0 0.06 ± 0.06

91-100 0.3 ± 0.02 0.3 ±0.01 0.19 ±0.03 0.14 ±0.03 0.36 ±0.19 0.19 ±0.04 0.27 ± 0.06 0.37 ± 0.05 0 0

u>N>
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Table 4. Nitrogen and carbon content of dead roots and organic matter for 10 cm depth increments ± standard error.

Dead Roots________________________   Organic Matter

Depth (cm)
C g m-2 N g m-2 C g m-2 N g m-2

Ambient Elevated Ambient Elevated Ambient Elevated Ambient Elevated
0-10 349 ±131 153 ± 29 3.34 ± 1.12 1.62 ±0.19 1237± 146 1079 ± 94 25.15 ±3.23 21.20 ± 1.39
11-20 89 ± 14 101 ±20 0.83 ±0.17 0.81 ±0.14 255 ± 57 271 ±51 3.43 ± 0.68 3.43 ± 0.66
21-30 54 ± 10 49 ±9 0.48 ± 0.08 0.39 ± 0.06 174 ±43 128 ±23 2.31 ±0.55 1.64 ±0.33
31-40 46 ±5 32 ±4 0.36 ± 0.04 0.26 ± 0.03 92 ±9 79 ± 12 1.19 ± 0.16 0.97 ±0.15
41-50 65 ± 11 33 ±3 0.51 ±0.10 0.26 ± 0.02 78 ±10 56 ±5 1.04 ±0.18 0.69 ± 0.08
51-60 54 ± 6 54 ± 11 0.41 ±0.03 0.43 ± 0.09 69 ±7 83 ± 10 0.91 ±0.12 1.04 ±0.14
61-70 49 ± 6 54 ±9 0.39 ± 0.04 0.48 ± 0.08 75 ± 10 79 ±8 0.86 ±0.15 0.85 ± 0.09
71-80 53 ±8 44 ±9 0.43 ± 0.06 0.37 ± 0.07 73 ± 14 61 ±7 0.83 ±0.18 0.68 ± 0.09
81-90 43 ±7 31 ±6 0.34 ± 0.05 0.27 ± 0.05 61 ±11 69 ± 9 0.67 ±0.12 0.75 ±0.11
91-100 46 ± 13 33 ±6 0.37 ±0.10 0.29 ± 0.07 68 ±17 64 ± 8 0.75 ± 0.20 0.69 ±0.10

u>u>
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P concentration and content

There was no significant effect of elevated CO2 at the MANOVA level on the P 

concentration (P = 0.57) or P content (P = 0.38) for live roots, dead roots and organic 

matter in the top 10 cm of soil. Although not significant, the trends for P content of the 

biomass in <0.25 mm size class and the dead roots reflected trends in biomass where 

there was significantly less in elevated CO2 .

Nutrient ratios

There was no significant elevated CO2 effect (P = 0.334) or a CO2 by depth interactive 

effect (P = 0.16) on C:N at the MANOVA level (Figure 5). There was no significant 

effect of elevated CO2 on the P concentration (P = 0.57) (Figure 6), C:P (P = 0.71) or N:P 

(P = 0.38) for live roots, dead roots and organic matter in the top 10 cm of soil. 

Phosphorus content or concentration in root biomass was not affected by elevated CO2 

treatment, but an interesting duality between N and P was observed between root sizes. 

As roots increased in diameter, P concentrations also increased while N concentrations 

decreased (Figure 6). This may be related to the trend seen in caloric value, where 

calories g 1 decreased as root size increased (Table 1).

Discussion

Biomass

Based on findings of others and early minirhizotron measurements in the current project 

(Day et al., 2006), greater C storage in the roots of plants in elevated CO2 was
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Ambient C02 Treatment 
Elevated C02 Treatment

Figure 5. The C:N ratio of roots from the top 10 cm of soil. Error bars represent one 
standard error.
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Figure 6. The N and P concentration of roots in the top 10 cm. Error bars represent one 
standard error.
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expected. Instead, this study falls among the minority where overall root biomass is 

unresponsive to elevated CO2 treatment. The literature provides support for elevated CO2 

stimulating belowground biomass. In a review by Rogers et al. (1994) of 157 studies of 

root biomass using several methods of CO2 manipulation on various species, there were 

only 3 studies that exhibited negative responses to elevated CO2 and 13 exhibited no 

response. The remaining 141 studies showed a positive response of root biomass to 

elevated CO2 . More recent studies seem to follow the same trends. Root biomass roughly 

doubled for Adenostoma fasciculatum  in a Chaparral system (Lipson et al., 2005); 

increased by 96% for Populus tremuloides and Betula papyrifera (King et al., 2001); 

increased by 50% for Betula pedula (Ineson et al., 1996); increased for Pinus echinata 

seedling fine roots (Norby et al., 1987), and increased for Populus tremuloides under a 

high nitrogen treatment (Pregitzer et al., 2000). Besides biomass, fine root production 

increased more them 100% for ingrowth bags for Pinus sylvestris seedlings (Janssens et 

al., 1998) and increased by 85% in calcareous soils and 43% in siliceous soils for Fagus 

silvatica and Picea abies stands (Wiemken et al., 2001).

Other research showed no significant effect of CO2 on root biomass including a 

study of Anthyllis vulneraria and Plantago media (Ferris and Taylor, 1993) and a study 

of Populus tremuloides under a low nitrogen treatment (Pregitzer et al., 2000). Overall 

the root biomass of this study was unaffected by CO2 treatment, but when root sizes were 

examined separately by depth, it was found that biomass of < 0.25 mm diameter roots 

was depressed in elevated CO2 in the top 10 cm. The fine roots, such as those < 0.25 mm, 

are responsible for nutrient and water uptake (Gordon and Jackson, 2000), which are 

important factors in controlling exploitation of the soil (Fitter, 1987; Waisel et al., 2002).
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The cost of exploiting greater soil volume may not return adequate nutrients from this 

nutrient poor soil to be beneficial. This may be the reason < 0.25 mm roots are depressed 

in elevated CO2 . Several studies showed root growth substantially increased (Pregitzer et 

al., 2000; Zak et al., 1993), and root production and mortality increased (Pregitzer et al., 

2000) under elevated CO2 when high levels of N were available. However, in the scrub- 

oak ecosystem the nutrients are low. In a study of roots in this system using 

minirhizotrons, Day et al. (2006) presented evidence for root closure of this system. They 

showed the root system in elevated CO2 reached closure sooner than ambient CO2 treated 

plants, but both treatments equilibrated at the same root length density.

Some studies that measured roots may not discern a difference in biomass because 

more rigorous methods of soil removal may destroy fine roots with a diameter < 0.25 

mm. The roots not destroyed are often lumped with larger roots, masking differences that 

might exist. In the study of Populus tremuloides, where roots were separated into classes 

of < 0.5 mm and 0.5 -  1 mm diameter, Pregitzer et al. (2000) showed the smaller size 

class was more responsive to CO2 and N treatments. Jach et al. (2000) found a shift in 

percentage of fine roots (< 2 mm) and coarse roots ( > 2 mm) between CO2 treatments. 

They showed the percent of fine root biomass increased from 1% under ambient to 8% in 

elevated CO2 , whereas in the scrub-oak there was a small increase from 27% to 29%.

Contrary to the findings of Jach et al. (2000), where root litter of Pinus sylvestris 

was greater under elevated C 0 2, scrub-oak dead root litter in the top 10 cm constituted a 

smaller fraction in elevated C 0 2. The greater amount of dead root mass in the ambient 

CO2 treatment was not from the < 0.25 mm diameter roots that have died. One of the 

basic assumptions for sorting roots was if they were < 0.25 mm and still intact, they were
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alive and were sorted into the live root fraction. Any dead roots of this size would have 

been unidentifiable and sorted into the organic matter fraction. One possible explanation 

was the reduced dead root pool was evidence of a seasonal effect or of a stress on the 

ecosystem such as drought. Less dead root mass under elevated CO2 may be evidence of 

increased decomposition. However, past studies have found no evidence of increased root 

decomposition in elevated CO2 at this site (Dilustro et al., 2001).

Despite past evidence in the scrub-oak of increased litter fall (Hungate et al., 

2006), there was no evidence of any CO2 effect on coarse particulate soil organic matter 

( > 1 mm), which included surface litter. Previous studies of litter fall found elevated CO2 

increased litter fall in the first years of the study, but not years 5 - 7  (Hungate et al.,

2006). Soil cores were taken in year 7 of the study and support the findings of Hungate et 

al. (2006).

There was no evidence that plants in elevated C 0 2 were storing greater amounts 

of carbon in belowground biomass. One of the objectives was to sample roots larger than 

the fine roots monitored by minirhizotrons. The larger structural components of the root 

system were sampled, but the sampling methods may have been inadequate for the largest 

roots. Due to the nature of scrub-oak morphology (lignotubers and rhizomes), the 

belowground system is somewhat unusual. The scrub-oak has an abundance of large 

belowground structures, presumably for storage in preparation for regeneration post-bum. 

These structures have been encountered as large as 12.4-15 cm diameter using a 15 cm 

corer (P. C. Daniel Stover) outside of the chambers. The 7 cm corer used in this study did 

not capture these larger structures. Larger cores in the chambers would have been 

destmctive to the long-term study and therefore not feasible. Interestingly, even though it
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was not significant, the largest size class of roots ( > 1 cm) was encountered in 20% of 

the cores below 50 cm in the elevated CO2 chambers, while no roots of this size were 

encountered in the ambient CO2 chambers below 50 cm. This may indicate a greater 

distribution of structural roots deeper in the soil in elevated CO2 .

The scrub-oak is a fire maintained system and it was hypothesized plants in 

elevated C 0 2 may have an advantage for regeneration after a fire from the root system 

because they were able to store greater amounts of C in their root systems. Since there 

was no evidence of this in the standing rootstock, the possibility was considered that the 

energy was being stored in more complex carbohydrate structures that would appear as 

increased caloric value. There was no evidence of this.

Nutrients

The g C m '  and g N m' reflected the greater biomass in the < 0.25 mm diameter roots in 

the ambient CO2 treatment. Jach et al. (2000) investigated similar aspects of CO2 effects 

on Pinus sylvestris on roots with diameters > 2mm, 1 - 2  mm and < 1 mm. Pregitzer et 

al. (2000) investigated Populus tremuloides roots according to their order, which can be 

comparable to size. The findings of Jach et al. (2000) and Pregitzer et al. (2000) 

concerning the distribution of C and N were comparable to my findings. Similar to the 

findings of Pregitzer et al. (2000), therewas no effect of CO2 on C concentration in root 

biomass. Jach et al. (2000) found no significant effects of elevated CO2 on N 

concentration in roots, but trends indicated coarse roots ( > 2 mm) had lower N 

concentrations and fine roots ( < 1 mm) had higher concentrations of N in elevated CO2 . 

The < 0.25 mm diameter roots had significantly lower N concentrations in elevated CO2 .
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Because fine roots of < 0.25 mm diameter are the most labile components of the root 

system, this may be evidence of progressive N limitation in elevated CO2 (Hungate et al., 

2006). The one root size class for which Jach et al. (2000) found no changes in N 

concentration was the 1 -  2 mm diameter roots. There was a trend of significantly lower 

N concentration in the 1 -  2 mm diameter roots in elevated CO2, again supporting the 

progressive nitrogen limitation theory. Between Jach et al.’s (2000) and this study, there 

were many effects of CO2 that would not have been elucidated had the roots been lumped 

into larger categories, but this study did not match the trends found by Jach et al. (2000). 

The trends of N and C allocation to the different components of the root system vary 

according to other factors in the environment. Pregitzer et al. (2000) found a universal 

decrease in N concentration across all root orders of Populus tremuloides, which seems to 

be more closely related to what was found in this study.

The N and lignin contents of leaf litter affected decomposition rates (Melillo et 

al., 1982), and for this reason, it has been an area of interest in CO2 studies. There are 

numerous examples where elevated CO2 has altered the N content of living tissue 

(Komer and Amone, 1992; McGuire et al., 1995; Norby et al., 1992; Williams et al., 

1994) and it was theorized that this may slow decomposition rates in elevated CO2 

(Rastetter et al., 1992). However, using senesced leaf litter instead of living tissue, 

several studies showed leaf litter decomposition was not affected by environment of 

tissue growth (i. e. grown in elevated or ambient C 0 2 conditions) (Hall et al., 2006; Van 

Ginkel et al., 1996). The lack of altered C:N ratios in the organic matter fraction in this 

study confirms other’s findings that the difference in quality of living tissue does not
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occur in senesced leaf tissue at this study site (Hall et al., 2005a; Hall et al., 2005b) and in 

other studies (Hirschel et al., 1997).

These findings on leaf litter beg the same questions about what is happening to 

root nutrient content and decomposition. No effects of elevated CO2 treatment were 

found on the N and C concentrations of dead roots. Because there is no significant effect 

of elevated CO2 on N or C concentrations of dead roots, the process of root death may be 

similar to leaf senescence, where nutrients and carbohydrates are withdrawn. Any 

differences in tissue quality that may have been present in living roots, such as those 

shown in the 1 -  2 mm roots, are equalized upon root death. The lack of CO2 effect on 

leaf litter and dead root C:N ratios indicated that if decomposition rate are slowed in this 

system in elevated CO2 , it is unlikely to be due to altered tissue quality.

Conclusions

The expected greater root biomass was not found under elevated CO2, but there is still 

potential for C storage in the large lignotubers and rhizomes, which are characteristic of 

the dominant plants in this ecosystem. Recent ground penetrating radar measurements in 

the open-topped-chambers indicate about 20% more biomass of coarse belowground 

structures in elevated CO2 (D. Stover and F. Day, personal communication). The smallest 

root fraction ( < 0.25 mm) was most affected by elevated C 0 2 levels. The most versatile 

fraction ( < 0.25 mm roots) may have been depressed in elevated C 0 2 in the top 10 cm 

due to increased soil moisture and the lack of need to spread a fine root network to take 

up water. Living roots had a lower N concentration in the < 0.25 mm and 1-2 mm size 

categories in elevated CO2 , but this concentration difference was not evident in dead
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roots. The literature showed that decomposition of green leaf tissue was different than 

decomposition of senesced leaf tissue and the same trends could apply to root 

decomposition. Roots may respond similarly upon death and it is necessary to use 

cautious interpretation of root decomposition studies because living roots are often used. 

Further investigation of changes in root N concentration before and after root death is 

needed to understand root decomposition in elevated atmospheric CO2 .
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CHAPTER III 

MINIRHIZOTRON ESTIMATES OF FINE ROOT BIOMASS

Introduction

There are various methods employed to study growth and biomass of roots, but many are 

destructive. Studies on the effects of CO2 on plant communities are often long-term and 

destructive sampling must be minimized. Consequently, monitoring fine root dynamics 

has been notoriously difficult. Traditional methods of monitoring root dynamics include 

destructive soil coring and root ingrowth bags, but these approaches are not feasible over 

the course of a long-term study. Minirhizotron tubes, first described by Bates et al.

(1937), are minimally destructive and versatile for monitoring many aspects of fine root 

dynamics. Minirhizotrons are clear, cylindrical tubes inserted into the ground so roots can 

be viewed and recorded. Minirhizotrons have been used to monitor root length density 

(RLD), production, and mortality in a variety of ecosystems (Hendrick and Pregitzer, 

1993; Ponti et al., 2004; Tiemey and Fahey, 2001; Tierney et al., 2003).

Fine root biomass and C content are critical components in models of C in 

ecosystems but they cannot be directly determined by minirhizotron techniques 

(Hendrick and Pregitzer, 1993). The basic problem is trying to estimate a 3-dimensional 

value (biomass) from 2-dimensional measurements (RLD). To estimate biomass from 

minirhizotron data, a conversion factor for length to biomass must be developed, and 

assumptions regarding depth of view must be made. Specific root length (SRL) is a 

measure of cost (mass) per return (length) (Ryser, 2006) and is used as a conversion
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factor to change root length into biomass (Johnson et al., 2001b). To determine SRL’s, 

soil cores were taken in May 2002 from the study site (see Chapter 2).

Minirhizotron images have been successfully used to predict fine root biomass 

(Jose et al., 2001), but there are several less successful studies where good correlations 

were only found below 30 cm (Bragg et al., 1983; Gregory, 1979; Samson and Sinclair, 

1994). It is important to estimate root biomass over this long-term study because the 

overlying questions concern fate of C due to elevated CO2 . Biomass can be estimated by 

converting the minirhizotron root length data to a volumetric measurement (i. e. km / m ) 

and applying the SRL to root length to convert to biomass. To convert the area of the 

minirhizotron image to a volume, the area of the minirhizotron tube is assumed to have a 

certain depth of view for the third dimension (2 mm by Taylor et al. (1970) and 3 mm by 

Sanders and Brown (1978)). Few studies have used minirhizotrons to determine fine root 

biomass (Hendrick and Pregitzer, 1996; Jose et al., 2001), so there is little information on 

the success of this method.

The intent was to obtain SRL’s for the roots and compare the effects of elevated 

CO2 on the SRL. The objective was to compare the biomass obtained from the cores to 

the biomass estimated from the minirhizotron data collected before and after the coring 

event. The final objective was to apply the SRL to the minirhizotron data set over the first 

eight years of the study to observe effects of CO2 on fine root biomass over the course of 

the study. The hypothesis was that the biomass would be stimulated in the first years of 

the study in elevated CO2 when a greater fine root abundance was observed (Day et al., 

2006), but equalize as the fine roots reached closure.
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Methods

Minirhizotron system and recordings

Two cellulose acetate butyrate tubes were installed at a 45° angle from the soil surface to 

a meter depth in each plot prior to construction of chambers in 1996. Each tube had been 

etched on one side with 159 (9 x 13 mm) stacked frames. The length of tube extending 

above the soil surface was taped and capped to prevent light from affecting the soil 

adjacent to the tubes. Images were recorded on Hi8 (mm) videotape four times a year 

using a Bartz Technology® BTC-2 minirhizotron camera system (Bartz Technology Co., 

Santa Barbara, CA, USA). Fine root length and width were measured for each root within 

the frame using ROOTS® version 1.05 and 2.2 (Michigan State University Remote 

Sensing Laboratory). Root data were recorded as root length per area (mm / frame) and 

converted to mm / cm2.

Determination o f specific root length

The roots were collected as described in chapter 2. Roots were sorted by hand into size 

classes of < 0.25 mm live roots, 0.25 -  1 mm live roots, 1 - 2  mm live roots, 2 - 1 0  mm 

live roots, > 1 cm live roots, dead roots, and unidentifiable organic matter. To obtain 

SRL, length of roots in the sample or subsample was measured. Dry mass was then 

obtained for the samples, and finally, length was divided by mass of the roots. To 

measure the length of live roots larger than 0.25 mm, an AgVision Monochrome Image 

Analysis System (Decagon Devices, Inc., Pullman, WA) was used. For roots in the <

0.25 mm and 0.25 - 1 mm size classes, it was necessary to measure a subsample to obtain 

a specific root length because the roots were too numerous to measure for the entire
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sample. A subsample of the smallest size class (< 0.25 mm) from the lower depths was 

measured using a combination of the Agvision system and dissecting scope. The 

Agvision system was able to measure the larger roots in this range, but a dissecting scope 

was necessary for the finest roots because they were below the range the Agvision system 

could measure. Once all root length measurements were made, all seven classes were 

dried at 70° C for 48 hr and weighed. See chapter 2 for more details on biomass 

corrections. These length and weight measurements were used to obtain SRL (m/g)

(Table 5).

Table 5. Specific root lengths (m/g) for different diameter roots extracted from the 
chambers in 2002. Standard deviations are in parentheses.

Conversion o f minirhizotron RLD to biomass

The SRLs were used to determine biomass from the minirhizotron root length data. A 2 

mm depth of field was assumed for the two dimensional minirhizotron images in order to 

convert the frame area to a soil volume for roots < 2 mm in diameter. For roots with a 

diameter > 2 mm, the assumed depth of field was the diameter of the root observed. This 

was to avoid underestimation of the volume of soil occupied by the root. The mean 

biomass was estimated for each chamber and compared by CO2 treatment for each date of

Ambient C 02 Chambers Elevated C02 Chambers
< 0.25 mm Roots 

0.25 -1 mm Roots 
1 - 2  mm Roots 

2 mm - 1  cm Roots 
> 1 cm Roots

56.129 (15.179) 
7.643 (2.339) 
1.651 (0.573) 
0.384 (0.277) 
0.018(0.010)

51.537(16.922) 
7.902 (2.402)
1.575 (0.699) 
0.353 (0.248) 
0.016(0.010)
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minirhizotron measurement. A repeated measures ANOVA using SAS (SAS Institute 

1990) was used to determine the effect of CO2 treatment on total root biomass. Biomass 

estimates from minirhizotron images obtained within a few months before and after the 

coring were compared to the core biomass data to evaluate the differences between the 

two techniques.

Results

Comparison o f minirhizotron to core data

Two different methods were used in the spring and early summer of 2002 to obtain 

estimates of fine RLD and fine root biomass: minirhizotron (MR) imaging (March and 

June) and soil coring (May). For the minirhizotron estimates of RLD, the smallest size 

class (< 0.25 mm in diameter) made up 94-96% of the total RLD observed. The RLD of 

this same size class estimated from the soil cores made up 90-92 % of the total RLD for 

all roots. The RLD for < 0.25 mm diameter roots, shown chronologically in Figure 7, was 

slightly less in the March minirhizotron estimate for roots from the elevated CO2 

chambers. This trend was more pronounced in the May core data (Figure 7), reflecting 

what was shown for biomass in Chapter 2. By June, the difference disappeared, perhaps 

due to a seasonal effect. The RLD of the larger root classes together made up less than 10 

% of the total RLD measured, but there was close agreement between the different 

methods for estimates of RLD (Figure 8 ). The core data seemed to have slightly greater 

RLD estimates for the 1 - 2  mm size class than the minirhizotron estimates. There was 

one anomaly where the 2 -  10 mm size class disappeared by the June minirhizotron
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recording in the ambient chambers (Figure 8 ). There seemed to be a slight trend towards 

greater RLD in the elevated CO2 chambers, but this was small (Figure 8 ).

The SRL’s developed for this study were not significantly affected by elevated 

C 0 2, but SRL was slightly greater in elevated CO2 for all except the 0.25 -  1 mm root 

size class (Table 5). When the four root size classes were converted to biomass and 

compared between minirhizotron and soil core methods, the total biomass was similar, 

except for the June minirhizotron data for ambient CO2 chambers (Figure 9). For the June 

data, the elevated chamber total seemed to be greater, while the ambient was less due to 

the missing 2 - 1 0  mm size class. The individual size classes contributed to the overall 

biomass differently when examined by measurement technique. The < 0.25 mm size class 

contributed less to the overall biomass for the soil core measurements, while the 2  -  1 0  

mm size class contributed greater biomass for the soil core measurements (Figure 9). The 

0.25 -  1 mm and 1 - 2  mm estimates were consistent between the two methods. The 

reasonable agreement of the two methods led me to believe SRL could be applied to the 

root length estimated over the entire period of the study to estimate biomass of fine roots.

Root length and biomass over time

After applying the SRL of the different size classes to the minirhizotron data over eight 

years of the study, the conclusion was that estimates for the larger size classes were 

unrealistic for some measurement dates. The estimates of biomass of the < 0.25 mm size 

class was reasonable, so the model seems realistic for the smallest fine roots, but not 

larger fine roots. The root length for the < 0.25 mm size class over time (Figure 10) was 

similar to the RLD pattern reported by Day et al. (2006) (Figure 11), supporting the
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conclusion that most of the root length is contributed by the smallest size class. There 

was little difference in the SRL by CO2 treatment for this size (Table 5), and 

consequently the conversion to biomass does not alter the overall pattern between the 

CO2 treatments (Figure 12). The average biomass from June 1996 to June 2004 was 1.19 

kg / m2 for the ambient chambers and 1.42 kg / m2 for the elevated chambers. The < 0.25 

mm roots probably had greater average biomass in elevated CO2 due to the greater 

abundance of those roots early in the study. After the 3rd year of the study, the treatment 

effect disappeared for both RLD and biomass.

140

Ambient
Elevated

Mar MR May Core June MR

Core and Minirhizotron (MR) data

Figure 7. Comparison of root length for < 0.25 mm diameter roots estimated from soil 
cores to minirhizotron (MR) observations taken before and after the soil core for the two 
different CO2 treatments.
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Ambient Elevated

■ ■ 1  0.25 - 1mm 
*  x i  1 . 2mm 
tmm 2 • 10mm

Mar MR May Core June MR Mar MR May Core June MR

Core and Minirhizotron (MR) data Core and Minirhizotron (MR) data

Figure 8. Comparison of root length for larger root size classes (0.25 -  1 mm, 1 - 2  mm, 
2 - 1 0  mm) estimated from soil cores to minirhizotron (MR) observations taken before 
and after the soil core for the two different CO2 treatments.

O)

CD 2 -

Ambient Elevated

<0.25mm
0.25*1mm
1*2mm
2-10mm

CVJ

o>
■ 3 V)

•2 m

Mar MR May Core June MR

Core and Minirhizotron (MR) Data

Mar MR May Core June MR

Core and Minirhizotron (MR) Data

Figure 9. Comparison of root biomass estimated from soil cores and minirhizotron (MR) 
observations taken before and after the soil cores for the two different CO2 treatments. 
Kg / m2 is for a meter depth. Roots greater than 10 mm were not included since they are 
not sampled by minirhizotrons.
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Figure 10. Fine root length for roots < 0.25 mm in diameter from the minirhizotron 
observation over eight years of CO2 treatment.
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Figure 11. Root length density of Florida scrub-oak under eight years of elevated CO2 

treatment compared to ambient CO2 treatment (from Day et al. 2006).
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Ambient Root Biomass 
Elevated Root Biomass 
Overlap

Year

Figure 12. Fine root biomass for roots < 0.25 mm in diameter estimated from 
minirhizotron observations over eight years of CO2 treatment. Kg / m2 is for a meter 
depth.

Discussion

Several studies have compared root data from soil cores to minirhizotron data. For roots 

in two different systems, Johnson et al. (2001b) showed there was no significant 

difference between minirhizotron and soil core sampling of root biomass density. Jose et 

al. (2 0 0 1 ) had close agreement between soil core data and biomass predicted from 

minirhizotron images for Juglans nigra and Quercus rubra. Similarly a close correlation 

between cores and minirhizotron data was observed in several other systems (Ephrath et 

al., 1999; Norby et al., 2004; Phillips et al., 2006; Thomas et al., 1996). Davis et al. 

(2004) found differences less than one standard error in homogeneous oak plots, but had
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some methodological problems in mixed oak plots. For roots < 1 cm in diameter, the 

biomass estimates between cores and minirhizotrons are similar. The < 0.25 mm root size 

class was the most variable between the two methods, but it is unlikely that the 

minirhizotron approach overestimates RLD. As is the case for many plant systems, the 

fine roots were concentrated in the top 10 cm of the soil (chapter 2). One weakness of the 

minirhizotron techniques is the tendency to underestimate the roots at this depth due to 

problems such as mildew inhibited visibility (Ephrath et al., 1999; Majdi, 1996). It is 

more likely that the soil cores underestimate biomass, especially considering some of the 

very fine roots and mycorrhizal filaments may have been destroyed when the material 

was sieved.

Specific root length has been shown to change as nutrient availability changes. 

Often, SRL tends to increase as nutrient availability decreases (Ryser, 2006). Increases in 

SRL have been more consistently linked to P limitation than N limitation, but depending 

on the species, SRL can increase due to N or P limitations (Hill et al., 2006). Even though 

SRL’s developed in this study were not significantly different, there was a slight increase 

in SRL for most size classes in elevated CO2 . The slight increase in SRL in this study 

could be due to the lower extractable P found in scrub-oak in elevated CO2 (Johnson et 

al., 2003).

Our findings for total fine RLD were not different from the previous findings in 

the Florida scrub-oak, but there have been various responses of plant RLD in elevated 

CO2 . Some plants have responded with greater root length in elevated CO2 , such as 

Populus grandidentata (Zak et al., 1993). Others, such as Larrea and Ambrosia shrub 

interspaces in Mojave desert (Phillips et al., 2006), and California grasslands (Higgins et
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al., 2002) had a significantly lower root length in elevated CO2 . Day et al. (2006) 

suggested the Florida scrub-oak ecosystem has reached root closure.

The results of this study suggest that the model for converting root length to 

biomass from minirhizotron observations is not realistic for larger fine roots. Large roots 

are often excluded from minirhizotron studies with ranges from < 1 mm diameter 

(Tiemey and Fahey, 2001; Tiemey et al., 2003) to < 2 mm diameter (Hendrick and 

Pregitzer, 1993; Johnson et al., 2001b; Ponti et al., 2004). The failure of the model was 

probably due to the attempt to convert the minute volumes of soil to large volumes. The 

changes in biomass over time in the smallest most responsive size class were indicative 

of the changes in C investment belowground due to elevated CO2 .
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CHAPTER IV 

MICROBIAL METABOLISM OF WATER SOLUBLE SUBSTRATES

Introduction

As levels of atmospheric CO2 rise, it is pertinent to investigate the effects of elevated CO2 

on plant growth and consequential effects on the C cycle. Microbial processes play a vital 

role in the C cycle and researchers are eager for new methods for elucidating elevated 

CO2 effects on microbes and their function in C cycling. A new method of monitoring 

substrate-induced respiration provides increased sensitivity and a realistic estimate of 

substrate use and nutrient limitation, both of which can be affected by elevated 

atmospheric CO2 . Before examining the effects of elevated CO2, the feasibility of using 

the BD Oxygen Biosensor System (BD Biosciences, Bedford, MA) (Garland et al., 2003) 

was evaluated on the scrub-oak ecosystem and a baseline for normal substrate use and 

nutrient limitations was established.

The study site is a nutrient limited system with low soil organic matter (Mulvania, 

1931), making it ideal for studies on C dynamics and nutrient limitations. Also, the sandy 

soils of this system make it straightforward to separate the three microbial communities 

of interest (litter, rhizosphere and bulk soil). These Paolo and Pomello sands (Huckle et 

al., 1974), exhibit low pH (3.75 -  4) in the top ten cm (Schmalzer and Hinkle, 1991), 

facilitating an abundance of fungi in the microbial community (Madigan et al., 2000). 

Previous studies of the scrub-oak ecosystem showed greater soluble C, greater amounts 

of N contained in amino compounds and ammonia and greater microbial activity in the 

rhizosphere compared to the bulk soil (Schortemeyer et al., 2000). There was more
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microbial DNA in the rhizosphere soil, ranging from 3.3 to 45.9 ng DNA than the 

bulk soil, ranging from 1.8 to 12.8 ng DNA pL ' 1 (Klamer et al., 2002), indicating greater 

microbial abundance in the rhizosphere.

The BD Oxygen Biosensor System (BDOBS) is a recently developed assay that 

utilizes a fluorescing ruthenium dye suspended in a gel in each well of a microtiter plate 

(BD Oxygen Biosensor system; BD Biosciences, Bedford, Mass.) (see Garland et al. in 

press and Garland et al. 2003 for further description). The dye fluoresces as molecular 

oxygen (O2) is depleted in the microbial-substrate-nutrient solution measuring O2 use, or 

less directly, substrate utilization. BDOBS was an appropriate method for examining the 

microbial communities in the Florida scrub-oak ecosystem because it: 1) allowed rapid 

assessment of the community response, 2) required low substrate concentrations, 3) 

allowed microbial communities to be taken directly from the environment without 

culturing, 4) measured oxygen consumption directly rather than CO2 evolution, which 

improves sensitivity, and 5) allowed for manipulation of nutrient availability and pH 

(Garland et al., in press; Garland et al., 2003).

Longer incubation periods of 1 - 4 days are typical of other methods that 

categorize heterotrophic microbial community substrate use, but Garland et al. (2003) 

were able to detect a minimum response within 0.5 to 19 hrs. This made the use of 

BDOBS ideal for detection of community function most closely representative of field 

responses. The substrate concentrations can be 10-100 fold lower than with previous 

methods, preventing selective enrichment of the community (Garland et al., 2003; 

Vaisanen et al., 2005). The versatility of the system allows the use of substrates that best 

addressed my key questions. Natural soil carbon pools, such as leaf litter and roots were
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used as substrates instead of specific carbon compounds, such as sucrose or cellobiose. 

This was expected to provide a realistic assessment of acclimation of microbes from a 

particular environment to the native substrates produced in that environment. The 

microbial use of C associated with different microenvironments and how nutrient 

limitations may regulate use of this C was of interest.

Microbial activity in the environmental samples should have a detectable response 

using the BDOBS without substrate amendments because of its increased sensitivity. The 

plate is read from the bottom, allowing detection of activity despite a heavy silt load or 

opacity from other environmental contamination. In the first study of soil systems using 

this technique, Vaisanen et al. (2005) used the BDOBS to successfully distinguish 

between fungal and bacterial components of the communities and between the microbial 

communities present in different aggregate sizes. They were also able to elucidate their 

preferred use of specific carbon sources added as amendments, and to detect N 

limitations of the system using N amendments. The intent was to explore N and P 

limitations of different microbial communities in the scrub-oak ecosystem. Because the 

gel containing the fluorescing dye is the only component of the BDOBS system already 

prepared, all other physiochemical conditions are under the control of the investigator. 

Factors such as pH and nutrient levels can be manipulated (Garland et al., in press). This 

is vital for the scrub-oak ecosystem, where low soil pH creates a unique environment for 

the microbial communities. The microbial response may be altered by the neutral pH 

necessary for the use of some other methods.

With the oxygen biosensor system, several aspects of microbial community 

function were explored, laying the groundwork for a study of elevated atmospheric CO2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



effects on microbial community function (Chapter 5). The three microbial communities 

were expected to respond differently to the natural substrates. The litter microbial 

community was expected be most active due to high microbial densities found in scrub- 

oak litter compared to the soil (Albarracin, 2005). Microbial abundance indicated the 

rhizosphere microbial community should be more active than the bulk soil community. It 

was expected that the litter microbial community would be better adapted to litter 

substrates as an energy source, while soil communities would be better adapted to root 

substrates as an energy source. Nutrient limitations of the system were explored by how 

the microbial communities responded to nutrient additions. It was expected that all 

communities would be N and P limited, but the rhizosphere microbial community would 

have less extensive P limitation due to rhizodeposition induced release of phosphorus 

from the soil (Canadell et al., 1996).

Methods

The Oxygen Biosensor System is a recently developed assay that utilizes a fluorescing 

ruthenium dye suspended in a gel in each well of a microtiter plate (BD Oxygen 

Biosensor system; BD Biosciences, Bedford, Mass.) (see Garland et al. 2003 for further 

description). The dye fluoresces as O2 is depleted in a microbial-substrate-nutrient 

solution. This fluorescence was measured at set time increments on a Dynex MFX 

Microplate Fluorometer. Fluorescence, normalized to the value at one hour (Normalized 

Relative Fluorescent Units: NRFU) was plotted against time to show a trace of O2 

consumption for a particular microbe or community. NRFU can be thought of as a 

measure of O2 utilization or, less directly, substrate use.
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Preliminary pH  study

There were typically three components added to each well: the microbial community, the 

energy substrate and a buffer/nutrient solution. The buffer/nutrient solution has typically 

been buffered at a neutral pH of 7 in past studies using the BDOBS system. However, the 

pH of the soil from the source ecosystem is low (3.75 - 4), so a buffered pH of 7 may 

cause a deviation from the natural response. Preliminary pH tests were done to determine 

the best pH at which to conduct the study. Carbonate buffer solutions were created using 

KHCO3 (lOg/L) and the pH was adjusted to 5.1 and 7.1. These two buffers (7.1 and 5.1) 

were compared to an unbuffered water solution. An O horizon litter community from the 

scrub-oak was exposed to various substrates in the two buffered and one unbuffered 

nutrient solution.

Preliminary energy substrate study

A comparison was done among extracts of fresh and dried roots, litter and soil. Extracts 

were made by warming the solution to 46°C for 2 hours. The root and litter samples were 

mixed with water in a 1:5 ratio. The soil was mixed in a 1:2.5 soil to water ratio. Once the 

extract had been heated for 2 hr, the solution was filter sterilized. Serial dilutions were 

made to find the ideal concentration for the substrate. Dilutions of different substrates 

were exposed to a litter microbial community in the BDOBS system and fluorescence 

was read on a fluorometer.
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Microbial community collection and preparation

Soil cores and leaf litter were taken from the eight ambient CO2 chambers (n=8 ) over the 

summer of 2004. The rhizosphere soil and roots were removed from the cores (Figure 

13). The remaining soil was sieved and constituted the source of the bulk soil microbial 

community. The two soil microbial communities (RMC and BMC) were diluted in a 

1:2.5 soil to water ratio and shaken with sterile glass beads for 2 minutes. The 

supernatant was immediately poured off and diluted five times for B-doxy plate 

inoculation.

Approximately 5 g of leaf litter was gathered from each of the ambient chambers 

(n=8 ) and mechanically broken into small pieces 3-4 mm in size. The litter was then 

combined with ddH2 0  in a 5 ml to 1 g ratio. The water-litter mixture was shaken for 4 

minutes in a 50 ml centrifuge tube with 2 mm glass beads. The solution was then diluted 

to a final concentration of 1 g litter to 25 ml filter sterilized deionized water for plate 

inoculation.

Nutrient supplements

Three microbial communities were exposed to four levels of nutrient treatments. An 

unbuffered, filter-sterilized mineral salt solution was mixed using: 0.01 g CaCl2 /L, 0.005 

g FeSC>4 /L, 0.0025 g MnSC>4 /L, 0.0025 g NaMo0 4 /L, 0.1 g MgS0 4 /L. Additions of N 

(0.5 g [NH4 J 2 SO4 /L) and P (0.05 g K2 PO4 /L) were added singly and in combination to 

give four nutrient treatments (-N-P, +N, +P, +N+P) or two high levels of P and N and 

two ambient levels of P and N.
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Figure 13. Roots and rhizosphere soil from scrub-oak ecosystem.

Energy substrates

Three substrates were used for energy sources for microbial growth, along with a water 

control to monitor the effect of background carbon associated with the microbial 

community. The three energy sources were made from litter extracts, root extracts, and 

glucose. Root and litter substrates were made from materials taken from the ambient 

chambers in spring 2002. These were dried at 70° C and ground to a powder. The dried 

tissue was mixed in a 1 g to 10 mL ratio and heated for 2 hrs at 46° C. The solution was 

filter sterilized through a 0.22 (im filter. After the solutions were made, preliminary tests
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showed root solutions were too rich to observe the response within the parameters of the 

BDOBS system and consequently were diluted to 1:3 of the original concentration. 

Glucose substrate was mixed with water in a concentration of 600 mg/L and filter 

sterilized. Water was used in place of substrate as a method of monitoring the response of 

the microbial community to the background C associated with a community taken 

directly from the environment. This allowed me to distinguish how microbes responded 

to nutrient addition or substrate addition and helped to interpret the response of 

communities exposed to a natural substrate. Because the natural substrates are made from 

extracts of plant tissue naturally containing N and P in the tissue, the extracts presumably 

carry a certain level of N and P. For example, for microbes using natural substrates as an 

energy source, microbial response to nutrient addition is befuddled by the N and P 

already present in the substrate, but the microbial use of water and glucose allows the 

separation and interpretation of responses.

Plate loading and reading

Final dilutions for leaf litter microbial communities were 1 g litter to 25 mL water and the 

final dilution for soil microbial communities was 1 g soil to 12.5 mL water. B-doxy 

plates were loaded with 50 pi of substrate, 50 pi of nutrient solution, and 50 pi of 

microbial inoculums; consequently, the final solution had a concentration 1/3 of that 

previously described. The three microbial communities were exposed to all combinations 

of nutrients and substrates. The plates were put on a Dynex MFX Microplate Fluorometer 

plate reader and fluorescence was read every 15 minutes for 48 hours at 485-nm 

excitation and 604-nm wavelengths with the top reading mode. The fluorescent value
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was divided by the value at one hour to obtain a normalized relative fluorescent unit 

(NRFU).
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Figure 14. Four types of responses exhibited by the microbial communities, a) No 
response, b) One peak: when the response was a single, early peak, it indicated use of the 
substrate. Two of the parameters used to measure microbial response, first response and 
first peak height are shown, c) One peak: a late peak that continued past the 2 day mark is 
a response to the background C. This was only exhibited when +N+P were added, but no 
energy substrate was added, d) Two peaks: The first peak represents the microbial 
communities’ use of the added substrate and the second peak represents the use of the 
background C.
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Bdoxy data analysis

The NRFUs were plotted against time to obtain an oxygen consumption curve (Figure 

14b-d). Relevant points were selected from the resulting curves of microbial community 

activity for analysis: ‘Time to first response’, ‘time to first peak’, and ‘first peak height’ 

(for others, see Garland et al. 2003). The ‘time to first response’ and ‘first peak height’ 

are illustrated in Figure 14b. Time to first response (point in time when NRFU = 1.10) is 

indicative of the microbial communities’ readiness to utilize a substrate. The first peak 

height can indirectly show how much of the added substrate the microbes can use for 

energy. The time it takes to reach the first peak is affected by the height of the first peak, 

but is also indicative of the time it takes for the microbial community to maximize use of 

the energy source.

Statistical analyses

Three sets of data, divided by exposure to energy substrate (glucose, background carbon, 

and natural substrates) for each response variable (time to first response, time to first 

peak, and first peak height) were analyzed using an ANOVA. Significant two and three- 

way interactions were analyzed with the LS means post hoc test using SAS (SAS Institute 

1990).

Results

Preliminary pH  study

The unbuffered environment allowed the microbes to consume the most oxygen, 

indicating greater energy production. The litter microbial community responded faster
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under natural pH environment, than under the two adjusted and buffered pH 

environments (pH 5 and pH 7) (Figure 15). The litter microbial community consumed the 

most oxygen at pH 5, but responded considerably slower and consumed less oxygen at 

pH 7.

Unbuffered 
Buffered at pH 5 
Buffered a t pH 7
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Q.£3</>
C

1.06

o
O  1.04c
a>
S' 1 0 2  o
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0.0 2.00.5 1.0 1.5

Time (days)
Figure 15. Example of typical litter microbial community response to soil extract under 
different pH environments.

Preliminary substrate studies

The microbial community respiration was highest without nutrient additions from 

substrates made from roots, followed by litter, with little energy being obtained from 

glucose and soil substrates. Root substrate was extracted from roots living at the time of 

harvest, while litter substrate was extracted from dead tissue, which is probably 

responsible for the large difference between the responses. Nutrient additions made a 

large difference in the microbial community’s ability to use glucose. The soil solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

was a viable substrate even though the response was subtle. In soil with more organic 

matter, use of a soil extract may be more valuable than it appeared in this organic matter- 

poor soil.

Response types

There were four types of response exhibited by the microbial communities (Figure 14). 

First, when the microbes were unable to use a substrate, no appreciable response was 

exhibited (Figure 14a). Second, when the microbes were able use the given substrate, one 

peak was apparent early in the 48 hr period (Figure 14b). Third, when no substrate was 

added, the response was to the background carbon characterized by a late peak. This 

response was only exhibited in the high N, high P treatment (Figure 14c). The last type of 

response exhibited two distinct peaks. Based on the other response types, it was 

concluded the first peak was the response to the substrate and the second peak was the 

response to the background carbon associated with the microbial community inoculums 

(Figure 14d).

Response to glucose

Microbial community environment (i. e. litter, rhizosphere or bulk soil) (P < 0.0001), N 

level (P < 0.0001), P level (P = 0.037) and an interaction between environment and N 

level (P = 0.018) significantly affected the first response time of microbes using glucose 

as an energy source. High P enabled the microbial communities on average to respond 

faster (0.97 days) than those exposed to ambient P conditions (1.16 days). Under high N 

levels, the litter microbial community responded first (0.04 days), followed by the bulk
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soil microbial community (0.72 days), with the rhizosphere microbial community 

responding last (0.96 days) (Figure 16). All microbial communities responded slower 

under ambient N than to high N. The litter microbial community (0.85 days) still 

responded before the soil communities, but the rhizosphere (1.82 days) and bulk soil 

(1.74 days) communities were no longer significantly different from one another (Figure 

16).

Microbial community environment (P = 0.0001), N level (P < 0.0001), an 

interaction of N and P levels (P = 0.0002) and an interaction of community environment 

and N and P (P = 0.046) significantly affected the first peak time of microbes using 

glucose as an energy source (Figure 17). A pattern of response was exhibited by the 

communities where microbes from the litter responded first, followed by the soil 

communities. This pattern held at high N, but not at ambient N. At ambient N, the 

difference in response times between P levels was less distinct, while at high N, the 

communities under ambient P responded significantly more slowly than the communities 

under high P levels (Figure 17).

Nitrogen level (P < 0.0001), P level (P < 0.0001), an interaction between N and P 

levels (P < 0.0001) and an interaction microbial community environment and P (P = 

0.025) significantly affected the first peak height of microbes using glucose as an energy 

source (Figure 18). These variations of response can be explained by looking at the 

community environment, N, and P interaction despite its lack of significance (P = 0.08). 

Only under high levels of both N and P were the rates of oxygen consumption rapid (litter 

microbes = 9.5 NRFU, rhizosphere microbes = 10 NRFU, bulk soil microbes = 9.3 

NRFU). Under ambient N or P conditions, first peak heights ranged from 1.07 to 1.23
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NRFU, with one exception. Under high N and ambient P, the litter community was able 

to consume significantly more oxygen (1.89 NRFU) than the soil communities. This 

indicated the litter community was less P limited than the soil communities, but this 

limitation was secondary to N limitation.

 1 1 1 1-------------------
0.0 0.5 1.0 1.5 2.0 2.5

Time to First Response (days)
Figure 16. Effects of N and community environment on first response time of microbes 
using glucose as an energy source. The error bars represent one standard error.

Response to background C

Microbe environment (P < 0.0001) and N level (P < 0.0001) affected the first response 

time for microbes using the background C (environmental soil C associated with the 

microbial community) (Figure 19). The litter community responded significantly faster 

(0.76 days) than the soil communities while the rhizosphere microbe response (1.49 days)
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was indistinguishable from the bulk soil microbe response (1.45 days). High N increased 

the response of all microbes (0.84 days) compared to the ambient N response (1.63 days).

+ N

2 *
c3
E
EoO

o

e  -

+ P

2.01.0 1.50.0 0.5

Time to First Peak (days)
Figure 17. Effect of N, P, and community environment on first peak time of microbes 
using glucose as an energy source. The error bars represent one standard error.
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Figure 18. Effect of N, P, and community environment on the first peak height of 
microbes using glucose as an energy source. The effects were not significant (P = 0.08). 
The error bars represent one standard error.
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N level (P < 0.0001) and the interaction between microbial community, N and P 

(P = 0.018) affected the time to first peak for microbes using background C as an energy 

source. Overall, high N delayed time to first peak of microbes (1.80 days) compared to 

microbes at ambient N (0.85 days). This trend generally held when the responses were 

categorized by P levels and microbial community environment (Figure 19). The litter 

community reached the first peak the fastest under ambient N conditions, significantly 

faster than the slowest soil response under ambient N (bulk soil under high P = 1.19 

days), with the other soil responses under ambient N ranging in between (Figure 19).

The times to first peak of the microbial communities under high N conditions ranged 

from 1. 6 6  to 1.98 days and were all significantly slower than the time to first peak of 

microbes under ambient N. The one exception was the rhizosphere community under 

ambient P and high N (1.55 days) did not reach the first peak significantly faster than the 

bulk soil community under high P and ambient N (1.19 days) (Figure 19).

Nitrogen level (P < 0.0001), P level (P < 0.0001) and an interaction between the 

two (P < 0.0001) had an effect on the first peak height for microbes using the background 

C as an energy source. When using background C as an energy source, the microbes 

regardless of environment were unable to use the background carbon to any extent under 

ambient N with either high or ambient P. Under high N and ambient P, there was only 

slight oxygen consumption, but with high P and N the scrub-oak microbes had extensive 

oxygen consumption (Figure 20).
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Figure 19. Effect of N, P, and community environment on first response time of microbes 
using background C as an energy source. The error bars represent one standard error.
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Response to natural substrates

Community environment (P < 0.0001) and substrate source (P < 0.004) were the most 

important factors affecting time to first response of microbes utilizing natural substrates 

as an energy source. The litter responded the fastest (0.39 days), followed by bulk soil 

microbes (0.55 days) and last by rhizosphere microbes (0.61 days). The microbial 

communities responded significantly faster to root extract (0.50 days) than the litter 

extract (0.53 days).

Community environment (P < 0.0001) and N levels (P < 0.0001) were the most 

important factors in the time to first peak while utilizing the natural substrates as an 

energy source. The litter microbes reached the first peak the fastest (0.85 days), while the 

soil communities were indistinguishable (rhizosphere microbes: first peak time of 1 day, 

and bulk soil: first peak time of 0.84 days). The microbial communities under ambient N 

conditions responded significantly faster (0.86 days) than microbes under high N 

conditions ( 1 . 0 1  days).

Community environment (P < 0.0001), N levels (P < 0.0001), substrates source (P 

< 0 .0 0 0 1 ) and the interaction of those three were the most important factors in the first 

peak height while utilizing the natural substrates as an energy source. Phosphorus had no 

effect. The interaction of the community environment, N, and substrates source (P =

0.01) revealed that under ambient N, the peak heights followed the pattern of litter 

microbes consuming more oxygen than the soil microbes. The microbes consumed more 

oxygen when exposed to root substrates when compared to litter substrates (Figure 21a). 

However, differences in these two patterns were not significant under ambient N. Under
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Figure 20. Effect of N and P on first peak height of microbes using natural substrates as 
an energy source. The error bars represent one standard error.

high N, this general pattern also held, but the differences were greater (Figure 21b). The 

litter microbes seem to be better adapted to using litter substrates. Under high N 

conditions, all microbial communities were able to obtain a large amount of energy from 

root substrates (Figure 21b). The litter microbes were able to utilize litter substrates to a 

greater extent than the soil microbes under high N (Figure 21b). The oxygen consumption 

of litter microbial communities utilizing litter substrate was more than twice the oxygen 

consumption of soil microbial communities utilizing litter substrates. This indicated an 

acclimation to the use of litter extracts by litter communities.

Overall, it was found that natural substrates could be used to distinguish microbial 

communities of different environments from one another (Figure 22). Litter microbes
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responded fastest for both first response time and first peak time while the first peak 

height indicated litter microbes were able to obtain the most energy from natural 

substrates (Figure 22). The bulk soil microbes followed the litter microbes in these 

trends, and rhizosphere microbes were last to respond with the smallest first peak (Figure 

22). However, the height of the first peak for the community response was confounded by 

N and substrate source, so these must be taken into consideration and first peak height 

alone cannot be used to distinguish microbial communities (Figure 22).

Nutrient effects

The addition of N had an effect on almost all response variables of the microbial 

communities using all substrates. The only response not affected by N was time to first 

response of microbial communities using natural substrates (Figure 23). The addition of 

N allowed an extensive use of the natural substrates, while the use of background carbon 

and glucose was conditional upon whether P was also added. If the microbial 

communities were utilizing the natural substrate, it was not necessary to add P to elicit a 

large response. To demonstrate this, responses were scored on whether or not the 

microbial community responded to the background C with a NRFU of > 8  (Figure 14d) 

and the percentage of times this occurred is shown in Table 6 . Microbial communities 

were only able to have a large response to N addition alone with the use of natural 

substrates. Addition of both N and P allowed the microbial communities to have a large 

response to background carbon when utilizing added glucose or background C alone.

This large response to background C was never achieved when N was not added.
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Figure 21. Effect of N, P, and community environment on first peak height 
of microbes using natural substrates as an energy source. The error bars represent one 
standard error.
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Figure 22. Microbial communities’ response to natural substrates (litter and root extracts) 
of litter microbial community (LMC), rhizosphere microbial community (RMC), and 
bulk soil microbial community (BMC). 1st Response represents time to first response.
The height of the first peak (1PH) is plotted against the time to reach the first peak (1PT) 
for each microbial community. The bars represent one standard error for each 
measurement.

microbial community responded to the background C with a NRFU of > 8  (Figure 14d) 

and the percentage of times this occurred is shown in Table 6 . Microbial communities 

were only able to have a large response to N addition alone with the use of natural 

substrates. Addition of both N and P allowed the microbial communities to have a large 

response to background carbon when utilizing added glucose or background C alone. 

This large response to background C was never achieved when N was not added.
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The first response time and first peak time were affected by N addition, but not in 

a consistent pattern. This lack of consistency was probably influenced by whether a high 

first peak was achieved, because this would have delayed the time to the first peak. For 

microbial communities responding to glucose and the background carbon, N addition 

sped up time to first response, but did not affect first response time of microbial 

communities utilizing natural substrates (Figure 23). For the microbial communities 

using glucose, high N levels reduced the difference between the times to first response of 

the individual communities so litter, bulk soil and rhizosphere microbes were no longer 

distinguishable from one another. Nitrogen delayed overall time to first peak in many 

cases, regardless of whether a high first peak was achieved or not. Phosphorus addition 

also significantly sped up the time to first response for microbial communities utilizing 

glucose as an energy source, but did not affect the time to first response for the microbes 

using background C or natural substrates.

Table 6. Percentage of microbial community response to background C where the peak 
was greater than 8  NRFU.

Nutrients Litter Substrate Root Substrate Glucose Background C
Litter
Microbial
Community

Rhizosphere
Microbial
Community

-N-P 
+N 
+P 

+N+P 
-N-P 
+N 
+P 

+M+P '

100
0

1 s .a 

0 
100 
0

0
•100
0

0
93
0

0
0
0

0
0
0

100

0
12.5 

0

0
0
0

87.5

Bulk Soil 
Microbial 
Community

-N-P
+N
+P

+N+P

0

0
93

0

0wmm
0
0
0

100

0
0
0

62.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

Natural Substrates
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Time to First Response (days)

Figure 23. Effect of N addition on the first response time of microbes using glucose, 
background C and natural substrates as energy sources. The error bars represent one 
standard error.

Discussion

Preliminary pH  studies

The ambient pH of the system was naturally 3.75 -  4.00, which is more acidic than the 

typical circumneutral pH used in microbial studies. Microbial communities responded to 

buffered pH of 5 or the ambient pH. The delay in response at pH 7 was probably due to 

microbes recovering from the change in pH. Kurzatkowski et al. (2004) found there was 

no relation between pH and microbial activity or biomass, but in their study the microbes 

were in their native pH at the time of measurement. The other explanation is that the 

delay may have been due to a shift in composition of microbial communities from a fungi 

dominated community to a bacteria dominated community as low pH favors fungi
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(Madigan et al., 2000). Because the objective was to compare microbial communities at 

ambient pH, the unbuffered conditions were used for this study.

Effect o f nutrient addition on microbial response

Addition of N affected every parameter measured regardless of which substrate was 

added, with the exception of the first response time of the communities exposed to 

natural substrates. It has long been observed that addition of N depresses or causes delays 

in respiration and decomposition rates or causes a reduction in microbial biomass (Agren 

et al., 2001; Fog, 1988). The results of this study were a mixture of responses, where N 

addition either delayed or accelerated the response, but a consistent delay or depression 

of response observed by other researchers was not demonstrated. In the cases where there 

was a delay of response, it was in the time to first peak and was caused by increased 

oxygen consumption leading to an increased first peak height. This was because the 

response under high N was larger overall. It has been suggested that depression of 

response under high N was due to a reaction with phenol to form a recalcitrant compound 

(Haynes, 1986), but this requires high pH (Nommik, 1970) and was not likely to occur in 

the scrub-oak system. Agren et al. (2001) concluded the depression in microbial biomass 

may have been due to an increase in efficiency of the remaining microbes. The 

depression observed in this study may have been due to an increase in efficiency, a shift 

in composition of the community or increased competitive advantage of some members 

of the microbial community.

Many studies have revealed increased microbial respiration in response to N 

addition, often linked to C availability in the soil (Allen and Schlesinger, 2004; Jonasson
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et al., 1996; Vance and Chapin, 2001). Addition of labile C stimulated microbial 

respiration in Allen and Shlesinger’s study (2004) and Vance and Chapin’s study (2001), 

while the addition of sugar increased microbial C in Jonasson et al.(1996). This was not 

observed in the current study. When glucose was added with no nutrient amendment, 

there was no oxygen consumption by the microbes. The addition of N alone to the soil in 

Allen and Schlesinger’s study (2004) also stimulated microbial respiration, but again this 

was not observed. In the scrub-oak, addition of glucose only elicited a response in 

conjunction with N and P amendment. Vance and Chapin (2001) found the response to N 

addition was greatest when there was abundant C availability. Both Vance and Chapin 

(2001) and Allen and Schlesinger (2004) found a significant interaction of C and N 

addition, but neither required the addition of P for stimulation of microbial activity. 

Phosphorus addition significantly decreased the time to first response for microbial 

communities utilizing glucose as an energy source. This effect could be related to an 

increased ability to generate ATP and process glucose as an energy source for cell 

maintenance, but may not necessarily lead to an increase in cellular biomass or cell 

replication unless N limitation is also removed. Interestingly, there seemed to be C 

available in the soil (referred to as background C) that was not utilized due to the 

limitation of N and P. These results confirm the severe nutrient limitation present in this 

system.

The response pattern was greatly influenced by N addition when microbes were 

allowed to use natural substrates, but not by P addition. The natural substrate may contain 

enough P to release microbial communities from limitation. There was a small amount of
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oxygen consumption under ambient N, but that increased greatly with N addition for the 

root substrates.

Effect o f native environment on microbial response

As expected, the litter microbial community was the most responsive, responding faster 

and consuming more oxygen than the other communities. Studies have shown higher 

abundance of microbes in the litter layer than soil with bacterial counts (Berg et al., 1998; 

Pietikainen et al., 1999) and respiration measurements (Kurzatkowski et al., 2004). 

Microbial attributes such as biomass (Fierer et al., 2003), capacity for substrate use 

(Griffiths et al., 2003), and respiration (Kurzatkowski et al., 2004) have been shown to 

decrease with depth. It was suggested that decreasing C availability caused changes in 

microbial functions as depth increased (Fierer et al., 2003; Gobema et al., 2005) and that 

C availability was a major factor in determining microbial community composition 

(Drenovsky et al., 2004). This pattern is likely to be particularly strong in the scrub-oak 

ecosystem, where the soil is particularly low in organic matter. Albarracin (2005) found 

there were significantly more culturable cells in the litter using general nutrition plates 

than the soil in Florida scrub-oak, and the technique used in the current study primarily 

observes reactions of the heterotrophic community. These specific subsets of the 

microbial communities overlap, leading to the conclusion that increased response of litter 

over soil communities observed using the oxygen biosensor system is due to increased 

microbial numbers observed using plating techniques.

The microbial communities of the rhizosphere and bulk soil are expected to 

respond differently as they have different environments, C sources and nutrient
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availability. The C source for the bulk soil community is most likely leachate from the 

litter at the surface, while the C source for the rhizosphere may be dominated by exudates 

from roots (Pietikainen et al., 1999). The rhizosphere was described by Rovira et al. 

(1983) as variable in extent (volume of soil surrounding the root) and composition (types 

of root exudates and microbes). The microbe population was always higher on the 

rhizoplane compared to the rhizosphere, but not always significantly so (Dhillion and 

Anderson, 1994). Rhizodeposition, described as organic inputs of living roots into the 

rhizosphere (Paterson et al., 1997), has potential to change the nutrient conditions of the 

surrounding soil by increasing P availability (Canadell et al., 1996). Because of these 

differences, a larger divergence was expected between the responses of the rhizosphere 

and bulk soil microbial community. Butler et al. (2003) and Steer and Harris (2000) 

found few differences in PLFA profiles and microbial biomass respectively between the 

rhizosphere and bulk soil microbes. The response of the scrub-oak communities typically 

revealed the bulk soil community as more responsive than the rhizosphere microbial 

community, but the differences were not always significant. There may be several 

explanations for the unexpectedly slow rhizosphere response. The rhizosphere is a 

gradient of compounds, nutrients and root exudates, varying in concentration from the 

root surface to the surrounding soil. The microbes may be specifically adapted to their 

position within the gradient. Disturbance to these microenvironments may have delayed 

recovery time. The bulk soil is a more homogeneous environment and disturbance may 

not have as adversely affected the microbes.
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Acclimation o f litter microbial community to native substrate 

Acclimation of microbial communities to their native conditions has been observed in 

other studies. Elliot et al. (1993) found microbes decomposed litter most rapidly in their 

parent forests. The acclimation of the litter microbial community to the litter substrate 

was evaluated by examining the substrates. Caloric content was found for each material 

used to make natural substrates (chapter 2). Organic matter from the O horizon of soil 

used to make the leaf litter substrate had a caloric value (5340.7 calories /  g) greater than 

live roots (< 0.25 mm roots: 5208.7 cal / g, 0.25-1 mm roots: 5000.6 cal / g, 1-2 mm 

roots: 4816.7 cal / g, 2-10 mm roots: 4613.5 cal / g). The smallest roots (< 0.25 mm) were 

the only size class with a caloric value comparable to leaf litter. However, the smallest 

roots were not used to make the root substrate. This indicated energy in litter substrates 

was higher than energy in root substrates. Yet, during preliminary tests, response to the 

root substrates was too great to be observed within the parameters of the BDOBS system 

and were consequently diluted. This was not surprising considering the root substrate was 

made from tissue living at the time of harvest. The types of carbohydrates in roots may be 

more available to microbial communities than those in the litter. Readily available 

carbohydrates present in the litter at the time of senescence were probably used quickly, 

leaving material with high-energy bonds behind. Also, even though the caloric values 

show there is more energy in litter than roots, it is necessary to remember that substrates 

were made from extracts. The first few weeks of litter decomposition were characterized 

by leaching of elements; cations were leached in the order K »  Na > Mg > Ca > Mn ~A1 

> Fe and anions were leached in the order Cl »  SO4 > ortho P ~ HCO3 (Tietema and 

Wessel, 1994). Leaching of dissolved organic compounds occurs during litter
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decomposition (Berg et al., 1982; Yavitt and Fahey, 1986). For this reason, the largest 

responses was to the root extracts regardless of microbial community environment, 

especially under high N conditions. The high amount of energy in the litter extract 

seemed to be only available to the litter microbial community, but only under high 

nitrogen conditions. The soil microbial communities were unable to obtain large amounts 

of energy from the litter substrates, even under high N conditions. They may not have the 

ability to produce the needed enzymes to cleave the leaf litter carbohydrates and complex 

humic chains. Or they may not have the necessary members of the microbial community 

to begin the breakdown process of this material. The conclusion was the litter microbial 

community had the ability to degrade the litter, but lacked the N necessary to perform the 

task; whereas, soil microbial communities were not primed to extensively degrade leaf 

litter.

Conclusions

Use of the oxygen biosensor system allowed observation of the response of nutrient 

additions on microbial community oxygen consumption. The system was N limited, 

preventing the use of C available in this system, unlike other systems where C is the 

limiting factor for microbial communities. The litter community was more responsive 

than the soil communities, probably due to higher abundance of microbes typically found 

in the litter layer. Differentiation between the responses of the two soil communities was 

less pronounced than expected, but still present. Finally, there was evidence of the 

acclimation to the degradation of litter extracts by litter communities under high N 

conditions when compared to soil communities.
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CHAPTER V

NUTRIENT LIMITATION AND SUBSTRATE QUALITY 

EFFECTS ON SOIL MICROBES

Introduction

The assimilation of C by terrestrial systems removes CO2 from the atmosphere, thereby 

potentially slowing the pace of climate change. However, this removal is temporary 

unless the biomass is converted to long-term storage woody tissue or soil C and there are 

many steps between the production of plant carbohydrates and their long-term storage in 

the soil. Any excess carbohydrates not directly incorporated into biomass, but allocated 

instead to transient pools such as rhizosphere exudates and mycorrhizal support, must be 

retained long enough in the system to become incorporated into a more recalcitrant C 

pool. Microbial communities facilitate both decomposition and C retention in the soil, 

and play a large role in carbon sequestration in the soil. Microbes are unlikely to be 

directly affected by elevated CO2 , but secondary effects such as changes in energy 

substrate composition and changes in nutrient cycling may influence microbial 

composition and community function (Paterson et al., 1996).

Surface litter, root litter and rhizosphere exudation are three energy sources for 

microbes that can change in quantity and/or quality in response to elevated atmospheric 

CO2 . Elevated atmospheric CO2 has been shown to stimulate leaf litter production(Allen 

et al., 2000; Delucia et al., 1999; Niklaus et al., 2001; Schlesinger and Lichter, 2001) root 

biomass production (Jongen et al., 1995; Matamala and Schlesinger, 2000; Wiemken et
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al., 2001) and root exudations (Norby, 1994; Paterson et al., 1996; Zak et al., 1993). 

Several CO2 studies have shown effects of elevated CO2 that include increased leaf C:N 

ratio (Hall et al., 2005b; Johnson et al., 2003; Rouhier et al., 1994) or decreased foliage N 

concentration (Cotrufo et al., 1998a; Curtis and Wang, 1998). This has potential to result 

in poor litter quality, thereby decreasing the rate of decomposition. However, others have 

found little difference in the C:N ratio once leaves are senesced (Allen et al., 2000; Hall 

et al., 2006; Johnson et al., 2003).

Increased root production may provide a greater energy base for microbial 

communities in elevated CO2 when compared to ambient C 02 conditions. It has been 

shown plants produce more root length and biomass at elevated CO2 than ambient(Curtis 

et al., 1990; Day et al., 1996; Dilustro et al., 2002; Ineson et al., 1996; Jach et al., 2000; 

King et al., 2001; Lipson et al., 2005; Norby, 1994), and this will increase the energy 

resources available to microbes through root litter (Jach et al., 2000). The C:N ratio of 

roots can be increased by elevated CO2 (Cotrufo and Ineson, 1995; Curtis et al., 1990; 

Lewis et al., 1994), possibly creating a poorer quality of substrate for microbes. 

Rhizodeposition can also increase at elevated CO2 (Cheng and Johnson, 1998; Norby et 

al., 1987; Paterson et al., 1996), stimulating rhizosphere microbial activity. I believe that 

in nutrient poor systems, the microbes cannot make use of all root litter and exudates and 

surface litter. Also high C:N ratios may further retard decomposition despite increased 

rhizodeposition, and surface and root litter.

As plants produce more biomass at elevated CO2 , nutrient demand increases to 

support the biomass and plants typically invest in roots to acquire more nutrients. 

Elevated CO2 has been shown to increase root biomass (Curtis et al., 1990; Ineson et al.,
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1996; Lipson et al., 2005; Norby et al., 1987), mycorrhizal associations (Norby et al., 

1987), and rhizosphere exudates (Cheng and Johnson, 1998; Norby et al., 1987; Paterson 

et al., 1996). Root exploration of the soil increases access to nutrients in the soil. An 

increase in root exudations can stimulate release of P and N from the soil through 

changes in microbial activity (Canadell et al., 1996; Norby et al., 1986; O’Neill, 1994; 

Zak et al., 1993), enhancing mobilization of limiting nutrients (Farrar et al. 2003). 

Rhizosphere microbes can also increase the C sink strength of a system, drawing more 

carbohydrates from the plant into the soil, acting as important regulators of carbon flow 

(Canadell et al., 1996; Paterson et al., 1997). An increase in rhizosphere exudates in soil 

will also increase microbial activity (Paul and Clark, 1989) and breakdown of organic 

matter, decreasing potential C storage in the soil. Many researchers have predicted 

increases of root exudation and, consequently, changes in microbial communities at 

elevated atmospheric CO2 (Allen et al., 2000; Bazzaz, 1990; Paterson et al., 1997; 

Pritchard and Rogers, 2000). Many others have found stimulation of root exudation at 

elevated atmospheric CO2 (Norby, 1994; Paterson et al., 1996; Zak et al., 1996). Canadell 

et al.(1996) and Cheng and Johnson (1998) found a 60% increase in root-exuded carbon 

in elevated CO2 . Elevated CO2 also affected nutrient availability by increasing phosphate- 

dissolving bacteria (O’Neill, 1994) and by increasing phosphate availability in a study of 

Quercus alba (Norby, 1994). It has been suggested that increased soil respiration 

observed in elevated atmospheric CO2 was due to increased rhizosphere activity 

(Andrews and Schlesinger, 2001; Komer and Amone, 1992). Elevated CO2 stimulated 

microbial biomass in both the rhizosphere and bulk soil (Zak et al., 1993). Increased
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nutrient uptake by plants to support greater biomass may limit ecosystem cycling of the 

nutrients, resulting in competition between plants and microbes.

Elevated CCVfacilitated changes in energy or nutrient availability in an 

ecosystem may have different effects on soil microbial communities, depending on their 

environment and primary energy source. The microbial communities of interest in this 

study were from the leaf litter, rhizosphere soil and bulk soil. Community response to 

CCVfacilitated changes may have different effects on how C is stored long-term in the 

soil. The purpose of this study was to examine CO2 effects on 1) environmental factors 

that may influence microbes, such as soil pH, 2) microbial respiration and use of native 

substrates, and 3) N and P limitations of microbial metabolism.

Greatest microbial activity was expected in the elevated CO2 litter community 

because this treatment has the greatest amount of litter input (Johnson et al., 2003). An 

effect of elevated CO2 on nutrient limitation was not expected because the altered N 

concentration of live leaf tissue is no longer present once the leaves senesce (Hall et al., 

2005b; Hall et al., 2006; Johnson et al., 2003). It was hypothesized that there would be a 

greater amount of root exudation in the rhizosphere at elevated CO2 than ambient CO2 . 

Consequently, altered pH and more microbial activity in the rhizosphere microbial 

community were expected. It was hypothesized that greater root biomass and root litter 

would lead to greater soil microbial community activity and biomass at elevated CO2 . A 

greater response of elevated CO2 than ambient CO2 soil microbial communities to 

addition of P was expected due to the significantly lower soil extractable P (Johnson et 

al., 2003). Overall, evidence of progressive N limitation (reduced cycling of N because of 

excessive immobilization of N in biomass) of soil communities in elevated CO2 was
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expected due to increased storage of N in aboveground biomass and the O horizon 

(Hungate et al., 2006).

Methods

BDOBS data collection

The microbial communities were collected and prepared in the same manner as described 

in chapter 4, but were collected from the elevated CO2 chambers as well. The nutrient 

supplements and energy substrates were the same solutions as used in chapter 4, but there 

were also root and litter extracts prepared from substrates grown at elevated CO2 . The 

elevated litter, ambient litter, elevated root, and ambient root substrates are collectively 

referred to as the “natural substrates”. “Substrate quality” refers to the growth history of 

the substrate: whether the root or litter material used to make the substrate was grown in 

elevated or ambient CO2 conditions. Plate loading, reading and BDOBS data analysis 

were identical to those described in chapter 4. Two more parameters (in addition to ‘first 

peak height’, ‘first peak time’ and ‘time to first response’) for examining the response 

were used in this study. To examine the effect of nutrient addition, the response without 

nutrient amendment was subtracted from the response with nutrient amendment to 

quantify the relative response of microbes using glucose or background C as a substrate. 

The area under the curve was also calculated as a measure of total microbial community 

oxygen consumption under various conditions. The units for the area under the curve are 

NRFU per unit time, which is referred to as the ‘total O2 consumption’ to avoid 

confusion. Three sets of data, divided by exposure to energy substrate (glucose, 

background carbon, and natural substrates) for each response variable (time to first
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response, time to first peak, and first peak height, area under the curve) were analyzed 

using an ANOVA. Significant two and three-way interactions were analyzed with the LS 

means post hoc test using SAS (SAS Institute 1990).

DOC and pH

Before the dilution of the microbial community for inoculation of the B-doxy plate, the 

soil pH was measured in a soil slurry in a 1:2 soil water ratio using a pH electrode. After 

plate inoculations, the soil solutions were filtered through a 0.45 (im filter, stabilized with 

H2PO4 acid and analyzed for dissolved organic carbon (DOC) using high temperature 

combustion on a Apollo 9000 (Tekmar Dohrmann). Both pH and DOC were analyzed 

using a split-plot ANOVA, where rhizosphere and bulk soil samples were subplots.

Microbial C and N

The microbial C and N from the bulk soil were determined using the chloroform- 

fumigation-extraction technique introduced by Brookes et al. (1985) and improved by 

Vance et al.(1987). Carbon and N content of microbial biomass was quantified by Dumas 

combustion (NC 2100; CE Elantech, Lakewood, New Jersey, USA), followed by 

continuous flow isotope ratio mass spectrometry (DELTAplus -XL; Themoelectron 

Corporation, Bremen, Germany) at the Colorado Plateau Stable Isotope Laboratory. 

Microbial C and N were analyzed using ANOVAs.
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Microbial P

Microbial P was extracted using the method described by Hedley and Stewart (1982), 

with anionic resin strips from GE Ionics, Inc.

Results

Soil pH  and soil DOC

There were no effects of CO2 water extractable DOC or pH, both of which might alter 

microbial response in elevated CO2 . Dissolved organic carbon in the soil solutions was 

not significantly different among CO2 treatments. The rhizosphere had a significantly 

lower concentration of dissolved carbon compared to bulk soil (P = 0.01). Soil pH was 

not significantly different for bulk soil verses rhizosphere soil or by CO2 treatment (P = 

0.43).

Microbial C, N, P

There was no significant CO2 treatment effect on microbial C (P = 0.84) or N (P = 0.81) 

in bulk soil samples. This was consistent with the findings of Schortmeyer et al. (2000) in 

samples taken in 1998 from the scrub-oak ecosystem, where there was no CO2 effect on 

microbial C or N. My attempts to sample microbial P were unsuccessful. This may have 

been because microbial P in this nutrient poor system was below the detection limit of the 

technique. It is interesting to note that of the unusable samples ( 6  of 16), 5 were from the 

elevated CO2 treatment. This implied there was less P in the microbial biomass in the 

elevated CO2 bulk soil, but further testing would be required to confirm this. It is 

supported by the findings of Johnson et al. (2003), who found the soil from elevated CO2
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chambers had significantly lower extractable P than ambient C 02 soils in the Florida 

scrub-oak ecosystem.

Microbial community total oxygen consumption

The most basic measurement of microbial heterotrophic activity was total oxygen 

consumption for the 48-hour period. The microbial communities were co-limited by N 

and P because a large response was possible only with +N+P (Figure 24a, b). The litter 

communities subjected to +N-P consumed considerably more oxygen than the soil 

communities under the same treatment (Figure 24). This indicated P limitation for the 

litter community was less severe that the P limitation of the soil communities, but this 

was secondary to N limitation. The findings here confirm another pattern established in 

chapter 4, where the litter community was more responsive than the soil communities. 

The litter community consumed an average of 8143 units of total O2 , while the 

rhizosphere community consumed a total of 5808 units and the bulk soil consumed 6162 

units.

N, substrate quality and CO2  effects on O2 consumption

The two measures of the amount of microbial oxygen consumption, area under the curve 

and first peak height (as opposed to responsiveness; time to first response and first peak), 

were affected by substrate quality for the litter and rhizosphere microbial communities. 

Substrate quality represents the substrate’s CO2 growth history (i. e. litter or root extract 

made from litter or roots grown in elevated CO2 conditions). Substrate quality effected 

the litter community’s total oxygen consumption (P = 0.03) (Figure 25). The litter
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microbial community respiration was greater when using elevated CO2 substrates than 

ambient CO2 substrates (Figure 25). The rhizosphere and bulk soil communities did not 

differentiate between substrate quality (Figure 25).

1400014000

Background CGlucose 1200012000

10000 +N+P 10000

Litter Rhizosphere Bulk Soil Litter Rhizosphere Bulk Soil

Microbial Communities Microbial Communities
Figure 24. Area under the curve for the three Florida Scrub-oak microbial communities 
using glucose (a) and background C (b) as energy sources for four nutrient treatments. 
The bars represent one standard error for each measurement.

First peak height for both the litter (P = 0.010) and rhizosphere (P = 0.002) 

communities showed a significant interaction between substrate quality and N level. At 

high N levels, there was no significantly different response to substrate quality, but at 

ambient N the microbial respiration was significantly greater when using elevated CO2 

substrates than ambient CO2 substrates (Figure 26a, b). The bulk soil community did not 

exhibit this same pattern (Figure 26c). Generally, the greater oxygen consumption 

indicated there was more energy available from substrates grown in elevated CO2 .
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The bulk community did not differentiate by substrate quality, but instead had a 

significant interaction of CO2 treatment*N level (P = 0.016). Under high N conditions the 

elevated CO2 bulk soil community had significantly higher respiration than the ambient 

CO2 bulk soil community (Figure 27a). There was no CO2 effect at ambient N conditions 

(Figure 27a). These same trends held when the microbial community was utilizing 

glucose (Figure 27b) and background C (Figure 27c), but the differences were not 

significant. The litter and rhizosphere communities’ total oxygen consumption did not 

show the same pattern. This suggested the elevated CO2 bulk soil was more N limited 

than the other communities because it had a greater response under high N conditions.
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Figure 25. Effect of substrate quality on total oxygen consumption of the three microbial 
communities using natural substrates as energy sources. The bars represent one standard 
error for each measurement. (*) significant at a  = 0.05, (ns) not significant at a  = 0.05
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a Litter
Ambient Substrate 
Elevated Substrates

I
EZZ3 Ambient Substrate 
j  i Elevated Substrates

b Rhizosphere

c Bulk Soil
Ambient Substrate 
Elevated Substrates

N Level + N
Figure 26. Effect of N and substrate quality on first peak height of the three microbial 
communities using natural substrates as energy sources. The bars represent one standard 
error for each measurement. (*) significant at a  = 0.05, (ns) not significant at a  = 0.05
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Figure 27. Effect of N level on the total oxygen consumption of the bulk soil community 
using (a) natural substrates, (b) glucose and (c) background C as energy sources. The bars 
represent one standard error for each measurement. (*) significant at a  = 0.05, (ns) not 
significant at a  = 0.05
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CO2 effects on response to root substrates

A CO2 treatment and substrate source interaction significantly affected the rhizosphere 

microbial community’s time to first response (P = 0.02). A CO2 treatment, substrate 

source and substrate quality interaction significantly affected the bulk soil microbial 

community’s time to first response (P = 0.003). The bulk soil and rhizosphere 

communities from the elevated CO2 chambers responded significantly slower to root 

substrates grown than the ambient CO2 soil communities (Figure 28). The elevated litter

Rhizosphere -T

Ambient C 02  Treatment 
Elevated C 02 Treatment

------------- 1------------- 1------------- 1------------- 1------------- 1------------- 1-------------
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time to First Response (days)
Figure 28. The effect of atmospheric CO2 on the time to first response of the three 
microbial communities using root substrates as an energy source. The bars represent one 
standard error for each measurement. (*) significant at a  = 0.05, (ns) not significant at a  
= 0.05
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a Bulk Soil community

Ambient C02 Treatment 
Elevated C02 Treatment

0.0 0.2 0.4 0.6 0.8

b Rhizosphere Community

Ambient C02 Treatment 
Elevated C02 Treatment

0.0 0.2 0.4 0.6 0.8

Time to First Response (days)
Figure 29. The effect of elevated CO2 and substrate quality on time to first response of 
soil communities (a: bulk soil community, b: rhizosphere community) using root 
substrates as an energy source. The bars represent one standard error. (») significant at a  
= 0.05, (ns) not significant at a  = 0.05
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community did not exhibit this delayed response to root substrates (Figure 28). The 

driving force behind this delay seemed to be the response of elevated soil communities to 

root substrates grown in elevated CO2 (Figure 29). This interaction was significant for the 

bulk soil (Figure 29a), but not for the rhizosphere community, although the rhizosphere 

responses followed a similar trend (Figure 29b). The elevated CO2 soil communities 

responded slower to their native substrates (roots grown in elevated CO2) than ambient 

soil communities to their native ambient root substrates or the elevated root substrates.

CO2 effects on P limitation

The addition of P interacted with CO2 treatment, affecting the litter and rhizosphere 

microbial communities’ response but not the bulk soil community response. A CO2 

treatment, P, and substrate source interaction significantly affected the litter community’s 

time to first response (P = 0.034). The litter community from the elevated CO2 treatment 

responded significantly faster to root substrate at ambient P (0.33 days) than the ambient 

CO2 microbes at ambient P (Figure 30). Carbon dioxide also affected the litter 

community’s relative time to first peak (P = 0.039) with P addition and utilization of 

glucose as a substrate. I quantified the relative response as the difference between the 

microbial community response with and without nutrient addition. Relative to the first 

peak time for litter microbes with no nutrient addition, P addition to litter microbes from 

elevated CO2 sped up the response (-0.1310 days), while P addition slowed the response 

of microbes from ambient CO2 (+0.1458 days).

A CO2 treatment, N, and P interaction significantly altered the time to first peak 

for the rhizosphere microbial community utilizing natural substrates (P = 0.024). The first
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Figure 30. The effect of P and substrate source on time to first response of litter 
microbial community using natural substrates as energy sources. The bars represent one 
standard error.
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Figure 31. The effect of elevated CO2 on the time and height of the first peak for 
rhizosphere community response to natural substrates and +N+P amendment. The bars 
represent one standard error for each measurement.
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Figure 32. Relative response of rhizosphere microbial community to P addition while 
utilizing background C as an energy source. The relative response is the response of the 
microbial community with nutrient addition compared to the response without nutrient 
addition. The bars represent one standard error for each measurement.
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peak time for ambient CCVtreated microbes was less under +N+P conditions than the 

elevated CCVtreated microbes under the same conditions (Figure 31). The time to first 

peak is related to the first peak height and the early response of the ambient microbes was 

probably due to a lower peak height for ambient CO2 microbes at +N+P, where the 

elevated CO2 microbes took longer to reach the first peak because of its increased height 

(Figure 31). However, the first peak height was not significantly different under these 

circumstances. There was a similar trend for the relative peak height in response to P 

addition of rhizosphere microbes utilizing background C as an energy source (P = 0.019). 

The addition of P depressed the first peak height for the ambient CO2 rhizosphere 

community, but increased the height for the elevated CO2 rhizosphere community (Figure 

32). Also, although not significant, the relative time to first peak is delayed by elevated 

CO2 , while the P addition sped up the response of microbes from the ambient CO2 

(Figure 32). Overall the addition of P to the elevated CO2 rhizosphere community 

delayed the time to first peak, but this was probably due to a larger peak under high P 

conditions.

Discussion

Despite the varied effects of elevated CO2 on microbial response, there were several 

general responses that were observed. In elevated CO2, soil communities were N limited 

and the rhizosphere community was P limited. The root substrates grown in elevated CO2 

were less rich in N, but may have had more labile carbon than roots grown under ambient 

C 0 2.
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Elevated. CO2 induced N  limitation

Greater N limitation of elevated CO2 soil communities than ambient soil communities 

explains the greater total oxygen consumption of the bulk soil community at high N 

conditions and the delayed, yet larger, first peak of the rhizosphere community at +N+P. 

This may partially explain the delayed response of the bulk soil and rhizosphere 

communities to root substrates grown in elevated CO2 conditions.

Nitrogen limitation of microbial communities in elevated CO2 has been observed 

in previous (Hu et al., 2001), whereas others have found such limitations (Finzi et al., 

2002). Addition of N to the bulk soil community released the microbes from limitation 

and allowed the use of the substrates, which is consistent with previous studies (Allen 

and Schlesinger, 2004; Vance and Chapin, 2001) The greater response of the elevated 

community was not due to an abundance of microbes because the microbial biomass in 

the bulk soil was not affected by CO2 (see results). The relatively large response of the 

bulk soil community from the elevated CO2 treatment at high N indicates the community 

had greater N limitation. The rhizosphere community had a greater first peak under +N+P 

condition, indicating it was co-limited by N and P. The elevated soil microbial 

communities responded later to roots grown in elevated CO2 than the ambient community 

to elevated root substrates and later than both elevated and ambient soil communities’ 

responding to ambient substrates. This was due to a combination of reduced substrate 

quality and increased N limitation. One explanation for this may be the C:N ratio of the 

root substrates used to make the extracts. The N concentration was significantly lower for 

roots in the 1 -  2 mm diameter size class for roots grown in elevated CO2 , but not 

different for the other size classes (see Chapter 2). This created an increased C:N ratio (i.
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e. poorer quality) for the elevated CO2 substrate, perhaps leading to a delayed response of 

the microbial community. If this were solely the driving force behind the delayed 

responses, then the ambient bulk soil community should have responded equally late, but 

it did not. One possibility was progressive nitrogen limitation (PNL) of the elevated CO2 

soil communities in combination with a lower C:N ratio causing a delayed first response 

time.

All of these indicators support the hypothesis that the Florida scrub-oak 

ecosystem was developing progressive nitrogen limitation due to elevated CO2 (Hungate 

et al., 2006).

Progressive nitrogen limitation is a concept developed by Luo et al. (2004). As 

plant communities exposed to elevated CO2 accumulate C in biomass, N is removed from 

the rapid part of the N cycle, reducing N available to soil organisms and thus future plant 

growth. It also increases the competition between plants and microbes for N. Progressive 

nitrogen limitation has been observed in one other system besides Florida scrub-oak. In a 

Texas grassland, N was relocated from soil to biomass and C was relocated from 

recalcitrant pools to labile pools (Gill et al., 2006). Some studies have shown the effects 

of N limitations operating through the reduction of N concentration in microbial biomass 

in elevated CO2 (Hu et al., 2001; Hungate et al., 1996b), while others have observed no 

change (Allen et al., 2000; Finzi et al., 2002). The litter microbial community has the first 

opportunity to assimilate N from surface litter fall, so it’s reasonable that the effects of 

PNL were strongest in soil communities. The bulk soil community would be dependent 

upon N leached from the surface litter layer, as well as that from root litter and exudates. 

The rhizosphere community may be competing with the root for N.
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Elevated CO2 induced P limitation

Greater P limitation of the rhizosphere community in elevated CO2 than ambient C 02 

explained the delayed, yet greater, response at +N+P conditions and the delayed time, yet 

greater, height of the relative first peak to background C for P additions. It is reasonable 

that the first effects of P limitation of the microbial community would be strongest in the 

rhizosphere, where the microbes are competing with the root for P uptake. Pine seedlings 

at elevated CO2 increased P uptake (Conroy et al., 1990). Warren and Adams (2002) 

found a relationship between P concentrations and Rubisco concentration in the leaf, 

supporting the hypothesis that increased P uptake facilitated increased photosynthesis. 

Duchien et al. (1993) found that C0 2 -stimulated growth ceased after 4 - 1 2  days in low P 

conditions. In a study of tall grass prairie response to elevated CO2 , Owensby et al.

(1993) showed CO2 effects on P changed temporally. When there was a significant 

difference, either P concentration in tissue decreased and/or standing crop P increased in 

elevated CO2 , indicating the plants were increasing P use efficiency or total P uptake. It 

was hypothesized the rhizosphere microbes in the Florida scrub-oak would be less P 

limited than litter or bulk soil microbes, assuming that in elevated CO2 , would stimulate 

of P release, as shown by other workers (Norby, 1994; O’Neill, 1994). Instead the 

greatest P limitation was in the rhizosphere. Although the plants are drawing more P from 

the soil to support increasing photosynthetic machinery and biomass, there may not be 

other mechanisms for increasing P availability from this nutrient poor soil. Past studies of 

the microbial communities in the scrub-oak forest elevated C 02 studies showed there 

were increased levels of ergosterol, indicative of increased ectomycorrhizae activity 

(Klamer et al., 2002) and colonization (Langley et al., 2003) in elevated CO2 .
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Mycorrhizae have long been associated with increased P uptake, and perhaps these past 

increases in fungal activity indicated greater P uptake. More recently Johnson et al.

(2003) found soil-extractable P in the elevated CO2 soils of the scrub-oak was reduced.

He also showed there was significantly more P content in the vegetation in elevated CO2 , 

but no effect on P content in the O horizon. It was shown in Chapter 2 that the P 

concentration of live roots, dead roots and surface litter were not significantly affected by 

CO2 treatment. However, Johnson et al. (2003) found at times there were significant 

effects of CO2 on P concentration in leaf tissue. Together these findings suggest that the P 

present in live leaf tissue is probably withdrawn in a similar manner to N during 

senescence; the altered concentrations in living tissue in elevated CO2 were no longer 

present in senesced tissue. To my knowledge, no other CO2 studies showed evidence of 

altered P limitations in elevated CO2 .

P affected the litter microbial community, but the effects were not congruent with 

greater P limitation in elevated CO2 . This does not change the conclusion of P limitations 

on the ecosystem in elevated CO2 , because with regular fresh influx of senesced leaf 

litter, P limitation would be less likely to appear in the litter microbial communities than 

the bulk soil or rhizosphere microbial communities. The faster first response of the 

elevated litter microbes at ambient P and the faster relative time to first peak at high P 

conditions contradict each other, so it seems the litter community’s P dynamics were 

beyond explanation. However, the litter community is less P limited than the soil 

communities regardless of CO2 effect.
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Response to substrate quality

The litter and rhizosphere microbial communities consumed more oxygen utilizing the 

substrates grown in elevated CO2 than ambient, indicating there was more energy 

available from the elevated substrates. I suspect this is due to higher levels of extractable 

carbohydrates in elevated CO2 substrates. Many studies have shown that the most 

consistent responses of plants to elevated CO2 is an increase in non-structural 

carbohydrates, such as sugars and starches (Ceulemans and Mousseau, 1994; Eamus and 

Jarvis, 1989; Janssens et al., 1998; Komer and Amone, 1992; Li et al., 1999). The 

interactions of substrate quality with N were curious but not beyond explanation. There 

may be no effect of substrate quality at high N because N allows the use of all available C 

regardless of CO2 growth history, including the more recalcitrant forms in the ambient 

substrates. At low N, the communities were able to only utilize the more readily available 

forms of C that are often produced in excess in elevated CO2 . Regardless of the 

hypothesized explanations, it was clear the microbes respond differently to the substrates 

grown in different CO2 conditions. It cannot be clearly attributed to a change in C:N 

ratios of the substrates since the microbial communities did not differentiate between 

litter and root substrates in regard to total oxygen consumption. The leaf litter used to 

make the litter extracts did not have a different C:N ratio between CO2 treatments and 

only one of the root size categories had an altered C:N ratio due to CO2 . There was some 

common factor between the elevated C 0 2-grown litter and roots substrates that altered it 

use by microbes and has yet to be elucidated for the Florida scrub-oak.
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Conclusions

Changes in the environment, such as increased soil C or pH, that would have led to a 

change in microbial community composition or total microbial biomass were not 

detected. The CO2 environment did not alter dissolved organic C and soil pH. There was 

no evidence of greater root exudation in this study or past studies of root biomass or litter 

accumulation. The microbial biomass remained unchanged in the bulk soil.

However, there were numerous examples in the literature using varied techniques 

where the microbial community response has been altered by elevated CO2 . Most of these 

were due to changes in nutrient use in the ecosystem, but there was also discrimination of 

substrate quality. There was evidence the system is N limited more extensively in 

elevated CO2 than ambient CO2 . Also, the rhizosphere microbes may have depleted the 

root zone of P in the elevated CO2 treatment. It was apparent that the elevated substrate 

extracts contained more available energy for microbes. Finally, the elevated CO2 soil 

communities respond significantly more slowly than ambient CO2 soil communities to 

native root substrate, perhaps indicating there may be a delay in the decomposition of 

roots under elevated C0 2 .This may be due to a reduced C:N of the root material or 

greater N limitation of elevated CO2 microbial communities than ambient communities. 

This pertains to live roots and this discrimination may not be present when microbes 

decompose dead roots, which is more likely in the field.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I l l

CHAPTER VI 

CONCLUSIONS

Initially, productivity of the scrub-oak was stimulated in elevated CO2 . This stimulation 

of plant production seems to be decreasing over time. This may be due to progressive N 

limitation (PNL). There is also evidence that P was a limiting factor in the soil, perhaps in 

the future limiting plant growth in the same manner as N. If this is the case, then regular 

inputs of C into the soil as surface litter will decrease and production will decrease due to 

nutrient limitations. If this point is reached, there are a couple potential paths that the 

scrub-oak growth and production could take. First, plant growth and leaf cover could die 

back, dropping leaf and woody litter to the soil and returning some nutrients to the cycle 

and allowing plant growth to once again be stimulated in elevated CO2 . Second a 

reduction in plant cover could allow stimulation of Galactia elliotti, the N fixing vine, to 

increase N availability in the system.

There is some evidence of reduced substrate quality under elevated CO2, but this 

is also unlikely to affect microbial community decomposition. The reduced quality 

(higher C:N ratio) was seen in living roots, but microbes will most likely decompose 

dead roots. However, in the event of a disturbance, the root quality may affect microbial 

activity. The Florida scrub-oak is a fire maintained system, with fires occurring 

frequently. Following a fire, there is likely significant fine root death. These dead roots in 

elevated CO2 would have a decreased quality and may decompose slower, limiting 

microbial growth. On the other hand, there was also less fine root biomass for roots <

0.25 mm in diameter in the top 10 cm of the elevated chambers. Assuming this does not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

change, then there will be a decreased amount of fine root biomass with a lower quality 

available for microbes to decompose in the event of a disturbance. In a fire event, 

elevated CO2 plots may lose greater amounts of N, compared to ambient plots. This 

would be due to volatilization of N contained in the greater aboveground biomass. Plants 

recovering from fire in elevated CO2 may have greater resources for recovery in large 

below ground structures, but may suffer greater N limitation due to a volatilization of a 

greater portion of the system N.

There was not a greater accumulation of C in soils of the scrub-oak, but this did 

not include the largest root structures. The lack of accumulation indicates that either C is 

not being put into the soil through fine root growth and rhizodeposition, or C is leaving 

the soil at a greater rate through increased decomposition and leaching. If there is more C 

input into the soil, it is not possible to count on the microbial biomass to retain C in the 

soil. My studies showed there were plenty of C energy sources available for microbial 

communities, but the microbes lacked N and P to utilize them. Most water-soluble C 

input will be leached from the soil without retention by microbes. However, the microbes 

are likely to retain N and P in the soil system.

Excess C leaching in elevated CO2 would not be a problem specific to the scrub- 

oak, but one that may be present in any nutrient limited system. It may be more 

pronounced in the scrub-oak because it has a lower amount of nutrients available 

compared to some ecosystems. One future area of investigation may concern the fate of 

leached dissolved organic C. This will depend on where it originates and where it travels. 

It is possible terrestrial soils are sequestering C through this leachate if it moves to an 

anaerobic environment such as belowground water tables or wetland environments. In the
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Florida scrub-oak it is likely the leachate would flow into the nearby lagoons or sit as a 

fresh water lens on top of the nearby salt water.

Overall, though there were few changes to the soil environment in elevated CO2, 

subtle changes in energy sources and nutrient availability were able to affect microbial 

community response.
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