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Abstract
We examined metaproteome profiles from two Arctic microbiomes during 10-day shipboard incubations to directly track
early functional and taxonomic responses to a simulated algal bloom and an oligotrophic control. Using a novel peptide-
based enrichment analysis, significant changes (p-value < 0.01) in biological and molecular functions associated with carbon
and nitrogen recycling were observed. Within the first day under both organic matter conditions, Bering Strait surface
microbiomes increased protein synthesis, carbohydrate degradation, and cellular redox processes while decreasing C1
metabolism. Taxonomic assignments revealed that the core microbiome collectively responded to algal substrates by
assimilating carbon before select taxa utilize and metabolize nitrogen intracellularly. Incubations of Chukchi Sea bottom
water microbiomes showed similar, but delayed functional responses to identical treatments. Although 24 functional terms
were shared between experimental treatments, the timing, and degree of the remaining responses were highly variable,
showing that organic matter perturbation directs community functionality prior to alterations to the taxonomic distribution at
the microbiome class level. The dynamic responses of these two oceanic microbial communities have important implications
for timing and magnitude of responses to organic perturbations within the Arctic Ocean and how community-level functions
may forecast biogeochemical gradients in oceans.

Introduction

In the surface ocean, primary production driven by phyto-
plankton growth dynamics is the essential process for the
transfer of carbon from inorganic to organic pools and
structures the food web for higher trophic consumers. While
a fraction of this organic material (OM) supports upper
trophic levels, the microbial loop recycles the majority of
OM in the water column [1]. Linking microbial function-
ality to essential biogeochemical cycles has remained a
primary objective of microbial ecology for decades. This
functionality is predominantly regulated by a complex
mixture of bacteria, archaea, and eukarya. In particular,
differential responses of bacteria to organic substrates have
led to the observation that the heterotrophic community and
associated core metabolic genes may be structured by
organic substrate availability [2]. As the complexity and
often trace-level concentrations of thousands of potential
substrates make them a challenge to track in the ocean,
researchers are exploring the use of technologies to track the
physiological response of microbial communities to
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changing chemical compositions in the local environment
as well as the dynamic relationship between microbiota and
the surrounding ecosystem [2–5].

Since proteins carry out the majority of molecular
functions and are tightly regulated within the cell, their
characterization, quantification, and timing of expression
can serve as a biologically relevant proxy for the organism’s
current phenotype. Several studies have successfully linked
bacterial metaproteomic (i.e., community proteomic)
responses to important biogeochemical cycles in situ,
reflecting temporally relevant metabolic strategies of natural
microbiomes to their environment, with some reporting
high taxonomic resolution [5–10]. Nevertheless, as most
metaproteomic analysis pipelines are adaptations of tradi-
tional single-species proteomic approaches, there are
inherent complications that emerge when multiple species
are analyzed in a single sample [11, 12], in particular, the
assignment of an identified peptide to multiple protein
sequences from the provided genome [13, 14]. In the case of
a native oceanic microbiome where many species are pre-
sent and few are cultured, a single peptide can be conserved
across many proteins which may differ in predicted func-
tions and even map to different proteins across multiple
species, genera, families, or even phyla [15–19].

Here we report the response of two Arctic microbial
communities to rapid changes in organic availability
typical of polar environments using a novel metaproteomic
approach over 10-day shipboard incubations. Before
experimental manipulations were initiated, metagenomes
of the native microbial population were completed to
generate a site-specific reference database for peptide
identification followed by mass spectrometry-based
metaproteomics on incubation samples to track temporal
functional responses through time [17]. Specifically, the
new methodology used resolves the metaproteomics
technical challenge of protein inference and, importantly,
allows a discovery-based peptide-centric approach [20] to
address the critical need to identify relevant metabolic
strategies and identify significantly changing functions in
complex microbiomes. Once those changing functions
were revealed, taxonomy was assigned using the peptide
data and was supported by 16S rRNA gene sequencing.
With this methodology, the accuracy in reporting functions
distributed among different taxonomic groups of a mixed
community is increased, the statistical robustness is
enhanced, and the resolution is more amenable to large-
scale functional-modeling efforts.

The simultaneous measurement of taxonomic and func-
tional shifts without limiting the analysis to specific taxo-
nomic groups or processes allowed the comprehensive
metabolic response of the native Arctic microbial commu-
nity to be determined over time. With this novel method, we
demonstrate that complex marine microbiomes collected

from the shallow shelf system of the western Arctic
Ocean undergo rapid functional restructuring related to
carbon (C) and nitrogen (N) cycling after perturbations to
their organic substrate environments which reveal implica-
tions for broader biogeochemical cycles.

Methods

Seawater sample collection and shipboard
incubations with organic amendments

Seawater was collected from the subsurface chlorophyll
maximum (SCM) of the Bering Strait and the bottom waters
of the Chukchi Sea (Fig. S1) as described in May et al. [21]
and detailed in SI. Briefly, water was collected from surface
and bottom waters at sites with unique physicochemical
parameters to target taxonomically distinct microbiomes
(Fig. S2). These were filtered sequentially through 10.0 and
1.0 µm filters to isolate free-living bacteria from large
eukaryotic grazers and remove particulate organic matter.
At each site 1.0 µm prefiltered seawater was subsequently
incubated shipboard for 10 days at 0 °C in the dark with
40 L of seawater from each location distributed in two, 20 L
carboys as duplicate treatments. One treatment received no
additions while the other was supplemented with in situ
algal organic matter (Table S1), collected and concentrated
from the Bering Strait site SCM (5.0–10.0 µm) then frozen
to lyse cells. As it included both particulate and dissolved
fractions of the lysed cells, this experimental treatment is
referred to as “OM input”. The nonamended treatment of
20 L of from each location (also 1.0 µm filtered) served as a
control to examine bacterial responses to incubation con-
ditions and residual dissolved substrates. Subsamples for
metaproteomics (0.2 µm polycarbonate (PC) filters—
Whatman Nuclepore) were collected from the in situ
(initial) microbiomes and on days 1, 6, and 10. Samples for
16S rRNA gene sequencing (0.22 μm Sterivex cartridges—
Millipore) were collected on days 0, 1, 2, 4, 6, and 10.
Further details plus bacterial abundance and compound
analysis methodologies can be found in SI.

16S rRNA gene sequencing, DNA library
construction, sequencing, and bioinformatics

Methods for 16S rRNA gene isolation, amplicon sequen-
cing, and bioinformatics followed Fadeev et al. [22] and are
detailed in SI. Briefly, samples of bacterial DNA were
isolated from filters prior to PCR amplification (MO BIO
Laboratories, Inc., Carlsbad, CA, USA). Library preparation
was performed according to Illumina: 16S Metagenomic
Sequencing Library Preparation instructions (Illumina, Inc.,
San Diego, CA, USA). 16S rRNA sequences were obtained
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on the Illumina MiSeq in a 2 × 300 bp paired-end run and in
a 2 × 250 bp paired-end run on the Illumina HiSeq (CeBi-
Tec Bielefeld, Germany). After quality trimming and fil-
tering [23, 24], clustering into OTUs was completed [25]
and one representative sequence per OTU was tax-
onomically classified at a minimum alignment similarity of
0.9, and a last common ancestor consensus of 0.7 [26].
Nonbacterial OTUs and those with a single sequence
were excluded. Raw paired-end sequence, primer-trimmed
reads are in the European Nucleotide Archive (ENA;
https://www.ebi.ac.uk/ena) [27] under the project accession
number PRJEB33210.

Metagenomics: sample preparation and data
analysis

To produce a protein sequence database to which all tandem
mass peptide spectra were correlated, a microbial meta-
genome was completed by combining 7 L of filtered sea-
water from both the Bering Strait and Chukchi Sea (0.2 µm
PC filters). Methodological details are outlined in SI.
Briefly, DNA was extracted following the protocol in
Wright et al. [27], library preparation was completed using
the Kapa Hyper Kit [21] and sequenced on an Illumina
HiSeq 2500 (PE100) in one lane. Raw sequencing reads
can be found in NCBI’s Short Read Archive: SRP071900.
MOCAT was used to process, assemble and translate
raw reads, and generate protein sequences [28]. The
metagenome-predicted protein database is available at
ProteomeXchange Consortium via the PRIDE [29] partner
repository (https://www.ebi.ac.uk/pride/archive/projects/
PXD008780).

Metaproteomics: sample preparation and data
analysis

Metaproteomic sample preparation and liquid chromato-
graphy and tandem mass spectrometry (LC-MS/MS) are
outlined in Timmins-Schiffman et al. [17] and SI. Briefly,
filters were submerged in 100 µl of 6 M urea and 600 µl of
50 mM NH4HCO3 and sonicated (5 × 20 s) to lyse cells.
Proteins within the lysate were reduced and alkylated using
dithiothreitol and iodoacetamide, respectively, digested
with Trypsin (12 h; 1:20 enzyme to protein) and desalted
with C18 centrifugal spin columns. Peptides were resus-
pended in 2% ACN, 0.1% formic acid prior to analysis with
a nanoAcquity UPLC (Waters Corp., Milford, MA) in line
with a Q-Exactive-HF (Thermo Fisher Scientific, Waltham,
MA). The mass spectrometry data is available through
ProteomeXchange (PXD008780). All database searches
were performed using Comet [30] against the sample-
specific Bering Strait/Chukchi Sea metagenome-derived
proteome database [17]. Peptide spectrum matches (PSMs)

were retained at a 1% false discovery rate with the Perco-
lator algorithm [31, 32].

Peptide-based Gene Ontology (GO) enrichment
analysis

The abundance of GO functional categories [33, 34] was
quantified using the methods described by Riffle et al. [20]
and outlined in SI. Briefly, each peptide was associated with
all metagenome proteins containing it, and GO annotations
of each top match (and their ancestors) were used to con-
struct a directed acyclic graph (DAG) containing all GO
terms associated with the peptide, and the spectral count for
each GO term was increased by the spectral count of the
peptide.

To determine the relative contribution of each taxon to
each GO term, every peptide was assigned a lowest com-
mon ancestor (LCA) of each top BLAST hit for the meta-
genome proteins containing the peptide (open software
2018: MetaGOmics [20]). The spectral counts for the LCA
and all ancestor taxa were incremented by the spectral count
for each respective peptide, and this spectral count was
divided by the spectral count for the GO term to produce a
proportion of all spectra for a GO annotation that was
unambiguously contributed by each taxon. Although tables
with all temporal taxonomic distributions for functions are
provided (Supplemental Datasets 1–4), we report functional
changes at the class level, which encompasses 85% of the
peptide evidence; reporting data at the genus or family level
would have resulted in a 53 or 33% loss in total reportable
peptide data, respectively (Fig. S3). When peptides could
not be matched to a taxon or were matched to an LCA less
granular than class (e.g., phylum), the difference was
assigned to an Unclassified taxonomic group. Nonbacterial
PSMs were removed from further analysis (Table S2). The
rate of change of taxonomic classes based on peptide data
was determined using a matrix of the PSM data where each
row represented a class and time points were column
headers. The cells in the matrix comprised the ratio of PSMs
in the given time point that could be unambiguously
assigned to that class. Average rate of change was calcu-
lated as the sum of the absolute values of the difference in
the ratios from time points 0 to 1 and 1 to 6 divided by the
number of days between time points (i.e., |(day6−day1)|/
5days). The mean of the rates of change was then calculated
for the three different GO aspects (e.g., biological process,
cellular component, and molecular functions) and are
reported. The calculations were repeated for the 71 reported
GO terms to allow us to compare the taxonomic rate of
change with the functional rate of change (Table S3,
Dataset 5). To determine if the taxonomic rate of change
was significantly different from the functional rate of
change within each incubation, the matrices of functional
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PSM ratios were permuted (at the row level) 10,000 times to
empirically estimate a null distribution and used to calculate
a p-value for observing the observed difference in rates
(python script with Dataset 5).

Enrichment analysis of GO functions was performed
using metaGOmics [20] and outlined in SI. Briefly, the log2-
fold change of Laplace-corrected GO term spectral counts
were compared between each pair of mass spectrometry
runs. For this study, we compared sequential time points
within each experiment (i.e., initial Bering Strait sample vs.
day 1, day 1 vs. day 6, and day 6 vs. day 10). Terminal GO
terms (those most specific in the DAG) with Bonferroni-
corrected p-value < 0.01 from a two-tailed test of propor-
tions were considered significant and included in the
enrichment analysis.

Results

Peptide and 16S rRNA taxonomic assignments

Within the Bering Strait and Chukchi Sea microbiomes,
metaproteomics data identified peptides correlating to 30
and 25 bacterial classes, respectively (Table S4) and 16S
rRNA OTUs that corresponded to 53 and 63 classes,
respectively (Table S5). Alphaproteobacteria, Flavobacter-
iia (referred to as Flavobacteria), and Gammaproteobacteria
classes represented >75% of the metaproteomic identifica-
tions in the Bering Strait and 66% (Fig. 1a, c) in the
Chukchi Sea incubations (Fig. 1e, g). Traditional 16S rRNA
identifications showed these three classes also had similarly
high contributions at over 91 and 86% of abundances,
respectively. A direct comparison of the distribution of
taxonomic classes identified by the peptide-based meta-
proteomic approach and 16S rRNA gene sequencing shows
a linear Pearson’s correlation (Fig. 1b, d, f, h; BSt OM input
r = 0.76, p < 0.00001, n= 32; BSt Control r= 0.81, p <
0.00001, n= 32; Ch. Sea OM input r= 0.82, p < 0.00001,
n= 56; Ch. Sea Control r= 0.76, p < 0.00001, n= 56).

Eleven genera dominated bacterial abundances in both
the Bering Strait and Chukchi Sea incubations, based on
16S rRNA OTUs across six time points (Fig. S4; Dataset 6).
At the genus level, 16S rRNA gene sequencing revealed
less compositional stability than at the class level and
showed that community restructuring was dependent on the
native initial microbiome, OM perturbation, and time.
Polaribacter spp. increased after the addition of OM in both
the Bering Strait and Chukchi Sea incubations with a tem-
poral delay of 2 days in the Chukchi Sea and displayed
inverse relative abundances with Pelagibacter spp.
(SAR11) (r=−0.98, p < 0.01, n= 6), Oceanospirillales
spp. (r=−0.89, p < 0.01, n= 6) and “Other” genera that
contributed <5% abundances (r=−0.72, p < 0.01, n= 6).

Polaribacter spp. became the dominant genus in both
communities, outcompeting both abundant and less abun-
dant genera when labile substrates were available (Fig. S4).
“Other” less abundant genera composed a larger fraction of
the total in the control incubations.

Peptide-based community functions through time

Although microbial community responses can be influenced
by incubation conditions (e.g., removal of grazers or con-
tainer artifacts [35]), only significantly changing functions
identified through comparing site-matched incubations were
analyzed to minimize reporting of artifact-associated func-
tions. Within the Bering Strait and Chukchi Sea micro-
biomes, tens of thousands of PSMs matched to thousands of
GO functions (Table S6), which were identified at high
functional and taxonomic resolution (Datasets 1–4). To
identify significantly changing functions through time in an
unbiased manner, GO functional assignments and class-
level taxonomic information were extracted. Focusing on
class-level data allowed the use of the greatest percentage of
the peptide results (Fig. S3) and provided a consistent fra-
mework to compare the temporal progression of functions
and metabolically active bacteria. In the Bering Strait
microbiome, the peptide-based enrichment analysis of
terminal GO terms between time points identified 71
functions with significant changes in abundance (p-value <
0.01); these functions generated seven hierarchical clusters
that exhibit time-dependent functional processes linked to
carbon and nitrogen cycling after OM perturbations (Fig. 2;
Table 1, S7). The Bering Strait community functional and
compositional responses primarily occurred within the first
6 days after perturbation and were largely maintained to the
end of the incubations.

Substantial community-wide proteome remodeling was
observed under both the simulated algae bloom (OM input)
and the oligotrophic (control: OM was removed) treatments
in the Bering Strait (Fig. 2). The addition of OM resulted in
54 significantly changing bacterial functions over the
incubation period while only 41 changed in the control
(Fig. 2). Of these significantly changing GO terms, 24 were
identified in both the OM input and control incubations.
However, the timing and degree of these 24 responses were
highly variable as the incubation proceeded. The mean rate
of change between the ratios of peptide spectral matches for
given GO terms expressed per day by the Bering Strait
microbiome with OM input was 0.0235 (n= 71), while the
average rate of change per day in the control was 0.0143
(n= 71) (Table S3). Functional change occurred more
rapidly than taxonomic change (p < 0.0001) with the rate of
change of peptides at the taxonomic level for the 24 classes
at 0.008 (n= 6), <35% of the rate of change of peptides for
the 71 functions (Table S3).
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In both Bering Strait OM addition and control incuba-
tions on day 1, there was an increase in 10 protein
synthesis-related GO functions (functions #3–12, cluster 2)

(Fig. 2; Table 1). A simultaneous increase in ten carbohy-
drate metabolism functions (functions #19, #36–39,
#62–67) also occurred, with some of the largest changes
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Fig. 1 Taxonomic distributions
in Bering Strait (a–d) and
Chukchi Sea (e–h) bacterial
classes under differing organic
matter conditions (OM input: a,
b, e, f; control: c, d, g, h) during
10 day shipboard experiments.
a, c, e, g Relative abundance
contribution of major taxonomic
classes (>1%) from the
proteome datasets (protein) and
by 16S rRNA gene sequencing
(16S rRNA). The asterisk
symbol denotes classes that
comprise > 1% of proteome
dataset but <1% of 16S rRNA
dataset; The hat symbol denotes
classes that comprise > 1% of
16S rRNA dataset but <1% of
proteome dataset. Control
samples from the Chukchi Sea
incubations at day 1 were
compromised and excluded from
the analysis. b, d, f, h Percent of
peptides attributed to the major
taxonomic classes compared
with the percent of 16S rRNA
genes identified per
taxonomic class
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within the first day (log2 fold of 2.2–3.8; Fig. 2; Table 1,
S7). The increase in glycolysis-related peptides (function
#19) and corresponding essential functions (#36–39, cluster
3) observed after the algal OM input to provide cells with
adenosine triphosphate (ATP) [36, 37]. Similarly, in the day
1 control a cluster of functions involved in the electron
transport chain for energy flow and storage (#62–65, cluster
5) increased with carbohydrate metabolism (functions
#66–67), while C1 metabolism peptides decreased: NAD+-
formate dehydrogenase (FDH) and molybdenum (Mo) ion
binding (#68–69, cluster 7).

By day 6 in both the Bering Strait incubation treatments,
protein synthesis (cluster 2) declined while increases were
observed in metabolic functions related to energy produc-
tion and resource utilization, including the ATP-binding
cassette (ABC) transporter complex (function #31), TCA
cycle (functions #43–48, cluster 3), and formate C1 cata-
bolism (functions #55–57 under OM input; #68–69 within
the control). Although similar protein and ATP synthesis
functional responses were observed in the Bering Strait OM
input and the control, Day 6 also saw divergent nitrogen
regulation and uptake metabolisms (Fig. 2). OM input

incubations stimulated log2-fold changes ≥2 in nitrogen
regulation and transport (Fig. 2 cluster 4: #49, #51, #53–54,
#58–60) and vitamin-B synthesis (cluster 4: #50, #55–57,
#61). Specifically, the synthesis of thiamine (vitamin-B1), a
crucial vitamin and coenzyme involved in essential meta-
bolic processes including amino acid and carbon metabo-
lism and the regulation of gene expression [38], increased
approximately fourfold (function #61). In addition, by day 6
after OM input, cluster 4 exhibited increases in peptides
correlated to pyridoxal phosphate (vitamin-B6) binding
(function #50), formate tetrahydrofolate (THF; functions
#55-57) (involving vitamin-B9), glutamine synthetase (GS)
(functions #49, #51), glutamate synthase (glutamine:2-
oxoglutarate aminotransferase, GOGAT) (functions #58,
#60), and N-fixation (function #54). Control incubations at
day 6 simultaneously increased mobilization of amino acids
(cluster 6) through catabolism and transport pathways, and
C1-based energy production through formate oxidation
(FDH/Mo) (functions #68–69, cluster 7). In summary, the
absence of OM input in Bering Strait control exhibited less
proteome remodeling, a decreased rate of functional change
and minor taxonomic changes in bacterial genera over time.

Fig. 2 Heatmap of Bering Strait
(BSt) Gene Ontology (GO)
functions with significant
peptide spectrum match (PSM)
log2 fold changes (Bonferroni-
corrected p-value < 0.01 from a
two-tailed test of proportions)
between time points per
experiment. Column 1: initial
BSt microbiome sample
(indicated here as day 0)
compared with day 1 with algal
OM input, column 2: day 1–day
6 with OM, column 3: initial BSt
(day 0) to day 1 in the control,
column 4: day 1–day 6 in the
control (>1.0 µm removed).
Color shading indicates the
degree of log2 fold change as
seen in the color key. Colored
bars on the left indicate the
seven clusters of changing
functions as outlined in Table 1
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Table 1 Gene Ontology (GO) functions that changed significantly over time (Bonferroni-corrected p-value < 0.01 from a two-tailed test of
proportions) within the Bering Strait (BSt) incubations

Cluster # Function 
code yrogetac OGnoitcnuf OG

1 fmgnidnib ANRr tinubus lamosobir egral
2 pbnoitalsnart fo noitaluger
3 fmytivitca esaremosi snart-sic lylorp-lyditpep
4 pbnoitaziremosi lylorp-lyditpep nietorp
5 cctinubus lamosobir llams
6 translation bp
7 fmemosobir fo tneutitsnoc larutcurts
8 ribosome cc
9 cctinubus lamosobir egral
10 tRNA binding mf
11 fmgnidnib nietorp dedlofnu
12 protein folding bp
13 fmmsinahcem lanoitator ,ytivitca esahtnys PTA gnitropsnart-notorp
14 pbtropsnart notorp delpuoc sisehtnys PTA enarbmem amsalp
15 cc)o(F rotcaf gnilpuoc ,xelpmoc esahtnys PTA gnitropsnart-notorp
16 pbnoitanimret ,noitpircsnart detalpmet-AND
17 rRNA binding mf
18 intracellular cc

1 19 gly ly i bp
20 fmspuorg lyca gnirrefsnart ,ytivitca esarefsnart
21 pbssecorp citehtnysoib dica onima ylimaf enimatulg
22 fmgnidnib emyzneoc
23 fmsdnob negortin-nobrac gnimrof ,ytivitca esagil
24 fmsdnob ruflus-nobrac gnimrof ,ytivitca esagil
25 pbssecorp cilobatem dica cilyxobracid
26 pbssecorp citehtnysoib enilav
27 pbssecorp citehtnysoib enicuelosi
28 fmsronod fo puorg 2HN-HC eht no gnitca ,ytivitca esatcuderodixo
29 pbssecorp cilobatem dica onima ylimaf enires
30 fmytivitca esaremosiotcuder dica-lotek
31 ccxelpmoc retropsnart )CBA( ettessac gnidnib-PTA
32 fmgnidnib retsulc ruflus 4 ,nori 4
33 membrane cc
34 transport bp
35 RNA binding mf
36 fmytivitca esatahpsohpirt-edisoelcun
37 protein binding mf
38 fmgnidnib ANR ,ytivitca rotcaf noitalsnart
39 ATP binding mf
40 pbssecorp cilobatem dica onima-ahpla
41 receptor activity mf
42 ccenarbmem retuo llec
43 lyase activity mf
44 pbssecorp cilobatem dica cilyxobraconom
45 fmgnidnib noi latem
46 fmsronod fo puorg oxo ro edyhedla eht no gnitca ,ytivitca esatcuderodixo
47 pbelcyc dica cilyxobracirt
48 pbssecorp noitcuder-noitadixo
49 fmytivitca esagil ainomma-etamatulg
50 fmgnidnib etahpsohp laxodiryp
51 pbssecorp citehtnysoib enimatulg
52 fmytivitca rotaluger emyzne
53 pbtropsnart dnuopmoc negortin
54 nitrogen fixation bp
55 fmytivitca esagil etalofordyhartet-etamrof
56 pbssecorp citehtnysoib dnuopmoc gniniatnoc-dica cilof
57 pbssecorp cilobatem etalofordyhartet
58 fmytivitca )HPDAN( esahtnys etamatulg
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Taxonomy responsible for significantly changing
functions

Since every peptide has an associated functional and taxo-
nomic annotation, each GO term function identified as
significantly changing could be further parsed to determine
the associated taxonomic classes (i.e., Figs. 3, 4). In both
Bering Strait OM input and controls, the rate of change in
the ratio of peptides associated with different taxonomic
classes per day was 0.007–0.008; significantly less than the
rate determined for functional terms (p < 0.0001; Table S3).
In general, OM input to Bering Strait incubations rapidly
increased the relative abundances of Flavobacterial peptides
on day 1 (15% to >23%) where they remained ~30% of the
total (Fig. 1a, b). 16S rRNA gene-sequencing data also
revealed that this class was dominated by Polaribacter spp.
genus (30%; Fig. S4). Carbohydrate metabolism and protein
synthesis at day 1 increased the most from day 0 in Fla-
vobacteria, contributing to the increased abundance of this
class in Bering Strait incubations, even though Alphapro-
teobacteria was associated with a larger percentage of
peptides for many of these functions (Fig. 3; #36–39,
Dataset 1 and 2). As the incubation progressed to day 6,

Alphaproteobacteria dominated the increase in ABC trans-
port complexes under both treatments (Fig. 3; #31), and
Alphaproteobacteria-assigned peptides were important dri-
vers of the observed shift in nitrogen transport, regulation
and metabolism, plus vitamin synthesis (Fig. 3 cluster 4).

Chukchi Sea bottom water microbiome

Despite geographic separation and depth of origin in Bering
Strait and Chukchi Sea communities, OM input stimulated a
similar increase in bacterial cell numbers (Table S1) and the
same three taxonomic classes comprised the core micro-
biomes (Fig. 1; Dataset 3). Nevertheless, community-wide
metabolic functions were not identical (Fig. S5, Tables S7
and S8) and the Chukchi Sea was primarily controlled by
Gammaproteobacteria (Fig. 1). For example, Chukchi Sea
Gammaproteobacteria dominated the observed changes in
peptide-based metabolic activity seen at day 1 (Fig. 4).
Although many of the GO terms identified to be sig-
nificantly changing in the Chukchi Sea were parent or sib-
ling GO terms to those identified in the Bering Strait
microbiome, there was a temporal delay in their increased
abundance (e.g., peptides associated with multiple

Fig. 3 Peptide spectrum match (PSM) values for the six major Bering
Strait (BSt) microbiome taxonomic categories showing greatest PSM
counts associated with the 71 significantly changing GO functions as
defined by Bonferroni-corrected p-value < 0.01 from a two-tailed test
of proportions. a Shipboard incubations with algal particulate organic
matter input (OM) and b the control incubation. Sizes of bubbles are
scaled to PSM counts by area. Missing data for all classes for a given

time point (e.g., 13–17 for initial BSt sample, BSt) indicates that no
significant changes were measured between that time point and the
next time point (e.g., day 1 OM). Alphaproteobact.=Alphaproteo-
bacteria; Gammaproteobact.=Gammaproteobacteria. Clusters with
function code identifiers are presented in Table 1. All PSM data to
accompany this Fig. are available in Datasets 1 and 2, including a
detailed breakdown of the “Other” category
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translation and carbohydrate metabolism terms increased at
day 6 in the Chukchi Sea compared with day 1 in the Bering
Strait; Fig. S5, Table S8). In response to OM input,
the average functional rate of change per day of 0.0208 in
the Chukchi Sea was comparable with the rate of change
measured in the Bering Strait (Table S3). However, the rate
of change in the ratio of peptides associated with different
classes per day in the Chukchi Sea OM input incubation
was over double those within the Bering Strait and not
significantly different than the mean rate of change deter-
mined for the functional terms (Table S3).

Discussion

Initial response to OM input: carbon acquisition

Within the Bering Strait incubations, functional rates of
change were calculated to be significantly higher than the
taxonomic rate of change which suggests that OM pertur-
bation directs initial community functionality before major
alterations to the taxonomic distribution occur. Within the
first day, functional responses show that carbohydrates were
among the first diatom-derived OM substrates bioavailable to

Fig. 4 Peptide spectrum match (PSM) values for the six major
Chukchi Sea microbiome taxonomic categories showing greatest PSM
counts associated with the 71 significantly changing GO functions as
defined by Bonferroni-corrected p-value < 0.01 from a two-tailed test
of proportions. Shipboard incubations with algal OM input are scaled
to PSM counts by area. Missing data for all classes for a given time

point indicates that no significant changes were measured between that
time point and the next time point. Alphaproteobact.=Alphaproteo-
bacteria; Gammaproteobact.=Gammaproteobacteria. Clusters with
function code identifiers are presented in Table 1. Additional data
including PSM counts and a detailed breakdown of the “Other”
category are shown in Datasets 1 and 2
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the Bering Strait microbiome as predicted for marine bacteria
(e.g., [4, 39, 40]). Carbon acquisition also fueled
protein synthesis by day 1; this paired first response has been
previously observed in bacteria reacting to OM stimulus
[2, 41–43] and is known to drive increases in ribosomal
proteins that are important indicators of bacterial growth [44].

Although Flavobacteria began at relatively low abundance,
they appeared to effectively compete with other bacterial taxa
in both microbiomes by rapidly assimilating available car-
bohydrates, fueling biomass production in incubations that
received algal OM (Fig. 1a, b, e, f). Flavobacteria are known
to exploit complex OM with a diverse array of compound-
specific enzymes and are capable of motility and substrate
adhesion in the North Atlantic [45]; these results demonstrate
Flavobacteria operate effectively in polar waters as well. At a
higher taxonomic resolution, it was evident that Polaribacter
spp. (of Flavobacteria) in particular benefited from the bloom
simulation, as their relative 16S rRNA sequence abundances
reached 30% by day 2 and they effectively outcompeted both
more and less abundant genera (Fig. S4). This genus has been
shown to upregulate enzymes that hydrolyze poly- and
monosaccharides following phytoplankton blooms
[6, 46, 47], supporting the observation here that their early
increase in abundance resulted from a specialized strategy to
rapidly access energy from algal-derived organic substrates.
These functionalities likely enhance their access to particulate
and dissolved OM, providing a competitive advantage over
other community members in systems subject to episodic
influxes of OM from seasonal production.

Another competitive advantage revealed in the peptide
results was seen in the Alphaproteobacteria on days 1 and 6
as they dominated the increase in ABC transport complexes
under both OM treatments (Fig. 3, #31). This class is
composed of both ubiquitous oligotrophic and copiotrophic
subgroups, making it a highly diverse bacterial class with
strong niche diversification throughout nutrient extremes of
the global ocean [48]. ABC transporters are abundant within
Alphaproteobacterial genomes [48, 49], supplying a variety
of ambient monomers to these bacteria across diverse
marine settings [6, 50, 51] and allowing survival under
heterogeneous conditions.

Secondary responses to OM input: nitrogen
regulation

In both Bering Strait OM input and the control, decreases in
protein synthesis at day 6 aligned with increases in nitrogen
regulation. Alternate metabolic pathways of nitrogen
acquisition were observed in the OM input vs. control
experiments and suggest that microbial communities may
have unique responses to decipher complex OM avail-
ability. For example, Alphaproteobacteria-assigned peptides
in the OM input incubations dominated observed shifts in

cellular ammonium assimilation [52, 53] and vitamin-B
synthesis. This paired restructuring may represent a
nitrogen-specific postbloom response by Alphaproteo-
bacteria in the Bering Strait since these metabolic functions
were not present in the control [54]. The additional increase
in N-fixation enzymes was unexpected but suggests an
operative mechanism to assimilate atmospheric N2 to
increase bioavailable nitrogen. N-fixation is energetically
expensive compared with the assimilation of nitrate or
ammonium [55], however, Sulfitobacter’s dominance in this
metabolic pathway (Dataset 1) may provide this genus a
unique N-acquisition strategy in the region where episodic
inputs of OM are routine. The high relative abundance of
Sulfitobacter spp. seen in Arctic waters under varied OM
additions, suggest N-fixation may provide a competitive
advantage for this group in western Arctic waters [56].

Alternatively, there were several lines of evidence in the
Bering Strait control that suggest that the microbiome had to
tightly regulate the internal use of nitrogen through protein
catabolism. Under reduced OM availability, regulation of
amino acid metabolic pathways would provide cells with an
energetically efficient mechanism to recycle carbon and
nitrogen and conserve critical cellular functions [57]. ABC
transporter complexes can increase cellular OM assimilation
efficiency [58], representing an important bacterial response
under nutrient extremes across the global ocean [50, 51, 59]
and, together with protein catabolism, demonstrates which
microbial functionalities confer efficiency and which help
scavenge OM in low-OM (oligotrophic) environments.
Increases in formate oxidation peptides (FDH/Mo) on day 6
also support the hypothesis that cellular energy was in
demand when OM was limited, as this pathway represents
utilization and transfer of C1 molecules for energy production
[60–62]. The various enzymes involved in these divergent
pathways identified in the two Bering Strait OM extremes
may represent potential targets to understand microbiome
carbon acquisition in the environment.

Delayed responses by bottom water Chukchi Sea
microbiome

The parallel incubations of Chukchi Sea bottom water and
Bering Strait surficial waters allowed the universality of the
functional and taxonomic patterns across environmental
gradients to be compared. The similarities in functional
responses of these spatially distinct microbiomes (GO terms
and functional rate of change) indicate a high degree of
overlap across polar microbiome metabolic profiles as well
as taxonomic functional redundancy within the two sys-
tems. Such metabolic flexibility that allows similar taxo-
nomic classes to fill dynamic niches by accessing complex
OM under limited substrates has been previously observed
in the Arctic Ocean bacterial communities [63], but here we

M. P. Mikan et al.
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show functional overlap also persists when OM is abundant
in this ecosystem. In addition, the distinctly delayed func-
tional response time in the Chukchi Sea incubations reveal
that despite similar functional potential (i.e., genome), the
bottom water community was less acclimated to receive
fresh OM. The distribution of the classes responsible for the
activity within the Chukchi community changed at a faster
rate compared with Bering St., nearly matching the func-
tional rate calculated in both incubations (Table S3). This
suggests that the bottom water microbial community com-
position changed to compensate for the lack of appropriate
community functionality. Importantly, the analyses of
functional and taxonomic rates of change convey that
microbiomes with similar dominant taxonomic profiles may
differ in the rate of functional responses to environmental
conditions. Further, these findings support the argument that
specific bacteria can be physiologically poised to respond to
a particular stimulus (e.g., [4, 45, 64, 65]) which can initiate
metabolic-specific niches and divergent ecological strate-
gies [66]. These findings have important implications for
both the timing and community response to algal organic

inputs and suggest that taxonomy alone (e.g., 16S rRNA) is
inadequate as a predictor of functional response.

Redundancy in functional roles across bacterial
classes

Many microbial taxa adapt to fill a particular environmental
niche, yet across multiple taxa, some functional redundancy
may be required to maintain the stability of a complex
ecosystem (e.g., [67]). This metaproteomic approach pro-
vides a time-dependent snapshot of cellular functions within
a diverse microbiome, as well as insight into which taxo-
nomic group is dominating the identified active functions
(Datasets 1–4). Tracking both simulated bloom and oligo-
trophic environments in these two spatially distinct micro-
biomes revealed that many temporally controlled functions
were conserved among the major taxonomic classes, irre-
spective of the taxonomic restructuring that was evident at
the class level. In particular, this is evident in the Bering
Strait microbiome incubations where the taxonomic rate of
change was significantly less than the functional rate of

Fig. 5 Artistic illustration of primary functions observed for the Bering
Strait microbiome as a system in response to additions of algal organic
matter (OM). The initial microbiome (Day 0) had a higher abundance
of peptides correlating to outer membrane proteins, such as transpor-
ters and receptors, and enzymes involved in the C1 metabolic pathway.
At day 0, lysed native algal organic matter was added to the incubation
experiments yeilding a significant increase in peptides related to cel-
lular growth within the microbiome observed including translation,
ATP generation, and glycolysis. By day 6, significant increases in
peptides associated with ABC transporters, the uptake and utilization

of a range of nitrogen sources, and intracellular nitrogen recycling
were identified. These pathways were inherently linked with increased
abundances of peptides involved in the TCA cycle, which included
increases in metal-binding proteins, GS-GOGAT pathway, and vita-
min production. ADP adenosine diphosphate, ATP adenosine tripho-
sphate, AKG alphaketogluterate, LSU large ribosomal subunit, OAA
oxaloacetate, GS glutamine synthetase, GOGAT glutamine oxogluta-
rate aminotransferase (Glutamate synthase), SSU small ribosomal
subunit, RBP ribosomal binding proteins, THF tetrahydrofolate
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change, indicating the native microbial distribution was
functionally poised to degrade the fresh algal OM. In
addition, we note that this broad redundancy in functional
roles of native microbiomes could be partially due to the
level of taxonomic resolution (i.e., class level) used in the
present analysis (e.g., [68, 69]). Yet Aylward et al. [2]
showed that even with detailed bacterial classification (i.e.,
OTUs), redundancies can dominate functional responses to
algal dynamics across ocean basins. Although microbiome
functionality did change through time, broad functional
redundancy at any one time point was seen across the dif-
ferent taxonomic classes in response to OM perturbations.

Conclusions

Understanding how the primary functions of oceanic
microbiomes change spatially and temporally is incomplete
without information on functional responses across broad
taxonomic groups. The operative functions identified in
these complex communities showed coordinated timing
across bacterial classes in response to realistic algal OM
input including (1) the uptake and degradation of carbon,
(2) protein synthesis and ATP generation, and (3) the
reallocation of cellular nitrogen and vitamin synthesis
(Fig. 5). These temporal responses, many of which were
observed in both Bering Strait and Chukchi Sea micro-
biomes soon after OM perturbations, provide an important
time constraint for future field and modeling studies on
organic carbon and nitrogen cycling. The recent demon-
stration by Coles et al. [70] that simulated microbiomes
with limited functional genes can be modeled to recreate
biogeochemical gradients argues for multi-“omic” data
delivery. The peptide-centric method described here yielded
statistically similar taxonomic distributions to 16S rRNA
data at the class level, demonstrating a single technique that
can access both taxonomy and active metabolism. The
insights from this comprehensive enrichment approach
encourage researchers to consider a complete metapro-
teomic dataset rather than rely on select enzymes, element-
specific pathways or transporters, or taxonomic subsets of
the community. The findings that many functional respon-
ses crossed major bacterial class levels at both sites suggest
that functional composition, not taxonomy, may be the most
relevant factor for the development of realistic biogeo-
chemical profiles in the coastal ocean.
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