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ABSTRACT

CONTROL OF LOW-SPEED TURBULENT SEPARATED FLOW 

OVER A BACKWARD-FACING RAMP

John C. Lin 

Old Dominion University, 1991 

Director: Dr. Gregory V. Selby

The relative performance and flow phenomena associated with several devices for 

controlling turbulent separated flow were investigated at low speeds. Relative perfor­

mance of the devices was examined for flow over a curved, backward-facing ramp 

in a wind tunnel, and the flow phenomena were examined in a water tunnel using 

dye-flow visualization. Surface static pressure measurements and oil-flow visualiza­

tion results from the wind tunnel tests indicated that transverse grooves, longitudinal 

grooves, submerged vortex generators, vortex generator jets (VGJ’s), Viets’ fluidic flap­

pers, elongated arches at + a  (positive angle of attack), and large-eddy breakup de­

vices (LEBU’s) at + a  placed near the baseline separation location reduce flow sep­

aration and increase pressure recovery. Spanwise cylinders reduce flow separation 

but decrease pressure recovery downstream. Riblets, passive porous surfaces, swept 

grooves, Helmholtz resonators, and arches and LEBU’s with a  <  0° had no signifi­

cant effect in reducing the extent of the separation region. Wall-cooling computations 

indicated that separation delay on a partially-cooled ramp is nearly the same as on a 

fully-cooled ramp, while minimizing the frictional drag increase associated with the 

wall cooling process. Dye-flow visualization tests in the water tunnel indicated that
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wishbone vortex generators in the forward orientation shed horseshoe vortices; wishbone 

vortex generators oriented in the reverse direction and doublet vortex generators shed 

streamwise counterrotating vortices; a spanwise cylinder located near the wall and 

LEBU’s at a  = —10° produced eddies or transverse vortices which rotated with the 

same sign as the mean vorticity in a turbulent boundary layer; and the most effective 

VGJ’s produced streamwise co-rotating vortices. Comparative wind-tunnel test results 

indicated that transferring momentum from the outer region of a turbulent boundary layer 

through the action of embedded streamwise vortices is more effective than by transverse 

vortices for the separation control application studied herein.

11
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NOMENCLATURE

a groove depth
b groove width
c speed of sound

C f  skin-friction coefficient, 2tw/ pU$q

Cp pressure coefficient, 2(P  — P»)/pD S,
d device diameter
D skin-friction drag
Dc cavity diameter
D0 orifice diameter
ei,e2 fluctuating hot-wire signals

en b en2 electronic noise within hot-wire systems
et freestream turbulence signal

E  mean voltage
E si,E 32 amplitudes of the scattered beams

f j )  Doppler frequency, 2sj ^ tt

fsb fs2  scattered beam frequencies

f 0 Helmholtz frequency, ^ [ S / ( l 'V  +  H 2S/3)]1̂ 2
g gap between the wall and the nearest body surface
h device height (distance from wall)
H  cavity length

I  photocurrent, E ^  +  E 2s2 -  2E si E s2 cos[27r(/s2 -  / si)^ ]

k  local slope of the hot-wire calibration curve, ^ 7̂

i  device chord (streamwise) length

V effective length of oscillating mass, t  +  Ĵ2 — 1 .2 5 ^

LEBU large-eddy breakup device

M  Mach number

P  pressure

xiv
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Poo freestream static pressure

Q total volumetric flow rate

Re
TTReynolds number based on momentum thickness,

R ei TT 9Reynolds number based on chord length,

R gx Reynolds number based on the distance between the 
stagnation and the device location, V&S.

s device spanwise width
S orifice area
t wall thickness
ti time
T temperature
u local mean velocity in the x-direction

u T friction velocity, U o o \[^-

Uoc freestream velocity
V local mean velocity in the y-direction
V resonator volume
VG vortex generator
VGJ vortex generator jet
VR velocity ratio or ratio of jet velocity to freestream velocity
W width of the test section
X coordinate along the freestream direction with origin at the 

beginning of turbulent boundary layer (tripping point)
X X ~  X3,T&f

y coordinate normal to the wall with origin at the surface
z

Greek Symbols

coordinate parallel to the wall and along the spanwise 
direction

a device inclination angle (angle between the device axis 
and the wall)

P device azimuthal angle (angle between the device axis and 
the freestream direction in a x -z  plane)

6 boundary-layer thickness ^based on = 0.995^

Sf fringe spacing, ^

6* displacement thickness, ^1 — d y
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A differential value

6 momentum thickness, Jo Tfe) dy

A spanwise or lateral distance between each geometric cycle
A wavelength

P density

P viscosity
V kinematic viscosity, \ i j p

Tyj wall shear stress

<t> half-angle of the two beams defining the probe volume

U)z

Subscripts

spanwise (lateral) component of mean vorticity, 
dv _  du 
Fx Fy

dev device location
F P flat plate reference value
m mean value

max maximum value

max,ref maximum reference (or baseline) value

T reattachment point
r,ref reference reattachment point
s separation point

s,ref reference separation point

t total value

t, oo total freestream value

w wall value

oo
Superscripts

freestream value

/ rms fluctuating value

+ value in law-of-the-wall variables, multiplying by 
for length scale or dividing by Ur for velocity scale
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CHAPTER 1 

INTRODUCTION

1.1 General Background

The classical concept of flow separation from a continuous surface is governed by 

two factors, adverse pressure gradient and fluid viscosity. In order to remain attached 

to the surface, the fluid in a boundary layer must have enough momentum to overcome 

the kinetic energy loss associated with the adverse pressure gradient and the viscous 

dissipation along its flow path. This loss has a more pronounced effect near the wall 

where the momentum is much less than in the outer part of the shear layer. If the flow 

retardation is such that further advancement of the fluid is no longer possible, then the 

surface streamline nearest to the wall leaves the bounding surface at this point and the 

boundary layer is said to separate (Maskell [1]*). At separation, the rotational flow 

region next to the wall abruptly thickens, the normal velocity component increases, and 

the boundary-layer approximations are no longer valid.

Due to the large energy losses associated with boundary-layer separation, the perfor­

mance of many practical devices is often controlled by the separation location. Hence, 

separation flow control is of extreme importance for many technological applications of 

fluid mechanics. Controlling flow separation can result in an increase in system per­

formance with consequent energy conservation as well as weight and space savings. 

Typical applications include: (1) efficient inlets and diffusers, (2) improved high-lift 

airfoils, (3) aircraft stall/spin control, (4) reduced fuselage/body drag, and (5) effective 

low Reynolds number airfoils.

*The numbers in brackets indicate references.
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One specific goal of current interest is to develop a standby turbulent flow separation 

control scheme for fuselages or high Reynolds number bodies with Stratford closure [2]. 

The Stratford-closure concept consists of flow with continuously near-zero skin friction 

throughout the region of pressure rise such that the flow achieves the pressure rise in 

the shortest possible distance and with the least possible dissipation of energy. Due 

to its near-zero wall shear, the Stratford closure has a veiy low frictional drag, but as 

a result, it is also subject to flow separation caused by flow-field disturbances or off- 

design operating conditions. The optimum standby separation control scheme for this 

application should utilize the best combination of the following criteria: (1) minimum 

system penalty when not deployed (e.g., minimum volume and weight addition, low 

pressure drag, etc.), (2) effectiveness in controlling turbulent flow separation, (3) passive 

operation, and (4) rapid deployability.

In a two-dimensional boundary layer, the criterion for time-averaged separation cor­

responds to zero mean velocity gradient at the wall ^i.e., =  0j , or zero wall fric­

tion. If the momentum near the wall can be replenished, then separation is either 

delayed or eliminated (i.e., separation control). Common separation control tech­

niques typically involve one or more of the following approaches [3,4]: (a) miti­

gation of applied pressure gradients; (b) removal of low-momentum, near-wall flow;

(c) addition of streamwise momentum to the near-wall flow, either from an exter­

nal source or through local redirection of higher momentum outer flow into the wall 

region; or (d) imposition of a slip layer at the wall. The choice of a particular con­

trol technique is usually dictated by system considerations, such as parasitic or de­

vice drag, system complications (due to weight, volume, complexity, and/or struc­

tural considerations), cost, reliability, performance sensitivity, and (for automobiles) 

styling. Typically, research on separation control devices involves limited parametric 

studies of a particular device/approach as applied to a particular flow situation. The 

present investigation is focused on a comparison of a wide range of separation control
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techniques applied to a separated turbulent flow, which are introduced and discussed in 

the following sections.

1.2 Review of Previous Work and Possible Extensions 

for Separation Control

1.2.1 Transverse and Swept Grooves

The concept of using transverse surface grooves for delaying separation in diffusers 

evidently was originated in the Soviet Union by Migay [5-8]. Chang [9] and Stull 

[10,11] also indicated that grooves aligned transverse to the direction of the flow are 

effective in controlling separation. Up to a 50% bluff-body drag reduction was reported 

by Howard et al. [12,13] via small, transverse shoulder grooves. Migay [7,8] suggested 

that the grooves function similar to roller bearings. In other words, the mechanism 

for transverse-groove separation control appears to be one of simply substituting several 

small regions of separation (which effectively provide a wall slip boundary condition) 

for a larger separated-flow region. Transverse grooving is one of the few techniques that 

can establish a slip layer at the wall without actually translating the wall itself. This 

approach has been studied, thus far, mainly in low Reynolds number flows and has been 

presently extended toward the more relevant, higher Reynolds number region. In the 

investigations cited, the Reynolds number based upon the distance between stagnation 

point and transverse grooves, Rex , was less than 8 x 105, while Rex for the present 

study was approximately 5.1 x 106. Improving the roller bearing effect by making the 

flow more three-dimensional through swept grooves was also a subject for the present 

investigation.

1.2.2 Riblets

Research is also necessary to determine whether the effective slip layer produced by 

small longitudinal grooves similar to the NASA riblets [14,15] has a beneficial effect
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on flow separation. The use of riblets constitutes one of the more successful turbulent 

skin-friction reduction techniques developed in the early 80’s. The riblet surface consists 

of flow-aligned grooves which have heights and spacings on the order of the turbulent 

wall streak and burst dimensions [14-16]. Symmetric V-groove riblets with heights and 

spacings of 12 to 15 wall units were shown to yield drag reductions on the order of 8% 

for flat plates with zero pressure gradient [14,15].

If riblets are to be applied to aircraft wings as well as to the fuselage, the effect 

of riblets on turbulent flow separation must be examined. Riblets modify the skin 

friction and momentum of the fluid near the wall. Whether or not the reduced near-wall 

momentum due to the riblets will enhance or delay separation needs to be determined. 

Truong et al. [17] showed that riblets reduce both the displacement thickness, 6*, and 

momentum thickness, 9, in diffusers, which suggests riblets might delay separation if 

the resulting value of the shape factor (6*/9) is reduced. Schlichting [18] indicated that 

when values of the shape factor increase from 1.3 for a zero pressure gradient turbulent 

boundary layer to that of between 2 and 4.9 for an adverse pressure gradient, the flow 

is said to have separated. A recent study by King et al. [19] showed delayed flow 

separation in a diffuser with riblets having nondimensional heights, h+ > 25. In zero- 

pressure gradient flows, these are heights for which the riblets would increase rather than 

decrease the skin friction, as reported by Walsh [14]. The present study examined the 

effect of both skin-friction increasing and decreasing riblets on flow separation.

1.2.3 Passive Porous Surfaces

It is well known that active boundary-layer suction can remove the low-momentum 

near-wall flow and control flow separation [4,9]. It has also been shown that passive bleed 

via porous surfaces can prevent shock-wave/boundary-layer separation on the surface of 

transonic airfoils [20-24]. Passive shock/boundary-layer control provides drag reduction 

through placement of an empty subsurface plenum covered by a porous top surface and
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located at the airfoil chordwise position where a shock wave impinged upon the boundary 

layer. The higher pressure behind the shock wave circulates flow through the cavity 

to the lower pressure region ahead of the shock, resulting in a more gradual viscous- 

inviscid interaction, a series of weaker shock waves, and reduced pressure gradients. 

The effects of this recirculation reduce both boundary-layer separation and wave drag. 

Raghunathan et al. [25] conducted experiments on a two-dimensional low speed diffuser 

with passive control. The passive control consisted of porous surfaces made of holes and 

slots connected by a breather passage. Passive control postponed the stall and reduced 

buffet levels in the diffuser. Their test confirmed that passive controls for flow separation 

are not restricted to transonic speeds. Examining the effectiveness of the passive porous 

surfaces for flow separation control via recirculating self-bleed at low speeds was also a 

subject for the present investigation.

1.2.4 Longitudinal Grooves

One method of redirecting outer flow momentum is the three dimensionalization of 

a two-dimensional mean flow through longitudinal grooves [13,26-28]. Howard et al. 

[13,26] indicated that large longitudinal V-grooves in the shoulder of a bluff body can 

produce up to 33% net drag reduction. Their experiments suggested that the streamwise 

vorticity generated by the pumping action of the attached groove flow decreased the size 

of the flow separation region. This is also an example of locally mitigating the imposed 

adverse pressure gradient through the technique of partial boattailing for separation 

control. Selby and Miandoab [28] reported that the base pressure of a blunt trailing- 

edge airfoil with surface grooves increased with increasing groove depth and angle. 

They speculated that minimally attached flow in the grooves is the mechanism by which 

fluid of higher momentum is redirected to the base flow region to affect an increase 

in the pressure. In the present investigation, studies were conducted to compare the
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effectiveness of this longitudinal groove technique for (two-dimensional) flow separation 

control.

1.2.5 Submerged Vortex Generators

Conventional passive vortex generators with device height, h, on the order of the 

boundary-layer thickness, 6, have long been known to increase the mixing (through 

direct wallward momentum transfer) between external streams and boundary layers. First 

introduced by Taylor [29-31], these vortex generators consist of a row of small plates or 

airfoils that project normal to the surface and are set at an angle of incidence to the local 

flow to produce an array of streamwise trailing vortices. Taylor-type vortex generators 

are commonly used to delay boundary-layer separation [32], to enhance aircraft wing 

lift [33-35], to reduce afterbody drag of aircraft fuselages [36,37], and to avoid or 

delay separation in subsonic diffusers [38-40]. However, Taylor-type vortex generators 

produce significant parasitic drag, which causes a reduction in vehicle efficiency (unless 

the devices are retracted when not needed).

By taking advantage of the fullness of the mean velocity profile in a high Reynolds 

number turbulent boundary layer, a recent optimization approach [41-45] reduced the 

generator height, h, to only a fraction of 6 to form submerged vortex generators. Kuethe 

[41] examined several wave-type submerged vortex generators with h /6  of 0.27 and 0.42 

that were successful in reducing the intensity of separation-induced acoustic disturbances 

in the wake region by suppressing the formation of the Karman vortex street and reducing 

the area of the velocity deficit in the wake. Kuethe’s vortex generators use the Taylor- 

Goertler instability to generate streamwise vortices within the boundary layer when the 

fluid is caused to flow over a concave surface. Holmes et al. [42] demonstrated a 

significant reduction in interior noise on a Gulfstream ID corporate aircraft at cruise 

conditions through application of very low profile (h/8  «  0.1) submerged vortex 

generators. These vortex generators delayed shock-induced boundary-layer separation
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as well as attenuated the vortices shed from the canopy shock wave, minimizing two 

major sources of noise. A recent study by Rao and Kariya [43] suggested that a concave 

slat-type submerged vortex generator with h /8  ~  0.625 may retain its effectiveness 

at a much smaller h/8. The authors recommended further study to identify optimum 

geometric parameters of submerged vortex generators and to examine the parasitic drag.

Wheeler’s doublets [46] and wishbones [47] are relatively new types of wedge-shaped 

vortex generators. The submerged vortex generators initially investigated in the present 

study were these Wheeler devices, since the wedge geometry of Wheeler generators was 

more robust and easier to apply than vane-type generators. The Wheeler doublet vortex 

generators were based on cutouts of the NACA flush inlet [48] and consisted of a double 

row of triangular, ramp-shaped devices resembling overlapping (downstream-pointing) 

arrowheads. The purpose of the second row was to reinforce the vortices produced 

by the first row. The wishbone vortex generators, on the other hand, consisted of a 

single row of V-shaped ramps (two jointed legs with an included angle of approximately 

60°) with their apexes pointing downstream. Kehro et al. [44] reported that wishbone 

devices provided up to 38% drag reduction for a low Reynolds number airfoil by 

controlling its laminar separation bubble. McCormick [45] demonstrated that doublet 

devices significantly suppressed shock-induced separation and improved boundary-layer 

characteristics downstream of the shock.

1.2.6 Large-Eddy Breakup Devices at Angle of Attack

A possible alternative to direct momentum pumping by vortex generators is the large- 

eddy breakup device (LEBU) at a small angle of attack. A LEBU is a thin spanwise 

ribbon or airfoil with chord ~  0(8)  placed in the outer part of a boundary layer (parallel 

to the wall) in order to alter the turbulence structure. It has been suggested that such 

devices break up the large-eddy structure in the turbulent boundary layer and/or add new 

structures via the device wake [49,50]. Presumably, these new/'aitered structures can
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augment or diminish the transport of momentum into the near-wall region and therefore 

attenuate or accentuate the effects of boundary-layer separation. Furthermore, a LEBU 

set at an angle of attack can generate large transverse dynamic vortical motions [49] and 

possibly result in augmentation of the cross-section momentum transport via the turbulent 

Reynolds stress field. One goal of the present investigation was to determine the effect 

of LEBU devices on boundary-layer separation.

1.2.7 Spanwise Cylinders

Another method of increasing near-wall mixing is through turbulence augmentation 

via spanwise cylinders. Moser [51] and Sajben et al. [52] successfully used cylinder 

wakes (dominated by Karman vortex streets) to augment the turbulence in the downstream 

boundary layer for prevention or delay of flow separation. Marumo et al. [53] reported 

that the cylinder wake altered the usual boundary-layer structures in the outer region and 

continued to do so for at least 305 downstream. It was also shown that variations in the 

diameter of the cylinder or location above the wall can alter the wall production processes 

[54]. As the cylinder approached the wall for small gaps, where the gap to diameter ratio 

approached 0.2 to 0.3, the vortex shed from the cylinder surface nearest the wall (which 

had the opposite sense to the mean boundary-layer vorticity) was severely damped. As a 

result, the control vortices produced by the cylinder were predominately of a sense which 

should augment the existing boundary-layer vorticity and enhance turbulent momentum 

transport from the outer region toward the wall [55]. These flow phenomena and the 

relative effect of the height, diameter, and streamwise location of the spanwise cylinder 

on separation control were examined in the present study.

1.2.8 Arches

A dominant feature of the flow over a three-dimensional bluff body (e.g., a vertical 

cylinder or prism) attached to a plane wall is the periodic shedding of three-dimensional
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horseshoe-shaped vortices [56,57]. Of course, such a configuration has a large device 

drag penalty. One possible means of generating the horseshoe-shaped vortices while 

keeping the device drag to a minimum is to use arches embedded in the boundary layer. 

Due to the viscous effect near the arch surfaces, the flow through an arch tends to 

be slower than the flow around it, possibly resulting in the continuous generation of 

horseshoe-shaped vortices that could redirect longitudinal momentum to the near-wall 

flow. To the author’s knowledge, no previous study has been performed on the effect of 

surface arches (and accompanying vortices) on separated flow.

1.2.9 Helmholtz Resonators

The Helmholtz resonators consist of a cavity vented by a small orifice. The cavity and 

orifice are designed to respond to imposed pressure oscillations caused by the unsteady 

flow in the shear layer flowing across the orifices. Resonance occurs when the frequency 

of these oscillations matches the natural frequency of the resonator. Panton and Miller 

[58] tested a series of resonators at three different resonant frequencies. They showed that 

strong excitation occurred when the Strouhal number based on the wall shear velocity 

and orifice diameter was in the range of 30 to 45. A later study [59] showed strong 

effects of orifice geometry upon excitation; i.e., the exact shape of the orifice sidewall 

had a drastic effect on resonator response. De Metz and Farabee [60] found that the rms 

cavity pressure fluctuations were as great as 1.3 times the ffeestream dynamic pressure. 

Flynn et al. [61] reported that the Helmholtz resonators caused near-wall momentum 

oscillation by sucking in high-momentum fluid and expelling low- or zero-momentum 

fluid into the flow. In their experiment, this disturbance introduced a velocity defect into 

the streamwise velocity profile which was associated with increased levels of turbulent 

fluctuations—300% for v' and 30% for v!—and an increased Reynolds shear stress of up 

to 550%. Tests were performed herein to determine whether this increase in near-wall 

momentum oscillations via Helmholtz resonators could benefit flow separation control.
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1.2.10 Viets’ Fluidic Flappers

It has been shown that forced unsteady flow through an asymmetrical rotating cam 

embedded in the wall can produce large eddies in turbulent boundaiy layers with zero- 

and adverse-pressure gradients [62]. By using such a device in a wide-angle diffuser, 

Viets et al. [63] postponed the flow separation and significantly improved the diffuser’s 

performance. An extension of this concept, from an active to a passive system, was 

first suggested by Viets et al. [64] in the form of a fluidic flapper device. This device 

consisted of a small scoop placed at the downstream entrance of a spanwise annular duct 

that directs flow through the duct and out the upstream exit. This exiting flow should 

cause the boundary layer on the test surface to separate and disrupt the flow through the 

duct entrance. Once the flow reattaches, the process repeats itself, creating intermittent 

large-scale vortical motions without the use of moving parts. In theory, this dynamic 

process should enhance cross-stream momentum transport in the boundary layer, thus 

preventing a large separated region downstream. To the author’s knowledge, no previous 

investigation has been made of this flapper concept for flow separation control.

1.2.11 Vortex Generator Jets

The vortex generator jet (VGJ) technique, first proposed and studied by Wallis [65], 

is an active method for generating longitudinal (streamwise) vortices with jets blown 

through holes in a solid surface. The holes in the surface are inclined at an angle 

to the surface, skewed with respect to the freestream direction, and arrayed along the 

surface much like classical vortex generators. The precise mechanism of the vortex 

generation process when the jets are skewed is not yet fully understood. It appears that 

the relatively weak pair of counterrotating vortices that forms within a jet in crossflow 

is replaced by a system in which, after a short distance, a single stronger streamwise 

vortex trails downstream close to the surface (keeping some of the original jet fluid with 

it). Compton and Johnston [66] verified that a pitched and skewed jet in a crossflow
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generates a longitudinal vortex downstream. Pearcey and Stuart [67] and Zhang and 

Li [68] examined the flow physics associated with VGJ’s, including the relative strengths 

of the members of the vortex pair comprising a skewed jet. When placed upstream of 

a separated-flow region, the jet-induced streamwise vortices have proven effective in 

reducing the extent of turbulent boundaiy-layer separation resulting from adverse pressure 

gradients [65,69,70]. VGJ’s have been used to delay turbulent separation on an airfoil 

[65], in a subsonic diffuser [69], and on a flat-plate model in an adverse pressure gradient 

[70].

The VGJ flow separation control technique has evidently not been employed 

operationally—probably because the feasibility of the technique has not been firmly 

established. If feasible, the approach should have several advantages over conventional 

vortex generators for active flow control on aircraft surfaces and in jet engines; i.e., 

(1) jets are generally easy to actuate and have the potential of displaying short response 

times in situations where rapid deployment is required for controlling separation and/or 

stall and (2) compared to solid vortex generators, the drag penalty of VGJ’s is negligible 

when the jets a n  off. This represents an important consideration when cruise speed and 

operational range of aircraft are considered. From the operational efficiency and eco­

nomic viewpoint, the VGJ’s are probably best used in conjunction with an active suction 

system, such as that used for laminar flow control (LFC). For example, the air used in a 

LFC suction system near the leading-edge of a wing (operated for leading-edge region 

separation control during takeoff/landing) can be bled through the jet holes (appropriately 

located with respect to the region of flow separation) to produce streamwise vortices that 

interact with and control the separated flow.

The present study examined various parameters associated with VGJ’s for separation 

control. Parameters that were varied include orifice diameter, jet orientation, jet speed, 

and streamwise jet location.
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1.2.12 Wall Cooling

Fuselage drag reduction using thermal means becomes attractive for future aircraft 

because cryogenic fuels, such as methane and hydrogen, can be used as thermal 

reservoirs. Previous studies have concentrated on delaying transition by stabilizing 

laminar boundary layers with wall cooling [71-74]. The stabilization of a laminar 

boundary layer can help to reduce viscous drag since it has a lower viscous level than 

that of a turbulent boundary layer. However, the boundary-layer flow over the fuselage 

of a commercial transport aircraft is mostly turbulent due to its high Reynolds number 

range (Reg «  100 to 300 x 106) and transition to turbulent flow is often accelerated by 

disturbances present in the nose region (i.e., bugs, windshield wipers, etc.). Since it may 

not be feasible to maintain laminar flow over realistic bodies, drag reduction via wall 

temperature control for turbulent flow past fuselage-like bodies was investigated by Lin 

and Ash [75]. They examined the use of temperature control to reduce the axisymmetric 

body drag under turbulent boundary-layer conditions. The computational study indicated 

that partial wall cooling of the afterbody can delay the separation almost as much as the 

100% surface coverage case, but, with only about one-fifth to one-sixth the skin-friction 

drag increase associated with wall cooling. Partial afterbody wall cooling has a potential 

in achieving net drag reduction for bluff bodies by reducing the pressure drag associated 

with flow separation.

This partial wall cooling approach, studied for axisymmetric bodies, was extended 

herein to the two-dimensional case.

1.3 Research Objective

The principal objectives of the current research were: (1) to investigate the relative 

performance of several passive and active devices for controlling a two-dimensional, 

turbulent, separated flow on a common test bed (backward-facing curved ramp) at low 

speeds and (2) to investigate the flow physics downstream of selected flow-control devices
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of interest through dye-flow visualization in a water tunnel. The relative performance of 

all flow-control devices, except for wall cooling, was investigated experimentally through 

surface pressure measurements and oil-flow visualization. The wall cooling method was 

investigated numerically via computing separation locations.

The outline of this investigation is as follows: the wind-tunnel and water-tunnel 

apparatus and tests are described in the second and third chapters, respectively; the 

relative separation-control performances of all devices, based on results obtained from 

the wind-tunnel experiments and wall-heat-transfer computations, are discussed in the 

fourth chapter; and the flow physics associated with selected flow control devices, based 

on results obtained from the water-tunnel experiments, are discussed in the fifth chapter.
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CHAPTER 2

WIND-TUNNEL APPARATUS AND TESTS

2.1 Model Description

Sketches of all flow control devices tested in the present study are illustrated in 

Figure 2.1. The passive flow control devices examined were transverse and swept 

grooves, riblets, passive porous surfaces, large longitudinal grooves, submerged vortex 

generators, large-eddy breakup devices at a small angle of attack, spanwise cylinders, 

arches, Helmholtz resonators, and Viets’ fluidic flappers. The active devices examined 

were vortex generator jets and wall cooling. All flow control devices except for the wall 

cooling were investigated experimentally. The wall cooling method was investigated 

numerically using potential flow and boundary-layer codes. Detailed descriptions of 

each device and the computer codes are presented in Chapter 4.

2.2 Test Facility

Separation control experiments were conducted in the NASA Langley 20- by 28-Inch 

Shear-Flow Control Tunnel (see Figure 2.2a for sketch of the wind tunnel). This facility is 

a low-turbulence (v!/Uoc < 0.005), subsonic, open-circuit wind tunnel with a test section 

speed range of 7.5 to 150 ft/s. In the current study, all experiments were conducted at 

a freestream velocity of 132 ft/s. (The uncertainty in freestream velocity was ±0.4%.) 

The freestream reference speed was measured using a pitot-static probe extended from 

the tunnel ceiling at the front of the test section.
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Flow separation was established on a backward-facing curved ramp located approxi­

mately 6.5 feet from the test section entrance (see Figure 2.2b for the test configuration 

in the wind tunnel). A suction slot at the test section entrance was used to remove the 

converging section boundary layer to eliminate any influence of upstream history on the 

test boundary layer. The new laminar boundary layer that developed downstream of the 

suction device was artificially tripped with a 2-in.-wide strip of sandpaper (36 grit). The 

ceiling height of the test section was adjusted to obtain zero pressure gradient along the 

test surface upstream of the ramp. The boundary layer on the centerline just ahead of 

the separation ramp (x  = 76 in. or 3280 trip heights) was found to be fully turbulent 

when measured velocity profiles were compared with Coles’ laws of wall and wake (see 

Appendix A). The boundary-layer thickness, 6, was approximately 1.28 in. in thickness 

and the uncertainty in 8 was ±1.7%. At the same location, the momentum thickness, 

9, was 0.135 in., and its spanwise variation across the middle 77% of the test plate 

was within ±2.5%. The Reynolds number based on momentum thickness, R q, was 

approximately 9100 at the upstream edge of the ramp. See Appendix A for detailed 

documentation of the above boundary-layer parameters as well as the freestream turbu­

lence intensity measurements that were conducted as part of the initial tunnel survey and 

validation process.

The baseline (or reference) separation model was a two-dimensional 25° ramp with an 

8 in. shoulder radius as shown in Figure 2.3a. The width of the model was 28 in., which 

spanned the test section. This model produced reasonably two-dimensional separated 

flow at approximately the midpoint of the ramp and 28 downstream of the point of 

horizontal tangency (Figure 2.3b).

The passive porous surfaces and longitudinal, transverse, and swept grooves were 

located on the ramp itself. All remaining devices were placed at varying distances 

upstream or downstream of the baseline separation line, based on the distance between 

the trailing edge of the device and this line. For the discussion herein, this distance X  is
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always nondimensionalized by the value of 8 at the leading edge of the separation ramp 

(i.e., 8 = 1.28 in.). A positive X /8  denotes distance in the downstream direction, and 

X /6  = 0 is where baseline separation occurred.

2.3 Pressure Distribution

Static pressure orifices were located on the centerline of the separation ramp and 

floor downstream of the ramp. The pressure orifices on the floor covered approximately 

two chord lengths of the ramp. The pressure tubes (inner diameter =  0.040 in.) for 

the orifices were connected to a motor driven scanivalve which connected each orifice 

sequentially to a single differential (10 torr Barocel) pressure gauge. All surface static 

pressure measurements were referenced to the freestream static pressure which was 

measured 24 in. from the entrance of the test section. Because of physical constraints, 

some models such as transverse grooves, swept grooves, passive porous surfaces, and 

closely-packed longitudinal grooves did not have pressure orifices on the separation ramp. 

However, pressure measurements were made for all models on the floor downstream of 

the separation ramp to study reattachment and pressure recovery. Since the flowfield 

downstream of many of the separation control devices was three-dimensional in nature, 

spanwise pressure distribution measurements over (at least) a device wavelength were 

obtained by moving the flow control devices laterally to several spanwise stations.

The measured baseline (no device) pressure distribution is shown in Figure 2.4. In 

conjunction with oil-flow visualizations, baseline separation occurred just before the 

sharply increasing portion of the Cp distribution began to level off and reattachment 

occurred near the region of maximum Cp. The extent of separation, therefore, was 

defined as the distance between the observed separation line and the streamwise location 

where maximum Cp occurred. Similarly, the reattachment distance was defined as the 

distance between the trailing edge of the model ramp and the streamwise location where 

maximum Cp occurred. Then, a reduction in the extent of the separated-flow region

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



typically corresponded to the upstream movement of the location at which maximum 

Cp occurred. Also shown in Figure 2.4 is the computed (ideal) potential flow pressure 

distribution. When examining the baseline pressure distribution, it should be pointed out 

that the flow around a comer (or a shoulder) accelerates and decelerates symmetrically 

from the potential flow perspective, which is the reason for the pressure drop along the 

upstream portion of the shoulder. This effect has also been reported by Gersten et al. [84] 

for flow over a similar-shaped backward-facing curved ramp, as illustrated in Figure 2.5.

2.4 Flow Visualization

The method of oil dot flow visualization using a mixture of titanium dioxide and 10 

centistoke silicone oil was utilized to determine the surface flow patterns. Figure 2.3b 

indicates that this method worked quite well in identifying the separation line for the 

reference model. Oil dots were placed approximately 1-in. apart both spanwise and 

in the flow direction to obtain an overall flow pattern. Again, because of geometrical 

constraints, oil-flow visualization was not used on the separation ramps with the passive 

porous surfaces or with the transverse and swept grooves. In these cases, surface tufts 

were placed on the separation ramp in an attempt to identify the separation line. In the 

flow separation region, 0.5-in.-long surface tufts were arranged in a diagonal pattern in 

such a way that each sequential tuft represented a travel distance of 0.25 in. in the flow 

direction.

2.5 Drag Measurements

A small force balance was used to measure the device drag of the submerged vortex 

generators, spanwise cylinders, and arches examined in the current study. The drag 

balance was attached to a 4-in. x 6-in. test surface with narrow gaps along all four sides 

and flush mounted on the tunnel floor upstream of the separation ramp. The balance test 

surface was supported by two vertical supports that were flexible in the flow direction
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but rigid in all other directions. A piezoresistive deflection sensor was used to convert 

the test surface displacement into a signal proportional to the drag force. The range of 

the drag balance was 0 to 0.44 lb (force) with a resolution of 1.1 x 10-4  lb. The device 

drag measurements were conducted at a streamwise location of 12.5 in. (~106) upstream 

of the baseline separation line. All results from drag measurements were normalized for 

equal spanwise coverage and are tabulated in Tables 2.1 to 2.5.

Table 2.1 Device Drag for Vane-Type Vortex Generators

h
(in.)

h
7 A

(in.)

A
H

Drag per 

Device, 
(lb) x 10“ 4

Drag per Unit 

Width, 
(lb/in.) x 10“ 4

0.15 0.12 0.6 4 13.2 22.0
0.25 0.2 1.0 4 41.9 41.9
0.50 0.4 2.0 4 220.0 110.0
1.00* 0.8 4.0 4 1014.1 253.5

*Conventional 6-scale vortex generators.

Table 2.2 Device Drag for Doublet Vortex Generators

h
(in.)

h
1 A

(in.)

A
a Drag per Device, 

(lb) x 10~4

Drag per Unit 

Width, 
(lb/in.) x 10~4

0.11 0.09 0.5 4 8.8 17.6
0.125 0.1 1.0 8 18.7 18.7
0.15 0.12 0.75 5 15.8 21.2
0.50 0.4 2.0 4 310.8 155.4
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Table 2.3 Device Drag for Wishbone Vortex Generators

h
(in.)

h
7 A

(in.)

A
H

Drag per Device, 

(lb) x 10“ 4

Drag per Unit Width, 

(lb/in.) x 10“ 4

Forward
Direction

Reverse
Direction

Forward
Direction

Reverse
Direction

0.063 0.05 0.25 4 1.2 1.9 4.8 7.6
0.095 0.07 0.38 4 2.65 4.4 7.0 11.6
0.11 0.09 0.50 4 7.3 8.6 14.6 17.2
0.25 0.2 1.0 4 45.2 56.4 45.2 56.4
0.50 0.4 2.0 4 390.2 390.2 195.1 195.1

Table 2.4 Device Drag for Spanwise Cylinders

d

(in.)

d.
7 Drag per Unit Width, 

(lb/in.) x 10“ 4
0.13 0.1 149.5

. 0.25 0.2 311.6
0.50 0.4 611.4

Table 2.5 Device Drag for Arches

Model No. h
(in.)

h
7 a

(deg.)
A

(in.)

A
7

Drag per 

Device, 
(lb) x 10~4

Drag per 

Unit Width, 
(lb/in.) x 10"4

1 0.25 0.2 0 2.0 8 13.6 6.8
2 0.50 0.4 0 2.0 4 21.3 10.7
3 0.50 0.4 0 2.0 4 27.2 13.6
4 1.00 0.8 0 4.0 4 71.0 17.8
5 1.00 0.8 0 6.0 6 132.3 22.0
6 1.00 0.8 10 6.0 6 639.3 106.6
7 0.50 0.4 0 3.0 6 60.0 10.0
8 0.50 0.4 10 3.0 6 296.0 49.0
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CHAPTER 3

WATER-TUNNEL APPARATUS AND TESTS

3.1 Test Facility

Dye-flow visualization studies were conducted in the NASA Langley 16- by 24-Inch 

Water Tunnel (see Figure 3.1a for sketch of the water tunnel). The tunnel has a vertical 

test section with an available streamwise length of approximately 4.5 ft. A l-in.-thick 

splitter plate was mounted in the mid-plane of the test section, as shown in Figure 3.1b. 

The velocity in the test section was varied between 1 and 8.3 in/s. Flow visualization 

was performed over the surface of the splitter plate for both a laminar ((Too = 1 in/s) 

and a turbulent boundary layer (Uoo = 8.3 in/s). A 0.2-in.-diameter two-dimensional 

boundary-layer trip installed on the splitter-plate surface 2 in. downstream from the 

leading edge ensured a turbulent boundary layer at the higher freestream speeds. The 

flow-control devices were located approximately 34 in. (170 trip diameters) downstream 

of the boundary-layer trip. At the device location, 6 was measured to be approximately 

1.2 in. for laminar flow and 1.8 in. for turbulent flow. The value of Rg was measured 

to be approximately 110 and 1000 for laminar and turbulent flow, respectively. See 

Appendix B for a detailed description of the water-tunnel boundary-layer surveys using 

a single-component fiber-optically-linked laser-Doppler velocimeter system.

3.2 Flow Visualization

A 6-in.-wide spanwise dye-injection slot was located approximately 2 in. upstream of 

the flow-control devices. Both food coloring (red) and fluorescent (fluorescein) dyes were
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used. The colored-dye visualization tests produced a global picture of the flow structure 

while fluorescent dye illuminated by a laser light sheet provided a cross-sectional view 

of the flow structure. A 200 mW argon laser with a cylindrical lens produced the light 

sheet used to illuminate both the x-y  plane (side view) and the y-z  plane (end view). 

A mirror inclined 45° to the x-y  plane was placed downstream of the splitter plate in 

order to obtain the end view. In addition to dye injection from the floor, LEBU and 

spanwise cylinder models had dye orifices installed at mid-span to enhance the side 

view of the downstream vortical structures. Dye was introduced directly through the jet 

orifices for the tests with the VGJ’s. Flow visualization in the turbulent boundary layer 

was conducted for all devices examined. Because there is little documented information 

on the Wheeler-type submerged vortex generators and VGJ’s, laminar flow visualization 

results are only included herein for these devices. As an example, for wishbone vortex 

generators in a laminar boundary layer, Figure 3.2 shows both a typical top (global) view 

of colored dye visualization and a typical end (plane) view of laser-induced fluorescent 

dye visualization. All flow visualization tests were documented using a video camera 

and recorder.
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CHAPTER 4

WIND-TUNNEL RESULTS

4.1 Transverse and Swept Grooves

The transverse groove geometry investigated is shown in Figure 2.1a. The grooved 

area had a spanwise width of 20 in. and was centered along the centerline of the 

ramp. In the preliminary investigation of this configuration, the optimum transverse 

groove location was determined by systematically varying the beginning and end of 

the grooved section in the streamwise direction. Oil-flow visualization of the flow 

downstream of the ramp with transverse grooves indicated that the optimum location 

for the beginning of the grooves was about one boundary-layer thickness, 6, upstream of 

the base-model separation line (or baseline separation) with the grooved region extending 

one 6 downstream of this separation line. The observed separation line (via tuffs) was 

delayed by approximately 0.25 in. (0.26) with respect to the baseline separation. This 

optimum transverse groove configuration reduced the distance from the separation line 

to reattachment (i.e., extent of separation) by almost 25%.

The upstream movement of the reattachment points was also verified by the pressure 

distribution measurements on the floor behind the separation ramp as shown in Figure 4.1. 

The figure also shows that the optimum transverse groove location is in the maximum 

adverse pressure gradient region. Of the configurations tested, the most effective groove 

configuration had a groove depth-to-width ratio (a/b) of 2.67. Increasing the groove width 

by a factor of 2.3 with constant groove depth moved reattachment back to the baseline 

case while the pressure recovery dropped below that of the baseline level (Figure 4.1).
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One possible explanation for this adverse effect is that as a /6  is reduced to 1.14, the 

critical aspect ratio for transition from an open (deep) to a closed (shallow) cavity is 

approached. Associated with a closed cavity (a /6  <  1) is an additional separated-flow 

region within the cavity and increased drag. Cavity flows are said to be open if the shear 

layer reattaches at or downstream of the back wall. Closed cavity flows, on the other 

hand, involve reattachment to the cavity floor and a second separation upstream of the 

back wall, resulting in high drag and losses [85,86]. Although the optimum transverse 

groove location remained about the same after reducing both the groove depth and groove 

width by 50%, the effectiveness of the smaller transverse groove configuration in reducing 

the extent of separation was also cut in half (down from approximately 25% to 13%). 

Varying the land (or rib) thickness from 1/16 to 1/32 in. did not change the effectiveness 

of the transverse grooves.

Flow visualization using surface tufts indicated high amplitude velocity fluctuations 

near the surface of the transverse grooves. This result is in agreement with the findings 

of Stull [11] who reported pulsating free-shear layers and the formation of rollers over 

the grooved section which gave rise to large velocity fluctuations in the near-wall 

region. The present experiment also indicated that the transverse grooves generated three- 

dimensional flow, as shown in Figure 4.2. The three-dimensional effects appeared when 

the transverse-grooved section extended downstream of the base model separation line. 

The presence of transverse grooves may enhance or introduce a spanwise component in 

the near-wall flow within the turbulent separation (reverse flow) region. This three- 

dimensional flow suggests that properly designed swept grooves might enhance the 

performance of grooves for separation control through introduction of both spanwise 

and streamwise velocity components within the grooves.

The initial swept grooves investigated consisted of alternating +45° and —45° sweep 

angle (with respect to the flow direction) shoulder grooves with various widths (see 

Figure 2.1a). The swept grooves consisted of constant slope (15°) grooves that covered
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approximately the same streamwise adverse pressure gradient region as the optimized 

transverse grooves. Notice that the depth, a, for swept and longitudinal grooves is not 

constant. It varies from zero at the leading edge of a groove to a maximum of 0.25 in. near 

the midpoint of a groove. The results indicated that all alternating 45° swept grooves, 

regardless of spanwise width, increased the reattachment distance and reduced the 

pressure recovery when compared to the baseline case. Typical three-dimensional flow 

in the reattachment region is captured in the oil-flow visualization downstream of the 45° 

alternating (A = 5 in.) swept groove geometry (see Figure 4.3). The pressure distributions 

downstream of all 45° alternating swept groove configurations at various geometric 

widths, A, are shown in Figures 4.4a and 4.4b. Figure 4.5 shows the downstream 

floor pressure distribution comparison between the 45° constant (nonaltemating) swept 

grooves, the 0° swept grooves (or small longitudinal grooves), and the 90° swept grooves 

(or small transverse grooves) of equivalent groove size. The results indicate that both 

0° and 90° swept grooves showed a slight improvement over the baseline case as 

indicated by increased pressure recovery and reduced reattachment distance, while the 

45° constant swept grooves performed very similar to the 45° alternating swept grooves, 

increasing the reattachment distance and reducing the pressure recoveiy. The adverse 

effects produced by the 45° swept grooves could be the same as that of the transverse 

grooves with a/b  =1.14, since the majority of grooves in the longitudinal plane have a/b  

less than one (corresponding to a closed cavity). Figures 4.6a and 4.6b show the oil flow 

visualization of longitudinal and 45° constant swept grooves, respectively. It appears that 

the longitudinal grooves produce straighter surface streamlines downstream of the ramp 

than either the 45° swept grooves or the transverse grooves. Unlike the roller bearing 

mechanism associated with the transverse grooves, the separation control mechanism for 

the longitudinal grooves may be the local mitigation of the imposed adverse pressure 

gradient through the technique of partial boattailing.
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4.2 Riblets

The riblets investigated in the present study consisted of a 0.003-in.-high (h+ «  7) 

symmetric grooved V-shaped riblet and an inverted ‘W’ riblet having a height of 0.020 in. 

(h+ «  50) and spacing of 0.10 in. (s+ ss 250) between the inverted ‘W’s’ (see 

Figure 2.1b). The h+ and s+ values were determined using the following expressions:

h+ = — I  
v

s+ _  SUt  
V

where the friction velocity is defined as ur =  (7oo\/-^- The skin friction values were 

determined at the ramp location from an empirical relationship (Coles [76]) that relates 

skin-friction coefficient, C f, and Reynolds number based on momentum thickness, R q 

(see Figure A.4). Both riblet models were thin films with 0.003-in.-thick adhesive 

backing. Figure 4.7 shows the drag reduction performance curves (skin friction reduction 

versus nondimensional riblet height) for the two riblet geometries. These data were from 

unpublished results of a previous riblet test conducted by Mr. Michael J. Walsh. It was 

estimated that the 0.003-in. riblet would decrease the skin friction by approximately 6% 

and the 0.020-in. riblet would increase the skin friction by 15% for their h+ values of 

7 and 50, respectively (Figure 4.7). The riblet films extended from the separation line 

of the baseline ramp model to an upstream distance of 6 feet (~  566). The film had a 

spanwise width of 1 foot and was centered along the centerline of the test section.

Figure 4.8 shows the surface pressure distribution for the baseline ramp, the 0.003-in. 

riblet (Cy-reducing V-grooves), the 0.020-in. riblet {Cf-increasing inverted W-grooves) 

and two smooth reference films. A different smooth reference film was used for each 

riblet so that the smooth reference film and the respective riblet film would have the same 

nominal thickness (riblet height plus the thickness of the adhesive backing). Figure 4.7 

shows that the 0.003-in. riblet and the respective smooth reference produce virtually 

no change in the pressure distributions compared to the baseline case. The deviations
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from the baseline are all within the uncertainty range of the Cp measurement (±0.005). 

As seen in Figure 4.8, the 0.020-in. riblet enhanced flow separation as indicated by a 

40% increase in the extent of separation and a 20% reduction in the maximum pressure 

recovery. Figure 4.9 compares the oil-flow visualization photographs of the two riblets. 

Figures 4.9a and 4.9b clearly show the effect of momentum loss over the Cy-increasing 

riblets as compared to the Cy-reducing riblets. The drag increase associated with the

0.020-in. riblet adversely retarded the near-wall streamwise momentum, resulting in 

separation enhancement. Furthermore, part of this separation enhancement was caused 

by the larger protrusion height of the 0.020-in. riblet that created a small but noticeable 

backward-facing step at the riblet film’s trailing edge. This step caused an inflection in 

the velocity profile downstream. The influence of the backward-facing step is seen in 

the Cp distributions for the 0.020-in. riblet smooth reference. The Cp distribution for 

the smooth reference showed a separation enhancement. The separation enhancement 

was not as large as that for the 0.020-in. riblet which increased the skin friction. This 

difference is caused by the skin-friction-increasing mechanism associated with the larger 

riblet. It was also determined that the adverse effect caused by the Cy-increasing riblets 

could be eliminated by moving the trailing edge of the riblet film further upstream of the 

baseline separation. Figure 4.10 indicates that the separated region could be decreased 

by almost 50% if the trailing edge of the riblet film was moved 26 upstream of the 

baseline separation. When the trailing edge of the riblet film was placed 15<J upstream of 

the baseline separation, there was essentially no effect associated with the Cy-increasing 

riblets.

4.3 Passive Porous Surfaces

The two passive porous surfaces used in the present investigation (see Figure 2.1c) 

are the same as those used for a wall permeability study by Wilkinson [87]. The self­

bleeding chamber (or plenum) underneath the surface had a depth of 0.5 in. and a
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spanwise width of 20 in., and was centered along the centerline of the ramp. Flow 

visualization and pressure measurement results for the present passive porous surfaces 

indicated that varying surface porosity from Surfaces 1 to 2 (6.8% to 17.6% open area) 

had little or no effect on the resulting pressure distribution. However, the location of 

the nonporous area separating the upstream and downstream porous sections had an 

appreciable effect on reattachment distance.

The downstream floor pressure distributions for various porous/nonporous coverage 

configurations are shown in Figure 4.11 for Surface 2. The figure shows that the porous 

surface with a nonporous section near the maximum + dP /dx  (Case A, 10.6% open 

area) provided a 33% reduction in extent of separation when compared to a completely 

porous surface (Case D, 17.6% open area); however, porous surface coverage of Case A 

still provided a 20% increase in the extent of separation when compared to the baseline 

(nonporous) case. The nonporous area at low speeds serves as a dividing region between 

the upstream low pressure (outflow from porous surface) and the downstream high 

pressure (inflow) regions. An attempt was made to move the normal (passive) injection 

upstream by increasing the coverage of this dividing region further upstream of the 

maximum + dP /dx  region (Case C, 8.2% open area). However, this resulted in an 

increase in reattachment distance and a decrease in pressure recovery back to the level 

of Case D. The reason for this poorer performance may be because the decrease in 

streamwise pressure difference combined with the increase in losses inside the longer, 

self-bleeding chamber produced inadequate bleed flow. If the coverage of the dividing 

region was extended further upstream such that the percentage of the open area was 

severely reduced (to about 2% via Surface 1) for the upstream outflow, the results 

only resembled the baseline case. Outflow further upstream of baseline separation was 

considered but never tried because of the limited chordwise dimension of the ramp and 

the reduction in streamwise pressure difference further upstream. In order to drive the 

self-bleeding flow, a large streamwise pressure difference was preferred. Thus far, all
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passive porous surfaces tested were found to adversely affect both the reattachment 

distance and the pressure recovery when compared to the baseline model. Figure 4.12 

shows the adverse effect (an increase in reattachment distance) via oil-flow visualization 

downstream of a typical passive porous surface (Surface 2, Case A). It is clear from the 

baseline pressure distributions of Figure 4.11 that normal injection (or outflow) near the 

beginning of the maximum adverse pressure gradient region enhances flow separation,

i.e., normal injection reduces the near-wall streamwise momentum in a region where 

maximum near-wall momentum is needed. Improvements in separation control might be 

realized by employing tangential (passive) injection in the low-pressure shoulder region.

Passive tangential slot injection was attempted by replacing the upstream porous 

surface with a O.OlO-in.-thick impervious plate that forms a spanwise 0.032-in. tangential 

gap pointing downstream over the self-bleeding chamber (Figure 2.1c). Three streamwise 

locations for the tangential injection were investigated: 25, 15, and 05 upstream of 

baseline separation (corresponding to locations A, B, and C, respectively, in Figure 4.13). 

Figure 4.13 indicates that while passive slot injection just ahead of baseline separation 

(location C) has a pressure recovery equivalent to that of the baseline level, the pressure 

recovery deteriorated significantly as the injection location moved upstream. This is 

probably due to insufficient mass flow (i.e., pressure driven self-bleeding) through 

the narrow injection gap in a region where sufficient near-wall momentum is crucial 

for separation control. Although passive bleeding techniques tested thus far were 

unsuccessful in reducing flow separation, these techniques may still have application 

for more severely separated cases, as in the study by Raghunathan et al. [25], where 

larger adverse pressure gradients exist.

4.4 Longitudinal Grooves

The longitudinal grooves discussed in this section are much larger than the 90° swept 

grooves and the riblets mentioned earlier (Sections 4.1 and 4.2, respectively). The 

purpose of the large longitudinal grooves was to provide the pumping (ejector) action of
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attached groove flow on the separated flow region. The longitudinal grooves investigated 

in the present study consisted of ‘short’ V-groove, ‘long’ V-groove, and sine-wave groove 

configurations. The geometry of these longitudinal grooves is summarized in Figure 2. Id. 

All grooves were located on the shoulder of the ramp model itself. The ‘short’ V-groove 

configuration consisted of a constant slope (19.4°) groove from just upstream of the 

horizontal tangent point to the base of the ramp. The ‘long’ V-groove and sine-wave 

groove configurations, on the other hand, consisted of a 0.5-in.-deep groove parallel to 

the ramp surface from 2.56 upstream of the horizontal tangent point to the base of the 

ramp. Each longitudinal groove was cut in a 2-in.-wide spanwise section of the ramp 

model. The spanwise groove spacing (A) could be changed by adding or removing one 

of these spanwise sections. The volume removed for a single groove is 0.75 cubic inches 

for the ‘short’ V-groove, 1.5 cubic inches for the ‘long’ V-groove, and 2.6 cubic inches 

for the sine-wave groove.

Figures 4.14a and 4.14b show the flow visualization comparison between the ‘short’ 

longitudinal V-grooves with a groove spacing of 1.56 (2 in. apart, 11 grooves total) and 

the same groove with a groove spacing of 36 (4 in. apart, 6 grooves total), respectively. 

The results indicate that the V-grooves spaced 1.56 apart significantly reduced the distance 

to reattachment, while the V-grooves spaced 36 apart provided only a partial improvement 

in the same region (compare with Figure 2.3b). Figure 4.14 also shows a separation delay 

of 0.56 on the smooth surfaces of the ramp (between the grooves) with the 1.56 groove 

spacing while the 36 groove spacing shows no significant delay of separation in this same 

region with respect to the baseline model. Similar results were obtained for sine-wave 

grooves and ‘long’ V-grooves. The downstream floor pressure distributions for all three 

longitudinal groove cases with the same 1.56 groove spacing are shown in Figure 4.15a. 

The closely packed ‘short’ V-grooves provided the maximum pressure recovery on the 

downstream floor and Figure 4.15a shows that this configuration reduced the extent 

of separation by up to 55%. The pressure distributions for all three longitudinal groove
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cases with the same 35 groove spacing are shown in Figure 4.15b. The resulting pressure 

distributions are all very similar and just slightly above the baseline case. Notice that 

the ‘short’ V-grooves are slightly better for separation control than the ‘long’ V-grooves 

or the sine-wave grooves while requiring only a fraction of the volume penalty (or loss) 

of these longer grooves. The volume penalty for the ‘short’ V-grooves is 50% of that 

for the Tong’ V-grooves and 29% of that for the sine-wave grooves.

4.5 Submerged Vortex Generators

The conventional (5-scale) vane-type vortex generators investigated consisted of a 

row of rectangular plates that projected normal to the wall with adjacent generators set 

at alternating angles of incidence (±15°) to the flow to produce an array of streamwise 

counterrotating vortices. The vortex generators had a height, h, of 1 in. (0.85), an aspect 

(height-to-chord) ratio of 0.5, and a spanwise distance of 4 in. (A/ h  = 4) between each 

pair of devices (see Figure 2.1e).

Flow-visualization results for the conventional vane-type vortex generator indicate that 

each pair of the 0.85 (1 inch) high counterrotating vortex generators provided mostly 

attached flow directly downstream of the ramp trailing edge (Figure 4.16). However, 

this attached flow was highly three-dimensional and pockets of recirculating flow could 

be seen on the separation ramp between adjacent attached flow regions. Figures 4.16a 

and 4.16b show that when the vortex generators were moved from 55 to 155 upstream 

of the baseline separation, the generators still maintained most of their effectiveness. 

Pressure distributions at three spanwise locations downstream of the counterrotating 

vortex generators are presented in Figure 4.17. The three spanwise locations are at a 

distance of 0, A/4, and A/2 away from the device centerline. The figure shows significant 

differences between the Cp distributions for various spanwise locations, which is another 

indication of the highly three-dimensional flow. Figure 4.17 also indicates that the 

vane-type counterrotating vortex generator can provide an improved pressure recovery;
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however, this vortex generator also reduced the pressure on the shoulder region of the 

ramp. This effect is desirable if one wants to increase lift, but results in a pressure 

drag penalty. The pressure reduction is due to an increase in local velocity resulting 

from the redirection of high momentum flow from the outer part of the boundary layer. 

This pressure reduction is probably also an indication that the vortices produced by the 

counterrotating vortex generators were stronger than necessary. Weaker vortices (smaller 

vortex generators) would reduce the pressure reduction on the shoulder.

The submerged (sub-5-scale) vortex generators investigated initially were the Wheeler 

doublet and wishbone types. The geometry of these vortex generators is shown in 

Figure 2.1e. The doublet vortex generators consisted of a double row of ramp-shaped 

devices resembling overlapping (downstream-pointing) arrowheads. The wishbone vortex 

generators, on the other hand, consisted of a single row of V-shaped ramps with the apex 

pointing downstream. Each ramp consisted of two joined legs with an included apex 

angle of approximately 60°. The Wheeler doublet vortex generators investigated varied 

in height from 0.11 to 0.50 in. (0.09 to 0.405), while the wishbones varied from 0.063 

to 0.5 in. (0.05 to 0.405). Both types were effective in flow separation control.

Flow-visualization results for the Wheeler doublet vortex generators indicate that the 

optimum streamwise location for these generators was 5 to 10 device heights upstream 

of the baseline separation line. Figures 4.18a and 4.18b indicate that both the 0.45 

(0.5 in.) and 0.15 (0.125 in.) high doublet vortex generators were quite effective in 

reducing the reattachment distance over the baseline case when installed 25 upstream of 

the baseline separation line. Although the 0.45 high doublet vortex generators provided 

some regions of partially attached flow, there were several well-organized pockets of 

recirculation at the base of the ramp. In addition, for this geometry separation was 

delayed by approximately 0.55 with respect to the baseline case. The 0.15 high doublet 

vortex generators also provided partially attached flow at the base of the ramp; however, 

the recirculation region was not as well organized and less three-dimensional than the
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0.45 high case. The effectiveness of both the 0.45 and 0.15 high doublet vortex generators 

was reduced when the generators were moved further upstream of the baseline separation. 

Figure 4.19 presents pressure distributions downstream of the doublet vortex generators 

with the generators mounted 25 upstream of baseline separation. Figure 4.19a indicates 

that the 0.45 high doublet vortex generators produced a small spanwise Cp variation 

(reflecting the three-dimensional processes shown in the oil flow studies), which is much 

less than that associated with the 0.85 high counterrotating vane-type vortex generators. 

The 0.15 high doublet vortex generators produced negligible spanwise Cp variations 

(Figure 4.19b). In addition to the improved pressure recovery downstream of the ramp, 

the doublet vortex generators, unlike the vane-type counterrotating vortex generators, 

also minimized the pressure reduction at the shoulder region of the ramp. This effect 

is especially prevalent with the 0.15 high generators and is beneficial to pressure-drag 

reduction.

Similar to the results obtained for the doublet vortex generators, the optimum 

placement for wishbone vortex generators was 5 to 10 device heights upstream of 

the baseline separation line. However, Figure 4.20a shows that the 0.095 (0.11 in.) 

high wishbone vortex generators with apex pointing downstream (forward or design 

configuration) still produced a positive (i.e., less separation) effect on Cp even when 

placed as far as 25 device heights or 25 upstream of the baseline separation line. At 

the same device height of 0.095, similar results were obtained with the doublet vortex 

generators and the wishbone vortex generators rotated 180° with apex pointing upstream 

(reverse configuration). The former case (Figure 4.20c) was slightly more effective than 

the wishbone generators in the forward configuration (Figure 4.20a), while the latter case 

(Figure 4.20b) was slightly less effective.

For the same streamwise location of 25 upstream of the baseline separation, 

Figure 4.21 shows that the wishbone vortex generators at (or below) 0.063 in. in height 

(0.055 or y+ «  150) demonstrated an adverse effect on pressure recovery and separation.
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It appears that these ultra-small generators do not produce persistent vortices, but function 

as surface roughness elements promoting separation. At or above heights of 0.095 in. 

(0.085 or y+ fn 230) the wishbone vortex generators were effective. At this ramp loca­

tion, velocity survey data indicated that a value of y+ greater than 300 was approximately 

where the inner (log) region ends and the outer (wake) region begins. Figures 4.22a and 

4.22b show that for a device height of 0.25 in. (0.205), the wishbone vortex generators 

with apex pointing upstream provided a steeper pressure recovery than with the apex 

pointing downstream. This behavior is opposite that observed earlier for a device height 

of 0.11 in. (0.095). Furthermore, the 0.25 high wishbone vortex generators with apex 

pointing upstream were more effective in reducing the reattachment distance than the 

doublet vortex generators of twice the device height (Figure 4.19a). Oil-dot flow visual­

ization photographs are presented in Figure 4.23 for the 0.25 high wishbone generators 

for both forward and reverse configurations. The figure shows the reverse configuration 

provided a less three-dimensional ramp flow than the forward configuration. At this stage 

of the research program, the exact nature of the effectiveness of the 0.25 high wishbone 

vortex generators in the reversed configuration was unclear, and therefore motivated 

further investigation in the water tunnel.

Based on these initial results for the Wheeler submerged vortex generators, one 

question often raised was whether separation control effectiveness could be maintained 

by lowering the device height of the conventional, 5-scale, vane-type vortex generators. 

Vane-type vortex generators with h  ~  0.45, 0.25, and 0.15 were subsequently examined 

(see Figure 2.1e). The results show that those sub-5-scale vane-type vortex generators 

were just as effective in flow separation control as the Wheeler vortex generators. 

Figure 4.24 shows the effect of device location (nondimensionalized by device height) on 

both separation and reattachment locations for all vortex generators investigated. These 

data were averaged over at least one spanwise cycle. This figure confirmed that the 

optimum streamwise device locations for separation control were between 5 to 10 device
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heights upstream of the baseline separation. However, the effectiveness in reducing the 

separation region, although at a much reduced capacity, still persisted when the vortex 

generators were placed as far as 100 device heights upstream of the baseline separation. 

These effects appear true for all vortex generators examined, regardless of the geometry. 

Furthermore, separation alleviation was adversely affected by placing the generators less 

than two device heights upstream of the baseline separation. This is probably because 

this distance (2h) was within the minimum traveling distance that the trailing vortices 

needed to redirect the momentum from the outer region.

It should be noted that the vane-type vortex generators with h  ~  0.26 reduced the 

extent of separation by almost 90% at their most effective location, and were just as 

effective as the larger h ~  0.46 and h ~  0.86 vane-type generators. The conventional 

h  ~  0.86 vane-type generators actually adversely affected separation control effectiveness 

by generating excessively strong vortices that caused pockets of recirculating flow via the 

strong up-sweep motion of vortices, as shown in Figure 4.16. Oil-flow visualization of the 

h  ~  0.16 and h  ~  0.26 vane-type vortex generators placed at 26 upstream of the baseline 

separation are shown in Figures 4.25a and 4.25b, respectively. Pressure distributions 

presented in Figure 4.26 confirmed the effectiveness of the h ~  0.26 generators in 

alleviating separation. This effectiveness, however, was reduced by lowering the device 

height from 0.26 to 0.16. The maximum pressure recovery difference, using the baseline 

case as the reference ( c PmBX — CPrnax ref̂ , is shown in Figure 4.27 as a function of 

nondimensional device location for all vortex generators examined. The figure shows 

that the maximum pressure recovery is a direct function of the device height. This 

is probably because the taller devices generated stronger trailing vortices that resulted 

in higher pressure at reattachment when these vortices impinged upon the test surface. 

The optimum streamwise device locations for maximum pressure recovery appear to be 

between 5 to 25 device height upstream of the baseline separation.
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Increasing the device height of the vortex generators, however, does adversely increase 

the device drag significantly, as shown in the drag measurement results of Tables 2.1 to 

2.3. The results indicate that as the device height increases, the device drag also increases 

in almost an exponential manner, creating a severe penalty. The device drag of vane-type 

vortex generators compares favorably with those of the doublets and wishbones. At 

h = 0.45 in particular, the vane-type vortex generators have 29% less drag than the 

doublets and 44% less drag than the wishbones. For h < 0.25, the device drag of vane- 

type vortex generators approaches the same levels as those of the doublets and wishbones 

with equivalent heights.

In general, doublet and wishbone generators have similar device drag levels. For 

example, doublets have 20% less drag for h = 0.45 and 20% more drag for h  = 0.095 

when compared to wishbones in the forward direction. Despite their effectiveness in 

separation control, the 0.25 high wishbone generators in the reverse direction have 25% 

more device drag than in the forward direction.

The results for the smaller submerged vortex generators (doublet, wishbone, and vane 

types) become even more significant when it is noted that, in addition to the minimization 

of pressure reduction on the shoulder region of the ramp, these generators, being small 

and in a relatively reduced dynamic pressure region, also incurred the least device-drag 

penalty. At a height of only about 10% to 20% of the boundary-layer thickness and 

when placed within 5h  to lO/i upstream of the baseline separation, they perform almost 

as well as a conventional vane-type generator with a device height (and device drag) 

an order-of-magnitude higher. Simplistically, the effectiveness of the smaller submerged 

vortex generators is at least partially due to the full velocity-profile characteristic of a 

turbulent boundary layer. Figure 4.28 shows the location of generator heights relative 

to the boundary-layer velocity profile in the current study (Reg = 9100). Even at a 

height of 0.15 and 0.25, the local velocity is already 70% and 77% of the freestream 

value, respectively. Any further increase in height provides only a moderate increase in
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local velocity but dramatically increases generator drag. Low-profile, sub-5-scale, vortex 

generators with h /6  on the order of 0.1 to 0.2 should be more closely examined for 

turbulent separation control, especially for applications where device drag is important.

4.6 Large-Eddy Breakup Devices at Angle of Attack

The LEBU configurations investigated consisted of miniature airfoils with a chord 

length of 1.25 in. (15) and a maximum chord thickness of 0.06 in., as shown in 

Figure 2.If. The LEBU airfoils were mounted spanwise across the entire test section at 

heights of 1 in. (0.85) and 0.5 in. (0.45), angles of attack of a  =  +10°, 0°, and —10°, 

and streamwise locations ranging from the separation line to 205 upstream of baseline 

separation. Both symmetrical and nonsymmetrical serrations were also installed on the 

trailing edges (see Figure 2.If) to explore enhancement, if any, of device effectiveness 

via three-dimensionalization of the downstream wake.

At a height of 0.85, LEBU’s at the positive angle of attack (a  =  10°) were 

always more effective in flow separation control than LEBU’s at zero and negative 

angles of attack, as shown in Figure 4.29 for a typical streamwise location of 25 

upstream of baseline separation. The optimum placement for the LEBU’s at the positive 

angle of attack was directly above the separation location (Figure 4.30) where they 

acted, at least partly, as turning vanes. At this location, the LEBU’s were actually 

located at 15 downstream of the baseline separation, based on the device trailing edge. 

The LEBU’s reduced the extent of separation by up to 30% when deployed in this 

configuration. Placing the device further upstream reduced its effectiveness in controlling 

flow separation. Similar results were obtained for LEBU’s mounted at a height of 0.45 

(Figure 4.31); however, they were not as effective as the 0.85 high devices. The LEBU’s 

with serrated trailing edges did not produce any noticeable changes to the separated flow, 

as compared to LEBU’s without serrations (Figure 4.32). One possible explanation for 

this result is that the angle of attack of the LEBU’s was relatively small (10°) and the
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serration chord length was only 0.25 in.; therefore, the resulting projected height of the 

serrated part of the LEBU was only 0.04 in. (0.035) normal to the flow direction. This 

was perhaps too small to generate vortices that were strong enough to affect the flowfield 

downstream. Furthermore, at heights of 0.45 and 0.85, any trailing vortices produced by 

the serrations may be too far away from the horizontal surface to redirect the momentum 

to the near-wall region.

4.7 Spanwise Cylinders

The spanwise cylinder (or flow control rail) investigated consisted of a cylinder with 

diameters of 0.135, 0.25, and 0.45 (0.125 in., 0.25 in., and 0.50 in., respectively), as 

shown in Figure 2.1g. The spanwise cylinders were mounted horizontally across the 

entire test section with heights ranging from flush with the wall to 1.05 and streamwise 

locations ranging from the separation line to 205 upstream of baseline separation.

For flow separation control via cylinder wakes, the most effective diameter was 

0.25 in. (0.25); the most effective height was 1 in. (0.85); and the most effective 

streamwise location was 55 upstream of the baseline separation, as shown in Figures 4.33, 

4.34, and 4.35, respectively. It should be noted that the cylinder was also effective in 

reducing the extent of separation when positioned at the separation line and a distance 

of 0.45 above the wall. This effect was most likely due to the local mitigation of 

applied pressure gradients via a solid body instead of device wakes, as in the case 

of placing the cylinder further (e.g., 55) upstream. The shedding frequency of the 

0.25 diameter cylinder at h = 0.85 was estimated to be approximately 1200 Hz. One 

important observation is that although the surface oil-flow visualization (Figure 4.36) 

shows an almost fully attached flow (i.e., extent of separation was reduced by 65%) 

for the 0.25 diameter case of Figure 4.33, the pressure distribution shows an adverse 

effect on pressure recovery. In fact, all the cylinders tested far from the wall produced 

shifts in the maximum pressure downstream of the ramp to levels that were below the
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baseline case, indicating a significant device drag penalty. Apparently the strong wake 

produced by these cylinders hampered the pressure recovery process by imposing a lower 

streamwise pressure for surface pressure recovery.

The 0.25 diameter cylinder was also mounted flush with the wall at various streamwise 

locations. In order to achieve any positive effect on pressure recovery, the cylinder had to 

be placed at least 105 (or 50d) upstream of baseline separation. If placed any closer, the 

near-wall momentum deficit produced by the cylinder did not have an adequate distance 

downstream to be recovered, resulting in adverse pressure recovery. Placing the device 

at 10 to 205 upstream of separation allowed the flow to recover a significant portion of 

the near-wall momentum by the time the separation boundary was reached and resulted 

in a slight positive effect on downstream pressure recovery (Figure 4.37). Positioning 

the cylinder away from the wall and closer to the separation line, however, seemed to 

be more effective in reducing the extent of the separation region than positioning it next 

to the wall.

Table 2.4 indicates that for the most effective spanwise cylinder with d ~  0.25, the 

device drag is at least 5 to 7 times larger than for vortex generators of equivalent height 

(i.e., h ~  0.25).

4.8 Arches

The arch configuration examined consisted of thin plates of metal bent into an arch­

shaped geometry of varying dimensions, as shown in Figure 2.1h. Three to five arches 

were mounted in a spanwise row across the test section with height and chord varying 

from 0.25 (0.25 in.) to 0.85 (1 in.) and streamwise location ranging from the separation 

line to 405 upstream.

Flow visualization results and surface pressure measurements indicate that none of 

the arch configurations with a  <  0° produced any positive effect on flow separation 

(i.e., reducing the extent of separation, increasing pressure recovery, etc.). The surface
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pressure distributions behind a typical arch (model No. 2) at 55 upstream of baseline 

separation are displayed in Figure 4.38. The effect produced by the arches, however, 

appeared to persist a long distance downstream of the devices. Figure 4.39 shows that 

some aspect of the vortical structures could still be detected by the surface oil flow on 

the separation ramp upon moving the arches (model No. 4) from 26 to 405 upstream 

of baseline separation. These vortical structures could be the result of normal vortices 

and/or streamwise vortices generated by the vertical legs and/or the top comers of the 

arch, respectively.

Arch performance was improved by elongating the top surface of the arch and setting 

it at a small positive a . Figure 4.40 shows that at the same streamwise location of 

Figure 4.38 (i.e., 56 upstream of baseline separation), a much improved pressure recovery 

over regular arches (models No. 1 to No. 4) was achieved for an elongated arch (model 

No. 6) with a top surface at an a  of 10° and a height of 0.85. Surface oil-flow visualization 

indicated flow attachment directly downstream of the elongated arches. However, the 

flow attachment was three-dimensional, and pockets of recirculating flow could still 

be seen on the separation ramp between adjacent attached flow regions (Figure 4.41a). 

Reducing the height and size of this elongated arch (model No. 6) by one-half (model 

No. 8) also decreased its effectiveness in separation control. As in the case of LEBU’s at 

an angle of attack, changing a  from —10° to +10° enhanced flow separation control, and 

the most effective streamwise location was at 15 downstream of the baseline separation 

(see Figure 4.41b). At this location, elongated arch model No. 6 reduced the extent of 

separation by up to 50%.

Table 2.5 indicates that for the most effective arch geometry (model No. 6), there is 

a large device drag penalty associated with a positive angle of attack of 10°. This drag 

penalty is less than 70% of the value for the spanwise cylinders, but more than twice the 

penalty incurred by submerged vortex generators with h < 0.25 in. (0.25).
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4.9 Helmholtz Resonators

The Helmholtz resonators examined in the current study consisted of a cylindrical 

subsurface cavity with a diameter of 1 in. and a depth of 2.94 in., as shown in Figure 2.1i. 

The resonator is covered by a 0.06-in.-thick top plate containing a 0.5-in.-diameter 

orifice. The Helmholtz frequency, f 0, of a cylindrical resonator is given by the following 

formula [88]

Here, c is the speed of sound, S  the orifice area, l' the effective length of oscillating 

mass, V  the resonator volume, and H  the cavity length. From this equation one can see 

that the resonator geometry, together with the speed of sound, determines the Helmholtz 

frequency. The value of f 0 was calculated for the current experiment to be 813 Hz for 

a test temperature of 70°F. In the present case the orifice diameter, D 0, is comparable 

in size to the turbulent eddies of the boundary layer. Panton and Miller [58] found, 

based on tests at a single speed with resonators of various frequencies, that the tuning 

correlated with the relation

For the present case, the value of the Strouhal number based on the wall shear velocity 

and orifice diameter, 2'Kf0D0/u T, was calculated to be 44. Within this Strouhal number 

range, the tuning between the resonator and the turbulent boundary layer leads to strong 

excitation with very high amplitude oscillation. The resonator becomes an oscillating 

source-sink of mass at the wall under the boundary layer. Flynn et al. [61] reported that 

the amplitude of the cavity pressure oscillations was 143 dB or 80% of the freestream 

dynamic pressure for a similar resonator geometry.

Ten Helmholtz resonators were placed 1.2 in. apart in the spanwise direction and 

longitudinally at 3.55 upstream of baseline separation. These resonators produced an 

audible acoustic disturbance, but their effect on separation control was minimal (see

30 <  27xf0D 0/u T < 45
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Figure 4.42). It is believed that these resonators were placed too far upstream of the 

baseline separation line to be effective in separation control. Flynn et al. [61] reported 

that the Helmholtz-resonator-induced momentum oscillation was largely attenuated by 

35 downstream of the resonator. Because of geometrical and physical constraints on the 

location of resonator cavities in the present investigation, 2.85 upstream of the baseline 

separation was the closest possible placement of the resonators. The resonators were 

subsequently placed at 2.85, 105, and 405 upstream of baseline separation; however, no 

evidence of any separation control was found. It is therefore concluded that separation 

alteration via resonator-induced momentum oscillation is not a promising concept.

4.10 Viets’ Fluidic Flappers

The Viets’ fluidic flappers investigated consisted of a small scoop, with heights 

ranging from 0.13 in. (0.15) to 0.25 in. (0.25). Placed at the downstream entrance 

of a flush-mounted spanwise annular duct, it directed flow through the duct and out 

the upstream exit, as shown in Figure 2.1j. Two annular duct (or cavity) geometries, 

configurations A and B, were examined. Configuration A had a diameter of 1.5 in. for 

the outer wall and 0.94 in. for the inner wall, while configuration B had a diameter of 

1.0 in. for the outer wall and 0.75 in. for the inner wall. The flappers had a spanwise 

width of 20 in. and were centered along the test-section centerline.

Viets’ fluidic flappers were investigated at 35 upstream of baseline separation. At 

this streamwise location, all flapper geometries examined enhanced flow separation. Fig­

ure 4.43 shows that increasing the scoop height from 0.15 to 0.25 further enhanced flow 

separation and decreased pressure recovery downstream. With the scoop height constant, 

cavity configurations A and B produced very similar result, with the larger cavity (con­

figuration A) producing slightly better pressure recovery downstream than the smaller 

cavity (configuration B). Attempts were made to reduce the scoop-induced adverse effect 

(i.e., device drag associated with local separation downstream of the scoop) by tapering
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the scoop wall in the downstream direction. These efforts only made the downstream 

pressure recovery approach the baseline case, but did not improve upon it. However, for 

the 0.25 scoop height cases, a significant improvement occurred when the flapper device 

was moved further upstream. Figure 4.44 shows a positive effect in separation control, 

compared to the baseline case, when the flapper device (configuration A) was placed at 

105 upstream of the baseline separation line. At this location, the Viets’ flapper device 

reduced the extent of separation by up to 35%. Furthermore, there was still a slight 

positive effect in pressure recovery for the device located as far as 405 upstream of the 

baseline separation line. Similar results were obtained v/ith cavity configuration B and, 

to a slightly lesser extent, with no cavity at all (scoop only configuration). A possible 

explanation for the improvement of pressure recovery when the device was moved from 

35 to 105 upstream of baseline separation is that the scoop-induced local separated flow 

did not have enough downstream distance to fully reattach/recover in the former case, 

whereas in the latter case, it did have a chance to reattach and re-energize the boundary 

layer. It should be noted that this effect is very similar to that of the 0.25 diameter 

flush-mounted spanwise cylinder, as reported in Section 4.7 (Figure 4.37).

4.11 Vortex Generator Jets

Ten vortex-generators-jet (VGJ) orifices (lateral spacing of 1.2 in. or ~  0.95) were 

nominally located 1.75 in. upstream of the point of horizontal tangency or 3.55 upstream 

of baseline separation. The orifice diameters tested were 1/32,3/64,1/16,1/8, and 3/16 in. 

Orientation of the jets was varied through changes to the jet inclination angle, a  (angle 

between the jet axis and the horizontal plane; 15° <  a  <  90°), and the jet azimuthal 

angle, (3 (angle between the jet axis and the freestream direction in a horizontal plane; 

0 ° < / 3 <  90°). These angles are defined in Figure 2.1k.

Longitudinal pressure distributions (jet orifices located symmetrically with respect to 

pressure orifices) are presented in Figure 4.45 for a jet orifice diameter, D 0, of 1/16 in.
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(a  = 45° and /3 = 90°) as a function of the total volumetric flow rate through the jet 

orifices. Results indicate an increase in pressure recovery and a reduction in the extent of 

the separation region with increasing velocity ratio when D0 was held constant. Figure 

4.46 shows pressure distributions as a function of jet diameters (D0 = 1/32, 3/64, and 

1/16 in.) for values of the jet-to-freestream velocity ratio, VR, of 6.8, 3.0, and 1.7, 

respectively. For a given volumetric flow rate, Q, of 2.9 ft3/min., the smallest jet orifice 

(corresponding to the highest velocity ratio) was the most effective. The best performance 

in terms of pressure recovery and reduction in the extent of the separation region was 

obtained with D 0 = 1/32 in. (VR = 6.8).

The effect of variations in inclination angle on the pressure recovery (D0 = 1/32 in., 

/3 = 90°, and VR = 6.8) is shown in Figure 4.47. The maximum pressure recovery 

was obtained with 15° <  a  <  25°. A positive effect was also obtained with a  = 45°; 

however, a somewhat unexpected result is the negligible effect of a  =  90° (i.e., jets 

blowing vertically) compared with the baseline case. Oil-flow visualizations for a  = 15° 

and 45° (Figures 4.48a and 4.48b, respectively), and the other conditions denoted in 

Figure 4.47, show that the flow reattaches upstream of the baseline reattachment line 

for the two inclination angles. In both cases, however, surface streamlines downstream 

of reattachment are skewed toward the (initial) direction of the jets. The skewness is 

greater at the lower inclination angle. For both inclination angles, the separation line is 

three-dimensional, with pockets of separated flow adjacent to pockets of attached flow. 

The separated flow appears to have a spanwise component which is strongest for a  = 15°. 

The extent of separation was reduced by up to 90% for the a  = 15° case.

The effect of varying azimuthal angle on the pressure recovery for VGJ’s with 

D0 = 1/32 in. and a  = 15° and 45° are shown in Figures 4.49a and 4.49b, respectively. 

Maximum pressure recovery was achieved with (3 = 60° at a  = 15° and with (3 = 90° 

at a  = 45°. These figures show positive effect also for (3 = 0°, 30°, and 90° at a  = 15° 

and for (3 = 30° and 60° at a  = 45°. Though there was a positive effect at (3 = 0° with
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a  = 15°, the pressure recovery with a  = 45° was identical to the baseline case. Pearcey 

and Stuart [67] indicated that as the jet azimuthal angle, /?, is increased, one member of 

the pair of counterrotating vortices comprising the jet becomes dominant and is situated 

close to the surface. The other weaker member of the vortex pair lies above the dominant 

member. Based on the present results, it appears that this dominant vortex was strongest 

at 60° <  /3 <  90°. These flow phenomena were examined further in the water tunnel.

Measurements made to determine the spanwise variation in the pressure distribution 

with D 0 = 1/32 in., a  = 15°, and /3 = 90° are presented in Figure 4.50. Plane “A” passes 

through the centerline orifice with planes “B”, “C”, and “D” being A/4, A/2, and 3A/4 

from the centerline in the spanwise direction. These results indicate minimal spanwise 

variation in the streamwise pressure distributions.

The effect of the streamwise location of the jet orifices on the pressure recovery is 

shown in Figure 4.51 (D 0 = 1/32 in., VR = 6.8, a  = 15°, and (3 = 90°). For the three 

cases shown, maximum pressure recovery was obtained with the jet orifices located 36 

to 106 upstream of the baseline separation line. Even with the jet orifices located 406 

upstream of the baseline separation line, significant pressure recovery was achieved, 

though reattachment was delayed in comparison with the reattachment location obtained 

with jet orifices located at 36 and 106.

Several configurations were examined for which adjacent jets were oriented in a 

manner that has been shown by Johnston and Nishi [70] to produce counterrotating 

vortices (/? =  ±90°) rather than co-rotating vortices, as in the case when (3 was constant 

for all jets. One such configuration is depicted in Figure 4.52 (D 0 = 1/32 in. and a  = 45°), 

which shows that the pressure recovery was lower in the three planes examined compared 

with the results for (3 =  constant. There was also greater spanwise variability in the 

streamwise pressure distributions for the configuration with counterrotating vortices than 

with co-rotating vortices. The results for the co-rotating case are similar to those shown
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in Figure 4.50. Figure 4.53, the flow-visualization photograph for the counterrotating 

case, shows pockets of three-dimensional separated flow on the ramp which caused the 

spanwise variation in the pressure distribution. Also shown are regions of surface flow 

in which there was early reattachment, as well as delayed separation, compared to the 

baseline case (Figure 2.3b).

Air injection through a 0.008 by 0.95 in. rectangular slot, oriented as shown in 

Figure 4.54 (/? = 0°, VR = 6.8, and Q = 2.9 ft3/min.), produced the level of pressure 

recovery indicated. The slot was designed with a total flow area corresponding to 10 jet 

orifices with D 0 = 1/32 in. The pressure recovery produced by slot injection was less than 

that produced by VGJ’s with a  =  15 and 45° (J3 =  90°). In addition, Figure 4.55 shows 

that the flow was attached in a small region near the centerline of the model where the 

slot was located. Consequently, to achieve flow control with slot injection comparable 

to that obtained with the VGJ’s (with the same extent of spanwise treatment, i.e., longer 

slot) would probably require an order-of-magnitude increase in the air volumetric flow 

rate through the slot.

4.12 Wall Cooling

The main focus of the current study was to determine trends (for comparison purpose) 

rather than exact solutions. Therefore, boundary-layer theory was used for the calculation 

of separation locations. The current boundary-layer method closely parallels that of 

Cebeci-Smith [89] which predicts turbulent separation over axisymmetric bodies and 

two-dimensional airfoils very accurately without any change in the turbulence model 

near separation. Consequently, the present solution approach should also be a reasonable 

prediction of the separation location for the two-dimensional backward-facing curved 

ramp used in the wind-tunnel experiments. In the boundaiy-layer computations, the 

inviscid pressure distribution was obtained using the GE stream-tube potential-flow code 

[90]. The inviscid pressure distribution, along with various wall temperature conditions,
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were then input to the Harris-Blanchard boundary-layer code [91] to calculate the wall 

shear stress, t w, distribution upstream of the ramp and on the ramp leading up to flow 

separation under turbulent boundary-layer conditions. The computations were made at 

the following freestream conditions: Uqo =  132 ft/s (Moo =  0.118), Pti00 =  14.5 psia, 

and Tt)00 =  525° R. The wall temperature ratio, Tw/T tt0o, was varied between 0.08 

and 2. Notice that values of Tw/T t}(X), equal to 0.08 and 0.38 correspond to the saturation 

temperatures of liquid hydrogen and liquid methane, respectively. The computed value 

of separation location for the case of adiabatic reference (no wall heat transfer) almost 

exactly matched the measured value from the wind-tunnel experiments.

The computed rw distributions with full and partial surface coverage are shown in 

Figure 4.56. The resulting rw distributions over the backward-facing ramp clearly show 

that wall cooling delays flow separation while wall heating causes early separation. 

Figure 4.56a also shows that there was a tremendous increase in wall shear stress 

associated with the 100% (full) surface coverage wall-cooling case. The opposite was true 

for wall heating. Figure 4.56b shows that the increase in skin-friction drag (integrated 

wall shear stress) was reduced by an order of magnitude when partial wall cooling 

was applied from 25 upstream of the adiabatic reference (Tw/T tt00 =  1) separation. 

The effectiveness in separation delay for this partial surface coverage was successfully 

maintained at 65% of the full surface coverage for Tw/T tt00 =  0.08 and 78% for 

Tw /Tty00 = 0.38. Figure 4.56c shows that the increase in frictional drag was reduced 

even further, by another order of magnitude, when partial wall cooling was applied from 

only 0.25 upstream of the reference separation. The effectiveness in separation delay 

for this minimum surface coverage case was still satisfactorily maintained at 50% of the 

full surface coverage for Tw/T^oo = 0.08 and 66% for Tw/T tt00 =  0.38. The minimum 

surface coverage case is important if afterbody wall cooling is used to delay separation 

on a bluff body. The skin-friction drag increase due to wall cooling must be minimized 

to obtain the maximum benefit from the pressure drag reduction (due to the delay in
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separation on the afterbody). Finally, the partial wall cooling principle can also apply to 

a heated wall case. Figure 4.5 6d shows an example of applying partial wall cooling from 

26 upstream of the adiabatic reference separation on a surface that was totally heated 

(Tw/T t)00 =  2) upstream of the 26 location. The figure shows that applying partial wall 

cooling on a heated surface can delay the separation almost as well as on those of the 

adiabatic reference case (Figure 4.56b).

The physical principle behind separation control via wall cooling in a (compressible 

gas) turbulent boundary layer can be described in terms of density and viscosity effects. 

If the surface of a body in a compressible gas, such as air, is cooled, the near-wall fluid 

will have larger density and smaller viscosity than that in the case with no heat transfer. 

The smaller viscosity results in a fuller velocity profile and higher speeds near the wall. 

Combined with the larger density, this yields a higher momentum for the near-wall fluid 

particles and, hence, the boundary layer becomes more resistant to flow separation.

The wall shear stress increase associated with wall cooling can be explained in terms 

of the wall-temperature-induced density effect on the near-wall velocity gradient. From 

the conservation of mass taken across a control volume bounded between the wall and

a near-wall streamline, it can be shown that the velocity gradient at the wall, ^  ,
w

is inversely proportional to wall temperature ^i.e., ^  ~  . The viscosity, /i, is

approximately proportional to the square root of temperature (i.e., ~  T2), according to

the Sutherland law of viscosity [83]. Therefore, it follows that the wall shear stress, rw, 

is inversely related to the square root of temperature ^i.e., tw = ~ T W^ J .  As a 

result, a decrease in wall temperature (i.e., wall cooling) would result in an increase in 

wall shear stress, and the opposite is true for wall heating.
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4.13 Performance Summary

The most effective separation-control performance from each device category is sum­

marized in Figures 4.57 and 4.58, as a function of the reduction in the extent of sep­

aration and the device aerodynamic drag, respectively. The device separation control 

performance shown in Figure 4.57 is represented in terms of nthe the the the ondimen- 

sionalized separation delay and reduction in reattachment distance. The device separation 

control effectiveness in Figure 4.58 is represented in terms of nondimensionalized sep­

aration delay distance (i.e., (xa - x s>TCf)/S). The device aerodynamic drag in this figure 

represented only the drag acting upon the device by the flow. This drag, however, does 

not include the system drag associated with volume penalty (such as surface grooves, 

subsurface plumbings for wall heat transfer and VGJ’s, and cavities for resonators, flap­

pers, and passive porous surfaces) and power usage of an active system (such as wall 

heat transfer and VGJ’s).

Figures 4.57 and 4.58 indicate that the most effective group of flow separation control 

devices were those believed to generate streamwise vortices, such as those produced 

by vortex generators, VGJ’s, and large longitudinal grooves. The sub-5-scale vortex 

generators with h  ~  0.25 were just as effective in delaying separation as the 5-scale 

vortex generators with h  ~  0.85. However, the 5-scale vortex generators had a device 

drag that was 4 to 6 times larger than the sub-5-scale vortex generators. The second 

most effective group of flow separation control devices were those believed to generate 

transverse vortices, such as those produced by spanwise cylinders, LEBU and elongated 

arches at a  =  +10°, Viets’ flapper, and transverse grooves. The d ~  0.25 spanwise 

cylinders were the most effective of this group; however, the cylinders also generated 

the most drag. The elongated arches at a  =  +10° were 40% less effective in delaying 

separation than the spanwise cylinder, but with a 66% reduction in the device drag. 

The minimum coverage wall cooling was about 50% as effective as the maximum 

coverage wall cooling, but with a skin-friction drag increase of only 0.5% that of the
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maximum coverage case. The maximum coverage wall heating enhanced separation but 

also reduced skin-friction drag significantly. The drag reducing (h+ ~  7) riblets and 

Helmholtz resonators had virtually no effect on separation, while the passive porous 

surfaces and swept grooves examined enhanced separation. All flush mounted flow- 

control devices such as surface grooves, passive porous surfaces, Helmholtz resonators, 

and VGJ’s were assumed to have a negligible device (skin-friction) drag.

Spanwise cylinders, LEBU’s at angle of attack, wishbone and doublet vortex gener­

ators, and VGJ’s were selected to be further examined in a water tunnel via dye-flow 

visualization. Of these five devices, the former two were examined for their downstream 

transverse vortex generation and the latter three were examined for their downstream 

streamwise vortex generation. The flow-visualization results and associated flow physics 

are presented in Chapter 5.
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Figure 4.1 Effect of groove geometry on streamwise pressure distribution for 
transverse grooves.transverse grooves
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Transverse grooves m3 a,m 3D separated flow

Figure 4.2 Example of three-dimensional flow caused by the transverse grooves,
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Figure 4.3 Oil-flow visualization for 45° alternating swept grooves with A =  5 in.
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(a) Groove apexes pointing downstream along the centerline.

Figure 4.4 Effect of spanwise geometric cycle and groove orientation on streamwise 
pressure distribution for alternating 45° swept grooves.
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(b) Groove apexes pointing upstream along the centerline.

Figure 4.4 Concluded.
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Figure 4.5 Effect of sweep angle on streamwise pressure distribution 
for swept grooves.
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(a) 0° swept (longitudinal) grooves.

v>* Swept grooves

(b) 45° (constant) swept grooves.

Figure 4.6 Oil-flow visualizations for longitudinal and swept grooves.
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Figure 4.7 Net drag of riblet films in low-speed flow.
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Figure 4.8 Effect of protrusion height on streamwise pressure distribution 
for riblets.
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Figure 4.9 Oil-flow visualizations for riblets. 
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Figure 4.10 Effect of trailing-edge location on streamwise pressure distribution 
for 0.020-in.-high riblets.
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Figure 4.11 Effect of surface coverage on streamwise pressure distribution for passive 
porous surface No. 2.
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Passive porous surface

Figure 4.12 Oil-flow visualization for passive porous surface No. 2 (Case A).
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Figure 4.13 Effect of injection location on streamwise pressure distribution 
for passive tangential (outflow) bleeding.
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Figure 4.14 Oil-flow visualizations showing the effect of groove spacing for ‘short’ 
longitudinal V-grooves.
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(a) Groove spacing ~  1.55.

Figure 4.15 Effect of groove spacing on streamwise pressure distribution for 
longitudinal grooves.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.5

.4

.3

.2

Ideal

.1

0

-.1

-.2
-.3
-.4
-.5

Baseline
'Short' V-grooves 
'Long' V-grooves 
Sine-wave grooves

0 20
X/8

(b) Groove spacing ~  36.

Figure 4.15 Concluded. 
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Figure 4.17 Spanwise variation of the stream wise pressure distribution for 0.85 high 
counteirotating vortex generators placed at 55 upstream of baseline 
separation.
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(a) 0.45 high doublet vortex generators.

Generators

(b) 0.15 high doublet vortex generators.

Figure 4.18 Oil-flow visualizations showing the effect of device height for doublet 
vortex generators at 25 upstream of baseline separation.
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(a) 0.45 high doublet vortex generators.

Figure 4.19 Effect of device height on streamwise pressure distribution for doublet 
vortex generators at 26 upstream of baseline separation.
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(b) 0.15 high doublet vortex generators.

Figure 4.19 Concluded.
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(a) Wishbone generators in forward configuration.

Figure 4.20 Effect of generator configuration on stream wise pressure distribution for 
0.095 high submerged vortex generators at various stream wise locations.
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(b) Wishbone generators in reverse configuration.

Figure 4.20 Continued.
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(c) Doublet vortex generators.

Figure 4.20 Concluded.
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Figure 4.21 Effect of device height on streamwise pressure distribution for wishbone 
vortex generators at 26 upstream of baseline separation.
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(a) Generators in forward configuration.

Figure 4.22 Effect of device orientation on steamwise pressure distribution for 
0.25 high wishbone vortex generators at 26 upstream of baseline 
separation.
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(b) Generators in reverse configuration.

Figure 4.22 Concluded.
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i 111 Generators

(b) Generators in reverse configuration.

Figure 4.23 Oil-flow visualizations showing the effect of device orientation for 26 
high wishbone vortex generators at 26 upstream of baseline separation.
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Figure 4.24 Effect of streamwise device location on separation control for all vortex 
generators.
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(a) 0.1(5 high vane-type vortex generators.
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(b) 0.25 high vane-type vortex generators.

Figure 4.25 Oil-flow visualizations showing the effect of device height for sub-5-scale 
vane-type vortex generators at 25 upstream of baseline separation.
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Figure 4.26 Spanwise variation of the stream wise pressure distribution for 0.25 
high counterrotating vortex generators placed at 26 upstream of 
baseline separation.
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Figure 4.27 Effect of stream wise device location on maximum pressure recovery for all 
vortex generators.
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Figure 4.28 Location of vortex generator heights relative to the boundaiy-layer 
velocity profile.

95

(§) 1/2" high vortex generator 
@  1/8" high vortex generator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.5

.4

.3

.2

Ideal

Baseline 
a = + 10'

.2

.3

.4

.5

Location of LEBU

V

m

Figure 4.29 Effect of device angle of attack on stream wise pressure distribution for 
15 chord LEBU’s at 26 upstream of baseline separation and h  =  0.85.
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Figure 4.30 Effect of device location on strearawise pressure distribution for 
a 15 chord LEBU at h  =  0.85 and a  =  10°.
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Figure 4.31 Effect of device angle of attack on stream wise pressure distribution for 
15 chord LEBU’s at 55 upstream of baseline separation and h =  0.45.
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Figure 4.32 Effect of trailing-edge serrations on streamwise pressure distribution for 
16 chord LEBU’s at baseline separation, h  =  0.86, and a  =  10°.
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Figure 4.33 Effect of device diameter on streamwise pressure distribution for 
spanwise cylinders at 55 upstream of baseline separation and 
h =  0.8 6.
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Figure 4.34 Effect of device height on streamwise pressure distribution for a 
spanwise cylinder at 5 6 upstream of baseline separation and 
d =  0.2 6.
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Figure 4.35 Effect of device location on stream wise pressure distribution for a 
spanwise cylinder at h =  0.85 and d =  0.25.
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Spanwise cylinder

Figure 4.36 Oil-flow visualization for a spanwise cylinder at h =  0.86, d =  0.26, 
and 56 upstream of baseline separation.
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Figure 4.37 Effect of device location on stream wise pressure distribution for a 
spanwise cylinder with d =  0.26 and h =  0.15.
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Figure 4.38 Spanwise variation of the steamwise pressure distribution for arches 
(model No. 2) at 55 upstream of baseline separation.
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(a) Arches a. 26 upstream of baseline separation.

(b) Arches at 406 upstream of baselme separation.

Figure 4.39 Oil-tiow visualizations for arches (model No. 4).
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Figure 4.40 Spanwise variation of the stream wise pressure distribution for elongated 
arches (model No. 6) at 55 upstream of baseline separation.
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(a) Arches at 56 upstream of baseline separation.

jiii Elongated arches

(b) Arches at 15 downstream of baseline separation.

Figure 4.41 Oil-flow visualizations for elongated arches (model No. 6).

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Resonator 
orifices

F l O W ^ - r - O - ^ V
° T ^

o  '~s S

(top view)
®  X = 1.2'
Centerline

Spanwise locations for
pressure orifices

Ideal

Cp
  Baseline
o Measurements along A
D Measurements along B
O Measurements along C

Location of resonators

X/8

Figure 4.42 Spanwise variation of the stream wise pressure distribution for Helmholtz 
resonators at 3.55 upstream of baseline separation and DQ =  0.5 in.
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Figure 4.43 Effect of scoop height on streamwise pressure distribution for Viets’ 
flapper model A at 36 upstream of baseline separation.
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Figure 4.44 Effect of device location on streamwise pressure distribution for Viets’ 
flapper model A with a scoop height of 0.25.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VG J orifices
VGJ"V A  

* > . *

— o -  r

(top view)

£ - 0 .9

-x - x X

Pressure
orifices

Baseline
Q = 4.5 ft3/min, VR = 2.7 
Q = 3.1 ft-J/min, VR = 1.9 
Q = 2.1 ft3/min, VR = 1.3 
Q = 1.1 ft3/min, VR = 0.6

Location of VGJ

20

Figure 4.45 Effect of volumetric flow rate and/or velocity ratio on stream wise 
pressure distribution for VGJ’s with D 0 =  1/16 in., a  =  45°, and 
0  =  90°.
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Figure 4.46 Effect of orifice diameter and/or velocity ratio on streamwise pressure 
distribution for VGJ’s with Q = 2.9 f^/min., a  =  45°, and /3 =  90°.
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Figure 4.47 Effect of jet inclination angle on streamwise pressure distribution for 
VGI’s with D0 =  1/32 in., VR = 6.8, and /3 =  90°.
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Figure 4.48 Oil-flow visualizations for VGJ’s with D 0 =  1/32 in., VR = 6.8, 
and /? =  90°.
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Figure 4.49 Effect of jet azimuthal angle on streamwise pressure distribution for 
VGJ’s with D 0 =  1/32 in. and VR = 6.8.
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Figure 4.49 Concluded. 
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Figure 4.50 Spanwise variation of the streamwise pressure distribution for co-rotating 
VGJ’s with D 0 =  1/32 in., VR = 6.8, a  = 15°, and /? =  90°.
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Figure 4.51 Effect of device location on stream wise pressure distribution for 
VGJ’s with D 0 =  1/32 in., VR = 6.8, a  =  15°, and p  =  90°.
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Figure 4.52 Spanwise variation of the stream wise pressure distribution for 
counterrotating VGJ’s with D0 =  1/32 in., VR = 6.8, a  =  45°, 
and /? =  ±90°.
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Figure 4.53 Oil-flow visualization for counterrotating VGJ’s with D 0 =  1/32 in., 
VR = 6.8, a  =  45°, and /? =  ±90°.
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Figure 4.54 Stream wise pressure distributions for rectangular-slot injection 
(0.008 x 0.95 in.) and VGJ’s with equal flow areas, VR = 6.8, 
and Q = 2.9 ft3/min.
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Figure 4.56 Comparison of wall shear stress distribution between full and partial 
thermal control for a backward-facing ramp.
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Figure 4.56 Continued. 
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(d) Partial wall cooling on a heated wall.

Figure 4.56 Concluded. 
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Figure 4.57 Summary: Reduction in the extent of separation due to flow 
control devices.
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CHAPTER 5

WATER-TUNNEL RESULTS

5.1 Submerged Vortex Generators

In the water-tunnel tests, the dye-flow visualization technique was used as a tool for 

qualitative study. However, several points need to be addressed concerning deficiencies 

of the technique: (1) in the regions where the fluid was unmarked, there is no visual data 

available, and vital information could be lost as a result; and (2) the embedded history 

of the marked fluid could be misleading because the dye tends to concentrate toward 

low-speed rather than high-speed regions, thereby providing an unbalanced flow picture.

Dye-flow visualization tests were conducted for both doublet and wishbone vortex 

generators with a device height, h, of 0.5 in. For each type of vortex generator, three 

devices located 2 in. (4h) apart in the lateral direction were studied. The laser light 

sheet was used to illuminate five y-z  (end view) planes downstream of the generators 

at increments of 1 inch. The results show that doublet vortex generators in the laminar 

boundary layer (Uoo = 1 in/s, Rg = 110) shed streamwise counterrotating vortices. A 

sketch of the downstream flow structure is shown in Figure 5.1a. The mushroom-shaped 

pattern of the marked fluid remained intact for at least 8h downstream of the generators. 

The maximum height of the vortex pair was approximately 1.2h to 1.3 h. For the turbulent 

boundary-layer flow (Uoo =  8.3 in/s, Rg = 1000), the steady vortex pair was replaced by 

a highly-mixed wake structure with counterrotating streamwise vortices observed along 

its core (Figure 5.1b). The core height of the wake structure grew quickly from 2h to 

3h within an inch downstream of the generator and remained nearly constant thereafter.
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The wishbone vortex generators oriented with apexes pointing downstream (forward 

configuration) shed horseshoe vortices in a laminar boundary layer, as shown in 

Figure 5.2a (also see Figure 3.2 for the photograph). Each horseshoe vortex consisted 

of a pair of counterrotating streamwise vortices as the legs with a U-shaped transverse 

vortex as the head. Apparently, the leg vortices were shed by the sidewalls and the 

head vortex was produced by the downstream-pointing apex. The shedding frequency 

of the horseshoe vortices was approximately 1 Hz. The Strouhal number based on 

device height was approximately one. The formation of the horseshoe vortices began at 

approximately 6h downstream from the wishbone generator. Upstream of the formation 

site, the observed flow structure consisted of steady counterrotating longitudinal vortices 

with a core height of 1.5h. Once the hairpin structure was evident, the height of the 

vortical structure, indicated by the dye, ranged between 1.2h and 2.6h. These horseshoe 

vortices may have played a key role in the reduction of the size and magnitude of the 

laminar separation bubble over the low Reynolds number airfoil that was reported by 

Kehro et al. [44]. In the turbulent boundary layer, the horseshoe vortices could not 

be observed, but counterrotating motion was clear (Figure 5.2b). The maximum height 

of the observed vortex pair varied between 2h and 3h downstream of the streamwise 

location (~  3 in.) where the head of the horseshoe vortex formed in the laminar flow.

When immersed in the laminar boundary layer, wishbone vortex generators with 

apexes pointing upstream (reverse configuration) shed counterrotating streamwise vortex 

pairs similar to those of the doublet vortex generators, as shown in Figure 5.3a. 

Nevertheless, the vortex pairs reached a maximum core height of only Ih. Also, the 

longitudinal vortices were formed between, rather than downstream of each generator. 

It is noted that the lower vortex structure was formed between the devices where the 

height of protruding sidewalls was lower than that of the apex. Unlike the forward 

configuration, the near-wall fluid could not be gathered by the upstream-pointing apex 

in order to form horseshoe vortices downstream. In the turbulent boundary layer, the
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steady laminar vortex pair was replaced by the highly-mixed counterrotating vortical flow 

(Figure 5.3b). The shape of the vortical structure was more elongated in the spanwise 

direction (elliptical) than was the flow structure associated with either the doublets or 

the wishbones (forward configuration). However, this is at least partly related to the 

spanwise spacing between the devices. The maximum height of the turbulent vortical 

wake for the reversed wishbones was between \ . lh  and 1.9h, which was about 60% of 

the value for wishbone generators in the forward configuration.

One possible explanation for the effectiveness of the 0.25 high reversed wishbone 

vortex generators in the wind-tunnel tests is that the vortex cores of these generators are 

closer to the surface and thereby provide enhanced mixing in regions where momentum 

is lowest. With the 0.095 high doublet and wishbone generators in the forward 

configuration, where momentum at the generator tip is much lower than the 0.25 high 

case, mixing is accomplished with high-momentum fluid further away from the wall (up 

to 3/i) which should be more beneficial for separation control.

It should be pointed out that the horseshoe vortices generated by the wishbone vortex 

generators oriented in the forward configuration are very similar to those of the hairpin 

(or arch-type) vortices generated by flow over a hemisphere [92] or a mixing tab [93,94], 

as illustrated in Figures 5.4a and 5.4b, respectively. They [92-94] determined that the 

legs of a hairpin vortex help to pump low-speed fluid that is inboard of the legs away 

from the surface, and help to bring fluid which is outboard of the legs down towards the 

surface. The head region of the hairpin vortex entrains the low-momentum fluid pumped 

up by the legs and carries it farther away from the wall. Gretta [94] also showed that 

these hairpin vortices could combine with other hairpin-like vortices in the streamwise 

direction to form larger structures. A recent detailed evaluation of the direct numerical 

simulation of a turbulent boundary layer by Robinson [95] has revealed the presence of 

manifold hairpin-like vortices, most generally asymmetric in shape. He also indicated 

that such structures are intimately involved in the significant transport of fluid both to and
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away from the surface. This suggests that if such structures are generated artifically, the 

potential is present for capitalizing on the dynamics of hairpin vortices for momentum 

transport in a turbulent boundary layer.

A number of investigators have examined the fluid mixing effect of streamwise 

vortices embedded in turbulent boundary layers, since they are also identified as a 

significant structure in boundary-layer turbulence (see Robinson [95,96], Smith and 

Schwartz [97], Ersoy and Walker [98]). Both single streamwise vortices and co-rotating 

and counterrotating pairs have been examined to determine the interaction of the vortices 

with the adjacent fluid, as well as the interaction between two adjacent vortices. It is 

established that the presence of streamwise vorticity above a surface causes the ejection 

of low-momentum near-wall fluid from the surface (Peridier et al. [99]), as well as 

inducing movement of higher-momentum outer-region fluid towards the wall.

Generally speaking, the velocity deficit within a turbulent boundary layer is most 

prevalent near the surface, within the inner 20% or so of the boundary layer. It is within 

this region where adverse external pressure gradients tend to lower the velocity and 

thus hasten flow separation. The sub-5-scale vortex-generator concept, via the doublets, 

wishbones, or vane-types, is to increase the momentum transfer between the outer and 

the inner portions of the boundary layer thereby increasing the velocity gradient near 

the surface. This is different than the conventional 5-scale vortex generator, where the 

device is sized to transfer momentum from outside the boundary layer to the surface, as 

illustrated by a conceptual sketch in Figure 5.5.

5.2 Large-Eddy Breakup Devices at Angle of Attack

A NACA 0009 airfoil with a chord length of 1.15 in. and a span of 15 in. (covered the 

central 94% of the test section) was used as a LEBU in the water-tunnel investigation. 

The airfoil was mounted 0.85 above the wall and was inclined at angles of attack of 

a  =  +10°, 0°, and —10°. The observed downstream flow structure in the x-y  plane is
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depicted in Figure 5.6. At a  =  0°, unsteady streamwise vortical structures were often 

observed in the wake. These structures were most likely formed because of pressure 

fluctuations which occur in the turbulent boundary layer. The vortical structures appeared 

intermittently and often changed direction of rotation. The distance between the LEBU 

trailing edge and the formation of these unsteady structures was about 50% of the LEBU 

chord. Similar flow characteristics have also been noted in the flow visualization results 

of Govindaraju and Chambers [100] for a 0.8%-thick LEBU ribbon with Re^ up to 

22000.

At a  =  +10°, the airfoil LEBU shed transverse vortices at both leading and trailing 

edges. The R et was approximately 6000, which means that the airfoil LEBU at a  =  +10° 

was within its stall region. The resulting wake resembles the Karman vortex street shed 

from a cylinder. The transverse vortices produced from the trailing edge of the LEBU 

appeared to exhibit a stronger influence than those shed from the leading edge. The 

trailing-edge vortices shed from the lower side of the LEBU airfoil had a direction 

of rotation opposite to the sign of the mean vorticity in the turbulent boundary layer. 

Downstream of the LEBU, an upward movement of the near-wall turbulent eddies was 

observed. This phenomenon may be caused by the interaction of the trailing-edge vortices 

with the boundary-layer eddies. For the negative angle-of-attack case, the trailing-edge 

vortices appeared to exhibit a stronger influence than those shed from the leading edge. 

These trailing-edge vortices rotated in the same direction as the eddies in the turbulent 

boundary layer. The eddy structures near the wall appeared to experience an increase in 

rotational speed downstream of the device, suggesting a reinforcement of the near-wall 

eddies by the trailing-edge vortices.

Wind-tunnel results indicated that although a LEBU at a negative angle of attack can 

enhance eddy structure, it also tends to divert momentum away from the wall, which 

has an adverse effect on flow separation control. Apparently, diverting the momentum 

directly toward the wall is a more important factor in controlling flow separation than
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the enhancement of large-eddy structure, as demonstrated by LEBU’s at a positive angle 

of attack.

Based on both water-tunnel flow visualization and wind-tunnel data, Figure 5.7 

illustrates a conceptual view of the effect of a LEBU at angle of attack on the downstream 

turbulent boundary layer. Immediately downstream of the LEBU at a  =  +10°, 

the velocity profile probably became fuller because of the redirection of longitudinal 

momentum toward the wall via the down-turning effect of the LEBU. Further downstream 

of the device, vortices in the lower wake likely moved down through the boundary layer 

and induced a vertical uplift of fluid away from the wall. This motion then tended to 

reduce the velocity gradient and momentum near the wall. However, this process could 

not cancel the initial momentum addition to the wall region via the turning effect of the 

LEBU until 208 downstream of the device as demonstrated in Figure 4.30. For the LEBU 

at a  =  —10°, the opposite was true initially. The velocity profile became less full (or 

more Blasius-like) because of the redirection of longitudinal momentum away from the 

wall via the up-turning effect of the device. Further downstream of the device, the upper 

wake vortices grew larger in size through entrainment of the outer flow and induced 

circulation that brought the higher-momentum outer-region fluid towards the wall. But 

again, this process appeared too weak to overcome the initial momentum diversion away 

from the wall in order to eventually have a positive effect on flow separation control.

5.3 Spanwise Cylinders

In the water-tunnel tests, a 0.25-inch-diameter (d/8  ~  0.2) cylinder was mounted at 

distances of 0.063 in. (g/S =  0.05) and 0.875 in. (g/6  =  0.7) from the wall. The cylinder 

had a span of 15 in. that covered the middle 94% of the test section. As expected, the 

spanwise cylinder generated a Karman vortex street when placed in the outer position 

(g/S  =  0.7), as shown in Figure 5.8. For the near-wall case (g/S  =  0.05), only vortices 

shed from the top side of the cylinder could be observed several diameters downstream
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from the device. As a result, the downstream flow structure was dominated by transverse 

vortices which rotated with the same sign of vorticity as that of the mean boundary layer. 

These transverse vortices appeared to be larger and exhibited a higher rotational speed 

than those produced by the LEBU at a  =  10°. The Reynolds number based on the 

cylinder diameter and the Reynolds number based on the frontal projected height of the 

LEBU at a  =  —10° were the same—both were approximately 1000.

A conceptual view of the effect of a spanwise cylinder on the downstream turbulent 

boundary layer is shown in Figure 5.9. The spanwise cylinder, when placed far from 

the wall (g/6 =  0.7), apparently generated a more vigorous and slightly stronger vortex 

street than the LEBU at angle of attack. The velocity profile became fuller immediately 

downstream of the cylinder because of the displacement effect of the device. The vortices 

in the lower wake reached the wall quickly at a distance of less than 55 downstream of the 

device. The impingement of these vortices on the wall likely produced yet an even fuller 

velocity profile locally. However, this interaction process probably also induced a strong 

uplift of the near-wall fluid downstream and eventually, at about 205 from the cylinder, 

produced a less full velocity profile that is more likely to separate, as shown in Figure 

4.35. The spanwise cylinder placed near the wall (g/S = 0.05), on the other hand, 

initially generated a near-wall velocity deficit immediately downstream of the device. 

Further downstream, the vortices shed from the upper surface of the cylinder rotated in 

the same direction as the eddies in the turbulent boundary layer. This motion suggested a 

reinforcement of the near-wall eddies and a movement of higher-momentum outer-region 

fluid towards the wall. This momentum transport through eddy reinforcement produced 

a slight positive effect in separation control at a distance of about 105 downstream from 

the device, as shown from the wind-tunnel results of Figure 4.37.
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5.4 Vortex Generator Jets

In the water-tunnel investigation, three VGJ’s with a  — 15°, A =  2 in., VR =  4, 

and D0 =  1/32 in. were installed at various jet azimuthal angles, /3 (Figure 2.1k). The 

visualized dye patterns as seen from an end view located 2 in. downstream of the jet for 

both turbulent and laminar boundary layers are sketched in Figure 5.10. As the value 

of f3 increased from 0° to 90°, the following flow phenomena were observed: (1) the 

rotational speed of the turbulent vortex increased, (2) vortex core size generally increased, 

(3) one member of the laminar vortex pair was attenuated, while the other was amplified 

and moved closer to the wall, and (4) the sign of the vorticity for the laminar and 

turbulent jets was opposite. Figures 5.11a and 5.11b show the end (plane) view of the 

flow visualized using the laser-induced fluorescent-dye technique downstream of a VGJ 

(0  =  90°) within both a laminar and a turbulent boundary layer, respectively.

Conceptual models for the formation of jet-induced vortices are shown in Figure 5.12 

for both laminar and turbulent boundary-layer flows at the maximum /3 of 90°. For the 

turbulent case, the velocity gradient is concentrated near the wall, with the rest of the 

boundary layer being dominated by eddies. Hence, as soon as the jet left the orifice, 

the crossflow-induced vortex pair within the jet experienced relative motion consistent 

with the direction of the mean transverse vorticity in the boundary layer, and this relative 

motion was strengthened as (3 approached 90°. In addition, the member of the vortex 

pair with rotational direction opposite the mean transverse vorticity in the boundary layer 

was attenuated. Thus, downstream of the jet orifice, only a single longitudinal vortex 

rotating in the same sense as the turbulent eddies was observed, as shown in Figure 5.12b. 

Typically, at 1 in. downstream of the jet orifices, the core diameters of these vortices 

were on the order of 0.26 for ft =  0° and 0.36 for (3 = 90°. The streamwise growth rate 

of the core diameters was approximately 0.16 per inch. Wind-tunnel results indicated 

that the effect of jet-induced co-rotating streamwise vortices can be strong and persistent 

within a turbulent boundary layer.
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The exact physical mechanism responsible for vortex roll-up when jets are skewed 

within a turbulent boundary layer is still not fully understood. Current flow visualization 

results suggest that the main mechanisms are entrainment, concentration, and turning 

of spanwise boundary layer vorticity by the skewed jet. The jet with the largest skew 

angle (J3 =  90°) apparently captured the greatest amount of the vorticity present in the 

approaching turbulent boundary layer and re-oriented it into a concentrated streamwise 

vortex. Then, being fed continuously with vorticity contained in the approaching bound­

ary layer, this streamwise vortex persisted in strength for a considerable downstream 

distance, thus increasing its effectiveness for near-wall boundary-layer energization. The 

physical mechanism of boundary-layer energization via embedded streamwise vortices 

is the same as those discussed in Section 5.1.

Generally, for the laminar flow, the velocity gradient is less concentrated near the wall, 

and the mean transverse vorticity is much lower than that of a turbulent boundary layer. 

Fluid approaching the jet from upstream would have a tendency to move outward (+y) 

due to the large y-component of momentum introduced into the boundary layer by the jets. 

This would create a large positive streamwise gradient in the y-component of velocity 

( l x )  • *n Edition, the wall-normal gradient of the rc-component of velocity would 

be decreased due to the outward movement of low-speed fluid. The spanwise component 

of mean vorticity is

the high jet-to-freestream velocity ratio (VR =  4). A positive value of u z corresponds to 

rotation with an opposite sense (counterclockwise for ffeestream flow from left to right) 

to that normally associated with a laminar boundary layer (clockwise). Counterclockwise 

vorticity of this sense would result in the relative movement of the counterrotating vortex 

pair as indicated in the cores sketched in Figure 5.10, when (3 increased from 0° to 90°, 

as well as the attenuation of the vortex with opposite rotation. Thus, downstream of the

The value of uiz is positive if is larger than which is a likely result here considering
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jet orifice, the near-wall vortex is much stronger than the one farther from the wall and 

has a direction of rotation (Figure 5.12a) opposite the mean transverse vorticity in the 

boundary layer.

5.5 Flow Physics Summary

From the water-tunnel and wind-tunnel results, one can generalize that the embedded 

streamwise (or longitudinal) vortices, whether generated by wall protuberances (such as 

sub-6-scale vortex generators) or skewed jets, provide the most effective and efficient 

means of delaying or mitigating flow separation in two-dimensional turbulent boundary 

layers. In other words, transferring momentum from the outer region of the turbulent 

boundary layer via embedded streamwise vortices is evidently more efficient than such 

transfer via either enhanced Reynolds stresses or quasi-coherent dynamic transverse 

vortices.

Flow control devices that generate transverse vortices within the boundary layer 

tended to have a much larger device drag and associated (device-induced) mean 

momentum deficit than those which generated streamwise vortices. Furthermore, the 

three-dimensional helical (or spiral) pathlines over which the streamwise vortices travel 

downstream appear to be more efficient than the two-dimensional (spanwise) circular 

pathlines over which transverse vortices travel.

An embedded three-dimensional hairpin vortex that exhibited both streamwise (legs) 

and spanwise (head) vortices may also have good potential in separation control, 

especially if the device height is restricted to the order of 0.16, as shown from the 

wind-tunnel results of wishbone vortex generators oriented in the forward direction.
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Laminar boundary layer

Flow

y-z plane

(a) Generator in laminar boundary layer.

Figure 5.1 Flow structure downstream of a doublet vortex generator.
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Turbulent boundary layer

Flow

2 -3 h

y-z plane

(b) Generator in turbulent boundary layer.

Figure 5.1 Concluded.
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Laminar
Flow boundary layer
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y-z plane

1.2-2 .6h

(a) Generator in laminar boundary layer.

Figure 5.2 Flow structure downstream of a wishbone vortex generator 
in forward configuration.
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(b) Generator in turbulent boundary layer.

Figure 5.2 Concluded.
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Laminar boundary layer

Flow

i h

y-z plane

(a) Generators in laminar boundary layer.

Figure 5.3 Flow structure downstream of wishbone vortex generators in reverse 
configuration.
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y-z plane

(b) Generators in turbulent boundary layer.

Figure 5.3 Concluded.
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Figure 5.4 Illustration of the generation of hairpin vortices.
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Figure 5.5 Illustration of boundary-layer energization via 6- and 
sub-£-scale vortex generators.
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Figure 5.6 Flow structure downstream of a LEBU airfoil at angle of attack in a 
turbulent boundary layer.
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Figure 5.7 Illustration of the effect of a LEBU at angle of attack on the 
downstream turbulent boundary layer.
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Figure 5.8 Flow structure downstream of a spanwise cylinder (d =  0.25) in a 
turbulent boundary layer.
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Figure 5.9 Illustration of the effect of a spanwise cylinder on the 
downstream turbulent boundary layer.
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Figure 5.10 Flow structure in y-z  plane 2 in. downstream of VGJ’s.
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(b) Turbulent boundary layer.

Figure 5.11 End view photographs of laser-induced fluorescent-dye visualization 
downstream of a VGJ with (3 =  90° and a  =  15°.
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Figure 5.12 How model for a VGJ (/? =  90°, a  =  15°).

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Several passive and active separation control techniques for controlling two- 

dimensional turbulent flow separation over a backward-facing ramp were investigated 

in a wind tunnel. The following conclusions are drawn from the study:

1. Transverse grooves, located in the maximum + dP /dx  region with a height- 

to-width ratio greater than 2.5, reduced the extent of separation by 25% over 

the baseline configuration. Unlike the transverse and longitudinal grooves of 

equivalent size, the 45° swept-groove configurations tested in the present study 

enhanced separation.

2. Riblets that decreased skin friction had virtually no effect on flow separation, while 

riblets that increased skin friction enhanced flow separation when placed in the 

immediate region of the flow separation. The separation enhancement due to the 

drag-increasing riblets can be eliminated by increasing the distance between the 

trailing edge of the riblet and the separated-flow region to at least 155.

3. All passive porous surface configurations tested tended to enhance separation. This 

was probably the result of an increased momentum deficit near the wall for the 

normal injection experiments and insufficient mass flow for tangential injection.

4. Closely-packed, large longitudinal grooves with A/5 ~  1.5 reduced the extent of 

separation by up to 55%. A ‘short’ longitudinal V-groove configuration with a 

constant groove slope performed slightly better than either the ‘long’ longitudinal 

V-groove or sine-wave groove configurations, while imposing a much smaller 

volume-loss penalty.
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5. Submerged doublet, wishbone, and vane-type vortex generators with h /S  ~  0.1 

to 0.2 were effective in separation control, and optimum streamwise locations 

were between 5 to 10 device heights upstream of separation. Properly placed, 

these vortex generators can perform almost as well as conventional 5-scale vortex 

generators which have a device height (and device drag) an order-of-magnitude 

higher. Vane-type vortex generators with h  ~  0.25 reduced the extent of separation 

by almost 90%. Wishbone generators with device height below 0.055 (y+ ~  150) 

demonstrated an adverse effect on pressure recovery and separation control.

6. LEBU’s at a small positive angle of attack of 10°, placed near baseline separation, 

were effective in suppressing the extent of separation by up to 30% while LEBU’ 

s at a negative angle of attack enhanced separation. Trailing-edge serrations on 

LEBU’s did not produce any noticeable changes in the separated flow.

7. For reducing the extent of flow separation, the most effective diameter for spanwise 

cylinders was 0.25, the most effective height was 0.85, and the most effective 

streamwise location was at 55 upstream of baseline separation. Due to high device 

drag, the streamwise pressure distributions showed an adverse effect on pressure 

recovery for most of the cylinders tested.

8. Arch configurations with a  = 0° (nonlifting arches) did not significantly affect 

flow separation. The vortical structures produced by the arches lasted a long 

distance (up to 405) downstream of the devices. Elongated arches with a  =  10° 

(lifting arches) reduced the extent of separation by up to 50% when placed at the 

baseline separation line.

9. The Helmholtz resonators examined had little or no effect on flow separation even 

though they generated acoustical disturbances.
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10. Viets’ fluidic flappers enhanced flow separation significantly when placed close 

(36 upstream) to the baseline separation line. However, when the devices were 

moved 106 upstream of the separation, they reduced the extent of separation by 

up to 35%.

11. Most VGJ configurations examined were effective in reducing the extent of 

separation by up to 90%. VGJ’s seemed to perform best for azimuth angles, 

/?, of 60° to 90° and for inclination angles, a , of 15° to 25°. There was no effect 

on separation for VGJ’s blowing vertically (a  =  90°). For constant flow rate, the 

smallest diameter jet tested (1/32 in.), corresponding to the highest velocity ratio, 

was the most effective in separation control. Furthermore, the effect of the VGJ’s 

lasted a long distance (at least 406) downstream.

12. Wall heat-transfer computations indicated that wall cooling delays flow separation 

but also increases wall shear stress. Compared to the full-surface coverage case, 

partial wall cooling with minimum surface coverage from just 0.26 upstream of 

the adiabatic reference separation can still maintain at least a 50% effectiveness in 

separation delay, while reducing the increase in skin-friction drag by two orders 

of magnitude.

The flow physics associated with five of the vortex generating devices were investi­

gated in a water tunnel. The following conclusions were drawn from that study:

1. Wishbone vortex generators in the forward orientation shed horseshoe vortices 

at low speeds. Doublet vortex generators and wishbone vortex generators in the 

reverse orientation shed streamwise counterrotating vortices.

2. LEBU’s at a  =  —10° produced eddies which rotated in the same direction as the 

mean transverse vorticity in a turbulent boundary layer. However, these LEBU’s 

also tended to divert momentum away from the wall, which increased separation. 

The opposite was true for LEBU’s at a  =  +10°.
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3. Spanwise cylinders located near the wall produced eddies which rotated in the 

same direction as the mean transverse vorticity in a turbulent boundary layer, but 

wind-tunnel results indicated that minimum distances of 105 downstream from 

the device were required to allow recovery from the device-induced momentum 

deficit.

4. As azimuthal angle, /?, of the VGJ’s increased from 0° to 90°, both the downstream 

rotational speed and vortex core size increased for the longitudinal (co-rotating) 

vortices. For /? 3> 0°, the signs of observed vorticity for laminar and turbulent 

jets were opposite each other.

Finally, it is concluded that embedded streamwise (longitudinal) vortices, whether 

generated by protuberances or jets, provide the most effective and efficient means of 

delaying or mitigating flow separation in two-dimensional turbulent boundary layers. In 

other words, transferring momentum from the outer region of the boundary layer by 

means of embedded streamwise vortices is evidently more efficient than such transfer by 

either enhanced Reynolds stresses or quasi-coherent dynamic transverse vortices.

Future work is recommended for successful flow-control devices such as sub-5-scale 

vortex generators and VGJ’s. Detailed flowfield surveys downstream of these vortex 

generating devices will be extremely helpful in gaining further understanding of the 

associated flow physics. Such understanding is very important for aiding direct numerical 

simulation of the device-induced complex flowfields. If possible, sub-5-scale vortex 

generators and VGJ’s should be examined in three-dimensional separated flows as well 

as in high-Reynolds-number and/or high-speed tunnels.
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APPENDIX A 

WIND-TUNNEL SURVEY

A.1 Boundary-Layer Parameters

To validate the flow quality upstream of the separation ramp, boundary-layer velocity 

profiles were measured on the (floor) test plate every 6 in. along the centerline between 

x  =  34 in. {X/8  ~  —40) and x  =  76 in. (X /8  ~  —5). A pitot probe/pitot-static 

probe arrangement was used in surveying the boundary layer (see Figure A.l). The 

pitot probe was mounted on a traverse mechanism that was automatically controlled by 

a MASSCOMP computer which positioned the probe at pre-selected y-increments.

Two thousand data samples were averaged over fifty seconds at each y-position to 

define the mean local boundary-layer velocity. The upper probe (pitot-static) measured 

freestream total minus static pressure which defined the freestream velocity, while the 

lower probe (pitot) measured total boundary-layer pressure. This value of the total 

pressure, Pt, was combined with the static pressure from the upper probe, Poo, to define 

the boundary-layer velocity at a point using the expression

'2(Pt-PooYu  —
1/2

(A-l)
P

Between 25 and 35 points were taken in each boundary-layer survey. A typical velocity 

profiles at x  =  46 in. (X /8  ~  —30) is presented in Figure A.2. It can be observed in the 

figure that the measured profile has the shape that is usually characteristic of turbulent 

boundary layers—high velocity gradients near the wall.
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The boundary-layer thickness, 5, was defined as the normal distance from the 

wall where the local velocity reaches 99.5% of the freestream velocity. Hence the 

displacement thickness, 6*, and momentum thickness, 9, were obtained through integra­

tion of the velocity profiles from pitot surveys using the relation

Figure A.3 shows the streamwise variation of the boundary-layer parameters 5*, 9, 

and 5/10 from 405 to 55 upstream of the baseline separation. As expected, the value of 

these parameters increased as a function of increasing streamwise distance, x, from the 

boundary-layer trip. However, these values began to level off near the separation ramp. 

This was likely due to the slightly accelerated local flow (that resulted in the thinning of 

the boundary layer) as the flow tried to turn the corner on the curved ramp. Throughout 

the survey, 5* and 9 maintained values that were approximately 15% and 11% of the 

local 5, respectively.

The streamwise variation of Reynolds number based on momentum thickness, Rg, 

and skin-friction coefficient, Cf,  are shown in Figure A.4. Rg was defined as

and C f  was extrapolated from Coles data [76] as shown in Figure A.5, where C f  

decreases as Rg increases.

In order to produce results which might be extended to other work, the flow past the 

model ramp was required to be reasonably two dimensional such that the spanwise 

variation of 9 was no more than 5%. For this reason, spanwise velocity profile 

measurements were made at x  =  76 in. (X/6  ~  —5) with spanwise measurement intervals 

of 0.5 in. (0.45). The results are presented in Figure A.6 showing 9 as a function of

(A-2)

and

(A-3)

(A-4)
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z/W, where W denotes width of the test section. As can be seen, over the central 77% 

of the test section the flow was reasonably two dimensional with maximum variation in 

6 of no more than 4.5%.

The velocity profiles were also plotted in wall and defect variables as shown in 

Figures A.7 and A.8, respectively. The selected locations for these plots were at x  =  34, 

54, and 76 in. (X / S  ~  —40, —20, and —5, respectively). The semi-log plot of Figure A.7 

compares the present experimental data to Coles’ universal law of the wall curve [76] 

expressed as

u+ =  Q~jjJ lny+ +  5.0 (A-5)

where the wall variables,

u+ =  —  (A-6)
Ur

y+ =  ^  (A-7)

and

Ut = Uoo\ H -  (A-8)

Figure A.7 shows that the current data for all three streamwise locations are in 

excellent agreement with the generally accepted empirical relation for the turbulent log 

(or overlap) region where 30 ^  y+ ^  (0.16+ to 0.2<5+ ). The 0.1 <5+ term corresponds 

to a y+ value of approximately 300. It should be noted that the physical size of the 

pitot probe limited the boundary-layer velocity measurements to within 0.015 in. from 

the wall. This distance corresponds to y + ~  36 which was outside most of the wall 

(sublayer and buffer) region.

Figure A.8 compares the present data to the Coles’ empirical law of the wake [76,77] 

which was expressed as

(Uoo ~  u ) 1
uT 0.41

- I n  (|) +n(2-W)] (A-9)
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where
n  =  0.55 [l -  exp (-0 .243J2 -  0.298^)1

(A-10)

The figure shows that within the turbulent wake region where 0.2 <  |  <  1 the present 

data are also in excellent agreement with the empirical relation.

Based on results presented in Figures A.7 and A.8, one can conclude that the boundary 

layer of present interest, from near the baseline separation (where Rg ~  9100) to 406 

upstream from it (where Rg ~  6300), is well within the generally accepted turbulent 

flow regime.

Measurement of freestream turbulence intensity was performed in the test section 

using hot-wire anemometry as part of the effort to document tunnel flow quality. Two 

identical single-wire probes were used. The tungsten wires were 0.00015 in. in diameter 

with an unplated active length of 0.05 in. Each hot-wire probe was connected to a TSI 

Model 1050 constant-temperature hot-wire anemometer. The bridge output of the hot­

wire anemometer was read and stored via the Nicolet digital oscilloscope during wind 

tunnel tests. The data were then read by a HP1000 computer through the IEEE-488 

interface bus.

Both hot-wire probes were calibrated against a pitot-static probe at the same location 

where the freestream velocity fluctuation measurement was made. The measurement was 

made at x  =  46 in. {X/8  ~  —30) and the approximate center of the cross sectional plane 

of the test section. The pitot-static and hot-wire probes were all separated sufficiently 

(2 in.) so that the disturbance caused by one device did not interfere with the others. 

It was necessary to insure that the pitot-static and hot-wire probes were all sensing the 

same velocity. To verify this, the pitot-static probe was traversed through all three

A.2 Freestream Turbulence Intensity
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probe locations and it was observed that there was no measurable velocity gradient in 

this region. The hot wires were operated at overheat ratios of 1.6 and were calibrated 

by recording the mean voltage, E , from the anemometer bridge output as a function 

of freestream velocity in the range of 8 ft/s <  C/oo < 1 5 2  ft/s. This gave a pair of 

coordinates on the calibration curve. It is accepted that such a relationship between 

bridge output and freestream velocity can be expressed as a fourth order polynomial 

[78,79]

Uqq =  a,Q +  o,\E  -f* o/^E -F 03 E  +  ct^E (A-l 1)

A computer program was written to fit the polynomial using the method of least 

squares and to obtain the coefficients of the polynomial (i.e., 00, 01, 02, 03, 04). A set 

of data points and the fitted curves are shown in Figure A.9 for the two hot wires. The 

coefficients of the polynomial were used to obtain velocities from hot-wire measurements.

When measuring low-intensity turbulence such as in the freestream, it is quite often 

necessary to correct for electronic (instrument) noise [80]. The method employed here 

was to (digitally) take the square root of the product of the two hot-wire signals. Since 

the noise signals in each of the two independent hot-wire system would not correlate 

with each other nor with any fluctuating hot-wire signal, the terms associated with the 

noise automatically dropped out after taking the time average of the product of the two 

hot-wire signals, as demonstrated below.

For example, assume

ei =  et +  eni 

e2 = et + en2

where

ei and e2 =  fluctuating hot-wire signals from hot wires 1 and 2, respectively.

et = the freestream turbulence signal measured by both hot wires.

eni and en2 =  electronic noise within hot-wire systems 1 and 2, respectively.
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So
ei • 62 =  (et +  eni) (et +  en2)

= e? + {etenl + + e n i e n 2 }

the terms inside the bracket, { }, are now uncorrelated, and hence upon taking the time

average of the above equation the terms inside the bracket are zero. Then

e? =  ej_re2

or

et =  y R  =  (A-12)

The streamwise fluctuating velocity vf is expressed

u ' =  (A-13)

k — is the local slope of the calibration curve (Figure A.9).

The freestream turbulence intensity was defined as u'/Uoo- Variation of freestream 

turbulence intensity as a function of freestream velocity is shown in Figure A. 10. At 

the freestream velocity (Uoo =  132 ft/s) associated with the present study, the intensity 

was approximately in the range of 0.3 to 0.4%. For low speed tunnel applications this is 

considered low turbulence intensity level and was acceptable for the present study [18].
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Figure A.1 Schematic representation of the pitot survey system.
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Figure A.2 Typical boundary-layer velocity profile at x  =  46 in. and Rg =  7451.
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Figure A.6 Spanwise variation of 9 at x  = 76 in. and R q = 9100.
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Figure A.8 Velocity defect profile at x  = 34, 58, and 76 in.
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APPENDIX B 

WATER-TUNNEL SURVEY

Boundary-layer velocity profile measurements were made with a fiber-optically-linked 

laser-Doppler velocimeter system developed by Complere Inc. In the current study, this 

system was designed to measure one component (u ) of the instantaneous velocity vector. 

The laser velocimeter system is schematically shown in Figure B.l. The light source was 

an Argon-ion laser (Coherent Innova Model 90-6) with a maximum power of 6 watts. 

The laser beam output was split into two parallel, equal intensity beams within a Bragg 

cell, and one of the beams was frequency shifted in order to detect the orientation of the 

measured velocity vector. The resultant beams were each separated into three pairs of 

beams of different wavelength, A, (i.e., A =  476.5, 488, and 514.5 nm) by a dispersion 

prism. Only the A =  467.5 nm (violet) beams were used in the present investigation. 

These two resultant beams were then passed through a pair of optical fibers via a fiber 

optic coupler and focused by appropriate optics to define the probe volume. Interference 

of the two light beams of equal wavelength in the probe (measuring) volume produced a 

number of nearly parallel fringes (i.e., bright and dark stripes) whose spacing is expressed 

as

( B - 1 ]

where 4> is the half-angle of the two beams defining the probe volume (see Figure B.l).

The emitting and collecting optics (forward scattering) were fitted onto a three- 

dimensional traverse system that moved at very accurate intervals (steps of 0.00005 in.) 

along each perpendicular axis. Velocity data were collected by the system when naturally 

occurred small rust particles (i.e., iron-oxide) within the water tunnel passed through the
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probe volume. A small particle crossing the intersection volume with velocity u  scattered 

the light of both beams, part of which was collected by a photodetector. The frequency 

of each collected beam was shifted from the incident light frequency by an amount 

proportional to the particle velocity (Doppler-Fizeau phenomenon). Optical mixing of 

the two collected beams on the photodetector produced a photocurrent, I ,  such that

where E a\ and E a2 are the amplitudes of the scattered beams and f 3\ and f s2 are the 

scattered beam frequencies. The difference f s2 — / si  is equal to the Doppler frequency

which was independent of the observation angle. Thus, the flow velocity component, u, 

perpendicular to the two-beam bisector was determined directly from the measurement of 

f j),  via Equations (B-2) and (B-3). The Doppler frequency was found using a frequency 

counter, which basically time a fixed number, N,  of zero crossings. Then, from Equations 

(B-l) and (B-3) the particle velocity is simply

where Aij is the total time interval to count N  zero crossings.

A great advantage of the response Equation (B-4) is that it is linear and it contains 

no undetermined constants, thus eliminating the need for calibration [81,82].

Both turbulent and laminar boundary-layer velocity profiles were measured on the 

test-section centerline at a location 34 in. downstream of the boundary-layer trip (i.e., 

x  =  34 in. or 170 trip diameters). One thousand data samples were taken at each 

y-position to define the local boundary-layer velocity. The measured turbulent boundary- 

layer velocity profile (U00 =  8.3 in/s) is presented in Figure B.2 using conventional

I  ~  E h  +  Eg2 -  2EsiE S2 cos [27r ( fa2 -  / si) £j] (B-2)

(B-4)
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variables and in Figure B.3 using the inner law variables where u+, y+, and u T are 

defined in Equations (A-6, 7, and 8), respectively.

It can be observed in Figure B.2 that the measured profile has high velocity gradients 

near the wall that is characteristic of turbulent boundary layers. In Figure B.3, the 

measured velocity profile is compared with the generally accepted Coles’ empirical 

relation ^i.e., u+ =  lny+ +  5.0^ for the turbulent log region. It can be seen that 

good agreement exists in the log region. However, the data stays close to Coles’ empirical 

curve in the wake region which is an indication of a slight favorable-pressure-gradient 

[83], A similar effect seems to exist for the laminar boundary layer. Figure B.4 shows the 

measured laminar velocity profile compared with the Blasius solution. Good agreement 

is observed between the two profiles over 0.4 <  |  <  1. The slightly larger velocity 

gradient for the measured data at $ <  0.4 probably was caused by the marginally 

favorable pressure gradient within the test secton due to the growth of wall boundary 

layers. Because the magnitude of ^  is relatively small, it is believed that the marginally 

favorable pressure gradient was acceptable for the present study since no quantitative 

measurements were conducted. Vortices formed by the flow control devices should be 

similar under both zero and slightly favorable pressure-gradient boundary layers. The 

boundary-layer thickness, 6, was determined to be 1.8 in. for turbulent flow and 1.2 in. 

for laminar flow. Also, R q was calculated to be 1000 for turbulent flow and 110 for 

laminar flow via Equations (A-3) and (A-4).
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Figure B .l Schematic representation of the laser-Doppler velocimeter system.
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Figure B.2 Typical turbulent boundaiy-layer velocity profile in water tunnel 
(x  =  34 in., Z7oo =  8.3 in/s).
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Figure B.3 Water tunnel law-of-the-wall plot (x =  34 in., Uoo =  8.3 in/s).
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Figure B.4 Typical laminar boundaiy-layer velocity profile in water tunnel 
(x =  34 in., Uoo =  1 in/s).
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