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ABSTRACT

RADIATIVE INTERACTIONS IN MULTI-DIMENSIONAL CHEMICALLY 

REACTING FLOWS USING MONTE CARLO SIMULATIONS

Jiwen Liu 

Old Dominion University, 1994 

Director: Dr. Surendra N. Tiwari

The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in 

nongray gases. The nongray model employed is based on the statistical narrow band 

model with an exponential-tailed inverse intensity distribution. The amount and transfer 

o f the emitted radiative energy in a finite volume element within a medium are considered 

in an exact manner. The spectral correlation between transmittances o f two different 

segments of the same path in a medium makes the statistical relationship different from 

the conventional relationship, which only provides the noncorrelated results for nongray 

analysis. Two features of the MCM that are different from other nongray numerical 

methods are discussed. Validation of the Monte Carlo formulations is conducted by 

comparing results of this method with other solutions.

In order to further establish the validity of the MCM, a relatively simple problem 

of radiative interactions in laminar parallel plate flows is considered. One-dimensional 

correlated Monte Carlo formulations are applied to investigate radiative heat transfer. 

The nongray Monte Carlo solutions are found to be in good agreement with the available 

approximate solutions. The gray Monte Carlo solutions are also obtained for the same 

problem and they also essentially match the available analytical solutions.

i
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The exact correlated and non-correlated Monte Carlo formulations are very com

plicated for multi-dimensional systems. However, by introducing the assumption of an 

infinitesimal volume element, the approximate correlated and non-correlated formulations 

are obtained which are much simpler than the exact formulations. Consideration of differ

ent problems and comparison o f different solutions reveal that the approximate and exact 

correlated solutions agree very well, and so do the approximate and exact non-correlated 

solutions. However, the two non-correlated solutions have no physical meaning because 

they significantly differ from the correlated solutions. An accurate prediction of radia

tive heat transfer in any nongray and multi-dimensional system is possible by using the 

approximate correlated formulations.

Radiative interactions are investigated in chemically reacting compressible flows of 

premixed hydrogen and air in an expanding nozzle. The governing equations are based on 

the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described 

by a finite rate chemistry model. The correlated Monte Carlo method developed earlier 

was employed to simulate multi-dimensional radiative heat transfer. Results obtained 

demonstrate that radiative effects on the flowfield are minimal but radiative effects on 

the wall heat transfer are significant. Extensive parametric studies are conducted to 

investigate the effects o f equivalence ratio, wall temperature, inlet flow temperature, and 

nozzle size on the radiative and conductive wall fluxes.

ii
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NOMENCLATURE

Latin Symbols

A reaction rate constant; also area, m2

C concentration, kg.mole/m3

Cp specific heat, J/(kg.K)

D diffusion coefficient, m2/s

E total internal energy, J/kg; also activation energy,

f mass fraction

g Gibbs energy, J/(kg.K)

h static enthalpy, J/kg

hR base enthalpy, J/kg

L ’ spectral radiative intensity, kW/(m2.sr.cm '1)

k thermal conductivity, J/(m.s.k); also line intensity

cm '1, atm ' 1

kb backward rate constant

keq equilibrium constant

kf forward rate constant

L nozzle length, m

Lm mean beam length, m.

% total number of narrow bands

M molecular weight

N temperature coefficient in reaction rate expression

Ns number of species

Nr number of reactions

p gas pressure, atm

Qcw conductive wall flux, kW/m2

- V .q T radiative source term, kW/m3
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<3rw net radiative wall flux, kW/m2

Q radiative energy per unit volume, kW/m3

R gas constant, J/(kg.K); also random number

Ru universal gas constant, J/(kg.K)

s, s',s" position variables, m

t time, s

T  absolute temperature, K

u velocity in x direction, m/s

um mean velocity, m/s

u diffusion velocity in x direction, m/s

v velocity in y direction, m/s

v diffusion velocity in y direction, m/s

y  diffusion velocity vector, m/s

w  production rate of species, kg/(m3.s)

x x-coordinate, m

X mole fraction

y y-coordinate, m

yb half height of cross sectional area of nozzle, m

Greek symbols

ft line width to spacing ratio

7 stoichiometric coefficient; also half-width of an absorption line, cm - 1

^ equivalent line spacing, cm -1

$ polar angle

/x dynamic viscosity, kg/(m.s)

kp Planck mean absorption coefficient

Kjjj spectral absorption coefficient

£, 77 computational coordinates

P density, kg/m3

v  normal stress, N/m2

t  shear stress, N/m2

tu  spectral transmittance

<j> equivalence ratio
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azimuthal angle 

wavenumber, cm - 1  

solid angle
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Chapter 1 

INTRODUCTION

Extensive research is underway at the NASA Langley Research Center to develop 

hydrogen-fueled supersonic combustion ramjet (scramjet) propulsion systems for National 

Aero-Space Plane (NASP). A critical element in the design of scramjets is the detailed 

understanding o f the complex flowfield present in the different regions of the engine over 

a wide range of operating conditions. Numerical modeling of the flow in various sections 

has proven to be a valuable tool for gaining insight into the nature o f these flows [1-4].

In a hypersonic propulsion system, combustion takes place at supersonic speeds to re

duce deceleration energy losses. The products of hydrogen-air combustion are gases such 

as water vapor and hydroxyl radicals. These species are highly radiatively absorbing and 

emitting gases. Thus, numerical simulations must handle correctly radiation phenomena 

associated with supersonic flows.

Over the past 30 years the analysis of radiative heat transfer has received increasing 

attention. This was first due to the advent of the space age, which made it necessary 

to develop tools to predict heat transfer rates in such high-temperature applications as 

rocket nozzles and space vehicle reentry, and in vacuum applications for spacecraft in 

outer space. Following a lull during the 1970s and early 1980s, interest in radiative heat 

transfer has recently increased again because of the need to predict and measure heat 

transfer rates in ever higher temperature applications in furnaces, and MHD generators, 

as well as the scramjet mentioned earlier [5-7].

Among the three modes of heat transfer, radiative heat transfer is quite different 

from conductive and convective heat transfer. Under normal conditions, conduction and 

convection are short-range phenomena. Thus we are able to perform an energy balance
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2

in an infinitesimal volume. The principle o f conservation o f energy then leads to a 

partial differential equation. This equation may have up to four independent variables 

(three space coordinates and time). Thermal radiation, on the other hand, is generally a 

long-range phenomena [6- 8]. Thus, conservation of energy cannot be applied over an 

infinitesimal volume, but must be applied over the entire volume under consideration. 

This leads to an integral equation involving up to seven independent variables (the 

frequency of radiation, three space coordinates, two coordinates describing the direction 

of travel of photons, and time).

The analysis o f thermal radiation is complicated further by the behavior of the 

radiative properties o f materials. Properties relevant to conduction and convection are 

fairly easily measured and are generally well behaved. But radiative properties are 

usually difficult to measure and often display erratic behavior. For liquids and solids, the 

properties normally depend only on a very thin surface layer, which may vary strongly 

with surface preparation and often change from day to day. All radiative properties (in 

particular for gases) may vary strongly with wavenumber, adding another dimension to 

the governing equation. Rarely, if ever, can this equation be assumed to be linear.

Because of these difficulties inherent in the analysis of thermal radiation, accurate 

prediction of radiation in most realistic systems is currently still out of the question, 

although tremendous efforts have been made and significant progress has been achieved 

in the past decades. Prior to the 1970s, radiative transfer analyses were limited to one

dimensional formulations. Even for one-dimensional cases, nongray radiative heat trans

fer formulations were very complicated and their solutions required enormous amount of 

computational resources. Important works in nongray one-dimensional formulation have 

been reviewed in Refs. 5, 8-10. Since the 1970s, efforts have been directed toward 

formulating multi-dimensional equations for radiative transfer. Great achievements have 

been made for gray gaseous systems. However, studies on multi-dimensional nongray 

gaseous systems encounter tremendous difficulties and little progress has been made so

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3

far. A survey of various methods for multi-dimensional radiative transfer analysis has 

been made by Howell [11, 12]. Discussions were made regarding the feasibility of in

corporating spectral integration in the techniques using narrow band [13] and wide band 

models [14, 15]. Another review [16] has provided details of several methods that could 

possibly be applied to multi-dimensional radiative transfer in molecular participating me

dia. Different review articles have indicated unanimously that one of the most promising 

methods to investigate nongray participating media in multi-dimensional systems is the 

Monte Carlo method (MCM).

The MCM is a statistical sampling technique which can simulate exactly all impor

tant physical processes. In this method, the numerical treatment of the mathematical 

formulation is easy and the usual difficulties encountered in complex geometries can be 

circumvented easily. It is because o f these advantages that the MCM has been applied 

to solve many radiative transfer problems. The earliest application of this method for 

radiative transfer problems was made by Howell and Perlmutter [17], Radiative problems 

of increasing complexity which have been investigated by this method have appeared in 

the literature [18-22]. Studies on reducing the computational time by using this method 

are also available [23, 24]. The gray gas assumption, however, is made in most of these 

analyses.

Like other numerical methods, the MCM also has some disadvantages. One of them 

is the large appetite for computer time, and another is the statistical fluctuation of the 

results. With the rapid development of computers, these two disadvantages are becoming 

of less concern and interest in the MCM is increasing. One of the recent applications of 

the MCM has been in the investigation of radiative interactions in nongray participating 

media using a narrow band model. For example, Taniguchi et al. [25] applied a simplified 

from of the Elsasser narrow band model to investigate the problem of radiative equilibrium 

in a parallel plate system. Farmer and Howell [26] obtained a Monte Carlo solution of 

radiative heat transfer in a three-dimensional enclosure with an anisotropically scattering,
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spectrally dependent, inhomogeneous medium. Modest [27] discussed the effects of 

narrow band averaging on surface and media emissions. It was pointed out that the 

narrow band model may be applied successfully to the MCM after verification in an 

isothermal and homogeneous medium. However, all these studies have failed to reflect 

some fundamental mechanisms of the MCM in conjunction with a narrow band model, 

and the application of the MCM to nongray radiation problems is still uncertain.

The first objective of this study is to employ a general and accurate narrow band model 

to investigate radiative heat transfer using the MCM. The same nongray model has been 

applied to investigate radiation contributions using the discrete direction method [28] and 

the S-N discrete ordinates method [29]. The present investigation includes derivation 

of the Monte Carlo statistical relationships, discussion of the fundamental features that 

are different from other methods and demonstration of the capability of the MCM for 

nongray analyses. A one-dimensional problem is considered first, and the validation 

of the Monte Carlo analysis is conducted by comparing the Monte Carlo results with 

available solutions for the cases with and without other modes of heat transfer. Next, 

the Monte Carlo formulations suitable for multi-dimensional problems are developed 

and validated. From our knowledge, the present study is the first to provide accurate 

and general radiative transfer formulations which are applicable for any nongray and 

multi-dimensional system.

A literature survey indicates that a great deal of effort has been made towards 

an accurate formulation of radiative transfer equations. Most applications of these 

formulations have been restricted to non-reacting homogeneous systems. Only a limited 

number of studies are available to investigate the interaction of radiation heat transfer 

in chemically reacting, viscous, compressible flows such as those in scramjet propulsion 

systems. Mani and Tiwari [30] were the first to take into account the effect of radiation 

on chemically reacting supersonic flows. This work has been extended to include some 

relatively more advanced chemistry models by Tiwari et al. [31]. In both of these studies,
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a tangent slab approximation for radiative transfer was employed. This approximation 

treats the gas layer as a one-dimensional slab in evaluation of radiative flux. Obviously, 

it is impossible to obtain reliable quantitative predictions of radiative heat transfer from 

this treatment. Therefore, the second objective of this study is to apply the Monte 

Carlo formulations developed during the course of present research efforts to investigate 

the radiative interaction in multi-dimensional chemically reacting flows. The specific 

problem considered is the supersonic flow of premixed hydrogen and air in an expanding 

two-dimensional nozzle. Two-dimensional radiative heat transfer in this problem is 

simulated using the MCM; the results of radiative flux are then incorporated in the two- 

dimensional Navier-Stokes equations. This procedure provides a more accurate prediction 

of radiative effects on flowfield and wall heat transfer than those available in previous 

studies. The physics of radiative interactions in chemically reacting compressible flows 

can be understood more clearly from this study.

Two different objectives divide the present study into two parts. The first part is 

to develop and validate the Monte Carlo formulations with a narrow band model. This 

work is included in Chaps. 2-5. Information on radiation absorption models is given 

in Chap. 2. Development and validation of the Monte Carlo formulations for one

dimensional problem is provided in Chap. 3. Further validation for the one-dimensional 

formulations is conducted in Chap. 4 by considering a simple problem of radiative 

interactions. Development and validation of Monte Carlo formulations for radiative 

transfer in multi-dimensional systems is presented in Chap. 5. The second part of the 

study is an investigation of radiative interactions in chemically reacting flows. This work 

is included in Chap. 6 . Finally, the conclusions reached from this study are summarized 

in Chap. 7.
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Chapter 2 

RADIATION ABSORPTION MODELS

The study o f radiative transmission in nonisothermal and inhomogeneous gaseous 

systems requires a detailed knowledge of the absorption, emission and scattering charac

teristics of the specific species under investigation. In absorbing and emitting media, an 

accurate model for the spectral absorption coefficient is o f vital importance in the correct 

formulation o f the radiative flux equations. A systematic representation of the absorption 

by a gas, in the infrared part of spectrum, requires the identification of the major infrared 

bands and the evaluation of the line parameters (line intensity, line half-width, and spac

ing between the lines) o f these bands. The line parameters depend upon the temperature, 

pressure and concentration of the absorbing molecules and, in general, these quantities 

vary continuously along a nonisothermal and inhomogeneous path in the medium. In 

recent years, considerable efforts have been expended in obtaining the line parameters 

and absorption coefficients of important atomic and molecular species [32-34],

For an accurate evaluation of the transmittance ( or absorptance) o f a molecular 

band, a convenient line model is used to represent the variation of the spectral absorption 

coefficient. The line models usually employed are Lorentz, Doppler, and Voight line 

profiles. A complete formulation ( and comparison) of the transmittance and absorption 

by these line profiles has been given [9, 10, 35-37]. In a particular band consisting of 

many lines, the absorption coefficient varies rapidly with frequency. Thus, it becomes 

a very difficult and time-consuming task to evaluate the total band absorption over the 

actual band contour, by employing an appropriate line profile model. Consequently, 

several approximate band models (narrow as well as wide) have been proposed which 

represent absorption from an actual band with reasonable accuracy [9 ,10 ,35 -46]. Several
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continuous correlations for total band absorption are available in the literature [9, 10, 

35-37, 43-46]. These have been employed in many radiative transfer analyses with 

varying degree of success [9, 10, 35-37, 47]. A brief discussion is presented here on 

narrow band models, wide band models, and band absorptance correlations.

The absorption within a narrow spectral interval of a vibration-rotation band can be 

represented quite accurately by the so-called “narrow band models.” The most commonly 

employed narrow band models are the Elsasser, statistical, random-Elsasser and quasi

random narrow band models. Various narrow band models have been tested with the 

results of line-by-line calculations in the literature [37, 48, 49]. Accurate results for 

temperature and heat flux distributions were obtained with the statistical narrow band 

model, which assumes the absorption lines to be placed randomly and the intensities to 

obey an exponential-tailed-inverse distribution. The transmittance predicted by this model 

in a homogeneous and isothermal column of length 1 due to gas species j, averaged over 

[w— (Aw/2), w+(Aw/2)], is expressed as [50]

where Xj represents the mole fraction of the absorbing species j and p is total pressure;

of the gas. The overbar symbol indicates that the quantity is averaged over a finite

for H2O, CO2, CO, OH, NO, and other species [33 ,48 ,51]. The mean half-widths 7  for 

H2O and CO2 are obtained by Soufiani et al. as [48]

(2 . 1)

k  and /? =  are the band model parameters which account for the spectral structure

wavenumber interval Aw. The narrow band width considered is usually 25 cm '.  

Parameters k  and 1 /6  generated from a line-by-line calculation have been published

IH2O =  0 . 066—  
Vs

1 7.0 X h2o y  +  +

(2.2)
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and

[Q.Q7Xco2 +  0 .0 5 8 ( ^ 2 + X q2) +  0.15A:Hio] (2-3)

where ps and Ts designate standard pressure and temperature(l atm, 296 K). Alternative 

formulations for evaluating the mean half-width 7  are also available in Ref. 33.

The absorption within the spectral range of the entire vibration-rotation band can be 

represented by the so-called “wide band models.” The total band absorption of the wide 

band models is given by

where the limits of integration are over the entire band pass, is the spectral absorption 

coefficient, and wo is the wave number at the center of the wide band.

Four commonly used wide band models are the box, modified box, exponential and 

axial wide band models. The exponential wide band model, first developed by Edwards 

and Menard [41], is by far the most successful of the wide band models. In this model, 

the line intensity is assumed to be an exponential decaying function of the wave number 

[9, 10, 35-37, 44-46], such that

where S is the band intensity, Ao the band width parameter and bo=2 for a symmetrical 

band or bo=l for bands with upper and lower wave number heads at w0.

The radiative flux term usually involves multiple integrals even for simple geometries. 

As a result, numerical calculation of radiative flux for energy transfer becomes very time 

consuming. Therefore it is desirable to replace the relation for the total band absorptance, 

given by Eq. (2.4), with a continuous correlation [5, 10, 52]. Numerous correlations are 

available in the literature for wide band absorptance. The first correlation to satisfy the 

linear, square-root, and logarithmic limits of the wide band absorptance was proposed 

by Edwards and Menard [41]. The most widely used correlation is the Tien and Lowder

00

(2.4)

—00

d Ao
(2.5)
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continuous correlation because of its simplicity and relative accuracy. This correlation 

is expressed as [52]

band model correlation parameters for various gases are available in the literature [6 , 

7, 10, 35].

Among the approximate band models discussed above, the wide band models and 

band absorptance correlations are simpler than the narrow band models, and they have 

been used extensively in the study of nongray radiative heat transfer for the past three 

decades. However, the spectral discretization used in the wide band models and band 

absorptance correlations is too wide and it does not take into account the low resolution 

correlations between intensities and transmissivities. This leads to significant temperature 

and heat flux discrepancies [49]. Also, the case of partially reflecting walls cannot be 

modelled correctly with these models [10]. Recently, the narrow band models have begun 

to receive attention due to the rapid development of computers and strong requirements 

for accurate analyses of radiation [25-29]. Some narrow band models compare favorably 

to the line-by-line calculations; However, they are much simpler than the line-by- 

line models. In addition, use of the narrow band models can avoid some notorious 

disadvantages occurring with the wide band models and band absorptance correlations. 

In this study, the narrow band model expressed in Eq. (2.1) is employed to investigate 

nongray radiative heat transfer.

For a nonisothermal and inhomogeneous column, the Curtis-Godson approximation 

[53] leads to accurate results if pressure gradients are not too large. Basically, this 

approach consists of transformation of such a column into an equivalent isothermal and

A =  Aoln  u f ( t ) (2.6)

where

/ ( f )  =  2.94[1 -  e x p { - 2 M ) \ ,  t = (2.7)

Here u=Spl/Ao is nondimensional path length and /?* is line structure parameter. Wide
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homogeneous one. For the narrow band model expressed in Eq. (2.1), effective band 

model parameters ke and /?e are introduced by averaging k and [S over the optical path 

U of the column as

im  =  J  M X , ( y ) d y  (2 .8)

0

/

h  =  J  p(y)x i(y)'k(y)dy (2-9)
0

i

h  =  YUiJ) J  (2-10)
o

The transmittance of this equivalent column is then calculated from Eq. (2.1).

A distinguishing characteristic for the band models discussed above is the dependence 

of the wavenumber. If it is assumed that the absorption coefficient is independent of the 

wavenumber, the radiation absorption is then represented by the so-called “gray model”. 

The gray model is rarely a physically realistic approximation, but it serves as an initial 

step for studying the effect of radiative heat transfer. For a nonuniform temperature field, 

the gray model used for optically thin radiation is the modified Planck mean absorption 

coefficient which, for black bounding surfaces, is defined as [8, 35]

Km( T ,T w) = Kp(Tw)(Tw/ T )  (2.11)

where kp(T) represents the Planck mean absorption coefficient. For a multiband system 

of a homogeneous gas, kp(T) is expressed as

n

kp(T)  = p ' £ , [ e b(u;l, T ) S i ( T ) y { a T i ) (2.12)
1=1

where n represents the number of vibration-rotation bands, eb(u>;, T) is the Planck function 

evaluated at the ith band center, S;(T) is the integrated band intensity o f the ith band, and 

a  is the Stefan-Boltzmann constant. Equation (2.12) is modified to apply to a mixture
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o f different gases as

M r )  =  £ i J l > K m ( : n ] }  H o T 1) (Z i3 )
j  l i= l  J j

where j  denotes the number of species in the mixture and pj is the partial pressure of

jth species. The band model parameters for various gases are available in the literature

[6, 7, 10, 35].
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Chapter 3

MONTE CARLO SIMULATION USING A NARROW BAND MODEL

In this chapter, the radiative heat transfer for a one-dimensional problem is investi

gated using a narrow band model and Monte Carlo simulation. The physical model is 

established in Sec. 3.1. Monte Carlo formulations are developed in Sec. 3.2. Discussion 

of special features of the method for nongray analyses is made in Sec. 3.3. Estimation 

of statistical error is presented in Sec. 3.4 and validation of Monte Carlo formulation 

is conducted in Sec. 3.5.

3.1 Physical Model

To investigate radiative heat transfer using the MCM and a narrow band model, 

a  simple problem is considered at first Figure 3.1 shows an absorbing and emitting 

molecular gas between two infinite parallel plates with slab thickness of L. Temperature, 

concentration and pressure in the medium are assumed known. The walls are assumed to 

be diffuse but not necessarily gray. The wall temperature is also assumed known. Usually, 

the radiative transfer quantities of interest are the radiative source term V.qr inside the 

medium and the net radiative wall flux qTW. In order to calculate these quantities, the 

medium considered is divided into (M -2 ) volume elements. The grid 1 and M are 

numbered on the lower and upper walls, respectively. Temperature, concentration and 

pressure are assumed to be constant in each volume element. The typical method for 

handling radiative exchange between surface and/or volume elements is to evaluate the 

multiple integral, which describes the exchange, by some type o f numerical integration 

technique. This usually is a good approach for simple problems, but an alternate method 

is used here. Radiative transfer in the computational domain is simulated using the MCM.
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For an arbitrarily chosen volume element with a volume, 6 V , and an arbitrarily chosen 

surface element with an area 8A , the relations for -V.<?r and qTW are expressed as

Q v - s v  +  Q a - s v  -  Q s v  
Qr = ---------------8V --------------- (11 )

Q v - sa +  Q a - sa -  Qsa , ,
----------------- U   <12)

Here, Q v - s v  and Q v - s a  are the total radiant energy from the entire gas that is absorbed 

by the volume element 8V  and surface element 8A, respectively; Q a - s v  and Q a -s a  

are the total radiant energy from the bounding walls that is absorbed by 8V  and 8A, 

respectively; Q s v  and Qsa are the radiant energy emitted by 8V  and 8A , respectively.

To evaluate the terms Q v - s v ,  Q a - s v > Q s v  and Q v - s a  in Eqs. (3.1) and (3.2), 

the MCM uses a large number of bundles of energy (statistical samples) to simulate 

the actual physical processes o f radiant emission and absorption of the energy occurring 

in the medium. These energy bundles are similar to photons in their behavior. The 

histories of these energy bundles are traced from their point of emission to their point of 

absorption. W hat happens to each of these bundles depends on the emissive, scattering 

and absorptive behavior within the medium which is described by a set of statistical 

relationships. The total number of energy bundles absorbed by each element multiplied 

by the energy per bundle gives the interchange of radiation among the volume and /or 

surface elements. The values o f -V .< /r and qTW can then be obtained from Eqs. (3.1) 

and (3.2), respectively.

The use of a narrow band model in the MCM presents new features in the analysis of 

radiative heat transfer. The statistical relationships currently in use need to be modified. 

The following Monte Carlo analysis is based on an arbitrarily chosen finite volume 

elem ent The statistical relationships for an energy bundle emitted from a surface element 

can be derived by following the same procedure.
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3.2 Monte Carlo Formulations

Let us consider the Planck spectral blackbody intensity Ibw that enters the ith volume 

element at the point s on the lower side and intersects the upper side at the point s' as 

shown in Fig. 3.1. A spherical coordinate system is established and centered at the point 

s. From Ref. 6, the amount of energy emitted for a wavenumber range dw and along a 

pencil of column s-»s ' with a solid angle increment dfl is expressed as

dQi =  Ibul [l -  7^(5  —> s ')]  co s6dQ.du (3.3)

where t w(s—>s') is the spectral transmittance over the path s—>s\ 0 is the polar angle 

between the y axis and the direction of the column s-> s \ and dfl=sin0d0d0 where xp is 

the azimuthal angle. The total emitted energy per unit volume is obtained by integrating 

Eq. (3.3) over all wavenumbers, and polar and azimuthal angles as [6, 54, 55]
00 T 2 l

« - / / /  /&w[l — ru (s —> s ')]  co s0 s in OdxfrdOdu
0 0 0

00 X

=  27T J  J  h u  [l — t u (s —> s ')]  cos 0 sisin OdOdu

0 0 
00 1

=  27r j  J  / jw[l -  ru ( A y i / fi)]fidfidu] fi = cosO (3.4)

0 -1

where Ay* is the thickness of ith volume element. It should be noted that the sign of 

Ay; is different when /z varies from positive to negative.

The simulation of an energy bundle includes the determination of wavenumber and 

direction of emission of this energy bundle in the finite volume element. The statistical

relationships for determining these parameters are readily obtained from Eq. (3.4) as
u> 1

271- /  /  h u l  1 -  Tu { A y i / f i ) ] n d n d u

Rw =  -------------------  (3-5)

1 00

2tt /  /  I b u [ 1 -  T w { k y i / n j \ n d u d n  

m 0 ______

Q i
R ,„ =  — — ------------- * ----------------------- (3.6)
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where Ru; and are random numbers which are distributed uniformly between zero 

and one. In Eqs. (3.4)-(3.6), r w is a real spectral transmittance. Before solving these 

equations to obtain w and fi from a set of given values of Ru, and R ^, the narrow band 

model should be applied to approximate the real spectral transmittance.

For the narrow band model, the absorption bands of the gas are divided into spectral 

ranges Aw wide; each is centered at wk and characterized by the superscript k; the band 

parameters obtained are the averaged quantities over a narrow band. So, the spectral 

quantities in Eqs. (3.4)-(3.6) should be transformed into the averaged quantities over 

a narrow band for practical applications. Taking the spectral average over all narrow 

bands, Eqs. (3.4)-(3.6) are expressed as

Q' =  2 x £
k = \

I

J 7^[1 -  r^{Ayi/n)}fidfi

.-1

A J  (3.7)

l
E  j I

f t ,  =  - - =1 ■ ------------- ~ --------------------   , ( w" - 1 < w < w n) (3.8)
Qi

R ,  =  — ^ --------------------1-------  (3.9)

f 1__________  J
2x E  j  /  W 1 -  ^ ( A y . / z O W / i  f A w '

Q i

where m ^ is the total number of narrow bands. The following narrow band approximation 

has been used in obtaining Eqs. (3.7)-(3.9)

lbuk^Wk ^  I d u )

= hu,krwk (3.10)

This is because 1 ^  is essentially constant over a narrow band and may be taken out of

the spectral integral. Otherwise, the average product Ib̂ kT̂ k is not equal to the product 

o f 1 ^  and t^T.
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Equations (3.8) and (3.9) are solved for u  and y, each time a set o f values o f Ru> and 

R fi are chosen. The computing time becomes too large for practical calculations since the 

integrands in these equations are very complex functions of integration variables and the 

number of energy bundles usually is very large. To circumvent this problem, interpolation 

and approximation methods are employed. For example, to obtain the value of w for a 

given value of Ru>, we first choose different values of u  and obtain the corresponding 

values o f Rw from Eq. (3.8). Then, a smooth curve is constructed to match these data 

points, and u  values are obtained easily from this curve for selected values of R ^ . The 

procedures for determining p are similar to those for w.

Following the determination of wavenumber and direction of an energy bundle, it 

is essential to find the location of absorption of the energy bundle in the participating 

medium. Let us still consider the emitted radiant energy along a pencil of column 

s-*s ' (Fig. 3.1). After this amount of energy is transmitted over a column s '-*s", the 

remaining radiant energy is given by

dQ'i = Ibu [l -  TU (s -» s ')] tu (s ' —> s") cos OdQdoj (3.11)

where r w(s '-»s") is the spectral transmittance over the path s '—>s". Taking a narrow 

band average over Eqs. (3.3) and (3.11) and dividing the latter one with the first one, the 

statistical relationship for determining the location of absorption can be expressed as

[1 -  TU{S -»  5, )]tw(5' -»  s")
l ~  \ - % { s ^ s ' ) _____________

rHjs' -» s") -  tu(s -»  s ')tu (s ' -> s")

l - ^ - s ' )  ^  ^

where Ri is a random number. The averaged product ru (s —> s ') ru,(s/ —» s") is not equal 

to the product of tu (s —> s ')  and tu(s ' -* s") because the tu (s —> s') and tu(s ' —> s") 

have a strong wavenumber dependence due to the high resolution structure in a very 

small range of an absorption band (hundreds of major absorption lines in a 25 cm-1  

spectral interval), and must be treated in a spectrally correlated way. Equation (3.12)
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can be simplified as

7^(s' -»  S") -  T^{S S")
R‘  T^TZTTj  (3'13)

If the spectral correlation between rw(s —> 5') and tu(s ' —► s") is not taken into account, 

then Eq. (3.12) becomes

/?! =  7^(5' -> / )  (3.14)

Equation (3.14) is the statistical relationship usually employed for determining the 

location of absorption in the Monte Carlo simulation and is quite different from Eq. 

(3.13). For an isothermal and homogeneous medium, the travelling distance of an energy 

bundle can be obtained directly by solving Eq. (3.13) for a given random number. But this 

procedure turns out to be somewhat complicated for a nonisothermal and inhomogeneous 

medium. It becomes necessary to try each volume element starting from the adjacent 

element of the location where an energy bundle emits until a finite volume element is 

found in which Eq. (3.13) can be satisfied.

33 Special Features of MCM for Nongray Analysis

The MCM is quite different from other numerical techniques for the analysis of 

radiative heat transfer. Its characteristics have been discussed in detail by Siegel and 

Howell [6]. Use of a nongray model in the radiative transfer analysis requires significant 

changes. Two special features of incorporating the nongray model in the MCM will be 

discussed.

Most of the existing analyses in radiative heat transfer start with the transfer equation 

of the type given by Siegel and Howell [6]. In order to apply a narrow band model, 

this equation has to be spectrally averaged over a narrow band. This averaging treatment 

results in two types of spectral correlations [56]. One is the spectral correlation between 

the intensity and the transmittance within the medium. Another is the spectral correlation 

between the reflected component o f the wall radiosity and the transmittance. In order
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to investigate the first type of spectral correlation, all the intermediate transmittances in 

each finite volume element of medium along the path the radiative energy travels must 

be calculated and stored to make a correlated calculation. In order to investigate the 

second type of spectral correlation, a series expansion of the wall radiosity is required 

[57, 58]. Essentially, this series expansion is utilized along with a technique for closure 

of the series.

The simulation of radiative heat transfer in the MCM is not based directly on the 

radiative transfer equation. This results in the MCM having features different from the 

other methods for nongray analysis. When radiative energy is transmitted in a medium, 

the spectral correlation does occur in the MCM, but it occurs between the transmittances 

of two different segments of the same path which is different from other methods. This 

is the first noteworthy feature of the MCM for nongray analysis.

The MCM procedures are based on the direct simulation of the path of an energy 

bundle. For the case with reflecting walls, the mechanism of the reflections simulation in 

the MCM is the same as a series expansion of the wall radiosity. However, this simulation 

process becomes much simpler because of its probabilistic treatment. Also, there are no 

spectrally correlated quantities involved. This is the second distinctive feature of the 

MCM for nongray analysis. Exact treatment of the reflections in the MCM in nongray 

gases is the same as that in gray gases and may be found in the literature [6, 54, 55].

The second feature of the MCM allows one to obtain results for a reflecting wall with 

very little increase in the computation time compared to that for a nonreflecting wall. But 

in other methods, the consideration of the history of a finite number of reflections and 

approximating the remaining reflections by a closure method in the radiative transfer 

equation complicates the mathematical formulation and increases the computer time 

considerably. As the geometry considered becomes more complicated, exact simulation 

of the radiative heat transfer in cases with reflecting walls will be very difficult for most 

existing methods, while it is not a big problem for the MCM. So, it seems that the MCM
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is able to retain the feature of simplicity in dealing with complicated problems while a 

narrow band model is employed.

3.4 Estimation of Statistical Error

In the Monte Carlo simulation, the computational error consists o f the statistical error 

and the computer truncation error. The statistical error is the major error source and the 

truncation error is usually neglected. From probability theory [59-63], the convergent

with a sample size o f N. Such a speed is very slow among all kinds of numerical 

computation methods. In practical applications, sample size cannot be an infinitely large 

number due to limitations on computer resources. Therefore, the Monte Carlo calculation 

must be supplemented with an estimate of the statistical error.

To analyze the statistical error, the radiation simulation between two elements is 

considered first. For the sake of simplicity, the element from which the radiant energy is 

emitted is represented by SVi and the element from which the radiant energy is absorbed 

is represented by SV3\ it does not matter whether the element considered is a volume 

element or a surface element.

In the computational domain, the travel state of an energy bundle emitted from SVi 

can be described by the spatial position 7r and moving direction fi. Thus, the travel state 

is expressed as

An energy bundle travels in the medium surrounded by the surfaces and is absorbed by 

an element SVj at the r - th  step. Such a random travelling process X can be described

speed o f the Monte Carlo solution is proportional to the 1 /  y /N  for a statistical process

(3.15)

After travelling the i-th step, the state becomes

(3.16)
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by the following sequences

X :  So, Si, S2,  , ST (3.17)

Knowing the random process X, the random variable ??(X) is defined as

{1 enerqy bundle absorbed by the element
(3.18)

0 energy bundle not absorbed by the element 

A statistical modelling experiment is conducted on the random travelling process X  :

All N energy bundles emitted from element SVi should be traced as described and N

experimental values for 7/(X), ?/(Xn), n= l, 2 , ......   N, should be determined. Consequently,

the following statistical quantities can be defined

N

< =  X > ( * . )  (3-19)
7i —1

Here the statistical quantity £ represents the number of energy bundles absorbed by the 

element SVj out of N energy bundles emitted from the element SV,; the statistical quantity 

fj represents the unbiased estimator of the probability Pv,~vs that radiant energy emitted 

from the element SVi is absorbed by the element SVj. In Eq. (3.19), the statistical 

quantity £ follows a binomial distribution and its variance is expressed as

So, S i, S 2 , ........... , S T and an experimental value for r;(X) is obtained.

(3.20)

(3.21)

D[C}  =  N - P v , - v ] ( l - P v , - v J ) (3.22)

The variance of the statistical quantity fj = ( /N  is

=  D[ij] =  [Pvi-v, (1 -  pv,-v}) ] / x (3.23)
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The above statistical error analysis is based on the radiation simulation between two 

elements SVi and SVj. However, it is also applicable for radiation simulation between any 

other two elements. Since each element has different type, spatial position, temperature

and radiative properties, the random process X  : So, S \, S 2 , ............, S T between two

arbitrary elements is different which results in different values of statistical quantities. 

Let m+n represent the total element number in the computational domain, simulation of 

radiative term Q v-sv ,  is actually equivalent to modelling a function of random processes 

{Xi, X2, ........  Xm+n}

ip = ip(X\ ,  X o , ........... , A'nj+n) (3.24)

It is known that the solution for radiative term Q v -sv , can be expressed as

m+n

Q v -s v ; =  Y l Qsv.-sv, (3.25)
z=i

Thus, the following function is defined
m+n

<r>V-6V, =  YY Q sV rW i-v} (3.26)
i=l

The expectation of y v - s v ,  is derived as

m+n

E [ p v -6 v ]  =  Y !  Q W iE lw -v ,]  =  Q v-sv , (3.27)
1=1

Therefore, the function y v - s v ,  is nothing but the unbiased estimator of the radiative 

term Q v -sv , ■

In the simulation of the radiative term, all random processes {Xj ,  X2, ....... Xm+n} are

independent from each other, and each statistical quantity fjv ,-v ; follows an asymptotic 

normal distribution, whose variance is a finite number. From probability theory [59-63], 

the variance of <pv-6Vj is

m+n

a V-6V} = QsVr°f,Vi-v} (3‘28)
i=l
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Thus, the statistical simulation error in the radiative term is expressed as

£ =  |V v -sv , -  Qv-bVj | <  Xa-ev-sV j (3.29)

where x a  is the confidence coefficient and a  is the confidence level. Table 3.1 is 

the standard normal distribution table which provides the relation between the confidence 

coefficient x a  and confidence probability 1 -a . For example, when l-a= 0 .95 , X a  is taken 

to be 1.96. In practical applications, the relative statistical error is usually employed and 

it is expressed as

,  e Xa-^V-SV. ,
8 =  --------- <  — ----------- =  6o (3.30)

WV-SVj QV-SVj

where <$o is the maximum relative statistical error.

3.5 Results and Discussion

In order to validate the Monte Carlo simulation, along with a narrow band model, 

results for a radiative source inside the medium and the net radiative wall heat flux have 

been obtained for different temperature and concentration profiles with nonreflecting and 

reflecting walls. Appendix A provides the computer code for the Monte Carlo simulation. 

In the present study, the reflectivities of two parallel diffuse walls are assumed to be 

identical and are denoted by the symbol p. Three different temperature profiles were 

used here: uniform, boundary layer type and parabolic profiles (Fig. 3.2). They were 

obtained from Kim et al. [29] and Menart et al. [56]. For the uniform temperature profile, 

the gas temperature was chosen to be 1000 K, while the walls were held at 0 K. Also 

shown in the figure is a parabolic H2O concentration profile for a mixture of H2O and N2 

at 1 atm, and it was also taken from the above cited references. A uniform composition 

of pure H2O vapor at 1 atm is another H2O concentration profile that was used. Several 

cases with the selected temperature and H2O concentration profiles have been considered 

previously using the S-N discrete ordinates method by including all important bands
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Table 3.1 Relation between confidence coefficient \ a  and confidence probability 1-n

\ o 1-0 Vo 1-0 \ o 1-0 \ o 1-0

0.0 0.00000 1.0 0.68269 2.0 0.95450 3.0 0.99730

0.1 0.07966 1.1 0.72867 2.1 0.96427 3.1 0.99806

0.2 0.15852 1.2 0.76986 2.2 0.97219 3.2 0.99863

0.3 0.23582 1.3 0.80640 2.3 0.97855 3.3 0.99904

0.4 0.31084 1.4 0.83849 2.4 0.98360 3.4 0.99933

0.5 0.38292 1.5 0.86639 2.5 0.98758 3.5 0.99953

0.6 0.45149 1.6 0.89040 2.6 0.99068 3.6 0.99968

0.7 0.51607 1.7 0.91087 2.7 0.99307 3.7 0.99978

0.8 0.57629 1.8 0.92814 2.8 0.99489 3.8 0.99986

0.9 0.63188 1.9 0.94257 2.9 0.99627 ce 1.00000
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Fig. 3.2 Temperature and concentration profiles.
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[29, 56]. The Monte Carlo solutions have been compared with published solutions for 

identical conditions.

In the Monte Carlo simulation, the entire slab of the physical problem is divided 

into 20 sublayers for all calculations. Further subdivision of the computational domain 

was found to yield little change in the results. The computations were performed on a 

Sun Sparc workstation. The number of total energy bundles for each case was chosen 

to be 50,000. This choice represents a compromise between accuracy and economy of 

computation time. When the relative statistical errors of the results were chosen to be less 

than +3%, the probability of the results lying within these limits was greater than 95%. 

The computing times for the correlated and noncorrelated formulations were essentially 

the same. For an isothermal and homogeneous medium, the required CPU time was 

about 1-2 minutes for each case. For a nonisothermal and inhomogeneous medium, the 

CPU time increased to 5 -7  minutes, and was nearly 10 minutes for the case with strongly 

reflecting walls (p=0.9) with large optical length (L=0.5 m).

The situation with nonreflecting walls is considered first. Figures 3.3-3.6 show the 

comparisons between the Monte Carlo solutions and S-N discrete ordinates solutions. 

Four different S-N discrete ordinates solutions are available in the literature [29] which 

employ different band models. For our comparison, we selected the solution —  S-20 

nongray narrow band solution because it employs the same narrow band model as used 

in this study.

Figures 3.3 and 3.4 show the radiative source results obtained for the uniform 

temperature and uniform pure H2O vapor distributions with slab thicknesses of 0.1 m and

1.0 m, respectively. The Monte Carlo results essentially match the S-N discrete ordinates 

results. Figure 3.5 presents the results for the boundary layer type temperature profile 

and for the same concentration distribution as in Figs. 3.3 and 3.4. The Monte Carlo 

results predict the same changes in gas behavior (from a net emitter near the hot wall to 

a net absorber away from the hot wall) as the S-N discrete ordinates results. The results

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



- 2 0 0

-250

-300

>  -3 5 0
9 Monte Carlo 
_  S-N  discrete ordinates

^  -4 0 0

-450

p = 0.0, L=0.1m
-500

-5 5 0
0.0 0.2 0.4 0.6 0.8 1.0

y A

Fig. 3.3 Comparison o f radiative source term for 

the uniform temperature profile with L=0.1 m.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



—
V

.q
r, 

k
W

/

28

-5 0

# Monte Carlo 
_  S-N  discrete ordinates

-200

-250
0.0 0.2 0.4 0.6 0.8 1.0

y/L

Fig. 3.4 Comparison of radiative source term for 

the uniform temperature profile with L=1.0 m.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



-V
.q

r, 
kW

/m

1 0 0 0

9 Monte Carlo 
_  S-N  discrete ordinates -800

600

400

200

p=0.0, L=0.2m 
Twl=1500 K, TwM=300 K-2 0 0

-4 0 0
0.0 0.2 0.4 0.6 0.8 1.0

y/L

Fig. 3.5 Comparison of radiative source term 

for the boundary layer type temperature profile.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



30

-2 0
• Monte Carlo 
_  S-N  discrete ordinates-3 0

-4 0
n

B
>  -5 0

o> -6 0  
>

-7 0

p - 0.0, L=1.0m
-8 0

-9 0
0.0 0.2 0.4 0.6 0.8 1.0

y/L
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for the parabolic H2O concentration distribution (with a uniform temperature profile) are 

shown in Fig. 3.6. The Monte Carlo method also predicts the interesting W  type shape 

distribution o f -V.<?r as in the S-N discrete ordinates method. Here the Monte Carlo 

solutions appear to be a little higher than the S-N discrete ordinates solutions, especially 

in the central region.

The results for the net radiative wall heat flux obtained for the cases presented in 

Figs. 3.3-3.6 are given in Table 3.2. The differences in results between the different 

solutions for the three cases are less than 3.5%. This shows agreement similar to that 

for the radiative source results.

The situation with reflecting walls is considered next. Figures 3.7-3.11 show the 

comparisons between the Monte Carlo solutions and the S-N discrete ordinates solutions 

for different wall reflectivities and slab thicknesses. For these results, the parabolic 

type temperature profile and the uniform composition of pure H2O vapor at 1 atm were 

assumed. The S-N discrete ordinates solutions were based on the second-degree closure 

results [56]. The second-degree closure means that the history of two reflections is 

considered in the radiative flux equation and the remaining reflections are approximated 

by a closure method. Based on the study by Kim et al. [64], the second-degree 

discrete ordinates solutions for typical cases required about 160 minutes on a Cray-2 

supercomputer. This is significantly higher than the CPU time required for the MCM, 

which is not more than 10 minutes on a Sun Sparc workstation.

Figures 3.7—3.9 present the results of -V.<7r for the wall reflectivities of p -  0.1, 

0.5 and 0.9 respectively, with a slab thickness of L=0.5m. Excellent agreement between 

different solutions is seen in the figures. In the central region, the values of V.<jr are 

approximately constant. The Monte Carlo results appear to oscillate in that region. The 

reason is that the total number of energy bundles is a finite number and the Monte Carlo 

results are o f a statistical nature. The oscillation decreases and the results of - V .q r 

become smoother as the total number of energy bundles is increased. These oscillations
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Table 3.2 Comparison o f net radiative wall heat fluxes with nonreflecting walls (kW/m2)

Monte Carlo S-N Discrete Ordinates

Uniform T; L=0.1 m -14.2 -14.3

Unifrom T; L=1.0 m -27.6 -28.2

Boundary layer T 280.4 277.4

Uniform T  with 

concentration profile

-24.5 -25.4
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are also exhibited in other figures. Figures 3.10 and 3.11 show the results for the strongly 

reflecting walls where /?=0.9, with slab thicknesses of L=0.1 m and L=1.0 m, respectively. 

Again, the Monte Carlo solutions are in good agreement with the S-N discrete ordinates 

solutions.

Table 3.3 shows the net radiative wall heat fluxes for the cases presented in Figs. 

3.7-3.11. The Monte Carlo results are slightly lower than the S-N discrete ordinates 

results. But the differences are within 6%. There are physical justifications for such 

discrepancies. In the S-N discrete ordinates method, the history of two reflections is 

taken into account and the remaining reflections are approximated as travelling in a 

medium without any attenuation. This approximation overpredicts the radiative energy 

absorbed on the walls. In the MCM, the history of the reflections is simulated in an exact 

manner. The Monte Carlo solutions are also subject to small statistical errors.

The spectrally correlated results are compared with the noncorrelated results in 

Figs. 3.12 and 3.13. A spectral correlation has been considered in all the results 

presented in previous figures. In a spectrally noncorrelated formulation, the correlation 

between spectrally dependent quantities is neglected. By using Eq. (3.14), the Monte 

Carlo noncorrelated results can be obtained. The temperature and H2O concentration 

distributions considered here are the same as those in Figs. 3.7-3.11. The wall 

reflectivities are /3=0.0 for Fig. 3.12 and p=0.5 for Fig. 3.13, and slab thickness 

L is 0.1 m for both cases. The figures show clearly that the noncorrelated results 

overestimate the gas emission in the central region, and differ by about 30-35% from 

the correlated results. The reason for these discrepancies is in the derivation of the 

statistical relationship for determining the location of absorption of an energy bundle. 

The term t u ( s  — > s ' ) t u ( s ' —► s") in Eq. (3.12) can be treated in two different ways, that 

is, rw(s -+ s ' ) t u ( s ' -*  s") =  t^ (s  -> s") and rw(s -» s') ■ t u ( s ' -> $"), respectively. 

The first choice results in the correlated formulation given by Eq. (3.13) and the second 

choice results in the noncorrelated formulation given by Eq. (3.14). Since the value of
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Table 3.3 Comparison of net radiative wall heat fluxes with reflecting walls (kW /nr)

L (m) Monte Carlo S-N Discrete 

Ordinates

/?=(). 1 0.5 14.42 15.12

P=() . 5 0.5 9.47 9.66

p = 0.9

0.1 2.22 2.34

0.5 2.55 2.70

1.0 2.58 2.67
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t u ( s  — > s ' ) t u ( s ' -»  5 " )  is greater than the value of t u ( $  -► s') ■ t w ( s '  -> $"), the Rj 

calculated from Eq. (3.13) is smaller than that calculated from Eq. (3.14) for the same 

conditions. This means that an energy bundle travels a shorter distance by using the 

correlated formulation, in comparison to that using the noncorrelated formulation. So, it is 

concluded that an energy bundle is more likely to be absorbed near the point of emission 

for the correlated case and near or on the walls for the noncorrelated case. Because 

correlated results and noncorrelated results differ significantly, spectral correlation must 

be taken into account in order to predict the radiative heat transfer accurately.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



43

Chapter 4

RADIATIVE INTERACTIONS IN LAMINAR 

FLOWS USING MONTE CARLO SIMULATION

In order to further establish validity of the MCM, a relatively simple problem of 

radiative interactions is considered. The physical problem considered is that of steady- 

state energy transfer in laminar, incompressible, fully developed flow with constant 

properties in an absorbing-emitting gas between two parallel plates (Fig. 4.1). The 

condition o f uniform surface heat flux is assumed such that the surface temperature 

varies in the axial direction. This problem is selected because gray as well as nongray 

solutions for this case are available in the literature [5, 65].

4.1 Basic Theoretical Formulation

The energy equation for the presical physical system can be expressed as [8]

„  /  d T  d T \  , d 2T  dp f d u \ 2

where u and v denote the x and y components of velocity, respectively. In deriving 

Eq. (4.1), it has been assumed that the net conductive heat transfer and radiative heat

transfer in the x direction (parallel to the plates) can be neglected in comparison to the

flux variations in the y direction (normal to the plates). If, in addition, it is assumed that 

the Eckert number o f the flow is small, then Eq. (4.1) reduces to

„  /  d T  d T \  , d 2T  dqr

<€ ’‘ { u s i + v ^ ) = k w ~ o ;  ( 4 -2 )

The neglect of axial conduction and radiation in Eq. (4.2) is consistent with the 

formulation used in Ref. 9.
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Fig. 4.1 Laminar flow between parallel plates with constant wall heat flux.
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For a fully-developed flow, v=0, and u is given by the well-known parabolic profile

as

u  =  6um (£ - £ 2); (  = y / L  (4.3)

where um represents the mean fluid velocity. Also, for the flow of a perfect gas with

uniform heat flux, d T /d x  is constant and is given by

d T  ] d x  =  {2aqw)/{umLk)  (4.4)

A combination of Eqs. (4.2)-(4.4), therefore, results in

k W - di - lJr { ( - e ) = 0  (45)

Equation (4.5) is the governing energy equation for the parallel plates geometry. The 

boundary conditions for this problem can be expressed as

T(0) =  T (L )  = Tw, y = L /2 )  =  0 (4.6)

It should be noted that all boundary conditions given in Eq. (4.6) are not independent;

any two convenient conditions can be used to obtain specific solutions.

The radiative transfer term in the energy equation makes computation difficult because 

it turns the differential equation into an integro-differential equation. One exception is for 

the case of a gray medium. In this case, the equation for radiative transfer is expressed 

as [8]

(4.7)
kj  dy2 4 ‘' rvi"  2 dy

Equation (4.7) is a second order differential equation and, therefore, requires two bound

ary conditions. For black walls and Twj=TW2, the boundary conditions for Eq. (4.7) 

become

qr{L f  2) =  0; | ? r (0) =  — (dqT/ d y (4.8)
z. Kp
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In the present study, attention is directed on the MCM in solving the radiative transfer 

terra for a gray as well as a nongray medium. Before going into a detailed numerical 

analysis of the energy equation including the radiative transfer term, it is essential to 

define the quantity of primary interest.

For heat transfer in simple flow problems, the quantity of primary interest is the 

bulk temperature of the gas. For a fully-developed flow between parallel plates, this is 

expressed as

1

h  = (Tb -  Tw)/(qwL /k )  =  6 1 6 (0  (£ -  e ) d Z  (4.9)

o

where qw = h(Tw -T i , ) ,  and h represent the equivalent heat transfer coefficient 

(W/cm2-K ).

4.2 Solution Procedure

There are two levels to the numerical method proposed here. The first is concerned 

with the discretization and solution o f the energy equation, while the second is due to the 

numerical evaluation o f the radiative flux term that is included in the energy equation.

The energy equation, Eq. (4.5), is discretized by a finite volume technique. The 

domain between two parallel plates is divided equally into N finite volume elements. For 

the ith finite volume elements, 6Wj, a combination of Eqs. (4.5) and (3.1) results in the 

discretized energy equation as

, Ti+1 -  2Ti +  Ti-1  \2qwA y , r,

k  T y ------------------- —

+ Q v -6 v, +  Qa - sv, -  Qsv, =  0 (4.10)

where the conductive heat transfer is discretized by a central difference scheme and the 

radiative heat transfer consists o f Q v ^vj, QA_£Vi and Q^Vi terms. The energy balance in 

each volume element results in a set of simultaneous equations equal to the total number
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of finite volume elements. Each equation contains an unknown temperature which cannot 

be calculated independently and an iterative solution is necessary.

Before solving the energy equation, the radiative energy interchange in each equation 

must be evaluated. In this study, the radiative terms Qv.<5vi’ Q A .f iy , ar>d Q<$vi 316  

simulated by the MCM. For the gray medium, the Monte Carlo formulations employed 

are from Refs. 6 and 7. For the nongray medium, the one-dimensional Monte Carlo 

formulations, as presented in Eqs. (3.7)-(3.9) and (3.14), have been applied.

In the Monte Carlo simulation, Qv ^vj and QA.£Vi are obtained based on the assumed 

temperature distribution; a new temperature distribution can be calculated by solving the 

set of simultaneous equations given by Eq. (4.10). Two typical methods have been 

developed to solve the energy equation with the Monte Carlo simulation. In one of 

these methods [66, 67], convective and conductive heat transfer, as well as QV ($Vj and 

QA.£vi’ 31-6 calculated based on the assumed temperature distribution, a new temperature 

distribution is obtained from the term Q^Vi in the energy equation. The numerical 

experiments conducted in this study indicate that this method has a high probability 

of producing divergent simulation and, therefore, it is not suitable for problems with 

large variations in optical length. In the other method [20], only Qv.^vi and Q A .fiVl 316 

calculated based on the assumed temperature distribution, a new temperature distribution 

which is included in the convective and conductive heat transfer terms, as well as QfiVi, is 

obtained by solving a set of non-linear equations. This latter method was employed in the 

present study and the solution was obtained by using the NEQNF routine, which solves 

a system of non-linear equations in IMSL Library Package [68], The change in local 

temperature in each iteration of the calculation is determined and when the maximum 

change is less than 10- 4 , the solution is considered to have converged.

The radiative heat transfer can be calculated easily by the MCM, but the accuracy of 

the results obtained is affected by the number of the radiative energy bundles used in a 

calculation. If high accuracy is needed, it will be necessary to lake longer computational
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time even if a simple model is analyzed. Several methods are available to reduce the 

computing time and obtain higher accuracy. One o f these methods, applied to the gray 

gas, is the differential emissive power emission (DPE) method [66, 67]. In the DPE 

method, not only positive radiative energy bundles but also negative bundles are used, 

and the number of energy bundles emitted from a gas element is proportional to the 

difference between emissive powers from two consecutive iterations. This treatment 

does not change the physical processes of the Monte Carlo simulation. The proof of the 

equivalence of the DPE and regular methods is given in the cited references.

4 3  Results and Discussion

Based on the theoretical and numerical analyses described in the previous sections, 

a  computer code, which is given in Appendix B, has been developed to investigate gray 

as well as nongray radiation interactions in incompressible flows between two parallel 

plates. For the case of black walls, gray analytical solutions and nongray approximate 

solutions (based on the method of variation of parameters) are available in the literature 

[5, 65]. In this study, the Monte Carlo solutions have been compared with these results 

for identical conditions. The absorbing-emitting media considered were pure H2O and 

CO2. The results are expressed in terms of the non-dimensional bulk temperature. The 

plate spacings considered range from 0.01 cm to 100.0 cm. The calculation was carried 

out on a Sun Workstation. The domain was divided into 40 finite volume elements with 

equal thicknesses. The total number of energy bundles selected was 50,000 for nongray 

and 200,000 for gray simulations. The amount o f energy per bundle depends on the 

temperature. One o f the important parameters related to the temperature distribution 

is the heat flux from the plates; care should be taken to choose this heat flux. In the 

solutions from the literature [5,65], the assumption of linearized radiation was made and 

the radiative properties were considered to be independent of temperature. In order to 

facilitate comparisons between the Monte Carlo solution and the approximate solution.
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different values of heat flux at the wall were chosen when the plate spacings were changed. 

The CPU time requirement for a converged solution with a specific plate spacing was 

on the order of ten seconds for the gray case if the DPE method was applied and on the 

order 1000 seconds for the nongray case. The numerical experiments conducted in this 

study indicate that the DPE method can reduce the CPU time about an order of magnitude 

compared to the regular method without loss in the accuracy of results.

Figures 4.2-4.5 show comparisons between the gray analytical solutions and the gray 

Monte Carlo solutions for different media, temperatures, and pressures. The medium 

considered is CO2 in Figs. 4.2 and 4.3. In Fig. 4.2, the pressure of CO2 was kept 

at 1.0 atm but the plate temperatures were 500 and 1000 K. In Fig. 4.3, the wall 

temperature was kept at 1000 K but the pressures was changed from 1.0 to 5.0 atm. 

The figures show that the predictions by the MCM are very close to the analytical 

solutions at different temperatures and pressures. Figures 4.4 and 4.5 show the results 

for H2O. Similar to the case for CO2, the Monte Carlo solutions were found to be in 

good agreement with the analytical solutions in the H2O medium at different temperatures 

and pressures. The results demonstrate that radiative interactions are enhanced and the 

temperature distribution becomes more uniform between the parallel plates with increases 

in temperature and pressure.

Figures 4.6-4.9 show comparisons between the nongray approximate solutions based 

on the method of variation of parameters and the nongray Monte Carlo solutions for 

different media, temperatures, and pressures. The medium considered is CO2 for the 

results presented in Figs. 4.6 and 4.7. In Fig. 4.6, the pressure of CO2 was kept at

1.0 atm but plate temperature was changed from 500 to 1000 K. In Fig. 4.7, the wall 

temperature was kept at 1000 K but the pressure was varied from 1.0 to 5.0 atm. The 

figures show that the Monte Carlo solutions compare favorably with the approximate 

solutions at different temperatures and pressures. Figures 4.8 and 4.9 show the results 

for H2O. Similar to the case of CO2, the Monte Carlo solutions essentially match the
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analytical solutions for H2O at different temperatures and pressures. The effects of an 

increase in temperature and pressure on the radiative interactions and the temperature 

distributions between the parallel plates in the nongray cases are also found to be similar 

to those in the gray cases.

The results presented in this chapter demonstrate clearly that the one-dimensional 

nongray Monte Carlo formulatons developed in the previous chapter are very reliable 

and accurate. These formulatons have been also applied to investigate the radiative 

interactions in entry region turbulent flows, and detailed information is available in Ref. 

69.
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Chapter 5

MONTE CARLO SIMULATION FOR RADIATIVE 

TRANSFER IN MULTI-DIMENSIONAL SYSTEMS

In Chap. 3, radiative heat transfer between two infinite parallel plates was simulated 

in an exact manner. However, application of this exact treatment to multi-dimensional 

problems can be extremely complicated and numerical solutions to these formulations can 

be very difficult However, by introducing an appropriate assumption, the complicated 

Monte Carlo formulations in multi-dimensional problems can be simplified significantly. 

In this chapter, attention is directed to a two-dimensional problem. The physical problem 

is described in Sec. 5.1. The exact Monte Carlo formulations are developed in Sec.

5.2. The approximate Monte Carlo formulations are developed in Sec. 5.3. Comparisons 

between exact and approximate Monte Carlo solutions are made in Sec. 5.4.

5.1 Physical Problem

Consider an absorbing and emitting molecular gas between two parallel plates of 

finite length L and height H and infinite width, as shown in Fig. 5.1. The inlet and outlet 

of the gas are at x=0 and x=L, respectively, and both ends are treated as pseudoblack walls 

with prescribed temperatures. Temperature, concentration and pressure in the medium are 

assumed to be known. The walls are assumed to be diffuse but not necessarily gray. The 

wall temperature distribution is also specified. In order to calculate the radiative source 

term —'V.<?r inside the medium and the net radiative wall flux qTW, the medium considered 

is divided into an M X xM Y  array of rectangular volume elements (Fig. 5.1). Similarly, 

the two real walls are each divided into MX surface elements, and the inlet and outlet
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pesudo walls are each divided into MY surface elements. Temperature, concentration 

and pressure are assumed to be constant in each elem ent

The following Monte Carlo analysis is based on an arbitrarily chosen finite volume 

element ABCD (Fig. 5.2) with the length and height equal to b and c, respectively. Exact 

correlated and non-correlated formulations are derived first; then approximate correlated 

and non-correlated formulations are developed. The statistical relationships for an energy 

bundle emitted from a surface element in each case can be derived by following the 

same procedure.

5.2. Exact Correlated and Non-correlated Monte Carlo Formulations

In this case, an energy bundle is simulated in an exact manner in terms of the 

narrow band model without approximation. Let us consider the Planck spectral blackbody 

intensity Ibu; that enters the element ABCD at some point s on side AB and intersects 

one o f the other three sides o f the element at the point s', as shown in Fig. 5.2. It should 

be understood that each side of the element is a surface. A spherical coordinate system 

is established and centered at the point s. The distance between the points s and A is 

x*. From Ref. 6, the amount of energy emitted in the wavenumber interval dw, along a 

pencil of column s—>s' with a solid angle increment dfI and an area increment dx* is

dQ  =  Ibu [l _  rw (5 —> s')} cos 9dCldx*du> (5.1)

The total emitted energy, calculated in terms o f the intensity entering from the sides of AB 

(0<9<w) and DC {-k<9<2-k), is obtained by integrating Eq. (5.1) over the wavenumber, 

polar angle, azimuthal angle and area as

00  6 X 2 X

« - / / / /  hui [l ~  Tu> (s —1► -s')] cos 0 sin 9dil)d9dx* duj (5.2)
0 0 0 0

Referring to Fig. 5.2, the distance ss' is expressed as

m in { c /co s0 , ( b -  x*)/(cos ip sin 9)} , - t t / 2  <  p  <  ir/2  
s s ' =  4 (5.3)

m in{c/ cos0, — x*/(cost/>sin0)}, x/2 < t/’ < Ztt/2
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Fig. 5.2 Schematic of a rectangular finite volume element ABCD
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The value of ss' cannot be calculated from just one expression because the point s' may 

be located on different sides of the element ABCD. All the possible travelling paths of 

the intensity in the element ABCD should be considered to evaluate the value of Q.

Similar procedures can be used to obtain expressions for the emitted radiative energy 

calculated in terms o f the intensity entering from the sides of AD and BC. Thus, the total 

emitted radiative energy from the finite volume element ABCD consists of two terms. 

They represent the emitted energy calculated in terms of the intensities entering from sides 

AB, DC and from sides AD, BC, respectively, and cannot be manipulated algebraically 

into one term. Usually, the statistical relationships for simulating an energy bundle 

emitted from a volume element in the MCM are developed from the formulation for the 

total emitted radiative energy from this volume element. However, this can complicate 

the analysis since there exists two independent terms in the formulation of total emitted 

radiative energy. In this study, the two independent terms are treated separately, and 

the Monte Carlo analysis is based on a single term. This means that the Monte Carlo 

analysis is based on Eq. (5.2) if an energy bundle in element ABCD starts from either 

side AB or DC. Otherwise, the Monte Carlo analysis is from another term.

The Monte Carlo formulations presented here are developed on the basis of Eq. 

(5.2). The simulation of an energy bundle includes the determination of wavenumber, and 

starting point and direction of emission of this energy bundle in the finite volume element. 

The statistical relationships for determining these parameters are obtained readily from 

Eq. (5.2) as [6, 54, 55)

w b i  2 jt

J J J I W - T *  (s —► s')] cos 0 sin 0dij>d6dx*du!
R w     (5.4)

V

I I I I U 1 -  rw(s —> s')] cos0 sin ddi'dOdojdx*

R x- =  ^ ---------------------------------  (5.5)
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0 oo 4 2ir
i f f i m  i - r „  (s —» s')] cos 0 sin Odrfrdx*dudB 

R 0 =  ^-2-2-2---------------------- £ ---------------------------------  (5.6)

i> oo b n

f i l l  — Tu;(5 ~ > 50] cos 6 sin OdOdx* du>dil>

R * =  2 J J J ---------------------- Q--------------------------------- (5.7)

In Eqs. (5.2) and (5.4)-(5.7), r w is a real spectral transmittance. Before solving these 

equations to obtain w, x*, 0 and 0  from a set of given values of Ru , R X' ,R $ ,  R^,, the 

narrow band model should be applied to approximate the real spectral transmittance.

Taking the spectral average over all narrow bands and using the narrow band 

approximation as in Eq. (3.10), Eqs. (5.2) and (5.4)-(5.7), are expressed as
b 7T 2tTm ( b 7T 2tT

Q = X/1 / / / ̂bu,k f1 ” cos ̂ sin Ô dOdx*
*=* lo  o o

■Auk (5.8)

n ( b t 2x  )
£  < f f f  Ibuk[\ - r ^ k ( s  —► s ')]c o s0 sin Odtl’dOdx* >Au>k 

=   q -------------------------------*------- , ( u ; - 1 <  «  <  w")

(5.9)

ntu, f  z* x 2jt  I
22 ) f  f  f  ~* '̂)] cos0sin Odtl’dOdx* > Aw

R x. =  fc=1^°  ° °------------------------  *-------  (5.10)
Q

[ 6 b 2x )| .

£ | J J J ^ [ 1 — Tuk(s —> s1)] cos 0 sin Odil’dx*dO \ A u k
k=\ 1(o 0 0 J1

Q

172 ̂ f  il> b ir )
E ) J J J  h u ^ l1 — T^ic(s —> s ') ]c o s0 sin 0d0dx*di}> .I a w *
k= 1 ^0 0 0 J1

_ N— 1 I U U U  I j f m%\
Re = -------------------------------------- 7:-------------------------------   (5.11)

R* = ------ *-^ --------------------------------------- (5.12)

Similar to the one-dimensional problem analyzed in Chap. 3, in order to solve Eqs. (5.8)- 

(5.12) for a set of given values of Ro;, Rx*, R$ and R^,, interpolation and approximation 

methods must be employed.
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Knowing wavenumber, emission point and travelling direction o f an energy bundle, 

the next question is where the energy bundle is absorbed. Let us still consider the emitted 

radiant energy along a pencil of column s->s' (Fig. 5.1). After this amount of energy is 

transmitted over a column s '—>s", the remaining radiant energy is given by

dQ' =  / *  [l -  (s -+ s ')]  rw (s' -> s")  cos 6dQ.dx*du (5.13)

where r w(s'->s") is the spectral transmittance over the path s '—>s". Taking a narrow 

band average of Eqs. (5.1) and (5.13) and dividing the latter by the first, the statistical 

relationship for determining the location of absorption can be expressed as

n { -  II ~ T* ( s  s " )

1 -  Tu(s —> S')

TU(J  -» s") -  rw(s -» s/ )r0J(s/ -> s")
l - n j ( s ^ s ' )  { ’

Similar to Chap. 3, the averaged product t w ( s  -*• s ' ) t u ( s ' - >  s " )  can be treated in a 

spectrally correlated or non-correlated manner. The first choice results in the spectrally 

correlated formulation as

7 £ ( S ' - * S " ) - 7 £ ( S - > S " )
= ---------:— = ------ r\  (5.15)

1 -  tw( s  - »  s ' )

and the latter choice results in the spectrally non-correlated formulation as

R l = f ^ ( s ' ^ s " )  (5.16)

Therefore, it is seen that exact correlated and non-correlated Monte Carlo formulations 

differ only in the relation for R[ as given in Eqs. (5.15) and (5.16).

Comparing each formulation in this chapter with the corresponding one-dimensinal 

formulations developed in Chap. 3, it is found that the exact correlated and non-correlated 

statistical relationships for Rj are the same but statistical relationships for Ru , Rx> ,R g ,R ^  

are different This phenomenon is true for any two different problems.
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5 3  Approximate Correlated and Non-correlated Monte Carlo Formulations

In the exact analysis, the Monte Carlo formulations need to be developed from each 

independent term in the expressions for the total emitted radiant energy of a volume 

elem ent Numerical evaluations of Eqs. (5.8)-(5.12) for Q ,R u), R X' ,R g ,R ,i) involve 

four-dimensional integrations and the integrands in these equations ar complex functions 

o f integration variables. Obviously, the Monte Carlo simulation is already complicated 

although the problem considered is a simple two-dimensional problem. The difficulty may 

continue to increase considerably if the complexity of the problem increases. To simplify 

complicated Monte Carlo formulations, it is assumed that the volume dV of a volume 

element is very small so that the energy emitted within dV escapes before reabsorption. 

This assumption has been used widely in many studies to simplify radiation analysis. 

The total emitted radiative energy and the statistical relationships for determining the 

wavenumber and emission direction of an energy bundle from a finite volume dV are 

given by [6, 54, 55]

The emission point of an energy bundle from a volume element is assumed to be the 

center point of the element. This assumption is justifiable in an infinitesimal volume 

element. Introducing the narrow band approximation, Eqs. (5.17) and (5.18) become

OC

K u h u d V d u (5.17)

o

R j  =

J  ih u < lu  
0

(5.18)
00

J* K^Ig^duj 
o

1 — c o s  0
(5.19)

(5.20)

QdV =  ( K y k l f a k A u ^ d V (5.21)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



67

4,r E  {nukIbu,kAoJk)d V

R*  =  — — ----- 7:------------------, (wM_1 <  W <  wB) (5.22)
Q d v

Here, k^ i7 is the mean absorption coefficient over a narrow band and is obtained as [29]

_ i “ v W  (523)
L m

where Lm is the mean beam length of the volume element. It is evident that Eqs. (5.19)- 

(5.22) are much simpler than the corresponding equations for the exact treatment of the 

Monte Carlo simulation. These simple formulations do not change with the complexity 

of the problem.

The statistical relationship presented here for determining the location of absorption 

of an energy bundle emitted from the volume element dV is different from that available 

in literature [6 , 54, 55]. This is because a narrow band model is incorporated in the 

present formulation. Equation (5.15) is the general formulation to calculate Ri with 

consideration of the spectral correlation. Substituting the mean transmittance with the 

mean absorption coefficients in the denominator of Eq. (5.15), yields

1 -  exp j -JnUJds*  1

Since dV is very small, the following approximation can be invoked

\
kZss ' (5.25)1 — exp | — I ku,ds*

■ )
This approximation is also applied in deriving Eqs. (5.17M5.20). Consequently, Eq.

(5.24) is simplified as

K^SS1
1 n J ( - s ' - > / ) - ^ - ^ " )

  iim ------------------- :----------------

1 / d r z j s  - » s")

Lm ( dTu (s > S )

In ru (L m ) \  ds
(5.26)
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Equation (5.26) is the approximate correlated statistical relationship for determining 

the location o f absorption and it is different from the corresponding exact correlated 

formulation as given in Eq. (5.15). The approximate non-correlated statistical relationship 

for determining the location of absorption cannot be simplified further and it is the same 

as given by Eq. (5.16). Therefore, similar to the exact correlated and non-correlated 

formulations, the approximate correlated and non-correlated formulations differ only in 

the expression for Rj.

In order to validate the approximate Monte Carlo analyses and to investigate the 

effects of spectral correlation, two problems have been selected by referring to the work 

of Zhang et al. [28]. The results for the net radiative wall flux and the radiative source 

term have been obtained for four different formulations which correspond to the exact 

correlated solution, approximate correlated solution, exact non-correlated solution and 

approximate non-correlated solution. In the problems considered, the length and height 

of two parallel plates are L=1.2 m and H=0.6 m, respectively. The two wall emissivities 

are chosen to be the same and equal to 0.8. The total pressure of the gas is taken to 

be 1 atm. One of the problems considered is an isothermal and homogeneous H2O-N2 

mixture in which the mole fractions are: A'//2o=0.6 and X ^ 2=0A; the gas temperature is 

1500 K; and the real and pesudo walls are held at 300 K. The other problem considered 

is a nonisothermal and inhomogeneous H2O-O2-N 2 mixture in which the mole fraction 

distributions are given by

5.4 Results and Discussion

I ' h j - H  |1 (5.27)

X n 2 =  1 -  x h 20 -  xo-l 
and the gas temperature distribution is assumed to be

12 y — H 11 x
T(x,y)  =  1000 +  1200 1 -  1 - (5.28)
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The two real walls and the inlet pseudo wall are kept at a temperature of 1000 K. The 

outlet of the gas is open to a 300 K atmosphere, so the temperature of the outlet pseudo 

wall is 300 K. For both problems, only H2O is considered to be a radiatively participating 

species. There are five important absorption bands for H2O. All of these bands have been 

taken into account in this study and they consist of mw=295 narrow bands in the range 

from 150 cm-1 to 7500 c m '1.

To assure that the statistical results make sense in the Monte Carlo simulation, two 

requirements must be met. One is the accuracy of the statistical results for a given 

grid. The other is the independence of the results from the grid. In this study, the 

designated statistical accuracy of the results is defined in such a way that when the 

relative statistical errors are less than ±5%, the probability of the results lying within 

these limits is greater than 95%. Independence of the results on a grid is considered 

to have been achieved when the medium is divided into 20x20  uniform finite volume 

elements for the problems considered. For this grid, the total number of energy bundles 

had to be 2,000,000 in order to meet the designated statistical accuracy requirement. All 

calculations have been carried out on a Sun Sparc Workstation. The CPU times required 

for different solutions for two different problems are listed in Table 5.1. It should be 

noted that the present computer code was written for problems involving nonisothermal 

and inhomogeneous mixtures. No efforts have been made to simplify the problem for an 

isothermal and homogeneous mixture specifically. For integrations and interpolations 

in the exact Monte Carlo formulations, Eqs. (5.8)-(5.12), the divisions of the side 

length, polar angle and azimuthal angle (within half of their ranges in a rectangular 

volume element) were chosen to be mx*=10, m^=10 and m.^=10, respectively. The 

emitted radiative energy from each o f the m u,xm x"xm 0 x m 0 = 2 9 5 x  lOx lOx 10 medium 

columns was then calculated and stored. The required integrations and interpolations were 

implemented from the summation of the values of radiative energy in different columns. 

These computations were done for each volume element. Obviously, this procedure is
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Table 5.1 CPU time (minutes) required for different solutions

Exact

correlated

Approximate

correlated

Exact

non-correlated

Approximate

non-correlated

Isothermal and

homogeneous

mixture

265 112 325 170

Nonisothennal

and

inhomogeneous

mixture

269 167 378 225
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very time consuming. This is the major reason why the CPU time for exact solutions 

is much larger than that for approximate solutions in Table 5.1. It should also be noted 

that determination of the absorption location o f an energy bundle, by using Eq. (5.15) 

and Eq. (5.26), takes about the same amount of time.

The problem with an isothermal and homogeneous mixture is considered first. The 

behavior of four different solutions is illustrated in Figs. 5.3—5.5. Figures 5.3 and 5.4 

show radiative source distributions at locations equal to x/L=0.225 and x/L=0.5 on the 

plates, respectively. The approximate correlated results agree with the exact correlated 

results and the approximate non-correlated results agree with the exact non-correlated 

results. As the distance from the walls increases, all four solutions predict the same trend 

in the radiative source results. The two non-correlated solutions are far below the two 

correlated solutions.

The distribution of radiative wall heat flux along the plates is presented in Fig. 5.5. 

The approximate correlated solution is found to be almost the same as the exact correlated 

solution and the approximate non-correlated solution is seen to be slightly higher than the 

exact non-correlated solution. The difference between the correlated and non-correlated 

results is seen to be significant. For the most part, the two non-correlated solutions are 

approximately two times higher than the two correlated solutions.

The results for a nonisothermal and inhomogeneous mixture are illustrated in Figs. 

5.6-5.9. The H2O mole fraction calculated from Eq. (5.27) has a maximum value at 

the mid plane of the geometry considered, and decreases gradually away from the center 

p o in t The temperature in the medium, calculated from Eq. (5.28), increases away 

from the walls and the inlet. Figures 5.6—5.8 show the radiative source distributions 

at locations equal to x/L=0.275, 0.5, and 0.825 along the plates, respectively. As the 

distance from the inlet location increases, the temperature change becomes more steep 

and temperatures in the central region are high. Thus, the change in radiative source 

results is becoming abruptly as seen from Figs. 5.6—5.8. In all three figures, it is
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Fig. 5.3 Radiative source distribution at the location 

x/L=0.225 for isothermal and homogeneous H2O-N2 mixture.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

'----- 1----- 1 J o  o L  ‘ I-----
, J > *  * 8 # ,

8 * * 8 * »
•  •
o  o

•  •o o

. a a a a a a a a a a .
i t
A  A  A  A  A

A *
A ^  A

# Exact correlated  
o Approximate correlated  
A Exact n on -correla ted  
A Approximate non-correlated



- 100.0 

- 200.0 

-300.0
73
a

^  -400.0  

£  -500.0
>

I
-600 .0  

-700.0  

-800.0
0.0 0.2 0.4 0.6 0.8 1.0

y /H

Fig. 5.4 Radiative source distribution at the location 

x/L=0.5 for isothermal and homogeneous H2O-N2 mixture.

ft 0 0 ft

8 *  * 8

« 8  *o o
•  •

4  *  *  A
a A A a a a a A a a  q j

A  A  *  *  *  *  A  A
A  A A A -

- A  A _

A A

9 Exact correlated 
a 0 Approximate correlated 

A Exact non-correlated 
a Approximate non-correlated

 1 I ' I 1 I 1 I 1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



74

140.0

120.0 

„ 100.0 02

6

g  80.0 

60.0

40.0

20.0
0.0 0.2 0.4 0.6 0.8 1.0

x /L
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isothermal and homogeneous H2O-N2 mixture.
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Fig. 5.7 Radiative source distribution at the location x/L=0.5 

for nonisothermal and inhomogeneous H2O -O 2-N 2 mixture.
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evident that the approximate correlated solution is in good agreement with the exact 

correlated solution and the approximate non-correlated solution approximates the exact 

non-correlated solution. The approximate correlated solution appears to be slightly higher 

in the wall region and lower in the central region than the exact correlated solution. The 

difference between the correlated and non-correlated solutions is significant as in the first 

problem. From the correlated solutions, it is evident that the gas goes from a net absorber 

near the walls to a net emitter away from the walls. On the other hand, the non-correlated 

solutions predict that the gas is a net emitter in nearly all regions.

Figure 5.9 illustrates the distribution of radiative wall flux along the plates. The 

radiative wall flux is seen to increase at first, reach a peak value near the outlet, and then 

decrease. Such behavior is due to the fact that, for the problem considered, the outlet 

region is equivalent to a cold sink. This cold sink has a strong effect on the radiative 

heat transfer in the adjacent region. Among the four different solutions, the approximate 

correlated solution is slightly lower than the exact correlated solution and the approximate 

non-correlated solution is slightly higher than the exact non-correlated solution. A 

comparison of different solutions reveals that the non-correlated formulations predict 

much higher radiative energy absorption on the walls than the correlated formulations. 

The difference in results can be reach as high as one order of magnitude at some locations.

From the results presented, it is evident that approximate formulations can provide 

results very close to those from the corresponding exact formulations. The non-correlated 

formulations, however, predict much lower radiative source distributions in the medium 

and much higher radiative wall fluxes along the plates than the correlated formulations. 

The reason for this difference is the same as that for one-dimensional problem. That is, the 

Ri calculated from the non-correlated formulation, Eq. (5.16), is greater than that from 

the correlated formulations, Eqs. (5.15) and (5.26). Therefore, for the non-correlated 

formulation, an energy bundle travels a long distance and is likely to be absorbed on the 

wall. This also explains why the CPU time required for the non-correlated solution is
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larger than that required for the corresponding correlated solution (Table 5.1). Because 

of significant differences between the correlated and non-correlated solutions, the same 

conclusion as that in Chap. 3 is drawn that the non-correlated formulations are not useful.
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Chapter 6

RADIATIVE INTERACTIONS IN CHEMICALLY 

REACTING COMPRESSIBLE FLOWS

In Chap. 5, an accurate radiation transport model using the approximate Monte Carlo 

correlated formulations, has been developed and validated. The formulations in this model 

are simple and can be applied easily in nongray and multi-dimensional systems. The 

objective of this chapter is to apply the approximate Monte Carlo correlated formulations 

to investigate the radiative interactions in multi-dimensional chemically reacting flows. 

The basic formulations are provided in Sec. 6.1. The method of solution is presented in 

Sec. 6.2, and the results and discussion are contained in Sec. 6.3.

6.1 Basic Formulations

6.1.1 Physical Model

As mentioned in the introduction, there has been extensive research directed toward 

the development of scramjet propulsion systems. To investigate the radiative effects on 

these systems, a specific physical model will be considered in this study which is a 

supersonic flow of premixed hydrogen and air in an expanding nozzle (Fig. 6.1). The 

nozzle wall is modeled, as noted, by a shifted sinusoidal curve. The inlet temperatures of 

hydrogen and air are considerably high so that chemical reactions take place in the entire 

flowfield. The products of hydrogen-air combustion include water vapor and hydroxyl 

radicals. These species are highly absorbing and emitting. To simulate the flowfield 

accurately, all important phenomena such as chemistry, radiation and turbulence should 

be taken into account and the fully elliptic form of the governing equations must be used.
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Fig. 6.1 Schematic diagram of nozzle.
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6.1.2 Governing Equations

In this study, the two-dimensional nozzle llow considered is described by the Navier- 

Stokes and species continuity equations which can be represented in the physical coor

dinates as

dU_ dF_ OG _  
dt ^ Ox dy

where vectors U, F, G and H are given by

F =

G =

pa

U =  pv 

PE

ipf j  J
pa

pu1 -  <7X 

pUV -  Tyx

(pE — crx)u — TXy V  +  qx

pfi{u + ui) 
pv

p U V  -  TXy

p v 1 -  Oy

{pE -  (Jy)v -  TyXU + (jy 

pfi{v + Vi)
r o

/ /  =

0

0

-  V -9 r

w;

(6. 1)

(6.2)

(6.3)

(6.4)

(6.5)
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The other terms appearing in vectors F, G, and H are defined as

. ,'du d v \  , cfa
<’t - ~ r + x [ d i  + Ts ) + i l ‘ d i  m )

, , 'du d v \   ̂ dv
^ - - p  +  Al g -  +  — j  + 2 / « ^  (6.7)

(  chi 8 v \
r „  =  v = ^ _  +  _ j  (6 .8)

dT
qx = +  p h i f w  (6.9)

1=1

A',
. -I- n

dy
c)T

qy =  + (>Y^ hi f m  (6.10)
1= 1

■> ■> A',
p t r  +  v

E  = - p  + ^ -  + ' £ h J l  (6Al)
p “ :=i

T
ht = h? + J  Cp,dT  (6.12)

Th

f-
P = p R u T y£ i T  (6-13)

i = i  *W|

where A =  —\ p .

In Eqs. (6.1), only (Ns— 1) species equations need to be considered since the mass

fraction of the species is prescribed by satisfying the constraint equation

A'..
£ / .  =  l (6.14)
i=l

The diffusion velocity of the ith species is obtained by solving the Stefan-Maxwell

equation [70], neglecting the body force and thermal diffusion effects, as

™ <  = + (615)
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The preceding equation is also applied only to (Ns— 1) species. The diffusion velocity
N, _

for the remaining species is prescribed by satisfying the constraint equation £  f{V{ = 0,
i=i

which ensures the consistency.

6.1.3 Thermodynamic Model

To calculate the required thermodynamic quantities, the specific heat for each species 

Cfi is first defined by a fourth-order polynomial in temperature,

The values of the coefficients appearing in the equation are found in Ref. 71. Knowing 

the specific heat o f each species, the enthalpy of each species can be found from Eq. 

(6.12) and the total internal energy is computed from Eq. (6.11).

6.1.4 Chemistry Model

Chemical reaction rate expressions are usually determined by summing the contribu

tions from each relevant reaction path to obtain the total rate of change of each species. 

Each path is governed by a law of mass action expression in which the rate constants 

can be determined from a temperature dependent Arrehenius expression. In vector H, 

the term = M,C,  represents the net rate of production of species i in all chemical 

reactions and is modelled as:

Equation (6.17) represents an Nr step chemical reaction and Eq. (6.18) is the production 

rate for the ith species. The reaction constants k j ] and are calculated from the 

following equations:

%  =  Ai  +  B iT  +  C i f 1 +  D i T 3 + E i T 4 
R

(6.16)

(6.17)

(6.19)
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h } = k f j  k tqj; J =  1, •' • A'V (6.20)

The equilibrium constants appearing in Eq. (6.20) are given by

=  (6-21)

where
N, N,

A » i =  E  j - U - N ,  (6-22)
1=1 1=1

N, ;V,

A G * ,  =  E  ^  -  E  j  = 1 • ■ • • A' '  <6 -2 3 >
t=i 1=1

=  A ,(T -  InT)  -  j T -  -  | l ' 3 -  

- ^ r 5 +  F, -  6’:r ; * = [,-■■ Nr (6.24)

The forward rate for each reaction is determined from Eq. (6.19). The hydrogen- 

air combustion mechanism used in this work is from Ref. 3, but only seven species 

and seven reactions were selected for this study. The constants Aj, Nj and Ej for these 

reactions are listed in Table 6.1. The species Gibb’s free energy expression Eq. (6.24) is 

obtained from the integrations o f the specific heat Cp, and the coefficients in Eq. (6.24) 

are obtained in the same way as in Eq. (6.16).

6.1.5 Diffusion Models

The viscosity , thermal conductivity, and diffusion coefficient consist o f the contri

butions from both fluid molecules and turbulent flow and they are expressed as

H = N  + 

k  =  k[ k(

Dij = D[j +  D ltJ (6.25)
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Table 6.1 Hydrogen-Air Combustion Mechanism (7 species, 7 reactions)

No. Reaction A N E

1 H2 + 0 2 OH + OH 1.70E+13 0.0 24233

2 H + 0 2 OH + 0 1.42E+14 0.0 8250

3 OH + H2 -> H20  + H 3.16E+07 1.8 1525

4 0  + H2 -4  OH + H 2.07E+14 0.0 6920

5 OH + OH ^  H20  + 0 5.50E+13 0.0 3523

6 H + OH + M -4  H20  + M 2.21E+22 -2.0 0

7 H + H + M - * H 2 + M 6.53E+17 -1.0 0

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



where hu fc/, D\- represent the molecular mixture viscosity, thermal conductivity, and 

diffusion coefficient, respectively; hu k t , D\- represent the turbulent viscosity, thermal 

conductivity, and diffusion coefficient, respectively.

The individual species molecular viscosities are computed from Sutherland’s law

-  = «*>HO i \ ? 0 i /  T  + Si

where Hoi and Toi are reference values and So is the Sutherland constant. All three 

values are tabulated for the species in Refs. 72 and 73. Once the molecular viscosity 

of each species has been determine, the molecular mixture viscosity is determined from 

Wilke’s law [74]

N.
Hi = £  i ,   <«•«>

i= 1  i i 1 V '

where

{ l  +  [ {Hi/HiKPjlPif-iMilMif*}
<t>ij =  1 ------------- F------------------- TF>-------- — (6-28)

4 v / 2 [ l  + ( M l / M j ) } ] / -

The individual species thermal conductivities are also computed from Sutherland’s

law

to, \r j  r+s; (6'29)
but with different values of the reference values Ay, and 7’0l and the Sutherland’s constant 

S\.  These values are also taken from Refs. 72 and 73. The molecular mixture 

thermal conductivity is computed using conductivity values for the individual species 

and Wassilewa’s formula [75],

*/ =  E  ------------- (6-3°)

1=1 i + i  t  X ita
i= i(;A)

where ^  - =  1.075^tJ and faj is taken from Eq. (6.28).
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For dilute gases, Chapman and Cowling [70] used kinetic theory to derive the 

following expression for the molecular binary diffusion coefficient Dy between species 

i and j,

n t _  0.0018587l3/ 2[(M,- +
L ' i j  ~  r> ri to .jl;

3 pcrfjUD

Here, the diffusion collision integral Cld is approximated by

n D = r -0-145 + ( r  + o.s)-2 (6.32)

where T* = T/TClJ. The values of the effective temperature Tsij and effective collision 

diameter cry are taken to be averages of the separate molecular properties of each species, 

giving [70]

vij = \ [ ffi + v j )  (6.33)

and

Te„ = {Te;rey 12 (6.34)

To evaluate the turbulent viscosity /z<, a turbulence model needs to be selected. An 

appropriate model selected in this study is the Baldwin-Lomax model. This model is 

very convenient to use and is also reliable for the flows like those considered here. The 

description of this model can be readily found in the literature [76-78]. Knowing turbulent 

viscosity fit, the turbulent thermal conductivity kt and turbulent diffusion coefficient Dj • 

are calculated from the turbulent Prandtl number and the turbulent Schmidt number, 

respectively.

6.1.6 Radiative Transfer Model

The radiative effects on the nozzle flowfield arise through the term —V.c/r in the 

energy equation and the radiative effects on the heat transfer on the nozzle walls arise
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through the term qTW. The exact expressions for both -V .r /r and qTW are very complicated 

integro-differential equations and they are usually treated separately from the governing 

equations. Therefore, the term -V .q y  has been moved to the right hand side to be taken 

as the source term in the energy equation. As indicated earlier, the approximate Monte 

Carlo correlated formulations as seen in Eqs. (5.19)-(5.22) and (5.26) are employed 

to simulate the radiative heat transfer term. This treatment can provide a quantitative 

prediction o f radiative interactions for the present problem.

6.2.1 Grid Generation

Equation (6.1) is written in the physical domain (x, y) and must be transformed to 

an appropriate computational domain (£,?/) for solution. An algebrabic grid generation 

technique developed by Smith and Weigel [79] was used for grid generation in this study. 

From the computational point of view, it is desirable to have a uniform rectangular grid 

enclosed in a cube, where the exterior of the cube represents the physical boundaries. 

To have such grids, a body-fitted coordinate system was transformed linearly from the 

physical domain (x, y) to the computational domain (£, q) as follows:

6.2 Method of Solution

xi =  x(£, 0) Lower

y\ =  »/(?/, 0) Boundary (6.35)

To =  a:(£, 1) Upper

V2 =  y{7h 0  Boundary (6.36)

x = x[£, 1)7/ + .r(£,0)(l -  7/) Between the

y  =  1)'/ +  y{Z, 0)( 1 - 7 / )  Boundaries (6.37)
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where 0 <  f  <  1; 0 <  ?/ <  1. The grid should be concentrated in the regions 

of high gradients to predict the solutions accurately. Therefore, more grid points are 

required near the solid boundaries. The concentration of the grid in the r/-direction can 

be accomplished by

If  a  is equal to zero (a=0), the compression lakes place only near the lower wall (7?=0 ), 

and if  a  is equal to one half (a= l/2 ), the compression takes place near both walls. The 

term /?y has a value between one to two, and as it gets closer to one, the grid becomes 

more concentrated near the walls. Employing this concentration, Eq. (6.37) is written 

in terms of rj as

where 0 <  77 <  1.

Based on the above analysis, the grid mesh for the present problem is generated as 

seen in Fig. 6.2. Because the flow is assumed to be symmetric about the centerline of a 

two-dimensional nozzle, only the upper half of the nozzle is shown. It should be noted 

that the grid is concentrated in the normal direction in order to capture the boundary 

layer and the grid is kept uniform in the flow direction.

The above grid mesh was used for the flowfield simulation, but, the grid mesh for 

radiation simulation was quite different. A uniform grid mesh as seen in Fig. 6.3 was 

applied for radiation simulation for the present problem. Such a grid mesh is justifiable 

because radiation is a long-range phenomena and there is no need to use a concentrated 

grid mesh.

- _  (fty +  1) -  (fly -  1) exp [ -C {y  -  1 +  a ) / ( l  -  a)] 
^ (2a +  1){1 +  e x p [C{i] — 1 +  a ) / ( l  -  or)]}

(6.38)

where

(6.39)

x  = x { £ , l ) i j  +  x(Z,  0)(1 - / / )

y =  y ( &i ) ?  +  y(S>0 )(i - ? / ) (6.40)
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Fig. 6.2 Grid mesh for flowfield simulation.
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Fig. 6.3 Grid mesh for radiation simulation.
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6.2.2 Numerical Algorithm

The governing equations, Eqs. (6.1), are expressed in the computational domain as

Here x^, xn, y ,̂ yv are the transformation matrices and J is the Jacobian of the transfor

mation. The matrices can be computed numerically once the physical grid coordinates 

have been prescribed.

The governing equation system, Eq. (6.41), can be stiff due to the kinetic source 

terms contained in the vector H. To deal with the stiff system, the approach used in Refs. 

80 and 81 was followed and the kinetic source terms were computed implicitly. In a 

temporally discrete form, Eqs. (6.41) then become

After employing a Newton linearization for H and rewriting in delta form, Eq. (6.43)

is the steady-state residual, I is the identity matrix, Kn is the Jacobian o f H with respect 

to (/, (d H / d U ), and A (/n+1 =  ( /n+1 -  Un.

(6.41)

where

U = U J

F — Fyn CiXy 

G = Gx  ̂-  Fy  ̂

H = HJ

J  j/i/ (6.42)

Qn+\ _  jju  _  A t (6.43)

becomes

[I -  A tA " ']A (> +I =  -  A t f i n (6.44)

where

(6.45)
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Once the temporal discretization used to construct Eq. (6.44) has been performed, 

the resulting system is spatially differenced using the explicit, MacCormack predictor- 

corrector schemes [82]. This results in a spatially and temporally discrete, simultaneous 

system o f equations at each grid point [80]. Each simultaneous system is solved using 

the Householder technique [81] in combination with the MacCormack technique, which 

is then used to advance the equations in time. The modified MacCormack technique 

then becomes

difference. Stress terms are differenced in the conventional manner [82]. Equations

(6.46) are used to advance the solution from time n to time n+1 and this process is 

continued until the desired integration time has been reached.

The magnitude of the time step in Eqs. (6.46) is chosen based on the physical time 

scales present at any given time in the solution. The fluid dynamic time step, Atf, can 

be shown to be limited by the CFL condition [83]

where a is the local speed of sound. The chemical relaxation time for species i is given

[ /  -  Af A'j}] A t/J +I =  - A t S + R ^

I  -  A t K ? + l A (/"+1 =  -  A tS-RVj

U " * 1 =  u n + 0.5 A (/; '+I +  A (/" +1 (6.46)

where S+R  represents a forward spatial difference of R and 6 R  a backward spatial

(6.47)

by [84]

r
Pfi
Wi

(6.48)
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Changes in this relaxation time are then given by

U’i
(6.49)

since xbi remains nearly constant over a time step. For accuracy, it is required that the 

chemical time step be chosen such that no change in mass fraction greater than 0.01 

occurs over that time step. The computational time step A t  is then chosen to be the 

minimum of all the grid points in terms of the both fluid and chemical time steps, i.e.,

6.23 Boundary and Initial Conditions

The governing equations, Eqs. (6.1), require boundary conditions along all four 

boundaries. For the problems to be considered, the inflow boundary is supersonic, so the 

velocities, static temperature, pressure, and species mass fractions are specified and fixed 

there. The outflow boundary is also supersonic, and the values of the velocities, static 

temperature, pressure, and species mass fractions are determined by extrapolation from 

upstream values. Only the upper half of the flow domain is computed due to the assumed 

symmetry of the flow. The upper boundary is treated as a solid wall. This implies a non

slip boundary condition. The wall temperature is given and wall species mass fractions 

and pressures are extrapolated from interior grid points, by assuming a non-catalytic wall 

as well as the boundary layer assumptions on the pressure gradient. Symmetry boundary 

conditions are imposed at the lower boundary, that is, at the centerline.

Equations (6.1) also require a set of initial conditions. The equations are initialized 

by setting values of the velocities, static temperature, pressure, and species mass fractions 

throughout the domain to the values chosen initially for boundary conditions at the inflow 

boundary. Having specified all required initial and boundary data, the equations are 

marched in time until steady state solutions are achieved.

A t  =  min ( A t f , A t c) (6.50)
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6.2.4 Artificial Viscosity

With the numerical algorithm of Sec. 6.2.2, high frequency nonlinear instabilities can 

appear as the solution develops. For example, flow oscillations can result from the odd- 

even decoupling inherent in the use of second-order central differencing for the inviscid 

terms. In addition, physical phenomena such as shock waves can cause instabilities when 

they are captured by the finite difference algorithm. Artificial viscosity, or smoothing, is 

normally added to the solution algorithm to suppress these high frequency instabilities. In 

this study, the artificial viscosity Fav is added to the vector F  in Eq. (6.41) as following

Fav =  (AJ ^ C i S j P  + C o jp '  +  C3Sj f] (Ui ,j  -  Uj—\ j )  (6.51)

where

+ M  + a J t i  + ( j  \VxU + 7]yv\ + a , f i i + i ] j
A=  s r — + ------------s r —  (6-52)

+  i P i j +  Pi-\ ,j

\T i+ u

•1 +  T i - \ j \
Ti+\,j -  27*j + Ti - \ ,3

(6.53)

6_f  =  (6.55)
Ji+i,j -  -Ji,j +  Ji - i , j

The other artificial viscosity Gav follows similar formulas as Fav. Equation (6.51) was 

suggested by Pulliam [85]. In its original form, only the term S jP  was used; Singh et 

al. [86] found that for some problems especially those with chemical reaction this is not 

sufficient and suggested inclusion of the term 8 jT  and In the term <5|/, f  can be the 

mass fraction for one species or for several different species. The coefficient C i, C2 and 

C3 must be selected by numerical experiment. For the cases investigated in this study, 

all coefficients were fixed as a constant value of one half.
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6.2.5 Solution Procedures

With consideration of radiative heat transfer, solution procedures employed in this 

study are summarized as following:

(a) First, Eqs. (6.1) were solved without consideration of radiation in terms of the 

modified MacCormack schemes;

(b) The steady solutions for temperature, pressure and species mass fractions were 

then used in the Monte Carlo simulation. The computed radiative source term - V . q r 

from the MCM was based on a different grid from that used for Eqs. (6.1). Linear 

interpolation and extrapolation were employed for the transformation of — V.</r between 

the two grids;

(c) The transformed -V .( / r was substituted into Eqs. (6.1), and Eqs. (6.1) were 

solved again. If  the differences between two consecutive steady solutions were smaller 

than a designated tolerance, the computation was terminated. Otherwise, steps (b) and 

(c) were repeated until solutions converge.

It is noted that there are two levels of numerical procedures employed here which 

result in two different iterative procedures. One is the numerical procedure for solving 

Eqs. (6.1) and their solutions were iterated with time. The other is the numerical 

procedure for evaluating the radiative source term using the MCM, which results in the 

iteration of steady state solutions.

6 3  Results and Discussion

Based on the theoretical and numerical analyses described earlier, a computer code 

has been developed to simulate two-dimensional supersonic chemically reacting and 

radiating nozzle flows on a Cray X-MP machine. The specific goal in this study was to 

investigate the effects of radiation on the llowlield and heal flux on the nozzle wall. By 

referring to [2], several problems have been considered. They contain four parameters:
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equivalence ratio of hydrogen and air, inlet flow temperature, wall temperature and nozzle 

size. Numerical solutions have been obtained for a variety of combinations of these 

parameters. In each problem, flow is introduced at the nozzle as a uniform velocity of 

1230 m/s and a pressure of 1 atm. The grid size for solving the governing equations was 

71x41 (upper half of the nozzle). Further refinement of the grid produced only small 

changes in the results. For a given radiative source distribution, the residuals of Eqs. (1) 

were reduced by eight orders of magnitude in 3,000 iterations for a typical case and the 

steady state solutions were considered to have been obtained. The corresponding CPU 

time is about six minutes.

To check the accuracy of the computational scheme, a preliminary calculation has 

been carried out for a chemically reacting nozzle flow without consideration of radiation 

and the present solution is compared with that in Ref. 87. Figure 6.4 shows the physical 

model for this calculation. It is noted that the nozzle walls are adiabatic walls in this case. 

Figures 6.5 and 6.6 demonstrate the frozen and reacting temperature distributions along 

the centerline. The present solution is found to agree with with the available solution [87].

For the temperature ranges considered, the important radiating species are OH and 

H2O. But OH is a much less radiation participating species compared to H2O. In addition, 

the concentration of OH is several times less than that of H2O lor the problems considered. 

So, the contribution of radiation from OH has been neglected in this study. For H2O, 

there are five important absorption bands. All these bands have been taken into account 

and they consist of 295 narrow bands in the spectral range from 150 cm-1 to 7500 cm -1 

[33]. In addition, for all the problems considered, the nozzle wall is assumed to be gray 

and the wall emissivity is taken to be 0.8. The inlet and outlet surfaces of the nozzle 

flow are treated as pseudoblack walls with the same temperatures as the local gases.

To assure that the statistical results make sense in the Monte Carlo simulation, two 

requirements, the accuracy of the statistical results and the independence of the results on 

the grid, must be met. In this study, the designated statistical accuracy of the results is
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^ = 0 .  l+0 .008( j ) + 0 .3 6 ( f  f

L

M ^ l.3 , Pte=1.0atm, Tto=3000K, L=0.25m, 0=1.0

Fig. 6.4 Physical model for validation calculation.
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Fig. 6.5 Comparison of frozen temperatures along the centerline.
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Fig. 6.6 Comparison o f reacting temperatures along the centerline.
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defined in such a way that when the relative statistical errors of results are less than ±5%, 

the probability of the results lying within these limits is greater than 95%. Independence 

of the results on a grid is considered to have been achieved when the volume element 

number in the x direction is 20  and the volume element number in the y direction is 20  as 

shown in Fig. 6.3. For this grid, the total number of energy bundles had to be 5,000,000 

and the required CPU time was about one hour in order to meet the designated statistical 

accuracy in results for a typical problem. To test the independence of the Monte Carlo 

results on the grid, the same problem was investigated with a finer gird in which the 

volume element number in the x direction was increased to 30 and the volume element 

number in the y direction was doubled. To obtain the same accurate results, the total 

number of energy bundles had to increase to 15,000,000 and the corresponding CPU 

time increased to three hours. Comparing the solutions for the two different grids, it 

was found that the difference for the net radiative wall flux was never more than 2 %, 

and the difference for the radiative source term was a little higher but less than 10%. In 

fact, the net radiative wall flux is the quantity we are most interested in, and its accuracy 

seems more important to us.

The grid considered for Monte Carlo computations in this study is coarser than that 

for numerical solutions of the energy equation. The intermediate values of the radiative 

source term within the grid for solutions of Eqs. (6.1) are obtained by interpolation 

and extrapolation. This should not introduce significant errors as the radiative source 

term is a slowly varying function compared to the temperature and its derivatives [6]. 

The major CPU time consumed is in the Monte Carlo simulation. Fortunately, Monte 

Carlo subroutines only need to be called one or two times to obtain converged steady state 

solutions. The reason for this will be explained later. It is believed that the computational 

time for Monte Carlo simulations can be reduced considerably if the code is vecterized 

and parallelized.
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The radiative effects on the flowfield were investigated first. It is common knowledge 

that convective heat transfer is very strong for a supersonic flow. Hence the effects 

of radiation may not be very important. To determine these effects quantitatively, a 

typical problem was selected in which the equivalence ratio of hydrogen and air, wall 

temperature, inlet flow temperature and the nozzle length are taken to be <£=1.0, Tw=1900 

K, Tj=1900 K and L=2.0 m. The inlet species mass fractions are / / / 2 =  0.0283, fo2 =  

0.2264, f Hi0 = 0.0, Joh =  0.0, f 0 = 0.0, f a = 0.0, f Nj =  0.74,529. Figures 

6.7-6.10 show the temperature, pressure, density distributions and velocity vector plots, 

respectively. Figures 6.11-6.14 show the mass fraction distributions for the species H2O, 

OH, H2 and O2, respectively. Knowing this information is essential in analyzing the 

effect of radiative heat transfer. As the premixed mixture of hydrogen and air enters the 

nozzle, an exothermic chemical reaction takes place immediately, and the temperature, 

pressure, and density increase abruptly, reaching their peaks in a region closer to the 

inlet location (Figs. 6.7-6.9) while the velocity decreases slightly (Fig. 6.10). During 

this rapid change in temperature, pressure, and density, the two major products H2O and 

OH experience a big jum p in mass fraction (Figs. 6.11 and 6.12) while the two major 

reactants H2 and O2 experience a big drop in mass fraction (Figs. 6.13 and 6.14). As 

the flow continues to move downstream, supersonic expansion plays a major role, and 

the temperature, pressure, and density are decreased while velocity is increased. At the 

same time, the chemical reaction proceeds but it becomes very weak. This is why there 

is little change in mass fractions for the species H2O, OH, H2 and O2 in the downstream 

region. Computation has been conducted for other cases also. Similar trends in results 

for temperature, pressure, density, velocity, and mass fractions for all species were also 

observed.

Figure 6.15 shows the radiative source distributions at three different locations for 

the case considered in Figs. 6.7-6.14. At the location x/L=0.I, temperature and pressure 

are very high and there is more radiant energy emitted than absorbed. Consequently, the
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radiative source distribution is higher than at locations x/L=0.5 and 0.9. The trend in 

results for - V .? r at the location x/L=0.1 is seen to be different from the results of other 

locations due to a decrease in temperature as the distance from the center line increases. 

The convective heat transfer distributions for the same locations as in Fig. 6.15 were 

also calculated but they are not plotted in Fig. 6.15. This is because of large differences 

between the convective and radiative results; and also due to opposite signs for convective 

results at different locations. In most regions, the absolute value of the convective heat 

transfer is two or three orders of magnitude larger than the radiative source term. This 

situation does not change as long as the speed of the How is very high. Consequently, the 

effects of radiation on the flowfield are very weak for supersonic flows. This confirms 

our expectation and also answers the question that the Monte Carlo subroutine only needs 

to be called one or two times to obtain converged steady state solutions. As a matter of 

fact, a case without radiation was considered and the differences in temperature, pressure, 

density, and species mass fractions between the two cases were found to be less than ± 1%.

The radiative effects on the heat transfer on the nozzle walls are investigated next. 

Unlike the radiative effects on the flowfield, the effects of radiation on the nozzle wall 

flux are significant when compared with those from conduction. The following results 

will demonstrate the relative importance of radiative and conductive wall fluxes and how 

they change with equivalence ratio, wall temperature, inlet flow temperature, and nozzle 

size. Here, the conductive wall flux is defined as

where n represents normal direction to the wall.

The effects of the equivalence ratio <j) on qrw and qcw are illustrated in Fig. 6.16. For 

a specific <j> value, qcw is seen to increase first, reach a peak and then decrease. This is 

compatible with the trends in temperature variation as seen in Fig. 6.7. Unlike 9cui> Q rw

is seen to increase with distance along the nozzle. This behavior is justifiable. In this

w a ll

(6.56)
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Fig. 6.16 Comparison of radiative and conductive 

wall fluxes for three different equivalence ratios.
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study, the inlet and outlet of the flow are treated as the pseudoblack walls. The outlet flow 

temperatures are larger than the inlet flow temperatures and the outlet area is also bigger 

than the inlet area. In addition, as the flow goes downstream, the cross-sectional area of 

the flow increases. Consequently, the optical length increases. These two reasons result 

in higher value of qTW as the distance from the inlet location increases. Comparing the 

values of qrw and qcw for each case, it is clear that radiation is predominant. Even in the 

inlet region, qTW is more than two times higher than qcw- The results for three different 

equivalence ratios reveal different behavior for combustion with lean and rich mixtures. 

As <j> increases from 0.6 to 1.0, the flow temperature and H2O mass fraction increase by 

about 10% and 50% respectively, and pressure decreases by about 5%. The effects of 

these changes result in a sizable increase in the values of qTW and qcw■ However, as <j> 

increases from 1.0 to 1.4, the flow pressure decreases by about 5% and the H2O mass 

fraction increases by about 15%, but the temperature shows little change. This results in 

only a slight change in the values of qTW and

Figure 6.17 shows the effects of the nozzle wall temperature on qrw and qcw. The 

change of the nozzle wall temperature is found to have little influence on the combustion, 

and the flow temperature, pressure and H2O mass fraction remain almost the same in 

most regions as Tw varies from 1500 K to 2100 K. As a result, the magnitude of the 

radiant energy absorbed on the wall is very close for the three cases with different nozzle 

wall temperatures. The value o f qTW is equal to the absorbed radiant energy minus the 

emitted radiant energy. So qTW is reduced with higher wall temperature, as seen in Fig.

6.17. As far as qcw is concerned, except in the entrance region , qcw is seen to exhibit 

minor changes among the cases with different wall temperatures.

The effects o f the inlet flow temperature on qrw and qcu, are demonstrated in Fig.

6.18. Inspection of the distribution of the qTW value among the three cases reveals a 

very interesting feature o f qTw. The values of qrw along the wall are not monotonically 

increased or decreased with Tj. The combined effects of temperature, pressure and H2O

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



k
W

/m

117

Radiative
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Fig. 6.17 Comparison of radiative and conductive 

wall fluxes for three different wall temperatures.
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Fig. 6.18 Comparison of radiative and conductive 

wall fluxes for three different inlet temperatures.
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mass fraction in the flow on radiation are responsible for this behavior. It is well known 

that increase o f temperature, pressure and concentration of participating media enhances 

radiation. As T; varies from 1500 K to 1800 K and then from 1800 K to 2100 K, the flow 

temperature increases by about 5% while the pressure and H2O mass fraction decrease 

by about 10% and 15% respectively at each stage. An increase in temperature tries to 

reinforce the radiation while a decrease of pressure and H2O mass fraction tries to reduce 

the radiation. So there exist two driving forces which compete with each other to affect 

the radiation. As a consequence of the competition, the lowest curve for qrw is seen for 

the case with T;= 1800 K and the highest values are observed for the case with T;= 1500 

K. Unlike qrw, the values for qcw are found to increase monotonically with T;. This is 

because the convective wall flux is only dependent on temperature.

Finally, the effects of the nozzle size on qTW and qcw are illustrated in Fig. 6.19. 

By changing the nozzle length, geometrically similar nozzles with different sizes can be 

obtained. As the nozzle length is reduced from 2.0 m to 1.0 m and then from 1.0 m to

0.5 m, the flow temperature and H2O mass fraction are decreased by about 5% while the 

pressure is increased by about 2% at each stage. The effect of increased pressure on the 

radiation is overshadowed by a decrease in the nozzle size, temperature and H2O mass 

fraction. Hence, lower values of qrw are seen in the figure as the nozzle length is reduced. 

For the smaller nozzle size, the flow temperature may be lower, but the normal derivative 

of temperature is actually higher. Therefore, contrary to qTW, the value qcw is observed 

to increase with a decrease in the nozzle size. The opposite trend between the values of 

qTW and qcw brings a question about the role of radiation in heat transfer on the nozzle 

wall. With a decrease o f nozzle size, the differences between the values o f qTW and qcw 

are reduced and the dominance of radiation is diminished. In fact, at L=0.5, the value 

of qcw is larger than the value of qTW in some parts of the nozzle wall. It is expected 

that radiation will become less important and conduction will replace radiation as the 

dominant mode of heat transfer on the nozzle wall if the nozzle size is reduced further.
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Fig. 6.19 Comparison of radiative and conductive 

wall fluxes for three different nozzle sizes.
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C hapter 7 

CONCLUDING REMARKS

The MCM has been applied to investigate radiative heat transfer in a nongray 

participating medium in an exact manner. The nongray model employed is based on 

a random statistical narrow band model. When a narrow band model is employed in the 

MCM, the spectral correlation only occurs between the transmittances of two different 

segments of the same path in the statistical relationship for determining the absorption 

location of an energy bundle. For the case with rellecting walls, Monte Carlo treatment 

with a narrow band model is similar to that with a gray model, and the spectral correlation 

between the reflected component of the wall radiosity and the transmittance occurring in 

other methods does not exist. Consideration of different problems reveals that the Monte 

Carlo solutions are in good agreement with available results of other methods but the 

MCM is much simpler to implement than other methods.

The validity of the Monte Carlo correlated formulations is further established by 

considering the steady-state energy transfer in laminar, incompressible, constant proper

ties, fully developed flow of absorbing-emitting gases between two parallel plates. The 

nongray Monte Carlo solutions were found to be in good agreement with the available 

approximate solutions. The gray Monte Carlo solutions were also obtained for the same 

problem and they also essentially match the available analytical solutions.

The exact correlated and non-correlated Monte Carlo formulations are very com

plicated for multi-dimensional systems. Solutions of these formulations are extremely 

difficult, if not impossible. However, by introducing the assumption of an infinitesi

mal volume element, the approximate correlated and non-correlated formulations were 

obtained which were tractable compared to the exact formulations. Consideration of dif-
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ferent problems and comparison of different solutions reveals that the approximate and 

exact correlated solutions agree very well, and so do the approximate and exact non- 

correlated solutions. However, the two non-correlated solutions lack physical meanings 

because they usually differ from the correlated solutions significantly. An accurate pre

diction o f radiative heat transfer in any nongray and multi-dimensional system is possible 

by using the approximate correlated formulations.

By investigating the radiative interactions for chemically reacting supersonic flows of 

premixed hydrogen and air in an expanding nozzle, the correlated Monte Carlo method 

developed earlier has been found to be a very convenient and reliable tool to analyze 

radiative heat transfer in multi-dimensional nongray systems. For chemically reacting 

supersonic flows, the effects of radiation on the flowfield can be neglected but the radiative 

effects on the heat transfer on the nozzle wall are significant. The extensive parametric 

studies on the radiative and conductive wall fluxes have demonstrated that the magnitude 

o f the radiative and conductive wall fluxes are very sensitive to the equivalence ratio when 

the equivalence ratio is less than 1.0 but they are less sensitive when the equivalence ratio 

is higher than 1.0. The change in the wall temperature has little effect on the combustion. 

Thus, the radiative wall flux is decreased with increases in wall temperature. But the 

conductive wall flux seems insensitive to changes in wall temperature. The radiative 

wall flux does not change monotonically with inlet flow temperature. Lower inlet flow 

temperature can yield higher radiative wall flux. The conductive wall flux, however, 

increases with an increase in the inlet flow temperature. The radiative wall flux decreases 

but the conductive wall flux increases with a reduction in nozzle size. For larger nozzles, 

the radiative wall flux is dominant over the conductive wall flux. However, the situation 

can be reversed when the nozzle size is reduced.
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APPENDIX A:

PROGRAM LISTING FOR MONTE CARLO SIMULATION

This code is developed to calculate radiative source distribution and net radiative 

wall flux in a one-dimensional problem. A lot o f subroutines in the code are from the 

IMSL library. The spectral correlation has been taken into account Input files consist 

of parameter statement file “param.inc”, common statement file “common.inc” , and three 

narrow band information files “y.dat”, “fibig.dat’\  and “f2big.dat”. Temperature, pressure, 

and concentration distributions should be also given before calculation, 

program moncar 

include ’paramm.inc’ 

include ’commonm.inc’ 

parameter (mx=22 ,mz=22) 

external gamfun,bs2vl,funtao 

real rwksp(20000),tarray(2),len(3) 

dimension rf(mx),t2 (mx),xl(mx) 

dimension sg(mx),sq(mx),nn(mx),em(3) 

dimension xp(mx),zp(mz),tm(mx,mz) 

common/cgas/p,xh2o,xn2 ,xo2 ,xco2 ,dlx 

common/worksp/ rwksp 

common/ct/tp

data xh2o,xn2 ,xo2 ,xco2/ 1.0 ,0 .0 ,0 .0 ,0 .0/ 

data em /0.90,0.8,0.1/ 

data len/1.0,60.,100.0/
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c open(unit=4,file="tinbig.dat") 

open(unit=5,file="tout.dat") 

call iwkin(20000) 

call coefbs 

c read(4,*) (t2(i),i=l,mx) 

d lx=1.0/float(mx-2 ) 

dlz=1.0/float(mz-2 ) 

xp(l)=0.0 

xp(2)=0.5*dlx 

xp(mx)=1.0 

zp(l)=0.0 

zp(2)=0.5*dlz 

zp(mz)=1.0 

do 1 i=3,mx-l

1 xp(i)=xp(i-l)+dlx 

do 2 j=3,m z-l

2 zp(j)=zp(j-l)+dlz 

do 3 i=l,m x

do 3 j= l,m z

tm(i,j)=500.0+500.0*(1.0-(2.0*zp(j)-1.0)**2)*xp(i)

3 continue

do 303 j= l,m z 

tm(mx,j)=300.0 

303 continue

do 999 i9=3,mx,2
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do 304 j= l,m z 

t2(j)=tm(i9,j)

304 continue

timel=etime(tarray) 

pi=3.1415926 

n= 100000

p=1.0

do 910 i 1=2,2 

el= em (il) 

e2=em (il) 

do 900 i2=2,2 

alx=len(i2 )

dlx=alx/(real(mx)-2 .0 )

nran=15249649

call m set (nran)

sum=0.0

do 20  i= l,m x

rf(i)=0.0

sg(i)=0 .

20  sq(i)=0.0

xl(2)=0.5/(real(mx)-2.0) 

do 5 i=2,mx-l

xl(i)=xl(2 )+float(i-2 )/(real(mx)-2 .0 )

t=t2(i)

call baneng(t,l)
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sq(i)=qv

sum=sum+sq(i)

5 continue 

t=t2 (l)  

call surwc(t) 

sq(l)=sqw *el 

sq(mx)=sqw*e2 

sum=sum+sq( 1 )+sq(mx) 

sqra=sum/float(n) 

do 13 i=l,m x 

nn(i)=ifix(sq(i)/sqm+0.5)

13 continue 

is l= l 

ntt=0 

nt=0

23 go to (30,31,36,120),is 1

30 it=l

go to 39

31 it=mx

go to 39

36 it=2

38 t=t2(it) 

gamma=gamfun(t) 

call baneng(t,2)

39 is2=isl
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ar=munf()

go to (40,41,45),is 1

40 ran=munf()

ran=ws l+ran*(ws2-ws 1) 

waveno=bsval(ran,kxord,xks 1 ,nxd 1 ,bss 1) 

go to 471

41 ran=munf()

ran=ws l+ran*(ws2-ws 1) 

waveno=bsval(ran,kxord,xks 1 ,nxd 1 ,bss 1) 

go to 471 

45 ran=munf()

waveno=bsval(ran,kxord,xkv 1 ,nxd 1 ,bs v 1)

47 park=bs2vl(waveno,t,kxord,kyord,xk 1 ,yk 1 ,nxd 1. 

+nyd l,b sco ll)

pardlt=bs2vl(waveno,t,kxord,kyord,xk 1 ,yk 1 ,nxd 1, 

+nydl,bscol2 )

471 nt=nt+l 

i=it

go to (48,48,49),is 1

48 u=0.0 

sumk=0.0 

sumb=0.0 

go to 50

49 ranl=munf() 

if(ranl.g t0 .5) go to 491
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rx=bsval(ran 1 ,kxord,xkb 1 ,nb,bsb 1) 

go to 492

491 ranl=1.0-ranl

rx=-bsval(ran l,kxord,xkb 1 ,nb,b.sb 1)

492 rxl=dlx/abs(rx) 

u=xh2o*p*rxl 

beta=2.0 *gamma*pardlt 

ar=(1.0-funtao(u,park,beta))*ar 

u 1=0.0

sumk 1=0.0 

sumb 1=0.0 

us=u

sumks=park*u 

sumbs=sumks*beta 

if(rx.lt.0.) go to 496 

494 i=i+l

if(i.gt.(m x-l)) go to 80 

ta=t2 (i)

gama=gamfun(ta)

park=bs2vl(waveno,ta,kxord,kyord,xk 1 ,yk I .nxd I, 

+ nyd l,b sco ll)

pardlt=bs2vl(waveno,ta,kxord,kyord,xk 1 ,yk 1 ,nxd 1,

+nydl,bsco l2 )

deltu=p*rxl*xh2o

ul=ul+deltu
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sumk 1 =sumk 1+park*deltu

sumbl=sumbl+park*deltu*2 .0 :i:iiama'i:pardli

u2=ul+us

sumk2=sumk 1 +sumks

sumb2=sumb 1+sumbs

efk l=sum kl/u l

efb l= sum bl/u l/efk l

efk2=sumk2/u2

efb2=sumb2/u2/efk2

dtao=funtao(u 1 ,efk 1 ,efb 1 )-l'un tao( u2 ,cfk2 ,clli2 ) 

if(dtao.lt.ar) go to 85 

go to 494 

496 i=i-l

if(i.lt.2) go to 79 

ta=t2 (i)

gama=gamfun(ta)

park=bs2vl(waveno,ta,kxord,kyord,xk 1 ,yk I ,nxd 1, 

+ nyd l,b sco ll)

pardlt=bs2vl(waveno,ta,kxord,kyord,xk I ,yk 1 ,nxd 1,

+nydl,bscol2 )

deltu=p*rxl*xh2o

ul=ul+deltu

sumk 1 =sumk 1 +park*deltu

sumb 1 =sumb 1 +park*deltu*2.0 *gam a* pard 11

u2=ul+us
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sumk2 =sumk 1 +sumks

sumb2=sumbl+sumbs

efk l= sum kl/u l

efb l= su rab l/u l/e fk l

efk2 =sumk2/u2

efb2=sumb2/u2/efk2

dtao=funtao(u 1 ,efk 1 ,efb 1 M'untao(u2 ,etk2 ,d 1->2 ) 

if(dtao.lt.ar) go to 85 

go to 496 

50 ranl=m unf() 

go to (54,55),is2 

54 rx=sqrt(l.-ranl)

541 i=i+l

if(i.gt.(m x-l)) go to 80 

ta=t2 (i)

gama=gamfun(ta)

park=bs2vl(waveno,ta,kxord,kyord,xk 1 ,yk 1 ,n.\d 1, 

+ n y d l,b sco ll)

pardlt=bs2vl(waveno,ta,kxord,kyord,xk 1 ,yk 1 .nxd 1, 

+ nyd l,bsco l2 ) 

deltu=p*xh2o*dlx/rx 

go to (543,543,544),is 1 

543 u=u+deltu

sumk=sumk+park*deltu

sumb=sumb+park*deltu*2 .0 *gama*pardli
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efk=sumk/u 

efb=sumb/u/efk 

tao=funtao(u,efk,efb) 

if(tao.lt.ar) go to 85 

go to 541 

544 ul=ul+deltu

sumk 1 =sumk 1 +park*deltu

sumbl=sumbl+park*deltu*2 .0 *gama*pardli

u2=ul+us

sumk2=sumkl+sumks

sumb2=sumbl+sumbs

efkl=sum kl/ul

efbl=sum bl/ul/efkl

efk2=sumk2/u2

efb2=sumb2/u2/efk2

dtao=funtao(ul,efkl,efbl)-luniao(u2 ,L'lk2 ,cni2 ) 

if(dtao.lt.ar) go to 85 

go to 541 

55 rx=-sqrt(l.-ranl)

551 i=i-l

if(i.lt.2) go to 79 

ta=t2 (i)

gama=gamfun(ta)

park=bs2vl(waveno,ta,kxord,kyonJ,xk 1 ,yk I .nxd 1. 

+ nydl,bsco ll)
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pardlt=bs2vl(waveno,ta,kxord,kyord,xk 1 ,yk 1 ,nxd 1,

+nydl,bscol2 )

deltu=-p*xh2o*dlx/rx

go to (553,553,554),is 1

553 u=u+deltu 

sumk=sumk+park*deltu 

sumb=sumb+park*deltu*2 .0 *gama*pardlt 

efk=sumk/u

efb=sumb/u/efk 

tao=funtao(u,efk,efb) 

if(tao.lt.ar) go to 85 

go to 551

554 ul=ul+deltu

sumk 1 =sumk 1 +park*del tu

sumb 1 =sumb 1 +park*deltu*2 .0 *gama:!; paid 11

u2=ul+us

sumk2=sumk 1 +sumks

sumb2=sumbl+sumbs

efk l=sum kl/u l

efb l= sum bl/u l/efk l

efk2=sumk2/u2

efb2=sumb2/u2/efk2

dtao=funtao(u 1 ,efk 1 ,efb 1 )-funtao(u2 ,elk2 ,d b 2 ) 

if(dtao.It.ar) go to 85 

go to 551
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79 is2=l

go to 86

80 is2=2

go to 86

85 is2=3

86 go to (90,91,110),is2

90 i= l

go to 92

91 i=mx

92 ran=munf() 

if((is2 .eq.l.and.ran.gt.eI).or.(is2.eq.2 .and.r;in.gu,2 )) 

+go to 50

sg(i)=sg(i)+sqm 

59 if(nt.lt.abs(nn(it))) go to 39 

ntt=ntt+nt 

nt=0

102 if(isl.ne.3) go to 104 

it=it+l

if(it.le.(m x-l)) go to 38 

104 is l= is l+ l 

go to 23 

110 sg(i)=sg(i)+sqm 

go to 59 

120 call sub200 (sg,mx) 

qw 1 =-(sq( 1 )-sg( 1)) *0.001
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qw2=-(sq(mx)-sg(mx))*0 .0 0 1 

write(5,25) el,e2,alx,n

25 form at(lx,’e l= , ,f6.3,2x,’e2=M'6.3,2x,’x=',lV..i,2x,,n=’,i9/) 

\vrite(5,26) qw l,qw 2

26 format( 1 x,’qw 1 = ’ ,f 15.6,4x,’qw 2= \ f 15.6/) 

do 130 i=2,mx-l 

rf(i)=-sg(i)+sq(i) 

rf(i)=-rf(i)/dlx*0 .1

write(5,27) xl(i),rf(i)

27 form at(lx,fl5.6,4x,fl5.6)

130 continue

time2=etime(tarray) 

time=time2-tirael 

write(5,390) time 

390 form at(lx,’cpu time spent =\lV.3////)

900 continue 

910 continue 

999 continue 

stop 

end

c

c

subroutine coefbs 

external bs2 in,bsnak 

include ’paramm.inc’
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include ’commonm.inc’

dimension fd ll(nxd l,nyd l),fd  12(nxd 1,11yd 1 ),yd 1 (11yd 1)

open(unit=7,file="y.dat")

open(unit=8,file="f 1 big.dat")

open(unit=9,file="f2big.dat")

read(7,*) (yd 1 (i),i= 1 ,nyd 1)

read(8,*) (i,xd 1 (i),(fd 1 l(i,j),j= 1 ,nyd 1 ),i= 1 ,nxd 1)

read(9,*) (i,xdl(i),{fdl2(i,j),j=l,11yd 1 ),i= 1 ,nxdI)

call bsnak(nxdl,xdl,kxord,xkl)

call bsnak(nyd 1 ,yd 1 ,kyord,yk 1)

call bs2 in(nxdl,xdl,nydl,ydl,l'd l l,ldn,k.\urd,

+kyord,xk 1 ,yk 1 ,bsco 11)

call bs2 in(nxd 1 ,xd 1 ,nyd 1 ,yd 1,1'd 12 ,ldf 1 .kxurd,

+kyord,xk 1 ,yk 1 ,bsco 12)

return

end

c

c

subroutine baneng(t,ifiag)

include ’paramm.inc’

include ’commonm.inc’

external planck,gamfun,bs2vl,emicoi\hsiiU

dimension brel (nxd 1 ),cpmu 1 (nxd 1,11b)

dimension tg l(n x d l)

common/cgas/p,xh2o,xn2 ,xo2 ,xu)2 ,dl\
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common/cpar/gamma,park,par<JIt

common/ct/tp

eps=1.0e-03

garama=gamfun(t)

tp=t

delomg=xd 1 (2 )-xd 1(1) 

dm u=1.0/float(nb-l) 

do 5 i=l,nb

m u(i)=1.0-dmu*float(i-1)

5 continue 

do 30 i= l,nxdl 

x=xdl(i) 

r=planck(x)

park=bs2vl(x,t,kxord,kyord,xk 1 ,yk 1 ,nxd 1. 

+ n yd l,b sco ll)

pardlt=bs2vl(x,t,kxord,kyord,xk 1 ,yk 1 ,n\d 1. 

+nydl,bsco l2 ) 

go to (25,10) iflag 

10 do 15 j= l,nb  

xa=mu(j)

call qdags(emicoe,1.0 ,xa,cp.s,cp.s,rl,cn) 

cpmu 1 (i,j)=2 .0 *r 1 *r*delomg 

15 continue

25 call qdags(emicoe,1.0 ,0 .0 ,cps,cps,rl,cn) 

bre 1 (i)=4.0*rl *r*delomg
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30 continue 

qv=0.0

do 40 i= l,nxdl 

qv=qv+brel(i)

40 continue

go to (50,55) ifiag 

50 go to 99 

55 eps4=1.0e-7 

d=bre 1(1) 

tg l(l)= 0.0 

do 60 i=2,nxdl 

d=d+brel(i) 

tgl(i)=d/qv

if((tg 1 (i)-tg 1 (i-1 )).le.eps4) tg 1 (i )=tg! (i -1 )+cps4 

60 continue

call bsnak(nxdl,tgl,kxord,xkvl)

call bsint(nxdl,tgl,xdl,kxord,xkv 1 ,b.sv 1)

do 70 j= l,nb

cpmu(j)=0.0

do 80 i= l,nxdl

cpmu(j)=cpmu(j)+cpmu 1 (i,j)

80 continue

cpmu(j)=cpmu(j)/qv 

70 continue

call bsnak(nb,cpmu,kxord,xkb I)
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call bsint(nb,cpmu,mu,kxord,xkb 1 ,bsb 1)

99 return 

end

c

c

function emicoe(x)

cornmon/cgas/p,xh2o,xn2 ,xi>2 ,xco2 ,dl.\

common/cpar/gamma,park,pardlt

eti=sqrt(1 .0+xh2o*p*dlx*park/gam m a/paixlli/x)-!.()

tao=exp(-2 .0 *gamma*pardlt*cii)

em icoe=-(1.0 -tao)*x

return

end

function gamfun(t)

common/cgas/p,xh2o,xn2 ,xo2 ,xco2,dlx

ts=296.0

gamfun=0.066*p*(7.0*xh2o*ts/i+.sLin(i.s/i):'::( l.2 :i:(xli2o+xn2)+

+0 .8*xo2+l ,6*xco2 ))

return

end

c

c

subroutine surwc(t) 

include ’paramm.inc’ 

include ’commonm.inc’
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external planck,bsint,qdags

dimension tl(n x d l)

common/ct/tp

eps=1.0e-04

x 1=99999.0

s=5.6696e-08

power=s*t**4

tp=t

call qdags(planck,0 .0 ,xd 1 ( 1 ),eps,ep.s.r I .err)

call qdags(planck,0 .0 ,x d l(n x d l),cp.s,eps,r2,err)

sqw=r2 -rl

w sl= rl/pow er

ws2=r2/power

eps4=1.0e-7

tl( l)= w s l

do 10 i=2 ,nxdl

x=xdl(i)

call qdags(planck,0 .0 ,x,eps,eps,re,err) 

tl(i)=re/power

if(t 1 (i).le .tl(i-1)) 11 (i)=t 1 (i-1 )+eps4 

10 continue

call bsnak(nxd 1 ,t 1 ,kxord,xks 1)

call bsint(nxd 1 ,t 1 ,xd 1 ,kxord,xks 1 ,bss 1)

return

end
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C

C

function planck(x) 

common/ct/tp 

cl=3.740e-08 

c2= 1.4387

planck=cl*x**3/(exp(c2*x/ip)-I.O)

return

end

function funtao(u,park,beta) 

funtao=exp(-beta*(sqrt( 1 .()+2.()*u*p:irk/bcia)-1.0)) 

return 

end

c

c

subroutine sub200(sg,mx) 

dimension sg(990) 

m s=(m x+l)/2 

do 210  i= l,m s 

is=mx-i+l

sg(i)=(sg(i)+sg(is))/2 .

210  sg(is)=sg(i)

240 return 

end
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COMPUTER FLOW CHART FOR APPENDIX A

no
bMX

yes
NT>NN(I)

no

no

yes

yes
RAN

no AL=AL-ALR

end

1= 1+1

s ta r t

MT=NT+1

NT=0

select RAN

calculate ALX

ALR=AIMIN(ALALX)

SG(IT)=SG(IT)+1

>  calculate IT on surface

calculate error ERR

calculate x coordinates of IT

calcuate SQ(I). SQM, NN(I), etc.

select ran. no. RAN, calculate AL

select ran. no. RAN, calculate RX
calculate x coordinates of IT

calculate x coordinates at I element

calculate radiative heat transfer

calculate IT where bundle is absorbed
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APPENDIX B:

PR O G R A M  LISTIN G  FO R  RADIATIVE INTERA CTIO N S 

IN LA M IN A R FLOW S USING M ONTE CA RLO  SIM ULATION

This code is developed to investigate the radiative interactions in laminar flows 

between two parallel plates. The Monte Carlo simulation subroutine “moncar” used 

here is the same as given in Appendix A. 

program mcom 

include ’param.inc’ 

include ’common.inc’ 

parameter (mx=100,n=20) 

real rwksp(20000),tarray(2) 

external fcn,neqnf 

dimension q(n),tn(mx),te(mx),qgr(n) 

dimension ald(10),qtd(3),temper(4),pres(4) 

common /al/qly,aky,h,alx,tw,q,qgr 

common/worksp/ rwksp 

common/cgas/p,xh2 o,xn2 ,xo2 ,xco2 ,dlx 

data xh2o,xn2 ,xo2 ,xco2/ 1.0 ,0 .0 ,0 .0 ,0 .0/ 

data w/0.5/,eps/1.0e-04/ 

data pres/1.0,1.0,5.0,10.0/ 

data temper/300.0,500.0,1000.0,2000.0/ 

data qtd/1.0e06,5.0e05,1.0e07/ 

data ald/0.01,0.05,0.1,0.5,1.0,5.0,10.0,20.0,50.0,100.0/
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open(unit=5,file="ngput.dat")

call iwkin(20000)

call coefbs

nl=50000

errrel=1.0e-03

itmax=50

e= 1.0

time 1 =etime(tarray) 

do 599 ii= l,l 

p=pres(ii) 

do 690 ij=2,2 

tw=temper(ij)

fb = (4186.8/360* I30.)*((iw/273.0)**I.4X) 

do 691 it=2,2 

qt=qtd(it) 

do 692 kk=6,6

alx=ald(kk) 

h=alx/(real(2*n)-1.0 ) 

dlx=h

qly=12.0 *qt*h/(1000.0 *alx)

aky=fb/h/1000.0

qrt=qt*alx/fb

iter=0

sumt=0.0

sum tl=0.0
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w rite(5,l) nl,n,alx,tw,p,qt

1 form at(//lx,’n l= \ilO ,lx ,,n= \i3 ,2x ,,alx=\lV.3.

*2x,lx ,,tw =\f9.3,2x,’p=\!'6 .2 ,2x,'q i= \ I p^J.3) 

do 3 i= l,n  

tn(i)=tw

3 continue 

tn(l)=tw

99 iter=iter+l

if(iter.gt.21) go to 98

timea=etime(tarray)

call moncar(nl,n,alx,e,m,q)

timeb=etime(tarray)

delt=timeb-timea

sumt=sumt+delt

do 4  i= l,n

te(i)=tn(i)

call baneng(te(i),l) 

qgr(i)=qv

4  continue

timea 1 =etime(tarray)

call neqnf(fcn,emel,n,itmax,ie,tn,fnonnj

timeb 1 =etime(tarray)

deltl=tim ebl-tim ea 1

sum tl=sum tl+deltl

do 6 i= l,n
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tn(i)=( 1.0 -w)*te(i)+w*tn(i)

6 continue 

do 7 i= l,n

if(abs((tn(i)-te(i))/tn(i)).gl.eps) go to W

7 continue

98 w rite(5 ,ll) iter

11 format(2x,’iter=\i5/) 

write(5,12) (i,tn(i),i=l,n)

12 format(2x,i6,2x,lpel2.5) 

mi=2*n

do 13 i=n+l,m i 

tn(i)=tn(mi-i+l)

13 continue

do 15 i= l,m i

x=real(i-l)*h/alx

tn(i)=(tn(i)-tw)/qrt*(x-x*x)*6 .

15 continue 

sum=0.0 

do 17 i=2,mi 

su=(tn(i)+tn(i- l))*h/2 ./alx 

sum=sum+su

17 continue 

write(5,18) sum

18 format(/’bulk temperature for monte carlo .so!uiiun=Mpel 1.4////) 

time2=etime(tarray)
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time=time2-timel

tim el=tim e2

write(5,39) time,sumt,sumtl 

39 form at(lx,’cpu time spent =’,lV.3/lx,
*’cpu time spent for monte carlo simulation̂ ,IV.3/1 x, 

*’cpu time spent for solving set of cquaiions=",lV.3///) 

692 continue 

691 continue 

690 continue 

599 continue 

stop 

end

c

c

subroutine fcn(tn,f,n)

parameter (m=20 )

dimension tn(n),f(n),q(m),qgr(m)

common /al/qly,aky,h,alx,tw,q,qgr

tn(l)=tw

f(l)= 0.0

do 2  i=2 ,n-l

x=real(i-l)*h/alx

f(i)=qgr(i)-(tn(i-l)-2 .*tn(i)+tn(i+1 aky 

*+qlyJ,c(x-xa,c*2 )-q(i)

2  continue
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x=real(n-l)*h/alx

f(n)=qgr(n)-(tn(n-l)-2.*in(n)+in(n))*:iky

*+qly*(x-x**2)-q(n)

return

end
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C O M PU TER  FLOW  C H A R T  FOR APPEND IX B

start

read input data

call monte carlo subroutine

assume temperature distribution

solve energy equation

no
temperature convergent
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