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ABSTRACT

A FINITE ELEMENT FORMULATION FOR THE LARGE DEFLECTION
RANDOM RESPONSE OF THERMALLY BUCKLED STRUCTURES

James Eugene Locke
01d Dominion University, 1988
Director: Dr. Chuh Mei

The effects of temperature and acoustic loading are included in a
theoretical finite element 1large deflection formulation for thin,
isotropic plate and beam type structurcs. Thermal loads are applied as
steady-state temperature distributions, and acoustic ioads are takes to
be stationary and Gaussiarn with zero mean and uniform magnitude and
phase over the surface of the structure. Material propertiec are
considered to be independent of temperature. Also, inplane and rotary
inertia terms are assumed to be neglegible, and all inplane edge
conditions are taken to be immovable. For the random vibration

analysis, cross correlation terms are included.

The nature of the loads leads to the solution of two separate
problems. First, the problem of thermal postbuckling is solved to
determine the deflections and stresses due to the thermal load only.
These deflections and stresses are then used as initial deflections and

stresses for the random vibration analysis.

Since both analyses are nonlinear, iterative technigues are used to
solve each. The solution technique used for the thermal postbuckling

analysis is that of Newton-Raphson iteration. This method is found to
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always converge; whereas, direct iteration fails to converge. For the
large deflection random vibration analysis, the linear mode shapes of
the thermally buckled structure are used to reduce the equations of
motion to a system of nonlinear modal equations. An equivalent
linearization technique is then used to iteratively solve for the mean
square deflections. Instead of using direct iteration, an underrelaxa-
tion technique is employed to reduce the number of iterations required
for a converged solution. In addition to obtaining mean square deflec-
tions, the boundary for stable random vibrations for the thermally
buckled structure (snap-through boundary) is predicted by considering

the incremental equations of motion.

Solutions obtained using these analysis methods are compared with
previous solutions to assess the accuracy of tne finite element
formulation. The thermal postbuckling solution is compared with a 25-
mode classical solution for a square plate clamped on all edges, and the
random vibration solution is compared with 100-mode classical beam
solutions. Excellent agreement with the classical solutions is obtained

for each of these problems.

The present study shows that the finite element method can be used
to analyze structures subjected to combined thermal/acoustic loads, and
the results and analytical methods presented herein should aid in the

design of such structures.
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Chapter 1
INTRODUCTION

1.1 Purpose of Study

Modern applications of structural mechanics frequently involve the
use of high strength, light weight materials that are designed to endure
combinations of severe static and dynamic Tloadings. These severe
loadings can produce nonlinear structural behavior which nas typically
been dealt with in an empirical fashion by testing various structural
components 1in simulated loading environments. However, with advanced
materials structures can be tailored for a specific purpose, and since
testing is not practical for every conceivable structural configuration,
the best design could be one for which no test data is available. To
better evaluate potential designs, nonlinear analysis methods have been
developed for particular types of structures and loadings, but situa-
tions do occur for which general purpose nonlinear analytical methods
are not available, for example, thin structural components subjected to

a cembined thermal-acoustic loading.

Future aircraft and spacecraft structures can be expected to
operate at elevated temperatures and high noise levels [1]*. Numerous

experimental studies [2-6] have been conducted to determine the 2ffect

* . . .
The numbers in brackets indicate references.
1
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of elevated temperature on aircraft structural components. These
studies indicate that aircraft panels subjected to relatively small
variations in temperature tend to buckle. Consequently, Tlarge
deflection postbuckling theory must be used to determine the deflections
and stresses. Furthermore, test results [6-18] for various aircraft
panels indicate that high noise 1levels produce 1large deflections.
Again, large deflection theory must be used for the determination of
deflection and stresses. It has also been found [7] that buckled panels
subjected to high noise levels produce not only large deflections but
also become dynamically unstable (snap-through) at sufficiently high
noise levels. This 1instability leads to Tlarge stresses and could
greatly reduce the sonic fatigue lifetime. Thus, this type of situation
should be avoided if at all possible; however, current analytical design
methods for sonic fatigue [8, 9, 19-21] are based primarily on linear
structural theory with empirical corrections to account for nonlinear
behavior and are applicable only for specific applications. It is,
therefore, the purpose of this study to develop an analytical formula-
tion to determine the large deflection random response of thermaily
buckled thin beam and plate type structures. To facilitate the treat-
ment of arbitrary boundary conditions and temperature distributions, the
finite element method is used to derive the governing nonlinear

equations of motion.

1.2 Literature Review

In 1952, Gossard, Seide and Roberts [2] conducted both experimental
and analytical studies to determine the stresses and deflections of a

simply supported flat plate subjected to a tent-like temperature
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distribution. The theoretical analysis consisted of using approximate
methods for determining both the critical buckling temperature and the
postbuckling behavior. The critical buckling temperature and
corresponding mode shape were determined using a Rayleigh-Ritz formula-
tion. For the postbuckling analysis, appropriate expressions were
assumed for both the deflection and the stress function. Galerkin's
method was employed for calculation of the resultant deflections and
stresses. The analytical results were found to compare quite well with
the experimental results, thus demonstrating the accuracy of the

analytical solution.

The first investigation of an "exact" nature for the large
deflection of heated plates was conducted by Wilcox and Clemmer [22].
Their solution was based on a previous solution developed by Levy [223]
for a simply supported square plate. Paul [24] also extended this
"exact" solution to a plate clamped on all edges. The Levy solution
involved the use of an infinite Fourier series for the transverse
deflection, the inplane stress function and the normal pressure with the
coefficients of the series being solved for by direct substitution into
the von Karman large deflection plate equations. This reduces the
system of nonlinear partial differential equations to a system of
nonlinear algebraic equations. The accuracy of the solution, of course,
depends on the number of terms included in the series, and the exact
solution should theoretically be approached as the number of terms in
the series approaches infinity. In practice, however, only a finite
number of terms may be included, but this does not present any problem
since Paul [24] found that only a relatively small number of terms were

needed to accurately determine deflections and stresses. Paul's
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analytical results were also found to compare favorably with experi-
mental data, thus further confirming the validity of von Karman large
deflection plate theory modified to include the effect of thermal
stresses. The results of this study also indicate that nonuniform
temperature distributions have a significant effect on both the thermal
buckling load and the postbuckling deformation and, therefore, should be
considered for the most efficient structural design. Additionally, for
nonuniform temperature distributions, designs based on the average panel

temperature can, in some cases, lead to nonconservative predictions.

Alternative solution techniques such as the finite element method
[25-31] have also been successfully applied to the problem of post-
buckling. Mechanical postbuckling, which may be treated as a special
case of thermal postbuckling, has been treated by Yang et al. [25, 26]
using a finite element formulation. These results were found to closely
agree with previously obtained classical results [23, 32, 33]. Rao and
Raju [27-30] have used the finite element method to investigate both
mechanical and thermal postbuckling for circular plates and beams. For
thermal postbuckling, only uniform temperature distributions were
considered. Again, the finite element results were found to compare

very well with results obtained using a classical formulation.

To [34] has recently presented a very comprehensive survey article
that reviews techniques for the analysis of nonlinear systems subjected
to random excitation. Methods reportec to be applicable to both single-
degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) systems
include statistical or equivalent Tlinearization techniques (EL), the
Fokker-Planck-Kolmogorov equation (FPKE) and moment equation (ME)

approaches, The FPKE approach [35] has been applied to several
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nonlinear problems [36-38], and exact closed-form solutions have been
obtained for SDOF systems. However, for MDOF nonlinear systems exact
solutions have not been found; hence, approximate methods must be
employed. The EL techniques, on the other hand, have been found to be
readily applicable to both SDOF and MDOF nonlinear systems; conse-
quently, many studies [7, 13, 39-45] have used EL methods to investigate

the large deflection response of structures subjected to random loading.

Since test results [8, 10-14] indicate that there are more than one
mode responding, analyses [39, 40, 44, 45] have been condurted to
investigate the effect of MDOF solutions on the large deflection random
response of flat beams and plates. All of these efforts have started
with either the classical von Karman-Herrmann large deflection plate
equations or the Woinowsky-Kreiger large deflection beam equation.
These partial differential equations were then reduced to ordinary time-
dependent differential equations using either Galerkin's method or by
direct substitution into the equations. Mei [44] investigated the
response of a plate clamped on all edges and demonstrated that, indeed,
analytical predictions do improve when multiple modes are included in
the analysis. Seide [45] investigated nonlinear stresses and
detlections of beams subjected to random loading and indicated that as
many as 100-modal functions cculd be necessary for the accurate
determination of stresses. Recently, Prasad [40] used three modal
functions to obtain solutions for beams with both nonlinear stiffress
and damping., For the case of linear damping only, these three-mode
solutions were found to compare reasonably well with Seide's 100-mode

solutions for realistic levels of excitation.
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Finite eiement formulations for the nonlinear random vibration of
structures have been considered by relatively few researchers [46-49].
Both references [46] and [47] used the EL method. Hwang and Pi [46]
found that their proposed method could not be applied for acoustic
pressure levels that were too high while Busby and Weingarten [47] did
not note such a result for their method. Thus, the applicability of EL
methods to nonlinear finite element formulations seems to be question-
able. Neither of these studies made any comparisons with any other
approximate solutions, and Busby and Weingarten also assumed that the
equivalent linear stiffness matrix was diagonal which, in general, is
not true. Recently, Chiang and Mei [48] have considered a MDOF solution
for large deflection random response. They used an iterative solution
technique that assumes that the finite element equations of motion are
Tinearized for a given iteration. Solutions obtained for mear square
responses and stresses were found to compare very weil with classical
results obtained using a SDOF FPKE approach [35] and an EL MDOF approach
[40], thus establishing the applicability of the finite element method

to the problem of nonlinear random vibration.

In 1957, Bisplinghoff and Pian [5] experimentally and analytically
investigated the small amplitude free vibration of plates and beams
thermally buckled due to a uniform temperature distribution. Both the
plate and the beam were taken to be simply supported, and the plate
aspect ratio was three to one. A solution was developed for the plate
by using one term for the postbuckled shape and by expressing the
vibrating displaced shape as a combination of three symmetric mode
shapes. The resulting equations of motion were derived using Lagrange's

equation, and results for smell amplitude vibration were obtained by
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neglecting higher order terms. A similar type of analysis was conducted
for the beam. The analytical results were found to be in fair agreement
with the experimental data with discrepancies due to both non-ideal
support conditions and initial imperfections. Dokmeci and Boley [50]
later demonstrated that a better agreement between experiment and theory
could be obtained by considering multiple modes for both the postbuckled
shape and the vibrating displaced shape. Yang and Han [26] used a
finite formulation; the results nicely compared with those obtained by

Bisplinghoff and Pian.

The large deflection deterministic vibration of buckled structures
has been studied by several researchers [51-57]. Each of these efforts
used Galerkin's method in conjunction with the method of harmonic
balancing to reduce the governing partial differential equations to a
system of nonlinear algebraic equations. Yamaki et al. [51-54] con-
ducted both analytical and experimental studies for clamped circular
plates and clamped beams. Tseng and Dugundji [55] considered not only
harmonic motions but also dynamic instability (snap-through) for a
clamped beam. To investigate the snap-through motion Galerkin's method
and the method of Runge-Kutta numerical integration were used. Snap-
through was determined to have occurred based on observations of the
transient solution. Similar snap-through and dynamic instability
problems have also been considered by other researchers [58-65]. As
reported by reference [60], due to the lack of a valid definition for
“dynamic buckling", dynamic instability is generally considered to have
occurred when a small increase in some load parameter produces a large
increase in the response. Huang [63] also notes that some structures

may defcrm to an inside-out position without actually snapping-through.
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Humphreys [59] investigated whether an energy criteria could e extended
from SDOF to MDOF systems for the determination of dynamic instability
and found that the energy criteria was not generally extendable to MDOF

systems.

Very few analytical studies [67-70] have considered the large
deflection random response of either shallow shell type structures or
buckled structures. Seide et al. [67-69] has conducted experimental and
analytical studies for buckled beams subjected to uniform random
pressure. As for previous studies, either Galerkin's method or direct
substitution into tke governing equation was used to obtain time-
dependent ordinary differential equations. These equations were then
solved using both an EL techrigue and Runge-Kutta numerical integration.
The snap-through critera used for these studies is based on the
numerical integration results and is discussed in Chap. 4. Reference
[70] has considered the problem of first-passage time for the snap-
through of a shell-type structure using a SDOF system and numerically
integrating the equation of motion. For the SDOF system, the free
undamped motion can be described in terms of the total energy, that is,
the sum of the kinetic and potential energy, and curves of constant
energy can be used to determine the regions of stable and unstable
motion. Thus, if for a given loading, the system is in the unstable
region, snap-through has occurred. However, 2> mentioned by Seide et

al. [671, this method is not readily applicanie tc a MDCF system.

References [67]1, [69] and [70] were thought to be the only previous
analytical studies to consider the snap-through motion of structures
subjected to random excitation. However, as this manuscript was nearing

completion, it was noticed that C. F. Ng (also see Ref. [7]) had very
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recently completed a snap-through study. He used a SDOF system to model
a buckled plate, and EL results were used to derive simple formulas for

the prediction of snap-through.

1.3 Scope of Present Study

Considering the results and conclusions obtained by Paul [24], it
is apparent that nonuniform temperature distributions have a significant
effect on postbuckled stresses and deflections. In addition, Seide and
Adami [67] noted the need for improved analytical methods for the large
deflection random response and dynamic instability of buckled
structures. Mixson and Roussos [1] have also noted that the effects of
high temperatures, new materials and complex structural configurations
should be taken into account for the proper design of future aerospace
vehicles. It was for these reasons that a finite element formulation
was chosen for the present study. Following approaches similar tc Vang
et al. [25, 26] and Wood et al. [71], the goveriing finite element
equations are developed for both thermal postbuckling and large
deflection random vibration of thermally buckled structures. The random
loading is taken to be a uniformly distributed brcadband Gaussian "white

noise" with zero mean.

Ir Chap. 2, the governing variational principles for the present
problem are introduced and discussed. These include the principle of
virtual work and adjacent-equilibrium criterion. The nenlinear
equations of motion and the stability equations for the finite element
formulation are developed and include the effects of both thermal and
acoustic loads. Large deflection terms are included in first- and

second-order nonlinear stiffness matrices.
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Computational methods are presented in Chap. 3. A Newton-Raphson
iterative solution technique similar to that of Yang and Han [26] is
used for the solution of the thermal postbuckling problem. The
nonlinear stiffness matrices are of the same form as previous
formulations [25, 26, 71, 72]; however, the inclusion of thermal
stresses introduces a geometric stiffness matrix and a thermal load

vector.

The solution of the large deflection random vibration problem,
including snap-through, is the primary objective of the present
research. Using the 1linear mode shapes of the thermally buckled
structure, the governing system of finite element equations is reduced
to a system of nsnlinear modal equations. The resulting system of
nonlinear modal equations is solved using the EL method. While Ref.
[47] has used the finite element method to obtain a two-mode EL solution
for the large deflection random response of a flat, stress free beam,
the present study is the first finite element multiple-mode EL solution
technique for thermally stressed or buckled structures. In comparison
to Ref. [47], the present formulation also includes inplane deformation
and a fully populated (nondiagonal) equivalent iinear stiffness matrix.
Dynamic instability (snap-through) is investigated using the incremental
form of the nonlinear modal eguations in conjunction with the EL

results.

The methodology developed in the present study can be used to
obtain nonlinear modal equations for plates and beams subjected to
arbitrary temperature distributions with arbitrary boundary conditions.
These modal equations can then be solved using any of the solution

techniques available for MDOF norlinear systems. Using a finite element
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formulation to derive these nonlinear modal equations is considered to
be a significant contribution since for complex boundary cenditions
classical formulations are very difficult, if not practically
impossible, to apply. Previous studies [67, 69, 70], with the exception
of C. F. Ng's very recent study, have all used a numerical simulation
appreach for the determination of the snap-through boundary, and as
reported by Ref. [34], numerical (Monte Carlo) simulation solutions for
a SDOF system require computational time that is three orders of
magnitude greater than that for approximate solutions such as the EL
method. Hence, another contribution of the present study is the
computational efficiency, as compared to numerical simulation, of the

method used for determining the snap-through boundary.

Numerical results are presented in Chap. 4 for plates and beams
subjected to both uniform and nonuniform temperature distributicns; beam
resuits were obtained by suppressing appropriate plate degrees of
freedom. To verify the finite element formulation, results are compared
with previous analytical solutions. The thermal postbuckling results
are compared with a previous solution [24] for a square plate clamped on
all edges, and the large defiection random vibration results are
compared with previous beam solutions [45, 67]. A convergence study is
included to evaluate the required number of elements and mode shapes
necessary to achieve reasonable accuracy. A summary of the present

study and possibilities for future research are presented in Chap. 5.
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Chapter 2

NONLINEAR FINITE ELEMENT FCRMULATION

In this chapter, the governing nonlinear equations of motion are
derived for a rectangular plate subjected to a combined thermal/acoustic
loading. The thermal loading is taken to be a steady-state temperature
distribution, and the acoustic loading is considered to be a stationary
Gaussian pressure with zero mean and uniform magnitude and phase over
the plate surface. As shown in Fig. 2.1, the plate is considered to be
initially deflected by an amount W,, and the active normal displacement

w is measured with respect to the initially deflected shape.

For the derivation of the governing equations the following

assumptions are made:

1. The material is homogeneous, isotropic and Hookean with properties

that do not depend on temperature.

2. The von Karman large deflection strain-displacement relations are

valid.
3. Inplane inertia and rotary inertia are negligible.
4. The temperature does not vary through the thickness of the plate.

The assumption regarding temperature independent material
properties is reasonable for the present study since, as reported in
Ref. [24], small variations in temperature produce postbuckling behavior
in thin panels, and as reported in Ref. [73], the thermomechanical

12
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Side view of initially deflected structure.
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properties of common structural materials are essentially constant for

small changes in temperature.

2.1 Element Displacement Functions

For the selection of a suitable plate element, two things were
considered to be important: accuracy and complexity. Higher-order
elements, such as the 54 degree-of-freedom triangular plate elements
used by Ref. [26], could have been used to obtain a very high degree of
accuracy. Such elements, however, are more complex to formulate and
apply than elements with fewer degrees-of-freedom. The element chosen
for this study is a 24 degree-of-freedom rectanguiar plate element [74],
shown in Fig. 2.2, that is considered to fulfill both of the selection
criteria., It is not complex to to formulate and apply but contains a
sufficient number of generalized coordinates, at least in the sense that
it is a conforming element, to adequately describe the behavior of the

plate. Displacement functions for this element are given as
- 2 2
w = % + azx + a3y + a4x + asxy + u6y
3 2 2 3
T opXt T agX Y F agXy” oY

+ 0;14X3.Y2 * 015X2.Y3 ¥ a16X3.Y3 = [H] {a} (2.1)
U= By + BX +Bay * B,xy = [H ] {8} (2.2)
V.= Bt BgX * By + Boxy = [H/] {8} . (2.3)
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PLATE ELEMENT SUBJECTED TO
THERMAL/ACOUSTIC LOADING

Fig. 2.2 Rectangular plate finite element.
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The twenty four generalized coordinates
) = [ ] (2.4)
a ul’ az,ooo, 016 -
8} = [8,, 8 8ol (2.5)
1’ 2,..., 8 .
can be determined from the nodal displacements

@' = Ly}, (3] (2.6)
where

T_
{ab} - [wl’ wz, w3’ w4, wxl:...:

W

yl,ool, wxyl,.o., wxy4] (2.7)

T

{a_}

ol c [Ul’ UZ’ U3, U4, Vl, V2, V3, V4] . (2.8)

The transformation relating nodal displacements and generalized

coordinates can be written as
{a} = [Tb] {8y} (2.9)
ey = [T 1 {a;} . (2.10)
The matrices [Tb]'1 and [Tm] are given in Appendix A.

2.2 Nonlinear Strain-Displacement Relations

The von Karman strain-displacement relations modified to include

the effect of initial deflections [25] are given by

{e} = {e} + z {x} (2.11)

where
{e} = {em} + {eb} (2.12)
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u,

X
{e;} = V,_y (2.13)
u,y + v’x
% w,i * Moy %o,x
_J1 o2 (2.14)
€} =07 Moy * ¥y Yo,y
W Way W, Yo,y + Way Wo o
W,xx
{k} = - sy (2.15)
|2 Yoy ] .

By using Eqs. (2.1), (2.2) and (2.3) in conjunction with Egs. (2.13),

(2.14) and (2.15), the strains and curvatures can be evaluated as

follows:
._a -
usx 'a—x' [HU]
3 -
UQy Ty [HUJ
= {8}
3 (2.16)
V’x ax [Hv]
)
V’ vy [H ]
y L_ay v -
]
wsx ( "a-x [HW]
= {a} (2.17)
)
W,y a—y [HW]
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9
¥o,x X tHw]
y = 3 o {ao} (2.18)
0,y 3y - W
o’ [H, ]
W, [~ H T
XX a_x? W
o? [H.]
] = — LH ‘[G}
yy ayz W (2.19)
W -—zi 1
’xy X3y — w
where
tag) = [T, (3.} (2.20)
and
T W, W

{abo} = [wol’ w02’ N03’ 04 "ox1?°°°?

woyl,..o, woxyl,uco, woxy4] (2021)

is the initial nodal displacement vector. Using Eq. (2.16), Eq. (2.13)

becomes

3
+ [H,]

ey} = | 35 [H] {8}

9 £
| By [HUJ T [Hv]_

[8,) {8} . (2.22)
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Using Egs. (2.17) and (2.18), Eq. (2.14) can be expressed as

te,) =3 [A] {61 + [A] (o)

1 (2.23)
=3 [A] {6} + [Ao] {8}
where
]
w’X ﬁ [HW]
{8} = =13 {a}
wsy '5.7 [HWJ
- [8,] {a) (2.24)
9
¥o,x ax [ij
{65} = =13 {ay}
Yo,y ay [k,
= [Be] {ao} (2.25)
W, 0 [0, 0
A = 0 =
[A] Way 0 9 (2.26)
-w,y w,x -Oy BXJ
o r
wo,x 0 8ox 0
[AOJ = 10 wo,y = |0 eoy (2.27)
_wo »y ¥o X _eoy eox

Finally, using Eq. (2.15) and Eq. (2.19), the curvatures can be

expressed as
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h [H.]

- - <— [H .
axl W
i [H ]

{k} = - H {a}
e
]
- - 2 5y (AT 4
= [Bb] {a} & (2.28)

The matrices [Bm], [Be], and [Bb] are given in Appendix A.

2.3 Stress Resultants

For an isotropic Hookean material under a state of plane stress and

subjected to a temperature variation AT(x,y), the stresses are given by

%
{o} = ,cy ‘ = [E] {e} + {og} - {o,1} (2.29)
Txy
where

1 v 0
[e1=—%5 | v 0
1'\) 0 1'
2

1
- EaaT(x,y)
{GAT} - -~ )1 ‘
o',
and {co} is an initial stress distribution.

The force and moment resultants are defined as

h/2
NN} = [ (1,2) {0} dz . (2.30)
2
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Using Egs. (2.11}, (2.29) and (2.30) and taking into account that the
temperature does not vary through the thickness of the plate, the
constitutive equations relating the force and moment resultants to the

strains and curvatures become

() = [C] qe} + N} - (N,
(2.31)
M) = [0] {x} + (M)

where
1 v 0
[C] = ——?Eh v 1 0
I-y 0 1-v
2
1 v
s
(D] = v 1

0

J
120-9) [§ o 1

2

(1

_ EahaT(x, |
typ = Tl
0

{NO ’MO} =

!
—
=z
S~

(1,2) {ao} dz .

2.4 Equations of Motion

The equilibrium equations for a structure can be derived using
either a Newtonian approach or a variational approach. For complex
structural configurations variational methods have proven to be very
powerful since the governing equations can be determined entirely
through the extremization of a scalar functional. For the present

study, the governing equations are derived using the principle of
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virtual work which states that for a structure in equilibrium under the
action of internal and external forces, the work done by these forces in
undergoing an infinitesimal virtual displacement is zero. In the
following section, this principle is applied to determine the nonlinear
equations of motion. To investigate the stability of an equilibrium

configuration, an adjacent-equilibrium method is employed.

2.4.1 Nonlinear Equilibrium Equations

The virtual work principle can be written in the form

- oW =0 (2.32)

SW = W ext

int

where §W. represents the virtual work of the internal forces and

int
Gwext represents the virtual work of the external forces. Thus, for
equilibrium
awint = swext . (2.33)

For a plate element with forces {N} and moments {M}, the virtual work of

the internal forces is given by

oW,y = fA ((se}T (N} + {5k} M}) dA . (2.34)

Using Eqs. (2.12), (2.22), (2.23) and (2.28), the virtual strains

and curvatures are given by

(se} = s{[8,) {8} + 3 [A) {6} + [A] (o,}}

(8,1 {s8} + 5{% [AY {e1} + [6A] {o,}

[B,] {s8} + [A] (s} + [A ] {s6} (2.35)
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where
sfz [A] (03} = [A] (56} (2.36)
[sA] {8} = [A,] {ée} , (2.37)
{6x} = 6{[B,] {a}} = (B] {éa} . {2.38)

Substituting Eqs. (2.31), (2.35) and (2.38) into (2.34), the

virtual work of the internal forces becomes

iy = [ ([tssy" 181" + o3’ (A1 + (58}’ [A1T] {ICI te)

£ N} - )+ [Gsad! £8,07] ([0 (3 + (M 3}) A

I, (tss}' 18,37 €D tey + to83" [8,) N3 - (o' [8,17 )

+

tsey [A1 [CY qey + (60" [ATT (N} - soy' [AD' N,

+

tso1’ [AOJT [C] {e} + (o0}’ [AOJT N} - tse}’ [AOJT N}

tsal’ [8,17 03 e} + (6a) [B,17 (,}) dA . (2.39)

+

For equilibrium under the action of forces {No} and moments {Mo} with
the normal displacement w equal to zero, the virtual strains and

curvatures from Eqs. (2.35) and (2.38) are given as
{ee} = [B 1 {s8} + [A ] {80}
{8k} = [Bb] {6a} ,
and the principle of virtual werk takes the form
I, (ts8) [B,1" 3 + cooy' [A,1 M)

¢ sy’ 18,17 M )) dA =0 . (2.40)
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Enforcing Eq. (2.40) and using Egs. (2.12), (2.22), (2.23), (2.28) and

(2.39), §W; 4 can be expressed as

W

int = J, (ts8) 8,07 [C] [B,] (63 + {s83' [8.17 [C13 [A] (s}

tssy’ (8,17 [C [A)] (o3 - (o8} [B.1T N}

4

<+

o3’ [AY' [T [8,] (8} + (60}’ [M' [C13 [AD (o}

-+

(oo’ (A1 [T [A)] (o) + oo}’ [AT' ) - co1’ [ADT ot

+

tse3' [A " [C1 [8.1 8} + 0} [A) [C1 3 (AT (o}

+

tsey [A3T (€1 [A] (o) - (0} [AJ1T (h.}

+

tsa’ [8,17 [D] [B,] (a}) dA . (2.41)

The standard linear stiffness matrices are represented by the first and

last terms in Eq. (2.41) as
J (e 187 [C [B.] 183 + (o3 [8,17 (D1 [B,] a}) dA . (2.42)
A

Using Eqs. (2.9) and (2.10) to transform from generalized coordinates to

nodal displacements, Eq. (2.42) becomes

tea} [k 1 (ap + (62} [k ] (3} (2.43)

where
[k 1= [T J, (8 17 [c] (B, ¢A [T ] (2.44)
[k,1 = [T, J, [8,1" (] [8,] dA [T,]. (2.45)

Linear stiffness contributions due to the initial deflection W, are

represented by the third, tenth and twelfth terms in Eq. (2.41) as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25
f Cros! 151 0T AD (o + too3! A0 [CD [8) (8)
+ oo}’ [ [T [A] (8)) dA . (2.46)
Using Egs. (2.9), (2.10) and {2.24), Eq. (2.46) becomes
(o3} Dkl (ad + (o237 Tk 17 (a3 + 152,37 [k, T fay) (2.47)
where
e qT T
[hgpd = U107 [ 18,37 0C1 (A1 (8,1 8 [T,] (2.48)
e T Ty AT .
[kpod = 111" 1 1817 [A,1T [T [AS] (B, oA [T . (2.49)

Geometric stiffness contributions due to the initial and thermal
stresses are given by the eighth, ninth and thirteenth terms in Eq.

(2.41) as
I (to0y" [A1" a3 - oo3T [ATT () - co03” [AJTT 1)) dA . (2.50)
The terms in Eq. (2;50) display the following property
(AT (N} = IN] (o)
(A {(Nyp} = [N g1 {e} (2.51)
1A N, = [N (e,)

where

NOX

{N} = Noy

Nox_y
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N N
[N] = (0D oXxy
° N N
oxy oy

NATx
NATy
0

[NATx 0 ]
0 NATy .

Using Eqs. (2.9), (2.24) and (2.51), Eq. {2.50) becomes

N, 7}

N, ]

(63} [hyod (3} - 183,37 [k o] (2, + 3y ) (2.52)

where
[kyod = [T,) f, (8,17 [N] [8,] dA [T,] (2.53)
Ckyyp? = [7p0 J, (8,0 N1 (8] aA [T,] . (2.56)

First-order stiffness contributions due to coupling between the initial
deflection w, and the deflection w are given by the seventh and eleventh

terms in Eq. (2.41) as
f, (160} AT (€1 [AD 1) + s0)" [AL3T [CT L [AD fo}) dh . (2.55)

To transform Eq. (2.55) to a symmetric form, a procedure similar to that
given in Ref. [71] is followed. The first term in Eq. (2.55) can be

written as
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tsey’ [A1T [ [AD (o3 = 5 (o03" [A)T [CT[A] o}
+% (sey’ [A1T [C] [A] (e} . (2.56)
Letting
Ny} = [CT[A ] {e} (2.57)

and using the same property as given by Egqs. (2.51), the terms on the

right hand side of Eq. (2.56) can be expressed as
7 (s8)T [AIT [C] (A1 (o} =3 tsoy [AIT (i, )
=5 (6o) IN] (8} . (2.58)
Using Egs. (2.9), (2.24), (2.56) and (2.58), Eq. (2.55) becomes
% {cab}T [n1,, ] {3} (2.59)
where
[y, ] = 7,1 f (8,17 [[AIT [c] [A] + [A,]T [CD [A]
+ [N 1] [B] dA [T,] . (2.60)

First-order stiffness contributions due to the deflection w are

contained in the second and fifth terms of Eq. (2.41) and are given by
T T 1 T T
[ (tssy [B 1" [C]+ [A] (e} + {s6} [A] [CI[B ] {8}) dA . (2.61)
A
Equation (2.61) can also be transformed to a symmetric form in the same

fashion as Eq. (2.55). The second term in Eq. (2.61) can be expressed

as
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tsey” [A1T [CT[B,] (8} = 3 (o0} [A)' [C] [B] (s}
+ 2 (s6) [N 3 (o) (2.62)

where
N, = [C] (B ] {8} . (2.63)

Using Egs. (2.9), (2.10), (2.24) and (2.62), Eq. (2.61) can be written

as
%— [{<sam}T [nl ] {3} + {esab}T [nlmblT {a_}
+ {sab}T [nl 1 {a;}] (2.64)
where
[n1 3= [T 1" J, 8,1 [C] [A] [8,] dA [T,] (2.65)
[n1,] = [1,1 I [8,2" [N,] (B, A [T,] . (2.66)

The second-order stiffness contribution due to the defiection w can be

obtained by examining the sixth term in Eq. (2.41) and is given by
J sl LAY LCT 7[R (o) @h (2.67)

This term can be transformed in the same manner as Egs. (2.55) and

(2.61) to obtain

toe}’ [A1' [ 3 [AD (63 = 4 (o03" [ATT [C] [AD (o}

+ % {66y ] fo) (2.68)
where
Ny} = [C1 5 [AD (o3 . (2.69)
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Using Eqs. (2.9), (2.24) and (2.68), Eq. (2.67) takes the form
5 {eg,} [n2, ] (ap} (2.70)
where
[n2,,7 = 1,17 f (8,17 [[A) [C] [A] + [N,1] [B,J dA [T,] (2.71)
bb b Ao @ b 8 b- * *
Finally, the fourth term in Eq. (2.41), given by
T T
- fA (s} [B 1" (N} dA, (2.72)
represents a thermal load vector. Using Eq. (2.10), Eq. (2.72) becomes
-2 ) (p ) (2.73)
m maT o
where
3= [T30 [ (817 (N} dA (2.74)
maT m A AT * *

Combining Eqs. (2.43), (2.47), (2.52), (2.59), (2.64), (2.70) and

(2.73), Eq. (2.41) can be written as

Sine = (o) D] taph + (o2 (ko] + 3 Dnl 1] (o)

int

+

T T,1 T
tsa, ) [k 1T+ 31 17 qa

+

(63} [Ik,] + [k D + [k,
+pnlyy 1+ 500 1+ 3 [n2,,7] (a,)
7 S bbo” T2 Fme T 3 b b

- o3} Dkyypd (@ + agod - (633 (o1 - (2.75)
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The virtual work of the inertia and damping forces can be included
using D'Alembert's principle; so, the total virtual work of the external
forces is due to inertia forces, damping forces and the applied random

pressure loading and is given by
Woyt = fA &w (- phw - cw + p) dA . (2.76)

Using Eqs. (2.1) and (2.9), the displacement w is given by

we [T (o) . (2.77)
Thus,

ow=[H1IT,] 6a,) (2.78)

w=[H] 7] (3} (2.79)

we [RIIT,] (3} . (2.80)

Substituting Egs. (2.78), (2.79) and (2.80) into Eq. (2.76), the virtual

work of the external forces can be expressed as

5Next = - {Gab}T [mb] {gb} = {Gab}T [Cb] {a‘b}

+ (e} {p.} (2.81)

b b .

where
T T

[m 1 = [T,] fA [H," oh [HJ dA [T,] (2.82)
.} = (T3 [ HIT p dA (2.83)

b b A W > *

and [cb] is assumed to be proportional to [mb].

Using Eas. (2.33), (2.75) and (2.81) and summing the contributions

from all elements, the system equations of motion can be expressed as
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wmh£n=fk+%m+§nﬂ{m

+ [C] (Q) + [M Q)

- {P} = {0} (2.84)
vhere
i T
[Ky + Kyo + Kyo = Kyppd  [Kpp]
(k] =
RLENG [K,]
[N, + M) [mmb]T
[N1] =
M, 0
[Nz, ] 0
[N2] =
o 0
eMl 0
fcl =
0 0
(M, ] 0
[M] =
| 0 0
Py} + [Ky,7] Q)
{P} =
{PmAT}
{0}
W} =
Q)
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2.4.2 Stability Equations

The adjacent-equilibrium criterion [75] can be used to investigate
the stability of a given equilibrium configuration. This involves
giving small increments to the displacements and examining the two

adjacent configurations. Letting
{Q} » {Q; + aQ}
@ » Q) + o} (2.85)
{Q » Q) + 20}

where the incremental quantities {aQ}, {AQ} and {Aa} are arbitrarily
small and {W(Ql,bl,al)} is an equilibrium configuration, {\y(Q1 + AQ,
Ql + AQ,61 + Aﬁ)} can be investigated using a curtailed Taylor series

as

{¥(Q; + 20,0 + 2Q,0; + 4Q)} = [%(ol,dl,c’im {80}

+ [ 240;,0,,0)) ] a0y + [2X0,.0,.0,)) 1y = @) . (2.86)
d0 dQ
From Eq. (2.84), the total differential of {y(Q,Q,ﬁ)} is
(d¥(Q,0,0)} = [KJ (dQ} + d{[3 NI + 5 N2J (03}
+ [C] {dQ} + [M] (dQ} . (2.87)

Evaluating the term d{E% N1 + % N2] {Q}} requires an examination of the
corresponding terms in the element equilibrium equations. Using Egs.

(2.9), (2.10), (2.24), (2.55), (2.61) and (2.67), the contributions to
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the element equilibrium equations due to first-order coupling terms,

first-order terms and second-order terms, respectively, are

rr, 1’ I, ((B,)T A" [C] [A.] o3 + [B,]T [AT [CD 3 [AD fe}) dA

(2.88)

(7,7 I (80" [A1 [CD [B] (s} dA
L I (8 17 [C] 5 [AJ (o} A (2.89)
1" I, (8,37 [AIT [C] 3 [AD (o} dA . (2.90)

The incremental forms of Eqs. (2.88) through (2.90) can be found by
taking the derivatives of the equations with respect to the generalized
coordinates which can be accomplished by considering the total

differential of each equation. The total differential of Eq. (2.88) is
T T T T T
[Ty [ ([8g" La2" [CT TAD to3 + (80" LAY L€ [a,] tdo)
re 17 T 1
+ [8,1' [A))' [C] df5 [A] (o}}) dA . (2.91)
Using Eq. (2.36),
dfp (A1 (03} = [A] do} , (2.92)

and using Eq. (2.57) in conjunction with the property displayed by Egs.
(2.51),

[dA]" [C] [AT (o3 = [aAl" (3 = [N, 1 (de} . (2.93)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

Combining Eqs. (2.9), (2.24), (2.60), (2.92) and (2.93), Eq. (2.91) can

he written as
[nlbboj {dab} . (2.94)
The total differential of Eq. (2.89) is given by
[ 7 [ ([8g1T [an1" [C] 8,1 8y + (8,17 [A' [CT [8] 1¢3}) dA
A
+ 0117 1 8 17 [C] a3 [A] (o3} dA . (2.95)
m Ao m ? .
Using Eq. (2.63) and considering Eqs. (2.51),
[aA17 [C1 (8] (s} = [dATT (N3 = [N D (de} . (2.96)

Combining Egs. (2.9), (2.10), (2.24), (2.65), (2.66), (2.92) and (2.96),

Eq. (2.95) can be expressed as

[n1,] tday} + [n1 17 (da 3 + [n1 .7 (da} . (2.97)
Finally, the total differential of Eq. (2.90) is

T T T 1

[7.] IA ([Be] [dA]" [c] v [A] (e}
+ (8,17 [T [CD df3 [A] (o3}) dA . (2.98)

Using Eq. (2.69) and again considering Eqs. (2.51),

(91" [c] 3 [AD o) = [dAT" (3 = [N doy . (2.99)

Combining Eqs. (2.9), (2.24), (2.71), (2.92) and (2.99), Eq. (2.98) can

be written as

[anb] {dab} . (2.100)
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Summing the contributions from all elements, the total differential
of the system equations of motion related to the first- and second-order

stiffness matrices becomes
d{lz N + 3 W21 @1} = [N + N2D qaQy . (2.101)

Combining Eqs. (2.87) and (2.101), the incremental equilibrium equations

expressed by Eq. (2.86) can be written as
[K + N1+ N2] (aQ) + [C] (aQ} + [M] {aQ} = {0} .  {2.102)

where [K], [N1], [N2], [C] and [M] are as given by Eq. (2.84).
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Chapter 3

COMPUTATIONAL PROCEDURE

This chapter presents a detailed description of the computational
methods used to solve the problems of thermal postbuckling and large
deflection random vibration., Each of these problems is nonlinear and,
therefore, must be solved using an iterative solution technique with the
iterative solution being terminated when the appropriate convergence

criteria are satisfied.

3.1 Thermal Postbuckling Solution

The method of Newton-Raphson iteration is a well established
procedure for solving time independent, nonlinear problems [25, 26, 76,
771.  This method requires that the loading be applied in a series of
increments. For sufficiently small loading increments convergence can
be achieved even when severe nonlinearities are present [76, 77]. In
addition, any level of accuracy can be obtained depending on the
convergence criteria. Therefore, this method was chosen to solve the

nonlinear thermal postbuckling equations.

For the thermal postbuckling of an initially flat plate with no
initial stresses, the equations of motion and the incremental stability
equations are given by Eqs. (2.84) and (2.102), respectively, where Ws
{No} and {Mo} are taken to be zero and the dynamic terms are not

included. Equations (2.84) and (2.102) for this case can be written as

36
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Q) = [K+ 3 K+ 3 1] Q) - (P} = {0} (3.1)
ERY) 0 - ke 1 1] 0 = @) (3.2)
where
i
[Ky = Kyt 0
(K1 =
0 ¥ ]
- . T
K R W
[M] = (3.3)
[n 3 0
0
{P} =
{PmAT}

and [N2] and {Q} are defined by Eq. (2.84).

3.1.1 Determination of Critical Buckling Temperature

If an initially unstressed flat plate is subjected to a temperature
distribution that varies only in the plane of the plate and is uniform
through the plate thickness, the relationship between the applied

temperature and the iuplane deformation is given by Eq. (3.1) as

[K,] (0} = (Pyyqh - (3.4)

For a temperature variation ATo(x,y), the thermal load vector {ﬁﬂAT} can
be formed and Eq. (3.4) can be solved for the inplane displacements
{Qm} which can be used in conjunction with Egqs. (2.10), (2.22) and
(2.31) to determine the resulting inplane forces. The stability of this
equilibrium configuration can be investigated using Eg. {3.2), which

takes the form
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{AQb}

—~
(&%)
.
n

~—

[Kp = Kyyr + N30
= {0} .

| 0 [x ]

{80, }

Cbviously, {AQm} is zero, but do temperature distributions exist for
which {AQb} is nonzero? To answer this question, first consider that
since Eq. (3.4) is linear, the inplane displacements for any variation
in temperature can be expressed as a scale factor A times the inplane
displacements due to ATo(x,y); therefore, since the first-order
stiffness matrix [Nlm] is linearly dependent on the inplane displace-
ments, [Nlm] for any temperature is given by 2 times [Nlm] due to
ATo(x,y). In addition, the geometric stiffness matrix [KNAT] is
Tinearly dependent on temperature, hence for an arbitrary temperature
variation A ATO(x,y) EG. (3.5) can be written as

[k, - Ko * 2 NI T {aQp} = {0},
or

[Kpd Lo} = a [Ky,7 - NLLT {o} . (3.6)

Thus, the determination of the critical temperature variation, if one
exists, reduces to the solution of the eigenvalue prcblem given by Eq.
(3.6). The critical temperature at which buckling cccurs correpsonds to
the first value of A for which {¢} dis nontrivial and is given by
ATCR(x,y) =N ATo(x,y), and {o}y is the buckling mode shape associated
with A The flow-chart for the thermal buckling solution is shown in

Fig. 3.1.
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aT(x,y) = 4T (x,y)

Use ATo(x,y) to form {P

!

Solve Eq. (3.4) for {Qm}

mAT}

rK.IInI:!
sm-at'th L

'

Use ATo(x,y) and {Om} to form

%nAT}

[k, -] and [Nlm} :

NaT-

Solve Eq. (3.6) for Ays {94

(K, {6} = x DKy, = NL_T {4}

:

8Teplx:y) = Ap AT (x,y)

{Qm}CR = Al {Qm}
y
< STOP >

Fig. 3.1 Computer flow-chart for thermal buckling solution.
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3.1.2 Solution of Thermal Postbuckling Equations

Equation (3.1) can be solved for a given thermal loading by using
the method of Newton-Raphson iteration. If a solution is known for
configuration {Q}, then the solution at configuration {Q + aQ} can be

approximated using a curtailed Taylor expansion of Eq. (3.1) given as

dy(Q)
dQ

{v(Q + 4Q)} = {¥(Q)} + [ ] {aQ} = {0} . (3.7)

Equation (3.7) can be rewritten in terms of the tangent stiffness matrix

[KT] and the incremental load vector {aP} as
[K;l {aQ) = {aP} (3.8)

where from Eqs. (3.1) and (3.2)

] = [K+ N1+ N2]
(P} = - (¥(Q)} = (P} - [K + 3 NL + 5 N2] {Q} .

The incremental load vector {AP} represents the equiliorium equation at
configuration {Q}; hence, as {Q} approaches the true solution, {aP}
approaches zero. Equation (3.8) can be solved in an iterative fashion
for a given thermal loading with the iterative process being terminated

whenever the convergence criteria (Appendix B) are satisfied.

Typically, solutions are sought for several temperature variations
AT(x,y)j (3 = 1,..., m) above the critical buckling temperature

ATCR(x,y); these temperature variations can be expressed as

aT(x,y) 5 = (T/Tep) 5 ATep(xsy) (3.9)
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where (T/TCR)j is a scale factor (> 1. for postbuckling). To begin the
iterative process for a given thermal loading corresponding to
AT(x,y)j, initial deflections {Q} are necessary to evaluate [KT] and
{aP}. For j = 1 (the first solution in the postbuckling region)
special care must be taken in estimating {Q}, and the following

procedure has been found to be satisfactory. Take

Q)

{Q} = (3.10)

{Q}
where

Q) = A {e}y

{Q,} = (T/TCR)I {Q,}cp

with {¢}1 and {Qm}CR’ respectively, being the buckling mode shape
(normalized to a maximum value equal to the plate thickness) and the
inplane displacements corresponding to ATCR(x,y). Satisfactory results
have been obtained for A1 = 0.50 and (T/TCR)1 = 1.05. For j > 1, the
displacements {Q} to begin the iterative process can be updated using
the previous solution as

(T/TCR)j

) 7T @ - (3-11)

{Q}

The flow-chart of this solution process is shown in Fig. 3.2.
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aT(x,y)5 = (T/Tp); aTep(x,y)

no

!

Use Eq. (3.10) to estimate {Q}

{Qb}t ’A1{¢}1

o
{Q.}

(T/Ter)y Qler

42

Use Eq. (3.11) to estimate {Q}

(T/TCR)j

77— (@}
(T/TCR)J._1

{0} =

Fig. 3.2 Computer flow-chart for thermal postbuckling solutien.
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Use aT(x.y). to form (P

J mAT} and [KNAT]

y
rv Use {Q} to form [KT] and {aP}

v

Solve Eq. (3.8) for {aQ}

[kr] (80} = {aP)

l

Update {Q} = {Q} + {aQ}

yes

. 4
—————— CONTINUE

STOP

Fig. 3.2 Concluded.
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3.2 Llarge Deflection Random Vibration Solution

Finite element solution methods for nonlinear random vibration are
not nearly so well developed as solution methods for thermal postbuck-
ling, and any of several approximate methods [34] could have been used,
at least in theory, for the present formulation. Since satisfactory
results have been obtained using the EL technique in conjunction with
classical formulations, this technique was employed for the present
study. Following an approach similar to Busby and Weingarten [47], the
nonlinear equations of motion are reduced to a system of modal equations
using the linear mode shapes of the thermally stressed or buckled
structure tn transfer from system to modal coordinates. The resulting

modal equat~cns are then solved using the EL method [78].

Equations (2.84) and (2.102) can be specialized for the large
deflection random vibration of thermally buckled plates by setting the
temperature distribution aT(x,y) equal to zero. For this case, Wy
represents the inifia] buckled shape with corresponding initial inplane
forces and moments {N_.} and {Mo}; the equations of motion and the

0
incremental equations given by Eqs. (2.84) and (2.102) become

[K+3 M +3 2] @+ 0@+ @ = (3.12)
K + N1 + N2] {aQ} + [C] {aQ} + [M] (a0} = {0} (3.13)
where
.
[Tk, + Ko * Kol [y
[K] =
[k ] X ]
(3.14)
(1P}
Py = ’
0
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and [N1], [N2], [C], [M] and {Q} are defined by Eq. (2.84). Using Eq.
(3.12), the inplane displacements can be written in terms of the bending

displacements as

- ¢l 1 -1
0 =- [K" KT Q) -5 [k N T Q) - (3.15)

Using Eq. (3.15), Eq. (3.12) can be written as

T -1
[[Kb * Kbo * Kyo = Kb Kn Kmb]

T yly

m - Kmb m mb N

1
ty [Ny, + N

1 1T -1 e
* [3 N2y = 7 Nl Kpo NlgpJ] Q)

+g M1 Q)+ M (G} = (P} - (3.16)
From Eq. (3.16), the linear frequencies and mode shapes of the thermally

buckled structure can be obtained by solving the eigenvalue problem

T -1 _ 2
[Kb + Kbo * Ky = Koy Ko Kmb] {6} = w [Mb] {6} . (3.17)

Solving £q. (3.17), the truncated modal matrix is given by

[6] = [{8}eees {0}y (3.18)

where N is the number of modes to be used for the nonlinear analysis.

Now {Qb} can be written in terms of the linear mode shapes as

(o] {q}
N (3.19)

jfl q; {o}4 -

)

Using Eg. (3.19), the nonlinear stiffness matrices can be wriiten in

terms of {q} as
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N
[Nlbboj = jfl 9 [NlbbG]j (3.20)

N
[Nlmb] = jfl q; [Nlmb]j ' (3.21)
- [Nz, ] ( )
(N, 1= £ q.q [N2.,]. 3.22

bb =1 k=1 i 7k bb-jk

where [N1. bO]J [Nlmb]j and {szb]jk represent the sums of the element

matrices [nl s [nlmb]j and [n2 respectively. Using Egs.

bbo bb I3k
(2.57), (2.60), (2.65), (2.69) and (2.71), the element matrices can be

defined as
[nlypod; = (7,10 I, (8,1 [[A1] [C1 [AG) + [A,]" [CT [AI
+ N3] [8g) dA [T,]
gyl = [0 I, (8,17 (] [A1; [8,] ¢& [T,] (3.23)

[n2yp 1y = [Ty1' f, (8,1 [[A)] [CD [AT, + [N,15,] (8, ¢A [T,]

where the entries in [A]j correspond to {Qb} = {¢}j and the entries in

[Nbo]j and [Nb]jk are for

(y}; = [€1 [A)D (e,

(3.24)

Substituting Egs. (3.19) and (3.21) into Eq. (3.15), the expression for

the inplane displacements becomes
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N 1 1 N N 1
= - z q.[K ] , - . - ]
{Qm} J:l qJ [ym Kmb‘ {¢}J '2 Jf] '{51 QJ C‘k [Km] [Nlmb"j {¢}k
i 1 N N
= jfl Qj {Qm}j + ? jfl kfl Qj qk {Qm}jk (3'25)
where

_ -1

Using Eqs. (3.25), [Nlm] can be expressed as

N
[Nlm] = 3
J=1

N N
1
q. [N J. +5 £ © q.q [N J. (3.26)
J m-j 2 j=1 k=1 J 7k m-jk
where [Nlm]j corresponds to [Nlm] for {Qm} = {Qm}j’ of Eq. (3.25),
[Nlm]jk cerresponds to [Nlm] for {Q} = {Qm}jk’ of Eg. (3.25), and
[Nlm] is composed of element matrices [nlm] given by Eq. (2.66). Using

Egs. (3.19) through (3.22) and (3.76), Eq. (3.16) can be written as

[[k] + 1 § q. [k1]. + § 2 G. q, [k21..1 {a}
21 9 el 3% I
+ g [m) (g} + [m] {q} = {f} (3.27)

vhere

T 1

T -
r = 1 -
Lkl = Dod" TKy + Kyo + Kyo = Knp Kp Knpd Lo
w? ™ 0
© 2
0 Wy mN
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k1l = [od' (DM 30+ DN, - DKDy KoM IN
T rp-1 .
= [Nlmb]J [Km Kmb}] -QJ

[zl = (o' [3 DNy dy, + q DNy - DN 3T D6 370 D] Lo

m i\
[m]=[01 ., ]

m

N

= [s8] (P
{f} = [el h !

Similarly, the incremental equations expressed by Eq. (3.13) can be

written as
[[k] : [ ] . [k2;]: ]
k1 + ¢ q kil.+ ¢ o q, [k2 {289}
j=1 j1 k=1 9 K Tk
+ ¢ [m] {aq} + [m] {aq} = {0} (3.28)
where

T2y, = [o' [DN2g Ty + DM D = DN DT O T IN, ), ] Ced

3.2.1 Method of Equivalent Linearization

Consider that Eq. (3.27) can be written in the form

{g(a)} + ¢ [m) {a} + [m) {q} = {f}
where

=
=

N
{9(q)} = [[k] + % I G [k1] + zl kfl 95 gy [kZij] {q} . (3.29)

[ &%)
[}
p—
(&N
1l

If Eq. (3.29) were linear, it could be expressed in the form

[k) {q} + ¢ [m] {q} + [m] {q} = {f) (3.30)
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where [k] is an equivalent linear stiffness matrix. The error involved
in using Eq. (3.30) instead of Eq. (3.29) is given by the difference

between the two equations as
fer = {9(q)} - [kJ q} . (3.31)

The equivalent Tinear stiffness can be found by requiring that the mean

square value of {e} be a minimum, that is
E[{e}’ (e}] » minimum . (3.32)

For Eq. (3.32) to be true

2 ELe) ge}] _

3 k..
ij

o . (3.33)

Substituting Eq. (3.31) into Eq. (3.32) and applying Eq. (3.33), the

equivalent linear stiffness can be determined from the equation [78]
Tq o= T
E[{q} {q} ] [k] = E[{q} {g(q)} ] . (3.34)

Substituting from Eq. (3.29) for {g(q)}, the right hand side of

Eqg. (3.34) can be evaluated as

T T 1 N Ty reqT
EL{q} t9(a)}'] = E[{q} (a3 1 [k1 +3 = Elq; {a} (G} ] LK1l

j=1

NN T T
+ £ ¢ Elq.q {9} {q} ] [k21; . (3.35)
21 b= J ok jk
J=1 k=1
Since Eq. (3.30) is a linear equation and the excitation {f} is
Gaussian, it follows that {q} 1is Gaussian, and for a Gaussian process

with zero mean, the modal amplitudes follow the relations [48]
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E[q; 95 ] = 0
ELa; a5 gy 6;3 = E[q; ;] Elqy q;] (3.36)
+ Ela; o1 Elay aq] + E[q; ] Elq; q 7 .

Applying Eas. (3.36), Ea. (3.35) becomes

NN .
(L@ o) = Bl @ T+ 5 1 fle; g @ (] [kl
Jj=1 k=1

(3.37)
since
Elq; {q} ta}'1 =0 .

Therefore, if the covariance matrix E[{q} {q}T] is known, then Egs.
(3.34), (3.36) and (3.37) can be used to determine the equivalent linear
stiffness [k].  Conversely, if [k] is known then Eq. (3.30) can be
used to determine the covariance matrix. The equivalent Tlinear
frequencies and mode shapes for the system described by Eq. (3.30) can

be determined from the equation
. 2 ~
(k] {6} = 2" [m] (¢} . (3.38)
Applying the coordinate transformation
{a} = [¢] {n} (3.39)

where
(e = [{e}yseees (83] 5

Eq. (3.30) becomes uncoupled yielding the modal equations

o - 2 ~
4+ Em +05 . = f. .
gt e gty fJ (3.40)
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where
RN
F.oz s

; -

5

m,
J

-.T -~
{¢}j [m] {¢}j-

Solutions for the system described by Eq. (3.40) are given in Ref. [79],
and if the applied external loading p, of Eq. (2.76), is uniform, then

the covariance terms for the case of ideal white noise can be expressed

as
E[nj nk] = So fj fk Ijk (3.41)
where )
Hj(w) =
Q. - + 1
g w E w
Ijk = Iw Hj(m) Hk('w) dow ,

So is the double sided spectral density of the applied loading p in

units of (pressure)Z/radian/sec and the nodal forces {Pb}, of Eaqg.

(3.16), correspond to a unit pressure (p = 1.0).
Using the Residue Theorem, Ijk is found to be

4 1 ¢
I, = . (3.42)
2 2.2 2,2 2
- + +
(nk nj) 2 ¢ (aj nk)

Typically, the spectral density of the excitation is single sided and is

given in terms of (presssure)Z/Hz; Equation (3.41) modified for this

case becomes

- PR £
E[nj nk] =S f, fk [ ] (3.43)
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where Sp is the single sided spectral density of the applied loading p

in units of (pressure)z/Hz.

Using Eq. (3.39), the covariance matrix E[{a} {Q}T] becomes

E[[e] {n} (n}' [&1"]

E[{q} (q}']

[¢] EL{n} (n3'] [8]T (3.44)

where the terms for the covariance matrix E[{n} {n}T] are given by Eq.
(3.43). Therefore, Egs. (3.34), (3.36), (3.37), (3.38), (3.40), (3.43)
and (3.44) can be used to determine [k] and E[{q} {q}T]. However,
since each of these quantities is dependent on the other, these
equations are nonlinear and, consequently, must be solved using an
iterative method. As a first approximation consider neglecting a1
cross correlation terms, i.e. E[qi qj] = 0 fori #j, and assuming
that all of the equations are completely uncoupled. For this case, the
diagonal terms in the equivalent linear stiffness matrix can be computed

from Eqs. (3.34), (3.36) and (3.37) as

2
k.. =k, +3k2, . .. E[q; 3.45
NN 3333 qJ] (3:45)

where k; and kzjjjj can be determined from Eq. (3.27). Alternatively,

Eg. (3.45) can be written as
2 Ejj 2 2
Q.= ———=¢4.+ 3 k2.... Elq. m. . 3.46
i 5 EAAR [qJ]/ j (3.46)

Since all of the modes are assumed tc be uncoupled, the equivalent
linear stiffness matrix [E] is diagonal and n; = qj. As a result of

this Fj = fj/mj’ and E[q?] can be found from Eq. (3.43) to be
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2
2 fj 1
E[q.] = S A ( ) . (3.47)
J p 2 2
m., 4t Q.
J J

Using Eqs. (3.46) and (3.47), E[q?] can be determined to be
ELa] = (/8% + 4C - B)/2 (3.48)

where

k.

J
3 k2....
JJJJ

s f
P J

"TZem, k2, .. °
J  JJ
The covariance matrix of the displacements {Qb} can be found using Eq.

(2.19) which yields
€040} 19,371 = [e] ELta) {@3'1 [a]' . (3.49)

To begin the coupled soluticn, the cross correlation terms E[qi qj]
for the covariance matrix can be evaluated using Eq. (3.43) with the
equivalent Tinear frequencies given by Eq. (3.46). Using Eags. (3.34),
(3.36) and (3.37), the equivalent linear stiffness can be computed.
Equations (3.38), (3.40), (3.43) and (3.44) can then be used to
determine a new covariance matrix, and Eq. (3.49) can be used to compute
the nodal displacement covariance matrix. If the convergence criteria

(Appendix B) are satisfied then the iterative process is terminated.

This direct iteration method can be used to determine the mean

square response; however, it is slow to converge. An improved method to
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use for hardening type structures [76] is an underrelaxation approach
where displacements are not updated to full values after an iteration.
For the present problem, this method can be used for the covariance

matrix as

€L} (@) 1,y = (1-8) €@y @) + s Ela} @1, (3.50)

where E[{q} {q}T]i+1 is the computed covariance matrix for the current
iteration and E[{q} {q}T]i is for the previous iteration. This method

was found to work very well with g = 0.5.

3.2.2 Snap-Through Boundary

To determine the possibility of a given configuration becoming
unstable and snapping-through, *hc incremental equilibrium equations,
Eq. (3.28), are considered. These equations, however, require the
displacements {q}, and the method of equivalent linearization only
provides the mean square displacements. For a harmonic steady-state
loading, the relationship between the displacement amplitude and the

root-mean-square displacement is
q =2 (LN, (3.51"

If the amplitude of the displacements is approximated using Eq.
(3.51) and the incremental motion is taken to be harmonic then the

frequency equation for incremental harmonic motion is

(ke {aq} = a® [m] (a0} (3.52a)
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where the tangent stiffness matrix in linear normal coordinates is given

by
NN

N
[kel = [[k] + jf1 q; [k1]; + jf1 %% (k27150 « (3.520)

Solutions to Egs. (3.52) such that any of the incremental
frequencies are zero would indicate that the incremental motion of the
system is unbounded. Therefore, the stability boundary for snap-through
is assumed to be that point at which any of the incremental frequencies
vanish, which corresponds to the tangent stiffness matrix [kT] becoming

singular, that is
Tk;1f =0 . (3.53)

But [kT] is dependent on the displacements {q}; so, to evaluate the
determinant of [kT],the displacements must first be determined.
Equation (3.51) can be used to determine the displacement amplitudes,
but the signs (positive or ncgative) must also be known. The mode
shapes used for the present formulation are all scaled so that the
maximum displacement component at the center of the structure is
positive. As a result. the maximum center deflection occurs when all of
the displacements {q} are the same sign. For a structure such as the
one shown in Fig. 2.1, the deflection w for snap-through motion is
negative, and the maximum negative center deflection is obtained when
all of the displacements {q} are less than zero. This particular
combination of displacements is assumed to be the configuration for
which snap-through motion first occurs. So, to determine the stability
of a given configuration, the displacements qj (3 =1,..., N) are taken

tn be
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q; = - Vi (E[q?])l/z, (3.54)

[kT] is computed from Eq. (3.52b) and the determinant is computed. If
the determinant is identically zero, then the corresponding configura-
tion defines a snap-through boundary; if, however, the determinant is
less than zero then the sound spectrum level at which snap-through
occurs has aiready been exceeded. Although the displacements given by
Eq. (3.54) do represent a possible configuration for which [kT] is
singular, other configurations for which all of the displacements are
not less than zero could also produce a singular [kT] since the
matrices [kl]j and [szij both contain positive and negative entries.
In fact, there is no guarantee that the displacements given by Eq.
(3.54) will produce a singular [kT]. However, requiring the center
deflection to obtain a maximum negative value is considered to be a

reasonable method for predicting the onset of smap-through motion.

To determine the critical sound spectrum level at which the
determinant of [kT] vanishes, the following procedure is employed.
First, the snap-through boundary is determined for a single-mode
solution as being the point at which kT = 0. From Eq. (3.52b), the

equation describing this condition is

2

k+qgkl+g sz =0 (3.55)
where
k = kj
kl = kljjj
Koy = Keryi48
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and j=1.
Solving Eq. (3.55), the critical value of q is given by
= (8% - 4c - B)2 (3.56)

R

where

(e}
1
.

Using Egs. (3.47), (3.54) and (3.56), the critical sound spectrur level

is given by

2 22

AR

R 2
f

S (3.57)

where nf is given by Eq. (3.46) for j = 1. Equation (3.57) can be used

as an initial estimate of the critical snap-through sound spectrum level
for multiple-mode solutions. To obtain a more accurate multiple-mode
solution for the critical sound spectrum level, several EL solutions
with sound spectrum levels close to that predicted by Eq. (3.57) can be
computed, and the point at which the determinant of [kT] changes sign
from positive to negative defines the snap-through boundary. The
accuracy of this process is limited only by the difference in sound
spectrum levels used to compute the various EL solutions. A computer
flow-chart for 1large deflection random vibration, including snap-

through, is shown in Fig. 3.3.
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Compute linear frequencies and mode shapes, Eq. (3.17)

KTb K;]l Kol {6} = o M1 {6}

No = "m
I

Compute modal equations of motion and modal

[Kb + Kbo + K

incremental equations of motion using

Eqs. (3.27) and (3.28)

l

Compute uncoupled solution using Egs. (3.46) ard (3.47)

!

Compute covariance matrix E[{q} {q}T] using Eq. (3.43)

and nodal-displacement covariance matrix E[{Qb} {Qb}T]

using Eq. (3.49)

v

Compute E[{q} {g(q)}T] using Egs. (3.36) and (3.37)

'

Solve Eq. (3.34) for equivalent linear stiffness

E[{q} (q}'] [K] = EL (G} {9(a)} ]

'

Compute new covariance matrix E[{q} {q}T]new

Egs. (3.38), (3.40), (3.43) and (3.44) and new nodal-

using

displacement covariance matrix E[{Qb} {Qb}T]new

using Eq. (3.49)

®

Fig. 3.3 Computer flow-chart for large deflection random vibration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



yes

'

Update covariance matrix using £q. (3.50) with 8 = 0.5
E[{9} (911 = 5 [EL(a} (@] + EL{q} {a}]

new]

Compute [kT] using Eaqs. (3.52b)'and (3.54) (¢

no

[k;1f <0 no snap-through
?

yes

A 4

snap-through STOP )

Fig. 3.3 Concluded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59



60

3.3 Consistent Stresses/Strains

After the displacements for a given equilibrium configuration are
known, the element strains and curvatures can be calculated using Egs.
(2.9), (2.10), (2.22) and (2.23) through (2.28). For this particular
element, both the strains due to inplane displacements and the
curvatures are discontinuous; hence, the computed stresses will also be
discontinuous. To avoid this difficulty, Oden et al. [80] proposed a
method for obtaining continuous stresses that are consistent with the
displacements. Using this formulation, a discontinuous stress field can
be transformed to a continuous stress field by assuming that the element
displacement functions given by Eqs. (2.1), (2.2) and (2.3) can also be

used to describe the stresses.

3.3.1 Stresses

The conventional element discontinuous inplane forces and moments
can be calculated using Egs. (2.9), (2.10), (2.12), (2.22), (2.28) and
(2.31) as

N = [C1 8107 ] (a) (3.58)

M} = [0] [B,] [T,] fa) - (3.59)

Following Ref. [80], the consistent nodal moments can be calculated

using
[H) (M) = [R] (3.60)
where the system matrix [H] is composed of the element matrices

[h = 1,17 I CRINCRET R (3.61)
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[R] is composed of the element matrices
[r) =) w17 oan (3.62)
A

and the unknown nodal moments {MC} are contained in the matrix [Mc]
which can be obtained from Eq. (3.60), once [H] and [R] are formed.
Applying this same type of procedure to compute the consistent nodal
inplane forces {N.} and using Egs. (2.11), (2.12), and (2.29) through

(2.31), the extreme fiber stresses can be expressed as

1 6
=2 2 \
{a}th/Z h {N} ¢ h2 M3 (3.63)
where
{N} = {Nc} + [C] {eb} + {No} - {NAT}
{M} = {MC} + {No}

and all quantities are evaluated at the element nodes.

3.3.2 Root-Mean-Square Strains

The same procedure as used in the previous section can be applied
to compute the consistent inplane strains {emc} and curvatures {nc} for
a given displacement. Using Egs. (2.11), (2.12) and (2.23), the oxtrome

fiber strains can be expressed as
- 1 h
{elipjp = fepcd + 3 [Al {03 + [A)] (0} £ 5 (x .} . (3.64)

Considering Eqs. (3.19) and (3.25), the terms in Eq. (3.64) can be

written as
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N N

e} = ¢ {e }.aq.+ & I {e }; 4;49
mc j=1 MeJ U 5o k=1 MC Jk "3 Tk

=

1 NN
7 [A] {8} = z > [A]J {e}k qj qk

Jj=1 k=1

" (3.65)
[A] (8} = 1 [A)] {8}; q;

Jj=1

N
(e} = jfl ey 95
where

{emc}j corresponds to {emc} for {Qm} = {Qm}j
{emc}jk corresponds to {emc} for {Qm} = %-{Qm}jk
[A]j corresponds to [A] = for Q) = {¢15

{e}k corresponds to {8} for {Qb} = {o}

{¢};

{nc} corresponds to {xc} for {Qb} j

J
Combining Egs. (3.64) and (3.65), the extreme fiber strains can be

written in terms of first- and second-order terms as

{E}th/Z = {El} + {62} (3.56)
where
N : h N
{91} = Jfl {{emc}j + LAOJ {9}3 i 7 {KC}J} qj = Jfl {El}j qj
N N 1
{€2} = E E {{emc}jk ty [A]J {e}k} qj Ak
Jj=1 k=1
N N
= ¥ I {g};, q.4q .
j=1 k=1 23k Tk
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The mean-square strains can be determined by evaluating
T _ T - T
EL{eyp/p (lyp/pd = El{ey} (e} ] + E[{ey} {ep} ] (3.67)

since for a Gaussian process with zero mean E{qi qj qk] = 0. Using Eg.

(3.66), the terms in Eq. (3.67) can now be evaluated as

1, M N T
Elle)) tg3d = £ £ {egl; {35 Elg; q4]
=1 j=1 (3.68)
[ M.z oz oz a i ]
El{e,} {5} )= 2 £ £t £ {e,};: {e,},1 El9; . q, @
2 2 i1 j=1 k=1 1=1 271 T2k iy kM

where E[qi qj 9 q]J can be evaluated using Eq. (3.36). Equations
(3.66), (3.67) and (3.68) can now be combined to determine the mean-

square strains and the root-mean-square strains.
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Chapter 4

NUMERICAL RESULTS AND DISCUSSION

The primary objectives of this study are to develop a finite
gv-nent formulation for the 1large deflection random response of
thermally buckled structures and to predict regions of stable vibrations
for such structures. Since the stiffness matrices of a thermally
buckled structure depend on both the initial deflections and stresses
and since very little of this data is available, a secondary objective
is to develop a finite element formulation to accurately predict the
postbuckled deflections and stresses of structures subjected to
arbitrary temperature distributions. To verify the finite element
formulations, results are compared with multiple-mode classical
solutions [24, 45, 67] that are considered to be a comparison standard.

. Convergence studies are included to evaluate.the required number of

elements and mode shapes necessary to achieve reasonable accuracy.

4.1 Boundary Conditions

Thin plate boundary conditions are typically defined as being
either simply supported or clamped with respect to transverse deflec-
tions and moveable or immovable with respect to inplane deflections.
Immovable inplane edges require that the inplane deflections u and v be
equal to zero at a boundary; whereas, u and v are free at a boundary for
moveable inplane edges. Simply supported boundary conditions are

obtained by setting the transverse deflection equal to zero at an edge,
64
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and clamped boundary conditions require that both the transverse
deflection and its associated slope be equal to zero at an edge. For
the present study, all dinplane boundary conditions are taken to be

immovable.

4,2 Thermal Postbuckling

The thermal postbuckling results are compared with a previous
solution for a square plate clamped on all edges for both uniform and
nonuniform temperature distributions. For the present study, the plate

is considered to be aluminum with the following properties:

Young's modulus E = 10.0 x 105 psi
Poisson's ratio v = 0.3
12.5 x 1676 in./in./°F .

coefficient of thermal expansion a

However, any representative properties can be used, with the exception

of Poisson's ratio, since the results are nondimensional.

4.2.1 Convergence of Thermal Postbuckling Formulation

Solution convergence is examined by using various degrees of mesh
refinement for a plate subjected to a uniform temperature distripution

~ and observing the change in deflactions and stresses. All elements are
taken to be square and of equal size, and due to symmetry considera-
tions, only 1/4 of the plate is modeled. Figures 4.1-4.5 illustrate the
convergence of the thermal postbuckling formulation. As indicated in
Fig. 4.1, the center deflection converges very rapidly, and the 16, 25

and 36 element results are essentially the same. Convergence for the
stresses in the center of the plate is also quite rapid as illustrated

in Figs. 4.2 and 4.3. The edge stresses (Figs. 4.4 and 4.5) are much
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slower to converge with the edge membrane stress being the slowest.
This is probably due to the high stress gradients near the edge of the
plate coupled with the fact that the inplane element displacement

functions are only C° continuous.

4.2.2 Accuracy of Thermal Postbuckling Formulation

Since the 25 and 36 element results appear to be reasonably close
for both deflections and stresses, the 36 element model is considered to
be accurate enough to compare with Paul [24]. Paul's classical solution
is chosen to compare with because it uses 25 modal functions to
determine the postbuckled deflections and stresses and should be very
accurate. Figures 4.6-4.10 illustrate the comparison of the results
obtained using 36 elements to Paul's results for the case of a uniform
temperature distribution. The deflection results (Fig. 4.6) and the
center stress results (Figs. 4.7 and 4.8) are very nearly identical with
Paul's solution, and the edge stresses (Figs. 4.9 and 4.10) are very
close. For the case of a nonuniform temperature distribution (AT(x,y)
= T, (1 - cos Zgé) 1 - cos ggx)), the results are shown in Figs. 4.11-
4.15. As for the case of a uniform temperature distribution, the center
deflections and stresses compare more favorably, and the edge stresses
are in error the most when compared with Paul's solution. For the edge
membrane stress (Fig. 4.15), the 36 element results compare poorly with
Paul's solution. However, the results obtained using 64 and 100
elements tend to converge to the classical solution indicating that
better accuracy can be obtained by using more elements. Higher order
inplane element displacement functions could also be used to improve the

accuracy of the present formulation.
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4,3 Large Deflection Random Response

Results for large deflection random vibration are compared with
previous solutions for flat, stress free beams. For a simply supported
beam buckled by a uniform temperature distribution, the deflection
response, strain response and snap-through boundary are compared with a
previous study. Also, the strain response is evaluated et various sound
spectrum levels for simply supported beams and clamped rectangular
plates buckled by both uniform and nonuniform temperature distributions.
The damping £ is taken to be equal to 2 L, where ¢ is the damping
ratio and W, is the fundamental frequency of the initially flat, stress

free structure. The material properties, mass density and damping ratic

are taken as

Young's modulus E = 10.5 x 106 psi
Poisson's ratio v = 0.3
coefficient of thermal expansion e = 12,5 x 1075 in./in./°F
mass density o = .2588 x 1073 1b-sec?/in.%
damping ratio z = .01,
with the dimensions of the beam being
length a =12 in,
width b= 2in.

thickness h = 0.064 in.,

and the dimensions of the plate being

length a =15 in.
width b =12 in.
thickness h = 0,040 in.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(€]
W

4.3.1 Convergence of Random Vibration Formulation

A 16 element, half-beam model is used to evaluate the convergence
characteristics of the present formulation and determine the required
number of modes for reasonable accuracy. The half-beam model was chosen
since both the thermal and random loading are considered to be symme-
tric. As a result, only the symmetric mode shapes are used for the
random vibration analysis. Sixteen elements were chosen since a high
degree of mesh refinement is necessary to accurately determine the

higher freguencies and mode shapes used for the convergence study.

The root-mean-square deflections obtained using one, two. three and
four symmetric mode shapes for flat, unstressed beams are shown in Table
4,1, As indicated, the maximum deflection for the simply supported beam
converges very rapidly, and the single-mode deflection is virtuaily the
same as the multiple-mode deflection. For the clamped beam, the maximum
deflection is slower to converge, but the three- and four-mode solutions
are almost identical even for high sound spectrum levels. Root-mean-
square maximum strains, shown in Figs. 4.16 and 4.17, are slower to
converge, but the three- and four-mode solutions are still very close
for both the simply supported and clamped beams. As for the thermal
postbuckling sq]ution, the slower convergence of the strains can :be
partially attributed to the low-order inplane element displacement

functions.

4,3.2 Accuracy of Random Vibration Fcrmulation

Based on the results of the convergence studies, the four-mode, 16
element solution is considered accurate enough to compare with other

solutions and is used for the remainder of the random vibration beam
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Table 4.1 Convergence of RMS maximum deflections
for simply supported and clamped flat,
stress free beams (¢ = Z;wo, g = .01)

SSL (dB) Single Two Three Four
Mode Modes Modes Modes

Simply Supported

90 0.3194 0.3196 0.3196 0.3196
100 0.8454 0.8456 0.8455 0.8455
110 1.7932 1.7924 1.7920 1.7918
120 3.3830 3.3768 3.3740 3.3731
130 6.1301 6.1082 6.0957 6.0917

Clamped

90 0.1005 0.1008 0.1008 0.1008
100 0.3154 0.3161 0.3162 0.3162
110 0.9351 0.9350 0.9356 0.9355
120 2.2830 2.2680 2.2768 2.2753
130 4,5887 4.5057 4.5704 4.5608
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studies. Comparisons are made with Refs. [45] and [67] which both use a
100-mode classical approach in conjunction with the EL method. For the
case of flat, unstressed beams, the present results are in excellent
agreement with the classical solutions as illustrated by Figs. 4.18 and
4.19. The maximum deflections for both the simply sunported and clamped
beams are seen tc be idertical with those obtained using the classical
100-mode formulations. Strains, although not as close as deflections,
still compare very well with the classical solutions. Discrepancies can
be attributed to the element inplane displacement functions as well as
the fact that the classical solutions use such a high number of modes.

Furthermore, the method of equivalent linearization used for the present

[{"]

study does not make the restrictive assumption that the eguivalent

linear stiffness matrix is diagonal which, in generai, is not true.

The only previous studies to consider the 1large deflection
muitiple-mode random vibration of buckled structures are those conducted
by Seide et al. [67-69] with Ref. [67] being the most comprehensive.
A1l of these studies considered the random vibration of beams buckled by
a uniform temperature distribution. Comparisons with the EL results for
a thermally buckled simply supported beam [67] are shown in Figs. 4.20
and 4.21 for selected values of T/Tepe As for the case of flat,
unstressed beams, the deflections are in exact agreement with the 100-

mode classical solution, and the strains compare very closely.

Results for the snap-through boundary of a thermally buckled simply
supported beam are compared in Fig. 4.22. Two different snrap-through
boundaries are shown from Ref. [67]. Both were determined by using a
numerical simulation technique to generate a time dependent random

loading. Three modal functions were used, and the resulting equations
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of motion were then solved using numerical integration. Snap-through
was considered to have occurred when the random center deflection of the
beam became greater than the initial static center deflection. This
criterion for snap-through would seem to be very conservative, in an
average sense, because for random vibration the peak respconse can
greatly exceed the average response. The strict use of this criterion
produces the Tower bound depicted in Fig. 4.22. This same criterion was
also used to determine the probability of the firsi-passage time for
snap-through. If the probability of the first-passage time is
relatively Tow for all time, then the probability of snap-through is
also low but is not equal to =zero; therefore, this condition was
considered to represent an upper bound for snap-through as shown in Fig.
4,22, The present formulation is seen to predict a snap-through
boundary that falls between these twc bounds. There is a considerahble
difference between the snap-through boundary predicted using the present
formulation and the boundaries taken from Ref. [67]. A large part of
this difference is due to two things. First, the snap-through boundary
calculated using the present formulation is based on EL results instead
of numerical simulation results. Secondly, the snan-through criteria

used for this study is different than the criteria used by Ref. [67].

4.3,3 Strain Response of Thermally Buckled Beams

Having verified the accuracy of the present formulation, the root-
mean-square strain response at the center of a thermally buckled simply
supported beam is computed at various sound spectrum Tlevels for two
conditions: a uniform temperature distribution and a nonuniform

temperature distribution. For the case of a uniform temperature
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distribution (AT(x) = To), the temperature T, necessary to produce
buckling was found to be 1.87°F; whereas, for the nonuniform temperature

distribution (aT(x)} = T_ sin %5) the temperature T, to produce buckling

0
w2s found to be 2.94°F. Although the maximum temperature at the center
of the beam is higher for the nonuniform temperature distribution, the
average temperature is the same (Tpyq = 1.87°F) for both cases. The
results for the two different cases are shown in Figs. 4.23 and 4.24,
and as illustrated, at low sound spectrum levels the maximum strain
occurs at or near T/Tcp equal to one. However, at higher sound spectrum
levels, the maximum strain is seen to occur at higher values of T/Ter-
This 1indicates that even though the beams become stiffer in the post-
buckling region, the maximum strains occur at temperatures well beyond
the buckling temperature for sufficiently high sound spectrum levels.
This type of strain response is due to the coupling terms, of Eq.
(2.23), that depend on both the initial deflection W, as well as the
random deflection w and is discussed in more detail in the next
section. The snap-through boundary of Fig. 4.22 is alsc included in
Fig. 4.23 to show that at higher sound spectrum levels for T/Tep > 1,

snap-through motion can be expected to occur.

A comparison of the maximum strain versus sound spectrum level for
each of the temperature distributions is shown in Fig. 4.25. For this
particular beam subjected to the two different types of temperature
distributions, the maximum strains are virtually the same. This is due
to the fact that even though the initial stresses for the two tempera-
ture distributions are different, the initial deflections w, differ by a
very small! amount. Hence, the stiffness matrices for the two different

cases contain significant differences only in the terms involving the
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initial inplane force No, and the change in the total stiffness is
very small. As a result, the random deflections and strains are very

nearly equal for the two cases.

4.3.4 Strain Response of Thermally Buckled Plates

A clamped rectangular plate is modeled using 36 equal sized
elements for 1/4 of the plate, and four mode shapes are used for the
random vibration analysis. Two different temperature distributions are
considered: a uniform distribution (aT(x,y) = To) and a nonuniform
distribution (aT(x,y) = T0 (1 - cos Z%ﬁ) (1 - cos Zgl)) with T, being
the average temperature for each case. The average temperature
necessary to produce buckling was found to be 2.51 °F for the uniform
distribution and 1.58 °F for the nonuniform distribution. Thus, as
noted by reference [24], buckling occurs at a lower average temperature

for the nonuniform distribution.

Results for the root-mean-square strain response at various scund
spectrum levels for each of these cases are shown in Figs. 4.26 and
4.27. The plate results are seen to be very similar to the beam results
of the previous section even though the values of T/Tcg are much lower.
This is because the initial plate deflection Wy at T/Tep equal to three
is of the same order as the initial beam deflection at T/Ten equal to
ten. Hence, for a given value of T/TCR, the plate is stiffer than the
beam. Again, the maximum strain occurs at lower temperatures for low
sound spectrum levels and at higher temperatures for high sound spectrum
Tevels. Behavior of this type is due to the coupling term [AOJ {8} of
Eq. (2.23) with [AOJ being dependent on the initial deflection W, and

{8} being dependent on the random deflection w. For a given sound
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spectrum level as T/TCR increases, the initial deflection increases, and
the structure becomes stiffer. As a result, the random deflection
decreases. But for a given value of T/TCR, the random deflection
increases with sound spectrum level. So, with increasing T/Ters {8}
decreases and [Po] “ncreases, and with increasing sound spectrum level
{8} increases. Thus, at high sound spectrum levels {8} is sufficiently
large for the term [AOJ {6} to become large, and the strain response
increases with temperature until the structure becomes stiff enough for

{6} to become small.

Maximum strain versus sound spectrum level for each of the
temperature distributions is shown in Fig. 4.28. As for the beam
results of the previous section, the different temperature distributions
have a very small effect on the strain response since the postbuckled
deflections W, are very nearly equal, in an average sense, for the two
cdifferent cases.
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Chapter 5

CONCLUSICNS

Using a finite element formulation, the governing nonlinear
equations of motion have been derived for thin structural components
subjected to a combined thermal/acoustic loading. Considering that thin
panels buckle when subjected to small variations in temperature and
exhibit large deflection response when exposed to moderately high cound
spectrum levels, the nenlinear equations of motion were specialized for
the specific applications of thermal postbuckling and large deflection

random vibration of thermally buckled structures.

The critical temperature variation that produced panel buckling was
determined using the incremental equations of motion. Corresponding to
the critical buckling temperature are both inplane deflections ard a
buckiing mode shape which were used to estimate the initial deflected
shape to begin the postbuckling solution. Newton-Raphson iteration was
used to solve for the deflections corresponding to a given temperature
distribution, and continuous stresses were computed using interpolation
functions consistent with the element displacement functicns. Thermal
postbuckling deflections and stresses were found to compare very well
with a previous 25-mode plate solution for both uniform and nonuniform
temperature distributions. However, a relatively high number of
elements were necessary to accurately determine the membrane stresses at

the plate edge.

103
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For a given postbuckled equilibrium configuration with inplane
forces {No}, moments {Mo} and deflection wy, the Tinear stiffness
matrices were computed. With the linear stiffness matrices, the mass
matrix and neglecting 1inplane inertia, the linear mode shapes and
frequencies were computed for the thermally buckled structure. Using a
coordinate transformation and expressing the nodal displacements in
terms of the 1linear mode shapes, the -equations of motion were
transformed to a system of coupled nonlinear modal equations. The
method of equivalent Tlinearization was then used to reduce these
equations to a system of nonlinear algebraic equations. Solutions to
these equations were found using an iterative method in conjunction with
an underrelaxation approach. Following the same type or approach as
used for the thermal postbuckling formulation, continuous root-mean-

square strains were ccomputed.

Four-mode random vibration solutions were found to compare very
closely with 100-mode EL classical solutions for both flat, stress free
beams and beams buckled by a uniform temperature distribution. Results
indicate that at low sound spectrum levels, the maximum reot-mean-square
strain occurs at or near the critical buckling temperature; whereas, for
high sound spectrum levels the maximum strain occurs at temperatures
above the buckling temperature. The stability of a given configuration
was evaluated by considering the incremental equations of motion, and
predicted snap-through sound spectrum levels were found to be within the
boundaries of a three-mode classical solution. Such results, although
not conclusive, suggest that a reasonable prediction of the snap-through
boundary can be made based on an approximate solution such as the EL

method.
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The most significant contributions of the present study are
considered to be the formulation and solution, inciuding snap-through,
of the nonlinear modal equations used to describe the large deflection
random response. These general mod27 equations are applicable not only
to the present research, but also to other probliems involving nonlinear
dynamic response, and the present methodology can be extended to built-
up structures with complex boundary conditions. For the formulation of
the nonlinear modal equations, the linear mode shapes of the thermally
buckled structure were used. Previous classical solutions have only
considered the mode shapes of the initially flat structure. Therefore,
the present formulation should more accurately reflect the dynamic
behavier of the thermally buckled structure. Furthermore, the snap-
through criteria presented herein is based on results obtained using the
EL method which, according to Refs. [34] and [49], requires

significantly less computer time than numerical simulation techniques.

Seide et al. [67] noted a reasonable agreement between numericai
simulation and EL results. However, differences were also noted. In
particular, at high levels of excitation, differences between the two
solutions were reported to be possibly due to either using the EL method
outside of its range of applicability or using too large of a time step
for the numerical simulation technigue. To resolve these differences
and obtain better results, future research should consider improved EL
and numerical simulation methods. Further extensions of the present
study should include such things as temperature dependent material
properties, time dependent thermal loads and alternative methods for
predicting the snap-through boundary. For a more accurate determination

of stresses/strains, higher order inplane element displacement functions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

are recommended. In addition, thick plates, built-up structures, curved
panels and composite materials should be considered. To validate
present and future analytical results detailed, accurate experimental
studies should also be undertaken to evaluate the random deflection and

strain response of thermally stressed or buckled structures.
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APPENDIX A
ELEMENT MATRICES

The inverse of matrix [Tb] in Eq. (2.9) is expressed as

ay ay e
1 0 0 0 0 0 0 0
] A 0 32 0 0 3l 0
S T S (IS 2 %
1 0 b 0 0 5 0 0
0 1 9 0 0 0 0 0
0 1 0 23 0 0 332
0 1 0 23 b 0 352 236
0 1. 0 0 b 0 0 0
7,7 =0 6 1 0 0 0 0 o2
0 0 1 0 3 0 0 3
0 0 1 0 3 26 0 32
0 0 1 0 0 25 5 5
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 23
0 0 0 0o " 1 0 0 23
0 0 0 0 1 0 0 0
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% ®12 %16

0 0 0 0 0 0

0 0 0 0 0 0 0 0
S L S S S Bt <GS

0 53 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

5 o % a2 B 3%e 23] 3345

5’ 0 0 0 53 0 0 0

0 0 0 0 0 0 0 0

0 0o 3 0 0 0 0 0
236 35 B 2% % 25% 3%l 3%

0  3b 0 0 0 0 0

0 0 0 0 0 0 0

0 0 33 0 0 0 0

26 0 38 4 3° el 6ap2 932

2b 0 6 352 0 0 0

(AL}

where 3 and b are the Tength and width of the rectangular plate element.
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Matrix {Tm] in Eq. (2.10) is expressed as

U Ug v
1 0 0 0
-a* a* 0] 0 0
-b* 0 0 b*
*b* -a*b* a*bk -a*b*
[T1-
1 0
* *
-a a
0 b 0
*b* -a*b*

where a” = 1/3 and b” = 1/b.

Matrix [Br] in Eq. (2.22) is expressed as

B B4

01 0 y 0 0
[Bl=1{0 0 0 0 0 0

0 0 1 x 0 1

O O

117

Vg
(A2)
0
0
b*
-a*b*
Bg
(A3)
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Matrix [Be] in Eq. (2.24) is expressed as

% % %
51 [ 0 1 0 2x 0 e axy
“ lo o 1 0 x 2y 0 x2
% *12 °16
2
y 0 X"y 2x.y2 _y3 3x2_y2 2xy 3x2y3] (A4)
2xy 3% KO 22y 3xy? 2x3y 3éy? 33y2 |

%1 % g
[ 0 2 6 2y
(81 = - [ 0 0 n 0
0 0 0 4x
9 %12 %16
0 0 6xy 2y2 0 6x,y2 2y3 6x_y3 (A5)
2x 6y 0 2x2 6xy 2x3 6x2y 6x3y
By 0 6xX 8xy 62 12xly  12x2  18x42
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CONVERGENCE CRITERIA

The displacement convergence criteria (norms) used for the present
study are due to Bergan and Clough [81]. For the thermal postbuckling
formulation, two norms are considered: the modified absolute norm and

the modified Euclidean norm. These two norms, respectively, are defined

as
N AV,
=1 J
— z —— b.
HEHA Nj=1 V5 ref (Bij
N s, |2 172

lelle = (& ¢ J (82)

|| IF ( N J=1 Vj,ref

where N is the number of system degrecs-of-freedom. Convergence 1is
considered to be achieved when either of these two norms satisfy the
postbuckling convergence criteria. The quantity av. is the change in

J
the jth displacement component for a given iterative cycle, and Vj ref
9
is the largest displacement component of the proper “type". For
example, if Jj corresponds to a rotation ex or ey then Vj,ref is the
largest rotation; whereas, if j corresponds to an inplane displacement u

or v then Vi ref is the largest inplane displacement.
s

For the random vibration formulation the norm used is based on the

maximum norm and is defined as

lel] =

Tt I (83)
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and convergence is considered to be achieved when this norm satisfies
the random vibration convergence criteria. For this expression v and

Av correspond to the root-mean-square center deflection.
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