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ABSTRACT 

DE-CENTRALIZED AND CENTRALIZED CONTROL FOR REALISTIC 
EMS MAGLEV SYSTEMS 

Mohamed M. Aly M. Moawad 
Old Dominion University, 2012 
Director: Dr. Thomas Alberts 

A comparative study of de-centralized and centralized controllers when used with 

real EMS Maglev Systems is introduced. This comparison is divided into two parts. Part 

I is concerned with numerical simulation and experimental testing on a two ton six-

magnet EMS Maglev vehicle. Levitation and lateral control with these controllers 

individually and when including flux feedback control in combination with these 

controllers to enhance stability are introduced. The centralized controller is better than 

the de-centralized one when the system is exposed to a lateral disturbing force such as 

wind gusts. The flux feedback control when combined with de-centralized or centralized 

controllers does improve the stability and is more resistant and robust with respect to the 

air gap variations. Part II is concerned with the study of Maglev vehicle-girder dynamic 

interaction system and the comparison between these two controllers on this typical 

system based on performance and ride quality achieved. Numerical simulations of the 

ODU EMS Maglev vehicle interacting with girder are conducted with these two different 

controllers. The de-centralized and centralized control for EMS Maglev systems that 

interact with a flexible girder provides similar ride quality. 

Centralized control with flux feedback could be the best controller for the ODU 

Maglev system when operating on girder. The centralized control will guarantee the 



suppression of the undesired lateral displacements; hence it will provide smoother ride 

quality. Flux feedback will suppress air gap variations due to the track discontinuities. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Since the 1970's, magnetic levitation has been successfully implemented for many 

applications. The applications include transport, magnetic bearings, space launch systems 

and vibration isolation. Maglev is a high-speed ground transportation method that uses 

contact-less levitation, and guidance and propulsion electromagnetic principles, 

potentially reaching velocities comparable to turbo propeller and jet aircraft (550 to 700 

km/h) in regular service [1]. Maglev is a fast, safe, and nearly pollution free 

transportation method. Conversely, it is historically known to be technically challenging 

to develop and expensive to establish. However, early examples of Maglev were 

constructed in Japan, and Germany three decades ago. 

There are two types of magnetic levitation: Electro-Dynamic Suspension (EDS), 

and Electro-Magnetic Suspension (EMS). This dissertation is concerned with EMS 

Maglev systems. 

A full-scale Electro-Magnetic Suspension (EMS) Maglev demonstration system is 

currently being used as research vehicle on the Old Dominion University (ODU), Norfolk 

VA campus by several of the university's engineering faculty and students [2-9]. The 

ODU test vehicle (bogie) is basically an aluminum structure equipped with six 

electromagnets, six Pulse Width Modulated (PWM) power amplifiers, two linear 

induction motors (LIMs) along with position and acceleration sensors, and data 

acquisition and control equipment. The original Maglev system was installed on the Old 



Dominion University (ODU) campus by American Maglev Technologies (AMT) from 

the years 2001 to 2002 with the intention of becoming a permanent student transportation 

system [8]. After installation of the system at ODU and some initial on-campus testing, 

the project came to a halt due to technical difficulties in achieving stable levitation. The 

inability to achieve stable levitation was attributed to flexibility of the guideway girders. 

A quick interpretation of the problem is that when the Maglev vehicle is moving on a 

flexible girder, the measured air gaps are affected due to the relaxation of the girder, 

which was not accounted when the controller was designed. In order to design an 

appropriate controller for the system, the dynamics of a flexible guideway should be 

added to the vehicle's dynamics to form a complete vehicle-guideway interaction model 

that accounts for that inevitable interaction. One of the issues that needs to be addressed 

in this regard is the interaction between the Maglev vehicle and a flexible guideway in 

combination with the controller scheme (de-centralized or centralized), as flexible 

guideways are lower in construction cost than rigid ones. 

An open research issue at the ODU Maglev test lab is the EMS Maglev guidance 

(lateral control) problem. Usually, the guidance in EMS Maglev systems is attained by 

one of two methods [10-12]. The first approach is to use separate magnets for levitation 

and guidance; the second is to use the levitation magnet set for levitation and guidance 

with a special type of guideway tracks called inverted U-rail tracks. The ODU Maglev 

system employs the second method. 

In this dissertation, the comparison between de-centralized and centralized 

controllers of an electromagnetically suspended vehicle (EMS Maglev) will be studied. 

The comparison will include the application of these controllers on the EMS Maglev 
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vehicle for two cases: first, when interacting with a flexible guideway (after 

understanding the interaction); and second, for levitation and guidance control when 

inverted U-rails are utilized. Flux feedback will be added in combination with these 

controllers to improve the stability. Experimental testing of these controllers (especially 

for levitation and guidance control) is carried out in Old Dominion University's Maglev 

test facility, on the demonstration vehicle that is also called the "Test Bogie." 

In this chapter, Maglev systems and their working principles are briefly introduced. 

Literature related to this work is reviewed with focus on Maglev systems, EMS Maglev 

research at ODU, Maglev-girder interaction, guidance control and de-centralized/ 

centralized controllers. The motivation behind and the scope and goals of this research 

work are specified. 

Chapter 2 presents the modeling of EMS Maglev systems: 1-DOF and 2-DOF 

system models for an inverted U-rail. Multivariable control tools will be utilized for 

analysis. Methods for multivariable PID controller gains selection are presented. 

Concepts of de-centralized, centralized and flux feedback controllers are illustrated. 

Simple EMS Maglev systems are studied first before working with the ODU EMS 

Maglev system. 

In chapter 3, a detailed analysis of de-centralized and centralized control for an 

EMS Maglev system levitation and guidance is introduced. A simple EMS Maglev model 

(rigid case) that exhibits the heave and lateral motions is studied. The flexible case is 

considered by attaching one flexible mode to the heave motion of that model. The MIMO 

root loci for the 2-DOF system with de-centralized and centralized controllers are shown. 
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Numerical simulations are carried out using MATLAB/SIMULINK® for these typical 

systems after using a unified criterion for controllers' gains selection. 

Chapter 4 presents the complete model for the ODU EMS Maglev bogie. The de­

centralized and centralized control for that system is introduced. Flux feedback control in 

combination with the de-centralized and centralized control for the system is described. 

Numerical simulation is performed using MATLAB/SIMULINK® for the system with 

these controllers. Details of the experimental testing of the test bogie with de-centralized 

controller are also presented. 

Chapter 5 presents the details for the generalized Maglev-girder interaction LPV 

model, and its dynamic change with regard to the vehicle's position. A simple 2-DOF 

Maglev-girder interaction model is presented for the purpose of study and investigation 

of its dynamic change with vehicle position and velocity. The MIMO root loci for that 

simple system with de-centralized and centralized control schemes are shown. Concepts 

for ride quality are also presented. The simulation results for the ODU Maglev bogie with 

de-centralized and centralized control when applying a unified approach for controllers' 

gains selection based on LQR criterion are presented. 

In Chapter 6, conclusions that can be drawn from this research work are presented. 

Recommendations for future work are also provided. The next sections introduce Maglev 

systems and their working principles. 

1.2 Maglev Systems 

The word "Maglev" is derived from MAGnetic LEVitation. Maglev is a 

transportation system that suspends, guides and propels vehicles, essentially trains. These 

vehicles use magnetic field for levitation and propulsion, enabling them to achieve speeds 
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up to 700 km/h comparable to turbo propeller and jet aircraft in regular service. Unlike 

wheel-on-rail trains, Maglev vehicles have no mechanical contact with the guideway, in 

this manner frictionless and nearly noiseless propulsion. Basically, there are two types of 

Maglev systems realized in practice, EDS and EMS systems. These are briefly described 

below. 

EDS systems rely on forces of repulsion between the vehicle and guideway. The 

train employs magnets that induce current in the guideway that creates a repulsive 

magnetic field which causes the levitation. EDS systems are inherently stable because, 

the resulting repulsive force increases as the gap decreases [13]. Most EDS Trains as 

shown in Figure 1.1 must be in motion to levitate so the vehicle must be equipped with 

wheels because the EDS will not levitate at speeds below the critical speed. 

1.2.1 Electrodynamic Suspension Systems (EDS) 

Vehicle 

Lei 
Mi 

Guideway 

Figure 1.1. EDS Maglev System Concept 
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There are some modern EDS Maglev systems can levitate at zero speed such as the 

Korean HTSC system by using AC superconducting magnets [3]. 

EMS systems rely on forces of attraction between the vehicle and guideway. As 

shown in Figure 1.2, the electromagnets on the vehicle interact with and are attracted to 

ferromagnetic tracks on the guideway that results in the levitation of the vehicle. This 

enables EMS systems to levitate at zero speed. In EMS systems, the force that is 

produced by the electromagnet is a nonlinear function of the magnet current and the 

airgap. This nonlinear function is basically an inverse square relationship that produces a 

fundamentally unstable open-loop characteristic [14]. This can either be modeled as a 

(nonlinear) negative spring, or the suspension's linearized transfer function can be shown 

to have a positive real pole (eigenvalue). Since, the EMS systems are open loop unstable, 

feedback control is necessary in order to stabilize them. 

1.2.2 Electromagnetic Suspension Systems (EMS) 

/ 

Vchklr 

\ 

Levi 
Mai 

Gatdcway 

Figure 1.2. EMS Maglev System Concept 
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13 Literature Review 

Literature related to Maglev research will be divided into those including control of 

EMS Maglev systems, EMS Maglev research at ODU, control of Maglev-girder 

(guideway) system interaction, EMS Maglev levitation and guidance control, and de­

centralized and centralized control. In the following, a brief review of some important 

works related to the above-mentioned categories is presented. 

1.3.1 Control of EMS Maglev Systems 

Various kinds of control techniques have been applied and tested on simple Maglev 

systems such as magnetic ball levitation and levitation of one or two mass systems. Some 

of these are described below. In [10-12], the nonlinear equations of a 2-DOF EMS 

Maglev system that represent heave and lateral motions are presented. The authors 

linearized the system model and show that with small displacements, the system's heave 

and lateral motions are de-coupled and successfully designed individual controllers for 

each channel. The basic model that describes the modeling of a simple one mass 

magnetic levitation system is described in [13], 

Other topics like ride quality, dynamic interaction between guideway and the 

vehicle, centralized and de-centralized control and a review of current research (of the 

1980's) in Maglev are presented. The principle of the magnetic levitation design for 

passenger transport application (Maglev at Birmingham) is explained in [IS]. The 

hypothesis that measurements of magnet current and airgap flux density are sufficient for 

stable control is explored, and strategies by which such control can be achieved are 

examined in [16]. A robust observer design to estimate the airgap and flux density for a 

single-axis Maglev system is introduced in [17]. Research for small experimental vehicle 
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levitation to test the control of an EMS Maglev system using a centralized non-linear 

electromagnet force control algorithm and a guideway following algorithm is conducted 

in [18]. The effect of using different sets of state variables in designing linear optimal 

controllers for Maglev vehicles is examined in [19]. A nonlinear state transformation, 

along with a PI controller for the levitation of 1-DOF EMS Maglev system, which leads 

to second order model of the system, is obtained. The result concluded from this work is 

that good performance can be achieved for Maglev systems using simple controllers. 

13.2 EMS Maglev Research at ODU 

At Old Dominion University (ODU), Norfolk VA campus, there is a full-scale 

Electro Magnetic Suspension (EMS) Maglev demonstration system that is established 

and tested. As part of this research effort, design and implementation of control systems 

for a Maglev laboratory experiment (1-DOF Maglev test rig) at Old Dominion University 

are described in [2]. A detailed dynamic model for the ODU Maglev test-vehicle that 

incorporates structural dynamics with flexible modes of vibration, non-linear 

electrodynamics, feedback controllers, discrete time implementation, noise filters and 

disturbance inputs is developed and validated via real time experimental testing in [3]. 

Dynamic modeling, numerical simulation and experimental validation of an EMS 

demonstration vehicle are presented in [4]. This dynamic model incorporates rigid body 

modes as well as a finite number of flexible modes of vibration. De-centralized PE) 

controllers are designed individually for each of the six electromagnets. A dynamic 

model of the vehicle-girder coupled with a controller is developed for the ODU Maglev 

demonstration system using software- MADYMO in [5]. MADYMO stands for 

MAthematical DYnamic Models, a software package developed by TASS for design and 
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analysis for occupant safety systems in the transport industry. A study on the effects of 

track irregularities on the dynamic responses of a Maglev train is presented. The track 

here is a combination of concrete guideway, rails and ribs. Its irregularities can be due to 

the flexibility and the unevenness of the track in [6]. A simple analysis evaluating the 

stability threshold for magnetically levitated flexible structures using dissipative 

collocated controllers is presented in [7]. A single degree of freedom test rig was 

constructed using one magnet and a short section of rail from the Old Dominion 

University Maglev system in [8]. The analysis of stability requirements for EMS 

magnetically levitated vehicles with structural flexibility and the implications of 

collocated versus non-collocated control is contrasted in the context of the stability of 

flexible modes in [9]. 

1.3.3 Control of Maglev-Girder Interaction 

The model of a Maglev vehicle moving on a guideway was introduced in the cases 

of a concentrated and distributed vehicle loads at different vehicle speeds in [21] showing 

that the speed of vehicle changes the girder vibration shape and amplitude. After this, 

many research reports have been presented to study vehicle-girder interaction with many 

theoretical and simulation details in terms of vehicle velocity, vehicle dynamics, 

electrodynamics and controllers. Refs. [22-31] are the most recently conducted research 

in this area. Some of these research papers consider the girder vibration as disturbance 

injected to the vehicle model [22-23] and others consider the girder flexible model as a 

part of the system [24-28]. Most of the research on vehicle-girder interaction focuses on 

studying dynamics and response [26,30-31], applying different controller techniques 

(Nonlinear [23], and LQR [24], neuro-PI [29]), and optimally design the for girder or 
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vehicle parameters [27-28]. In [22], a dynamic interaction model of a 5-DOF Maglev 

vehicle-guideway system under controllable magnetic suspension forces is developed. 

The vehicle is simplified as a body with primary and secondary suspension parts. 

Regions for the disturbance of heave motion or/and lateral motion and the control 

parameters are numerically searched to stabilize the system. Nonlinear H® state and 

output feedback controllers for EMS Maglev vehicles are developed in [23]. 

Experimental results from a 1-DOF suspension system are included to highlight the 

effectiveness of the proposed nonlinear state- and output-feedback controllers to suppress 

guideway-induced disturbances. 

In [24] the authors suggested that if the vibration mode frequency of a single span 

guideway is very high compared with the span crossing frequency of the vehicle, the 

guideway deflection by the weight of the vehicle can be assumed to be quasi-static. In 

[25], a vibration analysis of the coupled equations of motion of 3-DOF Maglev vehicle-

guideway is derived for the improvement of performance and reduction of construction 

costs. 

A numerical model incorporating guideway dynamics, vehicle dynamics (with 16 

electromagnetic forces), guideway irregularity, and the interaction of different systems is 

developed in [26]. The guideway irregularity model has greater influence on the 

acceleration of the vehicle body rather than those on the guideway displacement. 

For the Mashhad-Tehran Maglev system, a model for guideway load distribution 

and accuracy of such a model is the backbone for optimized guideway design. Parameters 

that are effective for the analysis and design of guideways, including its loading patterns 

and structural models, are investigated. Vehicle mechanical design and its loading 
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capacity, in addition to guideway geometry and properties of magnetic force elements, 

are used to develop the loading models in [27]. 

In [28], simulation for a Maglev vehicle model with 30-DOF (five-cars) operating 

over a single-span elevated U-shaped girder guideway was performed. It was shown that 

a distributed-load vehicle model is better than a concentrated-load model, and multicar 

vehicles have less car-body acceleration than does a single-car vehicle because of intercar 

constraints, which indicates that the multicar vehicle would provide better ride comfort. 

A neuro- PI (proportional-integral) controller to control a Maglev vehicle (2-DOF 

moving oscillator) interacting with a simply supported beam guideway is introduced in 

[29]. The Maglev vehicle model is simplified as evenly distributed force acting on the 

guideway at constant speed by using the mode superposition method. 

In [30], they concluded that closed-form solutions of the guideway imply that 

vehicle-guideway interaction does not necessarily occur with the Maglev vehicle passing 

across a bridge at constant speed. From the analytical results of the impact factor, the 

displacement of the rail and bridge could reach their local extreme value if the running 

speed of the load is close to certain values. 

The vertical acceleration response of a simple beam traveled by a series of equally 

spaced moving loads at constant speeds is studied by the superposition method was 

presented in [31]. The maximum acceleration response of the beam is dominated by the 

fundamental vibration mode for a properly damped beam. 

1.3.4 EMS Maglev Levitation and Guidance Control 

One of the current research issues at the ODU Maglev test lab is the EMS Maglev 

guidance problem (lateral control). Usually, guidance in EMS Maglev systems can be 
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achieved by two different methods [10]. The first is to use separate magnets for levitation 

and guidance, the second is to use a combined magnet set for levitation and passive 

guidance with a special type of guideway tracks called inverted U-rail tracks. Guidance 

can be attained actively using the combined magnet set that is laterally offset or staggered 

[11-12] when centralized control is employed. When de-centralized control is used, 

guidance is achieved passively. The ODU Maglev system is concerned with the second 

method. Figures 1.3 and 1.4 show simple sketches for EMS Maglev levitation and 

guidance methods. 

In [32], PID centralized and de-centralized controllers were designed to control the 1-ton 

Maglev research vehicle at the University of Sussex. The lateral control for that system 

was achieved using guidance magnets. De-centralized control of the guidance clearance 

is achieved by using separate electromagnets for the German Transrapid Maglev [33]. 

Few papers in the literature have discussed the problem of EMS Maglev guidance 

control especially when electromagnets are used for both levitation and guidance. In [10-

12], the decoupling between heave and lateral channels is performed after linearization 

Ra 

Vehicle 

Guidance Magnet 

Levitation Magnet 

Figure 1.3. Separate Levitation and Guidance 
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for a lightweight EMS Maglev system, then two separate controllers for the heave and 

lateral channels are utilized. 

A guide-effective EMS (by combining a levitating mode with a guiding mode) with 

a controller that is based on pole placement techniques is used for controlling both 

levitation and guidance modes [34]. A MATLAB/SIMULINK based model for a high 

speed Maglev train with vertical and lateral control is presented [35] in which LQR 

control is used for each single mass magnet. A Magnemotion report states that by using a 

magnetic gap that is V* the width of the suspension rails it is possible to provide passive 

guidance with a lateral guidance force up to 33 % of the vertical lift force [36]. 

Necessary conditions for the existence of a de-centralized control law that meets 

specified feedback system requirements were developed in [37]. De-centralized control 

can be limited in terms of achieving acceptable performance if the required bandwidths 

of the closed-loop subsystems greatly differ. Some systems that exhibit special 

Inve 
U-l 

Vehicle 

Levitation and 
Guidance Magnet 

Figure 1.4. Combined Levitation and Guidance 

1.3.5 De-centralized and Centralized Control 
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uncontrollability and unobservability properties cannot be stabilized under de-centralized 

control. 

The problem of stabilizing a decentralized linear time-invariant multivariable 

system via local output feedback with dynamic compensation is investigated in [38]. The 

concept of "Fixed Modes" was presented as a necessary and sufficient condition for 

solution existence. A systematic design of stabilizing de-centralized controllers for large-

scale interconnected dynamic systems is presented in [39]. The design is obtained by 

model reduction and modeling of interactions between the subsystems comprising the 

overall system. Three design schemes are proposed with feed-forward, feedback and 

static compensators. 

A review of the decentralized control of large scale interconnected systems 

concepts, methods, and results have been presented in [40]. Decompositions of large 

scale systems that provide the integration of decentralized control and parallel 

computation are also introduced. 

In [41], the structures of de-centralized and centralized controllers for multivariable 

systems feedback control are illustrated. Stability, performance, pairing selection and 

controllability analysis for de-centralized control are provided. 

The concepts of de-centralized and centralized control of EMS Maglev system are 

introduced in [13]. De-centralized control for EMS Maglev systems was applied early in 

development of the German Maglev system. De-centralized controllers were used for 

levitation and guidance control loops separately [33]. PID centralized and de-centralized 

controllers were developed to control the levitation and guidance of 1-ton Maglev 

research vehicle at the University of Sussex [32]. The de-centralized and centralized 



control techniques for a 200kg test vehicle that utilizes four magnets were designed and 

implemented on an analog computer [42]. The control of a small experimental EMS 

Maglev vehicle using a centralized non-linear electromagnet force control algorithm, a 

suspension control algorithm, and a guideway following algorithm is developed in [18]. 

De-centralized and centralized control of a 2-DOF EMS Maglev system was presented in 

[2]. The comparison between the two controllers is performed, and it is shown that the 

PD centralized control is not suitable to control some flexible modes. In [3-4], a PID de­

centralized controller has been successfully designed and validated for the ODU Maglev 

test bogie. This controller is able to control the vehicle's rigid and flexible modes 

efficiently. In [43], a new approach to control the levitation of a 3-DOF vehicle with four 

magnets is developed. The concept of the centralized control is utilized to produce the 

forces and moments required by the heave, roll and pitch controllers via a command 

policy that determines an optimal distribution of forces. 

1.4 Scope and Goals of Present Work 

Investigating the literature relevant to this research, it is noted that there are many 

interesting studies on electromagnetic suspension system levitation control [2-4,7-20], 

many studies on control of Maglev-girder interaction [22,31], and many studies on the 

Maglev guidance control [10-11,32-36]. However, understanding the Maglev-girder 

interaction and dynamical changes associated with vehicle velocity is not clearly 

mentioned. This is one of the issues addressed by this dissertation. De-centralized or 

centralized controller schemes and their influences on the Maglev-girder interaction 

system are not investigated although they are commonly used. The comparison between 



these two controllers is made for Maglev-girder interaction system based on the achieved 

performance and ride quality. 

Another topic that is under investigation in this dissertation is guidance control 

when the EMS Maglev system utilizes magnet set with inverted U-rail tracks. De­

centralized and centralized controllers have been part of many studies [2-4,13,18,32-43], 

and they are both known to have advantages and limitations. In the present work, a 

comparative study between de-centralized and centralized controllers when applied on 

the EMS Maglev system is introduced when a particular concern is given to lateral 

control. On the ODU Maglev testing facility, the experimental testing of both de­

centralized and centralized controllers will be conducted on the test bogie for validation. 

Flux feedback control for EMS Maglev systems was illustrated in many references 

[2,13-14,18]. Measuring the flux field density in the electromagnetic suspension and 

feeding it back in an internal loop can improve the overall stability [2,13]. The inclusion 

of flux feedback in combination with de-centralized and centralized controllers will be 

also considered in this dissertation. 
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CHAPTER 2 

EMS MAGLEV SYSTEM ANALYSIS AND CONTROL 

2.1 Introduction 

In this chapter, the modeling of EMS Maglev systems is introduced. Simple EMS 

Maglev systems are studied first before working with the ODU EMS Maglev system. 

Nonlinear and linear equations of motion of a simple single DOF EMS Maglev system 

are derived. Next, the equations of motion of the 2-DOF EMS Maglev system for an 

inverted U-rail are introduced. This system model is the simplest model that describes the 

heave and lateral motions (rigid case) when two magnets are used. The flexible case is 

considered by attaching one flexible mode to the heave motion. The static characteristics 

of the staggered magnet pair is presented to show how the levitation and lateral forces 

change with the stagger distance. Multivariable control tools that can be utilized for 

system analysis are presented. These tools include relative gain array (RGA), coupling 

factor, and the Niederlinski index. Methods for multivariable PID controller gains 

selection are presented. These methods include auto tuning technique, characteristic locus 

method, optimization method, and trial and error method. Concepts of the commonly 

used control techniques for EMS Maglev systems, de-centralized and centralized control, 

are introduced. Finally, flux feedback for EMS Maglev systems, how to use it, and its 

advantages including stability improvement and noise reduction are illustrated. 



18 

2.2 Single DOF EMS Maglev System Modeling 

A single DOF EMS Maglev system is composed of two subsystems that interact 

with each other [44-45]. These two subsystems are mechanical and electrical. The 

mechanical subsystem is the mass dynamics and its relation with gravity. The electrical 

subsystem is the electrodynamics. In the following these two subsystems are introduced. 

2.2.1 Mechanical System Dynamics 

The dynamics of the mechanical subsystem is the subsystem that defines the 

mapping Sj between the difference between levitation force and the gravity to gap z; 

(2.1) 
m 

where Fz is the levitation force, m is the system mass, and g is the gravitational constant. 

Figure 2.1 shows the EMS Maglev mechanical subsystem. 

| 

Figure 2.1. EMS Maglev Mechanical Subsystem 

The conventional method that can be used to find the dynamical equations of an EMS 

Maglev system is based on Newton's second law: 

mz = mg-  F l  (2.2) 

where z is the gap acceleration, and the levitation force is determined in the following 

section. 
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2.2.2 Electrodynamics 

The electrodynamics or the electrical subsystem is the subsystem that defines the 

mapping S2 between the input voltage and levitation force, and the levitation force Fz. 

Figure 2.2 shows the EMS Maglev electrical subsystem. 

(2.3) 

where, V is the input voltage to the electromagnet. 

S 2 :V-*F t  

Figure 2.2. EMS Maglev Electrical Subsystem 

Usually, the voltage input to an electromagnet is fed by a current amplifier. The relation 

that is between the input voltage to the electromagnet and the command current 

represents the third mapping S3 as shown in Figure 2.3. 

(2.4) S3:/C->V 

Figure 2.3. Current Amplifier 



20 

The voltage applied to the coil of the electromagnet is 

V = RI + L{z)^—L(z)~ (2.5) 
at z at 

The electromagnets are driven by current amplifiers intended to follow a current 

command Ic with an amplifier feedback gain KA. 

V  =  K A { I C - I )  (2.6) 

The final current loop is 

dl / r  f \ RI I dz //) *7\ 
*mT$'--' )-i33+7* <2J)  

The inner feedback loop in Eq. (2.7) provides an accurate current hold but it does not 

guarantee to provide a gap hold. 

The instantaneous generation of an attractive force between an electromagnetic and 

ferromagnetic plate is the idea that is behind the magnetic levitation. The levitation 

system model is derived from the work in reference [46]. For the electromagnet shown 

Figure 2.4, the levitation force is 

in 

fl0N2I2LmWm 

4z 
'l + l « ' 

nW.  
(2.8) 

m J 

where, n0 '• is the permeability of the free space, Lm: is the length of the magnet, Wm : 

the width of the magnet and N: is the electromagnet's number of turns. 

The instantaneous magnet inductance is 

is 

Uz) _MoN2Lm(wm 2 m +—In 
v Z x u/ 

(2.9) 

In Figure 2.4, <P is the magnetic flux. The magnetic flux of the electromagnet 

• .ASLji 
2 z \  

is 

2 z 
7W_ 

(2.10) 
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Figure 2.4 shows the electromagnetic-track configuration. 

Trade 

M 

Amplifier 

Figure 2.4. Electromagnetic-Track Configuration 

The modeling of a single DOF EMS Maglev system considering the mechanical and 

electrical subsystems is as shown in Figure 2.5. 

Figure 2.5. Single DOF EMS Maglev System Block Diagram 

Eqs.(2.2), and (2.7) represent the complete nonlinear dynamic model for a single-axis 

EMS Maglev system. 

2.23 Linearized System Dynamics 

A linear model can be obtained by using a Taylor series expansion around the 

nominal equilibrium point (z0,10), then: 
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m&z = -kt 
hi t )  

Zoit) 
+&,Az 

. 1  k  K a  +  R . j  A/ = -iAz AI 
L L 

(2.11) 

where, the coefficients kz and ki are computed directly from linearizing the levitation 

force Fz with respect to air gap z and current / around their nominal points Zo, and l0, 

respectively: 

k, = ap; 

dz 

_ 1 MnN2LmWjl 
1 + 2-

7W„ 
u N L I2 r*Q*T *^m o 

9/ 
1 M,N2LmWmI0 

V/0 

1 + 2-

(2.12) 

(2.13) 

The coefficient kz in Eq. (2.12) can be considered as the suspension's stiffness and it is 

fundamentally negative due to the variation of force with gap. This is the negative spring 

that was mentioned in [14], which is originally nonlinear. 

So, the state space model of the linear system can be written as follows [2,7,9]: 

(2.14) 
z 0 1 0 z 0 

z = k z / m  0 —  k t / m  z + 0 

i 0 k jk t  

l +
 

,t
^ I K J L  

[z]=[l 0 0] (2.15) 

where Eqs. (2.14) and (2.IS) are the state equation and the output equation, respectively 

with: 
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0 1 0 0 
A = k z / m  0 -k i /m  ; B = 0 

0 k j k ,  ~(K a +R)/L  K J L  

;C = [l 0 O];andD = 0 

representing the dynamics, input, output and throughput matrices, respectively. 

The system transfer function will be: 

G(5) = C(S/-A)-1B + £> = 7 ~K* v \ = -n—77 \ 
+ + Y-alls + a) 

where, 

kx = Ka 
k, 

a = 

L 

K t + R  

(2.16) 

(2.17) 

(2.18) 

6>m=J^ 
V m 

(2.19) 

The system has three real poles. One is positive, which indicates the inherent instability 

of the EMS Maglev systems. The pole a is the electrical (or electrodynamics) pole. The 

pair ± oom represents the mechanical poles. com can be considered as the unstable natural 

frequency of the mechanical subsystem. The value of com can vary significantly with the 

system air gap and current as it depends on kz (Eq. (2.12)). Figure 2.6 shows the pole-zero 

map of the single axis EMS Maglev system, open loop. 
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Figure 2.6. Pole-Zero Map of the Single Axis EMS Maglev System, Open Loop 

The basic open loop block diagram of the single axis EMS Maglev system can be drawn 

based on the state space model in Eqs. (2.14) and (2.15) as shown in Figure 2.7. 

z 

Figure 2.7. Block Diagram of a Single Axis Maglev Rigid System 

2.3 Two DOF Maglev system with an inverted U-rail 

The system that is under consideration is composed of two magnets that are placed 

under an inverted U-rail. If it is assumed that the rail widths are large enough compared 

to the air gap, and it is assumed that the magnet's lateral displacement is small enough so 
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that a part of uniform field exists in the air gap, then each magnet-rail pole corner pair 

can be treated independently. 

The U-shaped rails produce the required levitation, while the lateral forces are generated 

by the fringing fields [11-12]. In reality, the electromagnetic flux fringing fields occur 

around electromagnet poles [2][11 ][47]. In Figure 2.8, magnetic field models for U 

shaped magnets; a) uniform, b) with fringing shown. 

Fringing 
magnetic field 

Uniform 
magnetic field 

Figure 2.8. Magnetic Field Models for U-Shaped Magnets, a) Uniform, b) with Fringing 

The magnetic fields and forces that can be generated are calculated using conformal 

mapping techniques [11] and the resulting vertical and lateral forces closed form 

expressions are, respectively: 

„ ft N212LmWm . . ^ 
F z=——a i  P(y>z) (2.20) 

4 z 

„ ft N212L W , . Fy = A 2 £(y> z> (211) 
4 z 

where, 
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p(y , z )  =  1+~~(1 -- tan-' £(y ,  z )  = — tan"' 
z zj /rWM z 

» 

where, / : is the coil current, z: is the air gap and y: is the lateral displacement. 

It is clearly noted from Eq. (2.20), that the levitation force is unstable with respect to the 

air gap z when I is constant, and it is inversely proportional to the air gap; hence, active 

control is required for stabilization. On the other hand, from Eq. (2.21), lateral force is 

proportional with respect to the lateral displacement y and is stable. 

The expressions of the levitation and lateral forces that in Eqs. (2.20) and (2.21) are 

plotted numerically, as shown in Figure 2.9. 
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Figure 2.9. Single Magnet Levitation and Lateral Forces vs Lateral Displacement at 

Constant Current 
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In Figure 2.9, the forces are plotted at some specific conditions of: constant currents (12, 

and 15A), nominal air gap, and versus normalized lateral displacement. 

2.3.1 Model for a Staggered Pair. Rigid Case 

The arrangement of the two magnets that are used in the 2-DOF EMS Maglev 

system is shown. Figures 2.10-2.12 show two electromagnets that are staggered under an 

inverted-U rail. 

Each magnet is supplied by individual currents I j ,  and I 2  to support a vehicle of mass M .  

It is required that this configuration is able not only to support the vehicle weight, but 

also to damp the lateral displacements due to lateral disturbing forces as wind gusts. 

"Heave stability is attained by increasing both magnet currents with increasing air 

gap, while the suspension's lateral force is adjusted by increasing the current in one 

magnet, and decreasing that in the other, as functions of the vehicle's lateral motion" 

[10]. 

An important assumption for modeling is to regard the suspension as interacting with the 

rail at a single point. This assumption renders heave and lateral motions as possible 

motions. 
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Figure 2.10. Two Staggered Magnets Configuration 



Figure 2.11. Two Staggered Magnets Configuration in 3D 
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Figure 2.12. Two Staggered Magnets Configuration Plan View 

In Figure 2.10, zr, and yr are the displacements relative to rail in vertical and lateral 

directions, respectively; zi, and yj are the absolute vertical and lateral positions, 

respectively. Then the air gap z = z, - z,, and the relative magnet-rail displacement is 

y ~ y r ~~ y\ * 

The coupled nonlinear expressions of the levitation and lateral forces are: 
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Fz = Fa + Fa = M0N2lfLw 
4z 2  

(2.22) 

11 N ft Lw / . \ 1 *IjW /. V sr\ = - ' j e(A-y,z)+^r } £{A+ y,z) (2.23) 
4z 4 z 

The system equations are formed by applying Newton's second law 

Mz = -Fz +Mg (2.24) 

My = F y +F d y  (2.25) 

where, 

Fjy: is the disturbing force in y-axis direction and g: is the gravitational constant. 

2.3.2 Model for a Staggered Pair. Flexible Case 

The dynamic model of the EMS Maglev vehicle in practice includes rigid body and 

structural vibration modes [3]. The mode shapes (eigenvectors) and natural frequencies of 

vibration (eigenvalues) of the Maglev vehicle for selected modes are always found from a 

finite element model. The system entire flexible modes can be modeled by many 

methods; one of the most suitable ways is the finite element method. The idea behind the 

finite element method is to provide a formulation which can exploit digital computer for 

the analysis of irregular systems. It divides a continuous subsystem into a number of 

elements using fictitious dividing lines. The points of intersection of dividing lines are 

referred to as "nodes" or "joints". Each joint has a certain number (up to six) of Degrees 

of Freedom (DOF) [48]. A Lagrangian formulation is usually applied wherein the node 

forces are determined as functions of the adjacent elements. Then, the problem is reduced 

to the eigenvalue problem that can be solved using standard numerical techniques. 
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The flexible body case can be attained by adding one flexible mode that appears 

when a secondary mass is attached to the system primary mass with a spring and damper 

as shown in Figure 2.13. 

f 
Figure 2.13. Simple Model of a Flexible Maglev System 

where, c is the damping coefficient, K is the stiffness coefficient, m/ is the secondary 

mass, m.2 is the primary mass and lc is the command current. 

If point forces and torques are applied at each node, the final "modal" model has the 

form 

qO)  + Tjq( t )  =  y T  f i t )  (2.26) 

yit)=Tqit) (2.27) 

where q is the nxl modal amplitude vector, r is the nxn generalized mode-shape matrix, 

/is the vector of generalized applied forces (levitation forces), i] = diagico?, (o\ ) 

,and y is the nxl displacement vector. The finite element method gives the rigid and the 

flexible modes. Thus q(t) in Eq. (2.26) includes also the zero-frequency modes. It is more 

convenient to use only the flexible segment of the finite element model, and to augment it 
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with the rigid body equations Eqs. (2.26, and 2.27) that are obtained separately. In order 

to make Eq. (2.26) more general, inherent structural damping should be included by 

adding damping terms (after eigenvalues problem has been solved), therefore 

q( t )  +  %q( t )  +  T}q( t )= y T f ( t )  (2.28) 

where, 

X = 2diag qn0)n) 

where gi and <o,, i=l,2,...n is the inherent damping ratio and natural frequency of the i'h 

flexible mode. For large flexible space structures are typically on the order of 0.001-

0.01. The structural damping can be assumed herein to equal 0.01[48]. 

2.3.3 Electrodynamics 

In this section, a unified model for the electromagnet electrodynamics is illustrated. 

The instantaneous magnet permeance in terms of y and z [12] is: 

( / 

P{y,z) = &^- l + — 
2z I nw 

1 + —In 
2 

1 + 1* -—tan — (2.29) 

Then, the magnet inductance in terms of y and z is found from the relationship with the 

magnet permeance as [12]: 

L m ( y , z )  =  N 2 P ( y , z )  (2.30) 

or, 

r , ^ ^0N 2Lw K ( y > z )  =  —  
2z 

1 + — " f / • * 

1 + — 1 + —In fi + f-l 1 - — tan — * 

7CW 2 I  UJJ  z z 
(2.31) 

The voltage applied to the coil of each electromagnet is 
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V = R I  +  L H ( y , z ) ~ L m ( y , z ) ~  (2.32) 
at z at 

The electromagnets are driven by current amplifiers intended to track a current command 

Ic with an amplifier feedback gain K&. 

V  =  K A ( I C  - I )  (2.33) 

The final current loop is 

/  =*LL(/ c_ i )-$L-IL (2.34) 
^ m ^ m Z 

Eq. (2.34) to be used for each electromagnet (using subscripts 1 and 2 for each 

electromagnet's current) as there are two of them. Combining Eqs. (2.24), (2.25), and 

Eq. (2.34) (one for each electromagnet), a six state nonlinear model for the system rigid 

case is constructed: 

* = /(*»«) = l/i •• fj 

= [z z y y h I2Y xT 

F 
/i = z (2'35) 

z z 

where 

Ka+ R .  and g  = 
K Lm 

If adding Eq. (2.28) to the previous system of equations, an eight state nonlinear model 

for the system case is established: 
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x  = f (x ,  «)=[/, ••• /J 

x r = [ z  z  y  y  / ,  / 2  

/• = z , F, m K , c 
fl L + f + (9, -z) + (<?! — z) 

m2 m2 m2 m2 (2.36) 
f , = y  

fs=fiic l-oa i+^ 

f i=Qi  
K , . C . . f»=—(z-q 1 )+—(z~q l )  

ft =filc2~al2+~~ 

m, m. 

where total mass m=mj+m2 

It should be noted that both rigid and flexible cases of the 2-DOF EMS Maglev system 

are unstable. The instability is in the heave channel as described in Eq. (2.20). Further 

investigation on this model will be introduced in the next chapter. 

2.3.4 Static Characteristics of a Staggered Magnet Pair 

In this section, the static characteristics of a staggered magnet pair are studied. It is 

well known that the staggered magnet design has considerable lateral force capabilities. 

The effects of stagger separation A on the vertical and lateral force characteristics are 

shown in Figure 2.13 (in 2D format. In Figure 2.14, force normalization is at levitation 

force of A = 0 and y=0). 
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Figure 2.14. Levitation and Lateral Forces vs Lateral Displacement for Various Stagger 

Separations 

The curves received in this section are normalized with respect to the levitation force at 

zero lateral displacementconsidering equal constant currents, /, = /2; constant gap; 

and the ratio between LJz=3.8. These results show that the maximum lateral force for 

/, = 12 does not change significantly as A is changing over a wide range. At A=0, the 

levitation force decreases rapidly while the lateral force increases rapidly towards its 

maximum, as the magnet set is displaced laterally [10]. The staggering of the magnets 

reduces the levitation force considerably up to 25% for a / z = 2 at y = o as shown in 

Figure 2.13, which may affect the system levitation if the controller design does not 

tolerate this force reduction. For large A, the levitation force remains essentially constant 
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over a good range of lateral displacements. Staggering has more influence on the 

levitation forces than the lateral forces due to higher coupling found for the levitation 

forces compared to the lateral forces as observed in Eqs. (2.20) and (2.21). The Maclaurin 

expansion of the trigonometric function tan(_) that relates the staggering distance with 

the levitation and lateral forces is 

Um-l(x)Sx--x3+-x5--x1- (2.37) 
3 5 7 

If the higher terms are ignored, the relation between the lateral forces of a staggered 

magnets pair and the terms AlZ and AzZ will approximately vanish as the stagger A in 
z z 

the first term and second term will cancel each other out. The relation between the 

levitation forces of a staggered magnets pair considering the terms AlZ and AzZ will 
z z 

be approximated as a nonlinear function of 2(A2+y2)/z. This could be the reason of having 

this big difference in the levitation force versus the lateral force with the staggering 

distance. 

The extension of the levitation and lateral forces plots of Figure 2.13 are shown in 

Figures 2.15, and 16 but in a 3D format. 

The decision on which stagger distance to be used can be deduced from the 

intersection of — = 2 with the normalized levitation force at 0.75 as in Figure 2.14. This 
z 

corresponds to a stagger distance of A <, 1.2 z for the magnet pair used for this 2-DOF 

EMS Maglev system. This result can be generalized to determine stagger distances for 

the ODU Maglev system magnets. 
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Figure 2.15. Levitation Forces vs Lateral Displacement for Various Stagger 

Separations-3D 

Figure 2.16. Lateral Forces vs Lateral Displacement for Various Stagger Separations-3D 
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2.4 System Coupling Measures 

2.4.1 Relative Gain Array (RGA) 

Interaction existing between the control loops causes the manipulated variable in 

one loop to influence the controlled variable in the other loop. A technique called the 

Relative Gain Array (RGA) has been used to analyze the interaction between different 

control loops. 

The RGA is of a non-singular square complex matrix G is a square complex matrix 

defined as [41]: 

RGA(G) = Gx(Glf (2.38) 

where x is the Schur product. 

The relative gain of a controlled variable i to a manipulated variable j is defined as 

X - ga*n w'th the other loops open ^ 39) 
'' gain with the other loops closed 

where the concept of a closed loop is that the output of a loop is always at its set point 

whatever happens to try to change it. The mathematical expression can be 

f-v A qy, 

t i l l ,  \  g  
AtJ = ) = ^- (2.40) 

f \ 

hi 
du. 

8ij 

Here gy = [G\ is the i;"th element of G, whereas is the inverse of the;'i'th element of 

G-1 The definition of relative gain indicates that its purpose is to measure how much the 

gain of one loop changes when the other loops in an interacting system are closed. 

A special case to be noticed when a two-input-two-output system (TITO) is 

considered. A 2x2 matrix with elements gy ,the RGA is [41]: 
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RGA{G) - V 4i i ^ii . , i 

A _i-4, 4. .  
9 >M1 — 

j *12*21 
(2.41) 

&U&22 

The RGA of a TITO system as in Eq.(2.38) indicates that the interaction between direct 

channels is the same (ui-yi, ur-yi), and for the cross channels is also the same (ui-y2,u2-

yi)• 

Some notes on RGA are necessarily provided. The RGA is a direct measure of the steady 

state control effort required to overcome interaction conflict effects [49]. The RGA is 

dimensionless and invariant under any single variable transformation. The dynamic 

extension of RGA can be achieved by plotting RGA(s) versus s or with frequency jco to 

show the interaction over wide range of frequency [50]. 

2.4.2 Coupling Factor 

The coupling factor k0 is determined by finding the ratio between the product of 

non-diagonal steady state gains and the product of the diagonal gains [51]. For a TITO 

system, the coupling factor is: 

K (2.42) 
11 22 

where, ^is the steady state gains (DC gains) o f  g y .  

The type of coupling is defined by: 

K0< 0: negative coupling 

K0 > 0: positive coupling 

From the viewpoint of stability, a control system needs to be reconfigured if \fc0\»1 

[51]. 



2.4.3 Niederlinski Index 

Niederlinski [52] invented a rule that can be utilized to determine the proper input-

output pairing for a multivariable system that is under control. The pairing rule gives a 

clear indication for minimum interaction; it is often necessary to utilize this rule in 

conjunction with stability considerations provided by the following theorem originally 

given by Niederlinski: 

Theorem 2.1 Consider an n x n  multivariable system whose manipulated and controlled 

variables have been paired as follows: yj-ui,y2-u2,...y„-un, resulting in a transfer function 

model of the form [51]: 

y(s)=G(s)u(s) (2.43) 

Let each element of G(s), gy(s) be rational and n individual feedback controllers (which 

has integral action I, PI, PID) be designed for each loop so that each one of the resulting 

n feedback control loops is stable when all other n-1 loops are open. Then, under closed 

loop conditions in all n loops, the multiloop system will be unstable for all possible 

values of controller parameters (i.e. it will be structurally monotonically unstable) if 

Niederlinski's index (M) defined below is negative: 

NI = det[G(°)] <Q (2.44) 
nil8u(0) 

Eq. (2.44) is necessary and sufficient only for 2x2 systems, but for higher dimensional 

systems, it provides only sufficient conditions, i.e. if Eq. (2.44) holds, then the system is 

definitely unstable; otherwise, the system may not be unstable because the stability will, 

in this case, depend on the values taken of the controller parameters. 
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2.5 Generalized Multi-Input Multi Output Root Loci 

The root locus technique provide with much insight into the problem. It not only 

enables the designer to select the proper controller dynamics that may attain the required 

performance but also can be used to achieve insensitivity of the system to large parameter 

uncertainty [53]. The generalized MIMO root loci can be regarded as an extension of 

scalar-loop concepts, as opposed to earlier efforts which introduce eigen-based concepts 

[54]. Recalling the sketching rules of root locus associated with scalar-loop applications 

are to transform the Evans design technique from a iterative strategy to a powerful tool 

where clear and brief relationships between design inputs and resulting effects upon 

stability and performance are available [55]. The modem mathematical programs can be 

used to find the roots of closed-loop MIMO systems easily, and at any dimension. Then, 

drawing the root loci corresponding to any system parameter change is possible. The 

earlier research in this field is valuable to understand, explain and justify the behavior of 

the multivariable root loci, but not for practical utilization [56]. A simple method that 

can be used to sketch the MIMO root loci based on the traditional method on which the 

eigenvalues of the closed loop system are allowed to be changed by increasing a scalar 

gain k that is associated with the designed controller and sketching their change starting 

from the location of the system open loop eigenvalues (k=0) till the end (k=oo) or in other 

words, to establish the root loci of the MIMO system as the scalar gain is changing from 

zero to infinity [56]. The method can be used with the simple MIMO systems, and it is 

based on the state space representation in order to avoid the numerical errors that may be 

encountered with the transfer function representations. 
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The MIMO root loci technique is a useful technique in the design process of a 

multivariable controller, and it enables a check of the multivariable gain margin on which 

the system can tolerate any gain variations [57]. A general linear MIMO system is shown 

in Figure 2.17. 

K 
MIMO y 
System 

Figure 2.17. MIMO Control System 

where, r is the command input, y is the system output, k is the scalar gain and / is the 

identity matrix. 

The state space system with the controller in a closed loop form (output feedback) can be 

easily found as follows: 

Acl = A — kBCK (2.45) 

where, Aci is the closed loop dynamics matrix, and K is the controller. The eigenvalues of 

the closed loop system can be found by finding the roots of the following characteristic 

equation: 

s I  ~Ac=0 (2.46) 

where, s is the Laplace operator. 

The system open loop eigenvalues (starting point) can be easily found by exchanging the 

matrix Aci in Eq. (2.45) by the matrix A. 



2.6 Methods for Multivariable PID Controller Gains Selection 

In this section, some methods that can be used to select the multivariable PID 

controllers' gains are received. The methods that are mentioned in this section include: 

auto tuning technique, characteristic locus design method, optimization method, and trial 

and error method. Other methods of tuning multivariable PID controllers' gains include 

intelligent techniques like genetic, fuzzy, neural, or combinations that are not included in 

this section. 

2.6.1 Auto Tuning Technique 

2.6.1.1 Generalized Ziegler-Nichols Method 

The Ziegler-Nichols design method is a very popular heuristic method used in 

process control to determine PID controller parameters for SISO systems. Niederlinski 

extended this method to a multivariable system [52] which also utilizes the critical 

frequency and critical gain to determine parameters of diagonal PID controllers. The 

generalized Ziegler-Nichols method procedure for tuning of PI or PID control of MIMO 

system is described below [52] [58], assuming the system is of the best pairing 

configuration [59]. 

i. Choose n weighting factors w, (i = 1, ...n) for the relative control quality of the n 

controlled variable. 

ii. Use the best input-output pairing configuration, and then bring the P-controlled 

system to a stable oscillation while the following relations between loops are kept: 

*C,G"(Q) =-^-,i = l, ...n-1 (2.47) 
*cJ+,Gi+u+1(0) wi+1 

where, Kcj is the gain of P-controller, and determine the corresponding critical loop 

gain Kcr-



iii. Evaluate the critical frequency QCr and the critical controller gain Kc.i.cr, for the 

given system. 

Determine the controller parameters by the generalized Ziegler-Nichols tuning 
iv. 

formula listed in Table 2.1 where the choice of the coefficient a, depends on the 

a 
ratio a-. - —— 

V.c , 

where, 0)i  c is the critical frequency of the P-Controlled single variable system of Gu(s). 

Table 2.1 Generalized Ziegler-Nichols Tuning Rules 

Controller 
Parameters of PID controller 

Controller 
K p  r, •td 

P aI Kc.i.cr - -

PI &2 Kc. i.cr 0.87;, -

PID a3 Kc.Ur 0.5 T„ 0.12 Tcr 

where 
T 2it 

" n mmcr 

0.5<o;£VoJ 

0.45 <a2£ Vo.45 

0.6 V0.6 

where, the integral time and derivative time are t, ,and xd, respectively. 

If a,« 1 a large controller gain can be selected; if a, is near to one the controller gain 

should be at the lower limit value. 

v. Check whether the relative control quality is satisfactory. If not, change w, 

appropriately and return to step 2. 
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2.6.1.2 Automatic Tuning PID Controller 

To use the generalized Ziegler-Nichols tuning formula to determine PID controller 

parameters, it is necessary to find the critical frequency Qc and critical gain ATc.,.crof a 

multivariate control system. In the design method proposed by Niederlinski, 

proportional controllers are introduced in each loop to obtain a stable oscillation by 

increasing the controller gains [59]. 

The concept of Relay feedback can be used to tune the multivariable PID controller 

gains. The relay feedback can be used to determine the critical frequency Qc and critical 

gain Kc.i,cr. In [60], three possible relay feedback schemes for MIMO system were 

presented: 

i. Independent single-relay feedback (IRF), in which one loop at a time is subjected to 

relay feedback while all other loops are open. 

ii. Sequential relay feedback (SRF), in which a loop is closed with a simple controller 

once a relay test is performed to that loop and repeat this until all loops are checked. 

iii. De-centralized relay feedback (DRF), in which all loops are on relay feedback at the 

same time. 

DRF is more desirable as it is a complete closed loop test while IRF and SRF are only 

partial closed loop tests. Figure 2.18 shows the de-centralized relay test. 
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Figure 2.18. De-centralized Relay Test 

2.6.2 Characteristic Locus Design Method 

The idea of plotting characteristic (eigen) loci of the open-loop transfer function 

matrix is useful because it allows for checking the closed-loop stability for a MIMO 

feedback system by inspection [61-63]. 
f 

The principle of the design method is to modify the gain and phase of the desired 

characteristic loci to achieve the required stability and to obtain a good closed loop 

system performance [59]. This method can be used to determine the PID controller 

parameters automatically so that the auto tuning procedure can be executed for the 

MIMO process without prior knowledge of the process [59]. Assuming the process is 

open loop stable, the critical frequency and the critical gains are fic, Kcl, K&, ..,Kd, and 

that the diagonal PID controller to be developed has the following transfer matrix, 

GC ( S ) :  

1+— + r,* 
v J 
0 

0 

0 

0 

1 + +  T d S  

V V ' > 
0 

0 ••• *J1 + T7+V 
V 

(2.48) 
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then the required magnitude m and argument 0 of a specific characteristic locus at the 

frequency Qc to be attained by setting the PID parameters to be: 

H r. — = tan <t> 
' w (2.49) 

\Gunc)Gcunc)\=m 

Taking ri( = Stdj, then the following is obtained 

_ tan(^) + -^41 S+\an2(0) 
x. d, 2 a. 
r, = Std (2-50) 

Kpi = Kc cos(0)m 

where, the subscript i indicates the controller in loop i and t, and ta are independent of i. 

By designing Gc(s) with the parameters obtained from Eq. (2.50), the characteristic loci 

of the process with larger magnitude can be changed to any desired location at a critical 

frequency so that the gain or phase margin of the compensated characteristic loci can 

satisfy a desired condition. 

2.6.3 Optimization Method 

Optimal PID controller gains can be attained by optimizing certain integral 

performance indices. For SISO systems, the ISE criterion was commonly used to tune 

PID controllers. This criterion can be extended to tune diagonal PID controllers for 

multivariable systems. 

2.63.1 Design PID Controllers for Uncoupled Systems 

The interaction between loops determines how to design and select the PID 

controller gains. If there is a small interaction between loops, then an individual PID 

controller can be designed for each loop separately as for a SISO process. The 
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multivariable transfer matrix should be represented as a diagonal matrix and the off 

diagonal transfer functions are zero. This concept was first applied on a TITO system and 

can be generalized for MIMO system [59]. 

This method is still valid to design PID controller for each channel individually with re-

tuning of the PID controllers' gains when all loops of the multivariable system with the 

controllers are closed to achieve the desired performance. 

Another method can be utilized to design PID controllers by minimizing an error 

function for the whole system using integral performance index. This method was 

successfully applied on a TITO system [59] by defining return difference matrix: 

E(s) = R(s) - Y(s) = (1 + G(s)Gc (s))"' R(s) (25l) 

The integral performance index to be minimized is: 

oo 

J = jF(ea)dt (2.52) 
o 

with the constraint 

m 

gx = \F(yn)dt<C i*j (2.53) 
o 

where eu is an error signal in the loop i, ytj  is the output in the loop j. The following 

objective function can be utilized: 

oo 

g2 = JfoF(e„) + ^F(yv)]dt (2.54) 
o 

where, ^ is the a weighting factor. There are various criteria that can be chosen for 

optimization. 
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2.63.2 Designing P1D Controllers using Decoupling Technique 

If there is severe interaction between loops, then the previous method will fail as the 

interaction between loops may destabilize the system, and then a decoupling technique 

can be used. The concept of decoupling techniques for multivariable control systems is 

introduced in many papers [59,41,65,66]. The idea of decoupling uses state variable 

feedback in which class of all feedback matrices which decouple the system are 

determined. 

In [65], it was stated that some multivariable systems can be decoupled if they 

verify certain conditions otherwise; the decoupling matrices could not be found. The 

choice of the decoupling matrix may not be an easy task since it is related to the plant 

characteristics and the controller structure. Sometimes, the design leads to a higher-order 

or unrealizable decoupler [66]. 

After decoupling the system, the interaction between loops is eliminated and the modified 

system becomes n individual single variable system. 

2.6.4 Trial and Error Method 

The trial and error method can be used to tune the PID controller gains [67-69]. In 

practice, human knowledge can be used to develop PID controllers with good 

performance by trial and error. In [67], the PID controller was manually tuned through 

trial and error for a plant with under damped step response. Trial and error method is 

used to tune the PID controller gains from critical frequency Qc and critical gain Kc.u,of 

a multivariable control system [68]. A trial and error procedure was used to determine 

sets of parameters (including controller gain, integral time and derivative time) which 

achieve satisfactory response of a PID controller over a nonlinear process [69]. Trial and 
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error method is time consuming and it is preferable to have good knowledge and 

background on the system that is under control, e.g. for EMS Maglev systems, the 

proportional control gain value Kp should be greater than the derivative control gain value 

Kd{\Kp\>\Kd\) [2,4], 

2.7 EMS Maglev PID Control Schemes 

Two common control schemes are used to control multivariable systems. These 

schemes are typically de-centralized (local) control, and centralized (modal or integrated) 

control. In the following subsections they are briefly described. 

2.7.1 De-centralized Control Scheme 

The idea behind de-centralized (local) control is that controllers are designed locally 

for each input-output pair, as shown in Figure 2.20. De-centralized control means that 

each input-output pair has its own control loop that is independent of other control loops 

[2-4,13,46]. When each input output pair is controlled, the overall system is controlled. 

In Figure 2.19, the de-centralized control scheme is shown for m sensors/actuators 

and m controllers. 

rtXH 

C, ) r C3 

$2 

H 

% Am 

I I Sensor/Actuator o Local Controller 

Figure 2.19. De-centralized Control Scheme 
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Some important notes to be mentioned with regard to the de-centralized control are as 

follows: 

• the system modes (degrees of freedom) are not directly controlled. 

• there is no authority from the de-centralized controller to control modes like roll, 

or pitch to a pre-set value. 

• they are proven a guaranteed stability for systems with rigid body modes and also 

for flexible modes as well [2,7,9]. 

2.7.2 Centralized Control Scheme 

The centralized control (integrated or modal) can control the system modes directly, 

or it can control the system as a whole. In order to achieve that, some necessary 

transformations should be performed. Usually, the measurements are transformed to 

modes, so the modes are de-coupled. This de-coupling step is not accurate enough, 

especially if the system has significant flexibility. Each mode is controlled by the 

corresponding modal controller to output the corresponding modal force or torque. These 

modal forces and torques are then transformed to control inputs (currents or voltages) via 

single or two transformations to be applied to the actuator. Controlling the overall system 

modes enables the control of the whole system. 

In Figure 2.20, the centralized control scheme is shown for m sensors/actuators and m 

controllers. 
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Centralized Controller 

t I Sensor/Actuator 

Figure 2.20. Centralized Control Scheme 

Some important notes to be mentioned with regard to the centralized control are as 

follows: 

• the system modes (degrees of freedom) are directly controlled. 

• there is authority from the centralized controller to control modes like roll, or 

pitch to a pre-set value. 

• since it is impractical to control all modes, some systems that exhibit significant 

flexibility may have stability issues as in [2]. 

The de-centralized and centralized control schemes described above are commonly used 

with the EMS Maglev systems. In the following chapters more illustrations on these 

control schemes will be introduced. 

2.73 Flux Feedback Control 

Flux feedback control for EMS Maglev systems was presented in many references 

like [2,13-14,18,69]. It has the merit of enhancing stability of Maglev systems. 

Measuring the flux in the electromagnetic suspension and feeding it back in an internal 

loop, as shown in Figure 2.22, increases the stability and robustness of the controlled 
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EMS Maglev system by reducing the effect of variations in the air gap [2]. Figure 2.21 

shows a block diagram for flux feedback control of a single axis EMS Maglev system. 

Flax Gain 

Airgap 
Controller EMS Maglev System 

Figure 2.21. Block diagram of a Single Axis Maglev System with Flux Feedback Control 

The idea behind flux feedback is to reduce the effect of the coefficients kv and kj Eqs. 

(2.12) and (2.13). These coefficients are changing significantly as the operating point 

changes. The magnetic field density of the electromagnet b is: 

B = M0H _ M 0 N I  

2 z 
1 + 2 z (2.55) 

where, 

h: is the magnetic field intensity. 

As shown in Eq. (2.55), the magnetic field density of an electromagnet is a linear 

function of a gap to current ratio. The magnetic flux of an electromagnet <t> is: 

4> = ba m.nia 

2 z 
1+— (2.56) 

where, a: is the sectional area of the electromagnet. 

It should be noted that the levitation force has a direct relationship with the magnetic flux 

as follows: 



f = 

mO
A 
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(2.57) 

In Eq. (2.55), it is noted that the perturbation of the levitation force with respect to the 

flux operating point O0 is less than the case of having perturbation with respect to the air 

gap and current operating points Zo, and I0. 

When linearizing the flux expression in Eq.(2.56), the following is received: 

A<l> = kw I+k^z (2.58) 

where, , and are the linearization coefficients 

k 
*' BI 

_m0na 

z«.10 
2 z, 

1+2*°-
O \ Tffl. m J 

* ~ d z  ZoJo 2 zl 
n 2 z .  I  M.NAI. 

j 7tW? 

(2.59) 

(2.60) 

Inclusion of flux feedback in a single axis EMS Maglev system block diagram is shown 

in Figure 2.22 

Figure 2.22. Block Diagram of an Open Loop Single Axis Maglev System with Flux 

Feedback 
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where, is the flux feedback gain. This gain when chosen properly, the stability of a 

Maglev system will be enhanced. 

So, the state space model of the linear single axis Maglev rigid system with flux feedback 

can be written as follows [2]: 

/, (2.61) 
z 0 1 0 z 0 

z = k z  ! m  0 - k j m  z + 0 

i i XT
" 

0 J*"
 

$ —
, 

*«/*! -{k*k„+KA+R)/L I K J L _  

M=[i o o] (2.62) 

where Eqs. (2.61) and (2.62) are the state equation and the output equation, respectively, 

with: 

; C = [l 0 0] ; and D = 0 

representing the dynamics, input, output and throughput matrices, respectively. 

The system transfer function is: 

0 1 0 0 
A = k z / m  0 - k j m  0 

el 

*
*
 

i k j k t  —{k9k^ + Ka  + / ? ) / L  K J L  

G„(s) = C(sI-A)-iB+D= 

where, 

K, = KAk, 

Observing Eq. (2.63), if 

- K ,  
mLs* + m(k^k  ̂+ KA + R)s2 + k^k  ̂-kzk ,̂)-kz(KA + R) 

(2.63) 

_  k z ( K A + R )  

k j k ^  k ^ k ^ j  
(2.64) 

then, 
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G<,(s) = C(sI-AylB + D = L. (2.65) 
\s 2 

Comparing Eq. (2.63) with Eq. (2.16), it is clearly noted that the flux feedback has the 

advantage of eliminating the unstable pole com in Eq. (2.19). The new transfer function of 

the system G+(s) has two poles (o<p at origin and one pole at the left hand plane a<p which 

shows a conditional stable system [13]. 

The poles of the system G^(s) are independent of kl  that ensures that the new system is 

less sensitive to the variations in the air gap operating point. 

The flux feedback technique is not only helpful to improve the Maglev system 

stability but also in noise rejection [2] by having flux control in the inner loop and air gap 

control in the outer loop. 

Figure 2.23 shows the pole-zero map of the single axis EMS Maglev system open 

loop. 

(2.66) 

ja 

•+—x §• 

-«• ai9,co+ 
a 

Figure 2.23. Pole-Zero map of Single Axis EMS Maglev System with Flux Feedback 
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It should be noted that calculation of may be not accurate. One could overestimate or 

underestimate k^so, the mechanical poles co^ will not be at the origin. Considering three 

cases, the desired case G(s) in which k+ is calculated accurately as in Eq.(2.64), Gx(s) 

for k# is 10% below, and G2(s) for k# is 10% above; the pole-zero map is shown as 

Figure 2.24. The mechanical poles stay at origin as desired if k# is properly selected. If 

k#is 10% below, the mechanical poles will be on the jco axis, if k9is 10% above, one of 

the mechanical poles will be unstable similar to the original case with no flux feedback as 

in Eq. (2.16). 

S- -*-i t 

Figure 2.24. Pole-Zero map of Single Axis EMS Maglev System with Flux Feedback 

(Different Cases) 

The step responses of these cases are achieved by designing one suitable PD controller 

for the system G(s) and use it for all cases as shown in Figure 2.25. Two stable responses 

are received when k# is properly selected and A^is 10% above and one unstable response 
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for is 10% below. The achieved results in Figures 2.24 and 2.25 are for a single axis 

EMS Maglev system using the same parameters as for the ODU EMS Maglev system 

except that the mass is m=l000kg. 

supn—ponw 

0.6 

0.4 

0.2 

Figure 2.25. Step Response of Single Axis EMS Maglev System with Flux Feedback 

(Different Cases) 

The question that arises is how to implement the flux feedback technique in practice. The 

magnetic flux of the electromagnet should be measured. Usually, the flux measurements 

can beattained by search coil or Hall-effect sensors. Hall-effect sensors must be mounted 

near the electromagnet pole face to minimize the measurement of leakage flux [18]. A 

search coil sensor provides transient flux measurements [13]. It is well known that the 

output signal, V, of a search coil sensor depends on the rate of change of flux density, 

dB/dt, which requires integration of the output signal. Hall-effect sensors enable flux 

control, both dynamically and in the steady state, but they need signal conditioning 
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circuits to interface with digital computer. In the ODU Maglev test bogie, Hall-effect 

sensors are utilized. Also it should be noted that the Hall-effect sensor measures the 

magnetic field density of an electromagnet B, which necessitates a conversion to 

magnetic flux O by using Eq. (2.54). 

2.8 Discussions 

The modeling of two simple EMS Maglev systems is introduced. Simple EMS 

Maglev systems are studied first before working with the ODU EMS Maglev system. 

Nonlinear equations of motion of a simple single DOF EMS Maglev system are derived. 

The linearized equations for this system are introduced. The unstable nature of a single 

axis EMS Maglev open loop system is discussed. 

The complete nonlinear model of the 2-DOF EMS Maglev system for an inverted 

U-rail is introduced. The 2-DOF EMS Maglev system model is considered to be the 

simplest model that describes the heave and lateral motions when two magnets are used. 

Rigid body case and flexible case models are introduced. The static characteristics of the 

staggered magnet pair is presented to show the levitation and lateral forces change with 

the stagger distance. The 2-D and 3-D plots for the static characteristics of the levitation 

and lateral forces of the staggered pair are shown. At A=0, the levitation force decreases 

rapidly while the lateral force increases rapidly towards its maximum, as the magnet set 

is displaced laterally. A considerable reduction in the levitation forces of the magnets are 

discovered with increasing stagger. This is due to the high coupling between the 

levitation force and the stagger distance A. The stagger distance for a magnet pair can be 

y F 
determined from the point of intersection at — = 2 and —= 0.75 that corresponds to 
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A = 1.2z for the 2-DOF EMS Maglev system. This result can be generalized and applied 

on the ODU EMS Maglev system to decide which stagger distance to be used. 

Multivariable control tools that are usually utilized for Multi input Multi Output 

systems analysis are presented. These tools include relative gain array (RGA), coupling 

factor, and the Niederlinski index. Complete description of these tools is introduced and 

special case of two input two output system is also provided. Auto tuning technique, 

characteristic locus method, optimization method, and trial and error method are 

introduced to provide with an insight on methods that are used to select the gains of the 

Multivariable PID controller. 

The commonly used control schemes for EMS Maglev systems, de-centralized and 

centralized are introduced. Some challenges appear when utilizing the centralized control 

technique with the EMS Maglev system that possess infinite flexible modes. Practically, 

it is difficult to control all flexible modes by the centralized control technique due to the 

complication of their determination from local measurements. More illustrations on that 

issue are found in the next chapter. 

Finally, the flux feedback principle is introduced. The complete linearized model of 

a single axis EMS Maglev system with flux feedback is presented. Flux feedback 

enhances the stability of these systems by selecting a suitable flux feedback gain to be 

used with the flux measurement in the inner loop. This gain makes the system 

independent of the air gap variations and hence it will more resistant to noise, but this 

gain should be carefully selected to avoid undesired instability that may result if it is 

overestimated. 
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CHAPTER 3 

DE-CENTRALIZED AND CENTRALIZED CONTROL FOR EMS MAGLEV 

SYSTEM LEVITATION AND GUIDANCE 

3.1 Introduction 

In this chapter, the design of the de-centralized and centralized controllers for the 

nonlinear 2-DOF EMS Maglev system that was presented in chapter 2 is presented. In 

order to proceed in the design process, a linearized model for this system is introduced. 

The pole-zero map for the system with the de-centralized and centralized schemes 

are shown for both rigid and flexible cases. A relative gain array is plotted for this 

scheme for both cases. Details for de-centralized controller design are presented. The 

MIMO root loci for this system (rigid and flexible cases) with the de-centralized 

controller are depicted. 

An LQR based gradient-like search algorithm for MIMO PID controller tuning is 

introduced. This algorithm is to be applied on both de-centralized and centralized control 

schemes to have a unified criterion of gain selection. To have a fair comparison between 

these two schemes, the controllers' gains are selected on a unified base. Simulation 

results for the nonlinear 2-DOF EMS Maglev system rigid and flexible cases with the 

tuned controllers are depicted. Conclusions on the results received for the de-centralized 

and centralized control are introduced. 
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3.2 Linearized Model for 2-DOF EMS Maglev System 

The system equations of motion are nonlinear and difficult to deal with, therefore 

the linearization principle is applied to get a linear perturbation model, which is easier 

[71]. The system linearized models are also providing with some useful properties that 

are found in the linear control theory. 

A Linearized model can be obtained when a linearization technique is applied 

properly around the nominal equilibrium point x0, then the system state space model is: 

x = Ax+Bu 
y = Cx 

where: 

A = £ 
9.x 

is the Jacobian matrix of / w.r.t * at (x=x0, u=u0) 
x~x0 
u-u0 

B ft 
du 

, is the Jacobian matrix of/w.r.t x at {x=x0, u=uQ) 
X=XD 

u*ua 

C: is the output matrix (the system measured states are z and y). 

The linearization technique is applied on the system nonlinear equations that are 

presented in Chapter 2 for both rigid and flexible cases (Eqs. (2.35) and (2.36)). 

For the system rigid case, 

A = 

0 1 0 0 0 0 ' '0 0' 

*21 0 *23 0 *25 *26 0 0 

0 0 0 1 0 0 0 0 0 , B = 
*41 0 *43 0 *45 *46 0 0 

0 0 0 0 aS5 0 e 0 

0 0 0 0 0 *66/ e, 

, C = 1 0 0 0 0 0 

0 0 1 0 0 0 

(3.1) 

(3.2) 

where, 
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where the linearization constants are 
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(3.6) 

(3.7) 

dF. 
K =-riL 
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r. \ \ > \ 
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(3.8) 
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it JL 
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+1 

// 

(3.10) 

"• aT 
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l,'7» 2< 
z. (f)•' 

(3.11) 
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The flexible system case state space model is (with the subscript/for flexible): 

(3.14) 

(3.15) 

(3.16) 

r 0 1 0 0 0 0 0 0 " '0 o"1 

a 2i an. a 23 0 a 25 a 26 a 27 ait o o 
0 0 0 1 0 0 0 0 0 0 

a<t 0 an 0 <345 a 46 0 0 
' * /  =  0 0 

062 fl52 0 0 «5J 0 0 0 
' * /  =  

fi 0 
061 062 0 0 0 0 0 0 fi 
0 0 0 0 0 0 0 1 0 0 

vasi at 2 0 0 0 0 at7 attj ,0 0, 

' ^7 -
fl 0 0 0 0 0 0 0' 
0 0 1 0 0 0 0 0 

(3.17) 

where 

021 = + *J 
"h 

>an =• 
"h 

c — U*. +*» ) ~ k, - k, - *• — *023 = " ^-'025 = ^126 = *-yari = 
Wj nij //ij Wlj Wij 

= —a 22 = —' 
m, 

a4i = — 
M M 

K 
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Ky 
M 

> H43 — 7^-» d4« = » fljl — .C161 = 051, 152 —' 

_ - *• - c - --
a5j=-ar+Ke,fl62 =*i2, a66 =ass ,a„ =— , =— , an = -a„ ,ags =-a»2 

m, 

where *• and c are the spring stiffness and viscous damping coefficients, respectively. 
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#5 k = — 
aT 

-L k 
~z„ 'ki>~dz 

= k k =-*Z, »*« (3.18) 

The system open loop transfer function can be easily determined from the state space 

model of the system linearized model as follows: 

G(s) -C(sl- A)-1 B 

G(s) = 8n(s) Sn(*) 
(3.19) 

This is a two input two output (TITO) transfer function. In Figure 3.1, the open loop 

system block diagram is shown. 

i, 

Figure 3.1. Open Loop System Block Diagram 

In the following sections, important notes will be included based on the EMS Maglev 

system linearized model. 



65 

3.3 De-centralized Control of the 2-DOF EMS Maglev System 

3.3.1 De-centralized Control Scheme 

In this section a de-centralized control for the EMS Maglev system is introduced. In 

the de-centralized scheme, controllers are designed locally for each input-output pair as 

co-located actuators and sensors as shown in Figure 3.2. De-centralized control means 

that each magnet has its own control loop that is independent of other control loops [32]. 

Each controller is based on the magnet's air gap measurement, and has been designed to 

have sufficient damping. The controller aims to maintain the magnetic air gap to a certain 

value Zc- In this approach, the outputs (local measurements) are fed back into local 

controllers; one for each magnet. De-centralized PD or PID controllers are commonly 

utilized for EMS Maglev systems and they are sufficient [2-4,7,44-45]. The local 

measurements for this typical system are the same as the heave and lateral modes. The 

form of the de-centralized PD controller is: 

!c. = KP.e«+ Kd.e» (3.20) 
e» = Zc. 

where zc>: is the command air gap, Kh, and are the controller proportional and 

derivative gains, respectively, and n =1,2 is the number of electromagnets. 
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GAs) 

Figure 3.2. A 2-DOF EMS Maglev System with De-centralized Control 

In de-centralized control, the stagger offset A is set to zero. This is due to the fact that 

staggering for de-centralized case is not useful as the levitation force reduces 

significantly, and no considerable change for the lateral force achieved. In de-centralized 

control, the lateral control is attained passively since when the absolute value of lateral 

displacement is greater than zero, the U-shaped magnets will align themselves with the 

inverted U-rail guideways to damp the lateral motion out naturally. This fact will be 

clarified in the next sections. 

3.3.2 Pole zero Map for Rigid and Flexible Cases 

In this section, a simple generic pole zero map is drawn for the 2-DOF EMS 

Maglev system open loop poles for the de-centralized scheme. This can be easily 

achieved by the aid of MATLAB. 

In Figure 3.3, a generic pole-zero map for the system rigid case is shown. There are 

six poles, where two poles a,,i = 1,2 are far in the left hand side for the electrodynamics. 

Two poles , p,2 are located near the jco axis for the lateral channel in the left hand 
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plane. Two poles -<om, o)m one in the left and one in the right hand plane for the heave 

channel. There are no transmission zeros. 

In Figure 3.3, the flexible system case is shown by having two more poles p f i, p f j  for the 

flexible mode and two transmission zeros zfi, zfj; both are located on the jo> axis inside 

dotted circles as shown in Figure 3.3. 

The lateral poles for both rigid and flexible cases indicate stable behavior for the lateral 

motion unlike the heave motion which is unstable. This result coincides with another 

result found in [10-12] about lateral motion stability. The location of the alternating poles 

and zeros in Figure 3.3 is for a very lightly damped system with co-located actuators and 

sensors. If structural damping is considered for the flexible case, the alternating poles and 

zeros would be shifted into the left hand plane [72], 
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Figure 3.3. EMS Maglev System Open Loop Generic Pole-Zero Map (De-centralized 

Scheme) 
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3.3.3 Relative Gain Array for De-centralized Scheme Rigid and Flexible 

The Relative Gain Array is a technique invented by Bristol [49] that can be used for 

Multi Input Multi Output systems to define the degree of interaction between direct and 

cross channels. This technique is useful to show how much effort the controller should 

provide to overcome this interaction. In this section the RGA for system rigid and 

flexible cases is shown when the de-centralized controller is utilized. 

Based on the ODU Maglev system electromagnet's parameters, zero stagger will result in 

interactions between loops for the rigid case is as follows: 

RGKtid = 
0.5 0.5 

0.5 0.5 (3.21) 

which means that equal interactions between direct and cross channels are the same. For 

a TITO system, if Ay=0.5, this indicates that there is a severe interaction between the two 

loops. A positive coupling factor K0 = lfor that system is observed; that means the 

selected pairs «, to y, and u2 to y2 are appropriate. 

For similar conditions that are used for the rigid case, having the secondary mass of one 

tenth the primary mass, and the stiffness coefficient in Figure 2.12 is 

(3.22) 

where, co\ is the vibration frequency of the first mode of the ODU test bogie. 

The interactions between loops are as follows: 

RGAd
fUx = 

0.666 0.333 

0.333 0.666 (3.23) 
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Lower interactions are observed in the cross channels than in the direct channels. The 

received values of the individual RGA matrix elements are not exactly equal to 0.5, 

which means that the control for the direct and cross interactions of the flexible case is 

easier than the rigid case. 

A positive coupling factor = 0.25 for that system is observed, which means the 

selected pairs u\ to yx and u2 to y2 are appropriate, and the control of the flexible case is 

easier. 

Increasing secondary mass to be 40% of primary mass makes the flexibility more 

pronounced. The RGA in the direct and cross channels are the same as in Eq. (3.23). This 

means that the de-centralized control does not experience considerable major changes 

when controlling EMS Maglev systems with significant flexibility, or it can be noted 

that the de-centralized control can stabilize EMS Maglev systems with significant 

flexibility without having big changes in the controllers' gains. 

3.3.4 The De-centrallzed PD Controller Design 

In this section, the de-centralized PD control with the 2-DOF EMS Maglev system-

rigid case is to be developed. The design procedure for the uncoupled systems as in 

section 2.6.3.1 can be applied for the design of the de-centralized controller. Further 

tuning is necessary for the controllers' gains when all loops are closed with the system to 

overcome the effect of the cross channel interactions. Since, the de-centralized control is 

concerned with the air gap control of each individual electromagnet by having an 

individual controller for each one, then each electromagnet loop can be considered for 

design as a single axis Maglev system (SISO). The stability analysis of a single axis 

Maglev system that was introduced in [2] [7] and can be used to ensure stability of the 
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individual loops (SISO). Based on the linearized model of the single axis Maglev system 

that is presented in Chapter 2, section 2.2.3, the transfer function of the system is 

approximated as: 

G(s) = t V~K ' v f 2 ~2KV x (3.24) 
(5 - <omi Is+<ami Is+a t) [s -< A*+a,) 

If PD controller GC( (s) is designed for each air gap of this typical system 

GCi(s) = Kp+K<ls (3.25) 

Then the closed loop characteristic equation is: 

1 + G(s)GCi (5) = 0 (3.26) 

(<a, + K,KJ = 0 (3.27) 

Using Routh's criterion then: 

a a? K o2 

K < —'—^L and K, < ——+—^ are used to stabilize the system, which means that 
Kx  a, Kx  

positive feedback should be utilized to attain a stable system [2]. The root locus of each 

channel with the PD controller can be monitored as in Figure 3.4. 
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Figure 3.4. SISO Root Locus of De-centralized Control- Individual Channel 

3.3.5 MIMO Root Loci for Rigid and Flexible Cases 

In this section, the root loci of the system with the PD de-centralized control are 

shown in Figure 3.5. The closed loop poles are marked by small squares that appear in 

the left hand plane. For the system rigid case, the following is deduced: the PD de­

centralized control does not affect three poles of the system, especially the two lateral 

poles and one pole of the electrodynamics, while affecting the other poles by making 

them more stable. The stable heave pole approaches a breakaway point with one of the 

electrodynamic poles and both are departing to infinity opposite to each other to an 

asymptote parallel to the jco axis. The unstable one moves to the left hand plane on the 

real axis to a stable location. 
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Figure 3.5. Root Loci of the PD De-centralized Control with System-Rigid and Flexible 

Considering the flexible case, the root loci sketch as shown in Figure 3.5 is similar to that 

rigid case, but in addition there are two flexible poles approach to the transmission zeros 

that are also located on the jco axis. 

The root loci for both rigid and flexible cases show that PD de-centralized control 

stabilizes the system by affecting the unstable heave pole while not affecting the lateral 

poles that are fortunately stable by nature [73] as shown in Figure 3.5. 

The developed de-centralized controller for the rigid system case should stabilize 

the flexible case also. Some additional tuning may be utilized to damp the vibration of the 

flexible modes. The argument behind that is deduced from the previous results attained 

for EMS Maglev systems that ensure the ability of controlling flexible modes with the de­

centralized PD controllers [3,4]. Also, the MIMO root loci for the PD de-centralized 

Cases 
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control with the EMS Maglev system show that the flexible poles approach to the 

transmission zeros as k -»~ . 

3.4 Centralized Control of the 2-DOF EMS Maglev System 

3.4.1 Centralized Control Scheme 

Centralized or modal control enables the system to be controlled as a whole by 

measuring the local variables (air gaps and lateral displacements), converting them into 

modes using a transformation matrix [11,16], then controlling the suspension's modes to 

provide the modal forces. These modal forces are transformed to local forces. The 

command currents are generated from the local forces and the measured air gaps via a 

third transformation. When the suspension is approximated as interacting with the rail at 

a single point, the air gap and lateral displacement are the heave and lateral motions 

without transformation. 

The transformation that relates the modal forces and local forces can be found from 

the geometry of the configuration in Figure 2.11 in Chapter 2. Then the modal forces (Fh 

and Fi) in terms of the magnet forces fi and/2 are 

F, 
=  [ t 2 ]  /, 

A 
(3.28) 

and the transformation matrix 7*2 is 

fej-
1 1 

1 -1 

The transformation from the magnet forces to the currents is found by linearizing the 

expression of the levitation force given in Eq. (2.22) in Chapter 2: 

(3-29) 
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where, the linearization coefficients k, , kv  and k, are 
*• /* *» 

dF 
k. - z* 

dz. 

dF. 
' ~ -V y" dyB 

and kj =• 
dF, 

d/. 
(3.30) 

where z0, y0 and l0 are the nominal air gap, lateral displacement, and current of each 

magnet, respectively. 

The corresponding command current can be found from Eq.(3.7) with respect to Zn. 

yj and Ic as: 

/  -  f n + k z n Z n + k y J n  

k. 
(3.31) 

In matrix form, as 

Ic=Wc,zn,yn) 

where T3 = <ftag(|/Ci ICi ... /CJ. 

The command model forces and torques are then 

(3.32) 

T° — K_ ea + K J ca 

< ? e = 0 c - 0  
(3.33) 

where, ®c is the mode's command, and the controller's proportional, and derivative 

gains are K n , and Kd , respectively. The centralized controller with the system is 

shown in Figure 3.6. 

The transformation [Z>] (as shown in Figure 3.6) is considered as an inner feedback loop 

that changes the open loop system transfer function characteristics. Adding this 

transformation into the system, a new transfer function matrix is received as shown in 

Figure 3.6. 
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Figure 3.6. A 2-DOF EMS Maglev System with Centralized Control 

G(s) = k^GisXI - H(s)k i(s)G(s)T1 (3.34) 

where, 

H ( s )  =  

k t(s) = 

k k„ 

k. jfc„ yj_ 

l/k^ 0 
0 l / k  

is the displacements linearization coefficients matrix, and 

is the currents linearization coefficients matrix. 

G,(J) = :T2*(.(*)G(5) (3.35) 

G,(j) relates the modal forces (Fa, and Fi) with the modes z and y. 

The controllers GCi(s), and gci(s) are the PD controllers of the heave and lateral channels, 

respectively. 



76 

3.4.2 Pole Zero Map for Rigid and Flexible Cases 

In this section, a simple generic pole zero map is drawn for the 2-DOF EMS 

Maglev system open loop poles for the centralized scheme. 

The transformation matrices [Ti\, and [7>] shown in Figure 3.7 for the centralized 

scheme changes the location of the lateral poles location slightly such that they lie on the 

jco axis, thus they are marginally stable. 

In Figure 3.7, a generic pole-zero map for the system rigid case is shown. There are 

six poles, two of which (—of, i = 1,2) are far in the left hand side for the 

electrodynamics. Two poles , ph are located near the jco axis for the lateral channel in 

the left hand plane. The two poles -coh, m have one in the left and one in the right hand 

plane for the heave channel. The electrodynamics poles are closer to each other due to the 

effect of the transformation T2 on the system and there are no transmission zeros. 

j® 
These poles and 

zeros are 
" ' considered in the 
, flexible case 

m 
~*rCk 

a 

Figure 3.7. EMS Maglev System Open Loop Generic Pole-Zero Map (Centralized 

Scheme) 
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The generic pole-zero map for the flexible system case is shown in Figure 3.7 except that 

there are two more poles pc
f i, pc

f j  for the flexible mode and two transmission zeros zc
f i, zc

f i  

both are located on the jco axis. 

3.43 Relative Gain Array of the Rigid and Flexible Cases 

In this section, the RGA for the system rigid and flexible cases is shown when 

centralized control is utilized. Interesting results are expected to appear as the centralized 

control decouples the cross channels. 

Figures 3.8, and 3.9 show the RGA Bode plot in the direct and cross channels for 

the rigid case, for different stagger distances. It is clearly noted that the RGA elements 

values are changed remarkably as the linearization coefficients are fedback to the system 

transfer function G(s) as described before and affecting the system dynamics and reduces 

the interaction between loops. The transformation T3 decouples the system. 

For stagger values of A=2Zo to 2Zo, lower interactions between loops are found. 

Note Zo corresponds to the de-levitation position (z„ = 0.75"). Based on the ODU Maglev 

system parameters, a stagger of 2Zo will provide with the interactions between loops for 

the rigid case is as follows: 

RGA  ̂= 
1 0 

0 1 (3.36) 



78 

RGA In dwct chamois 

A-0.5Z 

4-1.51 

0.002 

-O.OOB 

•0.006 

•0008 

10 10" 

tr«quancy,rad'» 

Figure 3.8. RGA in Direct Channels Bode Plot of the Centralized Scheme-Rigid Case 
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Figure 3.9. RGA in Cross Channels Bode Plot of the Centralized Scheme-Rigid Case 

The interactions in the cross channels are zero. This means that the centralized control 

decouples the rigid body modes properly. The coupling factor K0 = 0 for that system is 

observed, which means the selected pairs u, to y{ and u2 to y2 are appropriate. It should 
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be noted that the control on this system will be easier as the coupling between loops is 

zero. 

For similar conditions that are used for the rigid case, having the secondary mass of 

one tenth the primary mass, the interactions between loops are as follows: 

"0.9716 0.0316" 

0.0316 0.9716J (3 3?) 

Small interactions appeared in the cross channels for the flexible case, while zero cross 

interactions are received for the rigid case. The interpretation is that the centralized 

control could not decouple the flexible modes efficiently and the effect of flexibility 

appears as small interactions in the cross channels. These interactions may require tuning 

of the controller gains to overcome them. The interactions in the direct channels for the 

flexible case is lower than for the rigid case, which indicates slightly easier control for 

direct channels for the flexible case. 

A coupling factor k 0 s Ofor that system is observed, which means the selected pairs u x  to 

and u2 to y2 are appropriate and the control of the flexible case is still possible by that 

control scheme. Figures 3.10, and 3.11 show the RGA Bode plot in the direct and cross 

channels for the flexible case for different staggers. 

It is shown that the RGA Bode plots in the direct and cross channels start to change 

when the frequency increases from 10 to lOOr/s. This may be due to the excitation of the 

system vibration frequency of mode 1 which in the same order (76.6r/s). 

RGAjUxibU 
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Figure 3.10. RGA in Direct Channels Bode Plot of the Centralized Scheme -Flexible 

(Case 1) 
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Figure 3.11. RGA in Cross Channels Bode Plot of the Centralized Scheme-Flexible 

(Case 1) 
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With increasing flexibility in the system by having the secondary mass 40% of the 

primary mass, the RGA Bode plots in the direct and cross channels are as shown in 

Figures 3.12, and 3.13. 

The flexibility effect on the RGA adds more uncertainty to the interaction between loops 

by having bigger notches that appear in the plots as increasing the frequency if compared 

with those in Figures 3.10 and 3.11. This even may require to consider the controller 

gains tuning. 

RGA In direct chamois 

iV " 

— - A-0.5*o 
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Figure 3.12. RGA in Direct Channels Bode Plot of the Centralized Scheme-Flexible 

(Case 2) 
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Figure 3.13. RGA in Cross Channels Bode Plot of the Centralized Scheme-Flexible 

(Case 2) 

3.4.4 Stability Analysis for the Centralized PD Control with the 2-DOF 

EMS Maglev Rigid System Case 

In this section, the stability analysis of the centralized PD control with the 2-DOF 

EMS Maglev rigid system case. The design procedure for the uncoupled systems that is 

presented in section 2.6.3.1 can be applied for the centralized controller design. The 

centralized control uses some transformation matrices that decouple the modes of a 

Maglev system. Then, the linearized 2-DOF Maglev system with the centralized 

controller transformation matrices included is as shown in Figure 3.14. 
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F h Gu(s)  rh * Gu(s)  w L 

Gn(s)  FL * Gn(s)  * \ 

Figure 3.14.2-DOF EMS Maglev System with the Centralized Control Transformations 

where, the transfer function that relates heave force Fh and heave motion Z is 

Gu(s) = - (  ~K" v r (3.38) 
(s-wJs+a^Xs+Ot) 

and the transfer function that relates lateral force Ft and lateral motion Y is 

G (s) s *22 (3.39) 
(s+p^ )(s +p l2)(s + a2) 

where, Ku 
=~-{o25 + fl26)' ^22 = 2^°45 =ai — 

Observing G22(s), it is noted the characteristic polynomial (s + p, t  \s + p t j  \s + a2) is 

marginally stable. 

If PD controllers Gc  (s),i = 1,2 are designed for both channels of this typical system, 

GCi(s) = Kp+Kds (3.40) 

Then the closed loop characteristic equation for the heave channel is: 

l + Gn(s)GCi(s)=0 (3.41) 

j3 + a,*2 - KuKds- (flfa + )= 0 (3.42) 

Using Routh's criterion then: 
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at at 
K n  <  — ,  a n d  K d i  < — — + — —  w h i c h  i n d i c a t e s  s t a b i l i t y  i s  a c h i e v e d  b y  p o s i t i v e  

An 
1 a; Kn 

feedback control [2]. The root locus of the heave channel with the PD controller GCi (s) to 

be as shown in Figure 3.15. 

ja 

i i 

i i 

M ^ jm in 
-fll -Hi, z0>L <*>k 

1 ' 

r 

Figure 3.15. SISO Root Locus of the Heave Channel when Employing Centralized 

Control 

The closed loop characteristic equation for the lateral channel with the controller 

involved is: 

1 + G22(*)GC2(*) = 0 (3.43) 

s3+(p, t  +Ph +a2)s2 + (p l lp l l  +^(p„ +P,1)+K22Kd2)s + (p l ip, ja2 + K22Kpi)=Q (3.44) 

Using Routh's criterion: 

K >Z^hEhEh.>n K >En., which ensures stability by negative feedback control. 
Pi V d* /V 
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The important note to be drawn here is that the lateral channel is stabilized by a negative 

feedback controller unlike the heave channel which needs a positive feedback controller 

to be stabilized. The centralized control stabilizes the EMS Maglev system once the 

heave motion is stabilized. 

The root locus of the lateral channel with the PD controller GCj (5) to be as shown in 

Figure 3.16. 

j 
i 

I 

CO 
I 

. 4J 

f ' ^ 
-K„ 

' ' 

Figure 3.16. SISO Root Locus of the Lateral Channel when Employing Centralized 

Control 

3.4.1 MIMO Root Loci for Rigid and Flexible Cases 

In a similar manner, the MIMO root loci with the system when PD centralized 

control are shown in Figure 3.17. For the rigid system case, the two lateral poles that are 

on the jot axis approach a breakaway point after moving on a circular path and then 

departing in the opposite direction, one of them approaches a second breaking point with 

one of the electrodynamics poles and departs vertically to an asymptote parallel to the jco 
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axis. The stable heave pole is approaching a third breakaway point with the other 

electrodynamics pole and departs vertically to another asymptote parallel to the ja>. The 

unstable heave pole is travelling to the left hand plane to a stable location. Considering 

the flexible system case is similar to the rigid case, except that in addition, there are two 

flexible poles approaching the transmission zeros that are also located on the jco axis 

inside dotted circles as in Figure 3.17. 

To be considered 
, only for the 

flexible case 

These braehes 
are for the 

heave channel 

These braehes 
are for the 

lateral channel 

Figure 3.17. Root Loci of the PD Centralized Control with the System-Rigid and Flexible 

Cases 

The root loci plots obtained for both rigid and flexible cases show that the PD centralized 

control makes the Maglev system more stable by affecting the unstable heave pole and 

the two marginally stable lateral poles, making them more stable [73] as shown in Figure 

3.17. 
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It should be noted that the developed centralized controller for the rigid case can be 

applied on the flexible case too with some additional tuning for the PD controllers' gains. 

This note is deduced from the RGA Bode plots that shown small interactions in the cross 

channels, and from the MIMO root loci for the PD centralized control with the EMS 

Maglev system, that shown that the flexible poles approach to the transmission zeros as 

k —»°o . 

3.5 MIMO PID Controller Tuning Algorithm 

3.5.1 An LQR Based Gradient Like Search Algorithm 

In this section, a gradient-like algorithm that was found in [74] is utilized for the 

PID controller gain tuning. The search algorithm utilized is based on an optimal criterion 

for the synthesis of decentralized MIMO PID controllers that can be used for the Maglev 

systems. The idea behind this algorithm is that the system which is under control should 

be linearized (if it is nonlinear) to get a state space linearized model at the operating 

conditions. A linearized model can be obtained when linearization technique is applied 

properly around the nominal equilibrium point x0. To consider output feedback, the gain 

matrix gc is the multiplication of the output matrix by the controller K. In order to tune a 

decentralized MIMO PID controller, it is necessary to assure that the gain matrix Gchas a 

sparse structure [74]. Then the synthesized MIMO PID controller is equivalent to a static 

state feedback control law and thus, numerical optimization procedures can be used. The 

de-centralized PID controller structure definition as in [41], and can be applied to the 

centralized control scheme after adding the transformation matrices to the system. 

To initiate the algorithm, a suitable gain matrix Gco (in a sparse form) is chosen by 

trial and error that ensures the stability of the system closed loop. Select an appropriate 
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weighting matrices a, A and a small real number £ that are used for updating Gc. When a 

sufficient number of iterations is used, then the optimized gain matrix Gc will converge. 

It should be noted that J(GC) for de-centralized and centralized schemes have the same 

value after n iterations. 

The standard initial state averaged LQR objective function is: 

J (Gc) = trace {F (Gc)} ^ 45^ 

where, 

F(GC) = £ mT(a+Gc
TAGc)mdt 

T(f) = e{A,JrB,Ge)', at 0 and A > 0 . A and B are the system modified dynamics and 

input matrices: 

(3.47) a 0" b a = . b = 
C 0 0 

The matrix A, =A + BGC is stable, the matrix F(GC) to be calculated by solving the 

following Lyapunov equation: 

A]F(GC) + F{GC)A, + (o- + GC
TAGC) = 0 (3 4g) 

The matrix W is calculated from the solution of another Lyapunov equation: 

AjW+WA, + I = 0 (349) 

then, the gain matrix gc is updated via 

(3.50) 

trace {f(OtM)}= 2<A G, + B? F(G,))v (3.51) 
d(j, 
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A further check on the eigenvalues is performed to guarantee the stability of the closed 

loop system. When enough iterations are used, then the optimized gain matrix Gc will 

converge. 

3.5.2 An LQR Based Gradient Like Search Algorithm for Controllers' 

Gains Tuning 

The algorithm presented in the previous section was used to tune MIMO PID 

controllers, but here the algorithm is modified for MIMO PD controller tuning. The 

modification of the algorithm is to eliminate the states that represent the integral action in 

the PID controller. In Eq. (3.47), the modified dynamics and input matrices A and B are 

the same as the linearized system original dynamics and input matrices A, and B. 

The nonlinearities in the Maglev system equations are found in the expressions 

given for the levitation and lateral forces as in Eqs. (2.22 and 2.23), and the magnet 

electrodynamics are as in Eq.(2.34) in Chapter 2. A linearized model can be obtained 

when linearization technique is applied properly around the nominal equilibrium point x0, 

as in section 3.2. 

The dimension of the gain matrix Gc  is 2xns  + nq for both schemes, where ns  is the 

number of non flexible states (rigid states, and states of the electromagnet currents), and 

nq is the number of the flexible states. There are four nonzero elements in the gain matrix 

Gc for every scheme that represent the PD controller gains, and other elements are zero. 

The generalized gain matrix Gc^ for the de-centralized scheme is: 

k*, k+ n 

k *. pZi dZi (3.52) 

The generalized gain matrix Gc  for the centralized scheme is: 
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G, = k* 0 0 
* 0 
o 0 k„ (3.53) 

In order to get the best output from this algorithm first, the tuned values of the controller 

should not flip signs. Second, the performance index J should converge as n increases. 

Third, the received tuned values of the gains should not violate the controller design 

constraints (e.g. Kp is usually bigger than K* when PD control is utilized with an EMS 

Maglev system [7]). This necessitates the choice of proper values for the weighting 

matrices a and A, and£ . 

3.5.3 Simulation Results 

In this section, the simulation results of the 2-DOF Maglev system (rigid case) with 

the de-centralized and centralized control schemes are presented. The EMS Maglev 

system that is utilized here is nonlinear, and the simulation is built based on 

MATLAB/SIMULINK. The 2-DOF EMS Maglev system has a mass of 1000kg, and the 

electromagnet parameters are the same as those used for the ODU Maglev system: 

L=0.381m, Wm=0.051m, JV=596turns, and the air gap of the de-levitated position is 

z=0.4". The lateral motion has been modeled according to the nonlinear equations too, 

but during the transition period from de-levitation to levitation or vice versa, there is an 

opposing lateral force simply modeled as a spring damper system that prohibits lateral 

displacements to appear during de-levitation. 

The source of disturbing lateral force is the wind gust. Hie utilized wind gust model 

has a standard "1-cosine" shape. The model block is found in SIMULINK, and this block 

implements the mathematical representation in the Military Specification MIL-F-8785C. 

The wind gust is applied to the y-axis only, at speed of 20m/s, with a very small gust 

length. This represents the worst case for a wind gust that is similar to a step disturbance. 
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The amplitude of the aerodynamic force due to the wind gust is estimated based on the 

experimental results of a low speed urban Maglev vehicle 1:12 scale model at Old 

Dominion University low speed wind tunnel [75]. This disturbing lateral force has an 

amplitude of 471.18N and is applied in the time interval from 8 to 20s. Figure 3.18 shows 

the lateral disturbing force profile. 

A unified system configuration for both schemes is assumed. This system 

configuration has control inputs as the command currents ICf and outputs as the air gaps 

zu  then the search algorithm will optimize the performance index J ( I C i , z, )for both 

schemes to calculate the gain matrix. The gain matrix obtained is used directly with the 

de-centralized scheme, but for the centralized scheme, transformations should be applied 

to attain the proper gain matrix. This configuration is equivalent to having modes as 

outputs because, the air gaps and modes for this system are the same. The gain matrix for 

each scheme has dimension of 2x6. The necessity of having the same J(GC) for both de­

centralized and centralized after n iterations is very difficult to achieve and requires 

changing the weights until the required result is achieved. The simulation scenario for 

both schemes is based on the system configuration where inputs are the command 

currents and the outputs are the air gaps, thus the minimization is performed on the 

per fo rmance  index  J ( l c  , z t ) .  
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Figure 3.18. Lateral Disturbing Force 

Figures 3.19 and 3.20 show the air gap and lateral responses of the 2-DOF Maglev 

system when PD de-centralized control is utilized. The lateral displacement due to 

disturbance is decreased to a value that is below 0.339mm after reaching to an amplitude 

of 0.95mm during the time interval 8 to 20s and this is due to the characteristics of the 

stable lateral poles and not due to the controller effect. Note that very low damping is 

noticed for the open loop lateral poles. 
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Figure 3.19. Air Gap Responses for the De-centralized Control-Rigid Case 

Figure 3.20. Lateral Displacement Response for the De-centralized Control-Rigid Case 

A parametric time track is envisaged over the phase plane in addition to the time response 

for more analysis as shown in Figure 3.21, where the rate of lateral disturbance is plotted 

against the lateral disturbance from t=0 to 32 s. The system forms two stable elliptical 

limit cycles, the first one on the right corresponds to the reaction to the step response at 



94 

t=8 to 20s, and the second one on the left corresponds to the oscillation around the origin 

with 1^=3.397x10^, and j<^/|=0.01092m/s. In fact, the second limit cycle is composed 

of two perpendicular ellipses. One is for the oscillation around origin, and the second 

corresponds to the increased oscillations around origin that occurs before de-levitation in 

the time interval from t=26 to 28s. This is because, currents in electromagnets decrease 

causing weaker lateral force. It should be noted that the system will reach to origin at the 

end of the simulation as system de-levitates, so the amplitude of the lateral displacement 

is forced to zero. 
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Figure 3.21. Phase Plane of Step Response for the De-centralized Control-Rigid Case 

Figures 3.22, and 3.23 show the air gap and lateral responses of the 2-DOF Maglev 

system when PD centralized control is utilized. The same conditions are used for the 

system as have been used with the de-centralized controllers. The centralized controllers 
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overcome the lateral displacement that results due to the lateral disturbance force in a 

period of Is. 

A parametric time track is envisaged over the phase plane as shown in Figure 3.24 

when PD centralized control is utilized. The system has two stable origins (limit cycles), 

the first one is on the right that returns to point (y=8.695xl0"sm) in reaction to the lateral 

disturbance, the second point corresponds to the damped oscillation around origin. The 

system reaches equilibrium before de-levitation occurs. Both equilibrium points depicted 

in this simulation show the stable damping of the lateral displacement due to disturbance 

when PD centralized control is utilized. 
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Figure 3.22. Air Gap Responses for the Centralized Control-Rigid Case 
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Figure 3.23. Lateral Displacement Response for the Centralized Control-Rigid Case 

Figure 3.24. Phase Plane of Step Response for the Centralized Control-Rigid Case 

To consider the flexible case of the 2-DOF EMS Maglev system, one vibration mode is 

considered which equals the ODU Maglev vibration mode l,/j=l2.19Hz. The primary 

and secondary masses are 800kg, and 200kg, respectively. 



97 

Figures 3.25 and 3.26 show the air gap and lateral responses of the 2-DOF Maglev 

system-flexible case when PD de-centralized control is utilized. PD de-centralized 

control has stable behavior with the system as already proven in many references [2-

4,7,9], but with low damping for the lateral displacements as received with the rigid case. 

The response of the lateral displacement due to disturbance decreased to 0.295mm after 

reaching an amplitude of 1mm during the time interval 8 to 20s of the disturbing lateral 

force. A low damping is achieved in the lateral channel as for rigid case. 

I0 '  

Figure 3.25. Air Gap Responses for the De-centralized Control-Flexible Case 
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Figure 3.26. Lateral Displacement Response for the De-centralized Control-Flexible 

Case 

Figures 3.27, and 3.28 show the air gap and lateral responses of the 2-DOF Maglev 

system-flexible case when PD centralized control is utilized. The centralized controllers 

attain stable behavior, good performance and overcome the lateral displacement that 

results from the lateral disturbance force, but with some damped oscillations that are due 

to the flexibility of the system as shown in Figure 3.28. This result coincides with the 

MIMO root loci of the PD centralized control with the flexible system case. 
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Figure 3.27. Air Gap Responses for the Centralized Control-Flexible Case 

Figure 3.28. Lateral Displacement Response for the Centralized Control-Flexible Case 

For both controller schemes when applied on the rigid and flexible cases, the air gap 

response was not affected by the lateral disturbance force although there is a considerable 

coupling between heave and lateral channels. This is due to the appropriate design of the 

controllers. 
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The responses achieved with both schemes can be practically enhanced when an 

integrator term is added to each controller to have PID control instead that reduces the 

steady state error. 

3.6 Conclusions 

In this chapter, a linearized model for the 2-DOF EMS Maglev system for an 

inverted U-rail is introduced. The PD de-centralized and centralized control schemes are 

applied on that model for rigid and flexible cases. For the de-centralized scheme, RGA 

Bode plots are made for zero stagger, and the controller is able to control the flexible case 

easier than the rigid due to reduced interactions received with the flexible case. For the 

centralized scheme, RGA Bode plots are made for different staggers, the heave and 

lateral channels are decoupled, and the controller is able to control system rigid and 

flexible cases. The multivariable controller design procedure used for the uncoupled 

systems is applied on the de-centralized controller design but with some tuning to 

overcome interaction. The linear stability investigation for the system uncoupled 

channels is introduced. This analysis shows that the lateral channel can be stabilized by 

negative feedback control unlike the heave channel that needs positive feedback control 

to be stabilized. A sketch for the MIMO root loci for the system with the PD de­

centralized control is shown to stabilize the system by moving the heave unstable pole to 

left, but has no effect on the lateral poles that are stable by nature. A sketch for the 

MIMO root loci for the system with the PD centralized control is shown to stabilize the 

system by moving the heave unstable pole to left, and also affects the marginally stable 

lateral poles by making them more stable. 
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An LQR gradient like search algorithm for the MIMO PID controller gain tuning is 

introduced. This optimal algorithm is useful to tune the PD de-centralized and centralized 

controller gains on a unified criterion to have fair comparison. 

The simulation results for the nonlinear 2-DOF EMS Maglev system rigid and flexible 

cases with the PD de-centralized and centralized controllers show that the PD centralized 

controller is better than the de-centralized one when the system is exposed to a lateral 

disturbing force such as wind gusts. This is due to the effectiveness of the centralized 

control on the lateral poles than the de-centralized control that has no effect on the lateral 

poles. 

As a matter of fact, when using de-centralized control, lateral motion control is 

attained passively while with the centralized control, lateral motion control is achieved 

actively. This lateral control is achieved by having magnet staggers, so each magnet will 

provide with a lateral force in the direction opposite to the stagger that diminishes the 

lateral displacements due to the lateral disturbance. 

Finally, insight on the difference between these two commonly used control 

schemes, especially if a particular concern is given to lateral control, is provided. The 

centralized control was shown to achieve better lateral control than the de-centralized 

control for both rigid and flexible cases of the Maglev system. This study is useful for 

real systems like the ODU Maglev and can be generalized to decide which control 

scheme to be utilized considering the conditions that the real EMS Maglev system is 

exposed to. 
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CHAPTER 4 

DE-CENTRALIZED AND CENTRALIZED CONTROL FOR 

ODU EMS MAGLEV TEST BOGIE 

4.1 Introduction 

In this chapter, de-centralized and centralized control for the ODU EMS Maglev 

test bogie is presented. A full description on the ODU Maglev test bogie experimental 

setup that describes the bogie structure and the utilized hardware is introduced. The 

complete structural model for the ODU EMS Maglev bogie is presented. The EMS 

Maglev electrodynamics and track/girder dynamics modeling are introduced. A detailed 

description on the de-centralized and centralized control for that typical system is 

introduced. Numerical simulation and experimental results for the system with these 

controllers are also shown. Details on flux feedback control technique and how to 

combine with de-centralized and centralized controllers for stability improvement and 

noise reduction are described. Numerical simulation results for the combined flux 

feedback/de-centralized and combined flux feedback/centralized controllers with the 

Maglev bogie are shown. 

4.2 ODU Maglev Test Bogie Experimental Setup 

The ODU Test bogie, shown in Figure 4.1, is a welded aluminum structure [3]. This 

test bogie is equipped with amplifiers, filters, sensors, actuators and on board computer. 

Power amplifiers feed current to each of the six electromagnet coils. Eddy-current based 

position sensors and accelerometers are used to measure the vertical positions and 

vertical accelerations of the magnets, respectively, two laser sensors are used to measure 

the lateral positions, and an 8-pole Butterworth anti-aliasing filter along with a digital 
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low-pass filter is used to filter the noise in the measurement signals. A National 

Instruments data acquisition card installed in a PC104-Plus computer is used for data 

acquisition and control. Hie data acquisition system is operated through 

MATLAB/SIMULINK, using the xPC Target environment. Relevant system parameters 

are listed in Table 4.1. The sampling rate is 10 kHz. 

Table 4.1 ODU Test Vehicle Parameters 

Detail Value Units 

Mass 2.267x10* Kg 

Length 3.65 m 

Width 1.52 m 

Height 0.91 m 

Mass moment of Inertia (/«) 2.955x10* Kg.m2 

Mass moment of Inertia (Iyy) 3.842x10* Kg.m" 

Mass moment of Inertia (/s) 1.207x10* Kg.mz 

Desired Magnetic Gap 0.01 m 

No. of Magnets 6 -

No. of Amplifiers 6 -

No. of LIMs 2 -

No. of Turns per magnet 596 turns 

Resistance of the magnet coil 1.83 Ohm 

Inductance of the magnet coil 0.68 H 

Electromagnet pole length 0.381 m 

Electromagnet pole width 0.051 m 

Air permeability constant 471x10' N/A1 

Gauge number 10 -



104 

Figure 4.1. ODU Maglev Test Bogie in Lab 

4.3 Structural Model 

4.3.1 Models for Rigid Body and Flexible Systems 

The test bogie model that is utilized in this chapter is based on the previous research 

work conducted in [3-4]. The dynamic model of the bogie includes rigid body and 

structural vibration modes. The rigid body dynamic model has five degrees of freedom -

two translational and three rotational. The sixth degree of freedom that represents the 

forward motion is not modeled. The flexible body dynamic model has infinite degrees of 

freedom (modes). However, only a few flexible modes need to be considered for model 

development. The test bogie uses six electromagnets that are located under the tracks for 

levitation, and for modeling considerations, the levitation and lateral forces generated by 

each magnet are considered. The moments generated by these forces around the bogie's 

center of mass are also considered. A Finite Element (FE) structural model for the 
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vehicle has been developed, from which the mass and inertia properties, basic geometry, 

and location of the magnets with respect to the center of mass are obtained. The mode 

shapes and eigenvalues of the bogie for selected modes are also obtained from the FE 

model. The dynamical model for a generic flexible structure with rigid body modes and a 

finite number of flexible modes of vibration is [3-4] [48]: 

A,p + Bsp + Csp = —TtU (4.1) 

where, As is the mass-inertia matrix (always positive definite) given by 

4 = 

m. 0 0 
S 

0 J, 0 

0 0 /„, 

(4.2) 

ms is the total mass of the structure and it is a 3x3 diagonal matrix (for translational 

motions along x, y and z directions), J, is a 3 x 3 moment of inertia matrix, h denotes the 

kxk identity matrix, and nq is the number of flexible modes of vibration considered. The 

reason for the negative sign on right hand side of Eq. (4.1) is because the applied force is 

opposite to that of the measured gap. 

=[<r f] (4.3) 

where, and y represent the rigid body translation and rigid body rotation vectors, 

respectively. qv is the rtqx\ modal amplitude vector (modal co-ordinate vector). Thus,/? 

represents all the modeled degrees of freedom (rigid and flexible) of the structure. 

B^diag^ 0M J (4.4) 

where, D is nq x nq symmetric matrix that represents the inherent structural damping, and 

Okxk is the null matrix. The modal matrix is assumed to be mass normalized, therefore 



106 

each element in the D has the form Du = 2£o>, where £ and represent the inherent 

damping ratio and natural frequency of the fh flexible mode. As D is always assumed to 

be greater than zero for any structural damping, then Bs is positive semi-definite. 

Similarly, is also C, positive semi-definite: 

where, A is the diagonal matrix of squared flexible mode frequencies with A( = , the 

mode shape matrix is: 

In Eq. (4.6), m is the number of applied forces, ff is the modal matrix. Ri is the cross 

product matrix of position vector of the i'h force applying actuator. The number of rows 

of Vf is equal to the number of flexible modes selected to be modeled. Each Yf has two 

columns since each electromagnetic force has two components: levitation and lateral. The 

moment generated by the ith force /j about the center of gravity of the vehicle can be 

written as: 

C, — ^|p3x3 03x3 ^ J (4.5) 

(4.6) 

0 ~rzi rxi fx, 

M i =r i x f i = r d  0 ryi fy> 

rrxi ryi °JlA 

(4.7) 

where, rt = [rn. ryi rj{ represents the position vector to the fh force/. 

If the levitation and lateral forces are only considered, then Eq. (4.7) will be 

M, =[«,] f " 
J u 

(4.8) 
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where, [/?, ] = 
~ r v  ~ r x i  

0 -/V 

ryi 0 

that correspond to the i'h force /}, and the force f{ = 

represents the columns of the cross-product rotation matrices 

The control input vector u of the applied levitation and lateral forces then is 

" = L/yl f z  1 • • •  f ym  f vn \=F (4-9) 

The outputs are considered to be the vertical positions of the magnets, and two lateral 

positions of the vehicle. Therefore, the outputs are 

y0=Tp (4.10) 

The relation between the air gaps and the magnet positions is 

(4.11) 

where, y0 is the position to the magnet and y, is the position to the track. 

Eq. (4.1) is combining the rigid body and flexible modes together and they can split by 

considering the equations for rigid body modes (translation and rotation), and equation 

for the flexible modes. 

A conventional method for modeling the test bogie dynamics is by using Newton's 

laws. So, the dynamics of the rigid body translation dynamics are found via the following 

equations of motion [3]: 

m 
1=1 

(4.12) 

m, is the mass of the test-bogie and a represents the two rigid body translation vector 

(heave and lateral). The summation is up to six elements because, the test bogie has six 

electromagnets. 
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In the same way, the rigid body rotation dynamics are: 

/,£ = [*,/, R2f2 ... RJ6]=Rf (4.13) 

where, e represents the three rigid body rotation vectors (roll <p, pitch i? ,and yaw \p). Ri 

represent the columns of the cross-product rotation matrices corresponding to the i'h force 

f. The flexible modes (elastic motion) can be modeled in similar manner as in [48]: 

where qv represents the modal co-ordinates, or modal vectors. The matrix ¥ is 

where, are the z-columns of the mode shape matrix corresponding to the Ith force 

applying actuator. 

D t  is the nxndiagonal matrix representing the inherent damping in the structure. This 

modal matrix is also assumed to be mass-normalized; therefore, each element in £>, matrix 

can be written as D, = 2gicoi, where g, and aj represent the inherent damping ratio and 

natural frequency of the Ith flexible mode. A, is the diagonal matrix of the squared 

flexible mode frequencies, with A,( = 0)f. 

For the ODU Maglev bogie, four flexible modes are considered in modeling. 

Eqs. (4.12-14) represent the complete model of the bogie that includes rigid and flexible 

modes. 

4.3.2 State Space Representation 

The state space model of a flexible structure can be expressed as [3]: 

qv+D tqv + A,qv = *¥TF (4.14) 

(4.15) 

x= Ax + Bu 

y-Cx (4.16) 

where, 

(4.17) 
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x is the state vector that define the states of the rigid body, flexible displacements and the 

corresponding velocities. 

The control input vector u in Eq. (4.16) is the applied force vector as in Eq. (4.9). The 

outputs in Eq. (4.16) represent the magnet positions. For the co-located sensor and 

actuator configuration the outputs have the form: 

y=Fp = Cx (4.18) 

then, the state space matrices are 

A = A 0 
0 A, 

is the dynamics matrix. 

where, Ar = 

0  0 / 0  

0 0 0 / 
0 0 0 0 

0 0 0 0 

, and Af  = 
0 / 

-A -D 

B 
Br 

B, 
is the input matrix. 

0 0 .. 0 

0 0 .. 0 f 0 0 . .. 0 1 r o i 
m7 m;1 . .. m;1 

,and B{  = 

1 —
 
s
 

^ • 1 \
 

*
 i 

where, Br = 

_/;'*, ••• i;%. 

C = [cr Cj\ is the output matrix. 

where Cr=[/ rT 0 oJandC,^ 0] 

The parameters shown above are obtained using the finite element model of the test bogie 

that is described in [3]. 
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4.4 Electrodynamics 

The electromagnets' electrodynamics are included here as described in section 

2.3.3. The magnet inductance in terms of y and z is has the following relationship: 

L m,(y-Z)  
M„N2LW 1 + l£i. 1 + —In 

/ 

1 + M 2z t  Jtw 2 > z, zf J 

/ = 1,2..,6 
' ; = i,2 

(4.19) 

From Eq. (4.19), it is noted that the magnet inductance is a function in y and z, but z has 

more influence on the inductance than y as shown in the equation. 

Using Kirchhoff s voltage law, the voltage applied to the coil of each electromagnet is 

(4.20) V, = RI , + L m i ( y , z )4L-L„(y , z ) f i = 1....6 
Zj dt 

In fact, each electromagnet is driven by current amplifier that is intended to track a 

current command /C( with an amplifier feedback gain K*. 

V (  = K a ( I C i  - I i ) ,  i  = 1,..,6 (4.21) 

Combining Eq. (4.21), and Eqs. (4.19-20), the final current loop is: 

/ = ̂ -(/c, « = 1,2,...,6 
V " *, 

(4.22) 

The linearized format of the current equation is: 

L '• "H 

r \ K A+R /„ 1=1,2 6 
n, j (4.23) 

and for large magnets, Lm can be considered as constant. 

4.5 Track/Girder Dynamics 

The dynamics of the ODU concrete girder is shown in Figure 4.2 as a frequency 

response (Bode) diagram [3]. As in [3], the data that plotted in the Figure is obtained 
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using (a) the FE model of the girder, (b) experimentally by testing the girder, and (c) 

analytically for a simply-supported-beam model. The ODU girder can be reasonably 

modeled as a simply supported beam for which the equations of motion are very well 

known [21]. More details on the girder modeling are in Chapter 5. 
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Figure 4.2. ODU Girder Frequency Response Comparison 

4.6 De-centralized Controller Design 

4.6.1 De-centralized Controller Scheme 

In the de-centralized control scheme, controllers are designed locally for each input-

output pair as co-located actuators and sensors as shown in Figure 4.3. De-centralized 

control means that each magnet has its own control loop that is independent of other 

control loops [2-4,13,46]. Each controller is based on the magnet's vertical position, 

vertical velocity and vertical acceleration, and has been designed to have sufficient 

damping. The control logic aims to maintain the magnetic gap to a pre-set value Zc- In this 
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(4.24) 

approach, the outputs (local measurements) are fed back into local PID controllers; one 

for each magnet. These controllers are: 

K = ^pt,e" z \e>^ , i —1,2,..,n 
e i  = zc i-z t  

where n is the number of electromagnets, Zc' is the command air gap and the controller's 

proportional, integral and derivative gains are Kp ,K. , and KD , respectively. In 

Figure 4.3, the E.M block represents the electromagnetic dynamics as in Eq. (4.22). 

) PIP; |^*| EM \~^ 

-srfersr '* 

-jgfcl EM |-£— 

Vehicle 
Dynamics 

Figure 4.3. De-centralized Controller 

Since the EMS Maglev system is an open loop unstable by nature, the utilized individual 

controllers have positive feedback configuration. This configuration has proven a 

guaranteed stability for rigid and flexible EMS Maglev systems [2,7,9]. The trial and 

error method is used to determine the gains of the PID controllers using 

MATLAB/SIMULINK simulation. 
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4.6.2 Combined De-centralized-Flux Feedback Control 

In this section, the combined de-centralized-flux feedback is considered. A minor 

modification on Eq. (2.S3) that is used in Chapter 2 to calculate the magnetic field 

density is utilized to include the lateral measurement y. Then the nonlinear expression for 

the magnetic field density measurement is: 

, ( „ ..11 
(4.25) B _  P(y , z )NI  _M a Nl  

1 + — 1 +—In 
/ 

1 + h] 
2^ 

-—tan"1—] 
A 2 z mv 2 V J z z 

In order to calculate the linearization coefficients kWi, and , i=l,2,...,6 that are 

necessary for the flux feedback gain k9i calculation, the steady state currents 

1^, I0iIDt, and gaps , z„2z„t are to be used. Having suitable flux feedback gains 

calculated as in Chapter 2, the inner loops for the flux measurements are closed as shown 

in Figure 4.4. The output of the flux controller block , IBilBt is fed back in the 

inner loops as shown in Figure 4.4 to make the system marginally stable. The command 

currents to the amplifiers /fi, ICiICt are the result of subtracting the output of the flux 

controller from the PID controllers output 7CO|, /,...., ICOi as shown in Figure 4.4. 

In order to complete the controller design, the trial and error method is used to 

determine the gains of the PID controllers in the outer loops via MATLAB/SIMULINK 

simulation environment. The gains of the combined de-centralized flux feedback PID 

controllers are totally different than those used for the de-centralized control. In Figure 

4.4, the block diagram of the combined de-centralized flux feedback control is shown. 
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Figure 4.4. Combined De-centralized-Flux Feedback Control 

4.6.3 Maglev Real-Time Control 

The real-time control of the ODU Maglev system is performed based on xPC Target 

environment. xPc Target enables to execute SIMULINK models on target computer for 

the hardware-in-the loop (HIL) simulation, control prototyping, and other real-time 

testing applications. It is possible to add I/O blocks to models, automatically generate 

code with Real-Time Workshop, and download the code to a second PC running the xPC 

Target real-time kernel [76]. 

The SIMULINK model that is used for the system's simulation purposes is now 

modified to consider the I/O blocks. In Figure 4.5, the SIMULINK code used to 

implement de-centralized control for the ODU Maglev bogie is shown. 
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On the left, the data acquisition input block PCI-6071E is used to acquire both 

position and acceleration data. The first six outputs of this block are the air gaps 

measured by position sensors (voltages). The last six outputs are the accelerometer 

measurements (voltages). The filters' block is next to PCI-6071E and used to filter the air 

gap and accelerometer signals from exciting the first bending mode of the track, which is 

around 57 Hz. The command generator block generates the command signals for the 

levitation gaps as well as the nominal currents [3]. These command signals and the 

filtrated signal are input to the de-centralized PID controller blocks (MAGNET 1 to 

MAGNET 6). 

The output of these PID controller blocks are input to the amplifiers through another data 

acquisition card PCI-6713. In the diagram shown, only 4 magnets (Magnets #1, 2, 5 and 

6) were used for levitation. 

4.6.4 Simulation and Experimental Results 

Case 1-a 

In this section, case 1-a, in which normal levitation for the ODU EMS Maglev 

system with de-centralized control, is studied. The simulation results for the ODU EMS 

Maglev vehicle with the de-centralized control for case 1-a are shown in Figures 4.6- 4.7. 

In the de-centralized control, the Maglev bogie mass distribution is considered as each air 

gap is controlled individually. This means that each PID controller is multiplied with a 

certain weight that is related to the bogie mass distribution. The simulation results show 

that the PID de-centralized controller is capable of stabilizing the EMS Maglev system. 
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(Case 1-a) 
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Figure 4.7. Currents in Electromagnets for De-centralized Control (Case 1-a) 

Case 2-a 

In this section, case 2-a is considered in which a lateral offset of 2mm is considered 

as initial condition and the Maglev system is released after 6 seconds. To have that, the 

effect of the lateral stiffness is neglected in the time interval from 0 to 6s. The simulation 

results for the ODU EMS Maglev vehicle with the de-centralized control is shown in 
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Figures 4.8, and 4.9. The air gap response is affected due to the interaction between 

heave and lateral dynamics. The lateral motion response starts at 2mm and starts to decay 

slowly by the end of levitation at t=45s when it still has a value of 0.45mm peak to peak 

[77]. The current in electromagnets are shown in Figure 4.10. 

0.012 

Figure 4.8. ODU Vehicle Air Gap Response with the De-centralized Control 

(Case 2-a) 
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Figure 4.9. ODU Vehicle Lateral Motion Response with the De-centralized Control 

(Case 2-a) 
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Figure 4.10. Currents in Electromagnets for De-centralized Control (Case 2-a) 

The simulation results of the ODU EMS Maglev system when de-centralized control is 

utilized similar to the 2-DOF EMS Maglev system results with slow lateral suppression 

as it is attained passively. 

Case 3-a 

In this section, case 3-a, in which normal levitation for the ODU EMS Maglev 

system with combined de-centralized flux feedback control, is studied. The simulation 

results for the ODU EMS Maglev vehicle with that controller are shown in Figures 4.11-

4.13. 

For the simulation purposes and by the aid of MATLAB/SIMULINK, the magnetic 

field density measurements are generated and shown in Figure 4.13. The order of the 

magnetic field density measurements is 0.25-0.62T. 

The simulation results show that the combined de-centralized-flux feedback controller is 

capable of stabilizing the EMS Maglev system. 
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Figure 4.12. Currents in Electromagnets for De-centralized control (Case 3-a) 
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Figure 4.13. Magnetic Field Density Measurements for De-centralized control 

(Case 3-a) 

Case 4-a 

In this section, a comparison between the de-centralized and combined de-

centralized-flux feedback controllers is made when the ODU Maglev system is exposed 

to a sinusoidal signal for an interval of 20 seconds that simulates the condition of air gap 

variation. In Figure 4.14-4.18, the simulation results are shown. 
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(Case 4-a-2) 

! 1 
I I 
I i 
I+. _ L _ -

1 
:i% ; 

- - - 1"!r - [ - - -

V t 
» \ 1 

^ - T - - -

1 1 1 1 
i i i i 
i i i i 
X - i 1 L 
i i l 1 
1 ( 1 1  
t i l l  
X 1 4 U 
1 1 1 1 
I 1 1 1 
f i l l  

1 1 1 1 

1 i 1 I 

t i l l  
J .. J1 

I 

1 
........ 2 

- - 3 
4 

_ 5 
6 

1 " 1 

i 

i 

T *  * "  

1 
i 
i 

A" 

• — 

i 

* 

* 1  / *  

4 L 

T i 1 * 1 IV 
1 1 1 I I / 

1 1 1 1 1 1 j 

i i 
I1 ' 

T i i i i i | 
i i i i i i | 

iU I ,1 I I I t I l__l 
0 5 10 15 20 25 30 35 40 45 50 

Figure 4.17. Currents in Electromagnets for De-centralized Control (Case 4-a-2) 
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Figure 4.18. Magnetic Field Density Measurements for De-centralized control 

(Case 4-a-2) 

Comparing the air gap responses in Figures 4.14, and 4.16, it is clear that the combined 

de-centralized-flux feedback controller has a smoother response and more resistance to 

air gap variations than the de-centralized one, or so it appears in the electromagnets 

currents as in Figures 4.15, and 4.17. The combined de-centralized flux feedback 

controller enhances the air gap response, resists the air gap variations and enhances the 

response with 45.45% than the de-centralized one. 

Case 5 

In this section, the simulation and experimental results for the ODU Maglev System 

when four magnets (1,2,5, and 6) are used is shown. The experimental results are 

according to description introduced in section 4.6.3. Figures 4.19, and 4.20 are for 

simulation results while Figures 4.21, and 4.22 are for the experimental results. 
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Figure 4.20. Currents in Electromagnets for De-centralized Control (Case 5) 
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Figure 4.21. Actual ODU Vehicle Air Gap Response with the De-centralized Control 

(Case 5) 

Figure 4.22. Actual Currents in Electromagnets for De-centralized Control (Case 5) 

The experimental results in Figures 4.21, and 4.22 are pretty similar to the simulation 

results in Figure 4.19, and 4.20, which validate the de-centralized controller design for 

the Maglev system. 
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4.7 Centralized Controller Design 

4.7.1 Centralized Controller Scheme 

The centralized controller aims to control the bogie's degrees of freedom. The 

theory of centralized control enables one to control the system as a whole by measuring 

the local variables (air gaps and lateral displacements) and then converting them into the 

vehicle's modes using a transformation matrix. The vehicle's modes are controlled to 

provide the modal forces and torques. These modal forces and torques are transformed to 

local forces. The command currents are generated from the local forces and the measure 

gaps via a third transformation. 

A significant note on the centralized control is that n-actuators must be used to 

control n-modes or w-variables of interest. This means that the number of magnets used 

as inputs decides the number of modes to be controlled. The block diagram of the 

centralized controller is shown in Figure 4.23. 

E.M Vehicle 
Dynamics —•&-» PID 

Figure 4.23. Centralized Controller 
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Using simple geometric relationships, the transformation Ti is used to convert the local 

variables into the vehicle's modes and it depends on the geometry of vehicle: 

0=[7;]Z (4.26) 

where, 

0 are the vehicle's rigid and flexible modes, and Z=[zj z2 • • z„ yx y2 . • 

are the measured airgaps and lateral displacements. 

In Figure 4.24, a general sketch for the Maglev bogie on the guideway tracks with the six 

electromagnets distribution is shown. The three magnets 1, 3, and 5 are aligned with the 

magnets 2,4, and 6 by a distance U, around jc-axis, while the two magnets 1 and 2 are 

aligned with the magnets 5 and 6 with a distance Wv. Dv is the diagonal distance between 

magnets 1 and 6. 

The transformation that used to convert the local variables (electromagnet positions) into 

the bogie's modes is: 
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where, zvz2 ,  andZgare the electromagnets vertical positions. yltandy5  are the 

electromagnets lateral positions, z, y, <p ,0, and y/ are the bogie's rigid body modes 

heave, lateral, roll, pitch and yaw respectively. £ , is the twist mode (one flexible mode 
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is considered for control). W v ,L S / andD v  are the vehicle's width, length and diagonal, 

respectively. 

C Jt Y»W 

RtU 

Figure 4.24. Sketch of Bogie on Tracks with Six Electromagnets Distribution 

Since the inputs of the vehicle are the electromagnetic forces, the modal forces and 

torques (commands), which are the outputs of the centralized controller, need to be 

converted into the local magnetic forces via a transformation matrix Ty. 

T e =[T 2 ] f c  (4.28) 

where, 

7e is the vehicle's model forces and torques, and 

fc is the vehicle's local forces. 

Eq. (4.28) when re-written in detail: 
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1 1 1 1  1  1  / ,  

W, -Wv W„ -Wv Wv -W¥ f2 

4  4  o  0 - 4 - 4 / 3  

Wv -Wv 0 0 -Wv Wv f4 

- 1 1 - 2  2 - 1  1  fs 

Dy -D, 0  0  -D, Dv 
V 

f (4.29) 

Magnet staggering is important to achieve lateral and yaw control when combined 

magnet set is utilized. The staggering of magnets that is used for the Maglev test vehicle 

in order to achieve maximum lateral and yaw control is made by offsetting the magnets 

1,2,5, and 6 to be in the direction outwards the rail by an offset distance A. An offset 

distance of 2A for magnets 3, and 4 in the direction towards the rail as shown in Figure 

4.25. These staggering offsets form the last two rows in matrix T2 by which lateral and 

yaw control of the vehicle is performed. 

In order to verify that the suggested stagger distances will be suitable, the same method 

that is used in Chapter 2 is used. The intersection of ylz = 2 with the normalized 

A 

Figure 4.25. Test Bogie Magnets Distribution with Staggering 
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levitation force at 0.75, as in Figure 4.26, corresponds to a stagger distance of A £ 0.75 z 

for the ODU Maglev system according to the suggested magnets distributions in Figure 

4.25. In Figure 4.26 the levitation and lateral forces vs lateral displacement for various 

stagger separations are shown. 

^sjLevitatlqn Forced 
A/z«=0 
A/z=0.5 
A/z=0.75 
A/z=1 
A/z-1.25 

0.75 

Lateral Forces 

Figure 4.26. Levitation and Lateral Forces vs Lateral Displacement for Various Stagger 

Separations 

To find out the command currents fed to the amplifiers, the force nonlinear expression 

with respect to zu yj and Ic is linearized as: 

c'  ~  k  (4.30) 
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where constants k, , kv and k, are 
*• "« T» 

(4.33) 

where Zo, y<> and I0 are the nominal air gap, lateral displacement, and current of each 

magnet, respectively. The expression given in Eq.(4.30) can be written in a matrix form, 

as 

where ©c is the mode's command, and the controller's proportional, integral and 

derivative gains are Kp^ , K,^ , and KD^ , respectively. 

As already noted for the de-centralized controller in the previous section, any 

individual controller for the EMS Maglev system must have a positive feedback 

configuration in order to stabilize the system. It should be noted that the centralized 

controller will have some controllers that have positive feedback configurations while 

/ e=W,z„yy)  (4.34) 

whereT3 = diag([/q /Cj ... /J). 

The command model forces and torques are then 

(4.35) 
ee = &c-0 
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others will have negative feedback configurations. This depends on the specific mode 

that is under control. The vehicle's modes that are originated from the air gap 

measurements alone will need a controller with a positive feedback configuration to be 

stabilized (e.g. heave, roll, pitch, and flexible twist mode), otherwise it will need a 

controller with a negative feedback configuration (e.g. lateral and yaw modes). This note 

is deduced from the nature of inherent stability of the heave mode unlike the lateral mode 

which is stable [11-12]. 

There are some operational challenges for the centralized control technique when 

the EMS Maglev system possesses some flexible modes. The PD centralized control is 

not suitable to control some flexible modes as in [2], although the 2-DOF EMS Maglev 

system that was used in this work did not include the electrodynamics part of the system 

model. It should be noted that these controllers are not widely used. This may be due to 

their restrictions to Maglev systems with flexible structures as every mode that is under 

control needs an accurate transformation (measurements to modes), which is difficult to 

achieve especially if the EMS Maglev system of significant flexibility. 

4.7.2 Combined Centralized-Flux Feedback Control 

In this section, the combined centralized-flux feedback is considered. Eq. (4.25) is 

used is used to calculate the magnetic field density as described in section 4.6.2. 

In a similar manner, the linearization coefficients k<t>li, and k .̂, i=l,2,...,6 that are 

necessary for the flux feedback gain calculation are calculated from the steady state 

currents 1^, ,...., lH, and gaps z0i. Having suitable flux feedback gains 

calculated as in Chapter 2, the inner loops for the flux measurements are closed as shown 

in Figure 4.18. The output of the flux controller block I^, /Bj is fedback in the 
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inner loops as shown in Figure 4.4 to make the system marginally stable. The command 

currents to the amplifiers /C(, ICj/ are resulted by subtracting the output of the flux 

controller from the output of the transformation matrix [T3], I C O i ,  I c < h  l C O t  as shown in 

Figure 4.28. 

In order to have a complete controller design, the trial and error method is used to 

determine the gains of the PID controllers in the outer loops of the modes via 

MATLAB/SIMULINK simulation environment. It should be noted that the combined 

centralized flux feedback PID controllers' gains have different values than those used for 

the centralized control. 

In Figure 4.27, the block diagram of the combined centralized flux feedback control 

is shown. 

*9 
PID 

Flu 
Coatroi 

Figure 4.27. Combined Centralized-Flux Feedback Control 



135 

4.7.1 Simulation Results 

Case 1-b 

In this section, case 1-b in which normal levitation for the ODU EMS Maglev 

system with centralized control is studied. The simulation results for the ODU EMS 

Maglev vehicle with the centralized control for case 1-a are shown in Figures 4.28- 4.29. 
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Figure 4.28. ODU Vehicle Air Gap Response with the Centralized Control (Case 1-b) 
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Figure 4.29. Currents in Electromagnets for Centralized Control (Case 1-b) 
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With the centralized control, the system is controlled as a whole, and the Maglev bogie 

mass distribution is not considered while controllers design as in case of the de­

centralized controller. 

The simulation results show that the PID centralized controller is capable of stabilizing 

the EMS Maglev system. 

Case 2-b 

In this section, case 2-b is considered similar to case 2-a. The simulation results for 

the ODU EMS Maglev vehicle with the centralized control is shown in Figures 4.30, and 

4.31. The current in electromagnets are shown in Figure 4.32. 

The airgap response affected more than in case of centralized control due to the 

interaction between heave and lateral dynamics and due to the calculation of the magnet 

forces as in [T3] based on the gap and lateral displacements measurements. The lateral 

motion response starts at 2mm and starts to decay faster than for the de-centralized 

control till the end of levitation at t=45s when it has a value of 0.022mm peak to peak, 

which represents approximately 99% damping of the maximum value of the lateral 

displacement [77]. The lateral motion decays to 0.05mm peak to peak at t=25s and due to 

that the airgap response appears smooth unlike the de-centralized control. 



137 

0.02 r 

0.019 

0.018 

0.017 

0.016 Cmd 

 ̂0.015 

® 0.014 

0.013 

0.012 

0.011 

i-0.01 

5 15 35 45 0 10 20 25 30 40 50 

Figure 4.30. ODU Vehicle Air Gap Response with the Centralized Control (Case 2-b) 

Figure 4.31. ODU Vehicle Lateral Motion Response with the Centralized Control 

(Case 2-b) 
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Figure 4.32. Currents in Electromagnets for Centralized Control (Case 2-b) 

Case 3-b 

In this section, case 3-b, in which normal levitation for the ODU EMS Maglev 

system with combined centralized flux feedback control, is studied. The simulation 

results for the ODU EMS Maglev vehicle with that controller are shown in Figures 4.33-

4.35. For the simulation purposes and by the aid of MATLAB/SIMULINK, the magnetic 

field density measurements are generated as shown in Figure 4.35, with the order of 0.37-

0.5T. 

The simulation results show that the combined centralized-flux feedback controller is 

capable of stabilizing the EMS Maglev system. The results for the air gap measurements 

are similar to those of the combined de-centralized-flux feedback control. 

J 
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Figure 4.33. ODU Vehicle Air Gap Response with the Centralized Control (Case 3-b) 
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Figure 4.34. Currents in Electromagnets for Centralized Control (Case 3-b) 
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Figure 4.35. Magnetic Field Densities Measurements for Centralized Control 

(Case 3-b) 

Case4-b 

In this section, a comparison between the centralized and combined centralized-flux 

feedback controllers is made using the same conditions as in case 4-a. The simulation 

results for the ODU EMS Maglev vehicle with those controllers are shown in Figures 

4.36- 4.40. 
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Figure 4.36. ODU Vehicle Air Gap Response with the Centralized Control 

(Case 4-b-l) 

Figure 4.37. ODU Vehicle Air Gap Response with the Centralized Control 

(Case 4-b-l) 
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Figure 4.38. ODU Vehicle Air Gap Response with the Centralized Control 

(Case 4-b-2) 
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Figure 4.39. Currents in Electromagnets for Centralized Control (Case 4-b-2) 
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Figure 4.40. Magnetic Field Density Measurements for Centralized control 

(Case 4-b-2) 

Comparing the air gap responses in Figures 4.36, and 4.38, the combined centralized-flux 

feedback controller does smooth the air gap response and is more resistant to gap 

variation than the centralized one. The variations in the electromagnets currents for the 

combined controller in Figure 4.39 are less than of the centralized controller in Figure 

4.37. The combined centralized- flux feedback controller enhances the air gap response, 

resists the air gap variations and enhances the response with 48.5% than the centralized 

one. 

4.8 Conclusions 

In this chapter, the complete model for the ODU EMS Maglev bogie is presented. 

The de-centralized and centralized controllers for that system are introduced. Also the 

combined de-centralized-flux feedback and centralized-flux feedback are presented. 

The experimental results of the ODU Maglev system with the de-centralized control 

are presented. The same control scheme for Maglev simulation system is used but with 
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four magnets instead of six magnets. The experimental results match the simulation 

results, and hence validate the design of the de-centralized controller. In the centralized 

controller, and according to the suggested magnets distribution, the stagger distance is 

designed to be A=0.75z from forces' curves. 

The simulation results for the ODU Maglev system have shown that the centralized 

controller is better than the de-centralized one when the system is exposed to a lateral 

disturbing force such as wind gusts and coincides with the results shown in Chapter 3 for 

the 2-DOF EMS Maglev system. 

It can be easily proven that in the centralized control, the roll, and pitch modes can 

be controlled (if necessary) by defining a pre-set value for these modes unlike the de­

centralized control that has only pre-set value for the air gaps only with a pre-set value of 

zero to roll and pitch modes. 

Since the Maglev system is controlled as a whole in the centralized control, the bogie 

mass distribution is not considered in controller design as already done with the de­

centralized controller. 

It should be noted that in the centralized control it is not possible to receive an 

accurate transformation from local measurements to modes and the number of controlled 

modes should be less than or equal to the number of magnets used. This could be a 

problem if the Maglev system has a significant flexibility as it is not possible to control 

all modes. 

Flux feedback control in combination with the de-centralized and centralized 

control for the system is described in detail. The PID controller gains used for the outer 

loops in the de-centralized-flux feedback and centralized-flux feedback controllers are 
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not the same as for the de-centralized and centralized controllers. The results for the air 

gap measurements of the combined de-centralized-flux feedback control are similar to 

those of the combined centralized-flux feedback control. This may be due to the nature of 

the marginal stable dynamics of the EMS Maglev system that results due to the feedback 

of the flux measurements. 

Both de-centralized-flux feedback and centralized-flux feedback controllers do enhance 

the air gap response in comparison to die de-centralized and centralized controllers. Hie 

flux feedback control when used in combination with de-centralized or centralized 

controllers does improve the air gap response and more resistant and robust to the air gap 

variations. 

The significance of flux feedback appears for the Maglev systems that suffer from 

the problem of frequent air gap variations. It should be noted that having flux sensors 

added to the Maglev system is cost wise, which means that we should not decide to use 

flux feedback control unless it is required. 
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CHAPTER 5 

DE-CENTRALIZED AND CENTRALIZED CONTROL FOR ODU TEST BOGIE 

WHEN INTERACTING WITH GIRDER 

5.1 Introduction 

When a Maglev vehicle moves on a flexible girder, an inevitable interaction occurs. 

The significance of that was highlighted by issues discovered in 2002 when American 

Maglev Inc. tested its Maglev vehicle on the ODU flexible girder. The Maglev onboard 

controller failed to obtain stable levitation partially due to interaction with structural 

flexibility. 

The objective of this chapter is to study the dynamic effect of a flexible girder on 

the Maglev system with the de-centralized or centralized controller schemes, and 

compare them for different vehicle's velocities based on the achieved performance and 

ride quality. In this chapter, the Maglev-girder interaction model is introduced. A 

generalized LPV model for the Maglev-girder system, 2-DOF Maglev-girder model, and 

pole-zero map with de-centralized and centralized control schemes are introduced. Then 

the MIMO root loci with the de-centralized and centralized control schemes are shown. A 

brief note on ride quality is also presented. The de-centralized and centralized control 

schemes with the ODU Maglev-girder system are introduced after applying controller 

gains' tuning using on LQR search algorithm. The simulation results are then discussed 

based on the performance and ride quality. Finally, the conclusions on the work 

presented in this chapter are presented. Figure 5.1 shows the ODU test vehicle (bogie), 

and Figure 5.2 shows the test vehicle being placed on the girder for testing. 
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Figure 5.1. ODU Maglev Test Vehicle (Bogie) 

Figure 5.2. ODU Maglev System on Girder 

5.2 Maglev-Girder Interaction 

5.2.1 Introduction 

In this section, the interaction between the vehicle and girder is considered in the 

presence of control action. The simulation scenario starts at an equilibrium condition 

while the required forces to lift the vehicle are equal to the weight of the vehicle. When 
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the vehicle moves over the girder, the generated vibration (w) of the girder changes the 

measured air gap (z) and the measured air gap rate (dzjdt). The controller then tries to 

keep the air gap (de-centralized) or the heave motion (centralized) at a constant value by 

changing the electromagnet current that consequently changes the forces acting over the 

girder. 

The full girder span has two parts: the rigid part which is over a column of length Ls 

and the flexible part which is the girder span of L (beam length) as shown in Figure 5.3. 

When the vehicle moves on the rigid portion, the vibration of the girder is zero. 

The ODU Maglev test vehicle has six magnets with magnetic levitation forces F,, 

where i = 1,2,..., 6. These magnets are symmetrically distributed around the x and y axes 

of the bogie. As shown in Figure 5.3, the six moving forces F,-, i =1,2,. ..,6 have the same 

velocity v. Thus, these forces are separated from each other by a constant distance. In the 

simulation, the controller generates magnetic forces idealized as point forces F„ 

/=1,2,...,6. These forces are uniformly distributed over the magnet length Lm. The model 

L 

Figure 5.3. Schematic Diagram of Bogie-Girder Interaction 



149 

of the guideway computes the girder displacement w;, i = 1,2,..,6 at the middle of each 

magnet. Each girder displacement is then added to the equivalent gap sensor Zi, i = 1,2,..,6 

and passed to the control feedback loop. The next Sections discuss the mathematical 

models of the girder, test vehicle, electrodynamics, and control schemes for simulation 

purposes. 

5.2.2 Girder Model 

The girder is a pre-stressed concrete structure. The individual girder spans are 

supported by concrete pillars at both ends. The track has a welded steel structure with 

aluminum cover plates as shown in Figure 5.4. 

Figure 5.4. ODU Track 

The girder spans have different lengths. However, for uniformity in the simulation, we 

choose to have constant length for all spans. The flexible part of the span is considered 
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as a simply supported beam with a length L and a flexural rigidity El. The equation of 

motion is [13]: 

Consider the boundary conditions as 

w(0,f) = 0 w(L,t) = 0 

/_ \ n d2W/T \ n @.2) 
_(o,,)=o ^M=0 

and the initial conditions as 

w(x,0)=0 ^(x,0)=0 (5.3) 
at 

The eigenvalue problem assumes the solution is a product of separate functions of t and x 

as 

0=2 .̂, (*¥•(*) (5-4) 

rt*l 

where q„ is the beam normal co-ordinate of the n* mode. By substitution in Eq. (5.1), in 

the case of free motion 0B is given by 

(x)=V2Lsin j n = lX- (5.5) 

The /Ith mode qn is the solution of the following equation: 

"b M 

where 
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3,(/)= |<l>n{x)FAx,t)dx 
o 

fnVl/IF . c 
m

" I Ll Jvm» 811 

Q)n and gn are the natural frequency of the n* mode, and the corresponding modal 

damping ratio. 

mb: is the beam mass per unit length. 

The first critical velocity is vc = x/LijEI/mb . When v = vc, the crossing frequency 

(Vc/L) is equal to twice the natural frequency of the fundamental mode//. Using Eqs. (5.4-

5.6), the beam displacement can be calculated at any location and at any time. Note, the 

model in Eqs. (5.4-5.6), considers that the force Ffa,t) is uniformly distributed over the 

magnet length Lm. 

A finite element (FE) model of a girder span was built. Modal analysis was 

conducted to obtain the natural frequencies (eigenvalues) and mode shapes 

(eigenvectors). In addition to this, experimental testing was performed to validate these 

models. The frequency response (Bode) plots obtained through experimental testing, the 

FE model, and the analytical model (in Eqs. (5.4-5.6)) are compared in Figure 4.2 in 

Chapter 4. It can be seen that all three graphs match up well. This indicates that the girder 

model has been validated, and can be used for simulation case studies. Since the 

analytical model is computationally inexpensive, this model is used in the simulation. 

5.2.3 Vehicle Dynamics 

The input of the test vehicle's dynamic model is the electromagnetic forces F„ i = 

1,2,..., 6 and the output are the degrees of freedom that the mathematical model accounts 

for. The actual model in theory has infinite degrees of freedom, which can be 
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approximated by finite degrees of freedom, omitting higher frequency modes. In this 

section, the test vehicle is modeled to have six rigid body modes (surge, heave, lateral, 

roll, pitch and yaw) and a finite number of flexible modes. The test vehicle's translational 

equations of motion are 

Fx =ms(x + h<ay - ya>z + gx) 

Fy =m,(y + xd)z -h6>x + gy) (5.7) 

Fz = ms(h + y(Ox -xeoy + gz) 

In Eq. (5.7), m, is the mass of the test vehicle and x, y, and h represent the three rigid 

body translation vectors (surge, lateral and heave). gx, gy, and gz are the components of 

the gravitational acceleration on the x, y, and z axes respectively, co* coy, and coz are the 

three rigid body rotational velocities, which are related to the Euler angle rates by 

1 0 -se 

tOy = 0 c9 SyCe e (5.8) 

J°z. 0 - S e  c<pce ¥ 

where I is the roll angle, 6 is the pitch angle, and y is the yaw angle. 

The Euler angles are used herein to relate the gap displacements n, i =1,2, ...,6 to the 

rigid body translational displacements (jc, y, and h) in addition to relate the magnet force 

F j ,  i = l , 2 , 3 , . . . , 6  t o  t h e  b o d y  f o r c e s  { F x ,  F y ,  a n d  F z )  a n d  m o m e n t s  ( M x ,  M y ,  a n d T h e  

rotational equations of motion of the bogie are 

M = [/]— + d)X ([/]a>) (5.9) 
dt 

where, 
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X" 0>x' - u  
M  =  M y  

,<*>= II 

X. a" 
1 1 

1 "X
I 

a -1* 

In Eq.(5.9), [I] is the inertia matrix. 

The vehicle flexible modes are modeled in a similar manner as in Chapter 4: 

qVj + D,qVj + AqVJ = *PrF , j = l,...k (5.10) 

where qv represents the modal co-ordinates, or modal vectors. The matrix is 

f ' - k  k ••• <5H) 

where ^ are the z-columns of the mode shape matrix corresponding to the Ith actuator. 

5.2.4 Electrodynamics 

The idea behind the levitation system is the instantaneous generation of an attractive 

force between an electromagnetic and ferromagnetic plate. The inclusion of the levitation 

force and its dynamics is important to simulate the real Maglev-girder interaction. In 

references [21-22], [24-31], there is no explicit definition of the Maglev levitation forces 

in terms of the electromagnet's electrodynamics. The levitation system model is found in 

reference [46] and it is almost the same as presented in Chapter 4. For the electromagnet 

shown in Figure 2.3, the final current loop is: 

dl Ka , v RI Idz 

dr^zr n h.izfzdt 
(5.12) 

The inner feedback loop in Eq. (5.12) provides an accurate current hold but it does not 

guarantee to provide a gap hold. 
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5.2.5 Maglev-Girder Interaction Parameter Varying Model 

The Maglev-girder interaction parameter varying model is derived from the 

nonlinear equations of the vehicle and girder sub-models. These sub-models are 

connected to insure the dynamical interaction between the vehicle and girder. 

In this section, the LPV model of the Maglev-girder interaction system is presented. 

This model is decomposed into the sub-model of the test-vehicle in Eqs. (5.7-5.10) with 

the electrodynamics sub-model in Eq.(5.12), and the girder's vibration sub-model in Eqs. 

(5.4-5.6). The nonlinear state space model of the EMS Maglev vehicle is 

The vector xe represents the states of the rigid test vehicle modes, the vector xqy 

represents the test vehicle flexible modes, and the vector xj represents the states of the 

electrodynamics. The input to this sub-model is the command currents lCj and the 

outputs are the gaps z, and magnetic levitation forces Fz . 

The nonlinear expressions from fj to fa can be found from Eqs. (5.7) and (5.9). These 

expressions are given in [78]. The linearized expression of the electrodynamics (Eq. 

5.2.5.1 A Generalized Maglev-Girder LPV Model 

fk+n+n\ *+i+12 

(5.13) 

where 

•, ••• 'J 

(5.12)) is 



155 

fi+j+l2~ (5.14) 

where a=^A+^ and fi = where i = {1,2, 
K K 

The linearized levitation forces expression is 

Fz, = ~kzZi + ki!i (5.15) 

where kz, and kt are the air gap and current linearization coefficients as described in 

Chapter 2. 

The girder's vibration sub-model is 

x = f{x,u,t)=\f, ... fmJ ,x = [xq] (5.16) 

where xq = \qx qx ••• qm qm J1", and the vector xq represents the states of the girder's 

vibration. The girder vibration equations are 

ft = ?/ 

f!+i = —19/ — +• 
V2k+fJ.. 

sin 
r nxx ^ 

v Lb j u 
+ *2 , '' sin —-

mbLb 

'*0 
mbLb 

(5.17) 

where x\, X2, and xt are the locations of magnetic levitation forces on girder. 

The ODU Maglev vehicle employs six electromagnets; hence, three locations of the 

magnetic levitation forces are considered. These locations can be combined in one 

variable, which is the location of the test-vehicle's center of gravity (x2= xcg, x\ - xc%-LJ2, 

and JC3 = jCcg+Ly/2). The value Xcg changes periodically with time from 0 to L with a 

velocity v. 
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The inputs to the girder's vibration sub-model are the magnetic levitation forces Fz and 

the locations of the magnetic levitation forces on girder xi, and the outputs are the girder 

vibrations wi that correspond to theses forces and their locations. 

The modeling of the vehicle-girder system involves the connection of these sub­

models as shown in Figure 5.5 to have the overall system input as the command currents 

I C j  a n d  t h e  o u t p u t s  a r e  t h e  m e a s u r e d  g a p s  z m j .  

Magiev Vehicle 
Sub-model 

Girder Vibration 
Sub-model 

X I 

Figure 5.5. Vehicle-Girder Interaction Generalized Model 

In order to find the linearized state space matrices, some manipulations must be 

considered in which the interconnection between sub-models should be carefully handled 

[79]. If jtcg is considered as the varying parameter of the system, the equivalent LPV of 

the system in Eqs. (5.13-14) and (5.17) is 

x  =  Ax  +  B(p)x  ,  p  =x  ( t )  
r, s <518> y  =  C(p)x  

where 
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A = ' A ObjXBJ , B = ' " 

B2Cn *2 . XJH 
• C(p) — [Cn C22] 

^4,, fi,, C,, are the state space representation of the Maglev vehicle sub-model, 

C,= C„ 
pn j 

, where C„ is the output matrix of the first set of Maglev vehicle sub-model 

outputs (gaps), andC22 is the output matrix of the second set of Maglev vehicle sub­

model outputs (magnetic levitation forces). 

A^,B2,C2, are the state space representation of the girder vibration sub-model, 

«,=/!,+ n2 is the number of the overall system states, n, is the Maglev vehicle sub­

model number of states,  is  the girder vibration sub-model number of states and mis 

the number of the overall system inputs. 

The system in Eq. (5.18) has a large number of states because of the girder 

flexibility in addition to the electrodynamics and rigid body modes of the test vehicle. 

The large number of states makes it difficult to draw any conclusion from the problem. 

In order to simplify the analysis of the influence of the variation on the system dynamics, 

a simplified 2-DOF model is considered next. In the simulation section, the analysis will 

be numerically applied to the overall system. 

5.2.5.2 A 2-DOF Maglev-Girder Model 

A 2-DOF rigid Maglev-girder system is used to understand the variation of the 

system dynamics with change in the test vehicle's position on the girder. Figure 5.6 

shows 2-DOF Maglev Vehicle on a Flexible Girder. This simplified model accounts for 

the heave h and pitch B modes of the rigid body in addition to the first vibration mode of 
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the girder q\. The vehicle is assumed to be levitated by two point forces F\ and Ft 

separated from each other by a distance Ly and moving with a velocity (v). 

L 

t* 
"•f— 

Pf v —rd 
\ Flexible girder 

Figure 5.6. 2-DOF Maglev Vehicle on a Flexible Girder 

The relation between the measured gaps z\ and zi and the test-vehicle heave h and pitch 6 

is 

Z\ = h-—-sin(0) 
2 

z =h+—sin(0) 
(5.19) 

The equivalent girder's vibrations at zi and zi are w{, and vv2 respectively. Using Eigen 

theory, these vibrations are 

w i ~ *>/2~i?, L t sin 
r nx, x 

\ ^ b  j  
,i = 1,2 (5.20) 

where q is the normal co-ordinate of the girder's first mode given in Eq. (5.3). The 

nonlinear state space model of this simplified system is 
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Maglev Vehicle Equations: 

/,=* 

/3 = * 

Girder Vibration Equations: 

fi=41 

/ 8 =-^ i-2^ 

/2 = -( î + F2)fmv 

fM-Fx + FjhUJ, 
f6=-al2 + filc2 

• ̂
F
\ • ?.+—jfsin 

mkLb 

The state vector is 

xT = [h h 6 0 i, i2 qx qx f 

The LPV model in Eqs. (5.21) and (5.22) is 

x{t) = Ax(t) + Bu(t) 

y(t) = C(p)x(t) 

where 

A = 

JlF, . (jdc. ^ 

k J mbtl 
-sin 

v "b y 

0 1 0 0 0 0 
2k, 
IRy 0 0 0 ±L 

f f l y  
zk 
"K 

0 0 0 1 0 0 

0 0 2 kfi 
2 J, 0 kjL, 

2 J, 
-Mv 

2 J y  
0 0 0 0 -a 0 

0 0 0 0 0 -a 

0 0 0 0 0 0 
c+ 

»»»4 0 ^«v.- 0 *>1} Sl 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

•2 £a\ 

B = 

and 

0  0  0  0  ̂ 0 0 0  
0 0 0 0 0 / 0 0  0  

C = 1 0 - 4 / 2  0  0  0  - V 2 V 1  0  
1 0 4/2 0 0 0 -V2V2 0 

si=sinfe") s2 = sin(fr) 
S = Si + s2 

it 
J,-J2 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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In the case that xi=x2 = 0, the system characteristic equation can be easily found as: 

{s+af(s2 -a? \s1 + aif)=0 (5.25) 

[2k L 12k 
where, a, = /—l- and (o, = are the natural frequencies of the translation and 

V m„ 2 V J, 

rotation motions. Although the last row of the A matrix involves 5+,5~,51,and s2, they 

do not affect the system dynamics. 

S3 Maglev-Girder Interaction System Pole-zero Map with Control Schemes 

5.3.1 Pole-zero Map of De-centralized Control with a 2-DOF Maglev-

Girder System 

The de-centralized open loop scheme has inputs as command currents to the 

electromagnet's amplifiers, and outputs as measured gaps as shown in Figure 5.7. The 

pole-zero map of the de-centralized open loop scheme is considered at positions jc = 0 to x 

= 1/2. 

As shown in Figure 5.7, when x = 0, the poles can be easily interpreted as in Eq.(5.22), 

two stable poles of the electrodynamics far on the left, two stable poles of translational 

and rotational motion, two unstable poles of translational and rotational motion, two 

poles on the imaginary axis for the girder vibration and two transmission zeros that are 

coinciding with the girder vibration poles. This means that when x = 0, there is no 

interaction between vehicle and girder. When the vehicle travels on the girder having 

positions (xi, X2), the transmission zeros start to move in the direction to the origin on the 

imaginary axis, other poles stay at the same location (see Figure 5.7). 
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Figure 5.7. A Generic Pole-Zero Map of De-centralized Scheme 

5.3.2 Pole-zero Map of Centralized Control with a 2-DOF Maglev-Girder 

System 

The state space system on Eq. (5.23) is for the de-centralized scheme, and the state 

space system for the centralized scheme (Acen, Bcau Cctn ,D) is formed after including the 

transformation matrices as follows: 

^A+BHC (5.26) 

where 

H = 
k :  

K o 
0  k  

z _ 

B,„=B[7;]. [7,1= 
1/2 1/2 

1 -1 
ctra=[r,]c,[r1]= 1/2 1/2 

-1/4,  1/^ 
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1 0 0 0 0 0 0 
2 

Figure 5.8 shows the generic open loop pole-zero map of the centralized controller. There 

is some difference between the centralized and decentralized pole zero maps. The 

transformation matrices used to convert from gaps to modes and from modal forces and 

torques to magnet forces are changing the open loop dynamics, as shown in Eq. (5.26). 

So the unstable heave and pitch poles are relatively distant from each other than the 

stable ones as shown in figure 5.8. One of the electrodynamics poles (far on the left) is 

moving to left. The girder poles moves up a little bit as x = L12. The transmission zeros 

on the jco move down as x = 112. 

A  A  1  A A A  v2Lj 

j  
i 

m 
\ 

— « 
„ L x  =  0 t o —  \  

' r  

Figure 5.8. A Generic Pole-Zero Map of Centralized Scheme 
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The locations of the poles change periodically with time T = L/v that the vehicle spend on 

one span. The vehicle's velocity affects the rate of change of the girder pole movement; 

on the other hand, it affects their movements more or less strongly depending on its value 

hence, this in fact affects the girder vibration shape. 

5.4 MIMO Root Loci with Control Schemes 

In this section, the technique that is utilized for plotting the generalized Multi Input 

Multi Output root loci is recalled. This technique was illustrated in Chapter 2 section 2.5. 

5.4.1 MIMO Root Loci of De-centralized Control with a 2-DOF Maglev-

Girder System 

In order to plot the MIMO root loci for the 2-DOF Maglev-girder system with each 

controller, an important check should be performed, since different root loci can be 

achieved when the controller gains or scheme are changed. Each controller scheme 

should have a similar response when exposed to a step input. This will ensure that the de­

centralized controller gains have a similar effect on the system as those of the centralized 

controller. 

A Single Input Single Output (SISO) Maglev-girder system can be found from the 

generalized equation of motion in Eqs. (S.8-S.12) and the linearized SISO model from the 

generalized equations as in Eq. (5.18). A SISO Maglev-girder system has one force that 

is acting on a flexible girder with one vibration mode. This SISO system will possess five 

states that also vary with the vehicle's position on girder. 

The PD controller for this system can be designed using the SISO-tool command in 

MATLAB, and the root locus is shown in Figure 5.9. The controller gains are then 

selected in order to yield stable closed loop poles. The selected controller gain based on 
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the SISO root locus is then used as an initial guess for the MIMO controller as shown 

next. 

Root 
20 

10 

.fi 

10 

-16 

.20 — -400 •150 -100 -50 0 -350 

Figure 5.9. A SISO Root Locus 

The MIMO root loci analysis for the 2-DOF Maglev-girder system is presented 

when de-centralized and centralized controllers are utilized. The idea is based on placing 

a scalar gain k with the controllers and varying it from zero to infinity in order to draw 

the root loci of the system as whole by the aid of MATLAB. The root loci of the system 

with the PD de-centralized control are shown in Figure 5.10. The PD de-centralized 

control does stabilize the system at different vehicle position locations (x=0, x=L/4, and 

x=L/2).Thc closed loop poles are marked by small squares that appear in the left hand 

plane. 

When x=0, the interaction is not considered, and the girder poles coincide with the 

transmission zeros. Increasing the gain k leads to move the unstable translational and 
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rotational poles of the test-vehicle toward the left hand plane to become stable. On the 

other hand, increasing the gain k moves the electrodynamics poles toward the right side. 

At certain value of k =kjd, the stable pole representing the translational motion along 

with one of the electrodynamics poles leaves the real axis from the same location 

(breakaway point). Thus, one track is heading up and the other track is heading down to 

infinity asymmetrically with an angle 90°. While the stable pole of the rotational motion 

leaves the real line with the other electrodynamics poles at k =ku where the value kid is 

less than the value k2(t- The two asymptotic lines are located at a,i and 0,2 respectively on 

the right hand side of these breakaway points. The two unstable poles of the translational 

and rotational motions keep moving to the left side as k increases. When k tends to 

infinity, these two poles settle down in the left hand plane. 

ja Ja 
jc = G i I J ' x = — I i 1 

2 

i 
i 

fl 
- « m 

1 X? 

1 
r 

1 r 1 ' 

Figure 5.10. Root Loci of the PD De-centralized Control with 2-DOF Maglev-Girder 

System 
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When x=LI2 which is similar to x=LJA (x=3Z74), increasing the gain k leads to move the 

translational and rotational poles of the test vehicle toward the left side. Other 

translational and rotational poles behave similarly as for x=0, and increasing the value of 

the gain k moves the girder vibration poles toward the transmission zeros, which 

represents the location of the vibration poles at x =0. 

5.4.2 MIMO Root Loci of Centralized Control with a 2-DOF Maglev-

Girder System 

The root loci of the system with the PD centralized control are shown in Figure 5.11. 

The PD centralized control does stabilize the system at different vehicle position 

locations (x=0, x=U4, and x=L/2). Similar to the de-centralized control, when x=0, the 

interaction is not considered, the girder poles coincide with the transmission zeros. As the 

gain k increases, the unstable heave and pitch poles of the test vehicle move toward the 

left hand plane to become stable. The electrodynamics poles toward the right. At certain 

value of k =kjd, the stable pole presenting the pitch rotation along with one of the 

electrodynamics poles leave the real axis from the same location (breakaway point). 

Thus, one track is heading up and the other track is heading down to infinity 

asymmetrically with an angle 90°. While the stable pole of the heave motion leaves the 

real line with the other electrodynamics poles at k =k%& where the value kid is less than the 

value kid- The two asymptotic lines are located at a,i and a a respectively on the right 

hand side of these breakaway points. The two unstable poles of the heave and pitch keep 

moving to the left side as k increases. When k tends to infinity, these two poles settle 

down in the left hand plane. 
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The root loci when x=L/2 is similar to the other cases as x=UA (jc=3L/4). The same root 

loci behavior for the mechanical with the electrodynamics poles is received as for x=0, 

but the girder vibration poles move toward the transmission zeros, which represents the 

location of the vibration poles at x =0 as the gain k increases. 

JQ> 
x = 0 

I -•<7 -*H 

ja 
j i 

-•a 

Figure 5.11. Root Loci of the PD Centralized Control with 2-DOF Maglev-Girder System 

There are some notes to be drawn on the root loci of the de-centralized and centralized 

control: 

• The root loci for the de-centralized and centralized controller are made for a 

unified step response. 

• The root loci of the centralized control is different than of the de-centralized 

control as the open loop poles for both schemes are different as shown in figures 

5.7 and 5.8. 
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5.5 Ride Quality 

Ride quality is defined as the degree of human comfort offered by a moving vehicle 

[13.80]. A rigorous analysis for ride comfort is difficult as it can be determined by 

changes in motion in all directions, effected by internal (physiological) and external 

factors (environmental) as well as human perception of vibrational motion, which is 

highly subjective and difficult to measure accurately. 

Experimental studies in ergonomics have shown that acceleration is the primary 

quantity of vibration magnitude on which the human perception of vibrations depends on 

[80.81]: 

K  =  f ( a )  ( 5 2 ? )  

where K is a nondimensional perception measure and a is the absolute value of the 

acceleration in horizontal or vertical direction, respectively. Vibration measurements are 

conducted according to a coordinate system originating at point from which vibration is 

considered to enter human body [81]. In addition, the position of the human body (seated, 

standing, and recumbent) is of importance. Figure 5.12 shows the coordinate system used 

to measure whole-body human vibration, adopted from [82]. 

The human body is sensitive to vibration in the frequency order of 0.5-20Hz because, 

most body-organ resonances occur in this range. The significance of ride quality is in that 

it could lower the initial investment costs if a design is not highly conservative with ride 

quality, and the perception of a smooth ride is important to establish the potential of 

Maglev systems [80]. 

For Maglev systems, ride quality is ultimately determined by horizontal and vertical 

surface profile of the guideway and by the levitation and guidance systems. Some aspects 
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that define this profile are known as surface roughness, and the levels of tolerable whole-

body vibration [13]. 

A vehicle's velocity, acceleration, jerking, and other factors like noise, and temperature 

can also affect the ride quality. 

Foot 

Figure 5.12. Direction of Response to Vibration of a Seated, Standing and Recumbent 

Position(c) 

(c) ISO. This material is reproduced from ISO 2631-1:1997 with permission of the American National 
Standards Institute (ANSI) on behalf of the International Organization for Standardization (ISO). No part 
of this material may be copied or reproduced in any form, electronic retrieval system or otherwise or made 
available on the Internet, a public network, by satellite or otherwise without the prior written consent of 
ANSI. Copies of this standard may be purchased from ANSI, 25 West 43rd Street, New York, NY 
10036, (212) 642-4900. http://websiore.ansi.org" 

http://websiore.ansi.org


In practice, ride quality can be determined from the power spectrum plots for the 

vehicle's acceleration in the desired direction. These power spectrum plots to be 

implemented using the MATLAB Fast Fourier Transform (FFT) algorithm in which the 

single sided amplitude spectrum of the desired vehicle's acceleration are plotted [46]. 

5.6 De-centralized Control for ODU Maglev-Girder System 

5.6.1 Controller Scheme 

Figure S.13 shows the de-centralized controller with the girder dynamics. The 

Maglev-girder interaction is implemented by a parallel connection between the EMS 

Maglev system block and the girder dynamics block. 

pm EMS Maglev System 
with tlectrodyaanics 

Figure 5.13. De-centralized Control Scheme with Girder Interaction 

The magnet forces that are used for levitation are also input to the girder dynamics block, 

and the output of the girder dynamics block is the girder's vibration that is added with the 

airgap outputs from the EMS Maglev system block to have the measured actual airgaps. 

To have the effect of the vehicle's velocity on the overall system dynamics, the vehicle's 

velocity is also input to the girder dynamics block. 
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In the de-centralized control scheme, controllers are designed locally for each input-

output pair as co-located actuators and sensors. The control logic aims to maintain the 

magnetic gap to a pre-set value Zc• These controllers are 

7c. = KP.en + Kim fe*dt + Kd en , e = zc-Z (5.28) 

where n =1,2,.. .,6 is the number of electromagnets, Zc is the command air gap. 

5.6.2 Controller Gain Tuning using LQR Search Algorithm 

The LQR based gradient like search algorithm for MIMO PID controller gains is 

used to tune the controller gain [74]. To apply this algorithm, the system original state 

vector should include the integration of the states because PID controller is used and the 

corresponding vehicle sub-model state vector xd is: 

*J = k Zi fat ... Ze *6 JV' % % - % % h — h 

The generalized gain matrix for the de-centralized scheme is: 

Kdec = 

k„, kA, k„ 
pzt az\ «i 

0 0 

0 0 0 kpz kdz k. pz2 aZi «2 

0 0 0 

o 0&<6 

k„, k. ktr pit aZi tZt (5.29) 

The PID de-centralized controller gains are the same as have been chosen in the previous 

chapters for the ODU Maglev vehicle but the gains are tuned to ensure stable operation 

when the Maglev vehicle runs on a flexible girder. 

5.7 Centralized Control for ODU Maglev-Girder System 

5.7.1 Controller Scheme 

Figure 5.14 shows the centralized controller scheme for the vehicle-girder system, 

which is the same as in the previous section but after adding some necessary 
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transformation matrices to implement the centralized control. In the case of the 

centralized control, the local variables (air gaps) are measured and then converted into the 

test vehicle's rigid body modes (in this case heave, roll, and pitch) using a transformation 

matrix [Yi]. The vehicle's modes are controller to provide by the modal forces and 

torques. These modal forces and torques are transformed to local forces by [ly1. The 

command currents are generated from the local forces and the measured gaps via a 

transformation [T3] as shown in Figure 5.14. The expressions of these transformation 

matrices are given by the authors in [46]. 

These controllers are 

Fe, = KPieei + K,, je9.dt + Kde9i , e0 =®c -@i (5.30) 

where, F&j are the modal forces and torques command, i =1,2,...,6 is the number of 

modes, ec : is the mode command. 

0C, _ ̂  K, F. 
ra> kr fc] EMS Maglev System 

with efcctrodyaaaiics vt 1 1 JL. 
Girder Dyaania 

e, 
W 

Figure 5.14. Centralized Control Scheme with Girder Interaction 



173 

5.7.2 Controller Gain Tuning using LQR Search Algorithm 

Similarly, the algorithm that is used for MIMO PID controller gain tuning is 

incorporated. The LQR gradient like search algorithm, presented in section 3.5.1 and was 

found originally in [74] is used. Six states that representing the integration of the states 

to be added to the original state vector due to inclusion of the integrator term within the 

PID controller. Then the corresponding vehicle sub-model state vector Jtcis 

xT
c =\x x jxdt ... y/ iff tydt qVi qv> ... qVt ... /6] 

The generalized gain matrix Kcen for the centralized scheme is: 

k* kb 0 ••• 0 

0  0  k p y  ^  k i y  \  

: : •. 0 ** 
0 0 k k k 
U  V  . . .  .  K p y  H j y  « . ( y  J  (5 31) 

The PID centralized controller gains are the same as have been chosen in the previous 

chapters for the ODU Maglev vehicle but with the gains are tuned to ensure stable 

operation when the Maglev vehicle runs on a flexible girder. 

5.8 Simulation Results 

In this section, the simulation results for the ODU EMS Maglev system are 

presented. The Maglev system for both schemes including the vehicle and girder sub­

models has 28 states. The girder vibration modes that are considered in the simulation are 

five. For the de-centralized control scheme, the controlled states are six airgap 

measurements, their derivatives, and their integrals. In order to calculate the proper 

optimized gain matrix by the search algorithm for both control schemes, a unified model 

configuration should be established. For the centralized control scheme, the states used 

£ = 

p* 

0 

0 
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for control are the heave, the derivative of heave, the integral of heave, the pitch, the 

derivative of pitch, and the integral of pitch. Other states are not used for control because, 

the system controlled modes are heave and pitch. Two system configurations are assumed 

to have unified state space matrices A, B, and C for both schemes. In the first system 

configuration, the control inputs are the command currents /c, ,the outputs are the airgaps 

Zi, and the search algorithm will optimize the performance index J(lcuzd for both 

schemes to calculate the gain matrix. The resulting gain matrix is used directly with the 

de-centralized scheme, but for the centralized scheme, transformations should be applied 

to attain the proper gain matrix. In the other system configuration, the control inputs are 

the command currents /Cl, the outputs are the modes 9if and the search algorithm will 

optimize the performance index for both schemes to calculate the gain matrix. In 

order to use the optimized gain matrix for both schemes, the resulting gain matrix should 

be transformed by considering specific transformation matrices for each scheme 

individually. 

In order to achieve good results, the algorithm should be initialized properly, which 

is a bit challenging. The necessity of having the same J(K) for both de-centralized and 

centralized after n iterations is very difficult and requires changing the weights until 

receiving the required result. 

The simulation parameters include: ODU EMS Maglev bogie parameters like mass, 

moments of inertias, length, width, magnet parameters, girder parameters etc are as in [3]. 

Other simulation parameters, e.g. the initial conditions for simulation are zero except the 

initial airgap value which is 0.01m. The simulation is performed first on the centralized 
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controller on the Maglev system with the tuned gains at different velocities of 10,20, 30 

m/s. 

Two simulation scenarios are made: one is based on the first configuration that 

minimizes the performance index J(ICi,zd', and the other one of the second configuration 

minimizes the performance index J(Icil0i). 

In the first simulation scenario, the system configuration inputs are the command 

currents, and the outputs are the gaps; therefore, the minimization is performed on the 

performance index J(Jcuzd- Figures 5.15-19 show the first scenario results of the 

numerical simulation of both de-centralized and centralized controllers. In these figures, 

the time histories of the girder vibration w, bogie heave motion hb, bogie measured air 

gap Zm at the magnets 1-2 , bogie measured air gap Zm at the magnets 3-4 and bogie 

measured air gap zm at the magnets 5-6 are plotted. Note A**, denotes the case of the de­

centralized controller, while X°, denotes the case of the centralized controller and X = {w, 

hb,Zm}- The results presented are the steady state results after the vehicle has passed ten 

girders. In figures 5.14 and 5.16, the girder vibration and the bogie steady heave motion 

for both controllers are similar at low velocity. Increasing the bogie's velocity changes 

the girder vibration shape, hence the heave motion of the bogie is changed. In Figure 

5.16-5.18, the bogie steady measured gaps at magnets 1-2,3-4 and 5-6 for both 

controllers at different velocities for both configurations are shown. The variation in the 

measured gaps, when the centralized controller is employed, is greater than in case of the 

de-centralized controller. 
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Figure 5.15. Girder Steady Vibration at Magnets 3 and 4 (Configuration 1) 
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Figure 5.16. Bogie's Steady Heave Motion (Configuration 1) 
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Figure 5.17. Bogie's Steady Measured Gaps at Magnets 1 and 2 (Configuration 1) 

10.1 

10.08 

£• 10.06 

1 10.04 m 
10.02 

« 
g 9.98 

I 9.96 

9.94 

9.92 
0.4 0.6 

Normalized time 
0.8 0.2 

Figure 5.18. Bogie's Steady Measured Gaps at Magnets 3 and 4 (Configuration 1) 
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Figure 5.19. Bogie's Steady Measured gaps at Magnets 5 and 6 (Configuration 1) 

In the second simulation scenario, the system configuration inputs are the command 

currents and the outputs are the modes; therefore, the minimization is performed on the 

performance index J(ICi,Qi). Figures 5.20-5.24 show the second scenario results of the 

numerical simulation of both centralized and de-centralized controllers. In these figures, 

the time histories of the girder vibration w, bogie heave motion hb, bogie measured air 

gap Zm at the magnets 1-2, bogie measured air gap Zm at the magnets 3-4 and bogie 

measured air gap Zm at the magnets 5-6 are plotted. 

In figures 5.20 and 5.21, the girder vibration and the bogie steady heave motion for 

both controllers are similar at low velocity. Increasing the bogie's velocity changes the 

girder vibration shape, hence the heave motion of the bogie is changed. 
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Figure 5.20. Girder Steady Vibration at Magnets 3 and 4 (Configuration 2) 
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Figure 5.21. Bogie's Steady Heave Motion (Configuration 2) 

In Figure 5.20-5.22, the bogie steady measured gaps at magnets 1-2,3-4 and 5-6 for both 

controllers at different velocities for both configurations are shown. 
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Figure 5.22. Bogie's Steady Measured Gaps at Magnets 1 and 2 (Configuration 2) 
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Figure 5.23. Bogie's Steady Measured Gaps at Magnets 3 and 4 (Configuration 2) 
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Figure 5.24. Bogie's Steady Measured Gaps at Magnets 5 and 6 (Configuration 2) 

The ride quality analysis of both de-centralized and centralized controllers are performed 

based on the IS02631 International Standard for evaluating mechanical vibration and 

shock for human body exposure [81]. According to IS02631 International Standards for 

ride quality [81], the comfort reactions to vibrations for similar types of public transport 

are shown in Table 5.1. 

Table 5.1 Comfort Reactions to Vibrations 

Vibrations' Level Comfort Reactions 

Less than 0.315 m/s2 Comfortable 

From 0.315 m/s2 to 0.63 m/sz Little Uncomfortable 

From 0.5 m/s2 to 1 m/sz Fairly Uncomfortable 

From 0.8 m/s2 to 1.6 m/sz Uncomfortable 

From 1.25 m/s2 to 2.5 m/sz Very Uncomfortable 

Greater than 2 m/s2 Extremely Uncomfortable 
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This standard is often represented based on a table of frequency weightings for the 

vertical acceleration at different frequencies. Figures 5.25, and 5.26 show the Power 

Spectrum Diagram (PSD) of the heave acceleration versus frequency for both controllers 

at velocity v = 30m/s for each configuration. The power spectrum plots are implemented 

using the MATLAB Fast Fourier Transform (FFT) algorithm by plotting the single sided 

amplitude spectrum of the bogie's vertical acceleration. 

The maximum vertical acceleration for the first configuration that is observed in 

case of the centralized controller is at/= 3Hz and equals to 0.0497m/s2 while in the case 

of the de-centralized controller, the maximum vertical acceleration is 0.0447 m/s2 at the 

same frequency. While the maximum vertical acceleration for the second configuration 

that is observed in case of the centralized controller is at/= 3Hz and equals to 

0.0522m/s2, while in the case of the de-centralized controller, the maximum vertical 

acceleration is 0.0447 m/s2 at the same frequency. 

This could be due to the fact that the girder's first vibration mode is close to the heave 

frequency of the bogie. It is noted that for both de-centralized and centralized controllers, 

the requirement of having vertical accelerations below 0.315m/s2 is satisfied, which 

implies smooth ride quality. 

Based on comfort ride quality, it is noticed that the results received in the first scenario 

when the minimization is based on the command currents and airgaps J(ICi,Zi), are a little 

bit better than the other case. 
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5.9 Conclusions 

In this chapter, the dynamic effect of the de-centralized and centralized controllers 

with a magnetically levitated vehicle when interacting with the girder is studied. The 

generalized Maglev-girder interaction LPV model, then a simple 2-DOFs Maglev-girder 

interaction model and their open loop pole zero map with centralized and de-centralized 

schemes are introduced. The MIMO root loci of the de-centralized and centralized 

controllers with the 2-DOFs Maglev-girder system are shown. The de-centralized and 

centralized controllers stabilize the Maglev system when interacting with a girder if their 

gains are chosen properly. The interaction between the vehicle and girder depends on the 

vehicle's position. This interaction changes the location of the whole system transmission 

zeros. By increasing (decreasing) the operating vehicle's velocity, the rate of change of 

the transmission zeros movement increases (decreases) which affects the overall system 

dynamics and hence changing the girder vibration shape and the heave motion of the 

vehicle. 

A detailed simulation for the interaction between the vehicle and girder is also 

introduced. This simulation accounts for: vehicle dynamics, vehicle velocity, 

electromagnetic actuator dynamics, girder vibration, and controller schemes. A unified 

criterion for tuning of the PID controller gains for both schemes is established by 

utilizing a gradient like search algorithm that is based on an LQR technique. Two 

simulation scenarios are made; one is based on the first configuration that minimizes the 

performance index J(ICi,zd and the other one of the second configuration that minimizes 

the performance index J(ICi,0i). Based on the numerical simulation, increasing the 

operating vehicle's velocity changes the girder vibration shape and the heave motion of 
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the vehicle. When the de-centralized control is utilized, the variation in the measured 

gaps is a little bit better than utilizing the centralized control. Due to the fact, that the de­

centralized control is based on multiple individual controllers that minimize the error in 

the airgaps directly while the centralized control is designed to control the modes. The 

results received for the first configuration when the minimization is carried out on the 

performance index J(IChZi) are a little bit better than the other one as it provides with 

better ride quality. 

Both controller schemes (de-centralized and centralized) satisfy the IS02631 

standard. Thus, their maximum observed accelerations are much less than 0.315m /s2, 

which satisfy the standard, ride quality comfort-range. The heave acceleration for the 

centralized control is a bit more than the de-centralized control especially at low 

frequencies, but it will not affect the ride quality and its smoothness significantly as it is 

much lower than the maximum limit found in the standard. 

The comparison between the centralized and de-centralized controllers when 

equipped with EMS Maglev vehicle that interacts with a girder is complete. No 

significant difference is noticed between these two control schemes in their performance 

or ride quality, but the de-centralized control provides with a smoother ride quality in the 

heave direction. 
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CHAPTER* 

CONCLUSIONS AND RECOMMENDATIONS 

In this chapter, conclusions from this research work are presented. 

Recommendations for future research that may be conducted on the ODU EMS Maglev 

system as a continuation of this endeavor are also introduced. 

6.1 Conclusions 

In the culmination of this Ph.D. research, I achieved some significant notes and 

results were achieved on de-centralized and centralized controllers used for EMS Maglev 

systems levitation, guidance, and when interacting with flexible girders. The analysis 

made by MIMO root loci for the 2-DOF EMS Maglev system (that utilized an inverted 

U-rail) levitation and guidance when using U-inverted rails proved that the de-centralized 

controller has no effect on the lateral poles, while the centralized control affects the 

lateral poles effectively. This is due to the fact that with de-centralized control lateral 

motion control is attained passively while with centralized control, lateral motion control 

is achieved actively by staggering the magnets. The simulation results for the 2-DOF 

EMS Maglev system coincide with the MIMO root loci analysis and when the work is 

generalized for the ODU Maglev system the same results are found. Centralized control 

is show to provide better lateral control than the de-centralized control for both rigid and 

flexible cases. 

The experimental results of the ODU Maglev system with the de-centralized control are 

presented. The same control scheme for Maglev system simulation is used but with four 
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magnets instead of six magnets. The experimental results match the simulation results, 

and hence validate the design of the de-centralized controller. 

The simulation results for the ODU Maglev system have shown that the centralized 

controller is better than the de-centralized one when the system is exposed to a lateral 

disturbing force such as wind gusts. 

An important note on the centralized control is that it is not possible to achieve an 

accurate transformation from local measurements to modes and the number of controlled 

modes should be less than or equal to the number of magnets used. It could be a problem 

if the Maglev system has significant flexibility as it will not be possible to control all 

modes. 

The centralized control does stabilize the rigid EMS Maglev system once the heave 

motion (unstable) is stabilized as already proven with the 2-DOF rigid EMS Maglev 

system. 

Both de-centralized-flux feedback and centralized-flux feedback controllers do 

enhance the air gap response in comparison to the baseline de-centralized and centralized 

controllers. The flux feedback control when is in combination with de-centralized or 

centralized controllers does improve the air gap response and provides more resistance 

and robustness to air gap variations. 

The significance of flux feedback appears for the Maglev systems that suffer from the 

problem of frequent air gap variations. It should be noted that having flux sensors added 

to the Maglev system is costly which means that we should not decide using flux 

feedback control unless it is required. 
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A generalized LPV Maglev-girder interaction model is established. The Maglev-

girder interaction is depending on the vehicle's position on girder and the velocity 

changes the rate of the dynamics change of the overall system that changes the girder 

vibration shape. The change in the vehicle's position on girder moves the girder zeros on 

the jco axis up and down and hence affects the girder vibration shape. 

Both controller schemes (de-centralized and centralized) comply with the IS02631 

standard. Thus, their maximum observed accelerations are much less than 0.315m /s2, 

which satisfy the standard ride quality comfort-range. The heave acceleration for the 

centralized control is a little higher than the case of the de-centralized control, especially 

at low frequencies, but it will not significantly affect the ride quality and its smoothness 

as it is much lower than the maximum limit found in the standard. 

The conclusion is that the de-centralized and centralized control for EMS Maglev 

systems that interact with a flexible girder both provide similar ride quality, although the 

de-centralized control provides for less variation in the air gap measurements. 

Centralized control with flux feedback could be the best controller for the ODU 

Maglev system when operating on the girder in the future. The centralized control will 

guarantee the suppression of the undesired lateral displacements; hence it will provide 

smoother ride quality. Flux feedback will suppress the air gap variations due to the track 

discontinuities. 

6.2 Recommendations 

According to the results achieved from this research work, it is recommended to use 

centralized controller rather than the de-centralized ones for EMS Maglev systems that 
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utilize inverted U-rails. These controllers provide both levitation and lateral control to an 

EMS Maglev system rigid or flexible with co-located sensors and actuators properly. 

The stability of the centralized controllers are not guaranteed or investigated in 

detail, although a brief investigation that based on channels decoupling is introduced in 

this dissertation for a 2-DOF Maglev system. Further investigation is necessary especially 

when EMS Maglev system has significant flexibility. The effect of the flexibility on the 

EMS Maglev system stability and will the centralized controller cope with these effects is 

a big question. 

The robustness of the de-centralized and centralized controllers when applied on the EMS 

Maglev system (rigid and flexible) can also be investigated versus parameters change as 

weight, and electromagnets' dimensions. 

Ride quality for EMS Maglev systems that interact with girder is almost the same 

when de-centralized or centralized controllers are utilized if heave acceleration is 

considered. The girder model that is utilized in this dissertation considers the heave 

motion of the girder. 

The girder dynamics model could be extended to be 3-DOF that includes the heave, 

roll and lateral modes instead of including only the heave mode. This will allow to study 

the influence of the de-centralized and centralized controllers on the lateral motion and its 

impact on the ride quality and stability of the EMS Maglev system. Furthermore, the 

influence of the different disturbances (e.g. crosswind forces), weight distribution (e.g. 

empty vehicle, full loaded, bias left and right), and track irregularities on the dynamic 

response of the system can also be studied. 
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