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ABSTRACT

Reasoning systems which create classifications of structured objects face the problem of how 

object descriptions can be used to reflect their components as well as relations among these com

ponents. C urrent reasoning sysLcms on grapli theory do not adequately provide models to  discover 

complex relations among m athem atical concepts (eg: relations involving subgraphs) mainly due to 

the inability to solve this problem. This thesis presents an approach to construct a knowledge- 

bascd system, GC (Graph Classification), which overcomes this difficulty in performing autom ated 

reasoning in graph theory. We describe graph concepts based on an attribu te  called Linear Recur

sive Constructive,y (LRC) . LRC defines classes by an algebraic formula supported by background 

knowledge of graph types. We use subsumption checking on decomposed algebraic expressions of 

graph classes as a major proof method. The search is guided by case-split-bascd infcrcncing. Using 

the approach GC has generated proofs for many theorems such as ’’any two distinct cycles (closed 

paths) having a common edge c contain a cycle not traversing e” , ” if cycle C l contains edges c l, 

c2, and cycle C2 contains edges c2, c3, then there exists a cycle that contains el and c3” and ” thc 

union of a tree and a  path is a tree if they have only a single common vertex” .

The main contributions of this thesis arc:

1. Development of a classification-based knowledge representation and a reasoning approach for 

graph concepts, thus providing a  simple model for structured mathematical objects.

2. Development of an algebraic theory for simplifying and decomposing graph concepts.

3. Development of a  proof search and a  ease-splitting technique with the guidance of graph type 

knowledge.

4. Development of a proving mechanism tha t can generate constructive proofs by manipulating 

only simple linear formalization of theorems.
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CHAPTER 1

Introduction

Thi.s thesis is concerned with ;i ]>riuci])lc to accomplish automated reasoning on basic concepts 

of graph theory through using knowledge-based conceptual classification, a powerful artificial intel

ligence approach. In this dissertation the following topics arc addressed:

1- Representing and manipulating knowledge based on conceptual classification in terms of both 

an algebraic theory and a recursive procedural theory.

2. Mechanisms for determining relations among basic graph concepts using multiple non-resolution 

theorem proving methods.

11 Developing a model to be used in proving theorems of existence.

'I. Simulating human processes on constructive proofs.

5. Simulating human processes on casc-split-based reasoning.

(5. Modeling completeness and soundness of reasoning on graph concepts.

7. Modeling an autom ated reasoning system, GC (Graph Classification), based on the classifica

tion approach.

The main contributions of this thesis arc:
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1. Development of a classification-based knowledge representation and a  reasoning approach for 

graph concepts, thus providing a simple model for structured mathematical objects.

2. Development of an algebraic theory for simplifying and decomposing graph concepts.

3. Development of a proof search and a  case-splitting technique with the guidance of graph type 

knowledge.

4. Development of a proving mechanism th a t can generate constructive proofs by manipulating 

only simple linear formalization of theorems.

The motivation of this research stems from the following fact: Though some excellent systems 

are able to conquer certain types of reasoning problems in the fields where first order predicate 

calculus can be used as the major representation scheme, the current theorem proving techniques 

do not provide an efficient approach to prove existence. This is because they do not have general 

mechanisms to adequately support constructive proofs [Bui] [Ep]. Proving existence, however, plays 

a  very im portant role in many mathematical fields such as graph theory. This thesis identifies the 

fundamental needs to produce constructive proofs on existence and develops mechanisms to  provide 

the required capabilities.

The next two sections introduce the problems related to both theorem provers and knowledge- 

based reasoning systems. And then there follows an overview of the solutions to these problems 

with emphasis on formalization of knowledge and modeling of reasoning.

1.1. The Problems of Theorem Proving

Automated Theorem Proving (ATP) has been a major research endeavor in AI since the 1950’s. 

There are basically two distinct approaches for an ATP design. One is called the logic (or resolution) 

approach, the other is referred to as the human-oriented (or nonresolution [Bl]) approach.

One of the main features of the resolution approach is tha t the control heuristics are suggested
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based solely on theorem syntax. Therefore it has a relatively simple structure. However, the proving 

process of the approach can be extremely time consuming due to the combinational explosion in

volved in choosing clauses for applying the resolution rule. By the early 70’s most o f ATP researchers 

have believed th a t a  resolution type system could not go beyond proving simple theorems without 

extensive change in philosophy. Therefore the major interests in ATP research were turned to the 

human-oriented approach. The techniques emphasized in this new approach include the followings: 

(for detail see chapter 2)

•  Knowledge base

•  N atural deduction

• Reduction

•  Typing

•  Procedure

•  Examples

•  Models and counterexamples

• Analogy

• Learning

•  Algebraic simplification

• Man-machine interaction

This human-oriented approach has turned out to be more efficient in many aspects. The main 

reason seems to be tha t it simulates various kinds of human proving techniques for clever use 

of knowledge, thus avoiding many unnecessary searches. In the design of a powerful system, a 

combination of these two approaches is often used [Lol] [BL1] [Bui], Generally, a  human-oriented
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ATP uses more than one inference rule and the search heuristics employed are not solely syntax 

directed. As a  consequence, the structure  of the method is more complex.

Though progress has been made since non-resolution approaches were used [Nel] [Ne2] [Ne3] 

[BM1] [BT1], the main goal (the ability to  compete with human provers) is still far from being 

reached. It has been recognized recently th a t an intelligent reasoning system should not only stress 

general purpose heuristic search techniques (tha t are central concerns of a  non-resolution theorem 

prover), bu t also stress the need for the availability of expert knowledge in the system along with 

associated knowledge handling facilities [MJJ], Thus developing an approach which combines the

orem proving methodology with knowledge based reasoning techniques is the central theme of this 

dissertation.

1.2. The Problems in Knowledge-Based Reasoning

During the late 1970’s and early 80’s, knowledge-based autom ated reasoning was identified, invented 

and evolved. Automated reasoning systems are used in many research areas such as mathematics 

and circuit design. The main emphasis of knowledge-based reasoning depends more on intelligently 

using knowledge (or expert knowledge) than on using various deductive inference methods. Variety 

of programs are available and some significant systems are named below:

•  EMYC1N is used for chemical synthesis[Va],

• PRO SPECTO R for geology[Re],

•  MYCIN for medical diagnosis [Sh],

•  AURA for mathematical research, circuit design and circuit validation [Wo].

Even with much progress th a t has been made, many problems still exist. Wos [Wo] has said that: 

it is difficult to determine what problem need to be solved what available means are appreciable to 

a particular problem. Many questions on the representation of knowledge remain unanswered. The
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principal problem is how to properly deal with the interactions between representation, inference 

rule and strategy [Wo]. Researches focusing on the problem using conceptual classification have 

caused increasing interests in mathematics and various application fields.

One successful program in elementary mathematical discovery is Lenat’s AM [Le], which builds 

up complex classes of concepts from more primitive concepts in step by step fashion [CF2]. AM 

defines (in terms of frame) concepts of classes, investigates examples of classes, conjectures and 

discovers the relations among classes, and refines concepts about classes.

Many other works related to  conceptual classification in problem solving (see Clancey [Cl]), 

knowledge organization (see Ilanson [IIB]), and machine learning (see Michalsky [MS]) have shown 

th a t it is a very im portant approach to reduce search space, maximize inferencing ability and increase 

the chance of discovering and proving.

A recently published work applying this approach on discovering mathematical theorems in graph 

theory is Epstein’s G T [Ep]. GT semantically encodes the domain specific knowledge into conceptual 

definitions of classes. GT uses an algebraic formula (called p-generator) to model many benchmark 

graph properties. G T ’s discovery and proof are based on the ability of examining relations among 

mathematical concepts.

The main shortcoming of G T ’s approach is tha t no components for a class can be directly 

represented. This greatly restricts its proving ability, for instance, the relations involving subgraphs 

can not be explored by GT; but clearly, reasoning on subgraphs plays an im portant role in proving 

graph theory theorems. Another limitation of G T is tha t its formulation of a  concept has only 

a very loose connection to the previously built up concepts (described in a slot of the conceptual 

frame but not in algebraic formulas). To develop formulation th a t is able to  be manipulated on such 

connections, however, is one of the main features of human mathematical research. For example, 

formulation of the concept of cycle should directly relate to the concept of path.

In order to overcome the limitations and shortcomings discussed in the above two sections and 

to provide efficient reasoning models for mathematical objects such as graph theory, certain kind of
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changes in the philosophy of representing knowledge and manipulating concepts are necessary, 

following outlines such an endeavor done and a solution obtained by the thesis research.
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1.3. A Solution: The Approach of The Thesis

It has been recognized [SM] th a t for the creation of classifications of structured objects the de

scription of sucli objects must involve not only attributes of objects as a  whole but also attributes 

of object components and relationships among these components. In order to obtain a  knowledge 

representation scheme equipped with such a feature, the research has analyzed widely ranging tools 

from current techniques available [AE] and has resulted in a  combination of algebraic and procedu

ral representation methods for the knowledge in the domain of graph theory. An im portant graph 

a ttribu te  called Linear Recursive Constructivity (LRC) is identified, which can be stated as: graphs 

(the discussion is restricted to  simple and undirected graphs) with a given vertex set and a property 

can always be constructed by applying a specified recursive procedure on all sequences of these 

vertices (e.g. first generate all graphs for the vertex set, and then through property checking remove 

those of the generated graphs which do not have the property).

The value of LRC is determined by giving an algebraic formula implicitly associated with the 

background knowledge of graph types. The formula is called a  class, and has the form of <  S, 

T  > . It consists of three components: (1) S (called v-list), a list of vertices and unknowns (each 

unknown is a fixed but unknown list of vertices); (2) T  (a type), which is associated with a recursive 

procedure called T-procedure; (3) constraints, which may be embedded in the formula to provide 

further descriptions for certain vertices, unknowns, and the entile class. Graphs can be generated 

by running a T-procedure on input S. If a generated graph satisfies the corresponding constraints, 

i t  is said to have the value of attribute LRC given by the formula, thus the formula defines a graph 

class. One of the im portant tasks in building GC is to provide sufficient number of such procedures 

th a t construct the desired classes but do not generate too many unsatisfied candidates.

In this research the features of such conceptual classification have been fully studied and utilized 

to develop an effective mechanism to discover the relations between graph concepts. Relating to the 

class formula, an algebra called C-algebra has been developed, which is able to m anipulate a set
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of graphs thus can be used for simplifying and normalizing class expressions. The knowledge rep

resentation scheme includes both key mathematical concepts (types) descriptions and their subset 

descriptions (classes). A Complex graph concept (a class) can be transformed by runing the corre

sponding T-procedures into a  C-algebraic expression composed of more primitive concepts (classes 

having simpler types).

Based 011 the scheme an autom ated reasoning system called Graph Classification (GC) has been 

constructed (partially implemented). GC organizes its proof as an and /o r proof tree search using 

only linear operations of formulation. The system not only can manipulate widely ranging mathe

matical concepts (as factual input) but also can apply various effective methods in proving processes 

such as decomposition, subsumption, decision procedure and mathematical induction formulation.

Expansion the and /o r proof tree rooted with an original theorem generate subtheorems which 

have the same goal as th a t of the original theorem but each of which has a  simpler assertion, thus 

generally simplifying a constructive proof. Furthermore, an unproved subtheorem can always be 

regarded as a newly generated lemma and might be proved by some other system. A conversion 

between the class representation and the predicate logic representation has been formalized in the 

research, this provides the classification approach with the properties of theoretical completeness 

and soundness.

Normally, the proving processes in each node of the and /o r tree are leveled like those used in 

Boyer-Moorc theorem prover [BM].

The system uses an abstract representation (as a  component of a  class) for an unknown part 

of a graph concept. Its semantic meaning is provided by the background knowledge of graph type. 

The use of such an abstraction not only greatly reduces the search space in deduction process, but 

also provides well controlled case-splitting based reasoning through using various kinds of inference 

rules indexed by the types and unknowns during proof tree expansion. Choosing rules can be either 

exhaustive (if only a  few candidates exist) or with the guidance of effective heuristics including 

domain specific and non-domain specific knowledge.
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GC is a knowledge-intensive system. This kind of systems may involve some problem. One 

such problem is the inability to derive a  proof for lack of relevant knowledge. Another problem is 

excessive computational complexity[MKK]. Thus sufficient and well organized background knowl

edge is tremendously im portant. GC utilizes the knowledge of graph theory for algorithms in its 

proving process if applicable (for example, finding all cycles in a  graph containing no unknown). 

More general knowledge is initially built into the attributes corresponding to  frame slots of each key 

graph concept (type). The m ajor slots of a  graph type frame are shown below (the correctness of 

the knowledge is proved mathematically):

• A T-proccdure (Type procedure) associated with a  precedence for class recursive decomposi

tions of the type in a predefined order

•  Subsumption relation with other types

•  Indexes of inference rules to rewrite formulas with the type

• Indexes of axioms available to the type.

GC has shown its proving ability by having proved many theorems in text books of graph theory 

[11a] [Bo] [ST]. GC also has shown the ability of manipulating variety of graph types.

1.4. The Organization of The Thesis

Chapter 2 provides an overview of the related significant researches. A general survey of various 

approaches to the problem of effective proving and reasoning is given and specific solutions on the 

domain of graph theory tha t have been suggested by other researchers are described.

Chapter 3 and 4 present an effective classification-based knowledge representation scheme. The 

definitions, operations, postulations and theorems of the ’graph class algebra’ are given in chapter

3.
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The expert knowledge about these graph types is formed in terms of a  set of pattern-m atch-based 

recursive procedures, (called T-proccdurcs) which are described in chapter 4.

With the support of background knowledge the reasoning system is able to  employ various 

simple and powerful proof methods. The modeling of these proof methods to  be suitable for the 

class representation scheme is discussed in chapter 5.

The case-splitting based global reasoning process is discussed in chapter 6 where variety of 

inference rules are presented.

The example theorems for which GC has generated proofs are dem onstrated in chapter 7. A 

special representation of tree which brings efficiency and flexibility for certain kinds of problem 

solving has been studied during the research. Several sections of the chapter are devoted to this 

subject. The implementation of GC and software tools used to support the approach are described 

in chapter 8. The discussion of the approach as well as the conclusion and the future research plans 

are given in the final chapter.
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CHAPTER 2 

Related Previous Works

A utom ated reasoning is concerned with the study of using the computer to  assist in th a t part 

of problem solving requiring reasoning [Wo]. In this thesis the reasoning generally refers to m ath

ematical reasoning. There are basically two types of autom ated reasoning systems. One of these 

emphasizes heuristic searcli techniques, variety of rules, and their usage [Ni], The other, on the 

other hand, stresses the knowledge (or expert knowledge) needed and the techniques to process the 

associated knowledge. The traditional theorem provers belong to the first type. The second type 

refers to  the so called knowledge-based reasoning systems.

The early study in autom ated reasoning was dominated by ’stand-alone’ type, in which a  rea

soning system worked independently of users and completely draws results on its own. The system 

IMPLY [CF‘2] and W u’s geometry machine [Csl] belong to this kind. Since the mid CO’s more and 

more researches have shifted to ’interactive’ style, in which a system is used to find parts of proofs 

and to provide information to the user who then can reform a  now lernnia or create a  new search 

guide in terms of both the output and his own intuitions. The BM TP (Boyer-Moore Theorem 

Provcr) and ITP (Interactive Theorem Prover) belong to this kind.

A utom ated reasoning systems like BMTP and ITP are referred to as general purpose systems, 

and others like the geometry machine [Csl] are referred to as special purpose systems. A general 

purpose reasoning system provides a  research environment and a variety of techniques of reasoning 

capable of obtaining proofs in many different fields [B12]. A special purpose reasoning system 

mainly works on a  special domain of an area which includes proving properties about certain kind of 

programs, answering questions over a  specified database, proving theorems in a subfield of a  branch 

oi mathematics, and even designing some electronic circuits.

Based on the different reasoning strategies used, a t least three major distinct functions are 

prov ided  in  reason ing  sy s tem s. T h e  first function  is p ro o f checking ( to  check a  p ro o f for co rrec tness)
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as in the system  AUTOMATII [DeB]. The second one is theorem proving as provided by various 

well-known provers [Lol], The third one is reasoning by decision procedures as Bledsoe’s inequality 

provcr. Some systems offer all these functions, Edinburgh LCE [Lai] as an example.

The research discussed in this thesis adopts an approach which combines the techniques provided 

from systems with both theorem proving type and knowledge-based reasoning type for different 

reasoning processes. The general review of the techniques of autom ated reasoning systems is given 

in subsequent sections (section 2.1 and 2.2) where many technique details are directly cited from 

the original publications.

2.1 Perspective on Theorem Proving

Automated Theorem Proving (ATP) can be viewed as the heart of many artificial intelligence en

deavors. For example, in a  question answering system of a database, in a planning system of a 

robot control, or in an inference system of an expert system, the required automated reasoning can 

be regarded as some side efTccts of traversing correct proofs. The recent success of programming 

language PROLOG even shows that a theorem proving system can form the basis for a general 

purpose AI language.

The early research efforts for ATP were focused on prepositional logic. In late 50’s the major 

research shifted to first-order logic. The most im portant impact on the logic approach occurred 

in the mid 60’s, when Robinson described his famous resolution procedure in first-order predicate 

calculus [Rol].

The resolution method is a  method of proof which repeatedly uses an inference rule, called 

resolution rule, during a proof process. The process starts with the union of a negated theorem and 

a set of axioms, and ends with an empty formula form. The cancellations take place in the process 

due to the applications of the resolution rule, which can be briefly shown as: (pVq) A(->gVr) —*■ pV r. 

Here represents ’not q ’, q and ~<q are canceled from clauses (p V q) A (-<q V r), thus simplifying 

the clauses. One of the main features of the resolution approach is tha t the control heuristics are
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suggested based on theorem  syntax only. Therefore, it has a  relatively simple structure. Robinson 

has shown tha t the resolution is complete and sound for first-order logic.

The main drawback of this approach is th a t the proving process may suffer from the so called 

combinatorial explosion problem, i.e. the choices to  apply the resolution rule increase rapidly during 

the reasoning process. I t  is widely believed th a t a  resolution-type system requires an extensive change 

in philosophy in order to  prove real hard problems. After the mid 70’s the human-oriented approach 

became the major interest in ATP research.

The human-oriented approach emphasizes the techniques:

•  Knowledge base: a  da ta  base (library) of facts,

•  Natural deduction: logic form A  —► B  rather than ~<A V B ,

•  Reduction: rewrite rules instantiating variables to fit applications,

•  Typing: a mechanism to utilize different domains of objects,

•  Procedure: a mechanism for integrating search control with inference.

•  Models and counterexamples: a mechanism used to provide correct and reject wrong search 

paths of pursuit,

•  Analogy: the use of a  similar reasoning pattern in a  related situation to guide search,

•  Learning: the improvement of performance by autom ated retention of prior knowledge or 

processing thereof,

•  Algebraic simplification: reduction of algebraic expressions to  facilitate further processing,

•  Man-machine interaction: the close involvement of the user in the  proof search process [Bll],

Generally, a human-oriented ATP uses multiple inference rules, and the search heuristics are not 

only directed by syntax alone, but also created by simulating human proving. The structure of this
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method is more complex than th a t of the logic method. Much progress has been made since the 

approach was used to  construct an autom ated theorem prover [Nel] [Ne2] [Ne3] [BM1] [BT1] [Lol] 

[BL1].

The m ajor problem which prevents an ATP from being powerful is th a t the ATP program often 

generates thousands of consequences of the axioms before a  correct proof can be found. To avoid 

getting into a  big search space, an ATP should have a large enough am ount of ’intelligent’ guidance. 

Therefore, one major research activity is to  devise methods (strategies) for guiding the program to 

make automated search of proofs.

In the following subsections the techniques which reflect the sta te  of the art in autom ated rear 

soiling provided by several theorem provcrs are reviewed. These techniques arc very helpful for 

developing a  graph theory reasoning systems such as the one presented in this thesis.

2.1.1 Recursive Function Theory - BM TP

The BMTP is one of the most powerful theorem provers currently available. It embodies an exten

sible mathematical theory (recursive function theory) in which theorems can be stated and auto

matically proved [BM1]. It also can be seen as an alternate to the predicate calculus.

2.1 .1 .1  O verview  o f  T h e  F unction  T heory

The axioms and theorems in BMTP are represented by functions. Theorems have the value 

T(TRU E) or F(FALSE). The proof of a theorem is a process of showing th a t the value of the 

theorem is TRUE. A general form of function definition is 

( f  x i * 2  • ■ • i „ )  = <  functionbody  >

The <  / unctionbody > is an expression of the theory. The proof is done by using measure functions 

and well-founded relations. The system m ust exhaustively search through all lexicographic orders of 

all well-founded relations to  find possible candidates which may reduce the expression to true. A well- 

founded relation is a  function r of two arguments, which admits no infinite sequence X\ , x 2,X3 , • • • x„
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with the property th a t (r x,+ i, x.) ^  F  for all integers i greater than 0 [BMl].

The BM TP uses four axioms to define the function EQUAL and IF, which form the core of 

BMTP:

1. X =Y  => (EQUAL X Y )=T

2. X ^Y  =* (EQUAL X Y )=F

3. X = F  => (IF X Y Z)=Z

4. X ^ F  =► (IF X Y Z)=Y

T he common logical connectives are defined with IF as followings:

1. (NOT P) =  (IF P F T)

2. (AND P Q) =  (IF P (IF Q T  F) F)

3. (O R P Q) =  (IF P T  (IF Q T  F))

4. (IMPLIES P Q) =  (IF P (IF Q T  F) T)

A rbitrary d ata  types can be created. Typically, they are defined inductively by the so called shell 

mechanism. The new definition is added to the system ’s axiom sets, and the consistency of the 

system is guaranteed by the shell mechanism.

An induction principle is presented within the theory. It describes a base case, k induction steps 

(each allows several hypotheses), and a  function (relation) tha t is well-founded on a  measure set of 

variables over all substitutions required to  instantiate the k+1 case.

2 .1 .1 .2  T echniques in B M T P

The proving process in BMTP is simply to continually rewrite the formula until it is reduced to 

T  w ithout backtracking. The rewriting guarantees th a t equivalence rules are applied first. For 

example, algebraic simplification is an equivalence rule, and induction rewrite rules are applied last.
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Thus induction is applied on the simplest and most general form of a formula. Many of the rewrite 

rules have been designed to  produce formulas th a t are more amenable to  inductive arguments. In 

the BMTP the rewriting rules are divided into many levels. Only those rules in lower levels fail to 

be applicable, while rules in one higher level will be tried. The rewriting is processed recursively 

starting from the lowest level.

For example, function APPEND is defined as:

(APPEND x y) =  (COND x (CONS (CAR x)(APPEND(CDR x) y)) y)

The following lemma

(APPEND (APPEND x y) z)=  (APPEND x (APPEN D  y z)) 

can be derived by applying rewrite rules repeatedly.

Inductions are formulated by using information collected a t the time when the recursive function 

is defined and the time when the actual induction is needed. The system exhaustively searches 

through all lexicographic orders of all well-founded functions. The following illustrates the creation 

of induction templates a t recursive function definition time:

In the definition of function APPEND, two function arguments are x and y, bu t only x satisfies 

induction termination checking, i.e. a  well-founded function LESSP that decreases when applied to 

the measured set of x (CDR x). Then BMTP automatically tries to prove the theorem as follows: 

(IMPLIES (LISTP x) (LESSP (CDR x) x))

The system proves the theorem by matching an axiom added by the shell mechanism during the 

definition of LISTP. The only induction tem plate is produced as:

(AND (IMPLIES (NOT(LISTP x) (p x))

(IMPLIES (AND (LISTP x)

(p (CDR x)))

(P x))))

This states th a t to  prove formula (p x y), where p is a  conjecture which involves the APPEND 

function, it is sufficient to prove that:
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1. If x is not a  list (the base case), then (p x y) can be proved.

2. If x is a  list and (p (CDR x)) is assumed to be true (the induction hypothesis), then (p x) can 

be proved.

The applications of rewrite rules in BM TP are organized in reverse chronological order, i.e. 

simplify the conjecture by applying axioms, lemmas, function definitions, equalities, and logical 

proof rules and so on, from complex results to simpler ones. The induction is applied only to  the 

simplest and most generally stated  propositions possible. This strategy is based on the fact tha t 

it  is difficult to invent the right induction until the simplest strongest conjecture is available, and 

induction increases the size and complexity of the conjecture.

2.1 .1 .3  P erform ance and  U sage

The BM TP has been applied to a  considerable amount of theorem proving tasks, including some 

theorems which are very difficult by human standards. Many interesting facts and theorems can be 

represented and proved in reasonable time if a proper interaction is provided. Many theorem provers 

sufTer from a  so called referencing problem, which is a  phenomenon of performance degradation due 

to  increased knowledge. This is because the search efforts increase when the possible solution space 

increases. Though the BMTP has not entirely overcome this problem, its heuristic control has been 

proved effective to operate the system within an environment containing more than 400 theorems.

The ability of BM TP to automatically produce an induction proof is very attractive for the 

design of a  graph theory theorem prover. This is not only because of the position of the induction 

method in graph theory theorem proving, but also because the heuristics used for the automation 

in BM TP are so useful for improving a  proving system’s power.

2.1.2. The Resolution Proving Technique: ITP

The system ITP was developed a t Argonne National Laboratory [LOl] (L02j. I t  is an inference- 

based system built from the LMA (Logic Machine Architecture) package of tools. The main function
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of the IT P  is interactively conducting clause-based reasoning, which is generally able to support most 

of major techniques currently used in an autom ated deduction research project including various 

resolution rules.

2.1 .2 .1  O verview  o f  T h e  S ystem

The basic item in IT P  is a  clause which is a  disjunction of a  set of literals. A literal is an assertion 

or a  denial of facts. T he IT P  derives new clauses from existing clauses using one or more inference 

rules. There are four lists of clauses, each of them plays a  specific role in the operations of the 

reasoning system:

1. The axiom list.

2. The set of support list.

3. The have-becn-given list.

4. The dem odulator list.

The m ajor operations in the ITP are:

1. Choose a clause from the set of support list, and this clause is called ’the given clause’.

2. Infer a set of clauses that have the given clause as one parent, and have other parent clauses 

selected from the axiom list, the have-been-given list, and the demodulator list.

3. Process generated clauses by simplification and subsumption etc..

4. Move a  given clause from a  support list to  the have-been-given list.

Inference rules are processes for producing new clauses from existing clauses. LMA supports many 

inference rules. The followings illustrate the m ajor inference rules through examples:
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•  Hyper-Resolution 

Example:

“•P I q 

P 

q

Hyper-Resolution naturally corresponds to a  mode of human reasoning. I t  is one of the most 

commonly used inference rules.

•  UR-Resolution (Unit-Resulting Resolution)

This is a  resolution in which all but one of the clauses tha t participate in the deduction must 

be unit clauses, although they can be either positive or negative.

Example:

->p | ->q | r

P

->r

A unit clause can be regarded as a  statem ent of fact, whereas multi-literal clause represents 

conditional statem ents.

•  Binary Resolution

Exactly two clauses may participate in the clash (note no positive or unit restriction on these 

two clauses).
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Example: 

->p | q | - .r  

->q | s

-.p | s | ->r

•  Unit Resolution

One of the two clauses involved in the clash should be a  unit. 

Example:

~'P I “•? I r I s 

—*r

-,p | -,q | s 

•  Factoring

Factoring is an inference rule tha t derives new clauses from a single clause rather than from a 

pair of clauses. The new clause is said to  be a  factor of the original one.

Example:

p(a x) I p(y i>)

p(a b)

•  Paramodulation

This is a rule based on the substitution properties of the equality relation.
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Example:

p(a )

equal(a b)

P(b)

The result p(b) is called a  paramodulant which is added to  the clause set, and p(a) is not 

deleted. A more general example is:

Example:

p(f(a x)) | q(x)

cqual(y f(y y))

P(a) I q(a)

•  Demodulation

Demodulation is a paramodulation with the existing clause deleted.

Example: 

p(f(a) b) 

equal (f(a) c)

p(c b)

Here, p(f(a) b) is deleted, and p(c b) is added to the clause set. To demodulate a clause, special 

function evaluations may be involved. For example, $sum (nl n2) would be rewritten as n l +  n2, if 

n l and n2 are self-defined numeric values. There are many system defined functions in the ITP. For 

«  example:
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$sum (nl n2), $com p(nl n2), $g t(tl t2), $neg(nl),

Scomp(nl n2), $aud(xl x2), $not(x), etc..

2 .1 .2 .2 . In terfaces

The current IT P  includes facilities to allow the Prolog component to  access sta tu s and proof infor

mation from the inference mechanisms. Logic programming using language Prolog can be effectively 

utilized in the construction of autom ated reasoning systems. Prolog plays a  significant role in most 

of the autom ated reasoning systems [L03]. The Prolog component of IT P  may be run independently 

or coordinated with a normal theorem prover invoked by some specified commands. The interface 

facilities allow the user to create a  Prolog routine to  process information passed from other systems. 

ITP also provides a  LISP interface which works under Berkeley UNIX and interfaces the layer 2 

routines to Franz LISP.

Though the IT P  is a resolution-based theorem prover, its rich subroutines and facilities, which 

support many general proving techniques, could be a  very valuable resource for implementation of 

general reasoning systems.

2.1.3. Natural Deduction: IMPLY

The system IMPLY was developed at the University of Texas by Bledsoe and Tyson. I t  is a  goal- 

directed natural deduction proving system where the goal and the antecedents are distinct. And the 

inference rules used there simulate the reasoning of human theorem provers.

2 .1 .3 .1 . In ference R ules

The followings are the typical inference rules in ITP:

•  MATCH: [ II—G ] 

if II(s)=G (s) 

then (s).
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If the substitution s can be found between the goal G and hyperthesis II, then the substitution 

’s ’ is returned.

•  AND-SPLIT: [ II—A A B ] 

if [ II—A ] is (s)

and [ H—B(s) ] is (p) 

then (s)(p).

To prove th a t II implies A and B, the clause (H—A) is matched for some substitution s, and 

the substitution is applied for B. Then the clause (II—B) is matched for second substitution 

p. The composition of s and p -  (s)(p) is returned.

•  CASES: [III V 112 — G] 

if [III — G] is (s)

and [II2(s) — G] is (p) 

then (s)(p).

To prove that either III or 112 implies G, the system first proves [III — G] for some substitution. 

After applying the substitution to the clause [112 — G] the system attem pts to find the second 

substitution for it. The composition of these two substitutions is the result of the inference 

rule.

•  OR-FORK: [A A B — C] 

if [A — C] is (s)

then (s); 

else [B — C]

To show that A and B imply C, the system tries to  prove tha t [A — C] or th a t [B — C].

•  PROMOTE: [II —(A — B) ]
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[ II A A —► B ]

In order to prove a  goal which is an implication A —*■ B the system  simply takes A as an 

additional hypothesis.

•  BACII-CHAIN: [II A (A — B) — C] 

if [B —»C] is (s) 

and [II —* A(s)] is (p) 

then (s)(p).

This rule says if the term th a t implies the goal has an antecedent the system  m ust try  to prove 

the antecedent first. For example, to prove Q in [P(y) A (P(a) —*■ Q (x)) —<■ Q(b)], the system 

tries

Q(x) —► Q (b), which returns substitution b/x  and

P(y) —► P(a), which returns a / y  

then

(b/ x ) (a /y ) is finally returned.

2.1 .3 .2 . H euristics o f  P r o o f Search

Two methods of proof search heuristics cue used: reduction and forward chaining.

Reduction refers to  the replacement of a  term by a simpler term. The expression 

L — R

stands for a reducer. For example, in set theory IMPLY uses following reducer:

t  C  (A A B) —* t C A A t c B

t C ( A v B )  — t c A v t c B

The examples of reducers from algebra include:

x  +  0 —► x
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z  * 1 —► x

x  +  ( —z )  —► 0

- ( *  +  y) — ( - * )  + ( - y )

Each newly created expression must be tried by using a  list of reducers which is maintained by 

the system. The resulting expression is called the irreducible form of the original expression relative 

to the list of reducers.

Forward chaining is shown by the rule:

[(A A (A ' —B)) -  C]

if A is ground (i.e. has no variables) and A ' =  A(s), 

then [B(s) A A A (A' —► B) —♦ C].

This rule docs not produce smaller subgoals, but it is used to infer auxiliary terms (B(s)). The 

method has the following advantages:

•  It is easy for humans to understand.

•  It includes domain-specific heuristics to speed up a proof.

2.2. Perspective on Knowledge-Based Reasoning

The importance of knowledge-based reasoning stems from the fact th a t the current design paradigm 

for ’intelligent’ systems stresses the expert knowledge availability and the knowledge processing fa

cilities. T his is in sharp contrast to the classical general purpose theorem prover design paradigm, 

where heuristic search techniques dominate. There are many different forms of knowledge-based 

reasoning: formal reasoning; procedural reasoning; generalization; abstraction; and metalevel rea

soning.

Formal reasoning involves the syntactic manipulation of d a ta  structure to  deduce new structures 

based on prespecified inference rules. Such reasoning is widely used in logic-based and production 

rule-based representation systems.
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Procedural reasoning involves specialized routines or procedures for producing conclusions and 

solving problems. It is most naturally and most commonly used in frame-based and semantic 

network-based systems.

Generalization rind abstraction are also natural processes for human beings. The two areas are 

the core of most human learning. They involve induction rules and instantiation rules in reasoning.

Metalevel reasoning involves using knowledge, particularly the knowledge about the usage of 

knowledge. Recent research indicates th a t metalevel reasoning plays a  key role in human cognition 

[FI],

One im portant property of knowlcdgc-bascd reasoning is clear separation of the knowledge base 

from the inference processing strategy. The advantage of such separation is th a t as the operation 

of the system gains in sophistication it can improve itself in relatively noninterfering ways. This 

can be done either by adding knowledge or by reusing the same knowledge with more sophisticated 

inference engines [Sc]. Knowledge-based reasoning consists of not only deductions bu t also the 

automation of reasoning processes [Bui], The following explains several such processes for reasoning 

in mathematics:

1. Formalizing problems. In order to  implement automatical reasoning, reasoning systems need 

to automatically translate informal problem statem ents into mathematical formulae to which 

deduction may be applied.

2. Learning. Newly proved theorems must be assimilated into the theorem proving system so 

that they may be used effectively in the future. The required assimilation technique will 

depend particularly on the search control technique being used, e.g. the way used to label 

new theorems so tha t they can be accessed when needed. Similarly, the learning of new proof 

methods, the defining of new concepts, the conjecturing of results etc. may involve a proof 

analysis technique to  analyze new proofs and to generalize them  to extract control information.

3. Using analogy. Analogical matching techniques are used to find and apply the relationship
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between the target and the source of the analogy in order to suggest conjectures and definitions.

In the following subsections three reasoning systems are reviewed. Techniques provided by these 

systems arc used or considered in this thesis research.

2.2.1 Knowledge-Based Automated Equation Solving: DReam

A knowledge-based reasoning system called DReam (Discovery and Reasoning in M athematics) has 

been developed a t the Department of Artificial Intelligence of Edinburgh University by Bundy’s 

research group. This system attem pts to realize the above processes and many other mathematical 

reasoning techniques. There is a family of programs working on the common domain of symbolic 

equation solving. Followings arc explanations of the relationships among various programs in this 

group.

The PRESS program uses the deduction technique of rewrite rules to generate equation solutions. 

This deduction technique is guided by the search control technique of metalevel inference [BW1].

The LP (Learning PRESS) program uses the proof analysis technique of precondition analysis 

to extract and conjecture new equation solving methods which are then used by PRESS.

The IMPRESS (Inferring M etaknow ledge about PRESS) program [SBl] is a  theorem proving 

program for proving logic program properties. It is used to  prove properties of the Prolog code of 

PRESS using a modified version of recursion guidance.

The GRASS is a  rewrite rule system for Grassman Geometry modeled on PRESS, it uses sym

metry to control the application of the rules [FSl].

The ECO and ASA are ’intelligent’ front-ends to  ecological modeling and statistics packages 

respectively.

The RUT is a  rational reconstruction of Bledsoe’s natural deduction theorem prover [Bll], and 

VOYEUR extends RUT with interaction technique.

The M T program is the core of system DReam. It consists of two parts:
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•  the object-language: a  logic for expressing problems,

•  the m etalanguage: a  logic for expressing proof plans.

MT uses a  process of meta-level inference to  analyze a  conjecture, choose an appropriate proof plan 

and then uses it to  guide the search for a  proof. The short term  objectives of Bundy’s group are 

to extend their existing reasoning techniques and invent new techniques applicable to a  variety of 

domains. I t  also investigates the interaction of deduction, search control, proof analysis and inductive 

inference within a  single reasoning system. The object-level deduction technique is based on Bibel’s 

Connection Calculus [Bil]. In Bundy’s group there is a plan to design and implement several 

proof plans on the MT system. Heuristics developed from natural deduction proofs can be readily 

translated into the Connection Calculus. Another plan which aims to improve the system ’s theorem 

proving ability is to  add a learning component using the meta-level concepts already embodied in 

the MT proof plans and to use precondition analysis and other techniques to  modify the existing 

plans and build new plans.

2.2.2. Automated Reasoning in Graph Theory: GT

G T is a  system which performs mathematical reasoning in graph theory [Ep]. It is a  knowledge 

intensive domain specific system which uses algorithmic class description to prove relations among 

mathematical concepts.

2 .2 .2 .1 . T h e K n ow led ge R ep resen tation

In G T  a  graph concept is a frame, which represents a  graph property and knowledge associated with 

it. The main slots of the frame are related to property descriptions. A property description is a 

triple <  / ,  5 , a > where S is the seed set, a  set of one or more minimal graphs (seeds), each of which 

has the property. An operator f describes how a  graph with the property may be transformed to 

construct another graph with the same property. In G T the primitive operations are:
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1 . Ax : add the vertex x,

2. Axy: add the edge between x and y,

3. Dx: delete the vertex x,

4. Dxy: delete the edge between x  and y.

These primitives may be concatenated into term s such as A yxA x to denote sequential operations 

from right to left. Terms may be summed (as in Ax +  A yxA z) to  represent alternative actions. The

selector a  in the definition gives the restrictions for binding the variable appearing in the operator

f to  the vertices and edges in a  graph. G T  has the following selector descriptions for a graph:

1. whether or not a  vertex is in the graph,

2. whether or not a  vertex is distinct from another vertex,

3. the degree of a vertex,

4. whether or not a  degree of a  vertex is maximum,

5. whether or not an edge is in the graph,

6. whether or not the endpoints of an edge is distinct.

T he semantic interpretation of a  property definition is a  single uniform algorithm, called a  p- 

generator, which generates a class of graphs with the same property. The p-generator may be 

thought of as an autom ation which sta rts  with any graph in the seed set S. The algorithm for 

generating the class P of the graphs is:

Accept G € S 

O utput G 

Until a  fail do 

G — f<r(G)
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O utput G

Halt

2 .2 .2 .2  T he P rov in g  M echanism

The theorems considered by G T are restricted to the following types:

•  TYPE 1: If a graph has property p, then it has property q

•  TYPE 2: A graph has property p, if and only if it has property q

•  TYPE 3: If a  graph has property p and property q, then it has property r

•  TYPE 4: It is not possible for a  graph to  have both property p and property q

Note: it is clear th a t this approach dose not handle the theorems involving subgraphs.

The proving process in G T relies on procedural manipulations o f graph properties. There are

two procedures used on proving process. The first procedure tests for subsumption: property p

for class P subsums property q for class Q if and only if Q is a  subset of P. The second procedure 

constructs mergers: the merger of a property p for class P with a property q for class Q results in 

a  new property represented by P n  Q, the set of graphs with both properties. The method used by 

subsumption procedure can be described as follows:

Given property pi =  <  f i ,S i , er i  > , property p2 =  < / 2,S 2,<r2 > , and aconjecture th a t pj subsumes 

P2 , GT attem pts to show that:

1. f2 is subsumed by fj, i.e. f2 is a  special case of fx

2. every graph in S2 has property pi

3. <72 is subsumed by <ti, i.e. <7 2 , is more restrictive than <ri.

The method used by merge procedure is similar:

Given property p\  = <  /i,S i,< 7 i > , property P2 = <  /2,S2,<72 > , G T attem pts to  construct the 

merger p = <  /,S,<7 >  of pj and p2. The algorithms are:
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1. If pi subsumes P2 the merger is simply P2 -

2. When fi subsumes f2 and every seed in S2 has property p i, the merger is <  h ,  S?, a  >  where 

a  is a\  and 01  will) any references to variables not in f2 eliminated

3. When fi subsumes f2 , subsumes <T2 , and S is non-empty the merger is <  / 2 , S,  0 2  >  where

5  =  G\G e s 2 n P ]  u G \ G e  Si n P 2

G T ’s proving process is driven both by examples (specific graphs) and by definitional forms (algebraic 

forms) with support from the background knowledge of graph properties (frames).

2.2.3. Man-Machine Graph Theory Proving: GRAPH

The system  consists of three knowledge based interactive expert system components used to prove 

or to help proving graph theorems: (1) TIIEOR: a  resolution type theorem prover, (2) ALGOR: a 

knowledge system on graph algorithm, (3) BIBLI: a  knowledge system on a bibliography of graph 

theory [PC]. The theorem prover T IIEO R  formalizes graph theory by a special first-order predicate 

calculus, called AGT. The sysntax of AGT is as:

X, Y, Z point variables,

U, V, W line (or edge) variables,

K, L, M, N integer variables,

G, II graph names,

O constants,

F function names,

A operations over graphs,

P, Q, R, S, T  predicates.

The graph itself is not a  variable in such formalization, bu t it can be added as a suffix of a 

predicate. For example, S1G(X, Y, U) has the meaning ’vertices X and Y are joined by an edge 

U in graph G. The suffixes B, BE, E, BCE, and BC can be added to  the predicate names, where
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B and C denote the name of a  particular graph and E is a  string denoting a  graph operation. For

example, Q5II7A1(Z) has the meaning th a t Z is an isolated point in the complement of the graph H7.

The theorem prover provides several standard theorem proving techniques interactively including 

splitting procedures described by Bledsoe. The techniques are:

1. forward chaining: subgoal A is replaced by P

2. case analysis

3. reduction and absurdum

4. simplification and extension of the subgoal

5. modification of the subgoal using the equivalence transformations

6. sending the subgoal to the resolution-based prover

7. telling the system th a t the current subgoal is true

8. moving the root of the tree up, down to the left, to the right, to  a specific point

9. O m ittin t a  subtree of the generated tree

GRAPH is a  system which provides human with variety kinds of knowledge supports in the research 

related to  graph theory. Its  main reasoning process belongs to interactive resolution refutation 

theorem proving. The main shortcoming of the system is th a t it basically has no stand-alone 

proving ability so it can not reason on problems requiring complex domain specific knowledge. For 

example, it is hard to  be used for reasoning relations relating to subgraph.

The advantage of using the system is tha t it is able to cope with some powerful existing resolution 

type theorem provers w ithout doing much representation transformation.
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CH APTER 3 

Algebraic Knowledge Formalization

The graphs considered in this thesis are assumed to  be simple (i.e. no parallel edges and self-loops 

are allowed). In general, a  graph is defined as G = (V , E), where V represents am arbitrary finite set 

of vertices, and E, an arbitrary  subset of the unordered (thus only undirected graphs are considered) 

Cartesian product V*V (edges). Let U be the universe of all graphs, then a  graph type T  is a  subset 

of U and a  graph class is a subset of the type T . The research has formalized several dozen types 

algorithmically defined in graph theory. For example, vertices (or type-0), single-edge (or type-e), 

path (or type-1), s tar, clique, cycle, Hamiltonian, acyclic, binary tree, tree, connected, disconnected, 

bipartite, simple graph, etc.. The formalization is done in terms of an algebraic language, called 

Graph Class Language (GCL), applied to mathematical knowledge about graph types. The following 

two sections discuss the algebra and then chapter 4 presents the type procedures.

3.1 The Syntax and Semantics o f Atomic Expression

The components of the language GCL consists of v-list, graph type, constraint symbol, constraint 

argum ent and class set off by parentheses, brackets and commas in a manner to be illustrated in 

the syntax descriptions. A class is regarded as a set of all graphs corresponding to a  value of LRC. 

A constraint is a  predicate, which is used to represent a  relation in the domains involved in graph 

theory (e.g. number theory, set theory, etc.). The syntax and semantics of the language are described 

below:

•  V e r te x  is a  string of characters starting with a  letter x followed by zero or more letters and/or 

digits representing a  vertex in graph theory. Example, x l,  x, xn l are vertices.

•  U n k n o w n  is a string of characters starting  with a letter y followed by letters an d /o r digits 

representing a  sequence of unknown vertices. Example, y, y l , ynO are unknowns.
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•  U n k n o w n  fo llow ed b y  a  p r im e  means tha t the unknown can be an empty sequence, oth

erwise the unknown contains a t least one vertex.

•  V -lis t is a  list of vertices and unknowns (both are called elements of the v-list), where all 

vertices including those contained (implicitly) in unknowns are distinct. Example: xlyx2 is a 

v-list and x l ,  y and x2  are elements of the v-list, also x l, x2  and all vertices contained in y 

are distinct.

• C o n s tra in t  is a  form: [P], or [P argl..argn]. It must follow a  predecessor: an element of 

S (v-list) or a  class, llere P  is a  predefined predicate symbol th a t takes its predecessor and 

arg l .. argn as arguments. If the predecessor is an element of a  v-list then the constraint is 

called an clement constraint, otherwise (the predecessor is a  class) the constraint is called a 

class constraint. Example: y[not-in yl] shows that the element constraint (predicate) symbol 

’not-in’ has two arguments: y, the predecessor, and y l. y[not-in y l] means th a t every vertex 

contained in y is not in y l.

•  C o n s tra in e d  v -lis t is a  v-list with constraints in it. E.g. xl[not-in yl]yx2 is a constrained 

v-list, its corresponding v-list is x lyx 2 , but both may be called a  v-list if no confusion results.

•  T y p e  S ym bo l defines a  subset of the universal graph set and associates with a  recursive 

procedure capable of generating any graph in the subset. It is a  predefined character string 

used as a component of a  class. Example: 0, e, 1 , tree.

•  C lass defines a subset of graphs within a type and has the form: <  S, T  > , or <  S, T  >[Pi 

a rgn ..arg i„]..[P i a rg ti arg*m], where S is a  constrained v-list, T  is a type name. Any graph 

in the class can be generated by applying the type procedure associated with T  on the input

S. Also any graph th a t can be generated in such a way belongs to  the class. The symbol ’<  S, 

T  > ’ may represent either constrained or unconstrained case if no confusion results. Example: 

<  x lx 2 y ', cycle >[with x] is a  class, where [with x] is a  class constraint.
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•  E d g e  is a special single-edge type (or e type) class with form <  S, e >  or simply <  S > , where 

S is a  v-list of two vertices. Example: <  x lx2, e > , <  x lx2 >  and <  x2xl >  are edges, and 

they are recognized as the same edge in the pattern  match process.

3.2 The Primitive Algebraic Operations

The followings are primitive algebraic operations on the set of graphs:

•  AND(si..<7„). defines the set of all graphs, such th a t each graph is constructed by the union of 

n graphs, one chosen from each set gi for i= l..n . We also use 3 1 .3 2  to  represent AN 0 (5 1 , 3 2 )-

•  OR(<7i..<7n). defines the set of all graphs, such th a t each graph is chosen from set 3 , for some 

i in (1, n). We also use 31 +  3 2  to represent 0 1 1 (3 1 , 3 2 ).

•  RV(3 1 , 3 2) defines a  set of all graphs, such th a t each graph is constructed by removing the 

vertices in the vertex set of a graph in 32  from a  graph in 3 1 .

•  IIE(5 i , 5 2) defines a  set of all graphs, such tha t each graph is constructed by removing the 

edges in the edge set of a  graph in 3 2  from a  graph in 3 1 .

•  I V ^ z )  defines a set of all graphs, such th a t each graph is constructed by removing the 

vertices not in vertex set of a  graph in 3 2  from a  graph in 31  (IV means vertex induced).

•  1 0 (3 1 , 3 2 ) defines a set of all graphs, such th a t each graph is denoted by <  V, E >  where E is 

the intersection of the edge sets of a  graph in g2 and a  graph in 3 1 , V is the vertex set of E 

(IE means edge induced).

•  CMPL(g) defines a set of all graphs, such th a t each graph is obtained by complement of a 

graph in g.
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3.3 The Algebraic Properties

P ostu la tes

1. P I (Existence of $ ):

Let $  represent the empty set of graphs.

(a) g.4> =  g;

(b) if g is a  class then RV(g, g) =

(c) g + $  =  g +  $  =  g;

2. P2 (Commutativity):

(a) <7i +  g2 =  92 +  9i

(b ) <7i-<72 =  92 -9 i

3. P3 (associativity):

(a ) (9i +  9 2 ) + 93 = 9i +  (92 +  <73);

(b) (gi-92)-93 = 9 1 (9 2 -93)

Note th a t the proofs for the above postulates P I, P2 and P3 follow directly from the definitions 

of the primitive operations and are omitted.

4. P4 (distributivity of AND, RV, RE, IV, IE, CMPL over OR):

(a) AND (OR(gu92) ,93)  =  O R ( A N D ( g x,gz ) , A N D ( g 2,gz ))

Proof: From the definitions of the primitive operations, it is easy to see the following: any 

graph G in the set on the left side of the equation is constructed by Go U G3 , where Go is 

either a  graph in g\  or a  graph in g2 and G 3 is in <73 . This means th a t G is constructed 

either by Gi U G3 or by G2 U G 3 , where Gi is in <71, G2 in g2, and Gz in gz . Thus G is a
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graph in the set on the right side of the equation. Similarly, any graph in the set on the 

right side of the equation can be proved to  be in the set on the left side of the equation.

QED

Note th a t the proofs for the following postulates of P4 are similar to  the above one and 

are om itted.

(b) A N D ( g XlOR{g2,g3)) = O R ( A N D ( g u g2) , A N D ( g x,g3))

(c) R V ( O R ( g x,g2),g3) =  O R ( R V ( g x,g3), RV{g2,g3))

(d) R V ( g x,O R(g2,g3)) =  O R ( R V ( g Xlg2) , R V ( g x,g3))

(e) R E ( O R ( g x,g2),g3) =  O R ( R E ( g x .g3), RE(g2,g3))

(f) R E ( g x,O R(g 2,g3)) = O R ( R E ( g x,g2), RE(gx,g3))

(g) I V ( O R ( g x,g2),g3) = O R ( I V ( g x.g3) , I V ( g 2,g3))

(h) I V ( g x,OR{g2,g3) ) = O R { I V { g x,g2) , I V ( g u g3))

(i) IE { O R (g i ,g 2),g3) = O R ( I E ( g u g3) , I E ( g u g3))

(j) I E ( g x,O R(g2,g3)) = O R {I  E{gx,g2), I E ( g x,g3))

(k) C M P L ( O R ( g x,g2)) =  O R ( C M P L ( g x) , C M P L ( g 2))

5. P5 (distributivity of AND over RV; RE; IV; IE):

(a) R V ( g x.g2,g3) =  R V ( g x,g3) .RV(g2,g3)

proof: assume th a t a  graph in the left-side set is

It is constructed by (V I, E l) from gx, (V2, E2) from g2 and (V3, E3) from g3. the graph 

can be represented as: (((V I U V2)-V3), (E l U E2) - E Xt2-3) where E x<2<3 contains all 

edges in (E l U E2) with an end vertex in V3. and the corresponding graph constructed 

by the same three graphs in right-side set is: (((V I -V3) U (V2 -V3)), (E l - E x>3) U (E2 

- £ 2 ,3 )) where E x>3 contains all edges in E l with an end vertex in V3, £ 2,3  contains all 

edges in E2 with an end vertex in V3. By set operations they are the same graph.
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QED

(b) R E ( g x.g2,g3) =  R E (g i ,g 3).RE(g2,g3)

proof: assume th a t a graph in the left-side set is (((V I U V2)), (E l U E2) - E3), and 

it  is constructed by (V I, E l) from gi,  (V2, E2) from g2 and (V3, E3) from g3 and the 

corresponding graph constructed by the same three graphs in the right-side set is: ((VI 

U V2), ((E l - E3) U (E2 - E3))) By set operations they are the same graph.

QED

Note th a t the proofs for tiie following postulates of P5 and P 6  are similar as the above 

ones and are omitted.

(c) I V ( g i .g2,g3) =  I V ( g i .g3) . lV(g2,g3)

(d) I E ( g u g2.g3) =  I E ( g u g2) . IE(g i ,g3)

6 . P 6  (others):

(a) R V ( g x,g2.g3) = R V ( R V ( g u g2),g3)

(b) R E ( g i , g 2.g3) = R E { R V ( g l t g2),g3)

T h e o re m s  Note tha t all the proofs for the following theorems follow directly from definitions of 

AND and O R  operations, and are omitted.

1. T1 (idempotency):

(a) g + g  = g

(b) if g is a singleton then g.g =  g

2. T2 (Absorption):

(a) O R ( O R ( g u g2),g3) = OR(gu g2,g3)

(b) G R (g x, OR(g2,g3)) =  OR(gl ,g2,g3)
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(c) A N D { A N D ( g i , g 2),g3) =  A N D ( g i , g 2,g3)

(d) A N  D{gi t A N  D{g2,g3)) =  A N  D(g\ ,g2,g3)

N o rm a liz a tio n  The above properties are used to  simplify a  class expression. Particularly, prop

erty P4 and T2 provide a  base to  construct a  procedure which converts any class expression on sets 

of graphs gi .. g„ into a normal form:

D efin itio n  (n o rm a l fo rm ) Normal form of a  class expression is as:

O R  (gi, qit .., qm), 

where each qi contains no OR operator.

It is easy to see th a t any class expression can be equivalently converted to  a  normal form (may 

not be unique) by applying these properties in finite steps.

If each qi contains only ANDs, then the expression is said to  be in OR/AND normal form. 

E x a m p le  2.1 

T he expression:

AND(CM PL(OR(pi, g2)), RV(g3, g4)) 

is converted to:

AND(OR(CMPL(sr1), CMPL(<72)), RV(<73, 9a)) 

and has the normal form:

OR(AND(CMPL(S l), RVQ73, 9a ) ) ,  AND(CMPL(52), RV(</3, 9a ) ) )

E x a m p le  2.2 

The expression:

AND(OR(«7i, g2), AND(ff3, g4)) 

has the normal form:

O R (A N D (ji, fl3, ̂ 4)1 AND(^2,ff3,54)).

An expression of graph classes can be manipulated not only by the algebraic properties for sim

plification and normalization, bu t also by corresponding T-procedures for conceptual decomposition,
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which is shown in chapter 4.
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CHAPTER 4 

Procedural Knowledge Formalization

The procedural knowledge of graph concepts is formalized by a  set of recursive procedures called T- 

procedures. A T-procedure is used to  recursively define constructions of graph classes, (i.e. subsets 

of a graph type). The specification of a  T-procedure describes its output graph set for an input S 

(i.e. v-list).

4.1 Recursive Decomposition of Graph Class

A T-procedure is associated with a type T . It decomposes a  class < S, T  >  accepting any v-list S. Its 

output is called a c-decomposition of <  S, T  > . c-decompositions are also called an OR-AND normal 

form of the class and they have the same vertex set as th a t of S. The outputs are characterized by 

one of the following cases:

1 . an empty set (if S is em pty).

2. Each graph in the set has an empty edge set <j>e (or denoted by ’none’).

3. The set contains a  single graph with one edge <  x lx 2  > .

4. The set is generally represented as:

O R (A N D (<Si,, T \ t >,  T i>> ), .., A N D (<Sj,, 7i l >, ,.<Sik, 7)k> ))

where each operand of the operator O R is said to be a  sub c-decomposition of <  S, T  >  which 

represents a  subset of type T  (by the definition of OR). Each operand of an operator AND 

is a  class called an output class. Each output class represents subgraphs of the class (by the 

definition of AND).

A T-procedure outputs constraints of v-list elements, and these constraints are following their pre

decessors. A T-procedure also outputs constraints of classes, and they are following their sub
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e-decompositions. Each ou tpu t class has type precedence not greater than the type precedence of 

the decomposed class or has its v-list shorter than the v-list of the decomposed class.

4.2 Procedural Knowledge of Graph Types

One of im portant tasks in this research is to provide modelings for sufficient am ount of background 

knowledge to  m anipulate an arbitrary abstract graph. The most flexible and useful modeling is the 

type procedures formalized for variety of key graph concepts (e.g. path, cycle, s ta r, clique, rooted 

tree etc.). Each T-procedure represents the knowledge about the type, the relations among the 

subsets of the type, and the relations among subgraphs.

We (the system  and /o r users) use a graph type to  define a  set of graphs (as a subset of the

universal graph set) which possess a  graph property. Verifying whether or not a  given graph has

the property can be done by an existing (or predefined) graph theory algorithm.

We now use the specification of a type procedure to  specify the set of graphs th a t belong to  the 

type and are constructed for a given v-list in certain method. A correct specification should satisfy 

the condition: the graphs generated by the specified m ethod on the v-list and on all perm utations 

of the v-list is exactly the subset of the type, which includes all graphs with the vertex set of the 

v-list.

We also use T-procedure to define a  set of graphs in decomposed forms. A correct T-procedure 

should satisfy the condition: the c-decomposition is exactly the same subset of the type as defined 

by the specification.

The procedural formalization is intended to provide better (but may not be optimal) recursive 

procedures utilizing the a ttribu te  LRC for constructions of graphs with certain properties (types). In 

order to  accomplish this, the formalization provides procedures which construct the desired classes 

w ithout removing too many non-member candidates. This section presents all T-procedures defined 

in this research. The discussion and example proofs about the correctness are given in next section.
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4.2.1 Notations and Definitions

To simplify the illustrations several bold letters followed by digits are used to represent patterns in 

v-lists.

z: a  pattern  o f either a  vertex or an unknown; 

w: a  segment of the v-list (i.e. a  sub v-list); 

x: a  vertex; 

y: an unknown.

Also some notations are defined to simplify the code:

D efin itio n  1  cra (S) is a set, which consists of all the x  type elements in v-list S, here subscript 

’a’ denotes an arbitrary member of the set.

E x a m p le  a a(x ly lx 2 y 2 ) is the set (x l , x 2 ) and ’o’ has two possible values: x l and x2. 

D efin itio n  2 A,,iiU,2 (S) is a  set, which consists of all ordered pairs of w type v-lists denoted

by (m l, u)2 ), where the following two conditions hold:

(1) ml is obtained by removing zero or more elements from S in such a way as to obtain one of 

possible patterns xw ;

(2 ) m2 is obtained by removing all elements of w from S.

For example, /?tui,u,2 ( y lx ly 2 y 3 ) represents the set:

{ (x ly 2 , y lx ly 3 ) ,  (x ly3 , y lx ly 2 ) , (xly2y3, y lx l )  }

D efin itio n  3 7 tui,u»2 (S) is a set, the members of which are unordered pairs of w type v-lists

(denoted by m l, m2 ) where the following conditions hold:

(1) rul is obtained by removing one or more elements from S and has pattern w;

(2) w2 is obtained by removing all elements of m l from S.

For example, 7 «oi,«;2 (y lx y 2 ) is the set

{ {y l, xy2}, {x, y ly 2 } , {y2, y lx }  }

D efin itio n  4 ^o, ■**{$) is a  set, which consists of all w type v-list containing k vertices
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of S. Each of these v-lists is obtained by removing the first vertex of S and additional vertices. S 

must contain no unknowns and must have more than k vertices, here subscript ’a ’ has denotes an 

arbitrary member of the set.

For example, 6 0 l>a3 (XX1X2X3 ) is the set 

{X1X2, X1X3 , x 2 x3} 

here a i ,  a2 has three possible values: x ix 2, X1X3 , 1:2X3

D efin itio n  5 Let f(e) be a class expression having argum ent e, a  v-list segment or a  set of 

v-list segments. Let © be one of sets: a,  0,  7 , and S, and OR!©f(e) is defined as:

O R(f(ei), f(e2), • • •, f(c„))

where e* for i in ( 1 , n) are all distinct members of the set 0 .

Example 1 

Let S = x ly lx 2 y 2 ,

OR!ox(S)A N D (<w , T > , < xw, e > ) is equalent to 

OR(AND(< w , T  > , <  x lw , e > ), AND(< w , T  > , <  x2w , e > ))

Example 2

Let S = y lx y 2 , OR!/?u,iiU,2 (S)AND(< m l, T1 > , <  m2, T 2> ) is equivalent to 

OR(AND(< y l ,  T l > , <  xy2, T2 > ),

AND(< x , T l  > , < y ly 2 , T2 > ),

AND(< y2, T l  > , <  y lx ,  T2 >))

Example 3

Let S = y lx y 2 , OR!7 u,iita2 (S)AND(< m l, T l  > , <  m2, T 2> ) is equivalent to 

OR(AND(< y l ,  T l  > , <  xy2, T2 > ), AND(< y lx ,  T l  > , <  y2, T2 > ))

Example 4

Let S = y lx ly 2 y 3 , OR!/3u,i i«,2 (S)AND(< m l, tree > , <  m2, tree > ) is equivalent to 

OR(AND(< x ly 2 , tree > , <  y lx ly 3 , tree > ),

AND(< x ly 3 , tree > , <  y lx ly 2 , tree > ),
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AND(< x ly 2 y 3 , tree > . <  y lx l ,  tree > ))

4.2.2 T-procedures

P R O C E D U R E  type-0 (input S: v-list)

{precedence=0 }

{specification: generates a  graph consisting of all vertices in S and no edges}

B E G IN  

outpu t none 

E N D .

P R O C E D U R E  type-e (input S: v-list)

{precedence=l}

{specification: generates a set of graphs, such tha t a  graph belongs to the set if and only if

( 1 ) it has the same vertex set as th a t of S

(2) it contains one edge constructed between the first vertex and some other vertices in S} 

B E G IN

case S of

x: ou tpu t none

x lx 2 : ou tpu t <  x lx 2  >

y , xy , y x , y ly 2 : output <  S, e >

zlz2w : R output O R (<  zlz2 , e > , <  z lw . e > )

E N D .

Remark: ’R output’ indicates that each following class should be processed recursively by calling its 

own T-procedure on its own v-list to  generate the output.

P R O C E D U R E  type-1 (input S: v-list)

{precedence=2 }
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{specification: generates a  singlton set containing a path , such th a t a  path  belongs to the set if 

and only if

(1) it has the same vertex set as tha t of S

(2) its edges are constructed by sequentially connecting vertices in S}

B E G IN

case S of 

x: output none

x lx 2 : ou tput <  x lx 2  > ; y: output < y, 1 > 

yx, xy: output A ND(< S, 1 > , < y, 1 >) 

y ly 2 : ou tpu t AND(< S, 1 > , <  y l ,  1 > , <  y2, 1 > ) 

z lz2w : R output AND(< z lz2 , 1 > , <  z2w, 1 > )

E N D .

E x am p le : The c-decomposition for class <  xlx2x3y, 1 >  is: AND(< x lx2  > , <  x2x3 > , <  x3y, 

1 > , <  y, 1 > ).

P R O C E D U R E  type-star (input S: v-list)

{precedence=3)

{specification: generates a singlton set containing a  star, such th a t a  s ta r belongs to the set if 

and only if

(1) it has the same vertex set as that of S

(2) its edges arc constructed between the first vertex and all others in S}

B E G IN

case S of 

x: output none 

y: ou tpu t < y, s ta r >  

x lx 2 : ou tpu t <  x l x 2  >  

xy: ou tput <  x y , s ta r >
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yx: output AND(< y , star > , <  xy, join > ) 

y ly 2 : ou tput AND(< y ly 2 , star > , <  y l ,  s ta r >) 

zlz2w : R output AND(< z lz2 , star > , <  z lw , star >)

E N D .

P R O C E D U R E  type-clique (input S: v-list)

{prece<lencc=4}

{specification: generates a  singlton set containing a  clique, such th a t a  clique belongs to the set 

if and only if

it has the same vertex set as th a t of S }

B E G IN

case S of

x: output none

y: output < y, clique >

x lx 2 : ou tpu t <  x lx 2  >

w y: AND(output < w y , clique>, < y , clique>, Routput < w , clique>) 

wx: R output AND(<w, clique>, < x w , s ta r> )

E N D .

P R O C E D U R E  type-cycle (input S: v-list)

{precedencc=5}

{specification: generates a  singlton set containing a  cycle, such th a t a  cycle belongs to the set if 

and only if

(1) it has the same vertex set as tha t of S

(2) its edges are constructed by circularly connecting vertices in S}

B E G IN

case S of

x: output none {for degenerate cycle}

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



48

x lx 2 : ou tpu t <  x lx 2  >  {for degenerate cycle} 

y:output < y , cycle >

xy, yx ; ou tpu t AND(< x y , 1 > , <  y, 1 > <  y x , 1 > ) 

y ly2: output A N D (<yly2, 1>, < y l ,  1>, < y2 , 1> < y 2 y l, 1>) 

zlw z2: Routput AND(< z lw , 1 > , <  wz2, 1 > , <  z2z l, 1 > )

E N D .

P R O C E D U R E  type-join (input S: v-list)

{precedence=6 }

{specification: generates a  singlton set containing a graph, such th a t a graph belongs to  the set 

if and only if

( 1) it has the same vertex set as th a t of S

(2 ) if it  has more than one vertex then it has one edge constructed between the first two vertices 

in S }

DEG IN

case S of

x: output none

x lx 2 : output < x lx 2  >

y, xy , yx, y ly2 : output <  S, join >

z lz 2 w: Routput < z lz2 , join >

E N D .

P R O C E D U R E  type-forkO (input S: v-list)

{precedence=7}

{specification: generates a  set of graphs, such th a t a  graph belongs to the set if and only if

( 1) it has the same vertex set as th a t of S

(2) its edges are constructed between the first vertex and zero or more other vertices in S} 

BEG IN
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case S of 

x: output none

x lx2: ou tpu t O R (<  x lx 2  > , none) 

xy , y x , y ly 2 : ou tpu t <  S, forkO >  

zlz2w : R output AND(< z lz2 , forkO > , < z lw , forkO > )

E N D .

P R O C E D U R E  type-fork (input S: v-list)

{precedence=8 }

{specification: generates a  set of graphs, such tha t a  graph belongs to  the set if and only if

(1) it has the same vertex set as tha t of S

(2) its edges are constructed between the first vertex and one or more other vertices in S} 

B E G IN

case S of 

x: failure

x lx 2 : output < x lx 2  >

xy, yx , y ly 2 : ou tpu t < S, fork >

zlz2w : R output O Il( AND(< zlz2 , forkO > , <  z lw , fork >

AND(< z!z2, fork > , <  z lw , forkO >)

E N D .

P R O C E D U R E  type-tree (input S: v-list, status: [basic, extended]) {precedence=12} 

{specification: generates a set of rooted tree, such th a t a  tree belongs to the set if and only if

(1) it has the same vertex set as tha t of S

(2) the left most vertex of S is the root of the tree, and any other vertex of S has a  parent to its 

left in S}

B E G IN  

case S of
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x: ou tpu t none

y: ou tpu t <  y , tree > ; x lx 2 : output < x lx 2  >  

yx : ou tp u t AN D (< y , tree > , <  xy , e > ) 

w x: R output AND(< w , tree > , <  xw , e > ) 

if sta tus= basic  then 

w y: ou tpu t <  S, tree > 

else

xy : ou tpu t O R (<  S, tree > , AND(< y, tree > , <  xy , join > ))

w y: O R (output <  S, tree > , Routput OR!( 0wi iW2 (w y)A N D (<u/l, tree> , <u>2, tree>))

E N D .

Note th a t based on definition 2 the last statem ent R output OR!(...), generates a  disjunction of all 

possible AN D (< w l,  tree > , <  w2, tree > ) by decomposing the input w y  into all possible forms of 

u;l and w2 which satisfy the conditions:

(1) w l is obtained by removing zero or more elements from S and has pattern xw;

(2) u>2 is obtained by removing all elements of w from S.

E x a m p le  1 :

The c-decomposition for class <  x 1x2x3, tree > is:

OR(A N D (< x lx 2  > , <  xlx3 > ), AND(< x lx2 > , <  x2x3 > )) 

and for class <  yx, tree >  is: AND(< y, tree > , <  xy, e > )

E x a m p le  2 :

Let w =ylxy2y3, the first round of the recursion on expression 

OR!(/5«,i,ti,2 (w) AND(< w l, tree > , <  w2, tree > )) 

generates the following result:

O R(A N D (< xy2, tree > , <  ylxy3. tree > ),

AND(< xy3, tree > , < ylxy2, tree > ),

AN D (< xy2y3, tree > , <  y lx, tree >}).
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Remark: when a  T-procedure has extended sta tus every class in its decomposition is associated 

with its own extended T-procedure.

For example, if status=basic, <  y lx 2 y 2 , tree >  will output:

<  y l x 2 y 2 , tree >

but if status=extended, then <  y lx 2 y 2 , tree >  will ou tput the following:

O R (<  y lx2y2 , tree > ,

Routput(O R(A N D (< x2y2, tree > , <  y l ,  tree > , <  x 2 y l, e >),

AND(< x2, tree > , <  y ly 2 , tree > , <  x 2 y l, e > ))))

i.e.

O R (< ylx2y2 , tree> , A N D(<x2y2, trce> , < y l ,  tree> , < x 2 y l, e> ),

AND(< y2, tree > , <  x2y2, e > , <  y l ,  tree > , <  x 2 y l, e > ),

AND(< y ly 2 , tree > , < x 2 y l ,  e > ))

P R O C E D U R E  type-acyclic (input S: v-list, sta tus =  basic)

{preceden cc=13}

{specification: generates a set of acyclics, such th a t an acyclic graph belongs to the set if and 

only if

( 1 ) it has the same vertex set as th a t of S

(2) each connected portion of the graph is a tree, where each vertex has a parent to its left in S} 

B E G IN

case S of

x: output none

y: output < y, acyclic >

x lx 2 : output O R (<  x lx 2  > , none)

w y: output <  w y, acyclic >

w x: Routput O R (<  w , acyclic > , AND(< w, acyclic > , <  xw , e > ))

E N D .
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P R O C E D U R E  type-acyclic (input S: v-list, status =  extended)

{precedence=13}

{specification: generates a  set of acyclics, such th a t an acyclic graph belongs to  the set if and 

only if

(1) it has the same vertex set as th a t of S

(2) each connected portion of the graph is a  tree, where each vertex has a  parent to  its left in S} 

B E G IN

case S of

x: outpu t none

y: output <  y , acyclic >

x lx 2 : ou tpu t O R(< x lx 2  > , none)

wx: R output O R(< w , acyclic > , AND(< w, acyclic > , <  xw , e > )

wy: OR(output < w y, acyclic > , AND(Routput < w, acyclic > , output <  y , acyclic > ))

E N D .

P R O C E D U R E  type-tree(k) (input S: v-list, status=[basic, extended])

{precedence=14}

{specification: generates a  set of rooted tree, such tha t a  tree belongs to  the set if and only if

(1) it has the same vertex set as th a t of S

(2) each node has a t most k sons, the left most vertex of S is the root and any other vertex of S

has a parent to its icft in S}

BEGIN

case S of

x: ou tpu t none

y: ou tpu t <  y , tree >[tree(k)l

x lx 2 : outpu t <  x lx 2  >

w: R output <  w, tree >[tree(k)]

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



53

E N D .

Remark: the constraint procedure, tree(k), will check each corresponding sub c-decomposition of 

the class to  see if it generates no tree with less than k -fl sons, if so the c-decomposition is removed. 

P R O C E D U R E  type-fork(k) (input S: v-list k: integer (A >  0))

{preccdence=15}

{specification: generates a  set of graphs, such th a t a  graph belongs to  the set if and only if

( 1 ) it has the same vertex set as tha t of S

(2) its edges arc constructed between the first vertex and k other vertices in S}

B E G IN

case S of 

x: failure

x 0 x lx 2 ..xt ( t<  k): ou tput none 

x0xlx2..xk: R output <  x0xlx2..xk, star >

x 0 x lx 2 ..xt (/ >  A): Routput OR!6r , i tr,2 ,...r ,i<  x 0 x j lx j 2 ..XjA, star >  

w: output <  w, fork >  [fork(k)]

E N D .

Remark: the constraint procedure, fork(k), will check each corresponding sub c-decomposition 

of the class to sec if it will generate no graph that has all edges constructed from the first vertex of 

the v-list to  k other vertices in the v-list, if so the c-decomposition is removed.

P R O C E D U R E  type-cubic (input S: v-list)

{precedence=16}

{specification: generates a  set of cubic graphs, such th a t a  cubic graph belongs to  the set if and 

only if it has the same vertex set as tha t of S}

B E G IN  

case S of 

x: failure
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xO xlx2 : failure

x0xlx2x3: ou tput <  x0x lx2x3 , clique >

x 0 x lx 2 ..x t (t >3): output AND(< x0xlx2..x ;t, fork(3) >  (<  x lx 2 ..x tx 0 , fork(3) >

(<  xfcxl..xt _ 2x i_ i ,  fork(3) >)[degree=3] 

w: ou tpu t <  w, cubic >

E N D .

P R O C E D U R E  type-regular(k) (input S: v-list, k: integer)

{precedence= 17}

{specification: generates a set of k-regular graphs, such tha t a k-regular graph belongs to the set 

if and only if it has the same vertex set as th a t of S}

B E G IN  

case S of

x 0 x lx 2 ..x t ( t<  k): failure

x 0 x lx 2 ..xk: ou tpu t < x 0 x lx 2 ..xk, clique >

x 0 x lx 2 ..x t (t >k): output AND(< x0x lx2 ..xk , fork(k) >  <  x lx2 ..xkx0 , fork(k) >

<  x k x l..x k -2 x k -l, fork(k) >)[degrcc=k] 

w: ou tpu t < w, regular(k) >

E N D .

Remark: the constraint procedure, degree=k, will check each corresponding sub c-decomposition 

of the class to see if it will generate no graph that has all vertices with degree k, if so the c- 

decomposition is removed.

P R O C E D U R E  type-connected (input S: v-list, status=basic)

{ precedence= 18}
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{specification: generates a  set of connected graphs, such th a t a  connected graph belongs to the 

set if and only if

(1) it has the same vertex set as th a t of S

(2) it contains a spanning tree and the left most vertex o f S is the root of the the spanning tree, 

any other vertex of S has a  parent to its left in S}

B E G IN  

case S of 

x: none

y: ou tpu t < y, connected > 

x lx 2 : ou tpu t < x lx 2  >

wx: Routput O R (<w , connected>, < x w , fork > ) 

w y: output <  wy, connected >

E N D .

P R O C E D U R E  type-connected (input S: v-list, status=cxtended)

{precedence=18}

{specification: generates a set of connected graphs, such tha t a connected graph belongs to the 

set if and only if

(1) it has the same vertex set as th a t of S

(2 ) it contains a spanning tree and the left most vertex of S is the root of the the spanning tree, 

any other vertex of S has a parent to  its left in S}

B E G IN  

case S of 

x: none

y: output <  y , connected > 

x lx 2 : output < x lx 2  >

w x: R output 0 R (<  w , connected > , <  xw , fork > )
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w y: O R (output <  w y, connected > ,

R output O R!ax(w)(A N D (< w, connected > , <  y, connected > , <  xy . e > ),

A N D (<w , connccted>, < y , forkO>, < x y , s ta r> ))

E N D .

P R O C E D U R E  type-disconnected (input S: v-list, status: [basic, extended])

{precedence=19}

{specification: generates a set of disconnected graphs, such tha t a  disconnected graph belongs 

to the set if and only if

( 1 ) it has the same vertex set as tha t of S

(2 ) there exists a one-to-one correspondence between the connected components and the v-list 

segments which form a  partition of S. And each connected component of the graph contains a 

spanning tree. The left most vertex of the segments of S corresponding to  the connected component 

is the root of the tree, and any other vertex of the segment has a parent to its left in the segment}

D E G IN  

case S of 

x: output failure 

x lx 2 : ou tput none

w l'y w 2 ': output <  S, disconnected > 

wx: R output O R (< w, connected > ,

OR!Ti»i,®2 (w x)O R( AND(< t»l, connected > , < w2, connected > ), AND(< w l, connected > , 

<  w2, disconnected > ),

AND(< w l, disconnected > , <  w2, connected > ), AND(< w l, disconnected > , <  w2, discon

nected > ))

E N D .

P R O C E D U R E  typc-nonseparable (input S: v-list, status:[basic, extended])

{precedence--2 1 }
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{specification: generates a  set of all nonseparable graphs containing a  spanning tree tha t can be 

generated by calling the T-procedure on S}

B E G IN  

case S of 

x: none

x, x lx 2 : output none

y: ou tpu t <  y , connected >  [no-cut-vertex] 

x 1x2x3: Routput <  x lx2x3 , cycle > 

w: R output <  w, connected >  [no-cut-vertex]

E N D .

Remark: the constraint procedure, [no-cut-vertex], will check each corresponding sub c-decomposition 

of the class to see if it generates no graph tha t has no cut vertex, if so the c-decomposition is removed. 

P R O C E D U R E  type-bipartite (input S1-S2: (v-list)-(v-list))

{ prccedencc=2 2 }

{specification: generates a  set of all bipartite graphs with two m utually isolated vertex sets 

implied in two v-lists SI and S2}

B E G IN  

case S 1-S2  of

x l-x2 : output O R(< x lx 2  > , none)

x-w , w-x: R output <  xw , forkO >

y l-y 2 : output < y l-y 2 , bipartite >

xw l-w 2, w lx-w 2- AND(Routput <  w l-w 2, bipartite > ,

output <  xw2, forkO >)

w l-xw 2, w l-w 2x: AND(Routput <  w l-w 2, bipartite > , 

output <  x w l, forkO >)

y lw l-y 2 w 2 : AND(output < y l-y 2 , bipartite >,
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Routput < y l-w 2 , bipartite> , < w l-y 2 , b ipartite> , < w l-w 2 , bipaxtite>)

E N D .

P R O C E D U R E  typc-complete-bip (input S1-S2: v-list)

{precedence=23}

{specification: generates a  set of all complete-bipartite graphs with two mutually isolated vertex 

sets implied in two v-lists SI and S2}

D E G IN

case S1-S2 of

x l-x 2 : output < x lx 2  >

x-w , w-x: Routput <  xw , sta r >

y l-y 2 : output < y l-y 2 , complete-bip >

xw l-w 2 , w lx-w 2: AND(Routput <  w l-w 2, complete-bip > ,

ou tpu t <  xw 2 , star > )

w l-xw 2, w l-w 2x: AND(Routput <  w l-w 2, complete-bip > , 

ou tpu t <  x w l, star > )

y lw l-y 2 w 2 : AND(output <  y l-y 2 , complete-bip > ,

R output <  y l-w 2, complete-bip > ,

<  w l-y 2 , complete-bip > , <  w l-w 2 , complete-bip > )

E N D .

P R O C E D U R E  type-symple (input S: v-list, status:[basic, extended])

{precedence=24}

{specification: generates a set of all simple graphs }

B E G IN  

case S of 

x: none

x lx 2 : outpu t OR (<  x lx 2 > , none)
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w: R output O R (<  w , connected > , <  w , disconnected > )

E N D .

4.3 The Features and The Correctness o f T-Procedures

The im portant features of all T-procedures are given as follows:

1 . If the input is a  concrete vertex list (no unknowns), then all ou tpu t classes are edges. Then 

each sub c-decomposition as well as each c-decomposition is a set of graphs which can be 

described by vertex sets and edge sets.

2. Each T-procedure accepts a v-list in any vertex-unknown configuration, and term inates its 

output in a  finite number of steps.

3. Each T-procedure implements its specifications correctly for any inputs a t any stage of recur

sion.

4. No non-trivial decomposition can be further made by OR operations (note tha t this feature is 

included for efficiency, it has no efTect on correctness). For example, decomposing <  S, T  > 

into 0 R (<  S, T  > , AND(< S, T  > , <  S, T l  > )) is trivial if T  subsumes T l.

5. Both basic and extended c-decompositions (see type-tree) are correct. But in basic sta tus 

no ’special case’ is explicitly included (by OR), i.e. no ’redundancy’. However, in extended 

status maximal number of ’special cases’ arc explicitly included (whether or not the number 

of special cases included is maximal has no effect on correctness). For example, for the case of 

S =  x y  in procedure type-tree, the set of graphs in <  xy , tree >  properly includes all graphs 

in AND(< y , tree > , <  x y , join > ).

These features can be verified directly from definitions or by using mathematical induction on 

elements of S in a straightforward manner. As examples, the following gives proofs for feature 3 on

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



60

cycle-type and tree-type. The proofs for features 1 and 2 are apparent. The proofs for features 4 

and 5 can be done by exhaustive checking.

4.3.1 A Proof for Cycle-Type T-Procedure

F ac t: feature 3 is true for cycle-type (see T-procedure cycle-type).

P ro o f:

If S contains one vertex then it is represented by either x  or y . The procedure finally represents 

the same graph, a vertex x.

If S contains two vertices, then it can only be represented in one of the forms: x lx 2 , y , xy , yx , 

y ly 2 . The output for each of these is a  single edge. For example, in the case of S of y ly 2  replacing 

y l  by x l and replacing y 2  by x2 , the output:

AND(< y ly 2 , 1 > , <  y l ,  1 > , <  y2, 1 >  < y 2 y l, 1 > ) 

will be

AND(< x lx 2 , 1 > , <  x l ,  1 > , <  x2, 1 >  <  x 2 x l, 1 > ) =  < x lx2  >

If S contains three vertices, then it can only be represented in one of the forms: y , xy , yx , y ly 2 , 

7, 1w z2 . There is finite number of ways to assign the patterns for each case. It is easy to check tha t 

all of them result in the same single ou tput graph with three edges: <  xlx2 > , <  x2x3 > , <  x3xl 

> . For example, let z l  be x l. w be x2. z3 be x3 then the output:

R output AND(< z lw , 1 > , < wz2, 1 > , <  z2zi, 1 > ) 

will be:

R output AND(< x lx 2 , 1 > , <  x2x3, 1 > , <  x 3 x l, 1 > ) =  <  x lx2  > , <  x2x3 > , <  x3xl > . 

Let S be x ^  • • - x„ (n >  3) then S can be assigned for one of the following forms: 

y , xy , y x , y ly 2 , z lw z 2 .

We show the proof for one of the forms (proofs for the others are similar):

Let S be assigned for x iw x n 

by the T-proccdure it has output:
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Routput AND(< X|W, 1 > , <  w z„, 1 > , <  x „ x i, 1 > ) 

here w contains n- 2  vertices, assume th a t the correctness of the procedures with lower precedences 

has been proved, so each operand of AND will generate a sequencially connected path. For example, 

z lw  will generate a  path  sequencially connecting vertices from X2 to X(n — 1). Thus the final ou tput 

is the cycle circularly connecting vertices in S.

QED

4.3.2 A Proof for Tree-Type T-Procedure

F ac t: the feature 3 is true for tree-type (see T-procedure tree-type).

P ro o f:

We first prove th a t any graph generated by the procedure is a  tree described by the specification. 

We prove the claim by considering the patterns of S as follows:

1. S contains no unknown and has vertex, say x , at the right-most end of it. We use mathematical

induction on n, the number of vertices S contains.

(a) if n =  0 , 1 and 2 , the proofs are obvious.

(b) assume tha t the claims are true when the number of vertices is less than n. Consider the

case when the number of vertices is n, the output:

wx: Routput AxN'D(< w, tree > , <  xw , e > )

contains an AND of two classes. The first class has v-list with n i number of vertices and 

has type tree, thus being a  tree by induction hypothesis. The second class: <  xw , e > , 

by the correctness of T-procedures with lower precedences, represents only a  single edge 

from the vertex x  to one of vertices of w, i.e. to  a vertex to its left in S. By the definitions 

of AND, each graph in the output is constructed by such a  tree and such an edge. Thus 

the claim has been proved.

2 . S has an unknown, say y. Examine all outputs of S’s all possible patterns, it is clear that:
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(a) either the same proof earn be found when y  is seen as instantiated vertex list (e.g. for 

S = v x  case), or

(b) the ou tpu t is <  S, tree > , for which the proof can be converted to  th a t for the non

unknown case, when y ’s are seen as instantiated vertex lists, or

(c) the ou tpu t class represents an AND with two classes, each of them  has type tree and has 

shorter v-list (referred to special cases). By the induction hypothesis they are two trees 

satisfying the specification, because these two trees have only one common vertex so the 

union of them is a  tree which satisfies the specification too.

We now prove th a t any tree given by the description can be generated by the procedure:

Since th a t a  given tree is a concrete tree (i.e. no unknown in it), it is always possible to 

construct a v-list starting from the root of the tree and such th a t each vertex is a node of 

the tree and each node has a parent to  its left in S. A level list of a  tree defined in chapter 7 

indicates the way to construct such a v-list. Considering the case of S: w x where w is a  list of 

concrete vertices, it is easy to see tha t the ou tput should contain the given tree since type-e 

generates a set of all possible edges from x  to  a  vretex to its left in w.

QED
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CHAPTER 5 

Proof Process

Equipped with the algebraic and procedural knowledge representation scheme, GC can orga

nize its proof mechanism as an a n d /o r  [Ni] proof tree with forward chaining search guidance. 

To produce a proof a t each node GC employs a  hierarchical proof processing. This chapter 

presents the complete local (a t a  node of a proof tree) proof process and associated knowledge 

handling.

5.1 Background Knowledge Formalization

In order to generate a  decomposition of a class producing a  simplified class expression in 

normal form, both the algebraic and procedural processes m anipulate v-lists, graph types, and 

constraints. Such a manipulation is well guided under their background knowledge.

5.1.1 Conceptual Frames

The system GC provides a frame-based representation structure [Mi] to store and update the 

im portant background knowledge on graph concepts. A graph concept frame consists of the 

following slots (the correctness of the knowledge is proved mathematically):

•  The pointer to its T-procedure (Type procedure) for recursively decomposing graphs of 

the type in a  predefined order.

•  Subsumption relation with other types, e.g. type path is subsumed by type tree, type 

tree is subsumed by type connected, type star is subsumed by type tree and so on.

•  The indices of inference rules to rewrite formulas of the type with regard to some con

strain ts used.
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•  The indices of axioms available to the type.

•  Special algebraic properties, e.g. type clique has property:

C O M P (<  S,clique  > )  = <  5 ,0  >.

•  The pointers to algorithms available from graph theory, e.g the algorithm for finding all 

cycles from a  concrete graph is available for type cycle.

•  The extrcmal-cascs of graphs in the type, e.g. for type cycle non-degenerated extremal- 

case is triangle.

•  The equivalent types, e.g. type e is equivalent to  type join.

Note that the subsumption relations must be proved to be applicable to any classes with the 

same v-lists based on the specification of graph type, for instance, <  S, tree > subsumes < S, 

1 > . The information in a slot of a  frame can be updated either through human interaction 

or automatically done by the system after a theorem is proved.

5.1.2 Representation about Constraints

In addition to v-list and type, constraints are another kind of parameters to define a  graph class, 

i.e. each graph generated from an unconstrained class formula must pass the corresponding 

constraint checking. Unsatisfied candidates are filtered out from the class. The constraints 

are handled as background knowledge. The reasoning processors related to  constraints are a 

set of predefined procedures. The constraints are divided into the following two types:

(1) M E  c o n s tra in ts  I t is a kind of constraints on the m utual relations between two v-list 

elements. For example:

x[= x lj : means ’ x equal to x l ’ and the predicate symbol is ’= ’.

x(not=  xl] : means ’x docs not equal to  x l ’ and the predicate symbol is ’n o t= ’.

yl[in y] : means ’every vertex in y l is in y ’ and the predicate symbol is ’in’.
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yi[not-in y] : means ’every vertex in y l is not in y ’ and the predicate symbol is ’not-in’.

y2 [not= y l] : means ’y2  and y l are not the same unknowns’ and the predicate symbol is 

’n o t= \

<  S, T  >[with <  x lx 2  >] : means ’each graph in < S, T  >  contains edge <  x lx 2  > ’ and the 

predicate symbol is ’w ith’.

(2) n o n -M E  c o n s tra in ts  Any other kind of constraints. For example:

x[degrce> k] : means ’x has degree greater than k’ and the predicate symbol is ’degree>’.

x[cut-vertex] : means ’x is a  cut vertex’ and the predicate symbol is ’cut-vertex’.

<  S, T  >[no-cut-vertcx] : means ’each graph in <  S, T  > has no cut-vertex’ and the predicate 

symbol is ’no-cut-vertex’.

To deal with ME constraints GC has a  decision procedure called ME checking procedure, 

which is described below:

A set of v-list elements which are pairwise disjoint is called an ME-set (M utual Excluded set). 

Based on the definition of a v-list (all vertices within a v-list are pairwise disjoint) and the 

semantic meaning of ME constraints, it can be proved th a t there exists a  procedure which 

decides if two v-list elements are pairwise disjoint. This procedure is ME checking procedure. 

To simplify the discussion on this decision procedure it is necessary to have the following 

definitions:

• Definition 1 . Dircct-in(y) is a  set of all v-list elements (vertices and unknowns) followed 

by constraints of the form [in y] or form [= y].

{remark: the set consists of all elements, each of which has either ’in’ or ’= ’ constraint 

relations with y, thus is in y}

•  Definition 2. If wlyw2 is a  v-list then phy_out(y) is a  set of all v-list elements contained 

in w l and w2 .
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{remark: the set consists of all elements, each of which is in the same v-list as y is, thus 

is not in y}

•  Definition 3. Sym_out(y) is a  set of all v-list elements which are followed by constraints 

o f the form [notJn y],

{remark: the set consists of all elements, each of which has ’not-in y ’ constraint thus is 

not in y}

•  Definition 4. Direct.out(y) is the union of phy.out(y) and sym jout(y).

{remark: the set consists of all elements, each of which satisfies constraint ’not-in(y)’ 

’directly’, and any element th a t satisfies the constraint ’directly’ is in the set}

•  Definition 5. Equal(x) is a set of vertices defined by:

(a) initially equal(x) contains x;

(b) if x l is in equal(x) then any x2  which satisfies the constraint ’x2 [= x l] ’ or ’x l[=  x2 ]’ 

is in equal(x);

(c) repeat step 2  until no more such an x l can be found.

{remark: the set consists of all elements, each of which satisfies ’= x ’ either ’directly’ 

or ’indirectly’ and any element tha t satisfies ’equal to x’ is in the set (since exhaustive 

checking is used)}

•  Definition 6 . Unequal(x) is a  set of vertices defined by:

(a) initially unequal(x) is empty;

(b) if x l together with a  vertex in equal(x) is argument of a  ’n o t= ’ constraint, then xl

is in uncqual(x);

(c) if x l is in uncqual(x) then any x2  in equal(xl) is in unequal(x);

(d) repeat steps 2 and 3 until no such x l can be found.

{remark: the set consists of all elements, each of which satisfies ’n o t= x ’ either ’directly’
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or ’indirectly’, and any element tha t satisfies ’unequal to x’ is in the set (since exhaustive 

checking is used)}

•  Definition 7. Equal(y) is a set of unknowns defined by:

(a) initially equal(y) contains y:

(b) if y l is in equal(y) then any y 2  which satisfies the constraint ’y2 [= y l] ’ or ’y l[=  y2 ]’ 

is in equal(y);

(c) repeat step 2  until no more such a  y l can be found.

{remark: the set consists of all elements, each of which satisfies ’= y ’ either ’directly’ 

or ’indirectly’ and any element th a t satisfies ’equal to y’ is in the  set (since exhaustive 

checking is used)}

•  Definition 8 . Logicjn(y) is a set of v-list elements defined by:

(a) initially logicjn(y) contains y;

(b) if y l is in logic Jn (y) then any v-list element z which is in d irec tJn (y l) or in equal(yl) 

is in logic-in(y);

(c) if x l is in logicin(y) then any v-list clement x which is in equal(xl) is in logic-in(y);

(d) repeat steps 2 and 3 until no more such a  y l and x l can be found.

{remark: the set consists of all elements, each of which satisfies in(y) either ’directly’ or 

’indirectly’ and any element that satisfies ’in(y)’ is in the set (since exhaustive checking 

is used)}

•  Definition 9. Sctcqual(y) (set equivalent) is a  set of unknowns defined by:

(a) initially setequal(y) contains equal(y);

(b) if y l is in setequal(y), then if any y 2  satisfies: 

y2 is in logic-in(yl) and y l is in Iogic-in(y2) 

then y2  is in setequal(y);
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(c) repeat steps 2 and 3 until no more such a  y l can be found.

{remark: the set consists of all elements, each of which satisfies ’having the same vertex 

se t’ cither ’directly’ or ’indirectly’ and any element th a t satisfies such a  condition is in 

the set (since exhaustive checking is used)}

•  Definition 10. Logic_out(y) is a  set of v-list elements defined by:

(a) initially logic_out(y) is equal to direct.out(y);

(b) if y l is in logic_out(y2 ) and y2  is in setequal(y) then any v-list element z which is in 

IogicJn(yl) is in logicjout(y);

(c) repeat step 2  until no more such y l can be found.

{remark: the set consists of all elements, each of which satisfies ’not-in y ’ either ’directly’ 

or ’indirectly’ and any element th a t satisfies such a  condition is in the set (since exhaustive 

checking is used)}

A lg o r ith m : M E  ch eck in g  on  v -lis t e le m e n ts  z l  a n d  z2

(a) If zl and z2 are both x  type let z l= x l ,  z2=x2, and if x l is in unequal(x2), then output 

ME and stop for x l x2, else go to  4.

(b) If zl is x type and z2 is y  type let z l= x l ,  z2=y2, and if x l is in logic-out(y2) then output 

ME and stop for x l y2, else go to 4.

(c) If z l and z2 are both y  type let z l= y l ,  z2=y2, and if y l is in logic-out(y2), then output 

ME and stop for y l y2.

(d) O utpu t NOT ME for z l and z2.

P r o o f  o f  th e  c o rre c tn e s s  o f  th e  p ro c e d u re  Notice th a t the proofs for above definition 

remarks (i.e. conclusions) can be simply done, and the correctness of the procedure can be 

proved directly based on these remarks.
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5.2 Representation of Theorems

Using the class formula and the algebraic operations a  theorem representation in graph theory 

can be divided into two parts:

(a) assertion part: represented by a  class expression.

(b) goal part: represented by a  ciass expression.

The meaning of a  theorem in graph theory often takes one of the following eight (called Form-1 

to  Form-8 ):

(a) Form-1. Each graph in an assertion set is of type T  with property (constraint) P.

(b) Form-2. No graph in an assertion is of type T.

(c) Form-3. The set of graphs in an assertion is equivalent to another set of graphs.

(d) Form-4. Each graph in an assertion has a  subgraph of type T  with property P.

(e) Forin-5. Each graph in an assertion has no subgraph of type T.

(f) Form-6 . Each graph in an assertion has an induced subgraph of type T  with property P.

(g) Form-7. Each graph in an assertion has no induced subgraph of type T.

(h) Form-8 . The set of graphs in an assertion is not equivalent to  another set of graphs.

The following examples show the formula representations:

E x a m p le  1

The assertion of the theorem:

’Any two distinct cycles having a common edge e contain a cycle not passing e ’ is:

AND(< x lx 2 y l, cycle > , < xlx2y2[not= y l], cycle >)

The goal of the theorem is as follows:

GOAL-FORM: 4
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V G (i.e for any graph in the assertion) 3 y, such th a t

< y , cycle >[not-with < x lx 2 > ] partially subsumes G,

here ’partially subsumes G ’ means ’subsumes a subgraph of G ’.

Remark: the common edge is <  x lx 2  >.

Example 2

The assertion of the theorem:

’If cycle (closed path) C l contains edges e l, e2, and cycle C2 contains edges e2, e3, then there 

exists a cycle th a t contains e l  and e3’ is:

AND(< x ly lx2 , cycle >[with <  x3x4 >], <  xly2x2, cycle >[with <  x5x6 >])

Remark- <  x lx 2  > represents e2, <  x3x4 > represents e l, and <  x5x6 >  represents e3.

The goal of the theorem is:

GOAL-FORM: 4

V G 3 y , such that

<  y , cycle >[with <  x3x4 >][with <  x5x6 >] partially subsumes G.

E x a m p le  3

The statem ent: ’The union of a tree and a path is a  tree if they have only a single common 

vertex’ has

FACT (or assertion):

AND(< ylxy2, tree > , <  xy3[not-in y l, y2], 1 >)

CONJECTURE : such a graph is a tree (GOAL-FORM: 1)

V G 3 y , such that

<  y, tree> subsumes G.
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5.3 Proof o f Existence

Any one of the above eight theorem forms basically can be seen as a  claim of existence or non

existence, because it can be seen that either there exists a  subset (may not be proper subset) 

of the goal set (a  subset of the universal graph set) which subsumes the assertion graph set, or 

there exists no subset of the goal which subsumes the assertion set. This research provides a 

constructive approach to prove existence for a  theorem or a  subtheorem based mainly on the 

following ideas:

(a) Use c-algebraic representation to make next candidate for subset gi of the goal set g 

based on exhaustive search or heuristic guidance.

(b) Try to prove th a t gi subsumes (or partially; see later) the assertion graph set using 

algebraic manipulation and type decomposition.

(c) Go to step 1 repeatedly until step 2 succeeds (proved) or fails to  find a  candidate (un

proved).

5.3.1 Subsumption Primitives

The approach has a  simple and efficient method based on pattern  matching to  prove the sub

sumption relation between graph class expressions. This subsection discusses the subsumption 

primitives. To simplify the discussion assume only A ND/OR operations involved. For cases in

volving other kinds o f operations the discussions are similar. The following shows subsumption 

proof primitives of the class algebra:

(a) To prove th a t a  class c2: <  S2, T2 >  subsumes class c l: <  SI, T1 > , it is necessary to 

convert cl and c2  to unconstrained classes, and then check whether

i. their character strings are exactly the same , or

li. S2  is the same as SI, and that T2 subsumes T1 can be found in their type frames.
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(b) To prove set subsumption (or partial subsumption) between two sub c-decompositions, 

say </2 subsumes (or partially subsumes) g \ , y/c need to find a  1-to-l correspondence 

between all classes of g2 and all classes of gi (or part of classes of gi), and then prove 

th a t g2’s class subsumes g \ ’s class for each correspondence.

(c) To prove set subsumption (or partial subsumption) between two c-decompositions, say 

N 2 subsumes N \,  we need to  prove th a t each sub c-decomposition of N1 is subsumed (or 

partially subsumed) by a  sub c-decomposition of N2.

5.3.2 Goal-Assertion Subsumption M ethod

The Goal-Assertion Subsumption Method (GASM) is the most powerful and general prov

ing process for subsumption relation between two A N D /O R normal forms provided by this 

approach. The applications of GAMS on different theorem forms are given below:

5 .3 .2 .1  G A S M  o n  Form -1 T h e o re m s

GASM as applied to  any theorem with form-1 goal is described in six steps below (assume 

tha t the type stated  in the goal is T):

(a) Invoke ME checking to determine an ME-set containing all vertices in assertion, and 

denote the ME-set as R.

(b) Construct a  v-list, say S, by perm uting the elements of R.

(c) Expand the assertion to  obtain normal form N l.

(d) Expand the class < S, T  >  to obtain normal form N2 for the goal.

(e) Prove th a t the normal form N2 subsumes the normal form N l. If N2 contains type-1

classes then it may be necessary to  try  various permutations of reversals of unknowns in

these classes using the rule tha t <  yx, 1 >  is equal to <  xy, 1 > .
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(f) If step 5 fails then an exhaustive or guided search on the perm utation of S will be per

formed to construct a new S and then go back to step 2.

It is easy to  verify th a t if the subsumption relation is proved and constraint checking is passed, 

the theorem of form-1 is proved. Apparently, the cardinality of R should be fairly small, 

fortunately it is usually true for m any theorems represented using unknowns. A technique 

dealing with large cardinality is under study, for example, subsumption checking might be 

replaced by an isomorphism checking using domain specific knowledge, thus perm utation will 

not be needed.

5 .3 .2 .2  G A S M  on  F orm -3  T h e o re m s

GASM as applied to  any theorem with form-3 goal is described below (assume th a t the type 

sta ted  in goal is T):

(a) Expand the assertion to obtain normal form N 1.

(b) Expand the goal to obtain normal form N2.

(c) Prove tha t the normal form N2 subsumes the normal form N l. If N2 contains type-1 

classes then it may be necessary to try various perm utations of reversals of unknowns in 

these classes using the rule th a t <  yx, 1 >  is equal to <  xy, I > .

(d) Prove tha t the normal form N l subsumes the normal form N2. If Nl contains type-1  

classes then it may be necessary to try  various perm utations of reversals of unknowns in 

these classes.

5 .3 .2 .3  G A S M  o n  F o rm -4  T h e o re m s

GASM as applied to any theorem with form-4 goal is described below (assume th a t the type 

stated  in goal is T):
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(a) T he same as th a t for form-1 except step 4, th a t is replaced by the following: prove th a t 

the normal form N2 partially subsumes the normal form N l.

5 .3 .2 .4  G A SM  o n  Form -6 T heorem s

GASM as applied to  any theorem with form-6 goal is described below (assume that the type

stated in goal is T):

(a) The same as th a t for form-4.

(b) Partition  NT’s classes into two parts, the first part consists of all classes subsumed by N2. 

Prove th a t the second part has no edge with two end vertices on the first part.

An equivalent GASM on forrn-6 theorems, which uses stronger condition but often simplifies

the proof process, is:

(a) The same as th a t for form-4.

(b) Partition  N l’s classes into two parts, the first part consists of all classes subsumed by N2.

(c) Partition the second part into two subparts, the first subpart consists of all classes, each 

of which has no more than one vertex th a t is also in the first part. Prove the second 

subpart has no edge with two end vertices on the first part.

(d) If the second subpart is empty then proved, else prove th a t the second subpart has no 

edge with two end vertices on the first part.

H.3.2 .5  G A SM  on  T heorem s w ith  Form 2, 5 , 7 or  8

The current solution for theorems with these forms is:

(a) i f  there is unknowns involved then stop (unproved).

(b) Prove form 2, 5, 7, 8 in the same manner as form 1, 4. 6 and 3 respectively.

(c) If the corresponding proof succeeds then output ’proved’, otherwise output ’disproved’.
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5.4 Leveled M ethods

The approach adopts a technique used in Boyer-Moore theorem prover [BM]: applying different 

proving methods leveled from ’simple’ to  ’complex’ (i.e. only when it fails to prove at level 1 

the level 2 is reached). In GC proving methods are divided into four levels.

5.4.1 Level 1

Level 1 is restricted to be applied for concrete graphs; in other words, the assertion should 

not contain an unknown. The system is able to utilize most of algorithms existing from graph 

theory for proving processes a t this level, such as for a  concrete graph:

(a) Finding all paths between any two vertices.

(b) Finding all cycles.

(c) Finding a spanning tree rooted a t a  specified vertex for a  connected graph.

(d) Finding a  maximal clique.

(c) Finding all cut vertices.

(f) Finding a cut set.

(g) Compute the degree of a vertex.

(h) Compute the maximum matching.

(i) Compute the maximum matching in a bipartite graph.

5.4.2 Level 2

Level 2 is devoted to  the use of a set of decision procedures with input containing unknowns. 

The system has several general and useful decision procedures such as:

(a) Finding all paths on ciass expression containing only type 1, type cycle and type clique.
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(b) Finding all cycles on a  class expression containing only type 1 and type cycle.

5.4*3 Level 3

Another proof method th a t is closely related to the GASM is using a  proved theorem as an 

axiom to help prove. This is applied a t level 3. A proved theorem is judged. If the generality 

is appreciated, then it will be installed into the axiom base where its assertion (with variable 

elements) is represented in normal form. Once a theorem’s goal matches an axiom’s goal, the 

assertion of the axiom is instantiated, and the further process will be the same as th a t of the 

Goal-Assertion Subsumption Method.

5.4.4 Level 4

This level is devoted to the GASM.
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CHAPTER 6 

Proof Search: Case-Split-Based Inferencing

The graph classification can also be done by case-split-based inferencing rather than by c- 

decomposition. A set of inference rules is designed to  rewrite a  class into a  logical expression 

(an and /o r form but not to be confused with A ND/OR as defined in c-algebra) of several 

subclasses in term s of constraint predicate language. In order to guide a  proof search this kind 

of process is applied after a  proof (or a sub proof) fails in the root (or a node).

6.1 Inference Rule and Case Splitting

The case splitting caused by m eta inferencing can be seen from the example below:

The unknown y l[n o t=  y2] shown in example 1 in 5.1 can be split into three cases by: 

IN F E R E N C E  R U L E  1:

y l[n o t=  y2]

remove [not= y2] and generate

case  1: y 'lx y 3  substitutes y l ,  y 'l x  substitutes y2

and (conjunction) case  2: y 'lx y '3  substitutes y l ,  y 'lx l[n o t=  x]y '4 substitutes y2

and (conjunction) case  3: y ' l x  substitutes y l ,  y 'lx y 3  substitutes y2.

Here case 1 represents : y l  is longer, case 3 represents : y2 is longer, and case 2 represents 

: two vertices are different at same position on the lists y l  and y2 (remark: the integrity 

of naming in rewritting is guaranteed in GC, also here operators ’and’ and ’or’ represent the 

operators to construct an and/or tree).
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Substantially, the use of such a  rule is a kind of class decomposition, where the newly generated 

classes are more constrained thus often making subtheorems simpler to  be proved (recall th a t 

c-decomposition does not decompose constraints).

The rules may be used repeatedly to  generate an and /o r structured proof tree with the given 

theorem allocated a t the root,. Proving processes are applied a t each node in an order controlled 

by a  recursive backtracking procedure.

The next section illustraits some typical inference rules. Because typed rules (suit to  a  des

ignated type) are well indexed the increasing use of this kind of rules does not rapidly cause 

referencing problem [BM], thus many other explicitly typed rules (e.g. type 1 or type clique) 

can be added.

6.2 Inference Rule Set

IN F E R E N C E  R U L E  2:

< w x. T  >[with x l]

case  1: <  w x l, T  > ; x l  substitutes x  

and case  2: < w[with x l]x , T  > .

The rule splits out two cases for a  type T  (any type) class th a t contains vertex x l .  

IN F E R E N C E  R U L E  3:

<  w, 1 >[with < x lx 2 > ]

( case  1: <  w '1x1x2, 1 > 

and case  2: <  w '1x2x1, 1 >
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and c a se  3: <  w l[w ith < x lx 2 > ]x , 1 >  ) 

or

( case  4: <  x lx 2 w 'l ,  1 >

and case  5: <  x 2 x lw 'l ,  1 >

and case  6: <  xw 'l[w ith  < x lx 2 > ], 1 >  ).

The rule splits out six cases (an a u d /o r  subtree) for a  type-1 class th a t contains edge < x lx 2 >  

(assume the edge is newly named otherwise 12 cases (exchaning x l and x2 for another 6 cases) 

will be involved).

IN F E R E N C E  R U L E  4:

<  w x , clique >[w ith <  x lx 2  >]

case  1: < wfwitli x l]x2 , clique >  ; w(with x l] substitutes w  and x2 substitutes x 

and case  2: <  w[with < x lx 2  >]x, clique > .

The rule splits out two cases for a  type-clique class tha t contains edge <  x lx 2  >  (assume the 

edge is newly named otherwise three cases will be involved).

IN F E R E N C E  R U LE 5:

< xw , sta r >[with <  x lx 2  >]

case  1: < x lw [w ith  x2], star >  ; w[with x l]  substitutes w  and x2 substitutes x .

The rule splits out one case for a  type-star class th a t contains edge < x lx 2  >  (assume the 

edge is newly named otherwise two cases will be involved).
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IN F E R E N C E  R U LE 6: 

x

y

case  1: x[not-in y] 

and case  2: y = y / lx y '2 .

The rule splits out two cases for vertex x  and unknown y  regarding to their m utual relation. 

IN F E R E N C E  R U L E  7: 

y i  

y 2

case  1: y l[not-in  y2]

and case  2: y l= y 'll[n o t- in  y2]x[in y2]y'

or case  3: y l= y 'l l[n o t- in  y2]xl[in y2]y'x2[in y2]y22'[not-in y2].

The rule splits out three cases for unknown y l  and unknown y2  regarding to their mutual 

relation.

IN F E R E N C E  R U L E  8: 

y

case  1: y 'l x  substiludcs y 

or case  2: x y 'l  substitudes y .

The rule splits ou t two disjunctive cases for a  nonempty unknown y  which is replaced by y 'lx  

or x y 'l .
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IN F E R E N C E  R U L E  9:

y'

case  1: y ' is replaced by empty 

and case  2: y.

The rule splits out two disjunctive forms of a nonempty unknown y. 

IN F E R E N C E  R U L E  10:

AND( <  y[universal] , connected >

< w 'lx l[n o t=  x2]w'2, T  > )

add < x ly 'lx 2 ,  1 >  to the assertion.

The rule says th a t in a connected graph there exists a  path between two different vertices. And 

it is added to the assertion (note th a t the ’y[universal]’ means ’any element in the assertion is 

in y ’).

IN F E R E N C E  R U L E  11:

ANI)( <  y[universal] , connected >

<  •w 'lx lfno t=  x2]w '2, T  >  )

replace the assertion by < x ly T x 2 , 1 > .

The rule says th a t in a  connected graph there exists a path between two different vertices. It 

replaces the assertion and it is not a complete rule (see next section).
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6.3 Soundness of The Rules and Equivalent Substitutions

The first 10 rules have the following features: the conjunction ( ’and’) of split cases are logically 

equivalent to the original case; the disjunction ( ’or’) of split cases are equivalent each other,

i.e. each of them  is equivalent to the original case. For example, in RULE 3: the ’and’ of first 

three cases is equivalent to the original case, the ’and’ o f last three cases is also equivalent to 

the original case. Here equivalence refers to set (of graphs) equality between the assertion of 

the original theorem and the assertions which are generated by substitutions defined in each 

case. In other words, if the original theorem is true then each subtheorem is true, and if each 

subtheorem  is proved the original theorem is proved. We also call the applications of rules 

with the above property as equivalent substitutions.

The application of rule 11 is not an equivalent substitution (called non-equivalent substitution), 

but all these rules are logically sound [Ni]. This is because any theorem derived from an 

assertion by applying these inference rules are also logically followed from that assertion.

If a reasoning system uses only equivalent substitutions then it can generate lemmas during a 

proof process since unproved subtheorems are lemmas. However, equivalent substitutions may 

not be efficient due to involving too much useless information. GC’s strategy on choosing rules 

is based on: (1) if there is a  non-equivalent substitution rule (may not be complete) available 

then use it to conduct efficient proof search: (2) if all m ajor efforts fail or no such a rule is 

available then use equivalent substitution rules, and the generation of interesting lemmas is 

also considered during the proof search.

6.4 Induction Formalization

The richness of the semantic network provided by class representation enables GC to construct 

a m athem atical induction formulation which performs induction proving on the number of
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vertices of a  chosen unknown. T his method has resulted in many improvements on GC's 

performance. In GC the induction formalization is obtained by the application of an inference 

rule which has the following process:

Let a  subtheorem contain ar. unknown y  (chosen arbitrarily or by heuristics), the following 

two cases (in conjunction) are generated for the subtheorem:

1. Base case: for each instance of y  in the theorem substitu te y  by some minimal value or by 

null.

2. Induction step: generate a tem porary axiom corresponding to  the subtheorem; replace y  by 

y x  for all instances in the subtheorem  to generate a  new subtheorem. The temporary axiom 

will be used as follows:

(a) instantiate variables in the axiom,

(b) check whether the temporary axiom’s assertion subsumes (or partially subsumes) the new 

subtheorem 's assertion (by GASM),

(c) if yes then instantiate the axiom’s goal and substitu te  (or partial substitute) the goal for 

each c-decomposition of the new assertion, (after the replacement the original constraints are 

still effective).

(d) prove the new obtained theorem based on the GASM methods.

The correctness of the formalization is proved directly by the observation th a t the method is 

just a  special form of mathematical induction. The induction variable is the number of vertices 

contained in a v-list.
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CHAPTER 7 

The Implementation of System  GC

GC has been built up on layer 2 of the Logical Machine Architecture (LMA) in UNIX™*1 

system using programming language PASCAL. Currently the implemented version of GC is 

restricted to  applicability to theorems involving path, cycle and tree. The c-algebra and Goal- 

Assertion Subsumption Method and some im portant mechanisms have not been implemented 

in the system as yet. However, the current system does reflect a special case of the approach, 

for example, an algebra called path-set as a subset of c-algcbra has been implemented, also the 

decision procedure proving method (instead of leveled methods) has been implemented. With 

such a  simple structure, GC is still able to prove many basic graph theory theorems related 

to path and cycle. GC consists of six well organized modules, which are interconnected to 

support the and /o r tree search proof mechanism similar as th a t in chapter 6 (sec Figure 1 at 

page SS). The following sections give a brief view of the structure of the system.

7.1 Overview of The System ’s M odules

7.1.1 Module 1 : The Symbolic Processor

Figure 2 at page 89 shows the structure of module 1. This module accepts an input theorem, 

recognizes the path-set (the set of path type classes), and separates the assertion part from 

the goal part of the theorem. During the symbolic passing the module assigns each distinct 

v-list element a unique integer (called property in LMA). Several scans of the theorem formula 

arc designed to generate corresponding logic-in and logic-out sets thus providing the required 

ME knowledge.

'UNIX is a  trademark of Bell Laboratory

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7.1.2 Module 2 : The Algebraic Processor

This module manipulates a  set of constrained classes (with path type) to obtain a normal

ized form. It also processes different kinds of constraints to obtain a  simplified constraint 

representation. The structure of module 2 is shown in Figure 3 a t page 90.

7.1.3 Module 3 : The Candidate Generator

Figure 4 a t  page 91 shows the structure of module 3. This module is able to generate the 

next candidate v-list of a  goal cither in exhaustive or in selective order by using the MI2 

checking procedure. In order to choose a better candidate, some heuristic guidances have been 

designed, and a backtracking mechanism associated with the generator has been implemented. 

Backtracking must be used whenever there is no candidate that can be used to satisfy a 

subtlicorcm. In tha t case the tree search will be retried a t its parent node.

7.1.4 Module 4 : The Proof Engine or Local Processor

Figure 5 a t page 92 shows the structure of module 4. This module consists of two procedures:

(a) A procedure which finds ail cycles (or paths) in the path set.

(b) A procedure which uses constraint knowledge to decides whether the cycle (or path) 

found is satisfactory, th a t is to say, it decides whether the corresponding constraints are 

satisfied by the cycle (or path).

7.1.5 Module 5 : Global Processor to Perform Tree Expansion

Figure 6 a t page 93 shows the structure of module 5. This module consists of a heuristic 

guidance unit, a  rule rewriting processor, and a set of inference rules based on case-splitting. 

The rules are chosen by the control unit. The heuristics used include knowledge about the
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neighborhood of an unknown, and the ’Mul.tial Exclusion’ relations between an unknown and 

elements in other v-lists. The more neighbors an unknown has the higher is the priority for it 

to be chosen as a  target for application of a  related rule.

7.1.6 M odule 6 : The Control Unit

This module controls input and output, generates proof information. If a  proof is found this 

unit will generate the output proof tree. If a  proof process fails it will clear up the current 

process records and get the system ready to s ta r t a  new process. The structure of this module 

is shown in Figure 7 at page 9-1.

7.2 Descriptions of The System  GC

The currently implemented system GC is mainly a stand-alone automated reasoning system 

in graph theory with interactive components preserved. This software is built in UNIX d.3 

USD on VAX 11/785. It is constructed upon the Logic Machine Architecture (LMA) between 

layer 2 and layer 3. The partially implemented reasoning components can be used to provide 

constructive proofs for revealing the existence of cycles from factual input.

7.2.1 The Syntax of The Graph Language Subset

The language used in this implementation can be seen as a modified subset of the graph 

classification language restricted on the specific domain of graph theory. The language can be 

described in terms of both c-algcbraic expressions and a  BNF (a Backus-Naur Form) grammar. 

In this implementation the following BNF gram m ar is used to  describe the language: 

theorem :: assertion |= goal 

assertion :: g  path |= paths

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



87

pathnam e :: p  chardigits | q  chardigits 

constraints :: constraint constraints |

constraint :: [iu b-elemcnt]| [ni b-element]| [ke element]| [eq element]

constramed-elcments :: constrained-element constrained-elements |

constraincd-element :: a-element constraints | b-element constraints

a-elemcnt :: a  ciiardigits

b-element :: b  chardigits

chardigits :: chardigit chardigits |

chardigit :: a..z | A..Z | 0..9

goal :: c a-elemcnt | c b-clement | c a-element a-element

7.2.2 The Diagrams of The Software Modules

N o te : M a jo r  p ro c e d u re s  a re  in d ic a te d  b y  p a re n th e s iz e d  n a m e s  in  th e  v ario u s 

b locks.
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Figure 1 The overall structure of the system GC
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Figure 2 The structure of the symbolic processor

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



90

path construction 

( tmswd )

path simplification

algebraic 
normalization 
on path set 

( trnwd )
( sent)

constraint merging 

( mcrgcsets )

constraint convertlon 

( callconstrainsct)

path splitting 

( sendr )

Mgurc 3 The structure of the algebraic processor
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i'igurc S The structure of the local proof process ( cycle checking engine )
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Figure 6 The structure of the global proof process ( tree cxpanssion)
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figure 7 The structure of the control unit
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7.2.3 The File Structures of GC

Two kinds of files are used in constructing GC:

1. Logic Machine Architecture (LMA) system files. For example, p21inkur.o, p3trutil.o, 

l'2demodlib, and layerllib.

2. Files dedicated for the implementations of the approach. For example, tg.o, tg ll.o , tgl2.o. 

and tg62.o.

The argum ents to  the program are: infile - the file containing the formalized theorem; outfile 

- the file containing the output descriptions of the proof search.

7.2.4 Example Proofs

The following illustrates five test examples of the system GC. Each theorem is represented 

using the language given in section 7.2.1. Each vertex is represented by letter ’a ’ followed by 

letters an d /o r digits, and each unknown is represented by letter ’b ’ followed by letters and/or 

digits. Each path is represented by a  list of vertices and unknowns, and it has a name denoted 

by letter ’p ’ followed by digits.
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7.3 Discussion and Future Implementation Plan

The system  as implemented is applicable to a restricted set of classification theory only. How

ever, the simple structured GC can prove many basic theorems in graph theory with acceptable 

search space size. The test proofs shown in the previous section indicate th a t the system’s 

performance is acceptable; in other words, the search space size is reasonable and the cpu 

time used is also reasonable for those examples. These results have partially shown th a t the 

approach developed by this research potentially has much value in providing a  model to attack 

problems related to ’existence’.

The future implementation of GC is planed to:

(a) Complete implementation of the core of the c-algebraic representation scheme.

(b) Build up a  rich background knowledge base including most T-procedures for graph types 

algorithmically defined in graph theory.

(c) Implement the Goal-Assertion Subsumption Method and all the proving methods.

(d) Build up a  well organized inference rule set, adopt all recognized heuristics to utilize type 

knowledge for better choice of inference rules.

(e) Construct a  flexible interactive knowledge-based reasoning mechanism based on the clas

sification theory for the purpose of solving widely ranged basic problems and attacking 

some hard problems in graph theory.
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CHAPTER 8 

Examples and Some Results

Using the mechanism and strategies of the classification approach many proofs can be generated 

in step by step fashion. This chapter presents such examples and some results. To simplify the 

demonstration, most failed proofs of subthcorems are omitted. Only correct choices in using 

inference rules are presented. Several individual results obtained from the research, which are 

relevant to tree type graphs will be discussed in the final part of the chapter.

8.1 Examples of Proving Theorem and Verifying Types

The following examples demonstrate how GC proves a  theorem and verifies a  graph type from 

factual input.

E x am p le  8 .1  proof of the theorem in example 1 of 5.2 (see section 5.2).

Theorem:

’Any two distinct cycles having a  common edge e contain a cycle not passing e ’.

The assertion is:

AND(< x lx 2 y l, cycle > , <  xlx2y2[not= yl], cycle > )

The goal of the theorem is:

GOAL-FORM: 4

V G (graph in the assertion) 3 y , such that 

<  y , cycle >[not-w ith < x lx2>] partially subsumes G.

GC starts the proof search by appiying the proving methods a t the root of the a n d /o r  tree (in 

this example only the Goal-Assertion Subsumption Method is illustrated). Since the generated 

ME-set is (x l, x2), and no v-list constructed from the MEl-set can generate a  non-degenerate
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cycle by applying cycle T-procedure, GC applies inference rule 1 on y l  and y2 (suggested by 

ME-chcck) and then proves the subtheorems a t the newly created three nodes (represent three 

cases):

case  1 {yl is replaced by y 'lxy3 , y2 is replaced by y 'lx}

ASSERTION:

AND(< x lx2y 'lxy3 , cycle > , <  x lx2y 'lx , cycle >)

GOAL-FORM: 4

V G (in the assertion) 3 y , such that: <  y , cycle >[notwith < x lx2> ] partially subsumes G 

PROOF:

The c-deconiposition of the ASSERTION is:

A N D (<xlx2> . < x 2 y 'l, 1>, < y 'lx , 1>, <xy3, 1>, <y3xl, 1>, < x x l> )

The generated ME-set is (x l, x2, y 'l ,  x, y3), and one of v-lists constructed from the ME-set 

is: xy3xl

The C'decomposition of <  xy3xl, cycle > is:

AND(< xy3, 1 > , <  v3xl, 1 > , <  x lx  >)

Since this result partially subsumes the c-decomposition of the ASSERTION, the system infers 

th a t x2, x, y3 and x l are in a given v-list, thus x2 satisfies ’not-in x y 3 x l’ and therefore, the 

cycle satisfying ’not-with < x lx 2 > ’ is verified by the constraint checking procedure. Hence the 

subthcorcm is proved.

case  2 {The same as case 1 except y2 is replaced by y 'lxy3, y l is replaced by y 'lx ]

case  3 {yl is replaced by y 'lx y '3 , y2 is replaced by y'lx3[not=x]y'4}

ASSERTION:
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A ND(< xlx2y/ lxy/3 , cycle > , <  xlx2y'lx3[not=x]y/4, cycle > )

GOAL-FORM: 4

V G (in the assertion) 3 y , such that: <  y , cycle >[notwith < x lx2>] partially subsumes G 

By singleton reduction rule (see remark below) the assertion is rewritten to:

ASSERTION:

AND(< x lly 'llx 2 2 x y '3  , cycle > , <  x lly 'llx22x3[not=x]y /4, cycle > ) 

with substitution of x l ly 'l lx 2 2  to  x lx 2 y 'l.

Since the generated MIS-set is (x l l ,  x22, y ' l l ,  x, and x3), and no v-list constructed from the 

ME-set can be applied by cycle T-procedure to generate a non-degenerate cycle, GC applies 

inference rule 6 on y '3  and x3 (suggested by ME-check) and then proves the subtheorems at 

the newly created two nodes (representing two cases).

R em ark:

The following defines rules of singleton sub v-list and singleton reduction:

A singleton sub v-list is a sub v-list which satisfies:

(1) it contains more than two list elements and a t least two vertices are in the sub v-list,

(2) all the elements in the sub v-list do not appear in anywhere else of the theorem.

S in g le to n  R e d u c tio n  R u le : If w is a singleton sub v-list then w can be replaced by a 

pattern  x l ly 'x 2 2  to improve the efficiency of class algebraic manipulation.

It is easy to see th a t the singleton reduction rule does not lose information on v-list elements 

bu t makes v-lists either shorter or better structured (only three elements remained with two 

vertices a t its ends).

case  3 .1  {y'3 is replaced by y'31x3y'32 }
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ASSERTION:

AND(< x l ly / llx22xy,31x3y'32, cycle > , <  x lly 'llx22x3[no t= x ]y /4, cycle > )

PROOF:

The c-decomposition of the ASSERTION is:

AND(< x l l y ' l l ,  1 > , <  y '11x22, 1 > , <  x22x, 1 > , <xy'31, 1 > , <  y'31x3, 1 > , <  x3y'32, 1 

> , <  y '32xl 1, 1 > , <  x22x3 > , <  x3y'4, 1 > , <  y '4 x ll ,  1 > )

One of the generated ME-sets is (x22, x, y '31, x3), and one of the v-lists constructed from the 

ME-set is: x22xy'31x3

The c-decomposition of <  x22xy'31x3, cycle >  is:

A N D (<x22x>, <  xy'31, 1 > , <  y'31x3, 1 > , <x3x22>)

The above class expression partially subsumes the assertion, also it  is verified by the constraint 

checking procedure th a t ’not-with < x lx 2 > ’ is true, (based on the singleton reduction rule), 

x l  is in x l l ,  and x2 is in y 'llx 2 2 , Hence the subtheorem is proved.

case  3 .2  {x3 is replaced by x3[notin y'3]}

ASSERTION:

AND(< x liy 'llx 2 2 x y '3 , cycle > , <  x lly 'llx22x3[no tin  y'3][not=x] y'4, cycle > )

Since from the generated ME-sets no v-list constructed can be used by cycle T-procedure to 

generate a  class expression tha t partially subsumes the assertion and satisfies the constraint, 

GC applies inference rule 6 on y'4 and x (suggested by ME-check). Then GC proves the 

subtheorems a t the newly created two nodes (represent two cases):

ca se  3 .2 .1  {y'4 is replaced by y'41xy'42 }

ASSERTION:

AND(< x lly 'llx 2 2 x y '3 , cycle > , < x lly 'llx22x3[no tin  y'3][not=x] y'41xy'42, cycle > )
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PROOF:

The c-decomposition of the ASSERTION is:

AND(< x l ly T l ,  1 > , <  y '11x22, 1 > , <  x22x, 1 > , <xy'31, 1 > ,

<  y'31x3, 1 > , <  x3y'32, 1 > , <  y '3 2 x ll, 1 > , <x22x3>, <  x3y'41, 1 > ,

<  y'41x, 1 > , <  x /4 2 , 1 > , < y '42xl 1 >)

One of the generated ME-sets is (x22, x3, y'41, x), and one of the v-Iists constructed from the 

ME-set is: x22x3y'41x

The c-decomposition of <  x22x3y'41x, cycle >  is:

AND(<x22x3>, <  x3y'41, 1 > , <  y'41x, 1 > , <xx22>)

The fact is th a t this expression partially subsumes the assertion, also ’not-with < x lx 2 > ’ is 

verified by the constraint checking procedure. Hence the subtheorem is proved.

case 3 .2 .2  {x is replaced by x[notin y ’4]}

ASSERTION:

AND(< x l ly 'llx22x[notin  y'4]y'3, cycle>, < x l ly / llx22x3[notin y'3][not=x] 

y'4, cycie >)

Since from the generated ME-sets no v-list constructed can be used by cycle T-procedure to 

generate a  class expression tha t partially subsumes the assertion and satisfies the constraint, 

GC applies inference rule 7 on y'3 and y'4 (suggested by ME-check) and then proves the sub- 

theorems a t the newly created three nodes (represented by three cases where the conjunction 

of the first two is disjunctive to the third, thus the proofs of the first two cases are sufficient 

to prove case 3.2.2).

case  3 .2 .2 .1  {y'3 is replaced by y'3[notin y'4] }

ASSERTION:
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AND(< x lly 'llx 2 2 x [n o tin  y'4]y'3[notin y'4, cycle > , <  x lly 'llx22x3[no tin  y'3][not=x]y'4, 

cycle >)

One of the generated ME-sets is (x22, x, y'3, x22, y '4, x3), and one of the v-lists constructed 

from the ME-set is: x22xy'3xllj/'4x3

The c-decomposition of < x22xy'3xllp '4x3, cycle >  is:

AND(<x22x>, <  xy'3, 1 > , <  y '3 x ll > , < x l l y '4 ,1 > , <  ]T4x3, 1 >  <x3x22>)

The expression partially subsumes the assertion, also the tru th  of ’not-with < x lx 2 > ’ is verified 

by the constraint checking procedure, hence the subtheorem is proved.

case 3 .2 .2 .2  {y'3 is replaced by y'31[notin y'41]x31y'32 and y'4 is replaced by y'41x31y'42 

}

ASSERTION:

AND(< x lly 'llx 2 2 x [n o tin  y'4]y'31 [notin y'41x31y'32, cycle > ,

<  x lly 'llx22x3[no tin  y'3][not=x]y'41x31y'42, cycle > )

One of the generated ME-sets is: (x22, x, y'31, x31, y'41, x3), and one of the v-lists constructed 

from the M El-set is: 

x22xy'31 x31 y '41 x3

The c-dccomposition of < x22xy'31x31]7'41x3, cycle >  is:

AND(<x22x>, <xy/31, 1>, <  y'31x31, 1>, <x31j?'41, 1>, < ^41x3, 1>, <x3x22>)

The expression partially subsumes the assertion. The tru th  of ’not-with < x lx 2 > ’ is verified 

by the constraint checking procedure, thus the subtheorem is proved.

QED

To generate v-lists of case 1 the exhaustive search will result in 96 v-list candidates from the 

ME-set, but with a simple heuristic guidance, such as ’turn around lists are redundant for cycle 

type’, the number of candidates will be reduced to  36. If another heuristic rule ’neighborhood
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relation m ust be maintained for cycle type’ is added, then only 3 candidates remain.

E x a m p le  8.2 verification c f a  graph type

FACT : AND(< ylxy2, tree > , <  xy3[not-in y l,  y2], 1 > )

CONJECTURE (suggested by heuristics): the graph is type tree (or GOAL-FORM: 1) 

P R O O F :

The generated ME-set is (x, y l ,  y2, y3). The c-decomposition of the FACT is:

OR(AND(< ylxy2, tree > , <  xy3, 1 > ))

One of the v-lists constructed from the above M El-set is: ylxy2y3. And the extended c- 

dccomposition of the class <  ylxy2y3, tree >  has the following sub c-decompositions:

O R(< ylxy2y3, tree > ,

AND(< xy'2, tree > , <  ylxy3, tree > ),

AND(< xy3, tree > , <  ylxy2, tree > ),

AND(< xy2y3, tree > , <  y lx , tree > )).

Since <  xy3, tree >  subsumes < xy3, 1> and the system infers tha t constraint y3[not-in y l,

y2] is satisfactory (x, y 1, y2, y3 arc in an MEl-set), the c-decomposition of the GOAL subsumes

the c-decomposition of the ASSERTION. Thus the conjecture is verified.

8.2 Typical Theorems Proved

Using proper rules (indexed by types) combined with the Goal-Assertion Subsumption Method 

GC could generate many proofs for the theorems and lemmas as shown in the following (some 

are very simple and some are not very simple for human provers, while all o f them are from 

general graph theory textbooks [ST] [Ha] [Bo]):
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(a) Theorem: If cycle (closed path) C l contains edges e l ,  e2, and cycle C2 contains edges e2, 

c3, then there exists a  cycle tha t contains e l and e3.

ASSERTION:

AND(< x ly / lx3x4y'2x2, cycle > , <  xly'3x5x6y'4x2, cycle > )

GOAL-FORM: 4

V G (in the assertion) 3 y , such that: <  y , cycle >[with <x3x4> <x5x6>] partially 

subsumes G

(b) Theorem: In a  connected graph, for any two disjoint paths p i and p2 there exists a  path 

th a t connects p i and p2 and does not intersect with p i  and p2 except a t their two end 

vertices.

ASSERTION:

AND(< y l ,  1 > , <  y2[notin yl], 1>, <  y3[universal], connected > )

GOAL-FORM: 4

V G (in the assertion) 3 y , x l ,  x2 such that: <  xl[in  yl]y[notin yly2]x2[in y2], 1 > 

partially subsumes G

(c) Theorem: If there exist two distinguished paths between two vertices then there exists a 

cycle.

ASSERTION:

AND(< xylx2, 1 > , <  xly2[not= yl]x2, 1>)

GOAL-FORM: 4

V G (in the assertion) 3 y , such that: <  y, cycle >  partially subsumes G

(d) Theorem: Any two vertices of a nonseparable graph lie on a  common cycle. 

ASSERTION:

<  y[with xlx2], nonseparable >

GOAL-FORM: 4
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V G (in the assertion) 3 y , such that: <  xlyx2, cycle > partially subsumes G

(e) Theorem: For any two vertices and an edge of a  nonseparable graph there exists a path 

joining the  vertices which contain the edge.

ASSERTION:

<  y[with xlx2][with <  x3x4 >]1, nonseparable >

GOAL-FORM: 4

V G (in the assertion) 3 y , such that: <  xlyx2, 1 >[with <  x3x4 >] partially subsumes 

G

(f) Theorem: If a graph G =(V , E) is connected, then the graph G ' =  (V, E  — e), which 

results after removing a  cycle edge e, is also connected.

ASSERTION:

AND(< y2[universal], connected>, RE( <  x lx2y l, cycle>, <  x \x 2  > ))

GOAL-FORM: 1

V G (in the assertion) 3 y , such that: <  y[with xlx2yl], connected> subsumes G

8.3 Examples of Induction Proving

A simple example of induction proving which is discussed in chapter 6 is illustrated below: 

T lio re in :

In a  connected graph if a  vertex v and a  path p are disjoint then there exists a path p i from 

v to p, and p i does not intersect p except a t an end vertex.

ASSERTION:

AND(< y l, 1 > , <  xl[notin yl], 0 > , <  y2[universal], connected > )

GOAL-FORM: 4
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V G (graph in the assertion) 3 y , x  such that 

<  xly[notin  yl]x[in yl], 1> subsumes G 

In duction  proving  o f  th e  theorem :

The unknown y l in class <  y l ,  1 >  is chosen as the induction argum ent and split out two 

cases:

case  1: Based on the frame knowledge of type path the minimum value of the type is a  vertex. 

Replace y l  by x2 everywhere in the theorem.

ASSERTION:

AND(< x2, 1 > , <  xlfnotin x2], 0 > , <  y2[universal], connected > )

Since from the generated ME-sets no v-list constructed can be used by path T-procedure to 

generate a  class expression tha t partially subsumes the assertion, GC applies inference rule 11 

on x l and x2 (suggested by ME-check) and then proves the subtheorems a t the newly created 

theorem:

ASSERTION:

AND(< y l, 1 > , <  xl[notin y l], 0 > , <  y2[universal], connected > , <  xly3x2 >)

The c-decomposition of the ASSERTION is:

AND(< y l, 1 > , < x l, 0 > , < y2, connected > , <  x ly3, 1 > , <  y3, 1 > , <  y3x2, 1 > )

One of the generated ME-sets is (x l, y3, x2), and a v-list constructed from the ME-set is: 

xly3x2 (where y3 is matched with y, x2 is matched with x ), and The c-decomposition of <  

xly3x2, 1 > is:

AND( < x ly3 , 1> , <y3, 1>, <y3x2, 1>)

This c-decomposition partially subsumes the assertion. Because y l  is x2 (tha t is made by 

substitution), x2[in yl] is satisfied, y3 and x2 are in ME-set, and y3[notin yl] is satisfied, the 

theorem (base case) is proved.

case  2: Generate a temporary axiom (the temporary axiom will be used in further process):
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AXIOM (tem porary):

ASSERTION:

AND(< y l ,  1 > , <  xl[i:otin  y l], 0 > , <  y2[universal], connected > )

(c-decomposition form of the ASSERTION is the same as the assertion.)

GOAL-FORM: 4

V G (graph in the assertion) 3 y , x  such tha t <  xly[notin  yl]x[in  y l] , 1 >  subsumes G 

The new theorem is:

ASSERTION:

AND(< ylx2 , 1 > , <  xl[notin  yl], 0 > , <  y2[universal], connected > )

GOAL-FORM: 4

V G (graph in the assertion) 3 y , x  such th a t <  xly[notin ylx2]x[in ylx2], 1> subsumes G 

The c-decomposition of the ASSERTION is:

AND(< y l, 1 > , <  y lx2 , 1 > , < x l, 0 > , <  y2, connected > ,  <  x ly3 , 1 > , <  y3, 1 > , < 

y3x2, 1 > )

After referencing the temporary axiom, the assertion of the axiom partially matches the new 

assertion (it requires corresponding instantiation, but for this problem the instantiation results 

names unchanged), thus the conclusion (goal of the axiom) is instantiated and is added to the 

assertion:

ASSERTION:

AND(< ylx2, 1 > , <  xl[notin yl], C > , <  y2[universal], connected > , <  xly[notin  yl]x[in

yi]. i >)

No v-lists constructed from the generated ME sets, when operated on by the path T-procedure, 

can generate a  class expression which partially subsumes the assertions and also satisfies the
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constraints. Therefore, GC applies inference rule 6 on y and x2 (suggested by ME-check) and 

then proves tiie subthcorenis a t the newiy created two nodes (two cases):

case  1 {x2 is replaced by x2[notin y]}

ASSERTION (is replaced by):

AND(< y lx2 , 1 > , <  xl[notin yl], 0 > , <  y2[universal], connected > , <  x ly[notin  yl]x[in

yi], i >)

The c-dccomposition of the ASSERTION is:

AND( <  x ly , 1 > , <  y, 1 > , <  yx, 1 >)

One of the generated ME-sets is (x l, y, x), and a  v-list constructed from the ME-set is: xlyx, 

and the c-decomposition of <  x lyx, 1 >  is:

<  x ly, 1 > , <  y, 1 > , <  yx, 1 >

The expression subsumes the assertion. Because x2[notin y] is satisfied, y[notin ylx2] is satis

fied, all constraints are satisfied, thus the subtheorem is proved.

(Remark: when a constraint parameter is a  multi-element v-list such as in y[notin y 1x2] or x[in 

yly2], ME checks if the constraint is satisfied for each parameter element. Also some simple 

rules like: if x[not= xl] then x[notin xl] and if x[notin y] then y[notin x] are recognized by 

ME checking procedure.

case  2 {y is replaced by y'3x2y'4 }

ASSERTION:

AND(< y lx2 , 1 > , <  x l[nctin  y i], 0 > , <  y2[universal], connected > , <  x ly '3x2y '4 [no tin  

y l]x[in  y l], 1 > )

The c-dccomposition of the ASSERTION is:

AND( <  x ly '3 , 1 > , <  y'3, 1 > , <  y'3x2, 1 > , <  x2y'4, 1 > , <  y'4, 1 > , <  y'4x, 1 >)
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One of the generated ME-sets is (x l, y'3, x2), and a  v-list constructed from the ME-set is: 

x lyx , and The c-decomposition of <  xly '3x2, 1 > is:

<  x ly '3 , 1 > , <  y '3 , 1 > , <  y'3x2, 1 > .

The above class expression partially subsumes the assertion. Because y'3x2y'4[notin yl] is 

satisfied, y'3[notin yl] is satisfied too, all constraints are satisfied, thus the subtheorem is 

proved.

QED

8.4 A Result on The Tree Representation

A by-product from this research is an interesting tree representation and its application. This 

section is devoted to  this result.

8.4.1 Level Sequence Representation of Trees

For a  rooted ordered labeled tree (simply say tree) T the following definitions are formalized: 

D e fin itio n  1. T he level sequence L is defined as:

Let the sequence of nodes visited in preorder traversal o f T  be numbered 1, 2, .., n, then L(i)

denotes the level number of the ith node (i.e. the node numbered i is a t level L(i)). 

D e fin itio n  2. B is said to  be a label sequence if B (l), B(2), • •• B(n) are the values of the 

labels of the nodes as visited in preorder traversal.

D e fin itio n  3 . Tw o trees are said to  be isomorphic if we can map one tree into the other by

perm uting the order of the sons of vertices [A IIU]).

D e fin itio n  4 . A tree C T  with level sequence CL and label sequence CB is said to be a 

canonical tree iff any tree T  th a t has level sequence L, label sequence B and is isomorphic to 

CT satisfies the condition:
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CL >  L and if CL=L then CB >  B holds in lexicographic order

(Note th a t a similar definition for canonical level sequence can be found in [BII]).

It is clear th a t a  level sequence plus a  label sequence uniquely determines a  rooted ordered 

labeled tree, and any such a tree has a  unique canonical form. The following gives an algorithm 

to compute the canonical tree by modifying an algorithm given by Aho, Hopcroft, and Ullman 

[AHU, 3.2], which tests isomorphism of trees and runs in O(n) time.

8.4.2 Canonical Tree Algorithm

The canonical form of the tree is defined as:

A lgorith m  A . C onverting a  rooted  ordered labeled  tree T  to  its  canonical form .

In p u t :  L, B {L, B are level sequence and label sequence of tree of T  respectively}

O u tp u t :  CL, CB {CL, CB are level sequence, label sequence of the canonical tree of T} 

S te p  1. Associate each leaf node (denote its node number by w) of the tree in the level k 

with following three tuples:

L-tuple(w) =  (0);

B-tuple(w) =  B(w);

W -tuple(w) =  (k) for all k in (0, h); 

where h is the highest level. And let k=h.

S te p  2. If k=0 goto Step 4. else do lexicographic sort [A1IU] on all L-tuples of this level in 

nonincreasing order. Then assign each node of the level with a  grade g (an integer) if there 

exist g — 1 distinct L-tuples which are less than the tuple of the node.

S te p  3 . Do the same as step 2 on B-tuples, thus assigning each node with a rank r.

S te p  4 . Let k = k -l. For each non-leaf node (note number w) in the  level do bucket sort [AHU] 

on its sons and the following two conditions must be satisfied:
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(a) If the sorted sequence is denoted as (w l, w 2 , w t ) ,  then its corresponding grade sequence 

(denoted as (g l, g2, gt)) is in nonincrcasing order.

(b) For those nodes with same grade (say wi, wj), their corresponding rank sequence 

(denoted as (ri, rj) is in nonincreasing order.

S te p  5. Do the following assignments:

L-tuple(w) =  (g l, g2, gt),

B-tuple(w) =  ( r l ,  r2, ..., rt),

W-tuple(w) =  (k, w l, w2, wt).

Goto Step 2.

S te p  6. Push the root node onto an empty stack. For t= 0  to  n-1, do the following: Pop the

node (denoted w) on the top of the stack, assign the first item of W -tuple(w) to CL(t), and

assign B(w) to CB(t). If there are more items of W-tuple, sequentially push them onto the 

stack from right to  left.

The proof of correctness of the algorithm A can be obtained based on the above definitions 

and the operations given by the algorithm. It is omitted here. Also th a t the algorithm takes 

O(n) time can be proved in a  similar way as the proof given for theorem 3.3 in [AIIU].

The algorithm has been applied on databases query standardization to improve performance 

[ML]. The following illustrates two examples of generations of the canonical trees using algo

rithm  A.

E x am p le  1: Calculate the canonical form for tree T , which has L=(0, 1, 1, 2, 2, 1), B = (l, 2, 

1, 1, 2, 3).

The L-tuples, W -tuples and grades created after execution of the algorithm A are listed as 

follows:
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node number L-tuple grade B-tuple rank  W-tuple

1 2,1,1 1 2,3,1 1 0 ,3 ,6 ,2

2 0 1 1 1 1

3 1,1 2 2,1 2 1,5,4

4 0 1 1 1 2

5 0 1 2 2 2

6 0 1 3 3 1

T h u sT  has the canonical form: CL=(0, 1, 2, 2, 1, 1), CB=(1, I, 2, 1, 3, 2)

E x am p le  2: A tree T  has L=(0, 1, 1, 2, 2, 1, 2, 2), B = (l, 1, 1, 2, 3, 1, 1, 

form is: C L=(0, 1, 2, 2, 1, 2, 2, 1), CB=(1, 1, 3, 2, 1, 2, 1, 1)

116

2). Its canonical
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CHAPTER 9 

Discussion And Conclusions 

9.1 Discussion of The Approach

This section discusses and evaluates the reasoning approach in comparison with other ap

proaches in the domain of graph theory. The generality of the formalization of this work is 

also analyzed.

9.1.1 W hy The Approach Is Useful

Currently, there are only two previously published approaches to automated reasoning in graph 

theory. One is Epstein’s GT [Ep] and another is Cvetkovic’s GRAPH [CP].

The major shortcoming of G T ’s approach is th a t it treats a  graph type as an atomic object 

so it is unable to reveal the components of a  type, i.e subgraphs and their relations. How

ever, proof of conceptual relations involving components or subgraphs is an im portant task in 

mathematical research. The ability to prove relations on subgraphs provided by this work is 

therefore significant to  the s ta te  of the art.

The system GRAPH is an interactive type of reasoning system. It provides flexible guidance to 

users in graph theory research, but does not have adequate reasoning mechanisms for stand

alone proof processes. Since GC is a  well formalized stand-alone system it can be used in 

conjunction with GRAPII.

In comparison with general purpose theorem provers, GC is efficient in generating proofs for 

graph theory theorems. This is because GC effectively organizes domain specific knowledge in 

an algebraic and procedural manipulable form. Such modeling is hard to obtain from general 

purpose theorem provers. General purpose theorem provers such as resolution type provers
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are inadequate in proving existence [Bui]. I t is clear that the classification approach has 

successfully illustrated a  mechanism to overcome this particular difficulty of reasoning, thus 

providing constructive proofs for theorems related to  existence.

9.1.2 The Proof Process in GC is Simple

The proof process in GC is simple because of the following:

In local processes GC uses only two kinds of knowledge:

(a) the pattern  m atching technique,

(b) the  subsumption technique.

These techniques already exist in well developed form. Thus the knowledge base required for 

GC’s local processing is rather simple.

In global process GC uses case-splitting which is also a  well understood technique. The process 

is organized as a  simulation of human proof process using case analysis m ethod. Therefore 

global as well as local processes in GC are simple.

9.1.3 The Conceptual Formalization Is General

This section describes a  proposition which indicates tha t the representation power of the 

approach is equivalent to  the first-order predicate logic in graph theory. Therefore the approach 

is general enough to be used to deal with basic concepts in graph theory.

P ro p o s itio n : In the domain of graph theory, theorem representations in term s of the first- 

order predicate calculus and theorem representations in terms of the classification method are 

equivalent, i.e. there exists a formal transformation from one form to the other.

In the following two parts we construct such a  transformation. P art 1 describes the process 

to transform a  theorem represented in first order predicate calculus to a theorem  in class
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expression form. P art 2 describes the process to transform a  theorem in class expression form 

to a  theorem in first order predicate calculus.

P A R T  1 We modify language AGT (Arithmetical Graph Theory, see section 2.2.3) to formalize 

the graph theory in terms of first order logic, and call the modified language MAGT.

In MAGT the only object is set. Number, vertex, edge, v-lists, graph, and set of graphs are 

represented as a  set satisfying certain predicates. Note tha t functions mapping from v-Iists to 

sets of graphs (e.g. typc-functions: palhf, trccf) arc also sets.

MAGT is now able to quantify graphs (or subgraphs). For example:

(=U V G bclong(G, trccf(xlx2x3)) —► patii(G)

The formula is interpreted as follows: U is the universal graph set, |= represents tautological 

implication, V is universal quantifier symbol, —► is logical implication, trecf(xlx2x3) is a typc- 

iuncliou th a t represents a  set of graphs generated in the same way as th a t used by the trce- 

proccdure defined in chapter A. The symbol ’belong’ is a predicate tha t means that the graph 

G belongs to the graph set lrecf(x 1x2x3). The predicate path(G) means G is a  path.

We now construct, the transformation which converts a formula of two MAGT expressions 

(assertion and goal) into two classification expressions. The process is shown .as the following 

ten steps, which are to be executed in this order:

Step 1: Convert both the assertion and the goal to clause form [Ni].

Step 2: Convert each edge name, say W, to an edge in GC, say < x lx 2 > , and convert vertex 

name, say Z, to x (note tha t naming consistency is assumed).

Step 3: Convert a predicate to  a class: We first assume that the param eter list of a  predicate 

is ordered such th a t graphs arc always in right most positions and they are followed toward 

the left by edges, vertices and other type parameters. Let P ' be a  predicate having graphs as 

its param eters, and let the right most graph parameter be G. Then form a  class <  y, simple 

>  with constraint: [P], where P is defined as the same predicate as P ' b u t with parameter
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G explicitly removed (note it is implicitly replaced by each graph in the class <  y, simple 

> , see section 3.1). It is easy to see that GC interprets the constraint P in the same way 

as GRAPH interprets P '. For example GC converts P '5(Q ) to  <  y, simple >[P5], where P '5  

means connected, and Q is a  graph variable. The connected graph is converted to the class < 

y, simple >  with constraint [connected].

Step 4: If the predicate has no graph name its a  param eter but has an edge name (as the 

right most edge param eter), say W, then form a  class <  x lx2 , e >  with constraint: [P], here 

P represents the same predicate as P ' but with param eter W removed from its param eter list. 

GC can interpret the predicate P in the same way as GRAPH interprets the predicate P '. For 

example, GC converts S'1(X, Y, W) to S 'l(x l , x2, <x3x4>) then further to class <  x4x5, e 

> [S1 (x 1, x2)] which in turn is interpreted as class <  x4x5, e > (this is a single edge) with 

constraint S l(x l, x2) meaning th a t it is formed by joining vertices x l and x2.

Step 5: If the predicate has neither graph name nor edge name but has a vertex name, say Z 

(as the right most vertex param eter), then form a  class <  x, 0 >  with constraint: [P], here 

P represents the same predicate as P ' but with param eter Z removed from its parameter list. 

It is easy to see tha t GC will interpret the constrained class in the same way as GRAPH 

interprets P '. For example, GC converts R4(X, Y) to R 4(xl, x2) then further to class <  x2, 

0 >[Il4(xl)] which is interpreted as class <  x2, 0 > (th is is a  single vertex) with constraint 

R 4(xl) which means vertex x2 is joined to x l by a walk.

Step 6: Form a  list of predicates by linking predicates which do not have graphs, edges or 

vertices as param eters but whose parameter sets have a  non-empty intersection. If a predicate 

in the predicate list has a  parameter which appears in a  predicate P ' that has a graph or 

edge or vertex as parameter, then the conjunction of the predicates in the list and P will be 

the constraints of the corresponding class generated from predicate P '. If the condition is not 

satisfied then all predicates in the list are unrelated to graph theory and will not be processed.
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Step 7: The predicate connective V is converted to the operator ’+ ’. It is clear th a t the same 

interpretation will be made by GRAPH and GC on corresponding forms.

Step 8: The connective A between two predicates P ' and Q ' is processed as follows:

(a) if two unconstrained classes generated from these two predicates are the same, say <  S, 

T  > , then GC converts P ' A Q ' to <  S, T  > [P  A Q]

(b) if two unconstrained classes generated from these two predicates are different, say < 

S I, T1 >  and <  S2, T2 > , then GC converts P ' A Q ' to  <  SI, T1 >[P] • <  S2, T2 >[Q]. 

Based on the definition of operator ’•’ GC will interpret the class expression in the same way 

as GRAPH interprets the conjunction of those two predicates.

Step 9: The predicate connective -> remains unchanged.

Step 10. Convert the assertion and goal separately thus obtaining a  theorem form in GC with 

meaning tha t the goal set subsumes the assertion set.

P A R T  2 We now construct a  transformation which converts a formula in two class expressions 

to two MAGT expressions in clause form. The process is shown as follows:

Step 1: Convert each class, say <  Si, Ti >[wffj], to a  well formed formula wfF, where wfF is

made by the following process:

(a) the constraints on elements of Si are converted to  wir^, A • • • A wfT,n

(b) let wffi' =  wflii, A ■ • - A wfFjn

(c) each predicate in wfii' is modified by adding a new param eter which is the predecessor of

the predicate (see section 3.1) in its param eter list.

(d) a  predicate Ti(G i) (meaning: Gi is type Ti) is created, and let wffi' =  wffi' A Ti(Gi)

(e) let the predicates in wffj be wffyi, A • • • A wfFjm each predicate in wffj is modified to add 

a  param eter (in the right most position of its param eter list) Gi (with meaning ’in G i’)

(f) let wffj' =  wffj!, A • • • A wfFjm
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(g) create a  predicate P(Gi, T i(S '))

In substep (g) the predicate P is the same as the predicate ’belong’ used in the PART 1. P(Gi, 

T 'i(S ')) means th a t the graph Gi belongs to  the class of graphs generated by the function T 'i, 

which has the same output as th a t generated by the T-procedure T ' with input S'. S ' is the 

unconstrained v-list with respect to S.

(h) let wfT =  P(Gi, T i(S ')) A wffi' A wffj'

Example: <  x lx2y l[no t=  y2], cycle >[with <x3x4>] is equivalent to the wff:

( P(G , cycle(xlx2yl)) A n o t= (y I, y2) A with(G, <  x3x4  > ))

where the predicate n o t= (y l, y2) means tha t each vertex in y l  is not in y2, the predicate 

w ith(G ,< x3x4  > ) means tha t the edge <  x3z4 > is in G and the function cycle(xlx2yl) 

results in the set of cycles.

Step 2: Conversion of operators:

(a) AND: the transformation for the formula < S i ,7 i>  . < 5 2 ,72>  is:

R(G, G it G2 ) A P (G i, Ti(SJ) A P(G 2, 7 2 (^ 2) A wffi' A wff2' where the predicate R means

graph G  is the union of G i,G 2 -

(b) operators OR, RV, RE, IV, IE and CMPL can be processed similarly. The corresponding

predicates are for OR, RV, IV, IE, and COPL.

The proof of the equivalence of the two representations can be obtained directly from the 

definitions.

9.2 Conclusions

This thesis research has developed an artificial intelligent approach for automated reasoning 

on basic concepts of graph theory through using knowledge-based conceptual classification.

It addresses:
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(a) Representing and manipulating knowledge based on both an algebraic theory and a  re

cursive procedural theory.

(b) Reasoning relations among basic graph concepts using multiple non-resolution theorem 

proving methods.

(c) Developing a  model of proving theorems of existence.

(d) Simulating human processes on constructive proofs.

(e) Simulating human processes on case-split-based reasoning.

(f) Modeling completeness and soundness of reasoning on graph concepts.

(g) Modeling an autom ated reasoning system, GC (Graph Classification), based on the ap

proach.

A summary of the approach is as follows:

•  LRC (Linear Recursive Constructivity), a  graph attribute, defines its values by algebraic 

formulas implicitly associated with the background knowledge o f graph types.

•  LRC is utilized to recursively classify graph concepts.

•  Subsumption between two class expressions which represent two graph concepts is inves

tigated in their decomposed forms, where the smaller objects are generated by invoking 

T-procedures.

•  The G ASM (Goal-Assertion Subsumption Method) and forward chaining search guidance 

(by case-split-based inference rules) are used in proof process.

•  Linear forms of graph concepts simplify symbolic processes thus they are easy for human 

to read.

•  The approach has been partially implemented and generated many constructive proofs 

for grapli theory theorems.
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The main contributions of tiiis thesis are:

(a) Development of a  proof mechanism in graph theory, which is able to reveal the relation 

involving components of a mathematical object, i.e subsets of a  graph type or subgraphs 

of a  graph.

(b) Development of an algebraic representation theory and a  recursive procedural represen

tation theory for simplifying, normalizing, and decomposing graph concepts. This is 

significant in dealing with graph concept manipulation.

(c) Development of a  proof search and case-splitting technique with the guidance of graph 

type knowledge, which simulates human efficient modeling in proving theorems.

(d) Illustration of a new proving mechanism th a t can generate constructive proofs for exis

tence by manipulating only simple linear forms of theorems.

The future research will be on completely implementing the system GC for this approach; 

extending the graph language for directed graphs; developing isomorphism checking method 

to overcome permutation problem concealed in subsumption method; improving the represen

tations for more complex key concepts; investigating a proof organization th a t can derive the 

goal by non-constructive deduction; applying the approach to attack hard problems in graph 

theory and to investigate the fields other than graph theory.
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