Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 1992

High Performance Issues on Parallel Architectures

Peter J. Looges
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience etds

b Part of the Computer Sciences Commons

Recommended Citation

Looges, Peter J.. "High Performance Issues on Parallel Architectures” (1992). Doctor of Philosophy (PhD), dissertation, Computer
Science, Old Dominion University, DOI: 10.25777/n4gg-qe54
https://digitalcommons.odu.edu/computerscience_etds/114

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/114?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

o

High Performance Issues on Parallel
Architectures

Peter J. Looges

B.S. May 1985. Rensselaer Polytechnic Institute
M.S. May 1991, Old Dominion University

A Dissertation submitted to the Faculty of
Old Dominion University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
n

COMPUTER SCIENCE

Old Dominion University
August 1992

Avl)w’ibbv:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In an effort to reduce communication latency in mesh-type architectures, these
architectures have been augmented by various types of global and reconfigurable
bus structures. The static bus structures provide excellent performance in many
areas of computation especially structured numerical computations, but they lack
the flexibility required of many large numerical and non-numerical applications.
Reconfigurable bus systems have the dynamic adaptability to handle a much wider
range of applications. While reconfigurable meshes can often yield constant time
results for many problems, the cost of this performance is paid in the number
of processors required. While in actuality the majority of these processors are
employed as switching elements for the bus syvstem and often do little actual com-
putation.

In an effort to reduce the processor cost while maintaining performance and
communication flexibility, we present a new hybrid parallel array architecture with
the goal of optimizing the best features of arrays with global buses and arrays with
reconfigurable bus systems. The result is an architecture of n processing elements
and a bus interconnection network which requires very basic circuitry to construct
and control.

This architecture allows prefix computations, such as prefix sum, prefix max-
imum(minimum) to be accomplished in O(logn) time. These functions then form
the building blocks for complex procedures, which more fully exploit the commu-
nication flexibility of the architecture. Application of the architecture to graph
theory produces optimal algorithms for graph properties such as spanning forest
bipartiteness, fundamental cycles, bridges and biconnected components. Other op-
timal algorithms for the more complex least common ancestor and the connected
component problems are also presented. By design, all algorithins maintain opti-
mality for very large sparse graphs. We further examine the architecture’s ability
to handle basic image processing tasks as well as its potential to simulate other
parallel architectures and theoretic models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

©Copyright by Peter J. Looges 1992
Al Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ackllowledg111e11ts

No dissertation is prepared without considerable advice, help, firm guid-
ance, and support. [would especially like to thank my advisor, Stephen
Olariu, for his many hours of guidance, hard questions, and encouragement.
His high personal standards are an excellent example to all.

I am indebted to the members of my Ph.D. committee, Dr. C. E. Grosch,
Dr. L. Wilson, Dr. J. L. Schwing, Dr. P. Bogacki and Dr. S. Olariu for their
careful reading of iny dissertalion and their insightful comments. I would like
to express my appreciation to Dr. Kurt Maly for the atmosphere conducive
to research and scholarship which he maintains in the department and for
his financial support of my graduate studies.

I cannot begin to thank my wife, [Heather, for her support during the
last couple of years. Additionally, she must be credited with convincing me
that it was possible to work and study, without that initial impetus none of
this may have happened.

This dissertation is dedicated to my parents, who olten saw ability where
I thought there was none. As we get older we realize how smart our parents
often were and we desire to make them proud. T thank them for the support
and eternal patience over the years, all of which contributed more than they
will ever realize to the success of this endeavor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 State of the Art 1
1.1 Why Parallel Architectures? 1
1.2 SIMDvs. MIMD 3
1.3 Introduction to Parallel Architectures 6
1.4 Overview of the RISC Architecture 12
1.5 Historical Background 14
1.6 Previous Work 16

2 Fundamentals of Arrays with Reconfigurable Global Buses 18

2.1 Introduction to the Architecture 18
2.1.1 Motivation L 18
2.1.2 Rules of Operation 21

2.2 Basic Algorithms L 23
221 PrefixSum L oo oo 26
2.2.2 Prefix Maximum 29
2.2.3 The Multiple Source Problem 32
224 List Ranking L o oL 36

2.3 Parentnesis Matching o0 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Graph Theory 51

3.1 Introduction 51
3.2 Connected Components 53
3.3 Introduction to Least Common Ancestors. 58
3.4 The LCA Problem on Static Trees. 60
3.5 The LCA Problem with Dynamic Trees 64
3.6 Further Graph Algorithms 67
3.6.1 The Bipartiteness of a Graph 67
3.6.2 Bridges in a Connected Component 69
3.6.3 IFundamental Cycles in a Connected Component 70

4 Other Applications of the linear array with reconfigurable

global buses 72
4.1 Low Level Image Processing 72
4.1.1 Introduction, 73
4.1.2 Measuring the Fundamental Properties of an Image . . 74
4.1.3 Component Labeling 77
4.2 Hough Transform 86
4.2.1 Introduction L 86
4.2.2 Basics of the Hough Transform 87
4.3 The Linear Array with Reconfigurable Global Buses Efficiently
Simulates Concurrent Read PRAM Models 96
4.3.1 Introduction L 96
4.3.2 The linear array with reconfigurable global buses vs
the CREW-PRAM 97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 The linear array with reconfigurable global buses vs

the CRCW-PRAM 100

4.4 Linear Arrays with Reconfigurable Global Buses more pow-
erful than any non-Reconfigurable Architecture 103
4.4.1 Introduction 104
4.4.2 LARGB Vs. Mesh Architecture 106
4.4.3 LARGB Vs. Mesh with Global Buses 107
44.4 LARGB Vs. Hypercube 109
4.4.5 LARGB Vs, Tree machines 110
4.4.6 The List Ranking Problem 111
5 Conclusions 113
5.1 Fundamental Algorithms 113
5.2 Graph Theory 114
5.3 ImageProcessing 115
5.4 Simulating Parallel Random Access Machines 116
5.5 The LARGB versus Actual Architectures 117
5.6 Overall Conclusion About the Proposed Model 118
Open Questions 119
6.1 The LARGB as an MIMD Machine 119
6.2 Speed-up available from the LARGB 120
6.3 Very Large Numerical Problems 120

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1
1.2

1.3
1.4

1.5

2.1

2.2
2.3
24

3.1

4.1
4.2
4.3
4.4

The basic SIMD and MIMD architectures

........

The relative efliciency of variable time instruction on

SIMD and MIMD e
The Mesh with Global Buses

................

The Parallel Array with Reconfigurable Global Bus
System (PARBS)

The basic Cross Bar Network

The Linear Array with Reconfigurable Global Buses
(LARGB) o oot et e e

A single vertical bus of the LARGB
Binary Tree Model 1
Binary Tree Mode! 2

............

The Bipartite Partition of a Graph

Multiple Components of an Image
Multiple Components of an Image with Holes

A line L in the Normal form.

The p-values of a 7x7 grid for 0 = %

.............

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

4.5 The linked lists formed for the valuesof p.. 92

46 p = 2 may not be a “significant” line, but p = 6 is
definitely significant. 94

4.7 A simple mesh architecture 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

State of the Art

1.1 Why Parallel Architectures?

Many problems require considerable computational power not only because
they are inherently computationally intense, but also because the solution is

needed in real time. Problems of this type include:

Artificial Vision,

e Data Base Searches,

Finite Element Analysis,

Computational Fluid Dynamics,

Simulation,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Optical Ray Trace,

e Signal Processing[30, 64].

As computing power continues to increase the limits of the physical cir-
cuitry are quickly being reached. One of these primary limits is the speed of
light. Since signals cannot propagate faster than the speed of light, about
one foot in a nanosecond, the goal has become one of packing circuitry closer
together to reduce communication delay. This circuit packing also seems to
be reaching its limits under current technologies. The limit is that if circuits
are packed too closely they begin to interact unpredictably and unreliably

[4, 30, 72].

The resolution to these limits is becoming recognized as paraliel archi-
tectures. These are architectures of many complete processors all operating
concurrently to solve a problem. While an architecture of n processors can
be theoretically n times as powerful as a single processor this is often not
the case. Problems, however, cannot always be distributed evenly over the
processors nor is processor intercommunication free, both are primary con-

tributors to inefficiency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 SIMD vs. MIMD

Computer architectures may be grouped into four main classes which were

first defined by Flynn in 1966 [20]. These are:

SISD Single Instruction Single Data;
MISD Multiple Instruction Single Data;
SIMD Single Instruction Multiple Data;

MIMD Multiple Instruction Multiple Data.

The first two categories will not be addressed here. SISD is standard se-
quential processing and MISD has only been ulilized in special purpose ap-
plications. SIMD and MIMD tend to be more general purpose in nature and
therefore of interest in the examination of general purpose high performance
architectures. Actual implementations of the SIMD type system include
DAP, MPP, GAPP, llliac IV, Connection Machine(early versions), CLIP4,
Adaptive Array Processor, GRID, and GF11. Actual examples of the MIMD
system include NCUBE, iPSC, Connection Machine(later versions), PASM,.

WARP, and transputer based machines [30].

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\\\\\\\\\\\\\\\\\\\\\\\\\\
Processor \

\\ S \\\\\\\\\
\\\ N
N N
D SN

SR

/

I T IRY

\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\Q
Processor \\{

RN
R SR \\
\\\

AL TRV A RN

Figure 1.1: The basic SIMD and MIMD architectures

The difference between the two remaining categories is shown in the
block diagram of figure 1.1. The primary difference is that in SIMD architec-
tures the processors act synchronously under the control of a single control
unit on the data with in their local memories. Thus all processors execute
the same instruction or do nothing in a wait state as directed by so predeter-
mined parameter. In MIMD architectures each processor acts independently,
communicating with other processors when necessary. Each architecture has

specific advantages over the other. Some of these advantages are listed below:

¢ Advantages of the SIMD Architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— Ease of programming - only a single program is required and all

processors are synchronous;

— Reduces interprocessor communication delay - all processors are

always synchronized;

— Less memory is required - only a single copy of the program need

be maintained;

Minimal instruction decoder cost - only one decoder is required.
e Advantages of the MIMD Architecture

— More Ilexible - no constraints on the operations which can be
performed concurrently;

— Conditional statements more efficient - each processor executes as

if it were the only processor;
— No SIMD control unit cost;

— Variable time instructions more efficient - SIMD waits for slowest
processor at each instruction, MIMD waits for slowest processor

in a block of instructions (see figure 1.2) [30, 56, 71, 67].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SIMD

PE1 PE2 PE3

,,.-
T
ey

0
!
o

LX)
o
s
e
&

.i) \’5
X
SN
>,
AT,
NS
DR

0,

5 v,
54

%
.
X

)

>,

X3

Q

,
SR
R
N,
s,
FuA R,

R
>,

S
s,
.

355

S

!
e
e

y,

>,
,

252 %
&

5
5

>
ale

,
X
5

Figure 1.2: The relative efficiency of variable time instruction on
SIMD and MIMD

At this point it is appropriate to state that for the pn rposes of the model
presented later in this work, an SIMD architecture will be assumed at all

times.
1.3 Introduction to Parallel Architectures

A parallel architecture is a set of processing elements connected via some type
of interconnection network [69]. Many different interconnection topologies
have been proposed or implemented in recent years. These include the n-

cube {10, 51, 79], the perfect shuffle [74], the mesh of trees [35, 36, 50], the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pyramid [48] the multi-dimensional mesh array [5, 6], the array with global
buses® [1, 11, 33, 43, 46, 75], and parallel arrays with reconfigurable bus

systems [23, 39, 47, 80].

The most basic type of processing element interconnection scheme is
that of a linear array. In this scheme, a processing element is connected to
at most 2 other processing elements. The main advantage of this scheme is
its simplicity and regularity, which in turn reduces cost. Large linear arrays
can easily be constructed from smaller linear arrays by coalescing together a
series of smaller arrays. Linear arrays have been shown to be useful in low
level image processing and some numerical computation (see [32, 34, 60] for

further details).

While the linear network has definite advantanes from the cost and en-
gineering standpoints, there are some very significant drawbacks. Primary
among these is the difficulty of long distance communication. Standard lin-
ear arrays are characterized by large communication latency in addition
to a small communication bandwidth [17]. This implies that commu-

nication time between two processing elements could be of the order of the

IThe array with global buses is also known as the array with multiple broadcast.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size of the array. For communication intensive algorithms this would be an
excessive and intolerable cost. The more complex array topologies solve the
communication cost problem, but at the expense of complexity and higher

engineering costs.

We examine two of the general mesh interconnection schemes, the mesh
with global buses [11] and the parallel array with reconfigurable bus systems
[39]. Both of these architectures are designed to improve communication
ability of the standard mesh of processing elements. The mesh with global
buses has a global bus system which interconnects each row and column of
processing elements (see figure 1.3). This topology improves long distance
communication, but still has limitations in that only one processing element
can send information over a particular row or column at a time. The parallel
array with reconfigurable bus system consists of an element to element bus
system with connections that are controlled by each processing element in
the mesh (see figure 1.4). This control of interconnectious allows the buses
to be split and reset dynamically throughout computation. Thus multiple
processing elements in the same column or row can use the same bus as

long as it is split and only one processing element is writing to a particular

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Row Bus

J

Column ’
Bus

S 4

® Processor

e Mesh Connsction
———— Bus

Figure 1.3: The Mesh with Global Buses

Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S

Figure 1.4: The Parallel Array with Reconfigurable Global Bus Sys-
tem (PARBS)

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sub-bus at a time.

These architectures obtain excellent results, but often at a high proces-
sor cost. For example, constant time sorting of n elements is achieved on
the parallel array with reconfigurable bus system at the cost of n? processing
elements [40]. The mesh with global buses accomplishes sorting of n? ele-
ments in O(n) time on n? processing elements . The tradeoff of time versus
processing elements is not always as direct. In this case, however, it can be
shown that on a parallel array with reconfigurable bus system of n proces-

. 1y
sors, n elements can be sorted in O(nz) time since the reconfigurable bus

system tends to respond like the global bus system for the dense data case.

Since in the sparse data case, many processing elements of the parallel
array with reconfigurable bus system are simply acting as switches and not ac-
tually accomplishing viable computation. In the dense data case, the parallel
array with reconfigurable bus system tends to respond more like the simpler
mesh with global buses and thus little is gained from the added complexity.
In an effort to optimize the best features of both architectures we present a
standard mesh of processing elements with reconfigurable global buses added

to reduce the cost of communication between processing elements.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Overview of the RISC Architecture

One of the latest innovations in individual processor design is that of the
Reduced Instruction Set Comyuter architecture most often referred to as the
RISC architecture. While not all RISC systems are identical, they do tend

to share a set of important key characteristics

e A limited instruction set;
o A large number of general-purpose registers;

e An emphasis on optimizing the instruction pipeline[72].

This architecture offers two main advantages (1) improved performance and
(2) optimized use of VLSI. Performance is improved through the simplified
instruction set which reduces or eliminates the need for microcode and al-
lows more efficient and effective instruction pipelining. A large number of
registers allows a significant reduction in memory accesses which provides a

corresponding increase in speed.
The optimized use of VLSI relates to the ability to implement the entire
processor on one chip. The simplicity of the RISC architecture also makes it

12

<

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

easier to implement and optimize the limited resource of chip surface area.
Additionally, since only a simple control unit is required and an extensive

ROM is not required to store microcode additional space is saved [72].

The RISC architecture is a departure from conventional processor design
which tends more towards increasingly complex implementations that are
designed to directly handle the constructs of High Level Languages (HLL).
The first generation of the RISC work has been experimental in nature, but
a number of commercial RISC systems have been produced since the first

commercial effort produced the Pyramid (7, 9, 49, 59, 68, 72, 82].

Current technology has RISC architectures on their third generation and
in a wide variety of applications. The Motorola 88110 [16, 55], the NVAX
(78] and the LR33020 GraphX Processor [77] are examples of the latest ap-
plications of RISC architecture theory. These applications utilize integration
that places on the order of 500,000 transistors on one chip at a reasonable

cost.

The key goal behind RISC architectures has been one of optimizing the
performance of operations that the processor spends the most time executing

from the view point of common HLLs. Thus a large number of registers are

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provided to significantly reduce operand fetch time and to even store some
global variables in the processor. It shall be the assumption that a RISC-
type processing element can be constructed to accomplish the computations
required later in this work. The potential does exist to contain multiple
RISC processors on an single chip as well as the intercommunication network.
Similar VLSI technology should be able to produce the bus interconnections

in a COH’I]_)ELCt manner.
1.5 Historical Background

The type of interconnection scheme which will be presented here is not en-
tirely new. It was originally employed by Bell Telephone as a non-blocking
call switching system in the 1930’s. This scheme was known as a crosshar
network which interconnected inputs and outputs in a manner that provided

a maximum possibility of the call being completed, refer to figure 1.5.

As the number of subscribers for phone service increased, the crosshar
interconnection network became infeasible, given 1930’s technology. This
demand lead to a study of alternate, and smaller, non-blocking switching

networks. One of the more in depth examinations of this problem appeared in

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output

Input

Figure 1.5: The basic Cross Bar Network
the Bell Systemns Technical Journal by C. Clos [14]. In this study it is shown
that as the number of switching stages increases the number of switches
required to accomplish non-blocking switchiug is decreased. This relationship

was expressed by Clos as the l[ollowing :

s+1

+

2k 243

N#FT(2NFT - 1)k L v ans -) (L1)

7+

C(s)=2
k

il
~

where s is the number of stages and NV is the number of inputs/outputs.

Thus we have ;

C(3) =6N? —3N
C(5) = 1I6NF — 14NV +3N3

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c(7) = 36N¥ — 46N + 20NT — 3N3

C(9) = T6N% — 130N + 86Nt — 26N% + 3N %

These equations demonstrate how the system complexity increases with
the number of stages. It should also be obvious that for computational
applications a multistage communication system (especially of this type) is
not practical. Just the cost of routing information in a highly dynamic
application could be excessive. The systems discussed above were designed
to set up a non-blocked telephone communication, not to handle high speed
inter-processor communication where the time to set up the link could far
exceed the duration of the communication. In most cases the opposite is
true for telephone communications. Thus we shall employ the single stage

communications system.

1.6 Previous Work

As noted above, the architecture to be presented here is not entirely new. In
addition to the applications to telephone systems, the crossbar communica-
tion network has received limited examination as a processor intercommuni-
cation system [12, 21, 22]. This prior work focuses on the potential of actual

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

construction of the system vice the specific algorithmic power offered by the
use of a crossbar type communication system. The results presented in these
papers are especially encouraging, since they establish a firm foundation for

a crosshar based multiprocessor architecture.

The model to be presented here considers the crosshar network as a
system of reconfigurable global buses that provide a powerful enhancement
to a linear array of processing elements. We depart {from the models noted
above, in that we do not consider message type point to point communication.
In the model to be presented, a processing element will place a value at a
precise location in the communication network, normally based on it’s own
ID. Other processing elements will read values from locations in the network.
Under this model the sender is not concerned with the receiver(s) and the
receiver(s) are not concerned with the sender. This allows the communication
system to become a participating portion of many computations. It also

removes the need for a message routine system and related costs.

In light of these subtle, but fundamental differences, the crossbar network
shall be treated and referred to as a system of Reconfigurable Global Buses

for the remainder of this work.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Fundamentals of Arrays with
Reconfigurable Global Buses

2.1 Introduction to the Architecture

2.1.1 Motivation

As noted earlier the primary negative aspect of standard linear and 2-dimensional
arrays is the loss of performance caused by long dislance communication.
In some applications, these communication problems can be overcome by
properly modeling the problem on the architecture. Many highly dynamic
problems, however, rely on communication that is strictly input dependent.

List ranking is an example of this type of application.

In order to overcome the communication slowdown while keeping the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of processing elements linear in the size of the input, we provide a
system of controllably interconnected buses. The buses are interconnected
by smart interconnection points. These interconnection points are smarter
than a standard interconnection, in that they will interconnect two buses
only when directed by the processing element which controls the vertical
bus on which the smart interconnection point lies. While this does require
the smart interconnection point to contain sowne logic, it is considerably
less complex than a complete processing element. This is considered to be
a complexity improvement over the parallel array with reconfigurable bus
systems which often uses full processing elements as bus control points. The
cost of this complexity reduction appears to be an increase in time complexity
from O(1) to O(logn). The benefit is a reduction in processor requirements
on many applications from O(n?) to O(n). Chin and Lin [12] clearly note
that while the communication network requires O(n?) space, the difference
between the space required of a processing element and a switch point is
considerable. A processing element requires over a 100,000 transistors, while
a switchpoint only requires O(BW?) transistors where BW is the width of
the communication bus. Thus for a 32bit wide bus the switchpoint requires
just over 1024 transistors, resulting in a considerable savings in space and

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Processing

LFlement

Figure 2.1: The Linear Array with Reconfigurable Global
Buses(LARGB)

related costs. Additionally, we have obtained a very fexible architecture,

which will require considerable investigation to fully explore its potential.

We shall now more formally define this architecture, and for the sake
of clarity, we shall consider a one dimeunsional array of processing elements
instead of the considerably more complex two dimensional model. We begin
with a linear array of n processing clements . [ach processing element is
connected to a vertical bus , thus PE; connects to VB;. Each vertical bus
has n horizontal buses connected to it l)}; n smart interconnection points .

Figure 2.1 is an example of an n processor version of this architecture. The

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VB,

HB/+1
/SIP,,I

HB]
HBI-1
. @ SIP set
X (O SIP unset
Processing
Element;
Figure 2.2: A single vertical bus of the LARGB

smart intercounection point. at the intersection of VI3; and HB; {(1 < ¢ < .
(1 £j £ n) }. referred to as SIP;;, can only set or break the counection
between VB; and HBj. This occurs il processing element; sets the value j on

the control bus (see figure 2.2).
2.1.2 Rules of Operation

It is appropriate to now state the rules of operation and restrictions of this
hybrid architecture for the sake of consistency and to maintain viability as

an implementable system. These basic operating parameters are as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. A processing element can only direct one smart interconnection point

on its vertical bus to set the connection to an horizontal bus at a time.

2. Any number of processing elements can connect to a single horizontal

bus.

3. Any number of processing elements can read from a single horizontal

bus.

4. Only one processing element can be allowed to place a value on a

particular horizontal bus at any given time 1.

5. A processing element can accomplish any basic mathematical opera-

tion, (4,,%,/), or logical operation (<, >,=,not,and,or).

We will use these few basic parameters to develop the elementary algo-
rithms which will become the building blocks for applications of this archi-

tecture.

!This must be prevented at the algorithm level. There is no explicit mechanism to
prevent multiple writes at the hardware level.

O]
o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Level,

Level,
Level,
Levely
Processing
O Element,

Figure 2.3: Binary Tree Model 1

2.2 Basic Algorithms

Since most prefix computations are easily modeled by a binary tree. we offer
two different methods of modeling a binary tree on the linear arvay with

reconfigurable global busses.

Binary Tree Model 1

Given n proéessing elements, we model a binary tree of depth [logn] as

follows (see figure 2.3):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The root is PE,;

At all levels above 0, node; has two children (if they exist);

The values for the children of node; at level j are stored as:

— rightchild is in PE;;

— leftchild is in PEy, where k =7 — 27-1.

¢ node; communicates with node, via HBy, (when 1 # k);

Since the rightchild of a node exists in the same processing element as its
parent this model can only be used where the child information is no longer
required, once the parent information is found. This is true in a number of

problems, including prefix computations.

Binary Tree Model 2

Given n processing elements, we model a tree of depth [logn] — 1 as follows

(see figure 2.4)[4]:

e The root is PEy;

e Level of node; = |logi];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Level,

Level,
Level,
Level,
Rooct
Procsssing
® Elsment,

Figure 2.4: Binary Tree Model 2

o The children of node; are held as follows:

— leftchild is in PEg. where k = ¢ « 2level(node,)-1

— rightchild in PE;y,

¢ PE; communicates with PEy via HB. (2 # &).

With these models defined we shall proceed with the prefix computation
algorithms for the linear array with reconfigurable global buses. We will use
binary tree model 1 in the prefix computation algorithms and binary tree

model 2 in the more complex parenthesis matching algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 Prefix Sum

The prefix sum of an array of data, with one value held in each processing
element , is one in which once accomplished, the result is such that each
processing element now holds the sum of all previous values. More formally,

the prefix sum at PE; when PE; initially holds z; is:
Psum; = Z r; (1<:2<n)
=1

The example below demonstrates:

The input of:

3,4,2,8,1,3,2,4,5.10,1,0,2,3,5,7

Upon completion of the prefix sum we have:

3,7,9,17,18,21,23,27,32.42,43 43,45 48.53,60

It should be noted that the last value in the result is also the total sum for

the sequence. This is important because the complexity of finding the sum

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a sequence on a linear array of processors is O(logn) and the complexity
for the prefix sum is also O(logn). Thus the more powerful prefix sum, can
be obtained with no additional complexity. Function prefix_sum provides the
details:

Function prefix_sum;

{Input: A sequence of values of length n;

Output: The prefix sum of the input sequence in the array Psum.}
begin

for : «—1 to logn do

for j «1 to n, step 2!, do in parallel

PE; «PE; + PE;_,

{ note: this is all that is necessary to compute the
sum of the sequence, PE., will now hold the sum.
Additionally each PE; hold the correct prefix

sum values. }

{Let LC; be the left child of PE; at the current level, and define RC; similarly}
for j —logn down to 0 do

for ¢ —logn down to 1, step 2/ do in parallel

if (PE; not marked) then begin {Initially no PE
is marked}
PE; accomplish RC; «LC; + RC; +
Value_Received;;
Value_Received; «—LC; + Value_Received
at Parent;;

mark PE;;

(o)
-3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end;

end.

Theorem 1. Function prefiv.sum correctly compules the prefic sum of n ele-
ments in Oflogn) time on a linear array with reconfigurable global buses.

Proof. Correctness: The outer “for” loop combines successive sub-totals to
form the final total. Thus at the root of the binary tree (see Binary Tree
Model 1) is the total and proceeding recursively down the line of left children,
for each sub tree rooted at this child the sub-total held at this node is the
prefix sum for this node. All that remains is to distribute the information
back to all other nodes, so that they each are updated to the correct prefix
sum. Since each right child need only add to itself the value of its sibling
and the value its parent received on the previous step this is accomplished
in the second for loop. The left child Need only add to itself the value that
its parent added to it self. 1t is trickle down effect which updates all of the

leaves by the time the function halts.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time Complexity: Both loops which are iterated are of length logn. With
O(1) time elements with in the loops, the function halts in O(logn) time.

Thus function prefix_sum correctly computes the prefix sum of the input in

O(logn) time. O

2.2.2 Prefix Maximum

The prefix maximum is a similar operation to the prefix sum, in that the
value at a particular processing element is dependent on all nodes which

come before it. The example below demonstrates:

The input of:

3,4,2,8,1,3,2,4,5,10,1,0,2,3,5,7

Upon completion of the prefix maximum we have:

3,4.4,8,8,8,8,8.8,10,10,10,10,10,10,10

Just as in prefix_sum the last value is the global result for the entire sequence.

Function prefix_max provides the details.

9 ()

L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function prefix_max;

{Input: A sequence of values of length n;

Output: The prefix max of the input sequence in the array Pmax.}
begin

for : 1 to logn do

for j <1 to n, step 2¢, do in parallel

PE; «max(PE;, PL;_5-1)
{ note: The global maximumn of the sequence is now

held in PE,. }
for j «logn down to 0 do

for i «—n down to 1, step 2’ do in parallel

if (PE; not marked) then begin {Initially no PE
is marked}
LC; «max(LC;, LC,_,,); {if LC;_,, does
not exist the result is LC;}
RC; «~max(LC;, RC;);
mark PE;;

end;

end.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 2. Function prefiv.maz correctly computes the prefix maz of n ele-
ments in Oflogn) tﬁne on a linear array with reconfigurable global buses.
Proof. Correctness: Just as in prefix sum the root holds the maximum at
the end of the first loop, and each left child holds the prefix maximum for its
sub-tree.

All that need occur now is for the maxima information to trickle back down
to the individual leaves. The second “for” loop accomplishes this task di-
rectly. The right child of a given node must contain the maximum between
itself and the left child at any level j (refer to figure 2.3). The value of the
left child needs to import the prefix maximum from everything which lies
further left. This is accomplished by using the value from its parent’s left
child. This value is directly accessible due to the tree structure, in that each
processing element can compute the PEID of a sibling directly. Thus the
left child is updated, and then the left child, proceeding down the tree level
by level.

Time Complexity: Both iterated “for” loops are of length logn and con-
tain strictly constant time operations, thus the Function prefix_max halts in

O(logn) time. O

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The method for finding the prefix minimum is perfectly similar to that
for prefix maximum and for this reason will not be detailed here. For later

reference the function is given the obvious name: prefix_min.

2.2.3 The Multiple Source Problem

Next we examine a slightly more complex, and communication intensive prob-
lem, known as multiple source. In the multiple source problem a subset of the
processing elements in the linear array are marked. The method of marking is
not vital to the procedure, we shall consider each processing element to have
a boolean flag known as marl@d which it can set. The goal of multiple source
is for every processing element to know the identity, of the first processing
element to its right which is marked. Identity is defined as the processing
element identification number or PEID. If the processing element, itself is

marked, it maintains its own PEID. The example below demonstrates:

For a set of processors where ‘*’ denotes a marked processor:

ana*70’070107*1*70-,07()’*70707*

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The result is:

3,3,3,8,8,8,8,8,9,13,13,13,13,16,16,16

The procedure multiple_source, below, details the process.

Procedure multiple_source;

{Input: A subset of marked processing elements;

Output: Each processing element knows the value of the first marked pro-
cessing element to its right. This is stored in the array marked_right where
the value of marked_right; is the first marked element to the right of PE;. If
PE; is marked, marked_ right; is set to 1. }

begin

marked_right «0;

for i <1 to n do in parallel
if (PE; is marked) marked right; «;

1 —1;

repeat

for j «—1 to n do in parallel

begin

if (marked_right; # 0 and marked_right;_; = 0)
marked_right;_; «j;

ie—i*2

end;

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

until (i = [logn]);
return(marked_right);

end.

Theorem 3. Procedure multiple_source correctly computes the multiple source
problem for a subset of marked processing elements from an original set on
n processing elements in Oflogn) time.

Proof. To show correctness, we assume that some entry in marked_right is
the wrong value. This can occur in only 2 cases, (1) the value is never altered
from the original initialization to zero and (2) a marked processing element
which is not closest to the right manages to make the entry in marked_right.
Case 1. Since at each step of marking the number of marked processors can
potentially double and [logn] steps occur all entries will be marked even if
only one processing element is initially marked. If multiple processors are
marked, then the actual time required to mark all values is [log k] where k
= size of largest unmarked space between two marked processing elements .
Therefore all entries in marked_right will receive a value.

Case 2. To address the potential of an entry in marked_right being set by the

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wrong processing element , consider 3 processing elements PE;, PE; and PE,
where 7 < j < k, and let PE; and PE; be marked. Assume marked_ right;
becomes set to k, but for this to occur marked right; would have had to have
been zero when a processing element which had the value of k checked. In
order for this to happen, a processing element further right than PE; would
have had to check PE; first, but since all values are decremented by the same
value at each step PE; must reach PE; before PE,.

The possibility of a PE; being modified by PE;, where 7 < j, is zero since
the values are always decremented, so in this procedure a processing element
never “looks” right.

Thus we have contradicted the assumption that marked_ right; could receive
the wrong value, and correctness is shown.

To address time complexity: The one iterated loop (repeat - until) is accom-
plished exactly [log n] times. All other steps are accomplished in parallel and
thus take O(1) time. The communication method for PE; to check the value
of PE; is direct. In that first each PEj, where 1 < k < n, puts marked_right,
onto HBy via VB,. Now for PE; to check the value of marked_right; it need
only read the value which is on HB;, a constant time operation.

Thus the procedure correctly computes the multiple source problem in O(logn)

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time. O

2.2.4 List Ranking

List ranking is the problem of letting each processing element know where it
lies in a linked list, when the given input is such that each processing element
only knows which processing element is next in the list. A processing element
whose next value is zero is considered to be the end of the list. The example

below demonstrates:

The input of:

4,7,5,13,0,10,16,15,8,14,9,2,12,3,6,11

Upon completion of the list_rank we have:

15,11,1,14,0,4,10,6,7,3,8,12,13,2.5.9

et b

Many algorithms are improved considerably if each processing element

knows where it lies in the structure. This is the purpose of the list_rank

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

procedure shown below.

Procedure list_rank;

{Input: Each processing element has the value of the next processing ele-
ment in the list, for example next; is the processing element which follows
PE;

Output: Each processing element knows how far it lies from the end of the
list. This is stored in the array distance where the value of distance; is how
many processing elements lie between PE; and the end of the list.}

begin

for ¢ <1 to n do in parallel

begin

if (next; # 0) distance; «-1
otherwise distance; «0;
nextnext; «—next;

end;
for i —1 to [logn]| do

for ; «1 to n do in parallel
begin

if (distancenertnest, # -1) distance; —2°~! + distance,eaineat, ;
nextnext; <—nextnextnmumj;

end;

return (distance);

end.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 4. Procedure list_rank correctly compules the list rank for each
node in O(logn) time.

Proof. This is the standard pointer doubling technique where a pointer is
doubled until it finds a PE which “knows” how far it is until the end of the
list. Additionally, only processing elements which have not found this value
continue to search, this prevents processing elements from trying to read a
bus that does not exist.

Formally, let PE; find a node which has found the end of the list at step %,
thus it has found a value in distance which is not -1. Since each processing
element doubles the distance it looks at each step, any processing element
which found a value in the previous step will be closer to the end of the list
than the processing element which is currently reading the value. Therefore,
since the processing element has the value of distance which informs it how
far the processing element it is currently examining is from the end of the
list, and it has counted how many steps () it took to find this processing
element, the processing element can directly compute its own distance to the

end of the list.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To further address time complexity. Since at each step the pointer is dou-
bled, the farthest processing element from the end must find a processing
element which knows it’s distance to the end in O(logn) time.

Thus procedure list_rank correctly computes the distance of each processing

element from the end of the linked-list structure. O

2.3 Parenthesis Matching

In the preceding section, basic algorithms were provided as building blocks
for more complex algorithms. The first of these algorithms to be examined is
parenthesis matching. The P_match procedure is given as input a sequence of
n parentheses. After processing the algorithm will return, (1) if the sequence
is well formed, (2) if so, it will also return for each parenthesis in the sequence

the location of its match in the sequence. The examples below demonstrate.

The input of:

(000NO)

Upon completion P_match we have:

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Sequence is well formed

10,9,4,3,6,5,8,7,2,1,16,13,12,15,14,11

The input of:

((QOM0)

Upon completion P_match we have: The Sequence is NOT well formed

Procedure P_match, below, provides the details of parenthesis matching on
the linear array with reconfigurable global buses. This procedure uses binary

tree model 2.

Procedure P_match;

{Input: Each processing element has either a ‘(" or a ¢)’;

Output: The status of the sequence of parentheses, and if well formed the
identification of pairs.}

begin

set all node values «0;

{Let node; hold a 5-tuple of (a,b,c,d,e) where
‘a’ is the number of unmatched left parentheses below node;
‘b’ is the number of unmatched right parentheses below node;

‘c’ is the number of matches made by node;

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘d’ is the number of matches made at or below L(;

‘e’ is the number of matches made at or below RC; }
(1.)for all node; at levely do in parallel

if node; holds a left parenthesis then node.a «1;

if node; holds a right parenthesis then node.b «1;
(2.)for « «1 to [logn] do begin

for all node; at level; do in parallel

node;.c «min(LC.a,RC.b);
node;.a «LC.a 4+ RC.a - node;.c;
node;.b «LC.b + RC.b - node;.c;
node;.d —~LC.c + LC.d + LC.e;
node;.e —RC.c + RC.d + RC.¢;

end;{for i}
(3.)if not (Root.a = root.b = 0) then begin

return(’Sequence NOT well Jormed’);
all stop

end;

else begin

return(’Sequence is well formed’);
Num_Pairs «—Root.c + Root.d + Root.e;
Root_Avail Range «[1 ... Num_Pairs]

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end;{else}

{Each node; shall also hold a 3-tuple of ranges. These will be
the range.k, range.L and range.R which is the range kept,
range sent to the leftchild and the range sent to the right

child respectively. }
(4.)for i —flogn] down to 1 do begin

for all nodes at level; that made a match do in parallel

min_avail; «<min(range received at node;);

node;.range.k «[min_avail;... node;.c + min_avail
-1];

node;.range.L «[node;.c + min_avail; ... node;.d +
min_avail -1 |;

node;.range.R «—[node;.d + min_avail;... node;.e
+ min.avail -1 J;

{Note: consider [0 ... 0] to be a null range}

end;

{All that remains is to distribute the information maintained in the field

range.k}
(5.)if node;.range.k # [0 ... 0] then begin

node; send node;.range.k to node;.LC as made.L;

node; send REV(node;.range.k) to node;. RC as made.R;

end;

(6.)for 7 <1 to 2n — 1 do in parallel

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

total; «node;.a + node;.b + 2(node;.c + node;.d + node;.e);

free_left; (—E’-g"—li - (2node;.d + node;.c);

free_right; (—-—‘—"g‘—li - (2node;.e + node;.c);
(7.)for j «1 to [logn|

for : <1 to 2n — 1 do in parallel

{Now each node may receive a range [f1 ... fi].x, where x = (L,R)

}

if node; is not a leal then begin
if x = ‘R’ then begin
if free_left; # 0 then begin
n «—min({reeleft;, k);
send [f; ... [,]to LC;;
free_left «—free_left -
L
end;{if free left}
if free_right; # 0 And &k —
n > 0 then begin

m «min(free_right;,

k —n);

send [fus1 - [utm)
to RC;;

{ree_right «{ree_right
-1

end;{if free_right}
else;{x = ‘L’}
if free_right; # 0 then be-
gin

43

Reproduced with permission of the copyright owner.

Further reproduction prohibited without permission.

n «—min(freeright;,
k);
send [f1... fu] to RC;;
free_right «free_right
-1
end;{if free_right}
if free_left; # 0 And k—n >
0 then begin

m «—min({ree_left;, k—

n);

send [fos1 .-« fotm)
to L.C;;

free_left «free left -
1

end;{if free_left}
else {node; is a leaf}

stop{node;}

end;{if node; is a leaf}

end.{Procedure P_match}

Before we prove the correctness and complexity of procedure P_Match, we

make the following observation in the form of lemma. 1.

414

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 1.A set of matched parentheses lie as close as possible to the center
of the tree rooted at the node at which they were matched.

Proof. Since binary tree is made up of many sub-trees which are also binary
trees, we begin with the matches that occur one level above the leaves, these
are adjacent parentheses and since their trees have only two leaves they lie
to the center of the tree. Thus we have the basis to prove the general case.
Assume this works for level £ — 1 in the tree, we need now show that it
works correctly for level k. Some parentheses in the sub-trees rooted at level
k will have been matched at lower levels, thus not all of the leaves can be
assumed to be available. Assume that one set of parentheses were matched
by some node at level k. It is straightforward to observe, however, that these
2 parentheses will originally lie as close to the center of the sub-tree rooted at
the node where they were matched as possible. The only parentheses which
could lie closer to the center of this sub-tree are those which are matched at

levels below k.0

Theorem 5. Procedure P_Maich accomplishes the following in Oflogn) time:
(1.) Checks if a sequence of parentheses are well formed, and if they are
(2)provides each maiching set a unique identificalion number in the range [1

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

... 2] where n is the number of parentheses input.

Proof First we examine the process of verifying that the sequence is well
formed. This occurs in steps 1-3 of procedure P_Match. The loop at step
(2.) accomplishes the actual task. Step (1.) is initialization and step (3.)
just tests and reports results. Therefore we will examine step (2.) in detail.
It proceeds level by level from the leaves to the root. At each step, poten-
tial matches are checked. It is obvious that the maximum possible number
of matches are made since no more than the minimum of the available left
parentheses from the left child and the available right parentheses from the
right child can from matched sets at this point. The remainder of the step is
straightforward addition of information to be used later. The test at the root
remains, the root may hold no unmaitched parentheses, since it has no where
else to forward them to be matched. Additionally, the root cannot have zero
unmatched parentheses when the sequence is not well formed, since the only
way a parenthesis is not forwarded is if it is matched with another. Therefore,
steps (1-3) correctly determine is a sequence of parentheses are well formed.
To address the actual matching of the parentheses, we make use of lemma
1. Before actual pairs can be given identification numbers, each node which

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

actually made a match must receive a unique value to assign to that match.
The end of step (3.) identified the total number of pairs of parentheses
which were matched somewhere in the tree. Now all that need occur is for
this information to be disseminated down the tree to each node which made
a match. I needs to be shown that every node which made a match will
receive a range equal to the number of matches it made along with those
its children made. The root starts this with the total number of matches in
the tree. Step (4.) further distributes the sub-ranges to the sub-trees in a
straightforward manner.

Step (5.) Each node which is the root of a sub-tree now holds a unique range
of values which it can assign to the parentheses it matched. These ranges
are now broken down into individual ranges for each child. The range sent
to the right child is reversed for the reasoning behind lemma 1. Step (6.)
just initiates for each node the number of available nodes under each child
that need to be matched, by nodes which lie above. Step (7.) continues to
pass these values down to the leaves, working from the center out as shown
in lemma 1. Thus each parenthesis receives a value that is only held by its
match.

To address time complexity: Step (1.) requires O(1) time.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step (2.) works level by level, thus O(logn) time.

Step (3.) requires O(1) time.

Step (4.) passes down the range information level by level, thus O(logn)
time.

Step (5.) requires O(1) time.

Step (6.) requires O(1) time.

Step (7.) pipelines the passing of values down the tree, thus the farthest trip
(from the root) requires O(logn) time.

Therefore the entire procedure directly requires O(logn) time.

Procedure P_Match correctly matches the parentheses of the input sequence
in O(logn) time, provided the sequence is well formed, otherwise it returns
that the sequence is not well formed in O(logn). O

Procedure P_check, below, offers an alternate method for checking whether
or not a sequence of parentheses are well formed or not. It does not provide

a mechanism for matching the set of parentheses.

Procedure P_check;

{Input: Each processing element has either a +1 or a -1 signifying a ‘(’ or
‘)’ respectively;

Output: The status of the sequence of parentheses, and il well formed the

identification of pairs.}

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

begin

Psum «prefix_sum(input); {Prefix sum the input}
marked «0;

if (Psum, # 0) PE, set marked, «1;

for : <1 to n —1 do in parallel

if (Psum; < 0) PE; set marked,, «1;
J «—sum(marked); {The function sum simply uses the first loop of the prefix
sum procedure}

if (7 > 0) then

return(The sequence is NOT well formed.);

stop.

return(The sequence is well formed.);

end

Theorem 6.Procedure P_Check correctly checks if a sequence of parenthe-
ses are well formed in Oflogn) time,

Proof. Procedure P_Check is based on the observation that the prefix sum
of the (+1,-1) sequence corresponding to a sequence of [*(’,*)’] must have a

final sum of 0, and at no point may it be negative. Directly, if the final

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sum is non-zero, at least one parenthesis is left unmatched by the end of the
sequence. With in the sequence, the prefix sum may never become negative,

since for this to occur more ‘)’ will have occurred than ‘(’. O

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Graph Theory

3.1 Introduction

First we shall formally define a graph. A graph consists of a finite set V and
an irreflexive binary relation on V. V is referred to as the vertex set of the
graph. The binary relation is most often referred to as a collection, E, of
ordered pairs. Adj(v) is referred to as the adjacent set of the vertex v, and

the ordered pair (v,w) € E is called an edge. Directly,
(v,w) e E if and only if w €Adj(v).
The assumption of irreflexivity implies:

(v,v) & L for (v € V).

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Additionally the Neighborhood of v is defined as:

N(v) = {v}+Adj(v).

It should be noted, however, that while loop edges will not be permitted,
edge pointers, in the algorithmic sense, will be allowed to point to the vertex
from which they originate. In this presentation, an edge will often be denoted

without the parentheses and comma. Therefore:

vw e L and (v,w) € E

have the same meaning [24].

We intend to focus on very large sparse graphs. This type of graph may
be found in numerical applications such as finite element analysis[66]. This
type of graph is especially difficult to handle due primarily to its size, but also
the scarcity makes efficient assignment of processing power to the problem
more complex. The goal is to use the dynamic power of the linear array
with reconfigurable global buses to evaluate the graph and then reconfigure

resources to suit the problem with no loss in efficiency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Graphs are computationally represented by a small group of standard
structures, adjacency matrix, adjacency list and a set of edges. While all
three of the structures contain the same information, it is stored and ac-
cordingly accessed in very different manners. The adjacency matrix has a
non-zero entry at location ¢, 7 of the matrix if and only if the edge 77 is in the
graph. The entry may be just representing the existence of the edge or it may
also have weight information. It is obviéus that for very large sparse graphs,
this storage method would be very inefficient since most entries would be
simply zero. The adjacency list only maintains entries for the edges which
do exist. The semi-structured nature of the adjacency list, however, makes it
difficult to map to any static multiprocessor system. The edge set of a graph
maintains all of the information of a graph in an manner that is clearly map-
pable to a multiprocessor system for computation. Thus, we assume that the

graph to be processed is initially input as a set of 2m directed edges.
3.2 Connected Components

The connected component problem is answering the question, Are V; and V;

in the same component of the graph? This implies the existence of a path

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between the vertices and accordingly some type of relationship if the graph
is resultant from real physical data. Additionally, solution to the connected
component allows redistribution of computational resources to increase the
efficiency of computation. This redistribution is especially important if P <<
2m, where we want to store related vertices in the same or adjacent processors

which helps to speed more complex computations.

The spanning tree/forest is closely related to the connectéd component
problem, in that if a spanning forest is available for a graph, each tree in
the forest represents a connected component. The spanning forest maintains
more structure information than the connected component model. An edge
is in the forest only if there is a corresponding edge in the graph. It is also
shown earlier that the linear array with reconfigurable global buses can very
efficiently model and process tree structure, therefore, we generate a spanning

forest from the result of the connected component problem.

Shiloach and Vishkin offer an optimal parallel connected component algo-
rithm for the parallel random access memory (PRAM) model of computation
in [70}. This algorithm requires O(logn) time and n + 2m processors. We

take inspiration from this algorithm and generalize it for an LARGB with P

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processors.

We begin with the 2m edges input 27,"1 edges per processing element.
First each processing element conducts a breadth first search on the edges it

stores locally. The result being a spanning forest for those edges [3].

Before proceeding we will briefly review the functions used to complete
the connected component processing. For further details of these functions
the reader is referred to [70].

Conditional Hooking: if the parent of ¢ is a root, j is adjacent to ¢ in the
original graph, and parent[j] < parent[¢] then hook j to <.

Star Hooking: If : belongs to a star, j is adjacent to ¢ in the original graph,
and 7 is not in ¢’s star then hook j to 1.

Shortcutting: if ¢ is not a root, parent(t]=parent[parent[i]].

These three functions are the basis of Shiloach and Vishkin’s algorithm.

We employ the hooking idea to construct increasingly larger connected
components or trees, but we do not bother to employ shortcutting. Once we
have a spanning forest where each vertex knows the value of the root of its
tree, the connected component query can be resolved in O(1) time. Thus we

have the following algorithm:

Procedure Complete Spanning Forest

{input: The spanning forest from the BFS conducted by each PL on its input

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

edge set.
output: A spanning forest for the original graph where each vertex knows
the value of the root of it’s spanning tree in the forest.}
begin
repeat
{ Hooking}
if j is a root and root[i] < j and ¢j € I then begin

hook j to 1;
update root[descendant of j] = root[i]; end
{Check if root is hookable}
if 2 is root and not (3 j € V such that ij € E and root[j] # i)
then shift root of the tree to a vertex with a link outside of

the tree;

until(Check root step did not produce any changes)

end{Procedure Complete Spanning Forest}

Theorem 7. Procedure Complele Spanning Forest correctly generates a
spanning forest from the BFS inpul in O(% logn) lime.

Proof. Assuming that the BI'S step found nothing but individual edges,
thus the input is exactly that of the algorithm assumed by Shiloach and

Vishkin. Any more structure obviously makes the task easier. Thus at each

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

step a tree is joined to another tree at least doubling the size of the smaller
tree. Cycles are not induced because the larger indexed root always hooks
to the tree of the smaller indexed root. The process of shifting the root is
straighttforward since all nodes know the value of their root at all times. Re-
versing pointers on the LARGB to maintain a parent pointer tree is also a
direct operation.

The time complexity is directly O(% logn) since each hooking at least dou-
bles the size of the smaller tree. The F factor is directly derived from the

distribution of multiple edges to a single processing element. O

Corollary 7.1The entire Spanning Forest construction is accomplished in
O(% + Blogn) time.
The F factor is the cost of the initial BI'S and the second is shown in The-

orem 1. O

It should be noted that this would be the result predicted by Ahmdal’s
law [58] except for the BF'S cost. Since the input set is expected to be derived

from some actual structure or physical data set, the BFS step should save

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iterations of the second procedure, thus reducing the constant factor in the
total complexity. It is recognized that the BFS cost is not actually significant
in light if the strict definition of O(f(n)). Thus the O(% logn) performance

is as expected and is optimal.

3.3 Introduction to Least Common Ances-
tors

The LCA problem is: given a collection of rooted trees, answer a query of
the type what is the lowest common ancestor of the nodes i and j#2] This
shall be denoted as LCA(7,7) There are many versions of the problem, We
follow from [28] and examine five versions of the problem. In each version,
the LARGB solution has equal or better performance than those presented

in [28]. The versions are:

1. The collection of trees are static and the entire sequence of queries is

specified in advance.
2. The collection of trees is static but the queries are given on-line.

3. The queries are given on-line. Interspersed with the queries are on-line
commands link(i, j) where 7 and j are tree roots. The effect oflink(,)

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is to combine the trees rooted at 7 and j by making j a child of <.

4. The queries are on line. Interspersed with the queries are on-line com-

mands link(z, 7) such that 7 need not be a root.

5. The queries are on-line. Interspersed with the queries are commands
of two types link(z, j) and cui(z). The command cui(z) has the effect of

causing node z to delete its parent pointer and become a root.

Proposition 1.[28] Let T be a complete binary tree with n leaves. Any
pointer machine requires Q(loglogn) time to answer any LCA query in the

worst case, independent of the representation of the tree.

This proposition is of interest because the LARGB is representing the
tree with parent pointers, just as the pointer machine would. Thus this is
a viable lower bound. Additionally, the lower bound for the link and cut
operations was left open in [28]. It is unknown if these bounds have been
proven, they will be proven here lor the linear array with reconfigurable

global buses.

The trees will be initially input as nodes and pointers, each node will be

held by a processing element, that processing element will only ”know” its

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parent. Nodes with no parent are by default roots.

3.4 The LCA Problem on Static Trees

First we examine the single query and show how the LARGB easily obtains
the lower bound given in Proposition 1. To answer LCA(7, 7) the two nodes
1,7 start a traversal to the root of their tree marking the path as they travel.
The first node at which the two paths coincide is naturally the LCA, if both
reach the root without finding the other’s path, ¢ and j are in separate trees
and have no LCA. The traversal is accomplished by the pointer doubling
technique which doubles the length of the step at each stage. Thus any
node will reach the root in O(loglogn) stages. Iach stage entails visiting an
ancestor parent, and examining it to see if it was already visited by the other
node. It is also straightforward to observe that even if the two traversals are

accomplished in series, the running time will still be O(loglogn).

Ior the case of an extremely deep tree, where many parents have only a
single child, it is observed that the above method yields a result in O{logn)
time. The closer the tree comes to being a linked list the larger the constant

factor for the time will be.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Even with a balanced binary tree the O(loglogn) running time could
become too much if many queries need to be answered. If the tree structure
is regular and the relationship between the assignment of processing elements
to this structure is known, then the solution of LCA(z,3) is direct. This
cannot be expected to be the case. We assume the input to be the nodes in

any order, with any node only knowing its parent.

In order to efficiently answer queries each node needs some method of
knowing what nodes are its children. We could have each processing element
store the PEID for each of its children, but this is redundant and wasteful.
The most efficient method maintaining this information would be to allow
each processing element to maintain a range, [a...b], where « is the number
of the first of its children and b is its last child. Since the order is unknown
the PEID will not suffice for the numbers. Thus we must find a method of

assigning an additional value to each node so that each parent can hold the

range [a...b].

To accomplish this we employ the Euler Tour Technique presented by
Tarjan and Vishkin in [76] where they use the technique to compute the

preorder and post order numbering of the vertices. We are interested in the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

preorder numbering of the vertices. The Fuler Tourrequires O(n) processors
and O(logn) time on an EREW pram. In section 4.3 it is shown that the
LARGB can model the CREW pram in equal space and time, so accomplish-
ing the Euler Tour is direct. We allow an extra 2m processors in this step
to represent each tree link as 2 links, one up and one down the tree. We still

employ only O(n) processors since in any tree m =n — 1.

Upon completion of the Euler Tour each node now has a value assigned.
These values correspond to the preorder numbering of the tree. Thus, if
node; has the value & all of its children have values greater than k, therefore
a = k + 1 for node;. To find the value of b each node need only find the
value of the largest child. Due to the numbering, it is straightforward that
this node must be a leaf, so each leaf need only pass its value to its parent
and its parent only forwards the largest value. As it turns out, with little
modification, the Fuler Tour will deliver this value directly, all that need be
done is for each up link that is traversed to leave the current number at the

parent.

This method accounts for the LCA only within a tree, for multiple trees

we assign each root a unique value. A prefix sum over the b value held at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the root nodes gives each tree a unique value, and an increment factor for
giving each node a unique value in the forest. Each root just broadcasts this
value to each node where the increment is added to the preorder number it

already holds.

Now it is almost a direct lookup to determine LCA(z, 7). The method is

as follows:

1. 7 is broadcast to all processing elements. The processing element which
holds node 7 places its preorder number onto HB; to inform all pro-

cessing elements.

[V

. the same occurs for j.

3. all processing elements for which ¢ <7 < band ¢ < j < b are true

mark themselves.

4. all unmarked processing elements examine their parent, if their par-
ent is marked, place their parent’s node number on HB;. This is the

LCA(i, j).

5. if no processing elements are marked, then 7 and j are in different trees.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus once the preprocessing is accomplished, we have a very straightfor-
ward LCA solution method for many queries. Additionally with this method,

it is not important if the queries are known in advance or not.
3.5 The LCA Problem with Dynamic Trees

The link and cut commands simply require some pointer reassignment and
renumbering of nodes. The link operation will be considered in its general
case, the linking of two roots is a special case and less difficult than the
linking of a root to any other node in the tree. We assume multiple queries
are to be solved also. Links could be accomplished an then simply reapply
the preprocessing step given above, but this would be costly as the majority
of the structure of the trees did not change. We need an efficient method of
updating the preorder numbering of the nodes in which it changes. To do
this we maintain a couple of pieces of information that were available in the
preprocessing step. Iach root maintains the PEID of the root to its left in
the prefix sum computation, and each node maintains the PEID of its own

root.

If a root is linked it is removed [rom the list of roots and all other roots

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compensate for the loss. There are two cases for this compensation:

(1)The root is linked to a tree which lies to the left of its former position in
the root list, this causes each root that is newly to its right to increment all
of its node prenumbers by the size of the tree moved.

(ii)The root is linked to a tree which lies right of its former position, this
requires that all trees which are newly to the left of the tree decrement all
preorder numbers by the size of the tree.

This causes all other trees to be updated to maintain unique values through-
out the forest. All that remains is to update the tree to which the link
occurred. For the purpose of the numbering we assume that the linked node
becomes the right most child of the parent to which it was linked. The b
value for the parent of the link and all values greater than b in the tree must
be incremented by the size of the tree linked. This may be accomplished in
O(1) time by broadcast from the root. The nodes of the linked tree are all
that remains to be updated. This is accomplished by adding its new parent’s
a value less the old root’s «. With this complete the nodes can be informed
of their new root by the old root through a simple broadcast. The old root

sets its parent pointer to its new parent and becomes part of the tree.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This straightforward example demonstrates the following obvious result:

Theorem 8. The linking operation has a lower bound of Q(1) for a for-

est of trees that has been preprocessed. O

The cutting operation is perfectly similar to the linking operation, and
thus only the specific differences will be noted. The major difference is how
a new tree is handled once it is cut out of an existing one. If the new root is
added to the list of roots directly to the right of the its former root, none of
the other trees in the list need to do any updating. Placing it somewhere else
would require updating. All that remains is to update the tree which lost a
subtree and the new tree itself all nodes in the old tree whose « is greater
than the b value of the tree which was removed must decrement their o by
the former section’s b—a. The new tree renumbers its nodes by incrementing
all of its nodes by the difference between its b and the a of next root in the
list less 1. Again it is a constant time operation and we have the following

result:

Theorem 9. The cutting operation has a lower bound of Q1) for a forest

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of trees that has been preprocessed. O

3.6 Further Graph Algorithms

Once the connected components of a graph are known, each component may
be examined independently of all others. This is especially important for very
large sparse graphs since a natural partition for the problem is generated by
the various components. This partitioning method does have the drawback
that the component size and distribution cannot be know « priori. It is
extreme flexibility in communication of the linear array with reconfigurable
global buses that makes the efficient algorithms presented here possible. The
combination of the least common ancestor and connected component algo-

rithms form the basis of the algorithms to find additional graph properties.

3.6.1 The Bipartiteness of a Graph

A bipartite graph is defined as a graph in which the vertices of the graph
may be divided into two sets, X, Y, where all edges of the graph exist only

between X and Y refer to figure 3.1. No vertex in X is adjacent to any

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.1: The Bipartite Partition of a Graph

other vertex in X and similarly for V" [21].

The spanning forest input fortn for the graph allows a straightforward
solution to the bipartiteness question. For clarity the processing of one tree
is shown, the remainder are perfectly similar. First. the graph is partitioned
into the X and ¥’ subsets by assigning alternating levels of the tree to set X
and Y'respectivcly. All that remains if for each vertex to verily that all of
its neighbors lie in the opposite partition. The check in X is accomplished
by assigning each vertex in X a single bit value of "1’ and each vertex in ¥
a bit value of ‘0’. Each vertex in .X now need only assemble the bits from
its neighbors into an integer and check if the integer is gl~e;1te1‘ than zero the

graph is not bipartite. The process is perfectly similar for the Y partition.

N
[)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 10. The bipartiteness of a connected component can be deter-

mined in O(%) time given that there are M; edges lying in the connected
1

component;, but not in the spanning lree and P; processing clements to ac-

complish the checks. O

3.6.2 Bridges in a Connected Component

A bridge is an edge in a connected component of a graph that causes the
component to become disconnected if removed. Again, the spanning tree
for each connected component is of primary interest. The bridges with in a

connected component are found as [ollows:

Procedure bridges;

{input: a connected component, C;(G), of a graph and its spanning tree, ST;
output: all edges which are bridges in the input component}

begin G} «—C;(G) - ST;; {Find edges not in spanning tree}

SF «Spanning forest[G!];

if SI% is single tree

then no bridges exist in C;(G)

else
if v; is a root in S} and not a root in ST;

then the edge (v;,parent(v;)) is a bridge in C;(G); {parent

function is relative to ST}

end.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 11. Procedure bridges correctly determines the bridges within a
connected component in O(%‘ logn) time. O

Corollary 11.1. Any component that generates a second single spanning
tree is a biconnected component. O

Thus procedure bridges not only identifies bridges, but alsé biconnected com-
ponents if they exist.

3.6.3 Fundamental Cycles in a Connected Compo-
nent

A fundamental cycle is the cycle formed by adding one additional edge to the
spanning tree of a graph. All fundamental cycles are found by adding and
then removing edges from the spanning tree. The procedure presented here
employs the optimal least common ancestor procedure found above. This
procedure allows direct solution to each the cycle caused by the addition of
a edge to the spanning tree. Each end of the added edge need only find
their least common ancestor and thus the path of the cycle is known. More

formally the procedure for a single edge is as follows:

Procedure Fundamental Cycle;

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{input: the spanning tree, ST, of a graph and an edge, wv, to be added to
the tree.

output: the cycle, FC, in the tree caused by the edge addition.}

begin

w «LCA(u,v); {each vertex along the path « to w and v to w need only be
marked that it is on that path.}

FC —{u...w}+{w...v}

end

Theorem 12. Procedure Fundamental Cycle correctly determines « funda-
mental cycle in a connected component in O(%”' log N;) lime.

Proof The correctness is straightforward.

Complexity Analysis: given P; processing elements to examine a spanning
tree of size IV; the time required to find a single fundamental cycle is O(% log IV;).
O

Corollary 12.1. The fundamenlal cycles generaled by the M; edges in the

component but not in the spanning lree, may be found in O(Mpilﬂl log N;) time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Other Applications of the
linear array with
reconfigurable global buses

4.1 Low Level Image Processing

The area and perimeter of a component of a binary image are fundamental
problems in low level image processing. Labeling multiple connected com-
ponents in a binary image is a fundamental mid-level image processing task.
We address all of these tasks on the Linear Array with Reconfigurable Global
Buses and achieve O(logn) time algorithms. The O(logn) time algorithm for

component labeling matches the performance of the fastest known algorithm.

~1
no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.1 Introduction

Tasks in computer vision may be separated into three categories, those con-
sidered low-level operate directly on the pixels of an image and those consid-
ered high-level operate on structures with in the image. The mid-level tasks
are those which bridge the low-level to high-level range. Their main task is
to identify the symbols in the pixels which the high-level task can then use

as input.

The determination of the area and perimeter of a binary figure are pri-
mary low-level tasks. These operations provide very basic statistical infor-
[|)

mation about the image at hand [53, 65].

The identification and labeling of components in a binary image is a
fundamental midlevel task commonly referred to as Component Labeling.
The component labeling problem has received considerable study on both

sequential and parallel architectures [8, 18, 26, 27, 37, 52, 61, 63, 65].

Due to the ease of mapping a two dimensional image onto a two dimen-
sional mesh it is obvious why the mesh connected topology is often applied to

image computations. The regular physical structure of the mesh also causes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it to be particularly well suited for VLSI implementation. See [29, 73] for an

overview of parallel architectures and implementations.

While simple meshes easily map binary images, they have a large com-
munication diameter that tends to slow computation that requires communi-
cation across the mesh. In order to overcome this communication slowdown
we employ the linear array with reconfigurable global buses.

4.1.2 Measuring the Fundamental Properties of an
Image

Before we can actually process an image, the method by which an image
is mapped onto the linear array must be fixed. In most high performance
image processing applications this is not necessary since the square mesh
architecture which is most often applied to image processing directly maps
at least a portion of the image. Therefore, the input will be an n x n pixel
image which is to be mapped to n? processing elements of the linear array.
The image is mapped in the obvious manner, the first row of pixels from the
input will be held in the first n processing elements, the second row of input
is held in the second n processing elements, etc. Thus, the i** row of input

will begin at PE;x,4+1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Area and Perimeter of a Component

We begin with the elementary image properties, area and perimeter. Ad-
ditionally we assume a single component in the current image. In a binary
image the area is a straightforward sum of the ‘1’ biis in the figure. This
sum may be accomplished by the standard prefix sum method on a linear

array with reconfigurable global buses .

To find the perimeter! of the figure, the processing elements which hold
perimeter pixels must be identified and then summed as in the area compu-
tation. In order for a PE; to identily if it is on the perimeter of the figure, it
must first hold a ‘1’ and then check each of its neighbors to find out if any
hold a ‘0’. Due to the mapping method the left and right neighbors of PE;
are PE;_; and PE;;; respectively, except in the case where PE; lies on the
edge of the image. In this case, one of the neighbors will not exist. Since
this boundary condition can be found in O(logn) time, the computation of

the perimeter will not be effected by this one-time computation.

The neighbors above and below PE; are found in a similar manner, except

1This perimeter is a relative value, related to the image resolution which provides a
useful measure, but it is not an exact measure of the object’s true physical perimeter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that they are PE;;, and PE;_,. Here the boundary conditions are [0,n?] in
that any processing element in the first row will try to read a PE; where
J < 0 and any processing element in the last row will try to read a PE;

where j > n?. This can be easily prevented and adds no complexity.

Now, with the perimeter processing elements identified, all that remains
is to count these identified processing elements . Which is simply a matter
of marking all perimeter processing elements with a ‘1’, non-perimeter pro-
cessing elements with a ‘0’ and accomplishing the étun along the linear array

as in the area computation.

Given that the prefix sum can be accomplished in O(logn) time on n
processing elements, it is obvious that both the area and perimeter of a figure
can be found in O(logn) time. This yields the following result.

Theorem 13. The area and perimeter of an n X n image can be found in

O(logn) time on an n? processing element LARGB. O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure -1.I: Multiple Components of an Image

4.1.3 Component Labeling

The goal of component labeling is, given a binary image with multiple closed
shapes, or components (see figure 4.1), assign to each component a unique
identification label. The following steps describe the general component la-

beling process for & distinct compouents:

1. Identify which processing elements hold a perimeter pixel;

2. Form a linked list of processing elements clockwise around each com-

ponent (forming & independent linked lists):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. For each list, identify the processing element with the lowest process-
ing element identification (PEID) number, and inform each processing

element in that list;

4. Inform each processing element with in each component of the value

found in step 3;

5. Mark the & minimum processing elements with a ‘1’ and all others with

a ‘0’, prefix sum these values.

6. Fach minimum processing element broadcast the value it received from

the prefix sum to each processing element with in its component.

Theorem 14. The LARGB Component Labeling algorithm assigns a unique
value in the range [... k] to each of k solid components of the inpul image
in O(logn) time.

Proof. Correctness: The identification of perimeter processing elements for
multiple components is the same as in Theorem 13 for a single component.
The remainder of the algorithm is based on the ability to form multiple linked
lists via the reconfigurable global buses of the LARGB. PE; identifies PE; 4,

in the linked list by checking each neighbor to identify which processing ele-

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ments are adjacent on the perimeter of the figure. The location of the body
of the component allows each processing element to determine which perime-
ter neighbor is next in the clockwise direction around the figure.

The minimum processing element in each linked list is propagated through
the list starting from every processing element which is a potential mini-
mum. A potential minimum is any processing element which has a lower
PEID than the processing elements on either side of it on the perimeter.
Multiple candidates are resolved by any processing element which receives
multiple values, just retaining and forwarding the minimum value. It should
be noted that at any single step a processing element will only receive one
value.

With the minimums identified, the prefix sum method of obtaining unique
component identification numbers is straightforward. All that remains is to
accomplish the broadcast of the component identification number to each
processing element within each component. Since each processing element
“knows” the value of the minimum processing element in its component, the
minimum processing elements place the component identification number on
to the horizontal bus which matches its own PEID. This allows all other pro-
cessing elements to concurrently read the component identification number

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for their particular component.

Time Complexity: The time required to accomplish each step is as follows:

—

. All neighbors of a processing element can be examined in O(1) time;

V]

. Same as in step [1], O(1) time;

3. Using the technique of pointer doubling to traverse the linked lists, this

is accomplished in O(logn) time;

4. May be accomplished by a local application of multiple source in O(log n)

time;
5. Prefix sum is O(logn) time];

6. The values may be read in O(1) time.

Thus, the algorithm requires O(logn) time to identify and label multiple

components in a binary image. O

This allows components to be efficiently identified, allowing for efficient

further processing if necessary.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.2: Multiple Components of an Image with Holes

The limitation of this algorithim is that it cannot handle components with
“holes” (see figure 4.2). This limitation is derived from the multiple source
method used to inform each processing element of its identification number.
Additional work needs to be done for components with “holes.™ This work is
similar to the process used by Olariu et. al. [52] in their component labeling
algorithm for the parallel array with reconfigurable buses. Informally, each

minimum processing element, as identified in the previous algorithm, searches

to its left until it finds one of the following boundaries:

1. The grid edge;

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A hole perimeter processing element;

3. An exterior perimeter processing element.

Using this information an exterior perimeter processing element can tell if
it is with in a “hole” or not. Additionally, each hole perimeter which finds
a hole can link to the minimum processing elemént for that hole, since each
processing element on the perimeter knows the minimum processing element
in its own list. Furthermore, this now connects all holes in a specific compo-
nent to the component perimeter. Now using this connection all processing
elements around all holes can be directly informed of the component iden-
tification number when it is found. Thus the component labeling algorithm

for £ components with [holes is as follows:

1. Identify which processing elements hold a perimeter pixel;

|8

Forma linked list of processing elements clockwise around each perime-

ter (forming & + [independent linked lists);

3. For each list, identify the processing element with the lowest (PEID)

number;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Inform each processing element on the perimeter of the value found in

step 3;

5. Bach processing element identified in step 3, search to the left until it

finds a boundary;

6. Each processing element which is a hole boundary and finds a hole

boundary, form a secondary link to the minimum processing element

on that boundary;

7. For each list of secondary links, propagate the PEID for the minimum
processing element on the exterior boundary to which the last process-

ing element in the list connects;

8. Each hole boundary processing element broadcast into the component
the value of the minimum processing element on the exterior boundary,
additionally all exterior boundary processing elements broadcast into

the component this same value;

9. Mark the £ minimum processing elements with a ‘1’ and all others with

a ‘0, prefix sum these values;

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10. Each minimum processing element broadcast the value it received from

the prefix sum to each processing element with in its component.

Theorem 15. The LARGB Component Labeling algorithm assigns a unique
value in the range [1...k] to each of k components of the inpul image in
O(logn) time.

Proof. Correctness: Since the majority of the correctness is addressed in
the proof of Theorem 13, we will only address the hole handling steps here.
In most cases, any minimum processing element can tell if it is on a hole or
a component by examining the processing element directly below it, if this
processing element holds a "0’ then it is on a hole otherwise it is an exterior
boundary. This test will fail, if:

the minimum PE falls on the perimeter path list twice, it will detect a hole
below it, but actually be a component boundry or vice versa.

the minimum PE lies at the extreme end of a component a similar case will
occur.

The checks for both cases are straightlorward and add no additional complex-
ity. As already noted, a minimum processing element searching the pixels

to its left can only find one of the following three cases:

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The grid edge;
2. A hole perimeter processing element;

3. An exterior perimeter processing element.

Items 2 and 3 are straightforward, and item 1 is any processing element
whose PEID is a multiple of \/n 4+ 1. Those which find the component
exterior boundary have the value of the minimum processing element on the
boundary directly available. Those which find other holes, however, must
form the secondary linked list which at the end does connect to the boundary.
Through the same technique of pointer doubling used above, each processing
element in this secondary list can obtain the value of the minimum processing
element on the exterior boundary. Once the minimum processing element
on each hole perimeter has the value of the exterior minimum processing
element it can inform all of its perimeter. Thus no matter the complexity
of the system of holes within a component, every processing element with
in the component can be directly contacted by some perimeter processing
element which knows the value of the minimum processing element in that
component. Components with in holes are perfectly similar.

Time Complexity: Since the additional communication depends on pointer

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

doubling and then constant time reads, the algorithm still requires O(log=)

time to identify and label components with holes in a binary image. O

4.2 Hough Transform

4.2.1 Introduction

One of the fundamental problems in image processing is the detection of
shape. A key subproblem in shape detection is the identification of lines
and curves. The Hough Transform is often employed in the detection of
lines [31, 38, 62, 65]. In short, the Hough Transform involves the converting
of lines in a two-dimensional image space into points in a certain parameter
space. Thus, a straight line L can be uniquely represented by two parameters
0 and p, where 0 is an angle determined by the normal to the line L and the
positive direction of the z axis, and p is the signed distance {rom the origin
to the line L. The 0-space is divided into kg sections representing the angular

resolution of the #-space.

For the purpose of computing the Hough Transform an n x n binary
image is assumed. Initially, n? processing elements are assumed with the

image mapped one pixel per processor. Recently, a number of Hough Trans-

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

form algorithms have been shown for various parallel architectures [25, 57,
61, 63, 62]. Of these architectures, the mesh has emerged as a natural choice
for image computations. An image naturally maps to the processor array,
but due to the irregularity of images processor communication between non-
neighboring processors is often required. This potentially large communica-
tion diameter is a primary reason f[or the addition of bus systems to meshes.
The further addition of reconfigurable bus systems helps to overcome the

irregular communication patterns of images.

With sufficient reconfigurability, the actual arrangement of the process-
ing elements becomes less important. Thus we shall show that the linear
array with reconfigurable global buses can offer fast efficient solution to the

Hough Transform.
4.2.2 Basics of the Hough Transform

We begin by reviewing the basics of the Hough Transform. The reader is
referred to [31, 38, 65] for further details. Let L be a straight line in the
plane. Directly, L can be represented by the following two parameters (refer

to figure 4.3):

[0.9]
-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N XCOS O+ ysine=p

p/ L

/\?
0 N\ X

Figure 1.3: A line L in the Normal form.

0r, the angle determined by the normal to L and the positive direction of the

T axis;

pr the signed distance from the origin of the Cartesian coordinate system to

the line L.

When no loss of clarity is possible, we simplify the notation by writing
6 and p. It is obvious that il # is restricted to the range [0... 7], the ordered

pair uniquely determine the line L. Additionally, a point (z,y) of the plane

belongs to L whenever:
rcosl + ysinl = p. (4.1)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This equation is the heart of efficiently detecting straight lines in an image.

Standard Hough Transform

First, the 0-space is quantified: let 0,,0,,...,0k, be the angles in the quanti-
zation. Naturally the &y different angles in the quantization are a determin-
ing factor in the accuracy of the output. While increasing ky increases the
accuracy of the system, it also increases the computation time complexity

accordingly. We also select kg so that for all 7, 0; = ﬁ

Next observe some constant properties of all images that are mapped to
any matrix. For clarity we shall restrict the range of the angle 6 to [0,Z].

It turns out that handling all other angles is perfectly similar. Therefore we

consider any angle satisfying
0<0< g- (4.2)

Given this range, it is easy to confirm that

/2

2

4

<cosf <1 (4.3)

and

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2
0<sinf < \/T_ (4.4)
Thus for every entry[z, j] in the image space we may write
pij = |icosd + jsind]. (4.5)

We have the following observations which can easily be derived from
equations 4.2 - 4.5.
Observation 1[54]. For all j(0 < j < N —1), po; < p; < ... < pyoyye
Furthermore, no three consecutive elements in row j have the same value of
p.0
Observation 2[54]. For all 4,7(0 < 4,7 < N —1), 0 < (piy1; — pij) < 1.
Thus no two consecutive p values in row j differ by more than 1. O

Observation 3[54]. For all 4,7(0 < 7,7 < N — 1), p;; # pit1 0.0

Observation 4[54]. For all 7,j(0 <¢,7 < N —1),

Pij-1 = Pij+1 == Pij-1 = Pij = Pij+1.0

Figure 4.4 helps to illustrate these properties, and is added to provide
clarity to the argument. A simplilying observation may be made from fig-

ure 4.4 and equation 4.2, the values of p are completely independent of the

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q- NWPpPOoom

OOO—L—L—LM
=+ |OoOl=|=|pinINd|w
N fwipdndd| s

W Il wlo|a|nlo

NP ENESINGICIED
o |[slojojajojo|o
o [Ofa|oo|NN|N

o

Y

—

Figure 4.4: The p-values of a Tx7 grid for § = .

image being processed. Thus these values need only be computed once. even
for the examination of multiple images, provided sufficient storage exists to

maintain the template.

Consider the shaded areas in figure 4.5, eachi p value iay be considered
as an independent linked list of processing elements. This representation

causes each processing element to only have to store the ID of the next

processing element in its particular list.

With the lists for each value of # identified, we examine the information

of the image itsell. Of interest are pixels which form the edges ol compo-

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.5: The linked lists formed for the values of p.

nents with in the image. This is done in the straightforward manuer. each
processing element which stores a nou background pixel need only examine
the information stored by processing elements holding adjacent pixcls of the
image. If a processing element finds a neighboring pixel is the background
(usually assumed to be of value 0) it identifies itsell as an edge pixel. marking

itself with a 1 otherwise it marks itself with a 0.

All that remains is to sum the marking values along the list determined
by the current value of 0. [f the sum exceeds a threshold, 7, the parameters

[0, 0] are said to determine a valid straight line in the image.

Thus for all lists which produce a sum which exceeds r we have a poten-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tial line and the following result:
A linear array with reconfigurable global buses with n? processing elements
can find the Hough Transform of an n x n binary image in O(kg logn) time,

even if the entire image were to be considered edges. This sum can be found

efficiently in O(log n) time [42].

The Hough Transform using Image Components

The communication flexibility of the linear array with reconfigurable global
buses offers at least another method by which to accomplish the Hough
transform. To begin this modification of the Hough Transform, we identify
the pixels in the image which have a chance of belonging to a straight line.
These are the pixels which form the edges of components. Additionally, we
form these edge pixels into linked lists around each component, the details

of this operation may be found in [41].

We depart from the procedure described above by removing the floor

function from equation 4.5 to obtain p such that
pi; =1cosl + gsin . (4.6)

Thus we have for every angle 0;, all the edge pixels (z,y) that have the same

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
WiH
(@)

NIEN

N
~

NN
WWW|H
DlP(DOO

o1

ooo.—k.—l._.&m

. Edge Pixel

Figure 4.6: p = 2 may not be a “significant” line, but p = 6 is defi-
nitely significant.

p value? in 4.6 define a possible line in the image space.

To complete out modification of the standard procedure. we introduce
one additional resolution parameter. 0. to represent the Iow.er threshold for
a line. ¢ is an integer number of pixels away from the current pixel that the
processing element will look, to compare p values. A large ¢ value will éause
only long straight edges to be detected. A smaller value will detect shorter.

but possibly insignificant edges. Refer to figure 4.6.

Each processing element holding an edge pixel, finds p for its pixel and

2within some ¢ that also helps to determine the resolution of the output.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0;. It then compares its p (referred to as p;) to the p found by the processing
element ¢ pixels clockwise along the edge (referred to as py). If |p; — pu| < ¢,

a potential straight line exists between the pixel at PE; and PE;.

This method is an improvement over the basic Hough transform in that
it localizes the computational effort on the component edges. This would
actually allow fewer than n? processing elements. [t additionally provides
increased resolution control through the € and ¢ parameters. Related straight
edges of separate components which will be in separate lists will not be

detected by this method.

While this method does have the draw back noted above, it does have
the flexibility of not requiring n? processing elements. It is obvious that the
method can process a single component at a time requiring only p processing
elements, where p is the number of pixels which from the edge of the com-
ponent. If the processing elements are assumed to be powerful enough, each
processing element could handle a section of the perimeter of the compo-
nent, or even an entire component. This type of processing is more MIMD

in nature and will be a topic of later study.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 The Linear Array with Reconfigurable
Global Buses Efficiently Simulates Con-
current Read PRAM Models

The purpose of this section is to show that a linear array with reconfigurable
global buses with max NV, M processing elements is at least as powerful as the
Concurrent-Read Exclusive-Write Parallel Random Access Machine, CREW.-
PRAM, model with NV processors and M memory locations. Additionally, it
is shown that the linear array with reconfigurable global buses is as powerful
as the Concurrent-Read Concurrent-Write PRAM, CRCW-PRAM, under a

certain concurrent write resolution scheme.

4.3.1 Introduction

Shared memory model SIMD computers have received considerable algorith-
mic examination in many areas of computation, see [4] for an overview.
We are interested in the two most powerful shared memory models, the
Concrurrent-Read Exclusive-Write or CREW and the Concurrent-Read Concurrent-

Write or CRCW. These models produce the fastest theoretical algorithms.

While the models only assume very primitive processors, the concurrent

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reads and writes often cause additional complexity when simulating these
models on other models and architectures. Thus any model which can effi-
ciently handle this concurrency, can also inherit the vast quantity of algo-
rithms which are already developed. The linear array with reconfigurable
global buses is such a model. In addition to inheriting the algorithms, the
model also inherits the corresponding lower bounds, many of which are hased

on quite complex proofs.

4.3.2 The linear array with reconfigurable global buses
vs the CREW-PRAM

The CREW-PRAM model permits multiple processors to read a memory
location, but only one processor may write to a particular memory location
at any step. We now consider a problem II which requires time O() on a
CREW-PRAM with N processors and M memory locations. The LARGB
will simulate the CREW-PRAM as follows, the first N processing elements
will function as the N processors of the CREW-PRAM. Since each pro-
cessing element can maintain its own local memory, the first M processing
elements are responsible to maintain the M memory locations. Thus, any

computational step which occurs in the CREW-PRAM is directly ported to

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the processing elements of the LARGB. When processor; writes to memory
location j, PE; accomplishes the write by placing the value to be written
onto HB; and PE; then writes the value to its memory. No collisions occur
because of the exclusive write constraint of the pram model, thus all process-
ing elements can write to a horizontal bus and then accomplish the store in
parallel. Similarly, to accomplish a read operation, each processing element,
places the value in its memory onto its own horizontal bus, then any number
of processing elements can read any horizontal bus. Thus the LARGB solve

problem IT in O(?) steps with max(N, M) processing elements .

We also consider a problem Il which can be solved by an LARGB, that
does not allow more than one processing element to write to a single hor-
izontal bus, with N processing elements each with m memory locations in
O(t) steps. The processors of the CREW-PRAM can directly accomplish
any computational step that the processing elements of the LARGB can ac-
complish. To model the memory of the LARGB, we have a CREW-PRAM
with N processors and Nm memory locations. If PE; broadcasts a value it
does so by placing the value onto HB;, then each processing element reads

HB;. The CREW-PRAM model accomplishes this by causing processor i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to write to memory location j then each processor reads memory location
7. The LARGB accomplishes multiple reads by placing the candidates to be
read on to the horizontal bus corresponding to the processing element which
stores the value. Then any processing element needing the value reads the
appropriate horizontal bus, In the CREW-PRAM, multiple reads are directly

accomplished by each processor reading the memory location it requires.

Thus we have proven the following result:

Theorem 16. Any problem Il which « CREW-PRAM wilh N proces-
sors and M memory locations can solve in Oft) time, the LARGB with
max(N, M) processing elements can also solve in O(t) time and conversely
any problem IIy which the LARGB that does not allow multiple processing
elements to write to the same horizontal bus with N processing elements,
each with m memory locations, can solve in O(t) time can be solved by the
CREW-PRAM with N processors and Nm memory localions in O(t) time.

O

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 The linear array with reconfigurable global buses
vs the CRCW-PRAM

The CRCW-PRAM model allows multiple processors to either read or write
to a single memory location. While multiple processors reading the same
memory location cause no algorithmic difficulty, multiple processors writ-
ing to a single location require a specific resolution method. A number of

resolution methods have been proposed, these include:

o allow the processor with the minimum(maximum) identification num-

ber to succeed;
¢ allow the processor with the minimum(maximum) value to succeed;
¢ allow any processor to succeed randomly;

o allow any processor to succeed only if all processors are trying to write

the same value, otherwise the result is undetermined.
We adopt the last resolution method because it makes the most algorithmic
and the algorithm designer needs to be able to predict this value. These re-

quirements definitely rule out the third resolution scheme, and identifications

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of minimums(maximums) not only imply additional computation, but also
that different values are candidates for a single memory location. Addition-
ally, this resolution method is cohesive with the architecture of the linear

array with reconfigurable global buses.

Consider a problem IT which requires ¢ steps on a CRCW-PRAM with

N processors and M memory locations. These steps will fall in to one of the
following categories:

1. Processor; accomplishes computation A, 7 € {1... N};

2. Processor; reads from memory location j,¢€ {1...N},j € {1... M};

3. Processor; writes to memory location j,z € {1...N},j € {1...M}.
A processing element of a LARGI can accomplish a computation A in k steps
Just as a processor of the CRCW-PRAM requires & steps to accomplish A.

Additionally, each processing element stores a single value. For PE; to read

memory location j two steps are required to occur:

1. PE; places the value it holds on HB;;

2. PEi reads HB]

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PE; write to memory location j in a similar manner:

1. PE; places the value to be written onto HB;

2. PE; reads HB; and stores the value.

The read and write methods above, again show how a single processing el-
ement accomplishes the task, but do not directly address how concurrency
effects the model. Concurrent reads are accomplished in a straightforward
manner, and as noted above any quantity of processing elements can read
from the same horizontal bus. Recall the concurrent write resolution method,
if a subset of the processing elements all attempt to write to memory loca-
tion 7, the write only succeeds if all processing elements attempt to write the
same value, otherwise an undetermined result occurs. Concurrent write on
the LARGB is accomplished in a similar manner to the concurrent read, in
that, all processing elements which want to write to memory location j place
the value to be written onto HB;. Then PE; reads HB; and stores the value.
If all processing elements did not place the same value on the horizontal bus

, the stored result is undetermined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All that remains is to address the number of horizontal buses requires
to handle all communication without conflict and maintain all the power of
the CRCW-PRAM. Since the CRCW-PRAM model employs communication
through the shared memory, sufficient buses must be available to handle all
memory accesses. Thus M horizontal buses will be required to fully model

the CRCW-PRAM.

We have proven the following result:

Theorem 17. A LARGB with N processing elements and K horizontal
buses , where K = max(N, M), is al least as powerful as a CRCW-PRAM
with N processors and M memory locations, in thal. the LARGB solves prob-

lem II in O(t) steps if the CRCW-PRAM solves I1 in O(t) steps. O

4.4 Linear Arrays with Reconfigurable Global
Buses more powerful than any non-Recon-
figurable Architecture

We now examine the power ol the linear array with reconfigurable global
buses through direct comparison between this model and some currently

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implemented architectures. We make comparison to the mesh, the mesh
with global buses, the tree-of-processors and the hypercube. We shall show
that the linear array with reconfigurable global buses is at least as pow-
erful as these actual architectures, additionally a problem that the linear
array with reconfigurable global buses handles more efficiently than any non-

reconfigurable architecture is presented.

4.4.1 Introduction

Many comparisons have been done between parallel architectures since their
initial development. Some of these comparisons have results such as, archi-
tecture oy is strictly better than a,, while others find that a; more efficiently
solves problem II;, but @, more efficiently solves [1,. This is not unexpected,
given that design criteria for a; is often directed towards the class of problems

II; [13, 46, 45, 29, 73, 81].

We intend to examine the linear array with reconfigurable global buses
(LARGB) versus the mesh, mesh with global buses, hypercube, and tree
architectures. Each of these architectures are well published and have actual

implementations in current use [29)].

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.7: A simple mesh architecture
The LARGB is a linear array of processing elements®. Augmented by
a bus interconnection scheme, refer to figure 4.7. Each processing element
controls the vertical bus (VB) to which it is connected. At each intersection
of horizontal (HB) and vertical buses is a smart interconnection point. (SIP).
At any step of computation, PE; can set SIP; ; to connect to HB;. A pro-

cessing element can only read/write to a single horizontal bus at any given

step.

The processing elements are considered to be able to accomplish el-

3To avoid confusion, the processing elements of the LARG B will be referred to as such
and for the other architectires they shall be referred to as processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ementary mathematical and logical operations only. We assume that the
processors of the architecture being simulated are of equal power. For exam-
ple, when we model a hypercube we assume one with simple processors not
those used in the iPSC/860 [44]. Each processing element maintains a local

memory which it can directly access.

4.4.2 LARGB Vs. Mesh Architecture

The general mesh architecture consists of an n x m array of processors with
only nearest neighbor communication ability. Thus, a processor may only

communicate with 4 or fewer? other processors.

We begin with a LARGB with nm processing elements. The n x m
structure of the mesh is directly mapped onto the linear array. That is, the
first row of processors are mapped to the first n processing elements, .. ., the
th

2** row of processors are mapped to processing elements (7 — 1)n+ 1 through

mn.

Local communication is accomplished in the straightforward manner.

Left and right neighbors are still adjacent on the linear array, thus the

4We consider the basic mesh not to have “wrap-around” connections.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mapping of P;; communicating with P; ;41 is PE,;_1)4; communicates with
PEni-1)4j+1- The mapping for P;; to communicate with P4, ; is equally as

direct, PE,(;_1)4; communicates with PEy;, ;.

Since any correct algorithm for a simple mesh would not communicate
with a neighbor that is not a neighbor these conditions need not be checked
in the simulation. Since the bus system of the LARGB allows any two pro-
cessing elements to communicate at any step, we have the following result:
Observation 1. Any problem Il that a simple n x m mesh can solve in O(t)
time, a LARGB with nm processing elements can solve in O(1) time or less.

O

4.4.3 LARGB Vs. Mesh with Global Buses

The mesh with global buses is a simple mesh augmented by row and column
buses, see figure 1.3. This mesh is mapped onto the linear array in exactly

the same manner as the simple mesh.

In order to simulate the n global row buses and the m global column
buses we need only assign specific horizontal buses to serve as those buses.

Specifically, let HB;...HB, serve as row buses and HB,y;...HB,.n serve

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as column buses. All that remains is for each processing element to identify
the row and column to which it belongs, this will allow it to read/write to

the correct row and column buses.

First, we must identify each n‘* PE. This is accomplished by the standard
pointer doubling technique starting wich PE, and progressing in multiples
of n. These processing elements can then divide their own PEID by n to
obtain their row number. To inform each PE of their row ID we accomplish
the multiple source problem with each nt PE functioning as a source. The

column ID is a direct computation from PEID — n(RowlD — 1).

Thus we have established the ability to accomplish any communication
that the mesh with global buses can accomplish. We have the following
result:

Observation 2. Any problem Il that an n x m mesh with global buses
can solve . O(l) time, a LARGB with nm processing elements can solve
in O(t) time once an initial pre-processing is accomplished which requires

O(logn + logm) time. O

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.4 LARGB Vs. Hypercube

As noted earlier, we assume simple processors and accordingly an SIMD
implementation at this point. An n-dimensional hypercube has 2* processors,

each with direct communication with n other processors.

For the LARGB to simulate the hypercube, each processing element
needs to be able to identify which other processing elements are its “neigh-
bors.” This is accomplished in the obvious manner since in a hypercube, each
PID differs from its neighbors by a single bit in the binary representation.
This translates to differing by integer powers of 2. Thus the neighbors of P;
(¢ < n) are P;, where j =4 + 2%, ke{0...n — 1}. Thus the LARGB with 2"
processing elements can map the communication links of an n-dimensional

hypercube.

Modeling the total communication processes of a hypercube is not as
direct. Local broadcasts in which a processor receives multiple values cannot
be accomplished in O(1) time on the LARGB. It is, however, obvious that
any point to point communication on a hvpercube can be accomplished on
the LARGB in the same number of steps. Actually, many point to point

communications on the LARGB can be accomplished in fewer steps than on

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the hypercube. Thus we have the following result:

Observation 3. A problem I which an n-dimensional hypercube with simple
processors solves tn t steps using only point to point communication, can be
solved on a« LARGB with 2" processing elements in1—7(t) steps where 7(1) is
the function of multiple step communications that the LARGB accomplished

wn one step. O
4.4.5 LARGB Vs. Tree machines

The fixed interconnections of the tree architecture can be directly mapped
on the LARGB. A binary tree may be mapped as follows:

e The root is PE;

o The level of PE; is |log,%];

o The children of PE; are PE; and PE,, where k = i x 2log24-1,
Thus the modeling of a binary or other regular degree tree is direct. An initial
preprocessing cost of O(log, n) steps is all that is required for the LARGB

to model a balanced k-tree. The cost results [rom the need to indirectly

compute the log? and &* functions. The procedure is similar to that used

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to pre-process for global buses and will not be repeated. Thus we have the
following result:
Observation 4. A problem I which is solved on an n processor balanced

k-tree in t steps can be solved on the LARGB in t+O(log, n) steps. O

4.4.6 The List Ranking Problem

A particularly dynamic and unstructured problem is that of list ranking.
This problem is solved in Chapter 2. It may be directly observed that any
of the fixed architectures examined above cannot handle the general case of
the list ranking problem as efficiently as the linear array with reconfigurable

global buses.

The key to the efficiency of the list ranking algorithm is that the order of
the input is of no concern. At each iteration the “next” processing element
is Just as easy to contact as the previous one. There is no need to pass
messages or consider the large communication diameter of a mesh. The
linear array with reconfigurable global buses is even more efficient that a
tully connected architecture [19] since the location of values is direct, no

messages are required. When a processing element sends out information, it

bhl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

does not care which processing elements need to read it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Comnclusions

We have presented a new approach to the hybrid architecture with the goal
of improving the potential power of an array of processing elements without
requiring an excessive number of processing elements to achieve acceptable

performance.
5.1 Fundamental Algorithms

Algorithms for the basic prefix computations, list ranking and parenthe-
sis matching on this architecture are presented. These algorithms begin to
demonstrate the potential power and flexibility of the linear array with recon-
figurable global buses. It is this flexibility that allows all of these algorithms

to accomplish the desired task in O(logn) time on O(n) processing elements.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Graph Theory

All of the algorithms presented here solve important fundamental graph prob-
lems. The algorithms are designed to handle very large sparse graphs as
might arise in real applications such as finite element analysis. No adjacency
matrix representation is required, thus storage efficiency is improved con-
siderably. Similar problems are solved by S.K. Das et al. in [15], but their

algorithms are more complex with less flexibility.

We have shown an optimal method for obtaining a spanning forest for
a very large sparse graph, tailored to the linear array with reconfigurable
global buses. The spanning {orest directly yields solution to the connected
components question. The algorithm handles the minimum volume of infor-
mation possible to obtain the result, thus maximizing the potential size of

the input.

The bridge algorithm is extended to obtain bi-connected components,
something that was not accomplished by S.K. Das et al. The graph al-
gorithms offered are stable or even improve with the scarcity of the input

\

graph. The examination of the Least Common Ancestor problem further

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

demonstrates that the linear array with reconfigurable global buses can han-
dle dynamically changing data structures with no loss of performance. All

of the results relative to the LCA problem are shown to be optimal.

5.3 Image Processing

We addressed some low level and medium level image processing problems.
Specifically, we have presented O(log n) time algorithms for finding the perime-
ter and area of binary images. We have also presented a fast component
labeling algorithm on an n processing element LARGB. We utilize the ex-
treme flexibility of the reconfigurable linear buses of the LARGB to generate
an O(logn) time algorithm for an \/n x \/n binary image. This matches the
performance of the fastest parallel array with reconfigurable buses algorithm

which was recently presented in [52].

The detection of shape in a computer image is a fundamental problem
of computer and robot vision. The Hough transform is a well-know tool for
the detection of lines within an image. We utilized the communication flex-
ible, linear array with reconfigura.b]é global buses, to accomplish the Hough

transform on an n x n binary image in O(ky x log(n)) time.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While the linear array with reconfigurable global buses offers excellent
performance on the image processing tasks examined, it does not appear that
the communication flexibility is truly utilized to an extent that justifies the
cost of the bus system. For dedicated image computations, a mesh based

architecture is recommended.

5.4 Simulating Parallel Random Access Ma-
chines

The massive flexibility of communication in the linear array with vecon-
figurable global buses allows it to [ully simulate any operation which the
CREW-PRAM can accomplish in comparable time with a comparable num-
ber of processing elements. Conversely, any operation that the linear array
with reconfigurable global buses can accomplish without allowing multiple
processing elements to write to the same horizontal bus , the CREW-PRAM
can accomplish in comparable time with a comparable number of processors.

This provides a known set of lower bounds for LARGB algorithms.

If the linear array with reconfigurable global buses does allow multiple

processing elements to write to a single horizontal bus , we have shown that

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the linear array with reconfigurable global buses with at least max(N, M)
processing elements is at least as powerful as the theoretical CRCW-PRAM
model which employs the concurrent write resolution scheme of having a
successful write attempt only if all processors are attempting to write the
same value. In the alternate case, the result of the write is undetermined.
Since many algorithms, which employ concurrent writes to the same memory
location, are only concerned with some result having occurred at least one

processor, this scheme is perfectly feasible.

5.5 The LARGB versus Actual Architectures

We have shown how the excellent communication flexibility of the linear ar-
ray with reconfigurable global buses allows it to fulfill the communication
requirements of a range of architectures. 1t should be obvious that the rela-
tionships offered are not reflexive. The direct reconfigurable communication
of the LARGB allows us to identily a problem which it can solve in fewer
steps than any of the architectures examined. The list ranking problem is an
elementary problem that benefits [rom this model. More complex problems

should achieve greater benefit from the model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Overall Conclusion About the Proposed
Model

The linear array with reconfigurable global buses was shown to be at least
as powerful as the Parallel Array with a Reconfigurable Bus System in many
applications while requiring less physical space to implement. With a con-
siderable portion of architecture cost being related to physical space, this
architecture definitely appears to be a viable proposal to meet the increasing

demand for computational performance without excessive complexity. .

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Open Questions

6.1 The LARGB as an MIMD Machine

This work addressed the implementation of a wide range of algorithms on the
linear array with reconfigurable global buses under an SIMD model. There
should be no doubt that the architecture could definitely be implemented as
an MIMD machine. It is however uncertain if an MIMD model would have
as much of an advantage over less fully connected architectures as the SIMD
version did. With processor independence comes the need for some level of
communication synchronization. The inherent lack of tight synchronization
in an MIMD application is only an advantage to a system that possesses

communication limitations.

119,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Speed-up available from the LARGB

The exact speed-up that the linear array with reconfigurable global buses
offers over architecture o remains open. As does the identification of what
classes of problems the LARGB is particularly suited for or poorly suited for.
It is suspected that many numerical problems which are efficiently solved by
a simple mesh will gain little from the added communication power of the
LARGB and thus the additional cost. would be unwarranted in these cases.
Problems requiring large quantities of data driven communication should be

best suited to this architecture.
6.3 Very Large Numerical Problems

With the power of many RISC based processing elements in tight commu-
nication with each other, the linear array with reconfigurable global buses
could also be employed as a very high performance numerical processing en-
gine. The high speed interprocessor communication considerably increases
the potential for real-time solution to problems which are both computation-

ally and communication intensive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Active Memory Technology, Irvine, Ca. DAP Series: FORTRAN-PLUS
Language (man002.03), 1988.

[2] John P. Hopcroft Aho, Alfred V. and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley, 1974.

[3] John P. Hopcroft Aho, Alfred V. and Jeffrey D. Ullman. Data Structures
and Algorithms. Addison-Wesley, 1983.

(4] Selim G. Akl. Design and Analysis of Parallel Computer Algorithms.
Prentice-Hall, Inc., 1989.

[5] Mikhail J. Atallah. On Multidimentional Arrays of Processors. [EEE
Transactions on Compulers, 37(10), October 1988.

[6] G.H. Barnes, R. Brown, M. Kato, D. Kuck, D. Slotnick, and R. Stokes.

The ILLIAC IV computer. [FEE Transactions on Computers, C-17,
1968.

[7] R. Bernard. RISCs - Reduced Instruction Set Computers - Make Leap.
Systems Software, pages 81-84, December 1984.

[8] W.E. Blanz, D. Petkovic, and L.C. Sanz. Signial Processing Handbook,
chapter Algorithms and Architectures for Machine Vision. M. Dekker,
New York, 1989.

[9] C. Bruno and S. Bradley. THe RISC Factor. Datamation, June 1986.

[10] Shyh-Kwei Chen. n+ Cube: The ExtraDimensional nCube. 1990 Inter-
national Conference on Parallel Processing, pages 583-584, 1990.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(11] Y-C Chen, W-T Chen, G-H Chen, and J-P Sheu. Designing efficient
parallel algorithms on mesh-connected computers with multiple broad-
casting. IEEE Transactions on Parallel and Distributed Systems, 1(2),
April 1990.

[12] C. Chin and W. Lin. A massively Parallel Processing System Based on A
Hyper-Crosshar Network. 2nd Symposium on the Frontiers of Massively
Parallel Computation, pages 463-466, October 1988.

[13] Suresh Chittor and Richard Enbody. Hypercubes Vs. 2D Meshes. Pro-
ceedings of the Fourth SIAM Conference on Parallel Processing of Sci-
entific Compuling, pages 313-318, 1989.

[14] Charles Clos. A Study of Non-Blocking Switching Networks. The Bell
System Technical Journal, pages 406-424, March 1953.

[15] S.K. Das, N. Deo, and S. Prasad. Parallel graph algorithms for hyper-
cube computers. Parallel Compuling, 13:143-158, 1990.

[16] Keith Diefendorf and Michael Allen. The motorola 88110 superscalar risc
microprocessor. Proceedings of CompCon 92, pages 157-162, February
1992.

[17] Kshitij A. Doshi and Peter J. Varman. Optimal graph algorithms on a
fixed-size linear array. [EEE Transactions on Compulers, C-36(4), April
1987.

(18] Mary M. Eshaghian. Parallel Algorithms for Image Processing on OMC.
IEEE Transactions on Compulers, 40(7):827-833, July 1991.

[19] Tse-yun Feng. A Survey of Interconnection Networks. Compuier, pages
12-27, December 1981.

[20] M.J. Flynn. Very High Speed Computing Systems. Proceeding of the
IEEFE, 1966.

[21] C. J. Georgiou. Fault-Tolerant Crosspoint Switching Networks. Pro-

ceedings of the Fourteenth Inlernational Symposium on Faull- Tolerant
Computing, pages 240-245, July 1984.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[22] J. Ghosh and A. Varma. Reliable Design of Multichip Non-blocking
Crossbars. 1990 IEEE International Conference on Computer Design:
VLSI in Computers and Processors, pages 70-73, September.

[23] M. Gokhale, B. Holmes, A. Kopser, D. Kunze, D. Lopresti, S. Lucas,
R. Minnich, and P. Olsen. SPLASH: A Reconfigurable Linear Logic Ar-

ray. 1990 International Conference on Parallel Processing, pages 5226
532, 1990.

[24] Martin C. Golumbic. Algorithmic Graph Theory and Perfect Graphs.
Academic Press, 1980.

[25] C. Guerra and S. Hambrush. Parallel Algorithms for Line Detection on
a Mesh. Proceedings of IEEL Workshop on Computer Architectures for
Pattern Analysis and Machine Intelligence, pages 99-106, 1987.

[26] S.E. Hambrush and M. Luby. Parallel Asyncronous Connected Compo-
nents in a Mesh. Information Processing Letters, 38:257-263, 1991.

[27] S.E. Hambrush and L. TeWinkel. A Study of Connected Component Al-
gorithms on the MPP. Proeedings of the Third International Conference
on Supercomputing, pages 477-483, 1988.

(28] Dov Harel and Robert E. Tarjan. Fast Algorithms for Finding Nearest
Common Ancestors. STAM Journal of Computing, pages 338-355, May
1984.

[29] R.W. Hochney and C.R. Jesshope. Parallel Computers 2. Adam Hilger,
Bristol and Philadelphia, 1988.

[30] R. Michael Hord. Parallel Supercomputing in SIMD Architectures. CRC
Press, 1990.

(31] J. Nllingworth and J. Kittler. A Survey of the Hough Transform. Com-
puter Vision, Graphics and Image Processing, 44:87-116, 1988.

(32] A.V. Kulkarni and D.W.L. Yen. Systolic processing and an implementa-
tion for signal and image processing. [EEE Transactions on Compuling,
C-31, October 1982.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[33] V.K. Prasanna Kumar and C.S. Raghavendra. Array processor with
multiple broadcasting. Journal of Parallel and Distributed Computing,
4, 1987.

[34] H.T. Kung. Systolic algorithms for the CMU WARP processor. in Pro-
ceedings of 7th International Conference on Pattern Recognition, July
1984.

[35] F.T. Leighton. New lower bound techniques for VLSL. in Proceedings
of 22nd Annual IEEE Symposium Foundations of Computer Science,
October 1981.

[36] F.T. Leighton. Parallel computation using meshes of trees. in Proceed-
ings 1983 international workshop on graph theorelic concepts in Com-
puter Science, 1983.

[37] S. Levialdi. On Shrinking Binary Picture Patterns. Communications of
the ACM, 15:7-10, 1972.

[38] M.D. Levine. Vision in Man and Machine. Mcgraw-Hill, 1985.

[39] Hungwen Li and Massimo Maresca. Polymorphic-torus network. [EEE
Transactions on Computers, 38(9), September 1989.

[40] R. Lin, S. Olariu, J.L. Schwing, and J. Zhang. Sorting in O(1) time on
an nxn reconfigurable mesh. Proceedings of the European Workshop on
Parallel Computing, March 1992.

[41] Peter J. Looges. Image Processing on the Linear Array with Recon-
figurable Global Buses. IEEE Transactions on Pattern Analysis and
Machine Intelligence, submitied, 1992.

[42] Peter J. Looges and Nathan R. Sharp. Fundamental Algorithms on Ar-
rays with Reconfigurable Global Meshes. Parallel Computing, submitled,
January 1992,

[43] Massimo Maresca and Hungwen Li. Connection autonomy in SIMD
computers: A VLSI implementation. Journal of Parallel and Distribuled
Computing, 7, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[44] C.L. McCreary, M.E. McArdle, and J.D. McCreary. Broadcast Com-
munication Delay Metric for the iPSC/2 and iPSC/860 Hypercubes.
Proceedings of 30th Annual ACM Southeast Conference, 1992.

[45] R. Miller and Q. Stout. Efficient parallel convex hull algorithms. [EEE
Transactions on Computers, 37:1605-1618, 1988.

[46] R. Miller and Q. Stout. Mesh computer algorithms for computational
geomentry. IEEE Transactions on Computers, 38:321-340, 1989.

[47] Russ Miller, V.K. Prasanna Kumar, Dionisios Reisis, and Quentin F.
Stout. Data movement operations and applications on reconfigurable
VLSI arrays. Proceedings of International Conference on Parallel Pro-
cessing, 1988.

[48] Russ Miller and Quentin F. Stout. Data movement techniques for the
pyramid computer. SIAM Journal of Computing, 16(1), February 1987.

[49] N. Mokhoff. New RISC Machines Appear as Hybrids with both RISC
and CISC Features. Compul. Des., pages 22-25, April 1986.

[50] D. Nath, S.N. Maheshwari, and C.P. Bhatt. Efficient VLS] networks
for parallel processing based on orthagonal trees. [EEE Transactions on
Computing, C-32, June 1983,

[51] nCUBE, Beaverton, Oregon. nCUBE 2 Supercomputers: Systems Tech-
nical Overview, 1990.

[52] Stephan Olariu, James L. Schwing, and Jinyuan Zhang. Fast component

labeling on reconfigurable meshes. Old Dominion University, Janurary
1992.

(53] Stephan Olariu, James L. Schwing, and Jinyuan Zhang. Fast computer
vision algorithms on reconfigurable meshes. Proceedings of IPPS, 1992,
to appear.

[54] Stephan Olariu, James L. Schwing, and Zhang, Jingyuan. Computing
the Hough Transform on Reconfigurable Meshes. Proceedings of Vision
Interface, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[55] Michael J. Phillip. Performance issues for the 88110 risc microprocessor.
Proceedings of CompCon 92, pages 163-168, February 1992,

[56] Steve Plimpton, Sudip Dosanjh, and Randy Krall. Is SIMD Enough for
Scientific and Engineering Applications on Massively Parallel Comput-
ers. Proceedings of CompCon 92, pages 95-102, February 1992.

[57] V.K. Prasanna-Kumar and D. I. Reisis. Image Computations on Meshes
with Multiple Broadcast. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 1194-1202, November 1989.

[58] Michael J. Quinn. Designing Efficient Algorithms for Parallel Comput-
ers. McGraw-Hill, 1987.

[59] R. Ragan-Kelly and R. Clark. Applying RISC Theory to a Large Com-
puter. Comput. Des., pages 191-198, November 1983.

[60] I.V. Ramakrishnan and P.J. Varman. Modular matrix multiplication on
a linear array. [EEE Transactions on Computing, C-32, October 1983.

[61] A.P. Reeves. Parallel Computer Architecture for Image Processing.
Computer Vision, Graphics, and Image Processing, 25:68-88, 1984.

[62] A.Rosenfeld, J. Ornelas, and Y. Hung. Hough Transform Algorithms for
Mesh-Connected SIMD Parallel Processors. Computer Vision, Graphics
and Image Processing, 41:293-305, 1988.

[63] Azriel Rosenfeld. Parallel Image Processing using Cellular Arrays. [EEE
Computer, 16:14-20, 1983.

[64] Azriel Rosenfeld. The Impact of Massively Parallel Computers on Im-
age Processing. 2nd Symposium on the [rontiers of Massively Parallel
Computalion, pages 21-27, October 1988.

[65] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing, vol-
ume 1-2. Academic Press, 1982.

[66] P. Sadayappan and F. Ercal. Nearest-Neighbor Mapping of Finite Ele-
ment Graphs onto Processor Meshes. IEEE Transactions on Computers,
C-36(12):1408-1424, Dec 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[67) Howard J. Seigal. Interconnection Networks for Large-Scale Parallel
Processing and Case Studies. McGraw Hill, second edition, 1990.

[68] M. Seither. Pyramid Challenges DEC with RISC Supermini. Mini-Micro
Systems, pages 33-36, August 1985.

[69] C.L. Seitz. Concurrent VLSI architectures. IEEE Transactions on Com-
puting, C-33, December 1934.

[70] Yossi Shiloach and Uzi Vishkin. An O(log n) Parallel Connectivity Al-
gorithm. Journal of Algorithms, 3:57-67, 1982,

[71] Howard J. Siegal, James B. Armstrong, and Daniel W. Watson. Mapping
Computer-Vision-Related Tasks on Reconfigurable Parallel Processing
Systems. Computer, pages 54~63, Feburary 1992.

[72] William Stallings. Reduced Instruction Set Computers. IEEE Computer
Society Press, second edition, 1990.

(73] Harold S. Stone. High-Performance Computer Architectures. Addison-
Wesley, Reading, Ma., 1990.

[74] H.S. Stone. Parallel processing with the perfect shuffle. IEEE Transac-
tions on Computing, C-20, Feburary 1971.

[75] Quentin F Stout. Mesh connected computers with multiple broadcast-
ing. IEEE Transactions on Computers, C-32(9), September 1983.

[76] Robert E. Tarjan and Uzi Vishkin. An efficient Parallel Biconnectivity
Algorithm. SIAM Journal of COmputing, pages 862-874, November
1985.

[77) Robert Tobias. The LR33020 GraphX Processor: A Single Chip X-
Terminal Controler. Proceedings of CompCon 92, pages 358-363, Febru-
ary 1992.

[78] Mike Uhler. High Performance Single Chip VAX Microprocessor. Pro-
ceedings of CompCon 92, page 215, February 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[79] L.G. Valiant and G.J. Brebner. Univeral schemes for parallel compu-

tation. in Proceedings of 13 ACM Symposium of Theory of computing,
1981.

[80] B-F. Wang, G-H. Chen, and F-C. Lin. Constant time sorting on a pro-
cessor array with a reconfigurable bus system. Information Processing
Letters, 34:187-192, April 1990.

[81] H.C. Wang and Kai Hwang. An Augmented Tree Multiprocessor for
Parallel Execution of Multigrid Algorithms. Proceedings of the Third
SIAM Conference on Parallel Processing of Scientific Computing, pages
424-428, 1987,

[82] R. Weiss. RISC Processors: The New Wave in Computer Systems.
Comput. Des, pages 53-73, May 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Autobiographical Statement

Peter John Looges was born on March 4, 1963 in East Orange, New
Jersey. Graduated from Rensselaer Polytechnic Institute with a Bachelor of
Science Degree in Computer Science in May of 1985 and was commissioned
an Ensign in the United States Navy. In May of 1991, he graduated from
Old Dominion University, receiving a Master of Science Degree in Computer
Science.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Publications

Papers Accepted

Greedy Recognition and Coloring Algorithms for Indifference
Graphs, (with S. Olariu), Computer Science and Operations

Research: New Developments in Their Interfaces, Pergamon Press,
1992.

Optimal Greedy Algorithms for Indifference Graphs, (with S. Olariu),
Proceedings of IEEE Southeastcon "92.

Single Row Routing with Indifference Graphs on the DAP, (with D.
Bhagavathi and S. Olariu), International Journal of Computer
Systems Science and Engineering, vol. 7, no. 4 October 1992, pp
147-154.

Sorting and Merging on the DAP, (with D. Bhagavathi, W.M. Denny,
C.E. Grosch, and S. Olariu), Proceedings of 30th Annual ACM
Southeast Conference.

High Speed Querying with the DAP 510, 4th Intemational
Conference on Computing and Information, May 28-30, 1992.

Efficient Solution to the Convex Hull Problem on the DAP, Active
Memory Technology Technical Report Series, to appear.

A Fast Selection Algorithm for Meshes with Multiple Broadcasting,
(with D. Bhagavathi, S. Olariu, J.L. Schwing, and J..Zhang), 1992
International Conference on Parallel Processing.

The Hough Transform on the Llinear Amray with Reconfigurable
Global Buses, Conference on Vision Geometry at OE/Technology
92. :

Papers Submitted

A survey of the Convex Hull Problem on the DAP, Parallel
Computing, under revision.

Selection on High Performance Architectures, Supercomputing 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fundamental Algorithms on Arrays with Reconfigurable Global
Buses, (with Nathan R. Sharp), Parallel Computing.

Linear Arrays with Reconfigurable Global Buses Efficiently Simulate
Concurrent Read PRAM Models, Parallel Processing Letters, under
revision.

Image Processing on Linear Arrays with Reconfigurable Global
Buses, IEEE Transactions on Pattern Analysis and Machine
Intelligence, under revision.

Opﬁrhal Solution to the Least Common Ancestor Problem on the
Linear Array with Reconfigurable Global Buses, Parallel Processing
Letters.

Linear Arrays with Reconfigurable Global Buses. more powerful than
any non-Reconfigurable Architecture, |EEE Transactions on
Computers.

Graph Properties of Very Large Sparse Graphs on the Linear Array
with Reconfigurable Global Buses, Parallel Processing Letters.

Finding Connected Components of Very Large Sparse Graphs on
the lLinear Aray with Reconfigurable Global Buses, Parallel
Processing Letters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Summer 1992

	High Performance Issues on Parallel Architectures
	Peter J. Looges
	Recommended Citation

	tmp.1570108364.pdf.a9Ucv

