
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 2001

A Software Reliability Model Combining
Representative and Directed Testing
Brian Michael Mitchell
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds
Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Mitchell, Brian M.. "A Software Reliability Model Combining Representative and Directed Testing" (2001). Doctor of Philosophy
(PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/zseg-dm85
https://digitalcommons.odu.edu/computerscience_etds/113

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/113?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A SOFTWARE RELIABILITY M ODEL
COM BINING R EPR ESENTATIV E A N D

D IR EC TED TESTING
by

B rian Michael M itchell
B.S. May 1991, Hampden-Sydney College

M.S. August 1993, O ld Dom inion University

A Dissertation Subm itted to the Faculty o f
Old Dominion U niversity in P artia l Fullfillment o f the

Requirement fo r the Degree of

D O C TO R O F PHILOSOPHY

C O M P U TE R SCIENCE

OLD D O M IN IO N UN IVER SITY
May 2001

Steven Zeil (Director)

C. Michael O verstreet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A BSTR A C T

A SOFTW ARE RELIABILITY MODEL
CO M BINING REPRESENTATIVE A N D

DIRECTED TESTING

Brian Michael M itchell

Old Dominion University, 2001

Director: Dr. Steven Zeil

Traditionally, software re liab ility models have required tha t failure data be gath­

ered using only representative testing methods. Over time, however, representa­

tive testing becomes inherently less effective as a means o f im proving the actual

quality o f the software under test. Additionally, the use of failure data based on

observations made during representative testing has been criticized because o f the

statistical noise inherent in this type of data. In th is dissertation, a testing method

is proposed to make re liab ility testing more efficient and accurate. Representative

testing is used early, when the rate of fau lt revelation is high. Directed testing

is used later in testing to take advantage o f its faster rate o f fau lt detection. To

make use o f the test data from this mixed method approach to testing, a software

re liab ility model is developed that permits re liab ility estimates to be made re­

gardless of the testing method used to gather failure data. The key to being able

to combine data from both representative testing and directed testing is shifting

the random variable used by the model from observed interfailure times to a post­

mortem analysis o f the debugged faults and using order statistics to combine the

observed failure rates o f faults no m atter how those faults were detected. This

sh ift from interfa ilure times removes the statistica l noise associated w ith the use

of this measure, which should allow models to provide more accurate estimates

and predictions. Several experiments were conducted during the course o f this

research. The results from these experiments show tha t using the mixed method

approach to testing w ith the new model provides re liab ility estimates tha t are at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

least as good as estimates from existing models under representative testing, while

requiring fewer test cases. The results o f this work also show th a t the high level

o f noise present in failure data based on observed failure times makes i t very d if­

ficu lt fo r models tha t use this type o f data to make accurate re lia b ility estimates.

These findings support the suggested move to the use o f more stable quantities

for re lia b ility estimation and prediction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Acknowledgements

This research was supported in pa rt by grant 9803879 from the National Science

Foundation.

i i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T able o f C on ten ts

1 Introduction 1

2 An Overview Of Software Reliability 6
2.1 Time Between Failure M o d e ls ... 6

2.1.1 The Jelinski-Moranda De-Eutrophication M o d e l................. 7

2.1.2 The Moranda Geometric M o d e l.. 7

2.1.3 The Musa Basic M o d e l.. 9

2.1.4 The Musa Log Poisson M o d e l... 9

2.1.5 The Littlew ood M o d e l .. 10

2.2 Failure Counting M o d e ls .. 11

2.3 A Discussion O f The Assumptions Made By Existing Software Re­

lia b ility M o d e ls ... 14

2.3.1 Assumption: A ll Faults Are Created E q u a l.......................... 14

2.3.2 Assumption: Testing Is Conducted Using Representative

M e th o d s ... 15

2.3.3 Assumption: Faults Are Found In Perfect O rd e r 15

3 Overview Of Testing Methods 16
3.1 Representative Testing M e th o d s ... 17

3.1.1 Generating Representative Test Cases................................... 18

3.1.2 Operational Profiles .. 19

3.1.3 Testing For U ltra -R e liab ility Using Representative Methods 19

3.2 Directed Testing M e th o d s .. 20

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF C O N TEN TS v

3.2.1 Implementation-Based Techniques... 20

3.2.2 Specification-Based Techniques .. 25

3.3 Directed Testing And R eliab ility E s t im a t io n 27

3.4 Summary .. 29

4 Goals Of This Research 30
4.1 Development O f A Mixed Method Testing Process........................... 30

4.2 Development O f Techniques To A llo w R e liab ility Estimation Re­

gardless O f The Testing Method U se d ... 30

4.3 Development O f A Software R e lia b ility Model Capable O f Using

Directed Testing D a t a .. 31

4.4 Valida tion O f The Developed M o d e l.. 31

4.5 Evaluation O f The Suitab ility O f T im e Based Data For R e liab ility

E s tim a tio n .. 32

5 Related Work 33
5.1 The Effects O f Fault Recovery Order On Software Reliab ility Models 33

5.2 PIE: A Dynam ic Failure-Based T e c h n iq e 34

5.3 The Relationship Between Test Coverage And R e lia b ility . 34

5.4 Software T e s ta b ility .. 35

6 A Mixed Method Approach To Testing 37
6.1 O verv iew ... 37

6.2 Phase 1: Testing When A Large Num ber O f Faults Remain 38

6.3 Phase 2: Testing When A Small Num ber O f Faults Remain 38

6.4 Advantages o f M ixed Method T e s t in g ... 39

6.5 Disadvantages o f Mixed T e s t in g ... 40

7 Directed Testing And Reliability Estimation 41
7.1 The Nature O f Fault Detection Under Directed T e s tin g 42

7.2 E stim ating Fault Failure Rates ... 44

7.2.1 The P IE Method For D eterm ining The Fault Failure Rate 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE O F CONTENTS vi

7.2.2 Using Debugger Estimates To Determine Fault Failure Rates 46

8 A Software Reliability Model Based On Order Statistics 48
8.1 Order Statistics B a s ic s .. 48

8.2 Model B a s ic s .. 49

9 Data Evaluation Plan 51
9.1 Selection O f M ode ls ... 51
9.2 Techniques For Comparing Model Performance................................. 52

9.2.1 Traditional Means O f Measuring The Predictive Accuracy

O f Software R e liab ility M odels.. 52

9.2.2 The OP P lo t .. 53

9.2.3 Comparing The Best F it O f Each M o d e l 54

9.2.4 Comparing Model S tab ility .. 54

9.3 Development O f Analysis T o o ls ... 55

10 Applying The Model To Representative Data 56
10.1 Data Set Selection ... 56

10.1.1 The Need For H igh Q ua lity D a t a ... 57

10.1.2 The Need For A Substantial Number O f Failures 57

10.1.3 The Need For Failure Data From Representative Testing . 58

10.1.4 The Selected D a ta S e ts .. 58

10.2 Experiment D e s ig n ... 58

10.3 R esu lts ... 59

10.3.1 The Results O f Analyzing The Predictive Accuracy O f The

M ode ls .. 59
10.3.2 Comparing The Best F it For Each M o d e l............................. 73

10.3.3 Comparing The Parameter Progression For Each Model . . 89

10.4 C onc lus ions .. 101

11 Data From Generated Debugging Sequences 102
11.1 The Data S e t .. 102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS vii

11.2 Experiment D e s ig n .. 104

11.2.1 Generating Representative Testing D a t a 104

11.2.2 Generating A M ixtu re O f Representative and Directed Test­

ing D a ta .. 104

11.3 R esu lts .. 110

11.3.1 The Results O f Analyzing The Predictive Accuracy O f The

M o de ls ... 115

11.3.2 Comparing The Best Fits For Each M o d e l 115

11.3.3 Comparing The Parameter Progressions For Each Model . 117

11.4 Verification O f The Ordered Directed Testing P r o p e r ty 117

11.5 C onc lus ions ... 118

12 Testing An Existing Software System 160
12.1 System D e s c r ip tio n .. 160

12.2 Experiment S e tu p ... 162

12.2.1 O btain ing Representative D a t a .. 162

12.2.2 Setting Up The Inpu t D riv e r.. 162

12.2.3 Autom ating The Failure Detection P rocess.......................... 163

12.3 Estim ating Fault Failure Rates ... 163

12.4 Representative T e s t in g ... 165

12.4.1 Representative Testing Results... 166

12.5 Mixed Method T e s t in g ... 184

12.5.1 Mixed Testing R e s u lts .. 186

12.5.2 C on c lu s ions ... 206

13 Conclusions And Future Directions 208
13.1 Results O f This W o rk .. 208

13.1.1 Development O f A Mixed Method Approach To Testing . . 208

13.1.2 Development o f Techniques To A llow R e liab ility Estimation

Regardless O f The Testing Method U s e d 209

13.1.3 Development O f A Software R eliab ility Model Capable Of

Using Directed Testing D a ta ...209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS viii

13.2

Vita

13.1.4 Development O f H ybrid Versions O f Existing Modelss . . . 210

13.1.5 Evaluation O f The S u itab ility O f Time Based Data F*‘or Re-

lia b ilit ly Estimation .. 210

Future D ire c tio n s .. 210

13.2.1 Refinement O f Methods O f Fault Failure Rate Estim .ation 211

13.2.2 Development O f A Model Tha t Uses Only Fault Fa ilu ire Rates211

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L ist o f F igu res

1 The Jelinski-Moranda De-Eutrophication P ro c e s s 8

2 The Moranda Geometric De-Eutrophication P rocess........................ 9

3 A Sample D G L G ram m ar For Simulating The Toss O f An Unfair

Coin And The R o ll O f A Fair D ie .. 18

4 Domain Testing E xa m p le .. 25

5 OS Model OP P lo t For Data Set 1 61

6 JM Model OP P lo t For Data Set 1 .. 62

7 Musa Basic OP Plots For Data Set 1 ... 63

8 Musa Log OP Plots For Data Set 1 .. 64

9 OS Model OP P lo t For Data Set 2 .. 65

10 JM Model OP P lo t For Data Set 2 .. 66

11 Musa Basic OP P lots For Data Set 2 ... 67

12 Musa Log OP Plots For Data Set 2 .. 68

13 OS Model OP P lo t For Data Set 3 .. 69

14 JM Model OP P lo t For Data Set 3 .. 70

15 Musa Basic OP P lots For Data Set 3 ... 71

16 Musa Log OP Plots For Data Set 3 .. 72

17 OS Model OP P lo t For Data Set 4 .. 73

18 JM Model OP P lo t For Data Set 4 .. 74

19 Musa Basic OP Plots For Data Set 4 ... 75

20 Musa Log OP Plots For Data Set 4 ... 76

21 Average E rro r For Each OP P l o t ... 76

22 Best F its For OS Model Data Set 1 .. 77

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIS T OF FIGURES x

23 Best Fits For JM Model D ata Set 1 ... 78

24 Best Fits For M B Model D ata Set 1 ... 79

25 Best Fits For M L Model D ata Set 1 ... 80

26 Best Fits For OS Model D ata Set 2 ... 81

27 Best F its For JM Model D ata Set 2 ... 82

28 Best Fits For M B Model D ata Set 2 ... 83

29 Best Fits For M L Model D ata Set 2 ... 84

30 Best Fits For OS Model D ata Set 3 ... 85

31 Best Fits For JM Model Data Set 3 ... 86

32 Best F its For M B Model D ata Set 3 ... 87

33 Best F its For M L Model D ata Set 3 ... 88

34 Best F its For OS Model D ata Set 4 ... 89

35 Best F its For JM Model D ata Set 4 ... 90

36 Best F its For M B Model D ata Set 4 ... 91

37 Best F its For M L Model D ata Set 4 ... 92

38 E rro r For Each Best F i t ... 92

39 OS Model Mean Progression For A ll Data Sets 93

40 OS Model Standard Deviation Progression For A ll Data Sets . . . 94

41 OS Model N Progression For A ll Data S e ts .. 95

42 Jelinski-Moranda Phi Progression For A ll Data S e ts 96

43 Jelinski-Moranda N Progression For A ll Data S e ts 97

44 Musa Basic In itia l Program Failure Rate Progression For A ll Data

Sets ... 98

45 Musa Basic N Progression For A ll Data S e ts 99

46 Musa Log Decay Parameter Progression For A il Data Sets 100

47 Musa Log In it ia l Program Failure Rate Progression For A ll Data

Sets ... 101

48 Directed Fault Failure Rates (K d f t) versus Representative Fault

Failure Rates [3 1] .. 103

49 Generated Representative Set O ne ... 105

50 Generated Representative Set Two ... 106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES X I

51 Generated Representative Set T h ree ... 107

52 Generated Representative Set F o u r ... 108

53 Number O f Faults Found For Each Directed Testing Pass For Each

Data S e t .. 110

54 Generated Mixed Testing Set O n e .. I l l

55 Generated Mixed Set T w o ... 112

56 Generated Mixed Set T h r e e .. 113

57 Mixed Set F o u r .. 114

58 OS Model OP P lot For Generated Data Set O n e 119

59 JM Model OP P lot For Generated Data Set O ne 120

60 MB Model OP P lot For Generated Data Set O n e 121

61 M L Model OP P lot For Generated Data Set O n e 122

62 OS Model OP P lot For Generated Data Set Two 123

63 JM Model OP P lot For Generated Data Set Two 124

64 MB Model OP P lot For Generated Data Set T w o 125

65 M L Model OP P lot For Generated Data Set T w o 126

66 OS Model OP P lo t For Generated Data Set T h re e 127

67 JM Model OP P lot For Generated Data Set T h re e 128

68 MB Model OP P lot For Generated Data Set T h r e e 129

69 M L Model OP P lot For Generated Data Set Three 130

70 OS Model OP P lo t For Generated Data Set F o u r 131

71 JM Model OP P lo t For Generated Data Set F o u r 132

72 MB Model OP P lo t For Generated Data Set F o u r 133

73 M L Model OP P lot For Generated Data Set F o u r 134

74 Error For The OP P lo t s .. 134

75 Best F it For OS Model Simulated Data Set O n e 135

76 Best F it For JM Model Simulated Data Set O n e 136

77 Best F it For M B Model Simulated Data Set O n e 137

78 Best F it For M L Model Simulated Data Set O n e 138

79 Best F it For OS Model Simulated Data Set T w o 139

80 Best F it For JM Model Simulated Data Set T w o 140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF F IG U RES xii

81 Best F it For M B Model Simulated Data Set T w o 141

82 Best F it For M L Model Simulated Data Set Two 142

83 Best F it For OS Model Simulated D ata Set T h re e 143

84 Best F it For JM Model Simulated Data Set T h re e 144

85 Best F it For M B Model Simulated Data Set T h ree 145

86 Best F it For M L Model Simulated Data Set T h re e 146

87 Best F it For OS Model Simulated Data Set F o u r............................... 147

88 Best F it For JM Model Simulated Data Set F o u r 148

89 Best F it For M B Model Simulated Data Set F o u r 149

90 Best F it For M L Model Simulated Data Set F o u r 150

91 .Error For The Fits To The Full D ata S e t .. 150

92 OS Model Mean Progression For A ll Data S ets................................. 151

93 OS Model Standard Deviation Progression For A ll Data Sets . . . 152

94 OS Model N Progression For A ll Data S e ts 153

95 Jelinski-Moranda Phi Progression For A ll Data S e ts 154

96 Jelinski-Moranda N Progression For A ll Data S e ts 155

97 Musa Basic In itia l Program Failure Rate Progression For A ll Data

Sets .. 156

98 Musa Basic N Progression For A ll Data S e ts 157

99 Musa Log Decay Parameter Progression For A ll Data Sets 158

100 Musa Log In it ia l Program Failure Rate Progression For A l l Data

Sets .. 159

101 The Fault S e t ... 164

102 Faults Found During Representative T e s t in g 165

103 OP P lo t For Order Statistics Model (Representative Data) 167

104 OP P lo t For Jelenski-Moranda Model(Representative Data) . . . 168

105 OP P lo t For Musa Basic Model (Representative Data) 169

106 OP P lo t For Musa Log Model (Representative D a t a) . 170

107 Relative E rro r For The OP Plots Under Representative Testing . 170

108 Best F it For Order Statistics Model (Representative Data) 171

109 Best F it For Jelinski Moranda M odel (Representative Data) . . . 172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L IS T O F FIGURES xiii

110 Best F it For Musa Basic Model (Representative Data) 173

111 Best F it For Musa Log Model (Representative Data) 174

112 Relative E rror For The Best F its Under Representative Testing . 174

113 OS Model Mean Progression W ith Representative D a t a 175

114 OS Model Standard Deviation Progression W ith Representative Datal76

115 OS Model N Progression W ith Representative D a t a 177

116 Jelinski-Moranda Phi Progression W ith Representative Data . . . 178

117 Jelinski-Moranda N Progression W ith Representative D ata 179

118 Musa Basic In it ia l Failure Rate Progression W ith Representative

D a t a .. 180

119 Musa Basic N Progression W ith Representative D a t a 181

120 Musa Log In it ia l Failure Rate Progression W ith Representative Datal82

121 Musa Log Decay Progression W ith Representative D a ta 183

122 Faults Found D uring M ixed T e s tin g .. 185

123 OP Plot For Order Statistics Model (Mixed D a ta) 188

124 OP P lot For Jelenski-Moranda Model(Mixed D a t a) 189

125 OP P lot For Musa Basic Model (Mixed D a t a) 190

126 OP P lot For Musa Log Model (M ixed D a t a) 191

127 Relative E rror For The OP Plots Under M ixed T e s t in g 191

128 Best F it For Order Statistics Model (Mixed D a ta) 193

129 Best F it For Jelinski Moranda Model (Mixed D a t a) 194

130 Best F it For Musa Basic Model (Mixed D a t a) 195

131 Best F it For Musa Log Model (M ixed D a t a) 196

132 Relative Error For The Best F its Under Mixed T e s t in g 196

133 OS Model Mean Progression W ith Mixed D a ta 197

134 OS Model Standard Deviation Progression W ith M ixed Data . . . 198

135 OS Model N Progression W ith M ixed D a ta 199

136 Jelinski-Moranda Model P h i Progression W ith M ixed Data 200

137 Jelinski-Moranda Model N Progression W ith M ixed D a ta 201

138 Musa Basic Model In it ia l Failure Rate Progression W ith Mixed Data202

139 Musa Basic Model N Progression W ith M ixed D a t a 203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L IS T OF FIGURES xiv

140 Musa Log Model In it ia l Failure Rate Progression W ith Mixed Data 204

141 Musa Log Model Decay Progression W ith Mixed D a t a 205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 1

In tro d u ctio n

D uring the early years o f com puter use, hardware costs far outweighed software

costs . However, due to steadily dropping hardware costs and increasing demand

for more complex software systems, the m ajority o f computing costs is attributed

to software. Software systems are becoming more prevalent in life critica l appli­

cations, such as flight contro l systems and space exploration. For these reasons,

there is increasing demand fo r software systems tha t are fault-free. Unfortunately,

in order to guarantee th a t a software system is completely free o f faults i t is necce-

sary tha t we exercise the software for every possible input in the system’s input

domain and to check the correctness o f the subsequent ou tpu t. Th is process is

known as exhaustive testing. For some types o f programs (such as concurrent

systems) exhaustive testing m ay not be sufficient to guarantee th a t the software

is completely free o f faults.
For most software systems, exhaustive testing is not possible. For example,

consider a program P which reads inputs from m ultip le remote sensors at an

industria l plant and makes decisions about how operation o f the plant should

proceed based upon the inpu t. There is no predictable l im it on the number of

inputs that w ill be read from the sensors by the program, so the number of possible

inputs to the system is, for a ll intents and purposes, infin ite.

Even when the inpu t dom ain o f a program is finite, exhaustive testing may

This dissertation follows the sty le of The Physical Review

1

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. IN TR O D U C TIO N 2

not be feasible. I f the inpu t parameters are chosen from a fin ite set w ith many

elements, then it may take an infeasibly long tim e to run a ll possible test cases

and check all o f the ou tpu t o f the system for correctness. Even i f the set(s) from

which the input is chosen is fa irly small, i f there are many input parameters,

then testing the system for every possible combination o f these inputs w ill result

in a combinatorial explosion in the number o f test cases. For example, consider

a p r o g r am P , tha t takes six input parameters £1 , 1*2 , - - -*6 chosen from a set S ,

where S is the set o f integers from 1 to 1000. Now, although each of the input

parameters is chosen from a finite domain w ith on ly 1000 elements, the number

o f possible inputs to the program is 1018. I f we assume tha t each test case can

be generated, executed, and checked for correctness in one nanosecond, then con­

ducting exhaustive testing on P w ill take about 109 seconds, or about 31.7 years.

Obviously, conducting testing for this amount o f tim e is infeasible.

Since i t is generally impossible to conduct exhaustive testing of a software

system, methods are needed for testing a software system w ith a manageable

number of test cases, while s till insuring tha t system components are rigorously

exercised. Such methods are known as software testing methods.
Software testing methods can be divided in to two classes: representative meth­

ods and directed methods. When a software system is tested using representative

methods, inputs are chosen from the input domain o f the system according to a

model that represents the environment under which the system w ill eventually

operate. This model is called the operational profile o f the system. Inputs to the

program tha t are expected to occur frequently during actual system use w ill be

weighted more heavily by the operational profile than inputs that are not expected

to occur as often. Therefore, the more frequently used components o f the program

w ill be tested more thoroughly. Additional weight may be given to functions in

the system tha t are considered to be critica l to operation.

When software testing is conducted using directed methods, test cases are

designed to satisfy some coverage criteria w ith respect to the program’s structure

or functionality. For example, a common crite rion used to drive directed testing is

tha t every statement in the source code must be executed at least once during the

with permission of the copyright owner. Further reproduction prohibited without permission

CHAPTER 1. IN TR O D U C TIO N 3

testing process. This particular coverage criterion is known as statement coverage.
Conducting directed testing usually requires more effort on the part o f the test

team to design the test cases in order to meet the specified coverage requirements.

For many types of software, such as life critical or financial applications, i t

may not be enough to simply test the program. There may be a requirement for

the quantification o f the qua lity o f the software. For this reason, methods have

been developed to use data from the testing process to predict the future failure

behavior o f a software system. Suppose, for example, tha t a program P is tested

for some period o f time, t. Further, suppose tha t during the tim e interval (0, t), m

system failures, denoted by f x, / 2 , - - - fm occur at times t x, t 2, - - - tm, respectively.
As the failures occur, the faults responsible for causing the failures are located

and corrected. A logical question to ask would be, “ Given th is failure behavior

o f P up u n til tim e t what is the expected current failure rate o f th is program

and when is the next failure expected to occur?” The field o f software reliability

attempts to provide an answer to th is question.

Generally, the quantification of the re liab ility of a software system is based

upon a mathematical model, called a software reliability growth model. A wide

variety o f models have been proposed, but the goal o f all o f the models is to

estimate the current failure rate o f the system under test and to provide estimates

o f the mean time to failure o f the system. Typically, predictions made by software

re liab ility models are only considered to be accurate i f the failure data used as the

basis for prediction is gathered using representative methods. Data obtained from

directed testing methods has tra d itiona lly been considered to be poorly suited for

re liab ility estimation. However, the accelerated pace of fau lt detection under

directed testing methods would provide real advantages for test engineers whose

job is to insure u ltra -re liab ility *of a program. Therefore, i t would benefit the field

o f software re liab ility i f a technique were available for using fa ilure data gathered

during directed testing to make accurate estimates o f the re lia b ility o f a program.

In the past, software re liab ility growth models have used failure data based

1 According to Butler and Finelli [2], For a program to be ultra-reliable, the probability of
program failure during one hour of operation must not exceed 10“ 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. IN TR O D U C TIO N 4

on time-based quantities observed during testing. However, several researchers [9]

[17] have observed tha t such measures are prone to statistica l noise which may

compromise model results. One goal o f this research is to examine these claims

and to suggest new types o f data tha t can be used as inpu t into re liab ility models

to provide more stable and accurate results.

During this work, a mixed method approach to testing was developed th a t

employs both representative and directed testing methods. Each type of testing

method is used when i t is most efficient to do so in order to accelerate the re liab ility

testing process. Using the mixed method approach to testing required far fewer

test cases than were required by representative testing.
Methods were developed to allow data from the mixed method approach to

testing to be used for making re liab ility estimates. A software re liab ility growth

model based on order statistics was developed to provide these estimates.

This dissertation is arranged as follows:

Chapter 2 presents a survey o f the field o f software re liab ility . General software

re liab ility concepts are discussed and several existing software re liab ility models

are described.

Chapter 3 presents a survey of the field o f software testing. Some of the more

popular testing methods are explained, and the relative strengths and weaknesses

o f representative and directed testing methods are discussed.

Chapter 4 defines the goals of the research by defining the problems are being

solved and the methods used to solve them.

Chapter 5 discusses related work in the fields o f software testing and software

re liability.
Chapter 6 describes a mixed method approach to testing tha t involves a com­

bination o f both representative and directed methods tha t w ill allow for more

efficient use o f testing resources. This testing method is compared to existing

testing methods, and its relative strengths and weaknesses are discussed.

Chapter 7 discusses the relationship between the set o f faults found when

a software system is tested using representative methods, and the set of faults

found when the same software system is tested using directed methods. In th is

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. IN TR O D U C TIO N 5

chapter, the Ordered Directed Testing Property tha t is believed to describe this

relationship is presented. Techniques th a t can be used to estimate the fa u lt failure

rate for a given fau lt, regardless o f the testing technique used to find th a t fau lt

are also presented.

Chapter 8 presents a re liab ility m odel based on order statistics th a t w ill make

i t possible to use failure data obtained from the mixed method testing technique

to make accurate re liab ility estimates fo r a software system.

Chapter 9 describes the techniques tha t were used during this research to

analyze the results o f each experiment.

Chapter 10 describes the results th a t were obtained when the O rder Statis­

tics based model was applied to data sets gathered using representative methods.

Comparisons are made to the results obtained by applying existing software reli­

ab ility models to these data sets.

Chapter 11 describes the results th a t were obtained when the Order Statistics

based model was applied to data sets obtained during a study tha t involved gen­

erating various debugging sequences for a set o f failure rate data. The data sets

consist o f a m ixtu re o f representative testing data and directed testing data.

Chapter 12 describes the results th a t were obtained when an existing software

system used for alarm tracking in an industria l enviorment was subjected to testing

and re liab ility estimation.

Chapter 13 summarizes the research presented in this dissertation, and sug­

gests directions fo r future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h ap ter 2

A n O verv iew O f Softw are
R elia b ility

A generally accepted definition o f software re liab ility is given by Musa et al. [12],

who state th a t “ ...software re lia b ility is the probability o f failure-free operation of

a computer program in a specified environment for a specified tim e.” They then

go on to state tha t a software re liab ility model “usually has the form of a random

process tha t describes the behavior o f failures w ith time.”

This chapter provides a survey o f some o f the more popular software reliabil­

i ty models. The models discussed in th is chapter are divided into two groups:

T im e Between Failure Models and Fault Count Models. Following the survey, the

assumptions of these models are discussed.

2.1 T im e B etw een Failure M odels

As the name implies, time between failure models use interfailure times o f a system

under test to make re lia b ility estimates. Some of the more popular time between

failure models are discussed in this section.

6

with permission of the copyright owner. Further reproduction prohibited without permission

CHAPTER 2. A N O VERVIEW O F SOFTWARE R E L IA B IL IT Y (

2 .1 .1 T h e J e lin s k i-M o r a n d a D e -E u tr o p h ic a t io n M o d e l

Jelinski and Moranda [13] present what has come to be probably the most famous

software re liab ility model. In this work, the process o f fau lt removal is referred

to as a de-eutrophication process. Thus, the ir model is known as the Jelinski-

Moranda De-Eutrophication model.

The model developed by Jelinski and Moranda assumes tha t failures occur

randomly as a software system is exercised. The model also assumes that the

program failure rate between failures is constant, and th a t when a failure occurs

and the corresponding fau lt is fixed, the failure rate o f the system decreases by

a constant amount. The la tte r assumption implies tha t a ll faults are the same

size1. Experience shows tha t this assumption is not an accurate depiction o f the

real world.
The Jelinski-Moranda De-Eutrophication model assumes tha t the failure rate

at any point in time is proportional to the current error content of the program.

The failure rate o f a program after i failures is given by:

A i = (N - i) 4 f . (1)

where N is the in it ia l error content (number o f errors) in the program and 0 is a

proportionality constant representing the step size o f the decrease in the program

failure rate when a fau lt is fixed. A possible realization of the Jelinski-Moranda

De-Eutrophication process is shown in Figure 1.

2 .1 .2 T h e M o r a n d a G e o m e tr ic M o d e l

In later work, Moranda [18] proposes a variation of the Jelinski-Moranda De-

Eutrophication process. The so-called Geometric De-Eutrophication Process,

though sim ilar in sp irit to the original model, has several im portant differences.

F irst, the geometric model assumes an in fin ite number o f faults in a program,

where the original model assumed a fin ite number. Second, the geometric model

xThe size of a fault refers to how often a given fault will manifest itself as a failure during
system operation. Thus, the size of a fault refers to the extent that system reliability is affected
by the existence of the fault in question.

with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTER 2. A N O VERVIEW O F SOFTW ARE R E L IA B IL IT Y 8

Failure
Rate

N4>

Tim e

FIG . 1. The Jelinski-Moranda De-Eutrophication Process

assumes th a t when a failure occurs, then the system failure rate decreases by a

geom etrically varying amount. The parameters tha t describe the behavior o f the

geometric model are D , the in it ia l fa ilure rate o f the system, and k (0 < k < 1),

the fa ilure rate decay parameter. A t the start o f testing, the failure rate o f the

system is D . A fte r one failure occurs (and is fixed), the fa ilure rate o f the system

becomes kD . A fter the second failure is detected, the fa ilure rate becomes k2D.
A fte r i failures the system failure rate is given by:

A; = k*D. (2)

A possible realization o f the Moranda Geometric De-Eutrophication process is

given in Figure 2.
The change in the program failure rate in the geometric model seems to be more

realistic than the change in failure rate o f the De-Eutrophication model because

one would expect that the faults found first under representative testing would be

the same faults that would occur most often during actual system use. Therefore,

removing these “ large” faults w ill have more o f an impact on the program failure

rate than the removal o f faults th a t manifest as failures less often.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. A N O V E R V IE W OF SOFTWARE R E L IA B IL IT Y 9

Tim e

FIG . 2. The Moranda Geometric De-Eutrophication Process

2 .1 .3 T h e M u s a B a s ic M o d e l

Musa [12] develops a model th a t he refers to as the Basic Execution Time Model.

This model is very s im ila r to the Jelinski-Moranda De-Eutrophication Model. As

in the Jelinski-Moranda Model, the per fault failure rate is assumed to be constant.

The failure intensity fo r th is model after fj. faults have been removed is:

A(fi) = A „[l - £] (3)
Vq

where A0 is the in it ia l program failure rate at the beginning o f testing and v0 is

the to ta l number o f errors present in the software at the beginning o f testing.

2 .1 .4 T h e M u s a L o g P o is s o n M o d e l

Musa [12] develops a second model to address his concern tha t the operational

profile for most software systems is not uniform . This model, referred to as the

Logarithm ic Poisson Execution Tim e Model, accounts fo r th is non-uniform ity by

modeling the fau lt fa ilure rates as decreasing w ith time. Therefore, removal of a

fau lt early in testing w ill have a greater impact on the program failure rate than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. A N O VER VIEW OF SOFTW ARE R E L IA B IL IT Y 10

removal o f a fau lt la te r in testing. This behavior is more in tu itive ly satisfying

than the constant decrease in program failure rate in the Musa Basic Model and

in the Jelinski-Moranda De-Eutrophication Model. The failure intensity for the

Musa Log Poisson Model after [j, faults have been removed is:

= A0 exp(—ffyi) (4)

where A0 is the in it ia l program failure rate at the beginning of testing and 9 is a

decay parameter.

2 .1 .5 T h e L it t le w o o d M o d e l

Littlewood [15] proposed a refinement o f the Jelinski-Moranda De-Eutrophication

Model. As discussed above, the Jelinski-Moranda model assumes tha t all faults

contribute the same amount to a program’s failure rate. Littlewood argues that

all faults in a system do not contribute equally to system failure rate. He ar­

gues that when testing is conducted in a representative fashion, the faults w ith

high occurrence rates w ill cause failures before faults w ith low occurrence rates.

Therefore, the largest faults in the system w ill manifest first and w ill be removed

from the program firs t. Thus, a program’s failure rate w ill decrease more when a

failure is removed early in testing than i t w ill when a failure is removed later in

testing.

Like the Jelinski-Moranda De-Eutrophication model[13], L ittlew ood’s model

assumes tha t there are a fin ite number o f faults in a program at the beginning

of testing. The in terfa ilure times of the faults are assumed to be exponentially

distributed. L ittlew ood also assumes tha t when a failure occurs, the fau lt is

immediately removed w ith probability 1. L ittlew ood ’s model assumes tha t each

fault in a program has a failure rate tha t is independent of the failure rates o f the

other faults in the system. The failure rate o f a program after i faults have been

removed is given by:

A = -f-... + (5)

with permission of the copyright owner. Further reproduction prohibited without permission

CHAPTER 2. A N OVERVIEW O F SO FTW A R E R E L IA B IL IT Y 11

where each of the o f the <&’s is has the probability density function

Pgamd{fi(t>; a) at the beginning o f testing.

I f a program P has been tested fo r some tim e r and that i faults have been

detected and removed, then i f we consider one o f the remaining N — i faults in

the program, then its failure rate is drawn from a probability density function

(pdf) w ith the following form:

pdf{4>} = (/? + T)gamd([(3 + r]0 ; a) (6)

The program failure rate is

pdf{A } = (P 4- r)gamd([P + t]A ; [N — z]q:). (7)

The re liab ility of the program is

/{«} = ((/J + r)/(/3 + r + i))<Ar-i>“ (8)

and the failure rate function is

A(t) = ((iV - * » / (/ ? + r + i))- (9)

2.2 Failure Counting M odels

Failure Counting Models use the num ber o f failures that occur during a certain

time interval as the basis for m aking estimates and predictions. Most models

of th is type use a Poisson d is tr ibu tion to describe failure activ ity . The Poisson

d is tribu tion is simply a special case o f the binom ial d istribution where the number

o f tria ls, n, is very large and the p ro b a b ility o f success, p, for each tr ia l is small.

The expected number o f successes in n tria ls is given by: m(t) = np.

The Goel And Okumoto NHPP Model (1979)

Goel and Okumoto [6] model the debugging process of a software system as a

nonhomogenous Poisson process (N H P P). Several assumptions about the failure

process axe made by the authors. These assumptions are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. A N O VERVIEW OF SOFTWARE R E L IA B IL IT Y 1 2

1. { N (t) , t > 0} is a counting process representing the number o f failures by

tim e t.

2. N (0) = 0

3. The counting process has independent increments, which means that the

number o f failures during an interval is independent o f the number o f failures

in a ll other intervals which do not overlap w ith the interval in question.

4. The number o f software failures in an interval is proportional to the expected

number o f undetected errors at the beginning o f the interval.

5. The probab ility o f more than one failure during a small interval is negligible.

The authors let m{t) represent the expected number o f software failures by

time t. The authors assume a fin ite number o f faults in the software system, so

m(t) is bounded in the following way:

f 0 t = 0m(t) = I
(a t —>■ oo

The authors then use assumption 4 above to state th a t the expected number of

failures in an interval (£, t + At) is described by:

m(t + At) — m(t) = b{a — m (t) }A t 4- o(At). (10)

where
lim o(At) /At = 0

A t - y o v "

which follows from assumption 5. Then, le tting At —>■ 0, and dividing through

by At yields a differential equation that can be solved to give the mean value

function o f the process. This function is:

m(t) -- a (l — exp(—bt)) (11)

The intensity function is sim ply the derivative o f the mean value function.

Specifically:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. A N OVERVIEW O F SOFTW ARE R E L IA B IL IT Y 13

A (f) = m'(t) = a6exp(—bt) (12)

Given the intensity function, A, the authors describe the probability o f a certain

number o f failures occurring during a given interval as follows:

N (t + At) — N(t) =
0 w ith p r o b a b i l i t y 1 — A (f)At + o(At)
1 w ith p r o b a b i l i t y A(t) A t o(At)
2 o r more w ith p r o b a b i l i t y o(At)

Now, since the expected value of this Poisson process is m(t), the Poisson d istri­

bution o f the number o f failures at time t is given by:

P r (N (t) = y) = ([m(t)]y/y\) e x p (-m (f)) (13)

The Modified NHPP Model Of Yamada, Ohba, And Osaki

Yamanda et al. [22] present a modification of the NHPP model proposed by

Goel And Okumoto. The reader w ill recall tha t the authors in [6] proposed a

mean value function which was characterized by exponential growth. Yamanda

et al. [22] suggest tha t the software failure process would be modeled better w ith

an S-shaped growth curve. The reasoning behind this assertion is tha t the test

team w ill undergo a “ learning” period at the beginning o f testing, and w ill not

be very successful at uncovering faults u n til they are fam ilia r w ith the testing

environment. The mean value function is then given as:

M (t) = a [l — (1 4- bt)exp(-bt)), (14)

where a is the to ta l number o f failures to be detected in infin ite time and b is

a constant o f proportionality describing the error detection rate per error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. A N O V E R V IE W OF SOFTWARE R E L IA B IL IT Y 14

2.3 A D iscussion Of The A ssum ptions Made B y
Existing Software Reliability M odels

The research presented in this dissertation was at least pa rtly inspired by the

shortcomings o f existing re lia b ility models. This section discusses the assumptions

made by these models tha t are problematic. Future chapters discuss how the

model developed in th is dissertation addresses each o f these problems.

2 .3 .1 A s s u m p tio n : A ll F a u lts A r e C r e a te d E q u a l

O f the above models, the Jelinski-Moranda De-Eutrophication Model and the

Musa Basic Model assume tha t a ll faults in the program contribute equally to

the program failure rate. In other words, these models assume tha t all faults are

the same size. This assumption is probably not accurate for most programs. For

example, consider a program tha t allows the user to enter commands that update

a database system. Suppose th a t there are only two commands in this system: an

ADD command to add a new record to the database and a DELETE command

to delete a record from the database. Let the input d is tribu tion be such that for

every 100 commands entered by the user, ninety w ill be A D D ’s and ten w ill be

DELETE’S. Now, let us assume that the code for each command has one fau lt

in i t that w ill always cause a failure when executed. Obviously then, the fau lt

in the ADD command w ill cause more problems than the fau lt in the DELETE

command. Accordingly, removal o f the fault in the A D D command w ill have more

of an impact on the program failure rate than removal o f the fau lt in the DELETE

command. Therefore, i t is plain to see tha t the assumption made by these two

models that all faults are the same size is not an accurate depiction of the real

world.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. A N O VER VIEW O F SOFTW ARE R E L IA B IL IT Y 15

2 .3 .2 A s s u m p tio n : T e s t in g I s C o n d u c te d U s in g R e p r e s e n ­

t a t iv e M e th o d s

A ll of the models presented in th is survey provide re liab ility estimates and pre­

dictions based on failure times observed during testing. In order for this type of

measure to provide accurate predictions for system behavior during actual use,

i t is necessary th a t the system be exercised during testing the same way i t w ill

be exercised during actual use. Therefore, these models required tha t testing be

conducted using representative methods.

I f testing is conducted using non-representative methods, then the re liab ility

models discussed in the chapter w ill not provide accurate estimates or predictions

o f program behavior. This fact is especially problematic since i t seems tha t most

testing tha t is curren tly being conducted is non-representative.

Even i f testing is conducted using representative methods, the use o f data

observed during testing is problem atic because i t represents only one possible

instantiation of a random process, and is therefore subject to a high levels of

statistical variance. Because o f the large potential fo r randomness in the data

observed during testing, re liab ility estimates tha t re ly on th is data may not be

accurate. This problem is discussed in more detail in the work by Hoppa and

Wilson[9] and the work by M itche ll and Zeil [17].

2 .3 .3 A s s u m p tio n : F a u lts A r e F o u n d In P e r fe c t O r d e r

W ith the exception o f the Jelinski-Moranda Deeutrophication Model and the Musa

Basic Model, a ll o f the models discussed above assume tha t fau lt failure rates

decrease w ith every- fau lt tha t is found. There is no provision in the models for

finding a fau lt th a t is bigger than a fau lt tha t was previously found. As discussed

in the previous section, however, i t is likely (even under representative testing)

tha t faults w ill be found “out o f order” . Im perfectly ordered fau lt observations

could cause existing models to provide inaccurate estimates and predictions.

with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 3

O verview O f T estin g M eth o d s

The previous chapter examined software re liab ility models which are used in con­

junction w ith failure data from a software system to make estimates about the

current re liab ility o f the system. The failure data is obtained when the system is

tested according to some criterion, called a testing method.
Most trad itiona l software re lia b lility models assume tha t re liab ility data is

given in terms o f program failure rates (interfailure times). The failure rate data

available for re liab ility estimation depends greatly on the way that testing is con­

ducted.
For example, suppose we have a program P which has 100 possible inpu t

values, and suppose th a t P always fails for 10 o f these possible values, but never

fails for any other input. Now, i f P is tested using some criterion A which causes

P to never be executed using any o f these 10 inpu t values, then the perceived

program failure rate w ill be 0. On the other hand, i f P is executed using some

criterion B which does test P using some of these 10 input values, then the

perceived current program failure rate w ill be non-zero. Therefore, i t is p la in to

see that the testing method can have a large effect on the estimates and predictions

made by software re lia b ility models.
For these reasons, an understanding of software re liab ility requires a basic

understanding of software testing methods. This chapter provides a survey o f

software testing methods. The firs t part o f this chapter discusses representative

16

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERVIEW OF TESTING M ETHODS 17

testing, which is the only form o f testing th a t has traditionally been used for

making re lia b ility estimates. The second pa rt o f this chapter discusses directed

testing methods. The relative advantages and disadvantages o f each type o f testing

method w ith respect to software re lia b ility w ill be discussed.

3.1 Representative Testing M ethods

The goal o f representative testing is to exercise a program during testing the

same way th a t i t w ill be exercised during deployment. More formally, consider

a program P w ith input domain D . Assume tha t once P is implemented in its

actual operating environment, inputs w ill be chosen from D according to some

pd f f (d) ,d E D. Representative testing dictates tha t P be tested in such a way

tha t the inputs to P are chosen from D according to / .

As mentioned in the previous section, existing software re liab ility models as­

sume th a t failure data is given in terms o f program failure rates. Obviously then,

in order for re liab ility estimates to be accurate, the program should fa il during

testing the same way that it w ill fa il during actual system use. Therefore, i t fo l­

lows tha t i f we want the program to fa il during testing tha t same way tha t i t w ill

fa il during actual system use, then the program should be exercised during testing

the same way i t w ill be exercised during actual system use. Using representative

testing methods, we achieve both o f these goals.
When representative methods are used to test a program, P, no inform ation

about the structure o f P is needed in order to conduct testing. For this reason,

representative testing is sometimes referred to as a black-box testing method. The

test team does not have to be fam iliar w ith the inner workings of the program in

order to conduct representative testing. Th is fact removes a substantial learning

curve fo r the test team. Black box testing is in keeping w ith the idea of informa­

tion h id ing which has become popular w ith the increasing use of object oriented

programming techniques.

permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. O V E R V IE W O F TESTIN G M ETHODS 18

main:’/.{coin} '/.{die} "\n" ;
coin:6:H,4:T;
die:[1-6];

FIG . 3. A Sample D G L G ram m ar For Simulating The Toss O f A n U nfa ir Coin
And The R oll O f A Fair Die

3 .1 .1 G e n e r a t in g R e p r e s e n ta t iv e T e s t C a s e s

Generation o f test cases fo r representative testing is often inexpensive. Tools

are available tha t, when given a grammar that defines the operational profile

o f a system, w ill au tom atica lly generate inputs for the system according to the

operational profile. As an example o f such a tool, consider the Data Generation

Language (D G L) described by M aurer [16]. DGL allows users to specify a context

free grammar (CFG) th a t describes how input items are chosen from a set of

possible inputs. The user can associate probabilities for each possible input, which

makes it possible to construct a grammar that allows inputs to be automatically

chosen from a set according to an operational profile. Invocation o f DG L for a

given CFG causes a C program to be created that, when executed, generates the

ou tpu t specified by the grammar. Figure 3 gives an example o f a simple grammar

th a t generates inputs to simulate the toss o f an unfair coin (weighted so tha t the

p robab ility o f heads is 0.6) and the toss o f a fair die.

B y using automated tools, a large number of test cases can be quickly generated

w ith no need for human intervention. Thus, human resources are freed to work on

other tasks, such as insuring the accuracy of the operational profile and checking

ou tpu t to verify correctness. Further, i f representative testing is used and a new

system is being designed to replace an older system, large quantities o f real input

data from the older system may be available for use during testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 3. O VER VIEW O F TESTING M E TH O D S 19

3 .1 .2 O p e r a t io n a l P r o f ile s

Before representative testing can be conducted, the operational profile o f the sys­

tem must be specified. Ham let [7] argues tha t there are many systems for which

an operational profile does not exist or is not known.

Even i f an operational profile exists for a program, discovering this d istribution

w ill probably- not be an easy task. Musa [20] outlines a manual technique for

determ ining operational profiles, but working through the construction o f the

sample profile given in [20] impresses the reader w ith how time-consuming and

d ifficu lt such a construction can be.

Even i f i t is possible to develop the operational profile fo r a system, the op­

erational profile may change over time. For example, i f a system is moved in to a

new operating environment, or modifications are made to the system, the opera­

tiona l profile o f the system is like ly to change. W hen the operational profile o f a

system is changed, i t is necessary to regenerate the test sets according to the new

operational profile and to perform testing according to the new profile.

3 .1 .3 T e s t in g F or U ltr a -R e lia b il i ty U s in g R e p r e s e n ta t iv e

M e th o d s

Life -critica l o r m ission-critical software often requires tha t extremely high levels

re lia b ility be obtained. I t is not uncommon for such software to be required to

have a fa ilu re rate o f less than 10-9 before i t can be released. Butler and F inelli

[2] state th a t re liab ility o f this magnitude could require several years or more o f

testing when representative methods are used. T h is amount o f time obviously

cannot be devoted to testing the program.

Even i f we were able to execute 109 test cases to insure u ltra-re liab ility , we

would s till be faced w ith other problems. W hen a program is being tested, the

inputs to the program cause output to be produced tha t must be checked for cor­

rectness. The problem of how to verify the correctness o f ou tpu t from a program

being tested is known as the oracle problem. No m a tte r what testing method is

used, the oracle problem is an issue that must be addressed. Because o f the very

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. O VER VIEW O F TESTING METHODS 20

large number of test cases required by representative testing, the oracle problem

is especially problematic. Musa observed that in many projects a previous ver­

sion o f the software can be used as a partia l oracle, and Weyuker [28] offers some

suggestions about how to ease the oracle problem for certain types o f programs,

but no general solution exists.

3.2 Directed T esting M ethods

Where representative testing seeks to exercise a program during testing the same

way tha t i t w ill be exercised during deployment, directed testing seeks to inten­

tiona lly exercise the software in a non-representative manner according to some

coverage critera in order to find faults more quickly and to accelerate the testing

process. More formally, consider a program P, and suppose tha t the input do­

main o f P is some set D. Le t C be some coverage criteria for P. Directed testing

involves testing P in such a way tha t the inputs to P are chosen from D in order

to satisfy C w ithout regard to the operational profile o f P. Th is section w ill first

examine several different types o f directed testing techniques and w ill then discuss

the implications of using data from directed testing for re liab ility estimation.

3 .2 .1 I m p le m e n ta t io n -B a s e d T ech n iq u es

Implementation-based testing techniques require knowledge about the structure

o f the program to be tested. Test cases are constructed in order to satisfy some

coverage criterion w ith respect to the structure of the program. Implementation-

based techniques are commonly referred to as white-box techniques.

Structural Testing

Statement coverage and branch coverage are two examples o f structura l testing

methods. Statement coverage requires tha t every statement in the program under

test be executed at least once. Branch coverage requires tha t every conditional

statement in the program under test be executed at least once for each o f the two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. O V E R V IE W OF TESTING M E TH O D S 21

possible tru th values o f tha t statement. Branch coverage is a stronger coverage

criteria than statement coverage, because in order to achieve branch coverage,

statement coverage must also be achieved.

Several variations o f branch coverage and statm ent coverage have been em­

ployed to improve the fau lt finding ab ility o f the testing process. For example,

condition coverage is a varia tion o f branch coverage th a t attempts to overcome one

of the shortcomings o f branch coverage. W h ite [29] gives the following example

o f a conditional statement:

IF (A>0) AND (B<5)

Branch coverage w ill insure tha t this statement w ill be executed twice, once for

each tru th value. However, branch coverage does not take into account tha t

the tru th value o f th is statement is based upon the tru th value of two separate

predicates. Condition coverage, on the other hand insures that this conditional

statement is executed at least once for each possible tru th value of each o f the

component predicates. Thus, this conditional statement w ill be executed a t least

four times by a test set tha t satifies the condition coverage criterion.

Data Flow Testing

Rapps and Weyuker [25] outline a technique fo r selecting test cases for a program

by using data flow testing. The program to be tested is viewed as a flow graph,

w ith nodes in the graph representing blocks o f statements that are sequentially

executed. The edges o f the graph represent transfer statements (either conditional

or unconditional) between nodes. The selection of test data is driven by the

requirement tha t some criterion that deals w ith the way in which values are bound

to program variables be satisified.

Let P be a set o f complete paths through a flow graph G that represents some

program. A long such a path, a def o f a variable x reaches a use of x i f there are

no subsequent redefinitions of x between these two points. Now, suppose th a t the

execution o f the set o f paths P results from the use o f a set o f test cases S w ith

some program T. The criterion known as all-defs requires that for each variable

with permission of the copyright owner. Further reproduction prohibited without permission

CHAPTER 3. O V E R V IE W O F TESTING M ETHODS 22

definition in each node o f G, then there must be a path p € P tha t includes tha t

defin ition and a subsequent use reached by tha t definition.

Another criterion suggested by the Rapps and Weyuker is the all-uses criterion.

The all-uses criterion is s im ilia r to the all-defs criterion, except tha t the all-uses

crite rion requires tha t fo r each variable definition in each node o f G 1 then the

paths in P must include all subsequent uses reached by th a t variable definition.

A fte r the work in [25], several papers were published suggesting new data

flow path selection criteria. Clarke et al. [14] present an evaluation of these

suggested criteria. The various crite ria are analyzed and ranked according to

the ir subsumption relationships.

Fault-Based. T e s tin g

S tro n g M u ta t io n T e s tin g M uta tion analysis is a directed testing technique

th a t was suggested by D em illo, L ip ton, and Sayward [24]. In m utation testing, a

number of mutant programs are created by injecting small changes in a program

P th a t is being tested using a certain test set. I f the ou tpu t o f one of the mutant

programs is different from the output of P for at least one o f the test cases in

the test set, tha t m utant is said to be killed. The number o f mutants that are

k illed by a test set can be used as a measure o f how well tha t test set exercises the

program being tested. I f a large number o f mutants survive the testing process,

then the test set is probably not adequately exercising the program. The mutants

tha t survive the testing process can be the basis for fu rthe r development o f the

test set being used.

W e a k M u ta t io n T e s tin g A variation of strong m utation testing, known as

weak mutation testing, was suggested by Howden in [10]. The basic difference

between strong and weak m utation testing is the way in which i t is determined

i f a mutant has been killed. In strong mutation testing, a m utant is killed i f

the output from the m utant program is different from the ou tpu t o f the original

program. In weak m utation testing, a difference in program ou tpu t is not required

in order to k ill a m utant. A m utant is killed under weak m utation testing i f the

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. O VER VIEW OF TESTIN G M ETHODS 23

internal data state o f the mutant becomes infected, making i t different from the

internal data state o f the original program. This requirement for k illing a mutant

is a weaker requirement than requiring outputs to be different which is why this

technique is referred to as weak m utation testing.

P e r tu b a tio n T e s tin g Zeil [32] proposes a fau lt based testing method called

Pertubation Testing. This testing method is based on a model tha t describes the

conditions under which a domain error can be caused by a fau lt in an arithm etic

or relational expression. This set o f conditions defines a set o f possible faults left

undetected by a given test set. This inform ation can be used to guide subsequent

testing.

As testing is conducted, each execution o f a predictate tha t does not cause

an incorrect path to be taken imposes a constraint on the geometric space o f

possible faults for this statement. This constraint divides the space o f possible

faults into tested and untested regions. By keeping track of the linear inequalities

tha t define the untested region, one can choose test cases to impose borders w ith in

this untested region to further enclose the untested region in any direction. By

enclosing the untested region in this manner, testers are able to control the type

o f faults tha t remain undetected in the software.

E rro r-B a s e d T e s tin g

D o m a in T e s tin g W hite, et al. [30] propose a testing method tha t they refer

to as the Domain Strategy Testing Method. The prim ary focus o f th is testing

method is to detect errors in predicates tha t could cause a wrong path to be

taken during system execution.

To test a given predicate for correctness in a program, each variable in the

predicate is replaced by its symbolic value, given in terms of input variables. A fter

performing th is substitution, the resulting predicate is given in terms o f only input

variables, and is therefore simply a set o f constraints on input selection.

The authors note tha t i f one considers the execution of a complete path through

a program, then the path condition for th is path is simply the conjunction o f the

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. OVERVIEW OF TESTING METHODS 24

predicates along the path. By perform ing the symbolic substitu tion described

above, a set o f constraints that define the input space domain required to execute

the selected path is obtained. This conjunction of constraints on the input space of

the program defines a geometric area o f the input space referred to as the domain

o f the path condition. Any input values selected from this geometric area of the

input space w ill satisfy the path condition for the path under consideration, and

w ill cause the path to be executed.

As stated earlier, the purpose o f domain testing is to detect predicate errors

that could cause the incorrect path to the executed. Another way o f viewing

this type o f error is that an incorrect predicte causes a sh ift in the geometric

area defining the input domain for the path condition. Then, due to this shift

in the border o f the geometric inpu t domain, i t is possible th a t input values w ill

be incorrectly included in or left out o f the input domain in question. Domain

testing was created to detect this type of error.

When using this testing method, each border segment o f the input domain

is considered. Test points are generated for each border segment in such a way

that correct processing of the test points implies tha t the predicate defining the

border is correct. Test selection consists o f the selection o f a series o f ON-OFF-

ON data points, where ON points are located on the border and OFF points are

located on the open side o f the border. The distance o f the OFF points from

the border defines the m inimum border shift that this testing method w ill detect.

This testing method w ill detect any border shifts w ith a magnitude larger than

this distance.
Figure 4 shows the selection o f three test points meeting the ON-OFF-ON

requirements for a closed border segment. The dotted line indicates the correct

border segment, while the solid line indicates the given border. In this case, the

error would be detected because the OFF lies on the opposite side o f the correct

border from the given border.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Off

On On

Domain D

FIG . 4. Domain Testing Example

3 .2 .2 S p e c if ic a t io n -B a s e d T e c h n iq u e s

Specification-based testing techniques do not require knowledge about the struc­

ture o f the program to be tested. A ll knowledge required fo r driv ing the testing

process is obtained from the program specification. For th is reason, specification-

based techniques are known as black-box techniques.

Equivalence Partition Testing

Equivalence pa rtition testing is a directed testing method that was proposed by

Howden [11]. When equivalence partition testing is conducted, for each func­

tion tha t is to be tested, the input domain of th a t function is partitioned in to

equivalence classes tha t are assumed to be homogeneous. In other words, i f one

element of an equivalence class is processed correctly by the program, then a ll o f

the elements o f tha t equivalence class w ill be processed correctly by the program.

Testing is conducted by choosing one input point from each equivalence class for

each function in the program.

The m ajor problem w ith pa rtition testing is the question o f whether is i t is pos­

sible to divide the input domain for each function in to homogeneous equivalence

classes. I f i t is not possible to do this, then pa rtitio n testing basically reduces to

random testing w ith relatively few test cases. A m a jo r problem w ith most testing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

CHAPTER 3. O V E R V IE W OF TESTING M ETHODS 26

methods that involve pa rtition ing the input domain o f a program or function is

tha t no systematic process exists for conducting the pa rtition ing process .

As a solution to th is problem, Ostrand and Balcer [23] proposed category-

partition testing. Category-partition testing attempts to provide a systematic

method for constructing the test sets to drive equivalence partition testing.

Category-partition testing consists of several steps. The firs t step involves in­

volves identifying a ll o f the functional units in the program. In the second step,

each of the functional un its is examined, and the variables th a t affect the opera­

tion of each functional u n it are identified. The th ird step o f the category partition

method attempts to d ivide the variables for each functional un it in to categories

to allow input points th a t are likely to cause faults in the software to be chosen.

Ostrand and Balcer [23] state tha t “Tests [should] be designed to to maximize

the chances of find ing errors in the software.” The final step o f category-partition

testing is to pa rtition each category into choices. The choices in category-partition

testing play the same role as the partitions in pa rtition testing. Testing is con­

ducted by choosing inputs points from each choice w ith in each category for each

functional un it in the program.

Boundary-Value Analysis

Myers [21] states tha t test cases that explore boundary conditions are generally

more successful at find ing faults than test cases tha t do not. For this reason,

he suggests a black-box method called boundary-value analysis. Boundary-value

analysis utilizes many o f the ideas of equivalence pa rtition testing, but instead of

allowing the tester to select any of the possible inputs from a given equivalence

class to generate a test case, boundary-value analysis dictates that the tester

should select test cases from the equivalence class to insure tha t each edge of the

class is the focus o f at least one test.

Intuitively, th is testing method makes sense because a ll software developers

have probably created test cases to verify the behavior o f th e ir software for “spe­

cial” input values. For example, suppose tha t a given program is supposed to

read a text file and determ ine how many times the word “computer” appears in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. O V E R V IE W OF TESTING M ETHO DS 27

the file. Several obvious test cases a tester m ight include in his test suite involve

“special” inpu t values. Some o f the possible choices for these test cases are:

• An empty inpu t file.

• An inpu t file w ith no occurrences o f the word “computer” .

• An inpu t file w ith only the word “computer” .

• An input file the contains substrings o f the word “computer” (e.g. “com­

pute”).

Cause-Effect Graphing

Most of the testing methods discussed in this section only use individual system

input values to generate test cases. Errors caused by interactions between input

values are not given special attention. Cause-effect graphing [21] is a black box

testing method tha t provides a systematic method for identifying and testing

interesting combinations o f input conditions.

When conducting cause-effect graphing, high-level system specifications are

used to pa rtition system output values into classes called effects. Each of these

classes is analyzed to determine the input states responsible for creating the ef­

fect. These inpu t states are referred to as causes. The program input space is

partitioned using the cause-effect relationship and the cause-effect relationships

are translated in to a boolean lookup table tha t is used to generate test cases.

3.3 D irected Testing And Reliability Estimation

As mentioned earlier, existing re liability models use program failure rate informa­

tion to make software re liab ility predictions. Since directed testing techniques seek

to accelerate the rate o f fau lt detection during testing, the program failure rate

data found during testing w ith directed methods w ill not be the same program

failure rate data th a t would be seen i f the system were in actual use. Therefore,

program failure rate data gathered using directed testing methods cannot be used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. O VERVIEW OF T E S T IN G METHODS 28

by existing re liab ility models for m aking re liab ility estimates. However, i f this ba­

sic problem can be solved (or worked around), then there are certain properties o f

directed testing th a t make i t desirable fo r use w ith software re lia b ility estimation.

One advantage o f directed testing is th a t since test cases are designed manually

to exercise a particu lar area o f the program, a single test case designed for use

in directed testing may be more effective at finding faults than a single test case

generated for use in representative testing. Therefore, directed testing may require

fewer test cases than representative testing to achieve sim ilar levels o f program

re liability. This fact is especially im p o rta n t when faced w ith the task o f testing for

ultra-re liab ility . For example, suppose th a t we are testing a program P for which

a failure rate o f no more than 10-7 is required. Further, suppose th a t there is a

fau lt, e, in a segment o f infrequently executed code. Assume tha t the probability

th a t the fau lty code w ill be executed is 10~6, and tha t i f the code is executed

then the probability of failure is 1. Therefore, e has a failure rate o f 10-6 . I f

P is to achieve the required re lia b ility o f 10~7, then the fau lt e must be found.

I f representative testing were conducted, we would expect to have to generate,

execute, and check about 106 test cases before the fau lt w ill be found. On the

other hand, i f directed testing were used, this fault would probably be exposed

much sooner, since a test case would probably be designed specifically to exercise

th is area o f the program. Therefore, directed testing can deal very well w ith one

o f the main problems faced by representative testing, namely the need to execute

an enormous number of test cases to uncover faults w ith small fa ilure rates.

A second advantage o f directed testing is that an automated oracle is not as

essential to directed testing as i t is to representative testing. Since directed testing

usually requires far fewer test cases than representative testing, directed testing

causes much less output to be generated. When directed testing is used, a fully-

automated oracle may not be required. A much simpler, p a rtia lly automated

oracle tha t makes use of human intervention may be sufficient. Future chapters

w ill discuss a testing framework tha t combines the representative and directed

testing methods to allow them to complement each other in a more robust and

efficient testing process than would be possible i f only one o f the methods was

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. O V E R V IE W O F TESTING M ETH O D S 29

used.

3.4 Summary

This chapter has focused on software testing techniques. This dissertation divides

testing techniques into two groups: representative methods and directed meth­

ods. Existing software re lia b ility models only allow predictions to be made when

failure data is gathered using representative methods. However, directed testing

methods have several advantages that would make the ir use attractive to soft­

ware re liab ility practicioners, i f some fundamental problems can be solved. The

remainder of this dissertation focuses on how these problems can be solved, and

how representative and directed testing methods can be used together to improve

the software re lia b ililty testing process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h ap ter 4

G oals O f T his R esearch

This chapter outlines the goals of th is research, and w ill summarize the steps tha t

were taken to reach these goals.

4.1 D evelopm ent Of A M ixed M ethod Testing
Process

One of the goals o f this research was to develop a software testing method that

incorporates both representative and directed testing methods at various points

in the testing process. Each component testing method is used during the time

when it is most efficient to do so.

4.2 D evelopm ent Of Techniques To Allow Relia­
b ility Estim ation Regardless Of The Testing
M ethod Used

As stated in the previous chapter, failure data obtained using directed testing

methods cannot be used w ith existing software re liab ility models because existing

models base the ir predictions on the observed program failure rate, which varies

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. GOALS O F TH IS RESEARCH 31

depending on the testing method being used.

One o f the goals o f this research was to develop techniques f o r obtaining failure

rate data from a program tha t does not depend on the way th a t the program is

tested. For this reason, the emphasis o f data collection is sw itched from quantities

observed during testing to quantities obtained during debugging.

Specifically, the random variable o f interest for re lia b il ity estimation is

switched from observed program failure rates to ind ividual fa_ult failure rates. To

determine the fault failure rate fo r a given fault, one must answer the question: “ I f

we were testing this program using representative testing, b o w often would we

expect this fault to fail?” . I f th is question can be answered, then testing can be

conducted using any method, because we w ill have ob ta ined a quantity that is

independent of the testing method being used.

4.3 Developm ent Of A Software Reliability
Model Capable Of Using D irected Testing
Data

Even i f the random variable o f interest was switched from program failure rates

to fau lt failure rates as described above, no software re lia b ility model existed tha t

could use this data for making predictions. Therefore, a software re liab ility model

tha t could deal w ith data in the form of fau lt failure rates, p rogram failure rates,

or any m ixture of the two was needed.

4.4 Validation O f The Developed IVfodel

Once the model was developed, i t was neccesary to evaluate its performance rela­

tive to the performance o f existing software re liab ility models . Several experiments

were conducted to achieve th is goal.

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. GOALS O F TH IS RESEARCH 32

4.5 Evaluation Of The Suitability Of Tim e
Based D ata For Reliability Estim ation

As stated earlier in th is dissertation, existing software re liab ility growth models

use failure data based on time-based quantities observed during testing. However,

several researchers [9] [17] have observed tha t such measures are very prone to

statistical noise which may compromise model results. One of the goals of th is

research is to investigate this claim and to suggest types o f data that can be used

as input into re lia b ility models to provide more stable and accurate results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5

R ela ted W ork

The research presented in th is dissertation takes a different approach to software

re liab ility than most previous work. However, several authors have recently ad­

dressed issues tha t are related to this research. This chapter presents a survey o f

the most relevant o f these papers.

5.1 The Effects Of Fault Recovery Order On
Software R eliability M odels

Hoppa and W ilson [9] investigate an inherent problem w ith the way that most

software re liab ility testing is conducted. They state tha t when software re liab ility

testing is conducted, the failures th a t are observed represent only one possible

realization of the debugging process. The authors state tha t repeating the debug­

ging process w ill probably yield a different order o f failure detection (and different

interfailure times) each time the process is repeated. The focus of the Wilson's and

Hoppa’s research [9] was to determine i f this different ordering (and the change in

observed interfailure times) has any effect on the predictions provided by software

re liab ility models.
The results o f the research indicate tha t existing software re liab lity models are

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. RELATED W ORK 34

sensitive to different fau lt recovery orders. The model developed in this disser­

ta tion is specifically designed to minimize the error due to varying fau lt recovery

order because the model focuses on fau lt failure rates instead o f interfailure times

(program failure rates).

5.2 PIE: A D ynam ic Failure-Based Techniqe

Voas [27] proposes a framework fo r estimating whether faults are likely to be un­

covered by testing. Each section o f code in a program is analyzed by considering

three component probabilities. These probabilities are the exection probability,

the infection probability, and the propagation probability. The execution prob­

ab ility for a given segment o f a program is the probab ility tha t the segment o f

code w ill be executed. The infection probability is the probability tha t execution

o f the given segment o f code w ill result in an incorrect program data state. The

propagation probability fo r a given segment of code is the probability tha t an in­

fection of the data state a t the code location w ill cause visible incorrect behavior

o f the software. These three probabilities combine to give the effective failure rate

for the segment o f code. One o f the problems tha t needed to be solved in this

research was how to determine the actual fau lt failure rate fo r a given fault. The

framework proposed by Voas provides a possible solution to this problem. In fact,

the problem we are try in g to solve (determining the failure rate for one fault in

one segment o f code) should be simpler than the problem tha t Voas was try ing to

solve (determining the failure rates for all faults in a ll segments of code).

5.3 The Relationship B etw een Test Coverage
And Reliability

Malaiya, et al. [26], propose a model tha t allows coverage information from di­

rected testing methods to be used to estimate the re lia b ility o f the software being

tested. The authors note tha t a basic problem w ith existing software re liab ility

permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. RELA TED W ORK 35

models is tha t they require data from representative testing, and tha t representa­

tive testing is seldom used in practice. They state th a t directed testing is a faster

and more effective than representative testing, and a method is needed for using

data from directed testing for making re lia b ility estimates.

Malaiya, et a I. propose tha t a relationship exists between test coverage during

directed testing and defect coverage in the program, and tha t a relationship exists

between test coverage during directed testing and the subsequent re liab ility of the

software. The authors develop a model tha t allows software re liab ility predictions

to be made based on an estimated in it ia l number o f faults in the program being

tested and the coverage achieved during directed testing.

The problem th a t Malaiya, et al. try to solve is largely the same as one of

the problems this research solves. We also want to use data from directed testing

to make re lia b ility estimates for most o f the same reasons. However, instead

o f relying solely on the coverage obtained during testing, our research takes the

extra step of considering the fault failure rates o f the faults uncovered during

directed testing which should provide a more “customized-fit” of our model to

each program being tested.

Another s im ila rity between M alaiya’s research our research is the proposed

nature o f the fau lt sets found by directed testing. Malaiya, et al. postulate that

given a certain level o f test coverage during directed testing, then a certain set of

faults w ill be exposed thereby achieving a certain level o f reliability. There are

certainly sim ilarities between this idea and the Ordered Directed Testing Property

presented later in this dissertation.

5.4 Software Testability

Voas [8] [5] discusses the concept o f software testability. Voas defines the testab ility

o f a program to be the probability tha t i f a fau lt exists in tha t program, then tha t

fau lt w ill be detected by any testing scheme. In the words o f Voas and Hamlet,

the testab ility o f a given program defines the degree to which tha t program “wears

its faults on its sleeve” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. RELATED W O RK 36

As discussed in previous sections (and to be discussed in more detail later),

the software re liab ility model proposed in this dissertation uses ind iv idual fault

failure rates as a basis for making estimates and predictions fo r a system under

test. Before this use of fau lt fa ilure rates can be justified, one question tha t needs

to be answered is “How can you expect to use the fau lt failure rates observed in

the past to predict the fau lt fa ilure rates tha t you w ill see in the future?”

By using the concept o f software testability, we argue tha t a given program has

certain a ttributes that determine its a b ility to hide faults from the testing process.
Then, since software testab ility is a property inherent to the program, we would

expect tha t the failure rates for a ll o f the faults in the program are constrained to
some extent by th is level o f testability. Therefore, we can view the testing process

as a walk through the structure o f the program. The fau lt failure rates we obtain

are indicative o f this structure. Thus, we have a basis for arguing that the faults

failure rates we have observed in the past share a common d is tribu tion w ith the

faults we expect to see in the fu ture .

with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 6

A M ixed M eth o d A pproach To
T estin g

Previous chapters discussed representative and directed testing methods and ex­

amined the advantages and disadvantages o f each method. The applicability of

data obtained from each of these testing methods towards re liab ility estimation

was discussed as well. This chapter outlines a testing method that utilizes both

directed and representative testing methods. This testing method is organized so

th a t the advantages o f each component method are utilized, while the effects of

the disadvantages of each component are minimized.

6.1 Overview

I t is useful to view the debugging process as consisting o f two phases. During the

firs t phase o f the debugging process, a relatively large number of faults remain in

the program, so the program failure rate is relatively high and interfaiiure times

are relatively short. As more and more faults are removed from the program, the

program enters the second phase o f the debugging process. During the second

phase of the debugging process, re latively few faults remain in the program, so

the program failure rate is low and interfaiiure times tend to be very long. The

37

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. A M IX E D M E TH O D APPROACH TO TESTING 38

following sections examine these two phases o f the debugging process. The prop­

erties o f each phase are used to determine the testing method tha t w ill be the

most efficient during tha t phase.

6.2 P hase 1: Testing W hen A Large Num ber Of
Faults Remain

Consider a program, P, to be tested. D uring the beginning of testing, there w ill

be a re la tive ly large number o f faults in P, so the program failure rate w ill be

relatively high and the interfaiiure tim e o f P w ill be short.

Since the faults found early in testing w ill have short interfaiiure times, then

the failure rate o f these faults w ill be estimated to be large. Therefore, the removal

of faults early in testing has more im pact on system re liab ility than the removal o f

faults la te r in testing. For th is reason, i t is im portant tha t the faults removed early

in testing are the same faults tha t would have occurred first i f P were implemented.

A dd itiona lly , since interfaiiure times are relatively short at the beginning o f

testing, valuable resources can be saved by using a testing method tha t offers sig­

n ificantly less expense per test case, ra ther than a more expensive testing method

that may be more effective at find ing failures on a per test case basis.

The above observations support using representative testing methods at the

outset o f testing.

6.3 P hase 2: Testing W hen A Small Num ber Of
Faults Remain

Consider a program P tha t has been tested for some period of time using represen­

tative methods. As faults are removed from P, the interfaiiure times w ill become

very long i f representative testing is continued. Eventually, the in terfa iiure times

w ill become so long that conducting representative testing, which had previously

permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 6. A M IX E D M E TH O D APPROACH TO TESTIN G 39

been the most practical choice for testing, w ill become more expensive than other

testing methods. A t this time, a switch to another testing method is warranted.

Consider the cost o f generating a test case for use w ith representative methods.

Let this cost be denoted by cv- Let the cost o f generating a test case for use w ith

directed testing by c<f. When representative testing is conducted, the interfaiiure

tim e o f P w ill increase quickly. As the interfaiiure time increases, the number

o f test cases required to uncover a failure using representative testing w ill also

increase quickly. However, the number o f test cases required to uncover a failure

using directed methods should not grow as rapidly. Let 7v represent the current

number o f test cases required to expose a fau lt in P i f representative testing is

used. Let nd represent the current number o f test cases required to expose a fau lt

in P i f directed testing is used. Now, as noted above, Cd > Cr. A t the beginning

o f testing, we w ill have c^rid > Crnr . However, as testing continues, and the

interfa iiure times for representative testing grow rapidly, we w ill eventually have

CpTij- > CdTid, at which time representative testing has become more expensive than

directed testing. A t this point, the testing process w ill become more efficient i f

we switch from representative testing methods to directed testing methods.

6.4 Advantages o f M ixed M ethod Testing

By using a mixed method approach to software testing, we are able to take advan­

tage o f the strengths of each o f the component testing methods. Further, we w ill

not be subject to the biggest disadvantages o f the component methods. The main

advantages o f representative testing are tha t test cases are relatively inexpensive

to generate and that the behavior o f the software during testing reflects how the

system w ill behave once it is implemented. The biggest advantage of directed

testing is its ab ility to detect errors w ith small failure rates w ithout requiring an

enormous number o f test cases. B y u tiliz ing representative testing during the first

stage o f testing when the program failure rate is highest, we can use inexpensive

test cases to find faults. Also, by conducting representative testing at the begin­

ning o f testing, the large faults present in the program w ill be detected early in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. A M IX E D M ETH O D APPROACH TO TESTING 40

testing and the expected large re liab ility growth at the beginning o f testing can be

achieved. Once all o f the large faults have been removed from the system (and the

program failure rate decreases accordingly), the interfaiiure tim e for the system

w ill become very large i f the test team continues to use representative testing. By

switching to directed testing once i t becomes cheaper to do so, we w ill be able to

continue to achieve higher re liab ility w ith a reasonable amount o f effort. Thus,

a mixed method approach to testing benefits from the advantages o f both o f the

component methods.

6.5 Disadvantages of M ixed Testing

Despite its advantages, the mixed method approach to testing outlined above does

inherit some problems from its component methods. F irst, because representative

testing is being utilized, a knowledge o f the operational profile o f the system

is required. Second, because directed testing is being used, a knowledge o f the

structure o f the program may be required, depending on the coverage criterion

employed.

permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 7

D irected T estin g A n d R elia b ility
E stim ation

Previous chapters have discussed the fact that existing software re liab ility mod­

els require tha t all data gathered for purposes of prediction be gathered using

representative testing methods. These chapters also discussed how it would be

advantageous to conduct re liab ility testing using a combination o f representative

and directed testing methods.
Three obstacles that prevent directed testing data from being used to make

re liab ility predictions are (1) program failure rates observed during directed test­

ing are not indicative o f the program failure rates tha t would be observed during

actual system use, (2) faults w ill be found in a non-intuitive order (not largest to

smallest) by directed testing, and (3) there is no assurance that the set of faults

found by directed testing for a given program w ill be the same set o f faults found

by representative testing.
The software re liab ility model developed in this dissertation overcomes the

first problem by shifting the emphasis from program failure rates to individual

fau lt failure rates which do not depend on the method used to conduct testing.

Additionally, the proposed model solves the second problem through the use of

Order-Statistics. Therefore, i f problem three can be solved, then we w ill be able

to use directed testing data to make software re liab ility estimates and predictions.

41

permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. D IR ECTED TE S TIN G AND R E L IA B IL IT Y ESTIM A TIO N 42

The following sections provide evidence tha t the set o f faults found by directed

testing for a given program w ill be the same set o f faults found by representative

testing, and discuss possible methods for determ ining the fau lt failure rate for a

given fault.

7.1 The Nature O f Fault D etection Under D i­
rected Testing

Cobbs and M ills [3] assert tha t directed testing methods find faults in random

order, w ith small faults being as like ly to be found as large faults. Specifically,

they state: “ coverage testing is as likely to find a rare execution failure as i t

is a frequent one” . A t first, th is claim may seem reasonable, because directed

testing techniques do not exercise software by choosing input points according to

to the operational d is tribu tion th a t w ill be used once the system is implemented.

However, w ith further thought, i t becomes apparent th a t the distribution used to

choose input points is not the on ly factor tha t plays a pa rt in determ ining whether

or not a fau lt manifests as a fa ilure during program execution.

Voas [27] maintains tha t the manifestation o f a fau lt as a system failure during

program execution depends on three factors. His P IE (Propagation, Infection,

Execution) model states th a t fo r a system failure to occur, three things must

happen. First, the location in the program containing the associated fault(s)

must be executed. This requirement is the Execution component o f the P IE

model. Second, once the location in the program containing the fau lt has been

executed, i t is necessary tha t the fau lt cause a change in the data state o f the

program. This requirement is the Infection component o f the PIE model. Th ird ,

the incorrect data state caused by the fau lt must be propagated to the output.

This requirement is the Propagation component o f the P IE model. More formallv-

let sipd represent the execution rate for a given location I in a program P when

inputs are drawn random ly from a d is tribu tion D . Let be the infection

p robab ility for a fau lt m a t location I in program P . Let tp-miPD represent the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. D IR E C TE D TESTING A N D R E L IA B IL IT Y ESTIM A TIO N 43

propagation probability for fau lt m at location I in P . Then the failure rate,

AmiPD o f 77i at location I in program P when inputs are chosen according to

d istribution D is:

Am l P D = (£ l P D) { l /m l P D) (< P m l P D) (15)

O f course, the above equation assumes the independence o f the three compo­

nent probabilities.

The input d istribution used to conduct testing d irectly affects only one of these

factors, the execution component. Therefore, in addition to the input d is tribution

used to drive testing, structura l components o f a program also play a hand in deter­

m in ing the order in which faults manifest themselves during program use. These

structura l components are common to the fau lt manifestation process whether di­

rected testing is conducted or representative testing is conducted. Therefore, the

sets o f faults found when directed testing is conducted should be approximately

the same as the set o f faults that would be found i f representative testing were

used.

Voas’ testability research [8] [5] provide additional support for this claim, by

providing evidence that the set of faults found for a given program under any

testing method is affected largely by the structure o f tha t program.

W ith these observations in mind, the follow ing property is now proposed:

O rdered. D ire c te d T e s tin g P ro p e r ty : For a given directed testing method, as

we approach coverage o f the method, the set o f k faults revealed w ill be the

k faults w ith the largest ind ividual operational failure rates.

Now, this property probably does not hold exactly. However, it is claimed tha t

this property is closer to the tru th than the assumption that directed testing w ill

uncover faults w ith no regard to fau lt fa ilure rate. Prelim inary support for the

Ordered Directed Testing Property was given in previous research conducted by

M itche ll and Zeil [17].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. D IR E C TE D TESTING AN D R E L IA B IL IT Y ESTIM ATIO N 44

I f the assumptions o f the Ordered Directed Testing Property hold, then di­

rected testing can be used to conduct re liab ility testing w ithout missing a sub­

stantial number o f faults that would have been found by representative testing,

and w ithout finding a substantial number o f faults tha t representative testing

would have missed. The worst th ing tha t has happened during the testing pro­

cess is tha t the discovered faults may have been found in a different order than i f

testing had been conducted using representative methods.

As it turns out, the order o f fau lt detection is not im portant to the software

re liab ility model developed in this dissertation. Therefore, i f the individual fau lt

failure rates can be determined for the discovered faults, then data from directed

testing can be used w ith the proposed model to make re liab ility estimates.

7.2 Estim ating Fault Failure Rates

Traditional software re liab ility models depend on tim e based measures, such as

time between failures, as a basis for estimation and prediction. I t is exactly this

dependence on such measures tha t requires the use o f representative testing w ith

these models. When directed testing is conducted, the time between failures

during testing w ill not necessarily reflect the tim e between failures during actual

system use. In addition to using measures based on observed program failure times

for making estimates and predictions, the model presented in this dissertation uses

a measure tha t is independent o f the method used to conduct testing.

This observed quantity used by the model in this dissertation is an estimate

o f the operational fau lt failure rate for a given fault. Basically, when a fault is

found during the directed testing process, instead of recording the time o f the

failure (or other artifact o f the testing process), the human debugger w ill use

some technique to determine how often the given fau lt would manifest as a failure

during actual system use. Thus, the responsibility for determining the quantities

used for re liab ility estimation is taken away from the testing process itself and

is placed w ith the human debugger. Such a sh ift should allow for a more robust

estimation process where human in tu ition can play a role.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. D IR E C TE D TESTING A N D R E L IA B IL IT Y E S T IM A T IO N 45

In addition, by gathering failure in fo rm ation in this manner, the model es­

tim a tion problems associated w ith m aking estimates from a single realization o f

a random process described by Hoppa and Wilson[9] and M itchell and Zeil [17]

are avoided- These problems are avoided because the observed quantities o f this

random process are mapped to the expected value of the observed quantities.

The next section describes how the P IE M ethod o f Voas [27] can be used to

estimate fau lt fa ilure rates. Section 7.2.2 then describes how a debugging team

can use less form al methods to estimate fa u lt fa ilure rates.

7 .2 .1 T h e P I E M e th o d F or D e t e r m in in g T h e F a u lt F a ilu r e

R a t e

Consider a program P being tested using directed methods. Now, suppose tha t

testing uncovers a fau lt, z, located at location I in P. Let this location be denoted

as P[. Now, according to the Voas, the p rob a b ility o f failure of z (the fa u lt failure

rate) is based on three component probabilities. These component probabilities

are (1) the p robab ility o f execution o f location Pi during actual system use, (2)

the p robab ility o f data state infection when location Pi is executed, and (3) the

probab ility o f incorrect output when the data state is infected due to execution of

location Pi. I f these three component probabilities can be estimated, then the ir

product provides an estimate of the fau lt fa ilu re rate for z.

The firs t component, the execution probab ility , is fa irly easy to estimate. Sup­

pose testing is being conducting for some program P and a failure is observed be­

cause o f a fau lt z a t location PL. To estimate the execution probability fo r location

Pi, the human debugger would stop the testing process, and run n representative

test cases fo r P . Instrumentation in P w ill count the number o f times ne tha t

Pi is executed. I t is not neccesary to check the output of these representative

tests fo r correctness, because the focus here is on the execution component o f the

P IE Model. The ra tio ^ provides an estimate o f the execution probab ility for Pt.
Tools commonly used for conventional performance profiling can be used by the

human debugger to help make this estimate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. D IR E C TE D TE S TIN G AND R E L IA B IL IT Y E S T IM A TIO N 46

The second component, the infection probability, can be estimated by re­

running the ne test cases th a t reached location P/ when the execution probability

was being estimated. A dd itiona l instrumentation at location Pi w ill be required

to count the number o f times n* th a t the data state im m ediately fo llow ing Pi is in­

fected because o f z. The ra tio provides an estimate o f the infection probability

at location P/.

The th ird component, the propagation probability, can be estimated by mutat­

ing the program state at Pi fo r each o f the ne test cases tha t reached th is location.

The number o f times, rip, th a t incorrect output results from the infection at Pi is

counted, and the ra tio ^ provides an estimate of the propagation probability for

z.

B y combining these three components, an estimate o f the fa u lt fa ilure rate for

this fau lt is obtained tha t does not depend on the testing method being used.

7 .2 .2 U s in g D e b u g g e r E s t im a te s T o D e t e r m in e F a u lt Fail­

u re R a te s

Two more possible methods fo r determ ining fau lt failure rates are proposed in this

section. These methods re ly on the debugging team to estimate the fau lt failure

rates. In both methods, when a failure occurs during testing, the debugging team

w ill find and fix the associated fau lt. The team w ill then determine the fault

failure rate.
In the first method, the debugging team determines the inputs tha t cause

the fau lt to manifest as a failure. Once these inputs have been identified, the

debugging team goes back to the operational profile o f the system and estimates

the fau lt failure rate. In the absence o f an operational profile, the test team can

estimate how often they feel the failure w ill occur based on the inputs that cause

the failure. This type of estim ation is probably not much different than what

already goes on in practice during many test-debug sessions.

Another possible method tha t debuggers can use to determine the fau lt failure

rate for the fau lt is to run representative tests for two versions o f the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DIR ECTED TESTING A N D R E L IA B IL IT Y E STIM A TIO N 47

The first version of the program includes the fix that was made to remove the

fau lt. The second version of the program does not include the fix tha t was made

to remove the fau lt. The debuggers can then estimate the fau lt failure rate by

running representative tests for both o f these versions o f the program and watching

for differences in output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hap ter 8

A Softw are R e lia b ility M o d e l
B a sed On O rder S ta tis t ic s

Conventional software re lia b ility models assume tha t the fa ilure data to be used

to make re liab ility estimates is obtained by representative testing methods. As a

result, conventional software re lia b ility models may not provide accurate re liab ility

estimates when failure data is gathered using directed testing methods. This

chapter presents a software re lia b ility model tha t w ill allow failure data obtained

by using either representative testing methods or directed testing methods (or

both, as in the case of our m ixed m ethod approach to testing) to be used to make

accurate re liab ility estimates.

8.1 Order S tatistics Basics

This section presents a very b r ie f discussion of the order statistics tha t w ill be

needed for an understanding o f the presentation o f the proposed model. A more

extensive treatment o f the subject o f order statistics appears in the text by H.A.

David [4].
David [4] defines the d is tr ib u tio n o f an order statistic. I f n random variables,

X x, X 2: - - -, X n are arranged in ascending order, then X r-n denotes the r th order

s ta tis tic out of n. I f we assume th a t the X t- are continuous w ith p d f / (x) = F '(x),

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. A SO FTW A R E R E L IA B IL IT Y M O D E L BASED O N ORDER STATISTICS49

the distribution o f the xT:n is given by:

= (r - l) ! (n - r) ! F (i r I [1 " (16)
where f r:n denotes the p d f o f X r:n.

8.2 M odel B asics

Suppose that a program P has n faults zt , z2, . . . , zn drawn from a set Z . Let

/ (0) = F'(<f)) denote the p d f describing the d is tribu tion o f the failure rates asso­

ciated w ith the faults in Z . Let 0 X, <p2, - - - ,4>n represent the failure rates o f the n

faults in P ordered a rb itra rily .

Now, suppose th a t P is tested un til k faults have been removed. Let

V’l? ^ 2 , - - - j ipk denote the operational failure rates o f these k faults, where the
index of each ?/>,-, 1 < = i < = k reflects the order in which the fault was discovered.

Further, suppose tha t these operational failure rates are independent.

I f we consider the rem aining n — k undetected faults in P and denote them

by ipk+i,ipk+2 , - - - ,ipn, we can approximate the program failure rate o f P after k
faults have been removed by using the sum o f the operational failure rates o f the

n — k undetected faults. Specifically,

ak= f : (17)
i = k + 1

Use o f this approxim ation assumes tha t there are a fin ite number o f faults in

the program, and tha t the faults failure rates are independent. These are common

assumptions made by m any existing software re lia b ility models [13] [12][15].

This equation is no t pa rticu la rly useful for m aking re liab ility estimates about

P , because the current program failure rate is given in terms of the faults tha t

have not yet been discovered. Therefore, we need another technique that can be

used to estimate Xk. The use of order statistics is a t the heart of this proposed

technique.

Suppose that we sort the <f>i, i € 1 . . . , into ascending order. Let [^nJ fL i denote

the resulting sequence. The p d f o f the 4>i:n can then be described by the function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. A SOFTWARE R E L IA B IL IT Y MODEL BASED O N ORDER STATISTICS50

given in (16). I f we can determine the nature o f the / r:J1, r € l . . . n ,) then we w ill

be in a position to determine the expected values for operational failure rates o f

the remaining n — k undetected faults in P. Specifically,

E ^ r m) = (18)
JO

The expected value of the program failure rate of P, A* is then given by:

E(xk) = e r (iq)
70

and the re liab ility o f P is:

R(t) = exp(-Xkt) (20)

Thus, we have a model tha t makes use o f fau lt failure rates as the random

variable o f interest. Further, the order in which the faults are discovered by

testing does not affect the estimates made by this model. Therefore, this model

can be used regardless of the methods used to conduct testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h ap ter 9

D a ta E valuation P la n

Before any experiments could be conducted, i t was necessary to decide how the

results o f these experiments would be analyzed. This chapter describes the models

involved in the experiments, the analysis methods used by the experiments, and

the tools tha t were developed to aid in the analysis process.

9.1 Selection Of M odels

For comparison purposes, three other software re liab ility models were selected to

be compared to the Order Statistics Model. These models were selected because

they seem to be the most often cited models in software re liab ility research, and

are often used by other researchers to assess th e ir proposed models.

The models tha t were selected are:

• Jelinski-Moranda Deeutrophication Model

• Musa Basic Model

• Musa Log Poission Model

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. DATA E V A LU A TIO N PLA N 52

9.2 Techniques For Comparing M odel Perfor­
mance

During the course o f the experiments, the performance o f each model was mea­

sured in three different ways.

F irst, the predictive accuracy of each model was measured. The predictive

accuracy of a model specifies how closely the model’s predictions match observed

quantities. The need for th is measure is obvious because the reason for using

software re liab ility is to be able to make estimates about a program ’s current

failure rate and to be able to predict the future performance o f a program.

Second, the best fits o f each model for each data set were compared to deter­

mine which model provided the best overall f it to the observed data. The results

of this type of analysis provides inform ation about the a b ility o f each model to

account for all o f the observed values using a single set o f parameters. High error

values for the best f it o f a given model may indicate tha t the model may not be

flexible enough to account fo r the range of observed failure rates.

Th ird , the s tab ility o f the model parameter estimates was compared over mul­

tip le iterations o f the f it t in g process, where each iteration introduced additional

failure rate data. The fo llow ing sections describe how each o f these three types o f

analysis was conducted.

9 .2 .1 T r a d it io n a l M e a n s O f M e a su r in g T h e P r e d ic t iv e A c ­

c u r a c y O f S o ftw a r e R e lia b il ity M o d e ls

Brockhurst and Littlew ood present a statistical tool called a U -P lo t tha t measures

the predictive accuracy o f a software re liab ility model [1]. The U -P lo t uses the

cumulative d istribution function (cdf) of the program failure rates. Brockhurst

asserts that given a set o f observed program failure rates and the (actual) cdf

tha t describes the ir d is tribu tion , then the cdf values associated w ith each of the

program failure rates w ill be un ifo rm ly distributed on the in terva l (0,1).

The first step in constructing a U -P lot for a set of data is to estimate the model

permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. DATA E VA LU A TIO N PLA N 53

parameters based on the observed data. Once these estimates are made, the cdf

value associated w ith each o f the observed program failures rates is calculated.

This sequence o f values is sorted in ascending order and p lo tted in a step-wise

fashion along the X axis o f an X -Y plo t. I f the cdf based on the estimated

parameters is close to the actual cdf o f the program failure rates, then all o f the

points in the U-P lot should fa ll near the line defined by the equation y = x. In

general, the closer the plotted points are to the line y = x , then the better the

model’s predictive ability.
From the above description of the U-P lot, i t is obvious tha t the use of this

too l assumes that a ll o f the program failure rates are drawn from one distribution

th a t is described by the model parameters. The Order Statistics Based Software

R e liab ility Model proposed in th is dissertation assumes tha t each program failure

rate is equal to the sum of the fau lt failure rates for the faults remaining in the

software. Further, each o f these fau lt failure rates is assumed to be drawn from a

different d istribution, as described in the previous chapter. Therefore, the U-Plot

is not suited for use w ith the Order Statistics Based Software R eliab ility Model

presented in this dissertation.

In order to measure the predictive accuracy of a software re liab ility model an

OP P lot was used instead o f a U -P lot. The OP P lo t is described in the next

section.

9 .2 .2 T h e O P P lo t

The term OP P lot is short fo r Observed vs Predicted P lo t. A single OP Plot

shows the performance o f a single model w ith respect to a single data set. The

OP plo t is an X -Y p lo t showing the relationship between the observed failure rates

and the predicted failure rates for a given run. Observed quantities provide the

values fo r the independent (X) variable and the model’s predictions provide the

values fo r the dependent (Y) variable. I f the model in question provides perfect

predictions, then all o f the points in the the OP Plot w ill lie on the line defined by

the equation x = y. The closer the resultant plot is to this ideal, then the better

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C HAPTER 9. DATA EVALUATION P LA N 54

the model’s predictive ability. Since the failure rates plotted on the OP P lot w ill

span m u litip le orders of magnitude, a log scale was used for the plot axes.

The OP P lot provides a qualitative evaluation o f model prediction, which is

useful in detecting patterns o f strength and weakness. For example, by using the

OP P lot, i t is easy to determine i f a given model appears to be overly optim istic

or overly pessimistic about the program failure rate.

The sum of the squared error for each (observed,predicted) pair in the OP P lot

is used to compare the performance of the models and to provide a quantitative

evaluation o f model prediction.

9 .2 .3 C o m p a r in g T h e B e s t F it O f E a ch M o d e l

Another metric for evaluation of model performance is derived from the best f it

for each model for each data set in its entirety. The sum of the squared error for

the f it o f each model to each data set was recorded and compared. A high error

value for a software re liab ility model fo r a given data set may indicate tha t the

d is tribu tion used by re liab ility model is not able to adequately span the fu ll range

o f the observed failure rates.

9 .2 .4 C o m p a r in g M o d e l S ta b il i t y

D uring the course of generating the OP Plot, predictions were made by each

model as additional data points (failure rates) were incrementally added to the

data set. The stab ility of the model parameter estimates during the incremental

predictions is an indicator o f how stable the model is. The main concern here

is tha t a software re liab ility model should not be overly sensitive to fluctuations

in the data set. I t is not desirable, for example, for a software re liab ility model

to abruptly and drastically change its estimate for the tota l number o f faults

in a program when new data is introduced into the failure set. The underlying

d is tribu tion being used by the model should be flexible enough to accomodate

new data as part o f a d istribution instantia tion w ith parameters sim ilar to the

one estimated before the new data was introduced.

permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 9. DATA E V A LU A TIO N PLAN 55

9.3 Developm ent Of Analysis Tools

During the course o f this research, a program was developed to implement all o f

the required software re lia b ility models. This software was developed in C + + and

the f it t in g routines utilize the least squares approach fo r estim ating model param­

eters. We selected the least squares approach to parameter estimation instead of

the more frequently used maximum-likelihood method because of the nature o f

the expected inputs to our model. Obtaining a solution to a maximum-likelihood

method system usually requires tha t all observed values w ill be of the same type.

However, in the order statistics model a combination o f program failure rates and

fau lt failure rates w ill be used as input. By using the least squares approach,

we were able to combine these different types o f inpu t by weighting them. This

combination would probably be mathematically intractable under maximum like­

lihood.
This software includes functiona lity to output the data required to conduct

each o f the three types of analysis described above.
This program takes a tex t file containing a set o f fa ilure rate data as input and

makes software re liab ility predictions for a specifed model. This tool was used to

provide the results presented in later chapters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h ap ter 10

A p p ly in g T h e M o d e l To
R ep resen ta tiv e D a ta

This chapter details the in itia l validation o f the Order Statistics Based Software

R e liab ility Model. The basic purpose of th is experiment was to put the OS-Model

through a “sanity-check” to make sure tha t its predictions were at least in the

ballpark w ith existing models. This chapter discusses the experiment and presents

the results tha t were obtained.

10.1 D ata Set Selection

This experiment was intended to perform in it ia l va lidation of the Order S tatistics

model. As such, the intention was to use pre-existing failure data, since the

use o f such data would save the significant overhead o f performing testing and

debugging at this po int in the research process. However, it is rarely easy to find

such data, a problem documented by other researchers [12] [13]. To a large extent,

the scarcity o f appropriate data can be a ttrib u ted to the requirements that fa ilure

data must meet before being deemed suitable fo r use for re liab ility modeling. The

follow ing sections detail some of these requirements and describes the data tha t

was u ltim a te ly selected for use in this experiment.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING TH E MODEL TO REPRESENTATIVE DATA 57

1 0 .1 .1 T h e N e e d F or H ig h Q u a lity D a ta

The first requirement th a t potential data sets have to satisfy before being selected

is tha t the failure data represented in the set has to have a high level of quality.

That is to say, the data should have been meticulously compiled w ith application

to software re liab ility in m ind. Data sets that om it data or include incorrect data

are o f litt le use for validating a software re liab ility model. In fact, inaccurate data

may do more harm than good i f i t leads researchers to draw the wrong conclusions

about the models being tested.

There are incidents reported in the literature where shortcomings in existing

data sets have compromised the results that the authors wanted to obtain. Jelinski

and Moranda [13] report tha t the vague nature o f the trouble reports they were

using as a data sources forced them to change the way tha t the ir experiment was

designed. Musa, as well, reports [19] that ambiguity in fau lt reports that he had

encountered forced him to make sim plifying assumptions when several failures

were found grouped together in the data instead o f being reported individually.

For these reasons, the data selected for this experiment needed to be failure

data tha t had been carefully compiled w ith software re lia b ility estimation in mind.

1 0 .1 .2 T h e N e e d F or A S u b s ta n t ia l N u m b e r O f F a ilu res

The second requirement tha t a potential data set had to satisfy before being

selected is that the data set had to consist o f a substantial number o f failures.

This requirement is necessary' to insure that the results that are obtained w ill

be statistica lly sound. I t is not realistic to believe tha t valid statistical results

can be obtained from data sets that consist o f only a few faults. Small samples

are notorious for providing misleading statistical results, because of increased

sensitivity to flucuations in ind iv idual values.

Another problem w ith small-sized failure sets is tha t a small number of failures

may indicate that the software system being testing was not an actual large-scale

system, but was a toy system w ritten exclusively for research purposes. I t is

not clear tha t results from such systems can be d irectly applied to real-world

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING TH E MODEL TO R E P R E S E N TA TIV E DATA 58

situations.

1 0 .1 .3 T h e N e e d F o r F a ilu re D a t a F r o m R e p r e s e n ta t iv e

T e s t in g

A t the outset o f this experiment, is was obvious ttha t determ ining how well the

model f it the failure data would be d ifficu lt to assess in absolute terms. For

example, i f the model was applied to the data -and the best f it had an error

measure of some number, E z then how would we kno w whether this f i t was a good

fit, or not so good? For this reason, i t was necessany to compare the results from

the model developed in this dissertation to the resmlts from existing models. Since

the selected data sets have to be used w ith e x is tin g models, data obtained during

representative testing had to be used.

1 0 .1 .4 T h e S e le c t e d D a ta S e ts

The data sets used in this experiment were firs t published by Musa[19]. These

failure sets were gathered from several real-life softnvare systems and were compiled

w ith software re lia b ility application in mind. In a d d itio n to the data sets, Musa

[19] describes how the data was gathered and w h a t assumptions were made.

10.2 Experim ent Design
Four models and four data sets were used in this experim ent. The desired analysis

was performed for each model for each data set, ifor a to ta l of 16 runs. Each run

was an iterative f it t in g process consisting of the m ultip le iterations necessary to

generate an OP-Plot.

For each run, the iterative process was sta rte*! by setting the number o f pro­

gram failure rates used for the fittin g process on* the first iteration to be h a lf o f

the tota l number o f observed program failure ra tes. The software re lia b ility too l

was used to predict the current program failure rate. This predicted value was

compared to the next program failure rate tha t was actually observed in the data

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING T H E M O D EL TO REPRESENTATIVE DATA 59

set. This process was repeated by adding one additional value to the observed

quantities, u n til the entire data set had been considered. The resulting sequence

o f observed and predicted values was used to generate the OP-Plot.

The performance o f each model on an OP P lot is very im portant because the

iterative process involved in generating an OP P lot m irrors the process that a test

team w ill fo llow when conducting re lia b ility testing. The team would typically

find a fault, fix it , and obtain a program re lia b ility estimate based on the available

data. This process would be repeated u n til testing is completed.

A OP P lo t was generated fo r each o f the 16 runs in the study. In addition

to the OP P lo t information, data about the best fit and progressive parameter

estimates for each model for each data set was recorded.

10.3 R esults

This section presents the results obtained for each of the three types o f analysis

performed in this study.

1 0 .3 .1 T h e R e s u lt s O f A n a ly z in g T h e P r e d ic t iv e A c c u r a c y

O f T h e M o d e ls

The sixteen OP Plots generated du ring this experiment are shown in Figures 5 to

20. Just by glancing at the four plots generated for each data set, i t is apparent

tha t all o f the models seemed to have some trouble generating predictions that

were close enough to the observed values to create an OP P lot close to the x — y

ideal.

Perhaps the first questions th a t comes to mind are “W hy are a ll o f the models

having trouble?” and “Aren’t any o f them any good?” . The fo llow ing paragraphs

w ill attem pt to provide answers to the these questions.

Figure 21 gives the average o f the f itt in g error for each OP P lo t. The value

in each cell in Figure 21 represents the average of the squared error for each X-Y

pair on the corresponding OP P lo t. For example, an entry o f .000564 is entered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING THE M O DEL TO REPRESENTATIVE DATA 60

in the table for the JM Model for Set 2. The presence o f this number means tha t

i f the difference of each X -Y pair on the OP P lo t for the Jelinski-Moranda Model

for Data Set 2 is squared,normalized, and summed, then the resulting value tha t

is obtained is .000564.

Looking across the rows o f this table, i t is apparent that all o f the software

re liab lity models performed about same for any given data set. There are no

cases where one model performed significantly worse or significantly better than

the other models.
A possible explanation for the poor performance of all of the OP Plots is

the nature of the data itself. B y looking at the observed data series in Figures 22

through 37, the scattered nature of the observed failure rates is obvious. A lthough

the observed values do tend to decrease as the fa ilure number increases, i t is obvi­

ous that the failure rates are far from s tric tly decreasing. Since a ll o f the models

under consideration in th is study (and probably all models in existence) model

program failure rates as s tr ic tly decreasing, then any exceptions w ill contribute

to poor estimates and predictions. In Figures 22 through 37, i t seems tha t an

increase in observed program failure rate from point to point seems as much the

norm than the exception. From these observations, i t seems that the poor results

in the OP Plots have more to do w ith the nature o f the data than the models

themselves.
These observations support the discussion in Chapter 2 about the amount o f

statistical noise inherent in data based on quantities observed during testing, and

provides more evidence tha t the emphasis o f re lia b ility data acquisition needs to

be changed from quantities derived during testing to quantities derived during

debugging whenever possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. APPLYING THE M ODEL TO REPRESENTATIVE DATA 61

Musa Set 1 - OS LogNormal Model

0.1

0.01

O O
0.001

0.0001
0.10.01

Observed Program Failure Rate
0.0010.0001

FIG . 5. OS Model OP P lo t For Data Set 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. A PPLYIN G TH E MODEL TO R EPR ESEN TA TIVE DATA 62

Musa Set 1 - Jelinski-Moranda Model

0.1

0.01

0.001

■P®.o o

0.0001
0.10.01

Observed Program Failure Rate
0.0010.0001

FIG . 6. JM Model OP P lot For Data Set 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. APPLYING TH E M O DEL TO REPRESENTATIVE DATA 63

Musa Set 1 - Musa Basic Model

0.1

0.01

0.001

4><>
o o

0.0001
0.10.01

Observed Program Failure Rate
0.0010.0001

FIG . (. Musa Basic OP Plots For Data Set 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. APPLYING TH E MODEL TO REPRESENTATIVE DATA 64

0.1 r

0.01 r

0.001 r

0.0001 -----
0.0001

Musa Set 1 - Musa Log Model
 --->--r ,---- ,----

o ^ * ° o
o O / % J -

8 vr;
s. o ° S °
: 8 * »o
' ' ° 80

o

0.001 0.01 0.1
Observed Program Failure Rate

FIG . 8. Musa Log OP Plots For Data Set 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

C H A PTER 10. APPLYING TH E MODEL TO REPRESENTATIVE DATA 65

Musa Set 2 * OS LogNormal Model
0.1

0.01

<? $■
0.001

0.0001

1e-05 —
1e-05 0.10.010.0010.0001

Observed Program Failure Rate

FIG . 9. OS Model OP P lo t For Data Set 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. APPLYING T H E MODEL TO REPRESENTATIVE DATA 66

Musa Set 2 - Jelinski-Moranda Model
0.1

0.01

O oO <?
a

0.001

0.0001

1e-05 0.10.010.001
Observed Program Failure Rate

0.00011e-05

FIG . 10. JM Model OP P lot For Data Set 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. APPLYING TH E MODEL TO REPRESENTATIVE DATA 67

Musa Set 2 - Musa Basic Model
0.1 c

0.01 r

0.001 r

0.0001 r

1e-05
1e-05 0.0001 0.001 0.01

Observed Program Failure Rate

FIG . 11. Musa Basic OP Plots For D ata Set 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. APPLYING THE MODEL TO REPRESENTATIVE DATA 68

Musa Set 2 - Musa Log Model
0.1

0.01

0.001

0.0001

1e-05 0.10.010.001
Observed Program Failure Rate

0.00011e-05

FIG . 12. Musa Log OP Plots For Data Set 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. APPLYING T H E M O D EL TO REPRESENTATIVE DATA 69

1

0.1

0.01

0.001

0.0001

1e-05
1e-05 0.0001 0.001 0.01 0.1

Observed Program Failure Rate

FIG . 13. OS Model OP P lo t For Data Set 3

Musa Set 3 - OS LogNormal Model

o° O o o ° o ° *° 8 o oo ° o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. APPLYING TH E M O DEL TO REPRESENTATIVE DATA 70

Musa Set 3 - Je/inski-Moranda Model

0.1

0.01

0.001

0.0001

1e-05
0.10.01

Failure
0.001

Observed Program Failure Rate
0.00011e-05

FIG . 14. JM Model OP Plot For Data Set 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. APPLYING TH E M ODEL TO REPRESENTATIVE DATA 71

Musa Set 3 - Musa Basic Model

0.1

o«0.01

0.001

0.0001

1e-05 0.10.010.001
Observed Program Failure Rate

0.00011e-05
Failure

FIG. 15. Musa Basic OP Plots For Data Set 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. A PPLYIN G THE M ODEL TO REPRESENTATIVE DATA 72

Musa Set 3 - Musa Log Model

0.01 -

0.001 -

0.0001 -

1e-05
1e-05 0.0001 0.001 0.01

Observed Program Failure Rate

FIG . 16. Musa Log OP Plots For Data Set 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTER 10. A PPLYING TH E M O D EL TO REPRESENTATIVE DATA 73

Musa Set 4 - OS LogNormal Model

ooo o©
"5cca>5
*5u_

0.1

e2a>o
al-o©o*o© 0.01

0.001 1—

0.001 10.10.01
Observed Program Failure Rate

FIG . 17. OS Model OP P lo t For Data Set 4

1 0 .3 .2 C o m p a r in g T h e B e s t F i t F or E a c h M o d e l

The sixteen plots o f the best fits for each run made during this study are shown in

Figures 22 to 37. As pointed out earlier, these plots show the noisy nature o f the

observed data. Given the observed data in these plots, i t is d ifficu lt to imagine

any d is tribu tion tha t would provide a be tte r f it to the observed data than the

fits provided by the models used in this experiment. The data provided in Figure

38 shows tha t for any one of the data sets, a ll o f the models performed about

the same. These observations suggest tha t no software re liab ility model (or any

other statistica l method) would be able to provide really accurate estimates and

predictions for this data.

with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. APPLYING TH E M ODEL TO REPRESENTATIVE DATA 74

©
0.1 -

0.01 r

0.001 —

0.001

Musa Set 4 - Jelinski-Moranda Model
T

O O ° o<> <S> ©ao ° © .-« © © ©
0 ° ©© 9°. S o*

8 °

0.01 0.1
Observed Program Failure Rate

FIG . 18. JM Model OP P lo t For Data Set 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 10. A PPLYING THE M O D E L TO REPRESENTATIVE DATA 75

o
0.1 -

0.01 -

0.001 —

0.001

Musa Set 4 - Musa Basic Model

0.01 0.1
Observed Program Failure Rate

FIG . 19. Musa Basic OP Plots For Data Set 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C HAPTER 10. APPLYING T H E M O D E L TO REPRESENTATIVE DATA 76

Musa Set 4 - Musa Log Model

o o

£ca
az©

0.1

<sLl_
ECOO)g
o.T3©O*o©
£

0.01

0.001
0.001 0.01 0.1 1

Observed Program Failure Rate

FIG . 20. Musa Log OP Plots For Data Set 4

Model JM MB M L OS
Set 1
Set 2
Set 3
Set 4

0.424323
0.000564
0.024337
5.621282

0.424323
0.000564
0.024337
5.621283

0.400713
0.000563
0.023249
5.563041

0.452195
0.000589
0.024303
5.733988

FIG . 21. Average E rro r For Each OP P lo t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 10. APPLYING TH E MODEL TO REPRESENTATIVE DATA 77

LS Fit For Lognormal Based OS Model - Musa Set 1

Observed o
Predicted ■+■

0.1

0.01
CO

Q>° O
oo

O o o oo O
0.001

oo

1401201000.0001 8060
Failure Number4020

FIG . 22. Best Fits For OS Model Data Set 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 10. APPLYING TH E MODEL TO REPRESENTATIVE DATA 78

0.1

0.01

0.001

0.0001

LS Rt For Jelinski-Moranda Model - Musa Set 1

Observed o
Predicted +

co
oo

oo
O o O oo o

oo o
o
o o

_ I_
20

I
40 60 80

Failure Number
100 120 140

FIG . 23. Best F its For JM Model Data Set 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O +

Pr
og

ra
m

Fa

ilu
re

R

al
e

CHAPTER 10. A P PLYIN G TH E MODEL TO R EPR ESEN TA TIVE DATA 79

LS Fit For Musa Basic Model - Musa Set 1

0.001

0.0001

Observed o
Predicted +

0.01 k

60 80
Failure Number

FIG . 24. Best F its For M B Model Data Set 1

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ 0

Pr
og

ra
m

Fa

ilu
re

R

al
e

CHAPTER 10. APPLYING TH E M O D E L TO REPRESENTATIVE DATA 80

LS Fit For Musa Log Model - Musa Set 1

Observed ©
Predicted +■

0.1

0.01
CO

oo
ooO ©

O o

0.001
oo

0.0001 1401201008060
Failure Number

4020

FIG. 25. Best Fits For M L Model Data Set 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 10. APPLYING TH E M O DEL TO REPRESENTATIVE DATA 81

0.1 tr
LS Rt For Lognormal Based OS Model - Musa Set 2

Observed o
Predicted +

0.01 r

0.001 r

0.0001 r

1e-05
10 20 30

Failure Number
40 50 60

FIG . 26. Best F its For OS Model Data Set 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 10. A PPLYING TH E MODEL TO REPRESENTATIVE DATA 82

0.01

0.001

0.0001

1e-05

LS Fit For Jelinski-Moranda Model - Musa Set 2
-i----------------------- r

Observed o
Predicted +

o
o o.0; + **» + + + . .

o — — ++++++++h
*o o o O °o O o,

o
O O Oo o o

+ + + + _

o °o ̂ o 0

10 20 30 40 50 60
Failure Number

FIG . 27. Best Fits For JM Model Data Set 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 10. APPLYING T H E M O D EL TO REPRESENTATIVE DATA 83

LS Rt For Musa Basic Model - Musa Set 2
0.1 ,7-

Observed o
Predicted +

0.01 r

0.001 r

0.0001 r

- + + •(- +
o ° o

» o

$+++++++++t ++++++++++

1e-05
10 20 30

Failure Number
40 50 60

FIG . 28. Best F its For MB Model Data Set 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 10. APPLYING THE M O DEL TO REPRESENTATIVE DATA 84

0.1 r
LS Rt For Musa Log Model - Musa Set 2

Observed o
Predicted +■

0.01

+ + + + +

0.001

0.0001

.

O O o ,

1e-05 10 20 30
Failure Number

40 50 60

FIG. 29. Best F its For M L Model Data Set 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 10. APPLYING TH E MODEL TO REPRESENTATIVE DATA 85

LS Fit For Lognormal Based OS Model - Musa Set 3

Observed o
Predicted +

0.1

0.01 : * + + + +.

0.001
o o o

o

0.0001

1e-05
10 15 20 25

Failure Number
30 35 40

FIG. 30- Best F its For OS Model D ata Set 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 10. A PPLYIN G THE M O D EL TO REPRESENTATIVE DATA 86

LS Rt For Jelinski-Moranda Model - Musa Set 3

Observed o
Predicted •+•

0.1

0.01 ,r
+ + + + + + +
o

o
O o

+ + $ + + + + + 4> + + + + +
o + + + + + + + + + + + +

0.001 -

0.0001 -

1e-05 10 15 20 25
Failure Number

30 35 40

F IG . 31. Best F its For JM Model Data Set 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

al
e

CHAPTER 10. APPLYING T H E M O D EL TO REPRESENTATIVE DATA 87

LS Fit For Musa Basic Model - Musa Set 3
-i------------1------------1----— —r

Observed o
Predicted +

0.1 -

0.01 ,r

? + + + + +■ +• +
o

o
O o

0.001

O O oo

0.0001 -

1e-05 10 15 20 25
Failure Number

30 35 40

FIG . 32. Best F its For MB Model Data Set 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 10. APPLYING TH E MODEL TO REPRESENTATIVE DATA 88

L.S Fit For Musa Log Model - Musa Set 3

Observed o
Predicted +

0.1 -

0.01 ,r
; + + * + * - ; + * * + + + + . +

0.001 -

o o o
o

0.0001 -

1e-05 10 15 20 25
Failure Number

30 35 40

FIG . 33. Best Fits For M L Model Data Set 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING TH E M O D E L TO REPRESENTATIVE DATA 89

caCC
CD

caUL
E505o

LS Fit For Lognormal Based OS Model - Musa Set 4

Observed o
Predicted +•

0.1

oo

0.01 -

O O
o

0.001
0 10 20 30 40 50

Failure Number
60 70 80

FIG . 34. Best F its For OS Model Data Set 4

1 0 .3 .3 C o m p a r in g T h e P a r a m e te r P r o g r e s s io n F or E a ch

M o d e l

The plots o f the parameter progression for each parameter for each model during

the generation o f the OP Plot is shown in Figure 39 to 47.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 10. A PPLYIN G TH E MODEL TO REPRESENTATIVE DATA 90

LS Fit For Jelinski-Moranda Model - Musa Set 4

Observed o
Predicted +

0.1 -

+++++.++++++

0.01 -

0.001
10 20 30 40 50

Failure Number
60 70 80

FIG . 35. Best F its For JM Model D ata Set 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

al
e

CHAPTER 10. APPLYING TH E M ODEL TO REPRESENTATIVE DATA 91

0.1

0.01

0.001

LS Fit For Musa Basic Model - Musa Set 4

Observed o
Predicted +•

0 10 20 30 40 50 60 70 80
Failure Number

FIG. 36. Best Fits For M B Model Data Set 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING TH E M O D EL TO REPRESENTATIVE DATA 92

LS Fit For Musa Log Model - Musa Set 4

Observed o
Predicted +

0.1 -

cc
<D O O O

Eca

0.01

0.001
10 20 30 40 50

Failure Number
60 70 80

FIG. 37. Best F its For M L Model Data Set 4

Model JM MB M L OS
Set 1
Set 2
Set 3
Set 4

0.45232
0.000757267
0.035536
6.29474

0.445232
0.000757267
0.035536
6.29474

0.414309
0.000758417
0.0356122
6.31988

0.465994
0.000781957
0.0354903
6.40239

FIG . 38. E rro r For Each Best F it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING TH E M O DEL TO R EPR ESEN TA TIVE DATA 93

FIG . 39. OS Model Mean Progression For A ll Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SU
rv

Ui
d

O
tv

U
to

n

CHAPTER 10. APPLYING T H E M O DEL TO REPRESENTATIVE DATA 94

FIG . 40. OS Model Standard Deviation Progression For A ll Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING T H E M O DEL TO REPRESENTATUVE DATA 95

FIG. 41. OS Model N Progression For A ll Data Set.s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING TH E M O D EL TO REPRESENTATIVE DATA 96

FIG. 42. Jelinski-Moranda Phi Progression For A ll Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING T H E M ODEL TO REPRESENTATIVE DATA 97

FIG . 43. Jelinski-Moranda N Progression For A ll Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. APPLYING TH E MODEL TO REPRESENTATIVE DATA 98

| 0.0195

FIG. 44. Musa Basic In itia l Program Failure Rate Progression For A ll Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTER 10. APPLYING TH E M O D EL TO REPRESENTATIVE DATA 99

FIG . 45. Musa Basic N Progression For A ll Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C HAPTER 10. APPLYING T H E M O D EL TO REPRESENTATIVE DATA 100

£ 0.M7
i

o.m

o.<a

0.0)3
OOtS

O.Ot*

1 00)2 I
£ 001
£ oooe

0 006
0004

Log

FIG . 46. Musa Log Decay Parameter Progression For A ll Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited wiwithout permission.

CHAPTER 10. A PPLYING TH E MODEL TO REPRESENTATIVE DATA101

lo g

Log

| -0.005

FIG . 47. Musa Log In itia l Program Failure Rate Progression For A ll Data Sets

10.4 Conclusions

In this chapter, the in it ia l verification of the model proposed in this dissertation

was presented. The biggest problem that surfaced during this experiment afflicted

all o f the software re liab lity models being used. I t seems that data based on

observations made during testing is simply too noisy to be of use for making

accurate re liab ility estimates.

D uring this experiment, a ll o f the models performed similarly, providing in it ia l

verification tha t the Order Statistics Model is at least as good as the existing

models. In addition, this experiment provided further evidence that time based

measures observed during testing (such as interfailure times) are simply too prone

to statistica l noise to provide a good basis for m aking accurate re liab ility estimates

and predictions.

with permission of the copyright owner. Further reproduction prohibited without permission.

C h apter 11

D a ta From G en era ted D eb u g g in g
S eq uences

This chapter describes the second experiment that was conducted during the

course o f this research. The data fo r this experiment was generated by simulating

debugging sequences based on existing failure rate data for an actual software

system.

11.1 The D ata Set

The basis for this study was a data set obtained in p rio r research conducted

by W ild et al.[31], where the authors tested the Launch-Intercept-Control (LIC)

software system using both representative methods and a directed testing method

known as Knowledge-Driven Functional Testing. During W ild ’s experiment, the

operational failure rate and directed failure rate for each discovered fau lt was

recorded. This failure rate in form ation is summarized in Figure 48.

Debugging sequences were generated from this data and the resulting failure

rate data was used as input in to selected re liab ility growth models. The process

o f generating the debugging sequences is described in the next section.

102

permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA FR O M GENERATED D EBUG G ING SEQUENCES 103

Reproduced with

Failures / # Tests
Fault Best Random

Refined
(100 tests) (106 tests)

18.1 0 .000008
19.1 1.0 .000264
20.1 1.0 .000323
20.2 .46 .000697
21.1 1.0 .000085
21.2 0 .000007
22.1 1.0 .006551
22.2 1.0 .001735
22.3 1.0 .001735
23.1 1.0 .000072
23.2 0 .000008
24.1 1.0 .000260
25.1 1.0 .000014
25.2 1.0 .000080
25.3 .19 .000003
26.1 1.0 .000140
26.2 1.0 .000009
26.3 0 .000001
26.4 1.0 .000006
26.5 1.0 .000004
26.6 .15 .000368
26.7 .15 .000243

Failures / # Tests
Fault Best Random

Refined
(100 tests) (106 tests)

1.1 0 .000002
3.1 1.0 .000135
3.2 1.0 .000195
3.3 1.0 .000537
3.4 0 .000006
6.1 1.0 .000607
6.2 .89 .000511
6.3 1.0 .000032
7.1 0 .000071
8.1 1.0 .000225
8.2 1.0 .000098
9.1 .71 .000047
9.2 .15 .000006
11.1 .46 .000554
12.1 1.0 .000356
12.2 0 .000071
13.1 0 .000004
14.1 1.0 .001297
14.2 0 .000071
16.1 1.0 .000028
16.2 0 .000034
17.1 0 .000201
17.2 0 .000076

FIG. 48 . Directed Fault Failure Rates (K d f t) versus Representative Fault Failure
Rates [31]

permission o f the copyright owner. Further reproduction prohibited without permissioh.

CHAPTER 11. DATA FRO M G ENERATED DEBUGGING SEQUENCES 104

11.2 Experim ent D esign

During this experiment, debugging sequences for both representative testing and

the mixed method approach to testing were generated from the fa ilure rate data

provided by W ild et al [31]. The mixed method approach to testing was mod­

eled as using representative methods at the start o f testing and switching to

directed methods later. The mixed method data was used as inpu t in to the Or­

der Statistics model. The representative testing data was used as input into the

Jelinski-Moranda model, the Musa Basic model, and the Musa Log model.

A to ta l o f four data sets o f each type were generated for this experiment.

1 1 .2 .1 G e n e r a t in g R e p r e s e n ta t iv e T e s t in g D a ta

The generation o f failure data from representative testing involved sim ulating and

executing 100,000 representative test cases. This number of representative test

cases is the same number of cases generated and executed in W ild ’s research. For

each test case in this experiment, the probability o f exposing a given fau lt was

dictated by the operational failure rate o f tha t fau lt in W ild ’s table.

For example, i f given fault in the program had an operational failure rate of

.000002, then on each iteration (1-100,000), a random number between 1 and

1,000,000 was generated. I f the value o f this random number was less than or

equal to 2 (1, 000,000 * .000002 = 2), then this fau lt was considered to be found

by this simulated test case, and the failure time (iteration number) was recorded.

Simulating 100,000 test case iterations resulted in a set of system failure times

tha t were converted to interfailure times, and then to program failure rates.

1 1 .2 .2 G e n e r a t in g A M ix tu r e O f R e p r e s e n ta t iv e a n d D i­

r e c te d T e s t in g D a ta

The process o f generating data tha t could be obtained from a mixed approach

to testing was s ligh tly different than generating representative testing data. This

section describes these differences.

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. DATA FR O M GENERATED DEBUGGING SEQUENCES 105

Fault Failure Rate Fault Failure Rate
12.2 0.3333333 17.1 0.0015432
24.1 0.0344828 7.1 0.0025974
22.2 0.0322581 17.2 0.0004836
22.1 0.0526316 26.7 0.0015152
22.3 0.0128205 23.1 0.0001931
14.2 0.1250000 13.1 0.0000548
20.2 0.0909091 25.1 0.0003589
14.1 0.0024390 9.1 0.0003834
6.2 0.0476190 26.2 0.0006345
8.2 0.0036232 3.4 0.0001058
26.6 0.0135135 16.1 0.0003194
20.1 0.0136986 25.3 0.0007133
3.2 0.0012953 23.2 0.0000544
12.1 0.0023041 18.1 0.0045872
6.1 0.0344828 16.2 0.0000851
3.3 0.0062893 9.2 0.0000910
6.3 0.1428571
11.1 0.0039370
3.1 0.0053763
19.1 0.0285714
21.1 0.0046296
8.1 0.3333333
26.1 0.0013245

FIG. 49. Generated Representative Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C HAPTER 11. DATA FR O M G ENERATED DEBUG G ING SEQUENCES 106

Reproduced with

Fault Failure Rate Fault Failure Rate
20.2 0.0232558 26.1 0.0003253
6.1 0.0312500 8.2 0.0006262
14.1 0.0079365 16.1 0.0009606
22.2 0.0108696 7.1 0.0013587
22.1 0.0208333 3.1 0.0004953
26.6 0.0109890 26.5 0.0000910
14.2 0.0066225 12.2 0.0007692
17.1 0.0086207 6.3 0.0001166
24.1 0.0119048 3.4 0.0001420
9.1 0.0030581 17.2 0.0000757
12.1 0.0833333 16.2 0.0001149
21.1 0.0400000 25.1 0.0000329
22.3 0.0043668
3.3 0.0038168
25.2 0.0049261
11.1 0.0036232
6.2 0.0029499
26.7 0.0027322
20.1 0.0007849
3.2 0.0003922
19.1 0.0625000
8.1 0.0004666
23.1 0.0081967

FIG. 50. Generated Representative Set Two

permission of the copyright owrter. Further reproduction prohibited without permission.

CHAPTER 11. DATA FR O M GENERATED D EBUG G ING SEQUENCES 107

Fault Failure Rate Fault Failure Rate
24.1 0.0500000 14.2 0.0112360
22.1 0.0172414 21.1 0.0005845
22.2 0.0027933 19.1 0.0019685
14.1 0.0588235 17.2 0.0009615
3.2 0.0434783 16.1 0.0019380
22.3 0.0714286 26.1 0.0005599
6.1 0.0035211 12.2 0.0002147
12.1 0.2500000 25.2 0.0003804
20.2 0.0082645 9.2 0.0002263
23.1 0.0031250 9.1 0.0001856
17.1 0.0034364 21.2 0.0001381
11.1 0.1250000 25.3 0.0001907
6.2 0.0022371 16.2 0.0004218
3.3 0.0022422 13.1 0.0001182
3.1 0.3333333 23.2 0.0000231
8.1 0.0106383
26.7 0.0016103
20.1 0.0025510
26.6 0.0021277
26.4 0.0004348
8.2 0.0035587
6.3 0.0013477
7.1 0.0019231

FIG . 51. Generated Representative Set Three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA FRO M GENERATED DEBUGGING SEQUENCES 108

Fault Failure Rate Fault Failure Rate
22.1 0.0476190 7.1 0.0009681
24.1 0.0555556 25.2 0.0027701
14.1 0.0121951 26.1 0.0007862
22.2 0.0103093 17.2 0.0016129
26.6 0.0072464 3.2 0.0001279
3.3 0.0555556 14.2 0.0005299
6.1 0.0054054 12.2 0.0058480
26.7 0.2000000 26.5 0.0004502
22.3 0.0147059 26.4 0.0000615
16.2 0.0227273 6.3 0.0000967
19.1 0.0588235 26.2 0.0000799
12.1 0.0011198 25.1 0.0000845
17.1 0.0034483 18.1 0.0002861
11.1 0.0013699
8.1 0.0072464
23.1 0.0033898
6.2 0.0277778
20.2 0.0078125
8.2 0.0020080
3.1 0.0029762
21.1 0.0029940
20.1 0.0026954
9.1 0.0007225

FIG. 52. Generated Representative Set Four

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA F R O M GENERATED D E B U G G IN G SEQUENCES 109

Determining The Testing Cross-Over Point

Before generating data fo r a mixed method testing process, the point at which

simulated testing would sw itch from representative methods to directed methods

had to be identified. The actual determination o f th is cross-over point w ill u lt i­

mately be made by testers when they feel tha t representative testing is starting

to “ take too long” .
For th is experiment, the cross-over from representative methods to directed

methods was made when the first interfailure tim e exceeding 1000 was observed.

Therefore, the crossover occured when 1000 representative test cases had been

generated and executed w ith o u t exposing a fau lt.

For each directed da ta set, the representative fa ilu re rate data for the set is

taken from the corresponding generated representative data set. Thus, the data in

each generated mixed testing set matches the data in the corresponding generated

representative teting set up u n til the crossover po in t. For example, in the first pair

of generated sets, the firs t 26 values o f the representative data set are identical to

the first 26 values of the m ixed data set.

Determining The Number Of Directed Test Cases To Generate

A fte r the cross-over po in t had been reached during the generation of a mixed data

set, instead of s im ula ting the failure behavior o f the software over the remainder of

the 100,000 test cases as was done when representative testing was simulated, the

behavior of the software when executing five passes through the refined functional

test cases defined by W ild [31] was simulated.
Five passes through the refined functional test set represents the execution of

about 500 directed test cases. In practice, testers wall probably only make one pass

through their directed test sets. M ultip le passes were made during this experiment

in order to maximize the amount of data available fo r analysis. As it turned out,

however, the first pass through the directed test suite usually ended up finding

over ninety percent o f the faults that were found during the five iterations. Figure

53 shows the number o f fau lts found for each data set fo r each directed testing

permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 11. DATA FR O M G EN ER A TED DEBUGGING SEQUENCES 110

Pass Set I Set 2 Set 3 Set 4
1 9 14 12 9
2 2 1 1 0
3 0 0 0 1
4 0 0 0 0
5 0 0 0 1

FIG . 53. Number O f Faults Found For Each Directed Testing Pass For Each Data
Set

pass.

Determining Fault Exposure Under Directed Testing

D uring generation of representative testing data, the probability o f find ing a given

fau lt was dictated by the fa u lt’s operational failure rate from W ild ’s table. During

s im ulation o f directed testing, however, the probability of find ing a given fau lt was

dictated by fa u lt’s failure rate under directed testing. Additiona lly , instead of

recording the program failure rate fo r each o f the faults found during the directed

testing phase of the data generation, the fau lt failure rate was recorded.

11.3 Results
A fte r the data sets had been generated, they were used as inpu t to several relia­

b ility models and the results were compared.
As in the experiment presented in the previous chapter, the analysis o f the

models consisted of generating O P-P lots for each model for each data set, com­

paring the best fits for each model fo r each complete data set, and comparing the

s ta b ility o f the models using parameter progression plots.

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA F R O M GENERATED DEBUGG ING SEQUENCES 111

Fault Failure Rate Fault Failure Rate
12.2 0.3333333 17.1 0.0015432
24.1 0.0344828 7.1 0.0025974
22.2 0.0322581 17.2 0.0004836
22.1 0.0526316 9.2 0.0000060
22.3 0.0128205 16.1 0.0000280
14.2 0.1250000 23.1 0.0000720
20.2 0.0909091 25.1 0.0000140
14.1 0.0024390 25.2 0.0000800
6.2 0.0476190 25.3 0.0000030
8.2 0.0036232 26.2 0.0000090
26.6 0.0135135 26.4 0.0000060
20.1 0.0136986 26.5 0.0000040
3.2 0.0012953 9.1 0.0000470
12.1 0.0023041 26.7 0.0002430
6.1 0.0344828
3.3 0.0062893
6.3 0.1428571
11.1 0.0039370
3.1 0.0053763
19.1 0.0285714
21.1 0.0046296
8.1 0.3333333
26.1 0.0013245

FIG . 54. Generated Mixed Testing Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA FROM G ENERATED DEBUGGING SEQUENCES 112

Fault Failure Rate Fault Failure Rate
20.2 0.0232558 8.2 0.0000980
6.1 0.0312500 16.1 0.0000280
14.1 0.0079365 19.1 0.0002640
22.2 0.0108696 23.1 0.0000720
22.1 0.0208333 25.1 0.0000140
26.6 0.0109890 25.3 0.0000030
14.2 0.0066225 26.1 0.0001400
17.1 0.0086207 26.2 0.0000090
24.1 0.0119048 26.4 0.0000060
9.1 0.0030581 26.5 0.0000040
12.1 0.0833333 9.2 0.0000060
21.1 0.0400000
22.3 0.0043668
3.3 0.0038168
25.2 0.0049261
11.1 0.0036232
6.2 0.0029499
26.7 0.0027322
20.1 0.0007849
3.1 0.0001350
3.2 0.0001950
6.3 0.0000320
8.1 0.0002250

FIG. 55. Generated Mixed Set Two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA F R O M GENERATED D EBU G G IN G SEQUENCES 113

Fault Failure Rate Fault Failure Rate
24.1 0.0500000 16.1 0.0000280
22.1 0.0172414 19.1 0.0002640
22.2 0.0027933 21.1 0.0000850
14.1 0.0588235 25.1 0.0000140
3.2 0.0434783 25.2 0.0000800
22.3 0.0714286 25.3 0.0000030
6.1 0.0035211 26.1 0.0001400
12.1 0.2500000 26.2 0.0000090
20.2 0.0082645 26.5 0.0000040
23.1 0.0031250 9.1 0.0000470
17.1 0.0034364
11.1 0.1250000
6.2 0.0022371
3.3 0.0022422
3.1 0.3333333
8.1 0.0106383
26.7 0.0016103
20.1 0.0025510
26.6 0.0021277
26.4 0.0004348
6.3 0.0000320
8.2 0.0000980
9.2 0.0000060

F IG . 56. Generated Mixed Set Three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

CHAPTER 11. DATA FR O M GENERATED DEBUGGING SEQUENCES 114

Fault Failure Rate Fault Failure Rate
22.1 0.0476190 3.2 0.0001950
24.1 0.0555556 6.3 0.0000320
14.1 0.0121951 16.1 0.0000280
22.2 0.0103093 25.1 0.0000140
26.6 0.0072464 25.2 0.0000800
3.3 0.0555556 26.1 0.0001400
6.1 0.0054054 26.2 0.0000090
26.7 0.2000000 26.4 0.0000060
22.3 0.0147059 26.5 0.0000040
16.2 0.0227273 25.3 0.0000030
19.1 0.0588235 9.2 0.0000060
12.1 0.0011198
17.1 0.0034483
11.1 0.0013699
8.1 0.0072464
23.1 0.0033898
6.2 0.0277778
20.2 0.0078125
8.2 0.0020080
3.1 0.0029762
21.1 0.0029940
20.1 0.0026954
9.1 0.0007225

FIG . 57. M ixed Set Four

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA FR O M GENERATED D EBUG G ING SEQUENCES 115

1 1 .3 .1 T h e R e s u lt s O f A n a ly z in g T h e P r e d ic t iv e A c c u r a c y

O f T h e M o d e ls

Figures 58 to 73 show the OP Plots tha t were generated for each model for each

data set. The sum of the squared error for each iteration of each OP P lot was

averaged and is shown in Figure 74. I t is d ifficu lt to te ll much difference between

the models sim ply by looking at the plots, but the data in Figure 74 indicates

tha t the Order Statistics model and the Musa Log model perform similarly. Both

o f these models performed better than the Jelinski-Moranda model and the Musa

Basic model.
When looking at the OP Plots, i t is evident tha t the OP Plots for the Order

Statistics model have fewer points plotted than do the other models. The cause

for the difference in the number o f plotted points is the Order Statistics model’s

use o f data from a combination of representative and directed testing.

Under purely representative testing, every fau lt tha t is found is represented on

the OP P lot by its program failure rate. The Order Directed Testing Property,

however, dictates tha t predicted program fa ilure rates w ill only have meaning

under directed testing as testing nears coverage.

For this reason, instead of p lo tting 10-15 points corresponding to the faults

found under directed testing, only 5 points are p lotted on the OP Plot - one for

each directed testing coverage pass simulated in th is experiment.

1 1 .3 .2 C o m p a r in g T h e B e s t F it s F o r E a c h M o d e l

Figures 75 to 90 show the best fits for each model for each of the data sets. One

of the most noticeable differences between these plots and the best f it plots in

the last chapter is the discontinuity present in the plots for the Order Statistics

model. This discontinuity is caused by the switch from representative testing to

directed testing in the mixed method approach to testing. When representative

testing is used, the program failure rates are plo tted. Once testing switches to

directed methods, fau lt failure rates are plo tted. Therefore, the discontinuity in

the best f it p lo t reflects the fact that program fa ilure rates values are generally an

with permission of the copyright owner. Further reproduction prohibited without permission.

C HAPTER 11. DATA FROM GENERATED DEBUGG ING SEQUENCES 116

order o f magnitude (or more) larger than fau lt failure rate values.

Com bination o f these two different quantities into a single fitt in g process w ith ­

out biasing the results was accomplished by norm alizing the error measures during

fittin g . Instead o f calculating the f itt in g error as:

n

e = Y,(predictedi — observedi)2, (21)
i = l

the f it t in g error was calculated as:

predictedi — observedi
observedi

Upon examination o f the best f it plots and the data in Figure 91, i t is apparent

tha t performance o f the Order Statistics model when fitt in g to the entire data set

compares favorably to the other models. For a ll o f the test sets, the error measure

for the Order Statistics model is s im ilar to or better than the error measure for

the Musa Log model. The error measures fo r the Order Statistics model and the

Musa Log model are much better than the error measures for the Jelinski-Moranda

model and the Musa Basic Model.

One o f the most im portant observations to be made about the best f i t plots is

tha t the Order Statistics model does a very good job of fittin g to the fa u lt failure

rates present in the mixed method data sets. The fact tha t the fau lt fa ilu re rates

are sorted in to descending order by the Order Statistics model, along w ith the fact

tha t the fau lt failure rates seem more stable than the program failure rates seems

to greatly improve the goodness of fit. These observations lend yet more support

to the argument tha t software re lia b ility practicioners should consider switching

the ir emphasis from quantities observed during testing to quantities estimated

during debugging in order to improve model performance.

(22)

with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTER 11. DATA FR O M G ENERATED DEBUGGING SEQUENCES 117

1 1 .3 .3 C o m p a r in g T h e P a r a m e te r P r o g r e s s io n s F o r E a ch

M o d e l

The parameter progressions for each parameter for each model during the gener­

ation o f the OP Plots is shown in Figures 92 to 100.

As in the previous chapter, a fter examining the parameter progression plots,

i t appears that in most cases the Order Statistics model’s estimates for N as

faults are discovered appear to be more stable than the estimates provided by the

Jelinski-Moranda Model and the Musa Basic model. The plots generated from

the parameter estimate sequences o f the la tte r models show tha t the estimate for

N almost always increases as new data is added. The plots generated from the

parameter estimate sequences o f the Order Statistics model (w ith the exception of

Set 3) consist of several subsequences w ith in which N is fa ir ly constant. From these

plots, i t appears that the Order Statistics model provided more stable predictions

for N as faults were discovered.
Examination of the parameter progression plots for the other parameters for

all o f the models seems to lead to the same conclusion. The subsequences of

parameter progressions in the plots tend to be more stable for the Order Statistics

model than for the Jelinski-Moranda model and the Musa Basic model. The

s tab ility o f the Musa Log model seems to similar to the s ta b ility o f the Order

Statistics model.

11.4 Verification O f T he Ordered D irected Test­
ing Property

In previous work, M itchell and Zeil [17] conducted a statistica l test on the failure

rate data used in this chapter to determine the relationship between the directed

testing failure rates and the operational failure rates for each fa u lt in the data

set. M itche ll and Zeil calculated the Spearman rank correlation coefficient for the

two fa ilure rate sets to be 0.42. A coefficient of 0.42 or higher has on ly a 0.0027

p roba b ility o f arising in independent variables. These results lend prelim inary

permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA FR O M GENERATED DEBUGGING SEQUENCES 118

support to the va lid ity o f the Ordered Directed Testing Property.

11.5 Conclusions

I t appears tha t the results from the Order Statistics model under mixed testing

and the Musa Log model under representative testing are very similar. Both

o f these models seem to provide better fits and predictive performance than the

Jelinski-Moranda model and the Musa Basic model.
An im portant difference between the Order Statistics model and the Musa

Log model, however, is tha t the the Order Statistics Model required far fewer

test cases to generate its failure set, because i t used a mixed method approach

to testing tha t utilized directed testing. O f course, since i t is more expensive to

generate a directed test case than a representative test case, this advantage may

be somewhat offset or negated. Nonetheless, the use o f m ultip le testing methods

for re liab ility assessment should yield a more robust and comprehensive testing

process than would be obtained i f a single method were used.

permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

C H A PTER 11. DATA FROM G ENERATED D EBUG G ING SEQUENCES 119

Simulated Data * Order Statistics Model

1e-06

0.01 -

0.001 -

0.0001

1e-05 -

1e-05 0.0001 0.001 0.01
Observed Program Failure Rate

F IG . 58. OS Model OP P lot For Generated Data Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA F R O M GENERATED DEBUG G ING SEQUENCES 120

Generated Data - Jelinski-Moranda Model

0.01

0.001

0.0001

©o

1e-05

1e-06 0.10.010.001
Observed Program Failure Rate

0.00011e-05

FIG. 59. JM M odel OP P lot For Generated D ata Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FR O M GENERATED DEBUGGING SEQUENCES 121

Generated Data - Musa Basic Model
1

0.1

0.01

0.001

0.0001

oo

1e-05

1e-06 —
1e-05 10.10.001 0.01

Observed Program Failure Rate
0.0001

FIG- 60. MB Model OP P lo t For Generated Data Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FR O M GENERATED DEBUGGING SEQUENCES 122

Generated Data - Musa Log Model

1e-06

0.01 -

0.001 -

0.0001 -

1e-05 -

1e-05 0.0001 0.001 0.01
Observed Program Failure Rate

FIG. 61. M L Model OP P lot For Generated D ata Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA F R O M GENERATED D EBUG G ING SEQUENCES 123

Simulated Data - Order Statistics Model

203oc©
03IU

0.1

0.01

i 0.001

Q_
T3©
=5 0.0001

1e-05

1e~06
0.0001 0.001

Observed Program Failure Rate

FIG. 62. OS Model OP P lot For Generated Data Set Two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.01

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FROM GENERATED DEBUGGING SEQUENCES 124

Generated Data - Jelinski-Moranda Model

0.0001

1e-05

0.01 -

0.001

1e-06
1e-05 0.0001 0.001 0.01

Observed Program Failure Rate

FIG . 63. JM Model OP P lo t For Generated Data Set Two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FR O M GENERATED DEBUG G ING SEQUENCES 125

0.1

0.01

0.001

0.0001

1e-05

1e-06
le-05 0.0001 0.001 0.01 0.1

Observed Program Failure Rate

FIG . 64. MB Model OP Plot For Generated Data Set Two

Generated Data - Musa Basic Model
— ,-------- ,----- ' - r |-------------- .-------- .----- ■ ' T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FR O M GENERATED DEBUG G ING SEQUENCES 126

Generated Data - Musa Log Model

0.01

0.001 -

0.0001 -

1e-05 -

1e-06
1e-05 0.0001 0.001 0.01

Observed Program Failure Rate

F IG . 65. M L Model OP P lo t For Generated Data Set Two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FR O M GENERATED DEBUG G ING SEQUENCES 127

Generated Data - Order Statistics Model
1

0.1 -

0.01 -

0.001 -

0.0001

1e-05 -

1e-06 —
1e-05

FIG . 66. OS Model OP P lo t For Generated D ata Set Three

0.0001 0.001
Observed Program Failure Rate

0.01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FR O M GENERATED DEBUGGING SEQUENCES 128

Generated Data - Jelinski-Moranda Model

0.1

0.01

0.001

0.0001

1e-05

1e-06 —
1e-05 0.10.010.0010.0001

Observed Program Failure Rate

FIG . 67. JM Model OP P lo t For Generated Data Set Three

Reproduced w«h p e n s io n of the copyr,gh, owner Fudher reproduction prohibited whhou, permission

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FR O M G ENERATED D EBU G G IN G SEQUENCES 129

Generated Data - Musa Basic Model

0.1

0.01

0.001

<s>

0.0001

1e-05

1e-06 —
1e-05 0.01 0.10.0010.0001

Observed Program Failure Rate

FIG . 68. MB Model OP P lot For Generated D ata Set Three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA F R O M GENERATED DEBUGGING SEQUENCES 130

Generated Data - Musa Log Model

0.1

0.01

0.001

0.0001

1e-05

1e-06 —
1e-05 0.10.010.0010.0001

Observed Program Failure Rate

FIG . 69. M L Model OP P lot For Generated Data Set Three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 11. DATA FR O M GENERATED DEBUGG ING SEQUENCES 131

0.1

0.01
©
CO CC
<D

L i .

« 0.001
a>o£
*o

'■a 0.0001

1e-05

1e-06
0.0001

Generated Data - Order Statistics Model
T

0.001
Observed Program Failure Rate

FIG. 70. OS Model OP Plot For Generated Data Set Four

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O

0.01

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FR O M GENERATED DEBUG G ING SEQUENCES 132

Generated Data - Jelinski-Moranda Model
T T

0.1

0.01

0.001
o
or 'o oo o

0.0001
'V

1e-05

1e-06
1e-05 0.0001 0.001

Observed Program Failure Rate

FIG. 71. JM Model OP Plot For Generated Data Set Four

0.01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FR O M GENERATED D EBUG G ING SEQUENCES 133

1

0.1 -

0.01 -

0.001 -

0.0001 -

le -05 -

1e-06 —
1e-05

FIG. 72. M B Model OP Plot For Generated Data Set Four

Generated Data * Musa Baste Model
--------------- .--------- .------.---- .----.---r-i—r-,—

°o
o

o °
o

o
o

"'V

0.0001 0.001
Observed Program Failure Rate

0.01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA FR O M GENERATED DEBUGGING SEQUENCES 134

Generated Data - Musa Log Model1

0.1

0.01

0.001

0.0001

1e-05

1e-06 —
1e-05 0.0001 0.001 0.01

Observed Program Failure Rate

FIG. 73. M L Model OP Plot For Generated Data Set Four

Model JM M B M L OS
Set 1
Set 2
Set 3
Set 4

21.9155
15.91654
15.46484
17.21274

21.9155
15.91654
15.46484
17.21274

18.43406
8.871714
13.69872
13.63313

15.24542
7.095273
11.33527
10.99466

FIG. 74. Error For The OP Plots

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FRO M GENERATED DEBUGG ING SEQUENCES 135

LS Fit For Order Statistics Model - Generated Data

0.1
■ ■ 9 o

0.01 -

0.001 -

0.0001 -

+ + o

o
+ 0 0

Observed o
Predicted +

1e-05 -

1e-06 10 15 20 25
Failure Number

30 35 40

FIG. 75. Best Fit For OS Model Simulated Data Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CH A PTER 11. DATA FRO M GENERATED DEBUGGING SEQUENCES 136

LS Rt For Jelinski-Moranda Model - Generated Data

Observed o
Predicted +

0.1
o o

0.01 -

0.001 -

o o
O o o

O o

O O
" +■ + -I- + + + ■*• + + + + + + + + +

0.0001 -
+ + +

1e-05 -

1e-06 10 15 20 25
Failure Number

30 35 40

FIG. 76. Best Fit For JM Model Simulated Data Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 11. DATA F R O M GENERATED D EBUG G ING SEQUENCES 137

LS Fit For Musa Basic Model - Generated Data

Observed o
Predicted +

0.1 -

o o

0.01 -

0.001 -

o
o o

o o+■ + + + +
0.0001 + + + + ° ° o "r +

1e-05

le -06 10 15 20 25
Failure Number

30 35 40

FIG. 77. Best Fit For M B Model Simulated Data Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 11. DATA FROM GENERATED DEBUGGING SEQUENCES 138

<»

0.1

0.01

0.001

0.0001

1e-05

1e-06 L 0

LS Rt For Musa Log Model - Generated Data
 1 1 1---------

Observed o
o Predicted +

o
o

« o
o o

+ O o ©■ + +
+ + + ° O+ + o O

O + . o °o + + + o o o
o o

+ + + + ° 0<> o

***** + ̂ o
o +■

4-

J ____________________ I____________________ I____________________ I____________________J ____________________ I____________________I____________________

5 10 15 20 25 30 35 40
Failure Number

FIG. 78. Best Fit For M L Model Simulated Data Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fa
ilu

re

R
at

e

CHAPTER 11. DATA F R O M GENERATED D EBU G G IN G SEQUENCES 139

LS R t For Order Statistics Model - Generated Data

0.1 -

Observed o
Predicted +

0.01 -
o

$ o

© o
O o

0.001

0.0001

1e-05

1e-06 10 15 20
Failure Number

25 30 35

FIG. 79. Best Fit For OS Model Simulated Data Set Two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 11. DATA FRO M GENERATED DEBUGG ING SEQUENCES 140

LS Rt For Jelinski-Moranda Model - Generated Data

Observed o
Predicted +

0.1 -

0.01
o

o ©

O o
© o

0.001 -

0.0001 -

+ + +■ + + + . © ©
***?............

+
©

1e-05 -

1e-06 10 15 20
Failure Number

25 30 35

FIG. 80. Best Fit For JM Model Simulated Data Set Two

Reproduced with p e n s io n ot me copyright owner Further reproduction prohibited without permission

CHAPTER U . DATA FR O M GENERATED D EBUG G ING SEQUENCES 141

LS R t For Musa Basic Model - Generated Data1

0.1

0.01ffl
cc2
£ 0.001
eca
CT>O

0.0001

te-05

15 20 25 30 35
Failure Number

M B Model Simulated Data Set Two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o 5 10

FIG. 81. Best Fit For

. - i --------------------- 1--------------------- 1-------------------- i--------------------- 1 - - • r-

. Observed o
Predicted +■

- o -
o

o
o

: o
o o o

o O o
A

-

(

0 0 0
0

O O o

o
- o ° o ~
: + + -t- +

o
° t +•. +

-
o

•
f f f 1 I f

Pr
og

ra
m

Fa

ilu
re

R

al
e

CHAPTER 11. DATA FROM G ENERATED DEBUGGING SEQUENCES 142

LS Fit For Musa Log Model - Generated Data
1 ;-------------------- 1-------------------- 1--------------------- 1---------------------1-------------------- 1--------------------- 1

Observed
Predicted

o
+

0.1 r o o
o

o<l o

0.01
+ +.

* + O O
o + ^

+ + + ° O ° OO +■ + O o

0.001
r + « + o ° °+► ° ~^ it o

+ 9 °
: ° + $

o
0.0001

+

0
+ .

. 1

le -05

4 ^ n c ____________________ I____________________I_____________________i_____________________1____________________I------------------------------------1-----------------j ____________i____________ i____________ i____________ i----------------------i---------------------
5 10 15 20 25 30 35

Failure Number

FIG. 82. Best Fit For M L Model Simulated Data Set Two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fa
ilu

re

R
at

e

CHAPTER 11. DATA F R O M GENERATED D EB U G G IN G SEQUENCES 143

LS Fit For Order Statistics Model - Generated Data

Observed o
Predicted +

0.1

0.01

0.001

0.0001

le -05

1e-06
35302520151050

Failure Number

FIG. 83. Best Fit For OS Model Simulated Data Set Three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 11. DATA FROM G ENERATED DEBUGGING SEQUENCES 144

LS Rt For Jelinski-Moranda Model - Generated Data

Observed o
Predicted +•

0.1

0.01

o o o

0.001 ■• + + + + + * + + - n - + + + + + + O o

+++-++++ °+ O + ?
0.0001

1e-05

1e-06 10 15 20 25
Failure Number

30 35 40

FIG. 84. Best Fit For JM Model Simulated Data Set Three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA FR O M GENERATED DEBUGGING SEQUENCES 145

LS R t For Musa Basic Model - Generated Data

Observed o
Predicted +

0.1 -

0.01
©”5 oc
CD

« 0.001 F
o o o

•* + + + +
ECO
o>o

 * •
+ * + ? o o

0.0001 -

1e-05 -

1e-06 10 15 20 25
Failure Number

30 35 40

FIG. 85. Best Fit For M B Model Simulated Data Set Three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHA PTER 11. DATA FRO M GENERATED DEBUGG ING SEQUENCES 146

0.1

0.01

0.001

0.0001

1e-05

1e-06
0 5 10 15 20 25 30 35 40

Failure Number

FIG. 86. Best Fit For M L Model Simulated Data Set Three

LS Fit For Musa Log Model - Generated Data

o
o

Observed o
o Predicted +

o

o
o

o

♦ + o o °
+ + + o o ° O o o o+ + + ° ®+ - ++ ° °

o

o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Fa
ilu

re

R
at

e

CHAPTER 11. DATA FR O M GENERATED DEBUG G ING SEQUENCES 147

LS Rt For Order Statistics Model - Generated Data

Observed o
Predicted +

0.1

0.01

0.001

0.0001

1e-05

1e-06 35302520
Number

15
Failure Number

10

FIG. 87. Best Fit For OS Model Simulated Data Set Four

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 11. DATA FR O M GENERATED DEBUGGING SEQUENCES 148

0.1 ;
< I

0.01

0.001

0.0001

1e-05

1e-06 0

LS R t For Jelinski-Moranda Model - Generated Data
 1---------------------1---------------------1-------------------- 1--------------------- r

Observed o
Predicted +

o o °

o

o o ^
o

0 ° O O o o
o

• /
. . . O O+ - + + + + + + + + + O

+ + -r + + + *

+ + + + + + + + +
+ *
o * *

5 10 15 20 25 30 35
Failure Number

FIG. 88. Best Fit For JM Model Simulated Data Set Four

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA FR O M G ENERATED DEBUGG ING SEQUENCES 149

o.i

0.01
©
©
GC
©Jij
£ 0.001
s
aO)ow

0.0001

1e-05

1e-06
0 5 10 15 20 25 30 35

Failure Number

FIG. 89. Best Fit For M B Model Simulated Data Set Four

LS R t For Musa Basic Model - Generated Data

Observed o
Predicted +■

o
o

O O O
o

° ° O O 0 o

• •
 ° . *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTER 11. DATA F R O M GENERATED D E B U G G IN G SEQUENCES 150

Eas

LS R t For Musa Log Model - Generated Data

0.1 -

0.01 -o
15
DC
(D

ra 0.001

0.0001 -

1e-05 -

Observed o
Predicted +

o +

le -06
10 15 20

Failure Number
25 30 35

FIG. 90. Best Fit For M L Model Simulated Data Set Four

Model JM M B M L OS
Set 1
Set 2
Set 3
Set 4

30.3649
22.0017
24.0289
25.1962

30.3649
22.0017
24.0289
25.1962

24.8865
11.7156
20.3609
17.5946

18.738
11.7305
15.9356
13.5606

FIG. 91. Error For The Fits To The Full Data Set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M
u

n

CHAPTER 11. DATA FROM GENERATED DEBUGGING SEQUENCES 151

FIG. 92. OS Model Mean Progression For All Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S
U
M

tft
l
De

vo
tio
n

Su
nr
fa
tf

O
ov

ta
fcw

CHAPTER 11. DATA FR O M GENERATED DEBUG G ING SEQUENCES 152

FIG. 93. OS Model Standard Deviation Progression For All Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 11. DATA F R O M GENERATED DEBUGG ING SEQUENCES 153

FIG. 94. OS Model N Progression For All Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA FR O M GENERATED DEBUG G ING SEQUENCES 154

Set t -Jrtntfu-Mow'diModrf

0.00025

0 00015

Number O l FeAires

FIG. 95. Jelinski-Moranda Phi Progression For All Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11. DATA FRO M GENERATED DEBUGG ING SEQUENCES 155

FIG. 96. Jelinski-Moranda N Progression For All Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P
m

gn
/rt

 f
a*

M
m

fU
t*

W
W

IP
«y

*»
m

F*
A
«»

R
*l#

CHAPTER 11. DATA FROM GENERATED DEBUGG ING SEQUENCES 156

| oooas

FIG. 97. Musa Basic Initial Program Failure Rate Progression For All Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 11. DATA F R O M GENERATED DEBUG G ING SEQUENCES 157

FIG. 98. Musa Basic N Progression For All Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

D
ac

jf
Pmt

met
ei

O
eo

y
P

jw
tw

im

CHAPTER 11. DATA FR O M GENERATED D EBU G G IN G SEQUENCES 158

2 0017

FIG. 99. Musa Log Decay Parameter Progression For All Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

In
M

l
Pr

op
am

fa

ta

In
ta

i
Pr

op
am

Fa

du
ra

R

al
a

CHAPTER 11. DATA FRO M GENERATED DEBUGGING SEQ UENCES 159

FIG. 100. Musa Log Initial Program Failure Rate Progression For All Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h ap ter 12

T estin g A n E x is t in g Softw are
S y stem

The experiments described in the two previous chapters used pre-existing failure
data as input into the models. In order to gain more insight into the reliability
testing process using the mixed method approach to testing, the next step in
this work was to conduct an experiment that involved testing and debugging an
existing software system. This chapter describes the experiment and the results
that were obtained.

12.1 System D escription

The software system chosen for this experiment is the server portion of a real-time
alarm tracking software system used by Eastalco Aluminum Company. The plant
being monitored has two production lines with a total of 480 identical pieces
of equipment (pots) used in the process. For each of these pots, the values of
about 125 process variables (temperatures, effects, etc.) are tracked and fed to a
plant-wide data historian that stores the data in a relational database.

Once a minute, the alarm server software examines the data for each of the
240 pots in the production line and uses the values for 13 of the 125 available
process variables to determine if any of eight different alarm conditions are met.

160

with permission of the copyright owner Further reproduction prohibited without permission.

CHAPTER 12. TESTING A N E X IS T IN G SOFTW ARE SYSTEM 161

This alarm information is instantly available to plant management and plant floor

personnel, who are running the client portion o f the alarm software. Plant per­

sonnel are able to use the client software to quickly determine which pots are in

alarm, and are able to select a given pot to receive a graphical presentation (time

vs. value p lo t) o f all o f the significant process variables for th a t pot.

The server portion o f this software system consists o f two modules. The first

module is a 600 line Delphi program responsible for providing the server’s graph­

ical interface. This module also provides support fo r interprocess communication

w ith the client software. The second module is a 3500 line Dynamic Link Library

(D LL) w ritten using C + + . Th is D LL is responsible for retrieving the required

process data from the plant data historian and determ ining the alarm status for

each pot in the production line.

The alarm server software was chosen for this experiment for several reasons.

F irst, the lis t o f bugs discovered in this system had been maintained since the

software had been released for general use in the plant. Whenever a bug was

found during system use and the fix was applied, the orig inal (incorrect) code was

kept in the source program as a comment. Thus, for this experiment, i t was fa irly

straightforward to go back and construct a version o f the software containing all

o f the known faults. A to ta l o f 13 known faults were documented in the software.

A table detailing each of these faults w ill be presented la te r in this chapter.

Second, since the software had been running for several years in an industria l

environment, a large amount o f data was available to use for representative test­

ing. The lack o f representative data and the subsequent need to construct an

operational profile to drive testing is one of the basic problems confronting soft­

ware re liab ilty researchers. Selection o f this software system allowed us to avoid

this problem.

Th ird , the nature o f the outputs (byte values corresponding to a given alarm

state) made the creation of an automated oracle possible and fa irly straightfor­

ward. Some o f the other software systems we considered for use in this experiment

had ou tpu t tha t would be much more d ifficu lt to compare between the gold and

test versions. For example, one software system considered for this experiment

permission of the copyright owner. Further reproduction prohibited without permission.

C HAPTER 12. TESTING AN EXISTIN G SOFTW ARE SYSTEM 162

was a tex t form atting u tility . This system had a lis t o f bugs that would cause the

appearance o f the output document to differ between the test and gold version,

but the problem o f how to compare the ou tpu t o f the two versions autom atically

seemed d ifficu lt at best.

Fourth, the selected software consists o f over 4000 lines of code and contains

13 faults. The smaller programs we considered contained only a few faults, which

would not be useful for making re liab ility estimates.

Finally, the selected software is an application tha t is used in a real-world

environment, which made it much more attractive than using other alternatives,

such as student programs.

12.2 Experiment Setup

The experiment described in this chapter was intended to provide the software

re liab ility models under investigation w ith fa ilure data from the software system

under test. Setting up this experiment required several steps. This section de­

scribes each o f these steps.

12.2 .1 O b tain in g R ep resen ta tive D ata_

The first step in setting up this experiment was to obtain representative data

to use in the testing process. A program was developed to extract one year o f

representative data for each of the required process values from the plant data

historian at the plant where the software had been running for several years.The

extracted data was placed on a CD-R disk and was taken to the testing site where

it was transferred to a hard drive for use by the input driver of the experiment.

12.2 .2 S e ttin g U p T he In p u t D river

Once the representative data had been obtained from the plant, the next step was

to devise a way to feed this data to the alarm server in the test environment. A t

the plant, the data historian software receives inpu t from the pots and stores the

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TESTING A N E X IS T IN G SOFTWARE S Y S TE M 163

data in a relational database. The alarm server software then retrieves the process

data directly from this database and uses i t in its calculations.

For this experiment, the d rive r tha t feeds the plant data to the data historian

was modified to retrieve its data from a file-based source instead o f d irectly from

the pots. The input files used by this modified driver are te x t files containing

representative data extracted from the database files obtained from the plant.

This data is fed to the plant data historian, which stores i t in its database system

(just as i t does at the p lant). The alarm server then is able to retrieve this data

fo r its own use.

12 .2 .3 A u to m a tin g T h e Failure D etectio n P r o c e ss

In order to automate the fa ilu re detection process, a gold version o f the software

and an oracle were required. The gold version was readily obtained, as i t is

merely the alarm server software compiled w ith all o f the known faults removed.

Conditional compilation flags were utilized to allow a single code base to be used

to build both the gold and the test versions of the software.

An oracle was created to automate the process o f checking the outputs o f

the test version against the ouputs o f the gold version. Th is oracle consists of

a graphical interface showing the alarm status of each o f the pots in the gold

and test systems. Whenever a discrepancy is detected between the gold and test

versions, the oracle stops processing and outputs a log file de ta iling the time of the

failure, the number of test cases tha t have been run before the failure occurred,

and the nature o f the failure.

12.3 Estimating Fault Failure Rates

In order to use the data from the experiment w ith the mixed method approach to

testing, i t was neccesary to determine the operational fau lt fa ilure rates for each

o f the th irteen faults present in the test software. The fau lt fa ilure rate for each

fau lt was estimated by analyzing one month of representative data (44460 values

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TE S TIN G A N EXISTING SOFTW ARE SYSTEM 164

Fault Description FFR
1 Incorrect Tag Name For Breaker Faults 0.020923
2 Wrong zone name for Swing 0.000067204
3 Incorrect comparison for AE ACK 0.000224014
4 Incorrect operator for comparison to AE ’s lim it 0.2564516
5 Array o ff by one in swing queue wrapaxound 0.000002240
6 Incorrect comparison for swing active vals 0.00067204
7 Incorrect comparison for Soda Ash on alarm. 0.0291667
8 Incorrect comparison for Soda Ash off alarm. 0.000067204
9 Incorrect operator for comparison to BF on lim it. 0.020923
10 Incorrect operator for comparison to BF off lim it. 0.0146461
11 Incorrect comparison for swing active vals 0.000000093
12 Incorrect type for minute vals 0.000067204
13 Possibility o f negative number being passed to

sleep function, resulting in an infinite loop.
0.0000113811728

FIG . 101. The Fault Set

for each inpu t tag) to determine the number o f times each fault would manifest

as a failure. The set o f faults (along w ith the each fault failure rate) is shown in

Figure 101
As an example o f how the fau lt failure rates were calculated, let us consider

fau lt number seven, (Incorrect Operator For Soda Ash A larm On). During the

estimation process, i t was determined tha t th is fau lt w ill manifest as a failure

whenever the soda ash tag has a value of one. Therefore, the failure rate estimation

program was modified to calculate the percentage o f time tha t the soda ash tag

had a value of one during the m onth of data th a t was analyzed. This percentage

(.029166667) was used as the estimated fau lt fa ilu re rate for this fault.

As a second (s ligh tly different) example, le t us consider fau lt number eight,

(Incorrect Operator For Soda Ash A larm O ff). During the estimation process,

i t was determined tha t this fau lt w ill manifest as a failure whenever the soda

ash alarm acknowledgement tag has a value o f one AND the Soda Ash A larm is

active. The fau lt fa ilure rate (.000067204) was calculated by scanning one month

o f representative data to calcuate the percentage o f time that this combination of

input values occurred.

with permission of the copyright owner. Further reproduction prohibited without permission.

C HAPTER 12. TESTING A N EXISTING SOFTWARE SYSTEM 165

Fault Interfailure Time
1 180
10 2130
9 3390
2 2370
6 2370
12 180
11 180
13 29370
7 40830
8 14490
4 180

FIG. 102. Faults Found During Representative Testing

12.4 Representative Testing

The firs t part of this experiment involved testing the software using representative

methods. During this pa rt o f the experiment, the input driver was used to send

representative data to the data historian for use by the test software. The test

version o f the software was in it ia lly compiled to contain all o f the known faults.

As testing was conducted, the oracle compared output o f the gold version to the

output o f the test version. Whenever a discrepancy was found, the gold and test

versions were stopped and the fau lt responsible for causing the failure was found

and removed from the test version. The gold and test versions o f the software

were then restarted. Th is process was repeated for the duration of testing.

D uring the course o f this experiment, a tota l of about 200,000 test cases were

generated, executed, and tested for correctness. Testing was stopped after the

test software processed 100,000 consecutive test cases w ithou t a failure.

The list of faults th a t were found during representative testing is shown in

Figure 102. The first column o f the table shows the fau lt number, as given in

Figure 101. The second column of the table shows the interfa ilure time (in terms

o f number of test cases) for the fau lt. The faults in th is table are listed in the

same order in which they were found during this experiment.

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TESTING A N E XISTIN G SOFTW ARE SYSTEM 166

12.4.1 R e p r e se n ta tiv e T estin g R esu lts

As in the experiments presented in previous chapters, the analysis o f the models

consisted o f generating OP-Plots for each model for the data, comparing the best

fits for each model, and comparing the s ta b ility o f the models using parameter

progression plots.

Com paring T h e P red ic tiv e A ccuracy O f Each M odel

The OP Plots fo r each model are shown in Figures 103 to 106. To obtain the

OP Plots, the fa ilure data was input in to the models in incremental steps. For

example, for the firs t pass o f OP P lo t generation, only five failure rates were

used as input, and the models predicted the s ixth failure rate. This prediction of

the sixth fa ilu re rate was paired w ith the actual observed sixth fa ilure rate and

the result was plo tted as a point on the OP P lot. This process was repeated,

w ith an additiona l inpu t po in t being added during each step, un til a ll points were

considered.
When looking at the OP Plots for the models, i t appears tha t a ll o f the mod­

els performed s im ila rly under representative testing. These observations are sup­

ported by the data in Figure 107, which shows the relative error for the OP Plots

for each model.

Com paring T h e B e st F its For Each M od el

The best fits fo r each model under representative testing are shown in Figures 108

to 111. Once again, we see th a t all o f the models performed sim ilarly. The relative

error for the best fits for is model is shown in Figure 112. From the graphs, i t

appears tha t a ll o f the models were overly op tim is tic about the predicted program

failure rate.

Com paring T h e P aram eter P rogressions For Each M odel

The parameter progressions fo r each model are shown in Figures 113 to 121. These

graphs show how the estimated values fo r each model parameter changed from

with permission of the copyright owner. Further reproduction prohibited without permission.

C HAPTER 12. TESTING A N E X IS T IN G SOFTW ARE SYSTEM 167

Order Statistics Model (Representative Data)
0.01

cc 0.001<D
U -

E

0.0001
£al

1e-05
1e-05 0.0001 0.001

Observed Program Failure Rate
0.01

FIG . 103. OP P lo t For Order Statistics Model (Representative Data)

one step o f the OP P lot generation to the next. For all of the models under

representative testing, the model parameters are fa irly stable as long as the data

is fa ir ly stable. We see a change in the pattern for each parameter sequence when

the number o f failures is 6 on the X -Axis. Th is point in the data corresponds

to the point where the observed interfa ilure tim e goes from 180 to 29370, which

could be expected to cause a model to change its parameter estimates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 12. TESTING A N E X IS T IN G SOFTWARE SYSTEM 168

0.01

Jetinski-Moranda Model

0.001

0.0001

le -05
1e-05 0.0001 0.001

Observed Program Failure Rate

FIG . 104. OP Plot For Jelenski-Moranda Model(Representative Data)

0.01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Pr

og
ra

m

Fa
ilu

re

R
at

e

CHAPTER 12. TESTING A N E XIST IN G SOFTW ARE SYSTEM 169

Musa Basic Model
0.01 --------- ------■--- ■ ■ ■ ' ■ r rn----------.----- .--- .—........ ..

0.001 -

0.0001

1e-05
1e-05 0.0001 0.001 0.01

Observed Program Failure Rate

FIG . 105. OP P lot For Musa Basic Model (Representative Data)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C HA PTER 12. TESTING A N E X IS T IN G SOFTWARE SYSTEM 170

Musa Log Model
0.01

0.001

0.0001

1e-05
1e-05 0.0001 0.001

Observed Program Failure Rate
0.01

FIG . 106. OP Plot For Musa Log Model (Representative Data)

Model JM MB M L OS
E rro r 55.5226 54.2328 84.3532 54.0217

FIG . 107. Relative Error For The OP Plots Under Representative Testing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 12. TESTIN G A N EXISTING SO FTW ARE SYSTEM 171

LS Fit For Order Statistics Model (Representative Data)
0.01 r----------------------------- 1----------------------------- 1------------------------------r

0.001 r

0.0001 -

1e-05

Observed +
Predicted x

10
Failure Number

FIG- 108. Best F it For Order Statistics Model (Representative Data)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
og

ra
m

Fa

ilu
re

R

at
e

CHAPTER 12. TESTING A N EXISTIN G SOFTW ARE SYSTEM 172

LS Rt For Jelinski-Moranda Model
0.01

0.001

0.0001 -

1e-05

Predicted

4 6
Failure Number

FIG . 109. Best F it For Jelinski Moranda Model (Representative Data)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TESTING A N E X IS T IN G SOFTWARE SYSTEM 1

LS Fit For Musa Basic Model
0.01

Observed
Predicted

0.001o
cc
CD

COu_
e
COo>o

^ 0.0001

1e-05
10

Failure Number

FIG . 110. Best F it For Musa Basic Model (Representative Data)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C HAPTER 12. TESTING A N EXISTING SOFTW ARE SYSTEM 174

LS Rt For Musa Log Model
0.01

<5DCa>

0.001 -

0.0001 -

1e-05

Predicted

4 6
Failure Number

FIG . 111. Best F it For Musa Log Model (Representative Data)

Model JM MB M L OS
Error 7.74072 7.73239 7.88717 7.80969

F IG . 112. Relative E rror For The Best F its Under Representative Testing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TESTING A N E X IS T IN G SOFTWARE SYSTEM 175

-9.5

-10

-10.5

-11

S -11.5

-12

-12.5

-13

-13.5
0 1 2 3 4 5

Number Of Failures

FIG . 113. OS Model Mean Progression W ith Representative Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Order Statistics Model

St
an

da
rd

D

ev
ia

tio
n

CHAPTER 12. TESTIN G A N EXISTIN G SOFTW ARE SYSTEM 176

0.7 ------------------------------ 1------------------------------- 1 f i

0.6 - +

0.5 -

0.4 -

0.3 -

0.2 -

o.i -

0 t------------------- 1-------------------- ±--------------------«--------------------- «--------------------
0 1 2 3 4 5

Number Of Failures

FIG. 114. OS Model Standard Deviation Progression With Representative Data

Order Statistics Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TESTING A N E X IS T IN G SOFTW ARE SYSTEM 1 1 1

26

24

22

20

18

16

14

12

10

8
0 1 2 3 4 5

Number Of Failures

FIG . 115. OS Model N Progression W ith Representative D ata

Order Statistics Model
T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TESTING A N E XIST IN G SOFTW ARE SYSTEM 1

Jelinski-Moranda Model
6e-05 ----------------------------- 1-------------------------------1------------------------------1------------------------------ 1-----------------------------

+■

5e-05 -

4e-05 -

£ 3e-05 -

+
2e-05 . r

+ +

1e-05 -

0 1 1 ■ 1 -
0 1 2 3 4 5

Number Of Failures

FIG . 116. Jelinski-Moranda Phi Progression W ith Representative Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TESTING A N EXISTING SOFTW ARE SYSTEM 179

26

24

22

20

18

16

14

12

10

8
0 1 2 3 4 5

Number Of Failures

FIG . 117. -Jelinski-Moranda N Progression W ith Representative Data

Jelinski-Moranda Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In
iti

al
 P

ro
gr

am

Fa
ilu

re

R
at

e

C H A PTER 12. TESTING A N E X IS T IN G SOFTW ARE SYSTEM 180

0.00055

0.0005

0.00045

0.0004

0.00035

0.0003

0.00025

0.0002

0.00015

0.0001

5e-05

0
0 1 2 3 4 5

Number Of Failures

FIG . 118. Musa Basic In itia l Failure Rate Progression W ith Representative Data

Musa Basic Model

t----------------------------- 1----------------------------- 1----------------------------- r

+-

+

J________________________I-- 1--L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTER 12. TESTING A N E X IS T IN G SOFTWARE SYSTEM 181

55

50

45

40

2 35

30

25

• 20

15
0 1 2 3 4 5

Number Of Failures

FIG . 119. Musa Basic N Progression W ith Representative Data

Musa Basic Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TESTING A N EXISTING SOFTW ARE SYSTEM 182

Musa Log Model

2 3
Number Of Failures

FIG. 120. Musa Log In itia l Failure Rate Progression W ith Representative Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

De
ca

y
P

ar
am

et
er

CHAPTER 12. TESTIN G A N E X IST IN G SOFTW ARE SYSTEM 183

Musa Log Model
0.0014

0.0012 -

0.001 -

0.0008 -

0.0006

0.0004 -

0.0002

2 3
Number Of Failures

FIG. 121. Musa Log Decay Progression W ith Representative Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHA PTER 12. TESTIN G A N E X IS T IN G SOFTW ARE SYSTEM 184

12.5 Mixed Method Testing

The second part o f th is experiment involved testing the software using the mixed

method approach to testing described in earlier chapters. D uring the represen­

ta tive testing phase o f the mixed method testing process, the input driver fed

representative data to the data historian for use by the test software. The test

version of the software was in it ia lly compiled to contain a ll o f the known faults.

As testing was conducted, the oracle compared output o f the gold version to the

ou tpu t o f the test version. Whenever a discrepancy was found, the gold and

test versions were stopped and the fau lt responsible for causing the failure was

found and removed from the test version. The gold and test versions of the soft­

ware were then restarted. Th is process was repeated un til one fu ll day o f testing

passed w ithout finding any new faults. A t th is time, the testing process switched

from representative testing to directed testing. To reach this point in the testing

process required a to ta l o f 85,800 test cases, w ith the last 43,200 of these test

cases being run to satisfy the crossover criteria.

A fte r switching to directed testing, the inpu t driver was fed uniform random

data for each tag value. Th is data then sent to the data historian and fina lly

to the alarm server software. The directed testing crite ria tha t was used for this

experiment was statement coverage. For th is experiment, instrumentation was

added to the software being tested to keep track of which lines of code had been

executed during the testing process. Th is inform ation was logged to output files

for analysis to aid in the creation o f the test cases required to meet the coverage

requirements.

A to ta l o f 5400 test cases were run (sim ulating three hours o f system execution)

using uniform random data. D uring this interval, about 74 percent coverage

was obtained. The remainder o f the directed testing process involved directly

targeting specific unexecuted lines o f code and creating test cases to execute as

many o f those lines o f code as possible. A to ta l coverage of about 95 percent was

eventually obtained. None o f the unexecuted code contained any of the faults

being tested for. The uncovered code consisted of error handling code tha t would

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TESTING A N EX IST IN G SOFTWARE SYSTEM 185

Fault Interfailure Time Fault Failure Rate
1 9270
9 10260
4 3810
2 180
12 2100
6 1170
10 5700
13 3750
3 .000224014
7 .02916
8 .000067204

FIG. 122. Faults Found During Mixed Testing

be executed in case of corrupted databases, indexes, or network failures.

During the course o f this experiment, a to ta l o f about 91,000 cases were gen­

erated, executed, and tested for correctness, w ith about 94 percent o f these test

cases occuring during the representative phase of testing.

The list o f faults tha t were found during mixed testing are shown in Figure

122. The first column o f the table shows the fau lt number, as given in Figure 101.

The second column o f the table shows the interfailure tim e (in terms of number

o f test cases) for the fau lt i f i t was found during representative testing. The th ird

column of the table shows the fau lt failure rate for the fau lt i f i t was found during

directed testing. The faults in this table are listed in the same order in which they

were found during this experiment. The set o f faults found under mixed testing

and the set o f faults found under representative testing are very sim ilar. In fact,

they only d iffer by one element. This observation lends support to the Ordered

Directed Testing Property, which states tha t directed and representative testing

w ill uncover largely the same set o f faults as testing approaches coverage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 12. TESTING A N E XISTIN G SO FTW A R E SYSTEM 186

12.5 .1 M ixed T estin g R esu lts

Since the failure data under mixed testing was gathered separately from the data

gathered under representative testing, the observed failure times were very differ­

ent. These differences would make i t d ifficu lt to make meaningful comparisions

between the Order Statistics Model under mixed testing and the other models un­

der representative testing. For this reason, hybrid versions o f the Jelinski-Moranda

Model, the Musa Basic Model, and the Musa Log Model were developed during

th is research.

Like the Order Statistics Model, these hybrid models w ill accept failure data

in the form o f either program failure rates or fa u lt failure rates. The hybrid

models were developed by m odifying the existing models to make fau lt failure

rate predictions based on the existing model parameters. The calculation made

by each model to predict fau lt failure rates is derived from tha t model’s program

failure rate calculation.

When estim ating fau lt failure rates, the Jelinski Moranda H ybrid Model uses

the follow ing calculation:

f f n = <t> (23)

where 4> has the same meaning els in the orig ina l model. This equation for the

fau lt failure rate follows immediately from the Jelinksi-Moranda equation for the

program failure rate which is:

At- = { N - i)d>. (24)

When estim ating fau lt failure rates, the Musa Basic Hybrid Model uses the

follow ing calculation:

f f r t = ^ (25)
^0

where A0 and v0 have the same meaning as in the orig ina l model. Th is equation

for the fau lt failure rate was orig ina lly derived by Musa. [12]

When estim ating fau lt fa ilure rates, the Musa Log Hybrid Model uses the

fo llow ing calculation:

f f r i = Ao0 e x p (-0 i) (26)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12. TESTIN G A N E X IS T IN G SOFTWARE S Y S T E M 187

where A0 and 0 have the same meaning as in the original model. Th is equation

for the fau lt failure rate was also orig ina lly derived by Musa. [12]

Once these hybrid models were developed, they were applied to the failure

data from mixed testing and the results were analyzed. Once again, the analysis

was carried out by generating O P-Plots for each model for the data, comparing

the best fits for each model, and comparing the s tab ility o f the models using

parameter progression plots.

C om paring T he P red ic tiv e A ccu racy Of Each M odel

The OP Plots for each model are shown in Figures 123 to 126. To obtain the

OP Plots, the failure data was in p u t into the models in incremental steps. For

example, fo r the firs t pass o f OP P lo t generation, only five fa ilure rates were

used as input, and the models predicted the sixth failure rate. Th is prediction of

the sixth failure rate was paired w ith the actual observed s ix th fa ilure rate and

the result was plo tted as a po int on the OP Plot. This process was repeated,

w ith an additional inp u t po in t being added during each step, u n til a ll points were

considered.

When looking at the OP Plots fo r the models, i t appears th a t a ll o f the models

performed sim ilarly under mixed testing. These observations are supported by the

data in Figure 127, which shows the relative error for the OP P lots for each model.

When comparing the results under mixed testing to the results under repre­

sentative testing, one item of note is th a t the relative errors under mixed testing

are less than the relative errors under representative testing. However, a large

part o f the discrepancy between theses results can be explained by the nature of

the data used as inpu t to the models. The data in Figure 102 appears to be much

more erratic and noisy than the data in Figure 122. For example, consider the

starting sequence o f program failure rates in Figure 102. A fte r seeing program

failure rates o f 180, 2130, 3390,2370, 2370, i t is not likely tha t any model w ill pre­

d ic t a subsequent failure rate o f 180, which is the next oberved value. Likewise,

after seeing 180,2130, 3390, 2370, 2370,180,180, i t is not like ly th a t any model

w ill predict tha t the next value w ill be anywhere close to 29370, which is the next

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Fa

ilu
re

R

at
e

CHAPTER 12. TE S TIN G A N EXISTING SO FTW ARE SYSTEM

Order Statistics Mode! (Mixed Data)

1e-06

0.01

0.001

0.0001

1e-05 -

1e-05 0.0001 0.001
Observed Failure Rate

0.01

FIG. 123. OP P lo t For Order Statistics M odel (M ixed Data)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Fa

ilu
re

R

at
e

CHAPTER 12. TESTING A N EX IST IN G SOFTWARE SYSTEM 189

Jelinski-Moranda Model (Mixed Data)

0.01

0.001

0.0001

1e-05

1e-06
1e-05 0.0001 0.001

Observed Failure Rate
0.01

FIG . 124. OP P lot For Jelenski-Moranda Model(Mixed Data)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr
ed

ict
ed

Fa

ilu
re

R

at
e

C H A PTER 12. TESTIN G A N E XISTIN G SO FTW ARE SYSTEM 190

Musa Basic Model (Mixed Data)

0.01

0.001

0.0001

1e-05

1e-06
1e-05 0.0001 0.001

Observed Failure Rate
0.01

FIG . 125. OP P lot For Musa Basic Model (M ixed Data)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 12. TESTIN G A N E XISTIN G SO F TW A R E SYSTE M 1 9 1

0.1 c

0.01 r

£
CO
©

fi* 0.001 r
T3©
O
*o©
cl

0.0001 r

1e-05
1e-05

Musa Log Model (Mixed Data)

0.0001 0.001
Observed Failure Rate

FIG. 126. OP Plot For Musa Log Model (Mixed Data)

Model JM MB ML OS
Error 4.42641 4.43517 4.54007 4.50907

FIG. 127. Relative Error For The OP Plots Under Mixed Testing

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C H APTER 12. TESTING A N EXISTING SO FTW ARE SYSTE M 1 9 2

observed value. The data in Figure 102 does not exhibit these large swings in
order of magnitude for the observed values, resulting in better predictions by the
model.

Therefore, since it seems like model performance is dependent largely on the
nature of the input data, it follows that the failure data acquisition process and
the type of failure data used has as much or more impact on the quality of the
predictions made as any other factor.

Comparing The Best Fits For Each Model

The best fits for each model under mixed testing are shown in Figures 128 to
131. Once again, we see that all of the models performed similarly. The relative
error for the best fits for is model is shown in Figure 132. From the graphs, it
appears that all of the models were overly optimistic about the predicted program
failure rate. This optimism can possibly be explained by the fact that the first
two observed interfailure times are the largest of all observed values, which would
lead the models to believe that the software is more reliable than it really is.

Comparing The Parameter Progressions For Each Model

The parameter progressions for each model are shown in Figures 133 to 141. These
graphs show how the estimated values for each model parameter changed from
one step of the OP Plot generation to the next. For all of the models under mixed
testing, the model parameters are fairly stable as long as the data is fairly stable.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Pr
og

ram

Fa
ilu

re
Ra

te

C H APTER 12. TE STIN G A N EXISTING SO F TW A R E SY S T E M 1 9 3

o.oi

0.001

0.0001

1e-05

LS Rt For Order Statistics Model (Representative Data)

Predicted x

4 6
Failure Number

FIG. 128. Best F it For Order Statistics Model (Mixed Data)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Pr
og

ram

Fa
ilu

re
Ra

te

C H APTER 12. TE STIN G A N E XISTIN G SO F TW A R E SY ST E M

0.01

0.001

0.0001

ie-05

LS Rt For Jelinski-Moranda Model

Observed
Predicted+ +

_ 1 --- - L -

4 6
Failure Number

FIG. 129. Best F it For Jelinski M oranda Model (Mixed Data)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Pr
og

ram

Fa
ilu

re
Ra

te

CHAPTER 12. TESTIN G A N EXISTIN G SO FTW ARE SY ST E M 1 9 5

0.01

0.001 ;

0.0001

1e-05 L
0

LS Rt For Musa Basic Model
 1 1-------

Observed +
Predicted x

4 6 8 10

Failure Number

FIG. 130. Best F it For Musa Basic Model (Mixed Data)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 12. TESTING A N E X ISTIN G SO F TW A R E S Y S T E M 1 9 6

LS Fit For Musa Log Model
0.01

Observed
Predicted

0.001

0.0001

1e-05
106 840 2

Failure Number

FIG. 131. Best F it For Musa Log Model (Mixed Data)

Model JM MB ML OS
Error 6.44925 6.45965 6.20296 6.45437

FIG . 132. Relative Error For The Best Fits Under Mixed Testing

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

M
ea

n

CH APTER 12. TE STIN G A N EXISTING SO F TW A R E SY ST E M

-12.24 r-

-12.26 -

-12.28 -

-12.3 -

-12.32 -

-12.34 -

-12.36 -

-12.38 -

-12.4 -

-12.42 -
0

FIG. 133. OS Model Mean Progression W ith Mixed D ata

Order Statistics Model
— i--- 1—

2 3
Number Of Failures

1 9 7

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

St
an

da
rd

De

vi
at

io
n

CHAPTER 12. TESTING A N E XISTIN G SO FTW ARE S Y S T E M 1 9 8

Order Statistics Model
0.4 r---------------------------1---------------------------- r

0.35

0.25 -

0.15 -

0.05 -

2 3
Number Of Failures

FIG. 134. OS Model Standard Deviation Progression W ith Mixed Data

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 12. TESTIN G A N EXISTING SO F TW A R E SYST E M 1 9 9

Order Statistics Model

2 3
Number Of Failures

FIG. 135. OS Model N Progression W ith Mixed Data

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C H APTER 12. TESTING A N E X ISTIN G SO FTW ARE SY ST E M 2 0 0

5.1e-06

5e-06

4.9e-06

4.8e-06

4.7e-06

4.6e-06

4.5e-06

4.4e-06

4.3e-06

4.2e-06

4.1e-06
0 1 2 3 4 5

Number Of Failures

FIG. 136. Jelinski-Moranda Model Phi Progression W ith Mixed D ata

Jelinski-Moranda Model (Mixed Data)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 12. TE STIN G A N EXISTING SO F TW A R E SY ST E M

Jelinski-Moranda Model (Mixed Data)
26

25

24

23

22

21
2 3
Number Of Failures

FIG. 137. Jelinski-M oranda Model N Progression W ith Mixed Data

2 0 1

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Ini
tia

l P
rog

ram

Fa
ilu

re
Ra

te

CHAPTER 12. TESTING A N EXISTING SO FTW ARE SY S T E M 2 0 2

0.0001145

0.000114

0.0001135

0.000113

0.0001125

0.000112

0.0001115

0.000111

0.0001105
0 1 2 3 4 5

Number Of Failures

FIG. 138. Musa Basic Model Initial Failure Rate Progression W ith Mixed Data

Musa Basic Model (Mixed Data)
 1 1---------

+

+

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 12. TE STIN G A N EXISTIN G SO F TW A R E SY ST E M

52

50 \-

48 \-

46 \-

44 h

42 4-
0

FIG. 139. Musa Basic Model N Progression W ith Mixed D ata

Musa Basic Model (Mixed Data)
 , ,------------------

j_________________ l_
1 2 3

Number Of Failures

2 0 3

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C H A P TE R 12. TESTIN G A N E XISTIN G SO F TW A R E S Y S T E M 2 0 4

Musa Log Model (Mixed Data)

° - 1 - ---- i 1 1

0.09 - -

0 .08 - 4- -

0 .07 _ _

caaz 0.06 - -
©
3
lau_ 0.05 - -
Ecc
a> 0.04 - -
o
£X
js 0.03 " -

0 .02 - -

0.01 - -

0 -

I

+ + +

»

'

“U.U1
c) 1 2 3 4 5

Number Of Failures

FIG. 140. Musa Log Model Initial Failure Rate Progression W ith Mixed Data

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

De
ca

y
Pa

ra
m

et
er

CHAPTER 12. TE STIN G A N EXISTIN G SO F TW A R E SYSTE M 2 0 5

Musa Log Model (Mixed Data)
0 .0 0 0 1 2 1 1 1---------

0.000118 -

0.000116 -

0.000114 -

0.000112 -

0.00011 -

0.000108 -

0.000106 1 1 1 1-----------------------------
0 1 2 3 4 5

Number Of Failures

FIG. 141. Musa Log Model Decay Progression With Mixed Data

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CH APTER 12. TE STIN G A N E XISTIN G SO F TW A R E S Y S T E M 206

12 .5 .2 C on clu sion s

During this experiment, in addition to the results detailed above, some basic
observations were made about the general nature of the software reliability testing
process. These observations, in combination with observations m ade in previous
experiments, support a move away from using program failure ra tes for reliability
testing.

F irst, the amount of statistical noise present in the program failure rate data
is apparent simply by looking a t the failure data obtained during representative
testing. It is hard to imagine any model being able to fit to this data. Similar
results were observed in the previous experiments. All of the representative data
sets examined during the course of this research exhibited this problem. Since all
models performed similarly for all da ta sets during this research, i t appears that
any models based on the use of data obtained during testing will no t provide any
better estimates.

Second, several artifacts of the testing process were observed th a t caused mis­
leading results because of the use of observed program failure rates for making
reliability estimates. Specifically, we observed that two of the th irteen faults in
the te s t software (Faults 11 and 12) cause an incorrect variable initialization when
reading in the history values for the associated tags a t system sta rtup . Since these
history values are only used during the first hour of the software’s execution, these
faults will only manifest as failures during the first hour of testing- Thus, the in­
terfailure time will always be low for such a manifestation, and a large fault failure
rate would be assumed for these faults. This problem is made worse by the fact
th a t during testing the test software will be restarted quite frequently, giving these
faults more of an opportunity to manifest and thereby introduce misleading data
into th e reliability model. During actual use the software, a res ta rt only occurs a
few tim es a year. During the actual estimation of the fault failure ra tes conducted
a t the s ta r t of this experiment, it was found that these faults have low fault failure
rates (0.000067204 and 0.000000093, respectively).

Therefore, we have direct evidence that the use of observed program failure
rates can lead to poor reliability estimates and predictions. This evidence supports

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 12. TESTIN G A N E X IST IN G SO F TW A R E SYST E M 2 0 7

our suggestion th a t the emphasis in software reliability modelling be shifted from
the use of program failure rates to fault failure rates wherever possible. The
Order Statistics Model developed in this dissertation represents a first step in this
direction.

During the course of this experiment, all of the models performed similarly
for the observed failure data. However, by using the mixed method approach to
testing developed earlier in this dissertation, the models required only about half
of the number of test cases to provide their estimates.

During this experiment, several existing models were modified to allow them
to provide estim ates of fault failure rates in addition to the estimates of program
failure rates th a t they already provide. T his modification enabled these models
to use the da ta from the mixed method approach to testing, with similar results
to those obtained by the Order Statistics Model.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C hap ter 13

C onclu sions A n d Future
D irection s

In this chapter, the results of the research described in this disseration are sum­
marized and future areas of research are suggested.

13.1 R esu lts O f T h is W ork

This section describes the results of this work with respect to each of the goals
defined in Chapter 4.

13 .1 .1 D evelop m en t O f A M ixed M e th o d A p p roach To

T esting

Prior to this work, software reliability testing was conducted using only represen­
tative testing methods. In this work, a mixed method approach to testing was
developed that employs both representative and directed testing methods. Each
type of testing method is used when it is most efficient to do so, in order to accel­
erate the reliability testing process. During the final two experiments discussed in
this dissertation, using the mixed method approach to testing required far fewer
test cases than were required by representative testing.

208

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 13. CONCLUSIONS AND FU TU RE D IREC TIO NS 2 0 9

13.1.2 D eve lop m en t o f T echn iques To A llow R eliab ility

E stim a tio n R egardless O f T h e T estin g M eth o d

U sed

Observed failure times during testing can only be used for reliability estimation
if testing is conducted using representative methods. Since the mixed method
approach to testing uses directed testing methods for a portion of the testing
process, failure data gathered using this process cannot be used for reliability
modelling.

One of the goals of this research was to develop techniques for obtaining failure
rate data th a t does not depend on the way th a t a program is tested. This goal
was accomplished by switching the emphasis of data collection from quantities
observed during testing to quantities obtained during debugging.

Specifically, the random variable of interest for reliability estimation is
switched from observed program failure rates to individual fault failure rates.
Several methods for estimating fault failure rates were suggested and several of
these methods were used in the experiments conducted during this work.

13.1 .3 D ev e lo p m en t O f A Softw are R elia b ility M od el C a­

p ab le O f U sin g D irected T estin g D a ta

Traditional software reliability models require tha t failure da ta take the form of
observed failure times during representative testing. During the course of this re­
search, a software reliability model based on order statistics was developed. This
model differs from existing models, in that it allows data from both representa­
tive and non-representative testing to be used as input. All of the experiments
conducted during this work confirmed that the Order Statistics Model provides
estimates and predictions as good as or better than the existing models th a t it
was compared to.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C H A P TE R 13. CONCLUSIONS AN D FUTURE D IR EC TIO N S 2 1 0

1 3 .1 .4 D evelop m en t O f H ybrid V ersions O f E x is tin g M od ­

els

Several existing models were modified to allow them to use fault failure rate data,
in addition to the program failure rate data tha t they already use. This modifi­
cation enabled these models to use the data from the mixed m ethod approach to
testing to make reliability estim ates. These hybrid models performed similarly to
the Order Statistics Model. The techniques used to convert these models could
also be used with other models.

13 .1 .5 E valuation O f T h e S u itab ility O f T im e B a sed D a ta

For R elia b ilitly E stim a tio n

As each experiment was conducted during this research, it became more and more
apparent tha t observed program failure rates are poorly suited for making accurate
reliability estimates and predictions. By their very nature, observed program
failure rates will vary widely as testing is conducted. In order to minimize the
noise and to provide stable d a ta to reliability models, one must either combine
m ultiple occurrences of a failure to obtain a better picture of the true current
program failure rate, or move away from the program failure rate. In any event, it
has become clear that using program failure rates based on software failures during
testing does not provide good d a ta to use as the basis of reliability modeling.

13.2 Future D irectio n s

The work completed during the course of this research has provided some insight
into the software reliability testing process and has suggested some ways to im­
prove this process. As with any research, this work can be extended in several
directions. This section outlines some of these potential areas of future research.

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

C H A P TE R 13. CONCLUSIONS AND FU TU RE D IREC TIO NS 2 1 1

13 .2 .1 R efin em en t O f M eth od s O f F ault Failure R a te Es­

tim a tio n

Several techniques for determining fault failure rates were suggested in this dis­
sertation. Some of these techniques were used during this work, but further devel­
opment of these techniques will allow fault failure rate estim ates to be made more
accurately and a t lower costs, especially in the absence of existing representative
data .

13 .2 .2 D ev e lo p m en t O f A M o d el T h a t U ses O n ly Fault

Failure R a tes

A nother possible direction of future research is the development of a software
reliability model th a t uses fault failure rates exclusively. During the course of this
research, it became increasingly clear that program failure rates are not suited
for making reliablity estimates because of their noisy nature. A model based
solely on fault failure rates should provide more stable and accurate estimates
and predictions than any of the existing models th a t rely on program failure
rates.

It would be interesting to design this model in such a way that the software
reliability engineering process could parallel the engineering process that is already
used by other disciplines. For example, when engineers design a dam, it may be
built to withstand a one hundred year flood, but maybe not a five hundred year
flood. The reliability testing process could follow a similar procedure. Instead of
working with the number of faults remaining in the program, the model would
have a param eter that specifies a threshhold value th a t denotes the smallest fault
th a t is of interest. For example, the analyst would be able to specify tha t he
doesn’t care about faults tha t occur less often than once a year. The output of
the model could then be used to determine if the software has met this reliability
criteria. In other engineering disciplines, such design methodologies are currently
guided by the use of asymptotic order statistics. Thus, this new model would be
a variation on the model developed in this dissertation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

B ib liograp h y

[1] S. Brocklehurst and B. Littlewood. New ways to get accurate reliability
measures. IE E E S o ftw a re , pages 34-42, 1992.

[2] R. Butler and G. Finelli. The infeasibility of quantifying the reliability of
life-critical real-time software. IE E E T ran sac tion s O n S o ftw a re E n g in eerin g ,

pages 3-12, 1993.

[3] R. Cobb and H. Mills. Engineering software under statistical quality control.
IE E E S o ftw a re , pages 44-54, 1990.

[4] H.A. David. O rd e r S ta tis tic s . John Wiley and Sons, Inc., 1970.

[5] M. Friedman and J. Voas. S o ftw a re A sse ssm e n t. John Wiley Sons, Inc, 1995.

[6] A. Goel and K. Okumoto. Time-dependent error-detection rate model for
software reliability and other performance measures. IE E E T ra n sa c tio n s O n

R e lia b ility , pages 206-211, 1979.

[7] D. Hamlet. Are we testing for true reliability? IE E E S o ftw a re , pages 21-27,
July 1992.

[8] D. Hamlet and J. Voas. Faults on its sleeve: Amplifying software reliability
testing. P roceed in gs O f The In te rn a tio n a l S ym p o siu m O n S o ftw a re T estin g

A n d A n a ly s is , pages 89-98, 1993.

212

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

B IBLIO G R AP H Y 2 1 3

[9] Mary Ann Hoppa and Larry W. Wilson. Some effects of fault recovery order
on software reliability models. In F ifth I n te r n a t io n a l S ym p o siu m on S o f t­

w are R e lia b ili ty E n g in e e r in g (IS S R E 94), pages 338-342, Los Alamitos, CA,
November 1994. IE EE Com puter Society press.

[10] Howden. Weak m utation testing and completeness of test sets. I E E E

T ra n sa ca tio n s O n S o ftw a re E n g in e e r in g , SE-8(2):371-379, July 1982.

[11] W. Howden. Functional program testing. I E E E T ra n sa c tio n s O n S o ftw a re

E n g in eerin g , SE-6(2):162—169, March 1980.

[12] J. Musa A. Ianno and K. Okumoto. S o f tw a r e R e lia b ility : M ea su rem en t,

P re d ic tio n , A p p lic a t io n . McGraw-Hill Book Company, 1987.

[13] Z. Jelinski and P. M oranda. Software reliability research. S ta ts ica l C o m p u te r

P e rfo rm a n c e E v a lu a t io n , pages 465—484, 1972.

[14] D. Richardson L. Clarke, A. Podgurski and Steven J. Zeil. A formal evalu­
ation of data flow pa th selection criteria. I E E E T ra n sa c tio n s O n S o ftw a re

E n g in eer in g , 15(11):1318—1332, November 1989.

[15] B. Littlewood. Stochastic reliability-growth: A model for fault removal in
coputer programs and hardware-design. I E E E T ra n sa c tio n s O n R e lia b ility ,

pages 313-320, 1981.

[16] P. Maurer. R e fe re n c e M a n u a l F or A D a ta G e n e r a tio n Language B a se d O n

P ro b a b ilis tic C o n te x t F ree G ra m m a rs . Departm ent Of Computer Science And
Enginerring, University Of South Florida.

[17] B Mitchell and S Zeil. A reliability model combining representative and
directed testing. P ro c e ed in g s o f th e I n te m a t io n C o n feren ce O n S o ftw a re E n ­

g in eerin g , 1996.

[18] P. Moranda. Predictions of software reliability during debugging. In P ro ­

ceedings A n n u a l R e l ia b i l i ty a n d M a in ta in a b ili ty S y m p o siu m , pages 327—332,
Washington D.C., 1975.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

B IB LIO G R A P H Y 2 1 4

[19] J. Musa. Software reliability data . B e ll T e lep h o n e L a b o ra to rie s , 1979.

[20] J. Musa. Operational profiles in software reliability engineering. I E E E S o f t­

w a re , pages 14-32, March 1993.

[21] G. Myers. T h e A r t O f S o ftw a re T es tin g . John Wiley and Sons, Inc., 1979.

[22] S. Yamada M. Ohba and S. Osaki. S-shaped reliability growth modeling for
software error detect ion. I E E E T ra n sa c tio n s O n R e lia b ili ty , pages 475—478,
1983.

[23] T. O strand and M. Balcer. The category-partition m ethod for specifying and
generating functional tests. C o m m u n ic a tio n s O f T h e A C M , pages 676-686,
1988.

[24] R. Lipton R. DeMillo and F. Sayward. Hints on test da ta selection: Help for
the practicing programmer. C o m p u te r , pages 34-41, 1978.

[25] S. Rapps and J. Weyuker. D ata flow analysis techniques for test d a ta se­
lection. In P roceed in gs o f th e S ix th I n te r n a tio n a l C on feren ce O n S o f tw a re

E n g in e e r in g , September 1982.

[26] Y. Malaiya Naixin Li J. Bieman R. Karcich B. Skibbe. The relationship
between test coverage and reliability. I E E E T ra n sa c tio n s On S o ftw a re E n g i­

n eerin g , pages 186—195, 1994.

[27] J. Voas. Pie: A dynamic failure based technique. I E E E T ra n sa c tio n s O n

S o ftw a re E n g in e e r in g , pages 717-727, 1992.

[28] E. Weyuker. On testing non-testable programs. T he C o m p u te r J o u rn a l, pages
465-470, 1982.

[29] L. W hite. Software testing and verification. A d v a n ces In C o m p u te rs , pages
335-391, 1987.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

B IB LIO G R A P H Y 2 1 5

[30] Lee J. W hite and Edward I. Cohen. A domain strategy for computer program
testing. IE E E T ra n sa c tio n s O n S o ftw a re E n g in eer in g , SE-6(3):247-257, May
1980.

[31] C. Wild, S. Zeil, J. Chen, and G. Feng. Employing accumulated knowledge to
refine test cases. S o ftw a re T estin g , V erifica tion , a n d R e lia b ility , 2(2):53-68,
July 1992.

[32] S. Zeil. Pertubation techniques for detecting domain errors. IE E T ra n sa c tio n s

O n S o ftw a re E n g in eerin g , pages 737-746, 1989.

[33] S. Zeil, A. Biser, L. Cai, H. Huang, T. Ireland, B. Mitchell, and G. Walker.
A formal specification of the rsdimu inertial navigation system. Technical
report, Old Dominion University, 1993.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

V ita

Brian Michael Mitchell
Department of Computer Science
Old Dominion University
Norfolk, VA 23529

Brian Mitchell received a B.S. in Mathematics from Hampde*i-Sydney College
in May of 1991. He received a M.S. in Computer Science frorm Old Dominion
University in August of 1993. He works as an independent con trac to r developing
software.

Typeset using DT^X.

216

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Old Dominion University
	ODU Digital Commons
	Spring 2001

	A Software Reliability Model Combining Representative and Directed Testing
	Brian Michael Mitchell
	Recommended Citation

	tmp.1570108797.pdf.t0AkU

