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A BSTR A C T

A SOFTW ARE RELIABILITY MODEL  
CO M BINING  REPRESENTATIVE A N D  

DIRECTED TESTING

Brian Michael M itchell 

Old Dominion University, 2001 

Director: Dr. Steven Zeil

Traditionally, software re liab ility  models have required tha t failure data be gath­

ered using only representative testing methods. Over time, however, representa­

tive testing becomes inherently less effective as a means o f im proving the actual 

quality o f the software under test. Additionally, the use of failure data based on 

observations made during representative testing has been criticized because o f the 

statistical noise inherent in this type of data. In  th is dissertation, a testing method 

is proposed to  make re liab ility  testing more efficient and accurate. Representative 

testing is used early, when the rate of fau lt revelation is high. Directed testing 

is used later in  testing to take advantage o f its faster rate o f fau lt detection. To 

make use o f the test data from this mixed method approach to testing, a software 

re liab ility  model is developed that permits re liab ility  estimates to  be made re­

gardless of the testing method used to gather failure data. The key to  being able 

to combine data from  both representative testing and directed testing is shifting 

the random variable used by the model from observed interfailure times to a post­

mortem analysis o f the debugged faults and using order statistics to  combine the 

observed failure rates o f faults no m atter how those faults were detected. This 

sh ift from interfa ilure times removes the statistica l noise associated w ith  the use 

of this measure, which should allow models to provide more accurate estimates 

and predictions. Several experiments were conducted during the course o f this 

research. The results from these experiments show tha t using the mixed method 

approach to  testing w ith  the new model provides re liab ility  estimates tha t are at
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least as good as estimates from existing models under representative testing, while 

requiring fewer test cases. The results o f this work also show th a t the high level 

o f noise present in failure data based on observed failure times makes i t  very d if­

ficu lt fo r models tha t use this type o f data to make accurate re lia b ility  estimates. 

These findings support the suggested move to the use o f more stable quantities 

for re lia b ility  estimation and prediction.
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C hapter 1

In tro d u ctio n

D uring the early years o f com puter use, hardware costs far outweighed software 

costs . However, due to  steadily dropping hardware costs and increasing demand 

for more complex software systems, the m ajority o f computing costs is attributed 

to software. Software systems are becoming more prevalent in  life  critica l appli­

cations, such as flight contro l systems and space exploration. For these reasons, 

there is increasing demand fo r software systems tha t are fault-free. Unfortunately, 

in  order to guarantee th a t a software system is completely free o f faults i t  is necce- 

sary tha t we exercise the software for every possible input in the system’s input 

domain and to check the correctness o f the subsequent ou tpu t. Th is process is 

known as exhaustive testing. For some types o f programs (such as concurrent 

systems) exhaustive testing m ay not be sufficient to guarantee th a t the software 

is completely free o f faults.
For most software systems, exhaustive testing is not possible. For example, 

consider a program P  which reads inputs from m ultip le remote sensors at an 

industria l plant and makes decisions about how operation o f the plant should 

proceed based upon the inpu t. There is no predictable l im it  on the number of 

inputs that w ill be read from  the sensors by the program, so the number of possible 

inputs to the system is, for a ll intents and purposes, infin ite.

Even when the inpu t dom ain o f a program is finite, exhaustive testing may 

This dissertation follows the sty le of The Physical Review

1

with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. IN TR O D U C TIO N 2

not be feasible. I f  the inpu t parameters are chosen from  a fin ite set w ith  many 

elements, then it  may take an infeasibly long tim e to run a ll possible test cases 

and check all o f the ou tpu t o f the system for correctness. Even i f  the set(s) from 

which the input is chosen is fa irly small, i f  there are many input parameters, 

then testing the system for every possible combination o f these inputs w ill result 

in  a combinatorial explosion in the number o f test cases. For example, consider 

a p r o g r am  P , tha t takes six input parameters £1 , 1*2 , - - -*6 chosen from a set S , 

where S is the set o f integers from 1 to  1000. Now, although each of the input 

parameters is chosen from a finite domain w ith  on ly 1000 elements, the number 

o f possible inputs to  the program is 1018. I f  we assume tha t each test case can 

be generated, executed, and checked for correctness in  one nanosecond, then con­

ducting exhaustive testing on P  w ill take about 109 seconds, or about 31.7 years. 

Obviously, conducting testing for this amount o f tim e is infeasible.

Since i t  is generally impossible to conduct exhaustive testing of a software 

system, methods are needed for testing a software system w ith a manageable 

number of test cases, while s till insuring tha t system components are rigorously 

exercised. Such methods are known as software testing methods.
Software testing methods can be divided in to  two classes: representative meth­

ods and directed methods. When a software system is tested using representative 

methods, inputs are chosen from the input domain o f the system according to a 

model that represents the environment under which the system w ill eventually 

operate. This model is called the operational profile o f the system. Inputs to the 

program tha t are expected to occur frequently during  actual system use w ill be 

weighted more heavily by the operational profile than inputs that are not expected 

to  occur as often. Therefore, the more frequently used components o f the program 

w ill be tested more thoroughly. Additional weight may be given to functions in  

the system tha t are considered to be critica l to  operation.

When software testing is conducted using directed methods, test cases are 

designed to satisfy some coverage criteria w ith  respect to the program’s structure 

or functionality. For example, a common crite rion used to drive directed testing is 

tha t every statement in  the source code must be executed at least once during the
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testing process. This particular coverage criterion is known as statement coverage. 
Conducting directed testing usually requires more effort on the part o f the test 

team to  design the test cases in order to meet the specified coverage requirements.

For many types of software, such as life critical or financial applications, i t  

may not be enough to simply test the program. There may be a requirement for 

the quantification o f the qua lity  o f the software. For this reason, methods have 

been developed to use data from the testing process to predict the future failure 

behavior o f a software system. Suppose, for example, tha t a program P  is tested 

for some period o f time, t. Further, suppose tha t during the tim e interval (0, t ), m 

system failures, denoted by f x, / 2 , - - - fm occur at times t x, t 2, - - - tm, respectively. 
As the failures occur, the faults responsible for causing the failures are located 

and corrected. A  logical question to  ask would be, “ Given th is  failure behavior 

o f P  up u n til tim e t what is the expected current failure rate o f th is program 

and when is the next failure expected to occur?” The field o f software reliability 

attempts to provide an answer to  th is question.

Generally, the quantification of the re liab ility  of a software system is based 

upon a mathematical model, called a software reliability growth model. A  wide 

variety o f models have been proposed, but the goal o f all o f the models is to 

estimate the current failure rate o f the system under test and to  provide estimates 

o f the mean time to failure o f the system. Typically, predictions made by software 

re liab ility  models are only considered to be accurate i f  the failure data used as the 

basis for prediction is gathered using representative methods. Data obtained from 

directed testing methods has tra d itiona lly  been considered to be poorly suited for 

re liab ility  estimation. However, the accelerated pace of fau lt detection under 

directed testing methods would provide real advantages for test engineers whose 

job is to  insure u ltra -re liab ility  *of a program. Therefore, i t  would benefit the field 

o f software re liab ility  i f  a technique were available for using fa ilure data gathered 

during directed testing to make accurate estimates o f the re lia b ility  o f a program.

In  the past, software re liab ility  growth models have used failure data based

1 According to Butler and Finelli [2], For a program to be ultra-reliable, the probability of 
program failure during one hour of operation must not exceed 10“ 7.
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on time-based quantities observed during testing. However, several researchers [9] 

[17] have observed tha t such measures are prone to statistica l noise which may 

compromise model results. One goal o f this research is to examine these claims 

and to suggest new types o f data tha t can be used as inpu t into re liab ility  models 

to  provide more stable and accurate results.

During this work, a mixed method approach to  testing was developed th a t 

employs both representative and directed testing methods. Each type of testing 

method is used when i t  is most efficient to do so in  order to  accelerate the re liab ility  

testing process. Using the mixed method approach to testing required far fewer 

test cases than were required by representative testing.
Methods were developed to allow data from the mixed method approach to 

testing to be used for making re liab ility  estimates. A  software re liab ility  growth 

model based on order statistics was developed to provide these estimates.

This dissertation is arranged as follows:

Chapter 2 presents a survey o f the field o f software re liab ility . General software 

re liab ility  concepts are discussed and several existing software re liab ility  models 

are described.

Chapter 3 presents a survey of the field o f software testing. Some of the more 

popular testing methods are explained, and the relative strengths and weaknesses 

o f representative and directed testing methods are discussed.

Chapter 4 defines the goals of the research by defining the problems are being 

solved and the methods used to solve them.

Chapter 5 discusses related work in the fields o f software testing and software 

re liability.
Chapter 6 describes a mixed method approach to testing tha t involves a com­

bination o f both representative and directed methods tha t w ill allow for more 

efficient use o f testing resources. This testing method is compared to existing 

testing methods, and its relative strengths and weaknesses are discussed.

Chapter 7 discusses the relationship between the set o f faults found when 

a software system is tested using representative methods, and the set of faults 

found when the same software system is tested using directed methods. In  th is
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chapter, the Ordered Directed Testing Property tha t is believed to describe this 

relationship is presented. Techniques th a t can be used to estimate the fa u lt failure 

rate for a given fau lt, regardless o f the testing technique used to find th a t fau lt 

are also presented.

Chapter 8 presents a re liab ility  m odel based on order statistics th a t w ill make 

i t  possible to use failure data obtained from  the mixed method testing technique 

to  make accurate re liab ility  estimates fo r a software system.

Chapter 9 describes the techniques tha t were used during this research to 

analyze the results o f each experiment.

Chapter 10 describes the results th a t were obtained when the O rder Statis­

tics based model was applied to data sets gathered using representative methods. 

Comparisons are made to the results obtained by applying existing software reli­

ab ility  models to  these data sets.

Chapter 11 describes the results th a t were obtained when the Order Statistics 

based model was applied to  data sets obtained during a study tha t involved gen­

erating various debugging sequences for a set o f failure rate data. The data sets 

consist o f a m ixtu re  o f representative testing data and directed testing data.

Chapter 12 describes the results th a t were obtained when an existing software 

system used for alarm  tracking in an industria l enviorment was subjected to  testing 

and re liab ility  estimation.

Chapter 13 summarizes the research presented in this dissertation, and sug­

gests directions fo r future research.
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C h ap ter  2 

A n  O verv iew  O f Softw are  
R elia b ility

A  generally accepted definition o f software re liab ility  is given by Musa et al. [12], 

who state th a t “ ...software re lia b ility  is the probability o f failure-free operation of 

a computer program in  a specified environment for a specified tim e.” They then 

go on to state tha t a software re liab ility  model “usually has the form  of a random 

process tha t describes the behavior o f failures w ith time.”

This chapter provides a survey o f some o f the more popular software reliabil­

i ty  models. The models discussed in th is chapter are divided into two groups: 

T im e Between Failure Models and Fault Count Models. Following the survey, the 

assumptions of these models are discussed.

2.1 T im e B etw een Failure M odels

As the name implies, time between failure models use interfailure times o f a system 

under test to  make re lia b ility  estimates. Some of the more popular time between 

failure models are discussed in  this section.

6

with permission of the copyright owner. Further reproduction prohibited without permission



CHAPTER 2. A N  O VERVIEW  O F SOFTWARE R E L IA B IL IT Y (

2 .1 .1  T h e  J e lin s k i-M o r a n d a  D e -E u tr o p h ic a t io n  M o d e l

Jelinski and Moranda [13] present what has come to be probably the most famous 

software re liab ility  model. In this work, the process o f fau lt removal is referred 

to as a de-eutrophication process. Thus, the ir model is known as the Jelinski- 

Moranda De-Eutrophication model.

The model developed by Jelinski and Moranda assumes tha t failures occur 

randomly as a software system is exercised. The model also assumes that the 

program failure rate between failures is constant, and th a t when a failure occurs 

and the corresponding fau lt is fixed, the failure rate o f the system decreases by 

a constant amount. The la tte r assumption implies tha t a ll faults are the same 

size1. Experience shows tha t this assumption is not an accurate depiction o f the 

real world.
The Jelinski-Moranda De-Eutrophication model assumes tha t the failure rate 

at any point in  time is proportional to the current error content of the program. 

The failure rate o f a program after i failures is given by:

A i =  ( N - i ) 4 f .  (1)

where N is the in it ia l error content (number o f errors) in  the program and 0 is a 

proportionality constant representing the step size o f the decrease in the program 

failure rate when a fau lt is fixed. A  possible realization of the Jelinski-Moranda 

De-Eutrophication process is shown in Figure 1.

2 .1 .2  T h e  M o r a n d a  G e o m e tr ic  M o d e l

In  later work, Moranda [18] proposes a variation of the Jelinski-Moranda De-

Eutrophication process. The so-called Geometric De-Eutrophication Process,

though sim ilar in sp irit to the original model, has several im portant differences.

F irst, the geometric model assumes an in fin ite  number o f faults in a program,

where the original model assumed a fin ite number. Second, the geometric model

xThe size of a fault refers to how often a given fault will manifest itself as a failure during 
system operation. Thus, the size of a fault refers to the extent that system reliability is affected 
by the existence of the fault in question.
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Failure
Rate

N4>

Tim e

FIG . 1. The Jelinski-Moranda De-Eutrophication Process

assumes th a t when a failure occurs, then the system failure rate decreases by a 

geom etrically varying amount. The parameters tha t describe the behavior o f the 

geometric model are D , the in it ia l fa ilure rate o f the system, and k (0 <  k <  1), 

the fa ilure rate decay parameter. A t the start o f testing, the failure rate o f the 

system is D .  A fte r one failure occurs (and is fixed), the fa ilure rate o f the system 

becomes kD .  A fter the second failure is detected, the fa ilure rate becomes k2D. 
A fte r i  failures the system failure rate is given by:

A; =  k*D. (2)

A  possible realization o f the Moranda Geometric De-Eutrophication process is 

given in  Figure 2.
The change in the program failure rate in the geometric model seems to be more 

realistic than the change in  failure rate o f the De-Eutrophication model because 

one would expect that the faults found first under representative testing would be 

the same faults that would occur most often during actual system use. Therefore, 

removing these “ large” faults w ill have more o f an impact on the program failure 

rate than the removal o f faults th a t manifest as failures less often.
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Tim e

FIG . 2. The Moranda Geometric De-Eutrophication Process

2 .1 .3  T h e  M u s a  B a s ic  M o d e l

Musa [12] develops a model th a t he refers to as the Basic Execution Time Model. 

This model is very s im ila r to the Jelinski-Moranda De-Eutrophication Model. As 

in the Jelinski-Moranda Model, the per fault failure rate is assumed to be constant. 

The failure intensity fo r th is model after fj. faults have been removed is:

A(fi) =  A „[l -  £ ]  (3)
Vq

where A0 is the in it ia l program failure rate at the beginning o f testing and v0 is 

the to ta l number o f errors present in the software at the beginning o f testing.

2 .1 .4  T h e  M u s a  L o g  P o is s o n  M o d e l

Musa [12] develops a second model to address his concern tha t the operational 

profile for most software systems is not uniform . This model, referred to as the 

Logarithm ic Poisson Execution Tim e Model, accounts fo r th is non-uniform ity by 

modeling the fau lt fa ilure rates as decreasing w ith  time. Therefore, removal of a 

fau lt early in  testing w ill have a greater impact on the program failure rate than
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removal o f a fau lt la te r in  testing. This behavior is more in tu itive ly  satisfying 

than the constant decrease in  program failure rate in the Musa Basic Model and 

in the Jelinski-Moranda De-Eutrophication Model. The failure intensity for the 

Musa Log Poisson Model after [j, faults have been removed is:

=  A0 exp(—ffyi) (4)

where A0 is the in it ia l program failure rate at the beginning of testing and 9 is a 

decay parameter.

2 .1 .5  T h e  L it t le w o o d  M o d e l

Littlewood [15] proposed a refinement o f the Jelinski-Moranda De-Eutrophication 

Model. As discussed above, the Jelinski-Moranda model assumes tha t all faults 

contribute the same amount to a program’s failure rate. Littlewood argues that 

all faults in  a system do not contribute equally to system failure rate. He ar­

gues that when testing is conducted in a representative fashion, the faults w ith  

high occurrence rates w ill cause failures before faults w ith  low occurrence rates. 

Therefore, the largest faults in the system w ill manifest first and w ill be removed 

from the program firs t. Thus, a program’s failure rate w ill decrease more when a 

failure is removed early in testing than i t  w ill when a failure is removed later in 

testing.

Like the Jelinski-Moranda De-Eutrophication model[13], L ittlew ood’s model 

assumes tha t there are a fin ite number o f faults in a program at the beginning 

of testing. The in terfa ilure times of the faults are assumed to be exponentially 

distributed. L ittlew ood also assumes tha t when a failure occurs, the fau lt is 

immediately removed w ith  probability 1. L ittlew ood ’s model assumes tha t each 

fault in a program has a failure rate tha t is independent of the failure rates o f the 

other faults in  the system. The failure rate o f a program after i  faults have been 

removed is given by:

A =  -f-... +  (5)
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where each of the o f the <&’s is has the probability density function 

Pgamd{fi(t>; a)  at the beginning o f testing.

I f  a program P  has been tested fo r some tim e r  and that i faults have been 

detected and removed, then i f  we consider one o f the remaining N  — i  faults in 

the program, then its failure rate is drawn from  a probability  density function 

(pdf) w ith  the following form:

pdf{4>} =  (/? +  T)gamd([(3 +  r]0 ; a) (6)

The program failure rate is

pdf{A } =  (P 4- r)gamd([P  +  t ]A ;  [N — z]q:). (7)

The re liab ility  of the program is

/{«} = ((/J +  r)/(/3 + r + i))<Ar-i>“ (8)

and the failure rate function is

A(t) =  ( ( iV - * » / ( / ? +  r  +  i))- (9)

2.2 Failure Counting M odels

Failure Counting Models use the num ber o f failures that occur during a certain 

time interval as the basis for m aking estimates and predictions. Most models 

of th is type use a Poisson d is tr ibu tion  to  describe failure activ ity . The Poisson 

d is tribu tion  is simply a special case o f the  binom ial d istribution where the number 

o f tria ls, n, is very large and the p ro b a b ility  o f success, p, for each tr ia l is small.

The expected number o f successes in n tria ls  is given by: m(t) =  np.

The Goel And Okumoto NHPP Model (1979)

Goel and Okumoto [6] model the debugging process of a software system as a 

nonhomogenous Poisson process (N H P P ). Several assumptions about the failure 

process axe made by the authors. These assumptions are:
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1. { N ( t ) , t  >  0} is a counting process representing the number o f failures by 

tim e t.

2. N ( 0) =  0

3. The counting process has independent increments, which means that the 

number o f failures during an interval is independent o f the number o f failures 

in a ll other intervals which do not overlap w ith  the interval in question.

4. The number o f software failures in an interval is proportional to the expected 

number o f undetected errors at the beginning o f the interval.

5. The probab ility  o f more than one failure during a small interval is negligible.

The authors let m{t) represent the expected number o f software failures by 

time t. The authors assume a fin ite  number o f faults in  the software system, so 

m(t) is bounded in the following way:

f 0 t  =  0m(t)  = I
( a t —>■ oo

The authors then use assumption 4 above to state th a t the expected number of 

failures in  an interval (£, t +  At)  is described by:

m(t  +  At)  — m(t)  =  b{a — m (t ) }A t  4- o(At).  (10)

where
lim  o(At) /At  =  0

A t - y  o v "

which follows from assumption 5. Then, le tting At  —>■ 0, and dividing through 

by At  yields a differential equation that can be solved to give the mean value 

function o f the process. This function is:

m(t) -- a ( l — exp(—bt)) (11)

The intensity function is sim ply the derivative o f the mean value function. 

Specifically:
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A (f) =  m'(t) =  a6exp(—bt) (12)

Given the intensity function, A, the authors describe the probability o f a certain 

number o f failures occurring during a given interval as follows:

N ( t  +  At)  — N(t)  =
0 w ith  p r o b a b i l i t y  1 — A (f)At +  o(At)
1 w ith  p r o b a b i l i t y  A(t) A t  o(At)
2 o r  more w ith  p r o b a b i l i t y  o(At)

Now, since the expected value of this Poisson process is m(t),  the Poisson d istri­

bution o f the number o f failures at time t is given by:

P r ( N ( t ) =  y) =  ([m(t)]y/y\)  e x p (-m (f) )  (13)

The Modified NHPP Model Of Yamada, Ohba, And Osaki

Yamanda et al. [22] present a modification of the NHPP model proposed by 

Goel And Okumoto. The reader w ill recall tha t the authors in [6] proposed a 

mean value function which was characterized by exponential growth. Yamanda 

et al. [22] suggest tha t the software failure process would be modeled better w ith 

an S-shaped growth curve. The reasoning behind this assertion is tha t the test 

team w ill undergo a “ learning” period at the beginning o f testing, and w ill not 

be very successful at uncovering faults u n til they are fam ilia r w ith  the testing 

environment. The mean value function is then given as:

M (t )  =  a [ l  — (1 4- bt)exp(-bt)), (14)

where a is the to ta l number o f failures to be detected in infin ite time and b is 

a constant o f proportionality describing the error detection rate per error.
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2.3 A D iscussion Of The A ssum ptions Made B y  
Existing Software Reliability M odels

The research presented in  this dissertation was at least pa rtly  inspired by the 

shortcomings o f existing re lia b ility  models. This section discusses the assumptions 

made by these models tha t are problematic. Future chapters discuss how the 

model developed in th is dissertation addresses each o f these problems.

2 .3 .1  A s s u m p tio n :  A ll  F a u lts  A r e  C r e a te d  E q u a l

O f the above models, the Jelinski-Moranda De-Eutrophication Model and the 

Musa Basic Model assume tha t a ll faults in  the program contribute equally to 

the program failure rate. In  other words, these models assume tha t all faults are 

the same size. This assumption is probably not accurate for most programs. For 

example, consider a program tha t allows the user to enter commands that update 

a database system. Suppose th a t there are only two commands in this system: an 

ADD command to add a new record to the database and a DELETE command 

to delete a record from  the database. Let the input d is tribu tion  be such that for 

every 100 commands entered by the user, ninety w ill be A D D ’s and ten w ill be 

DELETE’S. Now, let us assume that the code for each command has one fau lt 

in i t  that w ill always cause a failure when executed. Obviously then, the fau lt 

in the ADD command w ill cause more problems than the fau lt in the DELETE 

command. Accordingly, removal o f the fault in the A D D  command w ill have more 

of an impact on the program failure rate than removal o f the fau lt in the DELETE 

command. Therefore, i t  is plain to see tha t the assumption made by these two 

models that all faults are the same size is not an accurate depiction of the real 

world.
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2 .3 .2  A s s u m p tio n :  T e s t in g  I s  C o n d u c te d  U s in g  R e p r e s e n ­

t a t iv e  M e th o d s

A ll of the models presented in  th is  survey provide re liab ility  estimates and pre­

dictions based on failure times observed during testing. In order for this type of 

measure to provide accurate predictions for system behavior during actual use, 

i t  is necessary th a t the system be exercised during testing the same way i t  w ill 

be exercised during  actual use. Therefore, these models required tha t testing be 

conducted using representative methods.

I f  testing is conducted using non-representative methods, then the re liab ility  

models discussed in  the chapter w ill not provide accurate estimates or predictions 

o f program behavior. This fact is especially problematic since i t  seems tha t most 

testing tha t is curren tly  being conducted is non-representative.

Even i f  testing is conducted using representative methods, the use o f data 

observed during testing is problem atic because i t  represents only one possible 

instantiation of a random process, and is therefore subject to a high levels of 

statistical variance. Because o f the large potential fo r randomness in the data 

observed during testing, re liab ility  estimates tha t re ly on th is  data may not be 

accurate. This problem is discussed in  more detail in the work by Hoppa and 

Wilson[9] and the work by M itche ll and Zeil [17].

2 .3 .3  A s s u m p tio n :  F a u lts  A r e  F o u n d  In  P e r fe c t  O r d e r

W ith  the exception o f the Jelinski-Moranda Deeutrophication Model and the Musa 

Basic Model, a ll o f the models discussed above assume tha t fau lt failure rates 

decrease w ith  every- fau lt tha t is found. There is no provision in  the models for 

finding a fau lt th a t is bigger than a fau lt tha t was previously found. As discussed 

in  the previous section, however, i t  is likely (even under representative testing) 

tha t faults w ill be found “out o f order” . Im perfectly ordered fau lt observations 

could cause existing models to provide inaccurate estimates and predictions.
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O verview  O f T estin g  M eth o d s

The previous chapter examined software re liab ility  models which are used in  con­

junction w ith  failure data from a software system to  make estimates about the 

current re liab ility  o f the system. The failure data is obtained when the system is 

tested according to some criterion, called a testing method.
Most trad itiona l software re lia b lility  models assume tha t re liab ility  data is 

given in terms o f program failure rates (interfailure times). The failure rate data 

available for re liab ility  estimation depends greatly on the way that testing is con­

ducted.
For example, suppose we have a program P  which has 100 possible inpu t 

values, and suppose th a t P  always fails for 10 o f these possible values, but never 

fails for any other input. Now, i f  P  is tested using some criterion A which causes 

P  to never be executed using any o f these 10 inpu t values, then the perceived 

program failure rate w ill be 0. On the other hand, i f  P  is executed using some 

criterion B  which does test P  using some of these 10 input values, then the 

perceived current program failure rate w ill be non-zero. Therefore, i t  is p la in to 

see that the testing method can have a large effect on the estimates and predictions 

made by software re lia b ility  models.
For these reasons, an understanding of software re liab ility  requires a basic 

understanding of software testing methods. This chapter provides a survey o f 

software testing methods. The firs t part o f this chapter discusses representative

16
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testing, which is the only form o f testing th a t has traditionally been used for 

making re lia b ility  estimates. The second pa rt o f this chapter discusses directed 

testing methods. The relative advantages and disadvantages o f each type o f testing 

method w ith  respect to software re lia b ility  w ill be discussed.

3.1 Representative Testing M ethods

The goal o f representative testing is to  exercise a program during testing the 

same way th a t i t  w ill be exercised during deployment. More formally, consider 

a program P  w ith  input domain D . Assume tha t once P  is implemented in  its 

actual operating environment, inputs w ill be chosen from D  according to some 

pd f f (d ) ,d  E D.  Representative testing dictates tha t P  be tested in such a way 

tha t the inputs to P  are chosen from D  according to / .

As mentioned in the previous section, existing software re liab ility  models as­

sume th a t failure data is given in terms o f program failure rates. Obviously then, 

in order for re liab ility  estimates to  be accurate, the program should fa il during 

testing the same way that it  w ill fa il during actual system use. Therefore, i t  fo l­

lows tha t i f  we want the program to fa il during testing tha t same way tha t i t  w ill 

fa il during actual system use, then the program should be exercised during testing 

the same way i t  w ill be exercised during actual system use. Using representative 

testing methods, we achieve both o f these goals.
When representative methods are used to test a program, P, no inform ation 

about the structure o f P  is needed in order to conduct testing. For this reason, 

representative testing is sometimes referred to as a black-box testing method. The 

test team does not have to be fam iliar w ith  the inner workings of the program in 

order to conduct representative testing. Th is fact removes a substantial learning 

curve fo r the test team. Black box testing is in keeping w ith  the idea of informa­

tion h id ing which has become popular w ith  the increasing use of object oriented 

programming techniques.
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main:’/.{coin} '/.{die} "\n" ;
coin:6:H,4:T;
die:[1-6];

FIG . 3. A  Sample D G L G ram m ar For Simulating The Toss O f A n  U nfa ir Coin 
And The R oll O f A  Fair Die

3 .1 .1  G e n e r a t in g  R e p r e s e n ta t iv e  T e s t  C a s e s

Generation o f test cases fo r representative testing is often inexpensive. Tools 

are available tha t, when given a grammar that defines the operational profile 

o f a system, w ill au tom atica lly  generate inputs for the system according to the 

operational profile. As an example o f such a tool, consider the Data Generation 

Language (D G L) described by M aurer [16]. DGL allows users to  specify a context 

free grammar (CFG) th a t describes how input items are chosen from a set of 

possible inputs. The user can associate probabilities for each possible input, which 

makes it  possible to construct a grammar that allows inputs to  be automatically 

chosen from a set according to an operational profile. Invocation o f DG L for a 

given CFG causes a C program to be created that, when executed, generates the 

ou tpu t specified by the grammar. Figure 3 gives an example o f a simple grammar 

th a t generates inputs to simulate the toss o f an unfair coin (weighted so tha t the 

p robab ility  o f heads is 0.6) and the toss o f a fair die.

B y using automated tools, a large number of test cases can be quickly generated 

w ith  no need for human intervention. Thus, human resources are freed to work on 

other tasks, such as insuring the accuracy of the operational profile and checking 

ou tpu t to verify correctness. Further, i f  representative testing is used and a new 

system is being designed to replace an older system, large quantities o f real input 

data from the older system may be available for use during testing.
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3 .1 .2  O p e r a t io n a l P r o f ile s

Before representative testing can be conducted, the operational profile o f the sys­

tem must be specified. Ham let [7] argues tha t there are many systems for which 

an operational profile does not exist or is not known.

Even i f  an operational profile exists for a program, discovering this d istribution 

w ill probably- not be an easy task. Musa [20] outlines a manual technique for 

determ ining operational profiles, but working through the construction o f the 

sample profile  given in [20] impresses the reader w ith  how time-consuming and 

d ifficu lt such a construction can be.

Even i f  i t  is possible to develop the operational profile fo r a system, the op­

erational profile may change over time. For example, i f  a system is moved in to  a 

new operating environment, or modifications are made to the system, the opera­

tiona l profile o f the system is like ly to change. W hen the operational profile o f a 

system is changed, i t  is necessary to regenerate the test sets according to the new 

operational profile and to perform testing according to the new profile.

3 .1 .3  T e s t in g  F or U ltr a -R e lia b il i ty  U s in g  R e p r e s e n ta t iv e  

M e th o d s

Life -critica l o r m ission-critical software often requires tha t extremely high levels 

re lia b ility  be obtained. I t  is not uncommon for such software to be required to 

have a fa ilu re  rate o f less than 10-9 before i t  can be released. Butler and F inelli 

[2] state th a t re liab ility  o f this magnitude could require several years or more o f 

testing when representative methods are used. T h is  amount o f time obviously 

cannot be devoted to testing the program.

Even i f  we were able to execute 109 test cases to insure u ltra-re liab ility , we 

would s till be faced w ith  other problems. W hen a program is being tested, the 

inputs to the program cause output to be produced tha t must be checked for cor­

rectness. The problem of how to  verify the correctness o f ou tpu t from a program 

being tested is known as the oracle problem. No m a tte r what testing method is 

used, the oracle problem is an issue that must be addressed. Because o f the very
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large number of test cases required by representative testing, the oracle problem 

is especially problematic. Musa observed that in many projects a previous ver­

sion o f the software can be used as a partia l oracle, and Weyuker [28] offers some 

suggestions about how to  ease the oracle problem for certain types o f programs, 

but no general solution exists.

3.2 Directed T esting M ethods

Where representative testing seeks to exercise a program during testing the same 

way tha t i t  w ill be exercised during  deployment, directed testing seeks to inten­

tiona lly  exercise the software in  a non-representative manner according to some 

coverage critera in order to find  faults more quickly and to accelerate the testing 

process. More formally, consider a program P, and suppose tha t the input do­

main o f P  is some set D.  Le t C  be some coverage criteria for P.  Directed testing 

involves testing P  in such a way tha t the inputs to P  are chosen from D  in order 

to satisfy C  w ithout regard to  the operational profile o f P.  Th is section w ill first 

examine several different types o f directed testing techniques and w ill then discuss 

the implications of using data from  directed testing for re liab ility  estimation.

3 .2 .1  I m p le m e n ta t io n -B a s e d  T ech n iq u es

Implementation-based testing techniques require knowledge about the structure 

o f the program to be tested. Test cases are constructed in  order to satisfy some 

coverage criterion w ith  respect to the structure of the program. Implementation- 

based techniques are commonly referred to as white-box techniques.

Structural Testing

Statement coverage and branch coverage are two examples o f structura l testing 

methods. Statement coverage requires tha t every statement in  the program under 

test be executed at least once. Branch coverage requires tha t every conditional 

statement in the program under test be executed at least once for each o f the two
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possible tru th  values o f tha t statement. Branch coverage is a stronger coverage 

criteria than statement coverage, because in  order to  achieve branch coverage, 

statement coverage must also be achieved.

Several variations o f branch coverage and statm ent coverage have been em­

ployed to improve the fau lt finding ab ility  o f the testing process. For example, 

condition coverage is a varia tion o f branch coverage th a t attempts to overcome one 

of the shortcomings o f branch coverage. W h ite  [29] gives the following example 

o f a conditional statement:

IF  (A>0) AND (B<5)

Branch coverage w ill insure tha t this statement w ill be executed twice, once for 

each tru th  value. However, branch coverage does not take into account tha t 

the tru th  value o f th is  statement is based upon the tru th  value of two separate 

predicates. Condition coverage, on the other hand insures that this conditional 

statement is executed at least once for each possible tru th  value of each o f the 

component predicates. Thus, this conditional statement w ill be executed a t least 

four times by a test set tha t satifies the condition coverage criterion.

Data Flow Testing

Rapps and Weyuker [25] outline a technique fo r selecting test cases for a program 

by using data flow testing. The program to be tested is viewed as a flow  graph, 

w ith  nodes in the graph representing blocks o f statements that are sequentially 

executed. The edges o f the graph represent transfer statements (either conditional 

or unconditional) between nodes. The selection of test data is driven by the 

requirement tha t some criterion that deals w ith  the way in which values are bound 

to program variables be satisified.

Let P  be a set o f complete paths through a flow graph G that represents some 

program. A long such a path, a def o f a variable x reaches a use of x i f  there are 

no subsequent redefinitions of x between these two points. Now, suppose th a t the 

execution o f the set o f paths P  results from the use o f a set o f test cases S  w ith  

some program T.  The criterion known as all-defs requires that for each variable

with permission of the copyright owner. Further reproduction prohibited without permission



CHAPTER 3. O V E R V IE W  O F TESTING  M ETHODS 22

definition in each node o f G, then there must be a path p €  P  tha t includes tha t 

defin ition and a subsequent use reached by tha t definition.

Another criterion suggested by the Rapps and Weyuker is the all-uses criterion. 

The all-uses criterion is s im ilia r to  the all-defs criterion, except tha t the all-uses 

crite rion requires tha t fo r each variable definition in each node o f G 1 then the 

paths in P  must include all subsequent uses reached by th a t variable definition.

A fte r the work in  [25], several papers were published suggesting new data 

flow path selection criteria. Clarke et al. [14] present an evaluation of these 

suggested criteria. The various crite ria  are analyzed and ranked according to 

the ir subsumption relationships.

Fault-Based. T e s tin g

S tro n g  M u ta t io n  T e s tin g  M uta tion  analysis is a directed testing technique 

th a t was suggested by D em illo, L ip ton, and Sayward [24]. In  m utation testing, a 

number of mutant programs are created by injecting small changes in  a program 

P  th a t is being tested using a certain test set. I f  the ou tpu t o f one of the mutant 

programs is different from  the output of P for at least one o f the test cases in 

the test set, tha t m utant is said to be killed. The number o f mutants that are 

k illed by a test set can be used as a measure o f how well tha t test set exercises the 

program being tested. I f  a large number o f mutants survive the testing process, 

then the test set is probably not adequately exercising the program. The mutants 

tha t survive the testing process can be the basis for fu rthe r development o f the 

test set being used.

W e a k  M u ta t io n  T e s tin g  A  variation of strong m utation testing, known as 

weak mutation testing, was suggested by Howden in [10]. The basic difference 

between strong and weak m utation testing is the way in  which i t  is determined 

i f  a mutant has been killed. In  strong mutation testing, a m utant is killed i f  

the output from the m utant program is different from the ou tpu t o f the original 

program. In  weak m utation testing, a difference in program ou tpu t is not required 

in  order to k ill a m utant. A  m utant is killed under weak m utation testing i f  the
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internal data state o f the mutant becomes infected, making i t  different from the 

internal data state o f the original program. This requirement for k illing  a mutant 

is a weaker requirement than requiring outputs to be different which is why this 

technique is referred to as weak m utation testing.

P e r tu b a tio n  T e s tin g  Zeil [32] proposes a fau lt based testing method called 

Pertubation Testing. This testing method is based on a model tha t describes the 

conditions under which a domain error can be caused by a fau lt in  an arithm etic 

or relational expression. This set o f conditions defines a set o f possible faults left 

undetected by a given test set. This inform ation can be used to  guide subsequent 

testing.

As testing is conducted, each execution o f a predictate tha t does not cause 

an incorrect path to be taken imposes a constraint on the geometric space o f 

possible faults for this statement. This constraint divides the space o f possible 

faults into tested and untested regions. By keeping track of the linear inequalities 

tha t define the untested region, one can choose test cases to impose borders w ith in  

this untested region to further enclose the untested region in any direction. By 

enclosing the untested region in this manner, testers are able to control the type 

o f faults tha t remain undetected in the software.

E rro r-B a s e d  T e s tin g

D o m a in  T e s tin g  W hite, et al. [30] propose a testing method tha t they refer 

to as the Domain Strategy Testing Method. The prim ary focus o f th is testing 

method is to detect errors in predicates tha t could cause a wrong path to be 

taken during system execution.

To test a given predicate for correctness in a program, each variable in  the 

predicate is replaced by its symbolic value, given in terms of input variables. A fter 

performing th is substitution, the resulting predicate is given in terms o f only input 

variables, and is therefore simply a set o f constraints on input selection.

The authors note tha t i f  one considers the execution of a complete path through 

a program, then the path condition for th is path is simply the conjunction o f the
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predicates along the path. By perform ing the symbolic substitu tion described 

above, a set o f constraints that define the input space domain required to execute 

the selected path is obtained. This conjunction of constraints on the input space of 

the program defines a geometric area o f the input space referred to  as the domain 

o f the path condition. Any input values selected from this geometric area of the 

input space w ill satisfy the path condition for the path under consideration, and 

w ill cause the path to be executed.

As stated earlier, the purpose o f domain testing is to detect predicate errors 

that could cause the incorrect path to the executed. Another way o f viewing 

this type o f error is that an incorrect predicte causes a sh ift in  the geometric 

area defining the input domain for the path condition. Then, due to  this shift 

in the border o f the geometric inpu t domain, i t  is possible th a t input values w ill 

be incorrectly included in  or left out o f the input domain in  question. Domain 

testing was created to detect this type of error.

When using this testing method, each border segment o f the input domain 

is considered. Test points are generated for each border segment in such a way 

that correct processing of the test points implies tha t the predicate defining the 

border is correct. Test selection consists o f the selection o f a series o f ON-OFF- 

ON data points, where ON points are located on the border and OFF points are 

located on the open side o f the border. The distance o f the OFF points from 

the border defines the m inimum border shift that this testing method w ill detect. 

This testing method w ill detect any border shifts w ith  a magnitude larger than 

this distance.
Figure 4 shows the selection o f three test points meeting the ON-OFF-ON 

requirements for a closed border segment. The dotted line indicates the correct 

border segment, while the solid line indicates the given border. In  this case, the 

error would be detected because the OFF lies on the opposite side o f the correct 

border from  the given border.
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3 .2 .2  S p e c if ic a t io n -B a s e d  T e c h n iq u e s

Specification-based testing techniques do not require knowledge about the struc­

ture o f the program to be tested. A ll knowledge required fo r driv ing the testing 

process is obtained from the program specification. For th is reason, specification- 

based techniques are known as black-box techniques.

Equivalence Partition Testing

Equivalence pa rtition  testing is a directed testing method that was proposed by 

Howden [11]. When equivalence partition  testing is conducted, for each func­

tion  tha t is to be tested, the input domain of th a t function is partitioned in to  

equivalence classes tha t are assumed to be homogeneous. In other words, i f  one 

element of an equivalence class is processed correctly by the program, then a ll o f 

the elements o f tha t equivalence class w ill be processed correctly by the program. 

Testing is conducted by choosing one input point from  each equivalence class for 

each function in the program.

The m ajor problem w ith  pa rtition  testing is the question o f whether is i t  is pos­

sible to divide the input domain for each function in to  homogeneous equivalence 

classes. I f  i t  is not possible to do this, then pa rtitio n  testing basically reduces to 

random testing w ith  relatively few test cases. A  m a jo r problem w ith  most testing
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methods that involve pa rtition ing  the input domain o f a program or function is 

tha t no systematic process exists for conducting the pa rtition ing  process .

As a solution to  th is problem, Ostrand and Balcer [23] proposed category- 

partition  testing. Category-partition testing attempts to  provide a systematic 

method for constructing the test sets to drive equivalence partition  testing. 

Category-partition testing consists of several steps. The firs t step involves in­

volves identifying a ll o f the functional units in the program. In  the second step, 

each of the functional un its is examined, and the variables th a t affect the opera­

tion of each functional u n it are identified. The th ird  step o f the category partition 

method attempts to d ivide the variables for each functional un it in to categories 

to allow input points th a t are likely to cause faults in the software to be chosen. 

Ostrand and Balcer [23] state tha t “Tests [should] be designed to to maximize 

the chances of find ing errors in  the software.” The final step o f category-partition 

testing is to pa rtition  each category into choices. The choices in category-partition 

testing play the same role as the partitions in pa rtition  testing. Testing is con­

ducted by choosing inputs points from each choice w ith in  each category for each 

functional un it in  the program.

Boundary-Value Analysis

Myers [21] states tha t test cases that explore boundary conditions are generally 

more successful at find ing faults than test cases tha t do not. For this reason, 

he suggests a black-box method called boundary-value analysis. Boundary-value 

analysis utilizes many o f the ideas of equivalence pa rtition  testing, but instead of 

allowing the tester to select any of the possible inputs from  a given equivalence 

class to generate a test case, boundary-value analysis dictates that the tester 

should select test cases from  the equivalence class to insure tha t each edge of the 

class is the focus o f at least one test.

Intuitively, th is testing method makes sense because a ll software developers 

have probably created test cases to verify the behavior o f th e ir software for “spe­

cial” input values. For example, suppose tha t a given program is supposed to 

read a text file and determ ine how many times the word “computer” appears in
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the file. Several obvious test cases a tester m ight include in his test suite involve 

“special” inpu t values. Some o f the possible choices for these test cases are:

•  An empty inpu t file.

•  An inpu t file w ith  no occurrences o f the word “computer” .

•  An inpu t file w ith  only the word “computer” .

•  An input file the contains substrings o f the word “computer” (e.g. “com­

pute” ).

Cause-Effect Graphing

Most of the testing methods discussed in this section only use individual system 

input values to generate test cases. Errors caused by interactions between input 

values are not given special attention. Cause-effect graphing [21] is a black box 

testing method tha t provides a systematic method for identifying and testing 

interesting combinations o f input conditions.

When conducting cause-effect graphing, high-level system specifications are 

used to pa rtition  system output values into classes called effects. Each of these 

classes is analyzed to  determine the input states responsible for creating the ef­

fect. These inpu t states are referred to as causes. The program input space is 

partitioned using the cause-effect relationship and the cause-effect relationships 

are translated in to  a boolean lookup table tha t is used to generate test cases.

3.3 D irected Testing And Reliability Estimation

As mentioned earlier, existing re liability models use program failure rate informa­

tion to make software re liab ility  predictions. Since directed testing techniques seek 

to accelerate the rate o f fau lt detection during testing, the program failure rate 

data found during testing w ith  directed methods w ill not be the same program 

failure rate data th a t would be seen i f  the system were in actual use. Therefore, 

program failure rate data gathered using directed testing methods cannot be used
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by existing re liab ility  models for m aking re liab ility  estimates. However, i f  this ba­

sic problem can be solved (or worked around), then there are certain properties o f 

directed testing th a t make i t  desirable fo r use w ith software re lia b ility  estimation.

One advantage o f directed testing is th a t since test cases are designed manually 

to exercise a particu lar area o f the program, a single test case designed for use 

in directed testing may be more effective at finding faults than a single test case 

generated for use in  representative testing. Therefore, directed testing may require 

fewer test cases than representative testing to achieve sim ilar levels o f program 

re liability. This fact is especially im p o rta n t when faced w ith  the task o f testing for 

ultra-re liab ility . For example, suppose th a t we are testing a program P  for which 

a failure rate o f no more than 10-7  is required. Further, suppose th a t there is a 

fau lt, e, in a segment o f infrequently executed code. Assume tha t the probability  

th a t the fau lty code w ill be executed is 10~6, and tha t i f  the code is executed 

then the probability  of failure is 1. Therefore, e has a failure rate o f 10-6 . I f  

P  is to achieve the required re lia b ility  o f 10~7, then the fau lt e must be found. 

I f  representative testing were conducted, we would expect to have to  generate, 

execute, and check about 106 test cases before the fau lt w ill be found. On the 

other hand, i f  directed testing were used, this fault would probably be exposed 

much sooner, since a test case would probably be designed specifically to  exercise 

th is area o f the program. Therefore, directed testing can deal very well w ith  one 

o f the main problems faced by representative testing, namely the need to execute 

an enormous number of test cases to uncover faults w ith  small fa ilure rates.

A second advantage o f directed testing is that an automated oracle is not as 

essential to directed testing as i t  is to representative testing. Since directed testing 

usually requires far fewer test cases than representative testing, directed testing 

causes much less output to be generated. When directed testing is used, a fully- 

automated oracle may not be required. A  much simpler, p a rtia lly  automated 

oracle tha t makes use of human intervention may be sufficient. Future chapters 

w ill discuss a testing framework tha t combines the representative and directed 

testing methods to  allow them to  complement each other in a more robust and 

efficient testing process than would be possible i f  only one o f the methods was
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used.

3.4 Summary

This chapter has focused on software testing techniques. This dissertation divides 

testing techniques into two groups: representative methods and directed meth­

ods. Existing software re lia b ility  models only allow predictions to be made when 

failure data is gathered using representative methods. However, directed testing 

methods have several advantages that would make the ir use attractive to soft­

ware re liab ility  practicioners, i f  some fundamental problems can be solved. The 

remainder of this dissertation focuses on how these problems can be solved, and 

how representative and directed testing methods can be used together to improve 

the software re lia b ililty  testing process.
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G oals O f T his R esearch

This chapter outlines the goals of th is research, and w ill summarize the steps tha t 

were taken to  reach these goals.

4.1 D evelopm ent Of A M ixed M ethod Testing  
Process

One of the goals o f this research was to develop a software testing method that 

incorporates both representative and directed testing methods at various points 

in the testing process. Each component testing method is used during the time 

when it  is most efficient to do so.

4.2 D evelopm ent Of Techniques To Allow Relia­
b ility  Estim ation Regardless Of The Testing  
M ethod  Used

As stated in  the previous chapter, failure data obtained using directed testing 

methods cannot be used w ith  existing software re liab ility  models because existing 

models base the ir predictions on the observed program failure rate, which varies
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depending on the testing method being used.

One o f the goals o f this research was to develop techniques f o r  obtaining failure 

rate data from a program tha t does not depend on the way th a t  the program is 

tested. For this reason, the emphasis o f data collection is sw itched from  quantities 

observed during testing to quantities obtained during debugging.

Specifically, the random variable o f interest for re lia b il ity  estimation is 

switched from observed program failure rates to ind ividual fa_ult failure rates. To 

determine the fault failure rate fo r a given fault, one must answer the question: “ I f  

we were testing this program using representative testing, b o w  often would we 

expect this fault to fail?” . I f  th is  question can be answered, then testing can be 

conducted using any method, because we w ill have ob ta ined a quantity  that is 

independent of the testing method being used.

4.3 Developm ent Of A Software Reliability  
Model Capable Of Using D irected  Testing 
Data

Even i f  the random variable o f interest was switched from program  failure rates 

to fau lt failure rates as described above, no software re lia b ility  model existed tha t 

could use this data for making predictions. Therefore, a software re liab ility  model 

tha t could deal w ith  data in  the form  of fau lt failure rates, p rogram  failure rates, 

or any m ixture of the two was needed.

4.4 Validation O f The Developed IVfodel

Once the model was developed, i t  was neccesary to evaluate its  performance rela­

tive to the performance o f existing software re liab ility  models . Several experiments 

were conducted to achieve th is  goal.
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4.5 Evaluation Of The Suitability Of Tim e 
Based D ata  For Reliability Estim ation

As stated earlier in th is  dissertation, existing software re liab ility  growth models 

use failure data based on time-based quantities observed during testing. However, 

several researchers [9] [17] have observed tha t such measures are very prone to 

statistical noise which may compromise model results. One of the goals of th is 

research is to investigate this claim  and to suggest types o f data that can be used 

as input into re lia b ility  models to provide more stable and accurate results.
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C hapter 5 

R ela ted  W ork

The research presented in th is  dissertation takes a different approach to software 

re liab ility  than most previous work. However, several authors have recently ad­

dressed issues tha t are related to this research. This chapter presents a survey o f 

the most relevant o f these papers.

5.1 The Effects Of Fault Recovery Order On 
Software R eliability M odels

Hoppa and W ilson [9] investigate an inherent problem w ith  the way that most 

software re liab ility  testing is conducted. They state tha t when software re liab ility  

testing is conducted, the failures th a t are observed represent only one possible 

realization of the debugging process. The authors state tha t repeating the debug­

ging process w ill probably yield a different order o f failure detection (and different 

interfailure times) each time the process is repeated. The focus of the Wilson's and 

Hoppa’s research [9] was to determine i f  this different ordering (and the change in 

observed interfailure times) has any effect on the predictions provided by software 

re liab ility  models.
The results o f the research indicate tha t existing software re liab lity  models are
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sensitive to different fau lt recovery orders. The model developed in this disser­

ta tion  is specifically designed to  minimize the error due to varying fau lt recovery 

order because the model focuses on fau lt failure rates instead o f interfailure times 

(program failure rates).

5.2 PIE: A D ynam ic Failure-Based Techniqe

Voas [27] proposes a framework fo r estimating whether faults are likely to be un­

covered by testing. Each section o f code in a program is analyzed by considering 

three component probabilities. These probabilities are the exection probability, 

the infection probability, and the propagation probability. The execution prob­

ab ility  for a given segment o f a program is the probab ility  tha t the segment o f 

code w ill be executed. The infection probability is the probability  tha t execution 

o f the given segment o f code w ill result in an incorrect program data state. The 

propagation probability fo r a given segment of code is the probability tha t an in­

fection of the data state a t the code location w ill cause visible incorrect behavior 

o f the software. These three probabilities combine to give the effective failure rate 

for the segment o f code. One o f the problems tha t needed to be solved in this 

research was how to determine the actual fau lt failure rate fo r a given fault. The 

framework proposed by Voas provides a possible solution to this problem. In  fact, 

the problem we are try in g  to solve (determining the failure rate for one fault in 

one segment o f code) should be simpler than the problem tha t Voas was try ing  to 

solve (determining the failure rates for all faults in  a ll segments of code).

5.3 The Relationship B etw een Test Coverage 
And Reliability

Malaiya, et al. [26], propose a model tha t allows coverage information from di­

rected testing methods to  be used to estimate the re lia b ility  o f the software being 

tested. The authors note tha t a basic problem w ith  existing software re liab ility
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models is tha t they require data from representative testing, and tha t representa­

tive testing is seldom used in  practice. They state th a t directed testing is a faster 

and more effective than representative testing, and a method is needed for using 

data from directed testing for making re lia b ility  estimates.

Malaiya, et a I. propose tha t a relationship exists between test coverage during 

directed testing and defect coverage in the program, and tha t a relationship exists 

between test coverage during directed testing and the subsequent re liab ility  of the 

software. The authors develop a model tha t allows software re liab ility  predictions 

to  be made based on an estimated in it ia l number o f faults in  the program being 

tested and the coverage achieved during directed testing.

The problem th a t Malaiya, et al. try  to  solve is largely the same as one of 

the problems this research solves. We also want to use data from directed testing 

to  make re lia b ility  estimates for most o f the same reasons. However, instead 

o f relying solely on the coverage obtained during testing, our research takes the 

extra step of considering the fault failure rates o f the faults uncovered during 

directed testing which should provide a more “customized-fit” of our model to 

each program being tested.

Another s im ila rity  between M alaiya’s research our research is the proposed 

nature o f the fau lt sets found by directed testing. Malaiya, et al. postulate that 

given a certain level o f test coverage during directed testing, then a certain set of 

faults w ill be exposed thereby achieving a certain level o f reliability. There are 

certainly sim ilarities between this idea and the Ordered Directed Testing Property 

presented later in  this dissertation.

5.4 Software Testability

Voas [8] [5] discusses the concept o f software testability. Voas defines the testab ility  

o f a program to be the probability tha t i f  a fau lt exists in  tha t program, then tha t 

fau lt w ill be detected by any testing scheme. In  the words o f Voas and Hamlet, 

the testab ility  o f a given program defines the degree to which tha t program “wears 

its  faults on its sleeve” .
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As discussed in previous sections (and to be discussed in  more detail later), 

the software re liab ility  model proposed in  this dissertation uses ind iv idual fault 

failure rates as a basis for making estimates and predictions fo r a system under 

test. Before this use of fau lt fa ilure rates can be justified, one question tha t needs 

to be answered is “How can you expect to use the fau lt failure rates observed in 

the past to predict the fau lt fa ilure rates tha t you w ill see in  the future?”

By using the concept o f software testability, we argue tha t a given program has 

certain a ttributes that determine its  a b ility  to hide faults from  the testing process. 
Then, since software testab ility  is a property inherent to the program, we would 

expect tha t the failure rates for a ll o f the faults in  the program are constrained to 
some extent by th is level o f testability. Therefore, we can view the testing process 

as a walk through the structure o f the program. The fau lt failure rates we obtain 

are indicative o f this structure. Thus, we have a basis for arguing that the faults 

failure rates we have observed in  the past share a common d is tribu tion  w ith  the 

faults we expect to see in  the fu ture .
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C hapter 6

A  M ixed  M eth o d  A pproach  To 
T estin g

Previous chapters discussed representative and directed testing methods and ex­

amined the advantages and disadvantages o f each method. The applicability of 

data obtained from each of these testing methods towards re liab ility  estimation 

was discussed as well. This chapter outlines a testing method that utilizes both 

directed and representative testing methods. This testing method is organized so 

th a t the advantages o f each component method are utilized, while the effects of 

the disadvantages of each component are minimized.

6.1 Overview

I t  is useful to view the debugging process as consisting o f two phases. During the 

firs t phase o f the debugging process, a relatively large number of faults remain in 

the program, so the program failure rate is relatively high and interfaiiure times 

are relatively short. As more and more faults are removed from the program, the 

program enters the second phase o f the debugging process. During the second 

phase of the debugging process, re latively few faults remain in the program, so 

the program failure rate is low and interfaiiure times tend to be very long. The

37
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following sections examine these two phases o f the debugging process. The prop­

erties o f each phase are used to determine the testing method tha t w ill be the 

most efficient during tha t phase.

6.2 P hase 1: Testing W hen A  Large Num ber Of 
Faults Remain

Consider a program, P, to be tested. D uring the beginning of testing, there w ill 

be a re la tive ly large number o f faults in  P, so the program failure rate w ill be 

relatively high and the interfaiiure tim e o f P  w ill be short.

Since the faults found early in  testing w ill have short interfaiiure times, then 

the failure rate o f these faults w ill be estimated to be large. Therefore, the removal 

of faults early in  testing has more im pact on system re liab ility  than the removal o f 

faults la te r in testing. For th is reason, i t  is im portant tha t the faults removed early 

in testing are the same faults tha t would have occurred first i f  P were implemented.

A dd itiona lly , since interfaiiure times are relatively short at the beginning o f 

testing, valuable resources can be saved by using a testing method tha t offers sig­

n ificantly less expense per test case, ra ther than a more expensive testing method 

that may be more effective at find ing failures on a per test case basis.

The above observations support using representative testing methods at the 

outset o f testing.

6.3 P hase 2: Testing W hen A Small Num ber Of 
Faults Remain

Consider a program P  tha t has been tested for some period of time using represen­

tative methods. As faults are removed from P, the interfaiiure times w ill become 

very long i f  representative testing is continued. Eventually, the in terfa iiure times 

w ill become so long that conducting representative testing, which had previously
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been the most practical choice for testing, w ill become more expensive than other 

testing methods. A t this time, a switch to another testing method is warranted.

Consider the cost o f generating a test case for use w ith  representative methods. 

Let this cost be denoted by cv- Let the cost o f generating a test case for use w ith  

directed testing by c<f. When representative testing is conducted, the interfaiiure 

tim e o f P  w ill increase quickly. As the interfaiiure time increases, the number 

o f test cases required to uncover a failure using representative testing w ill also 

increase quickly. However, the number o f test cases required to uncover a failure 

using directed methods should not grow as rapidly. Let 7v represent the current 

number o f test cases required to expose a fau lt in P  i f  representative testing is 

used. Let nd represent the current number o f test cases required to expose a fau lt 

in P  i f  directed testing is used. Now, as noted above, Cd >  Cr. A t the beginning 

o f testing, we w ill have c^rid >  Crnr . However, as testing continues, and the 

interfa iiure times for representative testing grow rapidly, we w ill eventually have 

CpTij- >  CdTid, at which time representative testing has become more expensive than 

directed testing. A t this point, the testing process w ill become more efficient i f  

we switch from representative testing methods to directed testing methods.

6.4 Advantages o f M ixed M ethod Testing

By using a mixed method approach to software testing, we are able to take advan­

tage o f the strengths of each o f the component testing methods. Further, we w ill 

not be subject to the biggest disadvantages o f the component methods. The main 

advantages o f representative testing are tha t test cases are relatively inexpensive 

to generate and that the behavior o f the software during testing reflects how the 

system w ill behave once it is implemented. The biggest advantage of directed 

testing is its ab ility  to detect errors w ith  small failure rates w ithout requiring an 

enormous number o f test cases. B y u tiliz ing  representative testing during the first 

stage o f testing when the program failure rate is highest, we can use inexpensive 

test cases to find faults. Also, by conducting representative testing at the begin­

ning o f testing, the large faults present in  the program w ill be detected early in
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testing and the expected large re liab ility  growth at the beginning o f testing can be 

achieved. Once all o f the large faults have been removed from the system (and the 

program failure rate decreases accordingly), the interfaiiure tim e for the system 

w ill become very large i f  the test team continues to use representative testing. By 

switching to directed testing once i t  becomes cheaper to do so, we w ill be able to 

continue to achieve higher re liab ility  w ith  a reasonable amount o f effort. Thus, 

a mixed method approach to  testing benefits from the advantages o f both o f the 

component methods.

6.5 Disadvantages of M ixed Testing

Despite its advantages, the mixed method approach to testing outlined above does 

inherit some problems from its component methods. F irst, because representative 

testing is being utilized, a knowledge o f the operational profile o f the system 

is required. Second, because directed testing is being used, a knowledge o f the 

structure o f the program may be required, depending on the coverage criterion 

employed.
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D irected  T estin g  A n d  R elia b ility  
E stim ation

Previous chapters have discussed the fact that existing software re liab ility  mod­

els require tha t all data gathered for purposes of prediction be gathered using 

representative testing methods. These chapters also discussed how it  would be 

advantageous to conduct re liab ility  testing using a combination o f representative 

and directed testing methods.
Three obstacles that prevent directed testing data from being used to make 

re liab ility  predictions are (1) program failure rates observed during directed test­

ing are not indicative o f the program failure rates tha t would be observed during 

actual system use, (2) faults w ill be found in a non-intuitive order (not largest to 

smallest) by directed testing, and (3) there is no assurance that the set of faults 

found by directed testing for a given program w ill be the same set o f faults found 

by representative testing.
The software re liab ility  model developed in this dissertation overcomes the 

first problem by shifting the emphasis from program failure rates to  individual 

fau lt failure rates which do not depend on the method used to conduct testing. 

Additionally, the proposed model solves the second problem through the use of 

Order-Statistics. Therefore, i f  problem three can be solved, then we w ill be able 

to use directed testing data to make software re liab ility  estimates and predictions.

41
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The following sections provide evidence tha t the set o f faults found by directed 

testing for a given program w ill be the same set o f faults found by representative 

testing, and discuss possible methods for determ ining the fau lt failure rate for a 

given fault.

7.1 The Nature O f Fault D etection  Under D i­
rected Testing

Cobbs and M ills [3] assert tha t directed testing methods find faults in random 

order, w ith  small faults being as like ly to be found as large faults. Specifically, 

they state: “ coverage testing is as likely to find a rare execution failure as i t  

is a frequent one” . A t first, th is  claim  may seem reasonable, because directed 

testing techniques do not exercise software by choosing input points according to 

to the operational d is tribu tion  th a t w ill be used once the system is implemented. 

However, w ith  further thought, i t  becomes apparent th a t the distribution used to 

choose input points is not the on ly factor tha t plays a pa rt in determ ining whether 

or not a fau lt manifests as a fa ilure during program execution.

Voas [27] maintains tha t the manifestation o f a fau lt as a system failure during 

program execution depends on three factors. His P IE  (Propagation, Infection, 

Execution) model states th a t fo r a system failure to  occur, three things must 

happen. First, the location in  the program containing the associated fault(s) 

must be executed. This requirement is the Execution component o f the P IE  

model. Second, once the location in the program containing the fau lt has been 

executed, i t  is necessary tha t the fau lt cause a change in the data state o f the 

program. This requirement is the Infection component o f the PIE model. Th ird , 

the incorrect data state caused by the fau lt must be propagated to the output. 

This requirement is the Propagation component o f the P IE  model. More formallv- 

let sipd  represent the execution rate for a given location I in a program P  when 

inputs are drawn random ly from  a d is tribu tion  D . Let be the infection

p robab ility  for a fau lt m  a t location I in program P . Let tp-miPD represent the
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propagation probability for fau lt m  at location I in P . Then the failure rate, 

AmiPD o f 77i at location I in  program P  when inputs are chosen according to 

d istribution D  is:

Am l P D  =  (£ l P D ) { l /m l P D ) ( < P m l P D ) (15)

O f course, the above equation assumes the independence o f the three compo­

nent probabilities.

The input d istribution used to conduct testing d irectly affects only one of these 

factors, the execution component. Therefore, in  addition to the input d is tribution 

used to  drive testing, structura l components o f a program also play a hand in  deter­

m in ing the order in which faults manifest themselves during program use. These 

structura l components are common to the fau lt manifestation process whether di­

rected testing is conducted or representative testing is conducted. Therefore, the 

sets o f faults found when directed testing is conducted should be approximately 

the same as the set o f faults that would be found i f  representative testing were 

used.

Voas’ testability  research [8] [5] provide additional support for this claim, by 

providing evidence that the set of faults found for a given program under any 

testing method is affected largely by the structure o f tha t program.

W ith  these observations in mind, the follow ing property is now proposed:

O rdered. D ire c te d  T e s tin g  P ro p e r ty :  For a given directed testing method, as 

we approach coverage o f the method, the set o f k faults revealed w ill be the 

k faults w ith  the largest ind ividual operational failure rates.

Now, this property probably does not hold exactly. However, it  is claimed tha t 

this property is closer to the tru th  than the assumption that directed testing w ill 

uncover faults w ith  no regard to fau lt fa ilure rate. Prelim inary support for the 

Ordered Directed Testing Property was given in  previous research conducted by 

M itche ll and Zeil [17].
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I f  the assumptions o f the Ordered Directed Testing Property hold, then di­

rected testing can be used to conduct re liab ility  testing w ithout missing a sub­

stantial number o f faults that would have been found by representative testing, 

and w ithout finding a substantial number o f faults tha t representative testing 

would have missed. The worst th ing tha t has happened during the testing pro­

cess is tha t the discovered faults may have been found in  a different order than i f  

testing had been conducted using representative methods.

As it  turns out, the order o f fau lt detection is not im portant to the software 

re liab ility  model developed in this dissertation. Therefore, i f  the individual fau lt 

failure rates can be determined for the discovered faults, then data from directed 

testing can be used w ith the proposed model to make re liab ility  estimates.

7.2 Estim ating Fault Failure Rates

Traditional software re liab ility  models depend on tim e based measures, such as 

time between failures, as a basis for estimation and prediction. I t  is exactly this 

dependence on such measures tha t requires the use o f representative testing w ith  

these models. When directed testing is conducted, the time between failures 

during testing w ill not necessarily reflect the tim e between failures during actual 

system use. In  addition to using measures based on observed program failure times 

for making estimates and predictions, the model presented in this dissertation uses 

a measure tha t is independent o f the method used to conduct testing.

This observed quantity used by the model in this dissertation is an estimate 

o f the operational fau lt failure rate for a given fault. Basically, when a fault is 

found during the directed testing process, instead of recording the time o f the 

failure (or other artifact o f the testing process), the human debugger w ill use 

some technique to determine how often the given fau lt would manifest as a failure 

during actual system use. Thus, the responsibility for determining the quantities 

used for re liab ility  estimation is taken away from the testing process itself and 

is placed w ith  the human debugger. Such a sh ift should allow for a more robust 

estimation process where human in tu ition  can play a role.
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In addition, by gathering failure in fo rm ation  in  this manner, the model es­

tim a tion  problems associated w ith  m aking estimates from a single realization o f 

a random process described by Hoppa and Wilson[9] and M itchell and Zeil [17] 

are avoided- These problems are avoided because the observed quantities o f this 

random process are mapped to the expected value of the observed quantities.

The next section describes how the P IE  M ethod o f Voas [27] can be used to 

estimate fau lt fa ilure rates. Section 7.2.2 then describes how a debugging team 

can use less form al methods to estimate fa u lt fa ilure rates.

7 .2 .1  T h e  P I E  M e th o d  F or D e t e r m in in g  T h e  F a u lt  F a ilu r e  

R a t e

Consider a program P  being tested using directed methods. Now, suppose tha t 

testing uncovers a fau lt, z, located at location I in  P. Let this location be denoted 

as P[. Now, according to the Voas, the p rob a b ility  o f failure of z (the fa u lt failure 

rate) is based on three component probabilities. These component probabilities 

are (1) the p robab ility  o f execution o f location Pi during actual system use, (2) 

the p robab ility  o f data state infection when location Pi is executed, and (3) the 

probab ility  o f incorrect output when the data state is infected due to execution of 

location Pi. I f  these three component probabilities can be estimated, then the ir 

product provides an estimate of the fau lt fa ilu re  rate for z.

The firs t component, the execution probab ility , is fa irly  easy to estimate. Sup­

pose testing is being conducting for some program P  and a failure is observed be­

cause o f a fau lt z a t location PL. To estimate the execution probability fo r location 

Pi, the human debugger would stop the testing process, and run n representative 

test cases fo r P . Instrumentation in  P  w ill count the number o f times ne tha t 

Pi is executed. I t  is not neccesary to check the output of these representative 

tests fo r correctness, because the focus here is on the execution component o f the 

P IE  Model. The ra tio  ^  provides an estimate o f the execution probab ility  for Pt. 
Tools commonly used for conventional performance profiling can be used by the 

human debugger to  help make this estimate.
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The second component, the infection probability, can be estimated by re­

running the ne test cases th a t reached location P/ when the execution probability 

was being estimated. A dd itiona l instrumentation at location Pi w ill be required 

to  count the number o f times n* th a t the data state im m ediately fo llow ing Pi is in­

fected because o f z. The ra tio  provides an estimate o f the infection probability 

at location P/.

The th ird  component, the propagation probability, can be estimated by mutat­

ing the program state at Pi fo r each o f the ne test cases tha t reached th is location. 

The number o f times, rip, th a t incorrect output results from  the infection at Pi is 

counted, and the ra tio  ^  provides an estimate of the propagation probability for 

z.

B y combining these three components, an estimate o f the fa u lt fa ilure rate for 

this fau lt is obtained tha t does not depend on the testing method being used.

7 .2 .2  U s in g  D e b u g g e r  E s t im a te s  T o D e t e r m in e  F a u lt  Fail­

u re  R a te s

Two more possible methods fo r determ ining fau lt failure rates are proposed in this 

section. These methods re ly on the debugging team to estimate the fau lt failure 

rates. In  both methods, when a failure occurs during testing, the debugging team 

w ill find and fix  the associated fau lt. The team w ill then determine the fault 

failure rate.
In  the first method, the debugging team determines the inputs tha t cause 

the fau lt to manifest as a failure. Once these inputs have been identified, the 

debugging team goes back to  the operational profile o f the system and estimates 

the fau lt failure rate. In the absence o f an operational profile, the test team can 

estimate how often they feel the failure w ill occur based on the inputs that cause 

the failure. This type of estim ation is probably not much different than what 

already goes on in practice during many test-debug sessions.

Another possible method tha t debuggers can use to determine the fau lt failure 

rate for the fau lt is to run representative tests for two versions o f the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER  7. DIR ECTED  TESTING A N D  R E L IA B IL IT Y  E STIM A TIO N  47

The first version of the program includes the fix  that was made to remove the 

fau lt. The second version of the program does not include the fix tha t was made 

to remove the fau lt. The debuggers can then estimate the fau lt failure rate by 

running representative tests for both o f these versions o f the program and watching 

for differences in output.
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A  Softw are R e lia b ility  M o d e l 
B a sed  On O rder S ta tis t ic s

Conventional software re lia b ility  models assume tha t the fa ilure data to be used 

to  make re liab ility  estimates is obtained by representative testing methods. As a 

result, conventional software re lia b ility  models may not provide accurate re liab ility  

estimates when failure data is gathered using directed testing methods. This 

chapter presents a software re lia b ility  model tha t w ill allow failure data obtained 

by using either representative testing  methods or directed testing methods (or 

both, as in the case of our m ixed m ethod approach to testing) to be used to make 

accurate re liab ility  estimates.

8.1 Order S tatistics Basics

This section presents a very b r ie f discussion of the order statistics tha t w ill be 

needed for an understanding o f the presentation o f the proposed model. A more 

extensive treatment o f the subject o f order statistics appears in  the text by H.A. 

David [4].
David [4] defines the d is tr ib u tio n  o f an order statistic. I f  n random variables, 

X x, X 2: - - -, X n are arranged in  ascending order, then X r-n denotes the r th order 

s ta tis tic  out of n. I f  we assume th a t the X t- are continuous w ith  p d f / ( x )  =  F '(x ),

48
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the distribution o f the xT:n is given by:

=  ( r - l ) ! ( n - r ) ! F ( i r I [ 1  "  (16)
where f r:n denotes the p d f o f X r:n.

8.2 M odel B asics

Suppose that a program P  has n faults zt , z2, . . . ,  zn drawn from a set Z . Let 

/ ( 0 )  =  F'(<f)) denote the p d f describing the d is tribu tion  o f the failure rates asso­

ciated w ith  the faults in  Z . Let 0 X, <p2, - - - ,4>n represent the failure rates o f the n 

faults in P  ordered a rb itra rily .

Now, suppose th a t P  is tested un til k faults have been removed. Let

V’l? ^ 2 , - - - j ipk denote the operational failure rates o f these k faults, where the
index of each ?/>,-, 1 < =  i  < =  k  reflects the order in  which the fault was discovered. 

Further, suppose tha t these operational failure rates are independent.

I f  we consider the rem aining n — k undetected faults in P  and denote them 

by ipk+i,ipk+2 , - - - ,ipn, we can approximate the program failure rate o f P  after k 
faults have been removed by using the sum o f the operational failure rates o f the 

n — k undetected faults. Specifically,

ak= f :  (17)
i = k + 1

Use o f this approxim ation assumes tha t there are a fin ite number o f faults in 

the program, and tha t the faults failure rates are independent. These are common 

assumptions made by m any existing software re lia b ility  models [13] [12][15].

This equation is no t pa rticu la rly  useful for m aking re liab ility  estimates about 

P , because the current program failure rate is given in terms of the faults tha t 

have not yet been discovered. Therefore, we need another technique that can be 

used to estimate Xk. The use of order statistics is a t the heart of this proposed 

technique.

Suppose that we sort the <f>i, i  € 1 . . . ,  into ascending order. Let [^nJ fL i denote 

the resulting sequence. The p d f o f the 4>i:n can then be described by the function
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given in (16). I f  we can determine the nature o f the / r:J1, r € l . . . n , )  then we w ill

be in a position to determine the expected values for operational failure rates o f

the remaining n — k undetected faults in  P. Specifically,

E ^ r m )  = (18)
JO

The expected value of the program failure rate of P, A* is then given by:

E(xk) = e  r  (iq)
70

and the re liab ility  o f P  is:

R(t) =  exp(-Xkt)  (20)

Thus, we have a model tha t makes use o f fau lt failure rates as the random 

variable o f interest. Further, the order in  which the faults are discovered by 

testing does not affect the estimates made by this model. Therefore, this model 

can be used regardless of the methods used to conduct testing.
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D a ta  E valuation  P la n

Before any experiments could be conducted, i t  was necessary to decide how the 

results o f these experiments would be analyzed. This chapter describes the models 

involved in the experiments, the analysis methods used by the experiments, and 

the tools tha t were developed to aid in the analysis process.

9.1 Selection Of M odels

For comparison purposes, three other software re liab ility  models were selected to 

be compared to the Order Statistics Model. These models were selected because 

they seem to be the most often cited models in  software re liab ility  research, and 

are often used by other researchers to assess th e ir proposed models.

The models tha t were selected are:

•  Jelinski-Moranda Deeutrophication Model

•  Musa Basic Model

•  Musa Log Poission Model

51
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9.2 Techniques For Comparing M odel Perfor­
mance

During the course o f the experiments, the performance o f each model was mea­

sured in  three different ways.

F irst, the predictive accuracy of each model was measured. The predictive 

accuracy of a model specifies how closely the model’s predictions match observed 

quantities. The need for th is  measure is obvious because the reason for using 

software re liab ility  is to be able to make estimates about a program ’s current 

failure rate and to be able to  predict the future performance o f a program.

Second, the best fits o f each model for each data set were compared to deter­

mine which model provided the best overall f it  to  the observed data. The results 

of this type of analysis provides inform ation about the a b ility  o f each model to 

account for all o f the observed values using a single set o f parameters. High error 

values for the best f it o f a given model may indicate tha t the model may not be 

flexible enough to account fo r the range of observed failure rates.

Th ird , the s tab ility  o f the model parameter estimates was compared over mul­

tip le  iterations o f the f it t in g  process, where each iteration introduced additional 

failure rate data. The fo llow ing sections describe how each o f these three types o f 

analysis was conducted.

9 .2 .1  T r a d it io n a l M e a n s  O f  M e a su r in g  T h e  P r e d ic t iv e  A c ­

c u r a c y  O f  S o ftw a r e  R e lia b il ity  M o d e ls

Brockhurst and Littlew ood present a statistical tool called a U -P lo t tha t measures 

the predictive accuracy o f a software re liab ility  model [1]. The U -P lo t uses the 

cumulative d istribution function ( cdf) of the program failure rates. Brockhurst 

asserts that given a set o f observed program failure rates and the (actual) cdf 

tha t describes the ir d is tribu tion , then the cdf values associated w ith  each of the 

program failure rates w ill be un ifo rm ly  distributed on the in terva l (0,1).

The first step in  constructing a U -P lot for a set of data is to  estimate the model
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parameters based on the observed data. Once these estimates are made, the cdf 

value associated w ith  each o f the observed program failures rates is calculated. 

This sequence o f values is sorted in  ascending order and p lo tted in a step-wise 

fashion along the X  axis o f an X -Y  plo t. I f  the cdf based on the estimated 

parameters is close to the actual cdf o f the program failure rates, then all o f the 

points in  the U-P lot should fa ll near the line defined by the equation y =  x. In  

general, the closer the plotted points are to the line y =  x , then the better the 

model’s predictive ability.
From the above description of the U-P lot, i t  is obvious tha t the use of this 

too l assumes that a ll o f the program failure rates are drawn from  one distribution 

th a t is described by the model parameters. The Order Statistics Based Software 

R e liab ility  Model proposed in  th is  dissertation assumes tha t each program failure 

rate is equal to the sum of the fau lt failure rates for the faults remaining in the 

software. Further, each o f these fau lt failure rates is assumed to be drawn from a 

different d istribution, as described in the previous chapter. Therefore, the U-Plot 

is not suited for use w ith  the Order Statistics Based Software R eliab ility Model 

presented in  this dissertation.

In order to measure the predictive accuracy of a software re liab ility  model an 

OP P lot was used instead o f a U -P lot. The OP P lo t is described in the next 

section.

9 .2 .2  T h e  O P  P lo t

The term  OP P lot is short fo r Observed vs Predicted P lo t. A  single OP Plot 

shows the performance o f a single model w ith respect to a single data set. The 

OP plo t is an X -Y  p lo t showing the relationship between the observed failure rates 

and the predicted failure rates for a given run. Observed quantities provide the 

values fo r the independent (X ) variable and the model’s predictions provide the 

values fo r the dependent (Y ) variable. I f  the model in  question provides perfect 

predictions, then all o f the points in  the the OP Plot w ill lie on the line defined by 

the equation x =  y. The closer the resultant plot is to this ideal, then the better
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the model’s predictive ability. Since the failure rates plotted on the OP P lot w ill 

span m u litip le  orders of magnitude, a log scale was used for the plot axes.

The OP P lot provides a qualitative evaluation o f model prediction, which is 

useful in  detecting patterns o f strength and weakness. For example, by using the 

OP P lot, i t  is easy to determine i f  a given model appears to be overly optim istic 

or overly pessimistic about the program failure rate.

The sum of the squared error for each (observed,predicted) pair in  the OP P lot 

is used to compare the performance of the models and to provide a quantitative 

evaluation o f model prediction.

9 .2 .3  C o m p a r in g  T h e  B e s t  F it  O f  E a ch  M o d e l

Another metric for evaluation of model performance is derived from the best f it 

for each model for each data set in  its entirety. The sum of the squared error for 

the f it  o f each model to each data set was recorded and compared. A  high error 

value for a software re liab ility  model fo r a given data set may indicate tha t the 

d is tribu tion  used by re liab ility model is not able to adequately span the fu ll range 

o f the observed failure rates.

9 .2 .4  C o m p a r in g  M o d e l S ta b il i t y

D uring the course of generating the OP Plot, predictions were made by each 

model as additional data points (failure rates) were incrementally added to the 

data set. The stab ility  of the model parameter estimates during the incremental 

predictions is an indicator o f how stable the model is. The main concern here 

is tha t a software re liab ility  model should not be overly sensitive to fluctuations 

in the data set. I t  is not desirable, for example, for a software re liab ility  model 

to abruptly  and drastically change its estimate for the tota l number o f faults 

in a program when new data is introduced into the failure set. The underlying 

d is tribu tion  being used by the model should be flexible enough to accomodate 

new data as part o f a d istribution instantia tion w ith  parameters sim ilar to the 

one estimated before the new data was introduced.
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9.3 Developm ent Of Analysis Tools

During the course o f this research, a program was developed to implement all o f 

the required software re lia b ility  models. This software was developed in C + +  and 

the f it t in g  routines utilize the least squares approach fo r estim ating model param­

eters. We selected the least squares approach to parameter estimation instead of 

the more frequently used maximum-likelihood method because of the nature o f 

the expected inputs to our model. Obtaining a solution to  a maximum-likelihood 

method system usually requires tha t all observed values w ill be of the same type. 

However, in the order statistics model a combination o f program failure rates and 

fau lt failure rates w ill be used as input. By using the least squares approach, 

we were able to combine these different types o f inpu t by weighting them. This 

combination would probably be mathematically intractable under maximum like­

lihood.
This software includes functiona lity  to output the data required to conduct 

each o f the three types of analysis described above.
This program takes a tex t file containing a set o f fa ilure rate data as input and 

makes software re liab ility  predictions for a specifed model. This tool was used to 

provide the results presented in  later chapters.
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A p p ly in g  T h e M o d e l To  
R ep resen ta tiv e  D a ta

This chapter details the in itia l validation o f the Order Statistics Based Software 

R e liab ility  Model. The basic purpose of th is experiment was to put the OS-Model 

through a “sanity-check” to make sure tha t its  predictions were at least in  the 

ballpark w ith  existing models. This chapter discusses the experiment and presents 

the results tha t were obtained.

10.1 D ata Set Selection

This experiment was intended to perform in it ia l va lidation of the Order S tatistics 

model. As such, the intention was to use pre-existing failure data, since the 

use o f such data would save the significant overhead o f performing testing and 

debugging at this po int in the research process. However, it  is rarely easy to  find 

such data, a problem documented by other researchers [12] [13]. To a large extent, 

the scarcity o f appropriate data can be a ttrib u ted  to the requirements that fa ilure 

data must meet before being deemed suitable fo r use for re liab ility  modeling. The 

follow ing sections detail some of these requirements and describes the data tha t 

was u ltim a te ly  selected for use in this experiment.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 10. APPLYING  TH E MODEL TO REPRESENTATIVE DATA  57

1 0 .1 .1  T h e  N e e d  F or H ig h  Q u a lity  D a ta

The first requirement th a t potential data sets have to satisfy before being selected 

is tha t the failure data represented in  the set has to have a high level of quality. 

That is to say, the data should have been meticulously compiled w ith  application 

to software re liab ility  in  m ind. Data sets that om it data or include incorrect data 

are o f litt le  use for validating a software re liab ility  model. In  fact, inaccurate data 

may do more harm than good i f  i t  leads researchers to draw the wrong conclusions 

about the models being tested.

There are incidents reported in the literature where shortcomings in existing 

data sets have compromised the results that the authors wanted to  obtain. Jelinski 

and Moranda [13] report tha t the vague nature o f the trouble reports they were 

using as a data sources forced them to change the way tha t the ir experiment was 

designed. Musa, as well, reports [19] that ambiguity in  fau lt reports that he had 

encountered forced him  to  make sim plifying assumptions when several failures 

were found grouped together in the data instead o f being reported individually.

For these reasons, the data selected for this experiment needed to be failure 

data tha t had been carefully compiled w ith software re lia b ility  estimation in mind.

1 0 .1 .2  T h e  N e e d  F or A  S u b s ta n t ia l N u m b e r  O f F a ilu res

The second requirement tha t a potential data set had to satisfy before being 

selected is that the data set had to consist o f a substantial number o f failures. 

This requirement is necessary' to insure that the results that are obtained w ill 

be statistica lly sound. I t  is not realistic to believe tha t valid statistical results 

can be obtained from data sets that consist o f only a few faults. Small samples 

are notorious for providing misleading statistical results, because of increased 

sensitivity to flucuations in ind iv idual values.

Another problem w ith  small-sized failure sets is tha t a small number of failures 

may indicate that the software system being testing was not an actual large-scale 

system, but was a toy system w ritten  exclusively for research purposes. I t  is 

not clear tha t results from such systems can be d irectly  applied to real-world
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situations.

1 0 .1 .3  T h e  N e e d  F o r  F a ilu re  D a t a  F r o m  R e p r e s e n ta t iv e  

T e s t in g

A t the outset o f this experiment, is was obvious ttha t determ ining how well the 

model f it the failure data would be d ifficu lt to  assess in  absolute terms. For 

example, i f  the model was applied to the data -and the best f it  had an error 

measure of some number, E z then how would we kno w  whether this f i t  was a good 

fit, or not so good? For this reason, i t  was necessany to  compare the results from  

the model developed in  this dissertation to the resmlts from  existing models. Since 

the selected data sets have to  be used w ith  e x is tin g  models, data obtained during 

representative testing had to be used.

1 0 .1 .4  T h e  S e le c t e d  D a ta  S e ts

The data sets used in  this experiment were firs t published by Musa[19]. These 

failure sets were gathered from  several real-life softnvare systems and were compiled 

w ith  software re lia b ility  application in mind. In  a d d itio n  to the data sets, Musa 

[19] describes how the data was gathered and w h a t assumptions were made.

10.2 Experim ent Design
Four models and four data sets were used in this experim ent. The desired analysis 

was performed for each model for each data set, ifor a to ta l of 16 runs. Each run 

was an iterative f it t in g  process consisting of the m ultip le iterations necessary to 

generate an OP-Plot.

For each run, the iterative process was sta rte*! by setting the number o f pro­

gram failure rates used for the fittin g  process on* the first iteration to be h a lf o f 

the tota l number o f observed program failure ra tes. The software re lia b ility  too l 

was used to predict the current program failure rate. This predicted value was 

compared to the next program failure rate tha t was actually observed in the  data
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set. This process was repeated by adding one additional value to  the observed 

quantities, u n til the entire data set had been considered. The resulting sequence 

o f observed and predicted values was used to generate the OP-Plot.

The performance o f each model on an OP P lot is very im portant because the 

iterative process involved in  generating an OP P lot m irrors the process that a test 

team w ill fo llow  when conducting re lia b ility  testing. The team would typically 

find a fault, fix  it ,  and obtain a program re lia b ility  estimate based on the available 

data. This process would be repeated u n til testing is completed.

A OP P lo t was generated fo r each o f the 16 runs in  the study. In addition 

to the OP P lo t information, data about the best fit and progressive parameter 

estimates for each model for each data set was recorded.

10.3 R esults

This section presents the results obtained for each of the three types o f analysis 

performed in  this study.

1 0 .3 .1  T h e  R e s u lt s  O f  A n a ly z in g  T h e  P r e d ic t iv e  A c c u r a c y  

O f T h e  M o d e ls

The sixteen OP Plots generated du ring  this experiment are shown in  Figures 5 to 

20. Just by glancing at the four plots generated for each data set, i t  is apparent 

tha t all o f the models seemed to have some trouble generating predictions that 

were close enough to the observed values to create an OP P lot close to the x — y 

ideal.

Perhaps the first questions th a t comes to mind are “W hy are a ll o f the models 

having trouble?” and “Aren’t  any o f them any good?” . The fo llow ing paragraphs 

w ill attem pt to provide answers to  the these questions.

Figure 21 gives the average o f the f itt in g  error for each OP P lo t. The value 

in  each cell in  Figure 21 represents the average of the squared error for each X-Y  

pair on the corresponding OP P lo t. For example, an entry o f .000564 is entered
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in the table for the JM  Model for Set 2. The presence o f this number means tha t 

i f  the difference of each X -Y  pair on the OP P lo t for the Jelinski-Moranda Model 

for Data Set 2 is squared,normalized, and summed, then the resulting value tha t 

is obtained is .000564.

Looking across the rows o f this table, i t  is apparent that all o f the software 

re liab lity  models performed about same for any given data set. There are no 

cases where one model performed significantly worse or significantly better than 

the other models.
A  possible explanation for the poor performance of all of the OP Plots is 

the nature of the data itself. B y looking at the observed data series in Figures 22 

through 37, the scattered nature of the observed failure rates is obvious. A lthough 

the observed values do tend to decrease as the fa ilure number increases, i t  is obvi­

ous that the failure rates are far from s tric tly  decreasing. Since a ll o f the models 

under consideration in  th is study (and probably all models in existence) model 

program failure rates as s tr ic tly  decreasing, then any exceptions w ill contribute 

to poor estimates and predictions. In  Figures 22 through 37, i t  seems tha t an 

increase in observed program failure rate from  point to  point seems as much the 

norm than the exception. From these observations, i t  seems that the poor results 

in the OP Plots have more to do w ith  the nature o f the data than the models 

themselves.
These observations support the discussion in  Chapter 2 about the amount o f 

statistical noise inherent in  data based on quantities observed during testing, and 

provides more evidence tha t the emphasis o f re lia b ility  data acquisition needs to 

be changed from quantities derived during testing to quantities derived during 

debugging whenever possible.
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Musa Set 1 - OS LogNormal Model
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O O
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0.0001
0.10.01

Observed Program Failure Rate
0.0010.0001

FIG . 5. OS Model OP P lo t For Data Set 1
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Musa Set 1 - Jelinski-Moranda Model

0.1

0.01

0.001

■P®.o o

0.0001
0.10.01

Observed Program Failure Rate
0.0010.0001

FIG . 6. JM  Model OP P lot For Data Set 1
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Musa Set 1 - Musa Basic Model

0.1
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Observed Program Failure Rate
0.0010.0001

FIG . (. Musa Basic OP Plots For Data Set 1
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0.1 r

0.01 r

0.001 r

0.0001 -----
0.0001

Musa Set 1 - Musa Log Model
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FIG . 8. Musa Log OP Plots For Data Set 1
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Musa Set 2 * OS LogNormal Model
0.1

0.01

<? $■
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0.0001

1e-05 —  
1e-05 0.10.010.0010.0001

Observed Program Failure Rate

FIG . 9. OS Model OP P lo t For Data Set 2
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Musa Set 2 - Jelinski-Moranda Model
0.1

0.01

O oO <?
a

0.001

0.0001

1e-05 0.10.010.001
Observed Program Failure Rate

0.00011e-05

FIG . 10. JM  Model OP P lot For Data Set 2
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Musa Set 2 - Musa Basic Model
0.1 c

0.01 r

0.001 r

0.0001 r

1e-05
1e-05 0.0001 0.001 0.01 

Observed Program Failure Rate

FIG . 11. Musa Basic OP Plots For D ata Set 2
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Musa Set 2 - Musa Log Model
0.1

0.01

0.001
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1e-05 0.10.010.001
Observed Program Failure Rate

0.00011e-05

FIG . 12. Musa Log OP Plots For Data Set 2
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1
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0.001

0.0001

1e-05
1e-05 0.0001 0.001 0.01 0.1

Observed Program Failure Rate

FIG . 13. OS Model OP P lo t For Data Set 3

Musa Set 3 - OS LogNormal Model
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Musa Set 3 - Je/inski-Moranda Model
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1e-05
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0.001

Observed Program Failure Rate
0.00011e-05

FIG . 14. JM Model OP Plot For Data Set 3
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Musa Set 3 - Musa Basic Model

0.1

o«0.01
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Observed Program Failure Rate

0.00011e-05
Failure

FIG. 15. Musa Basic OP Plots For Data Set 3
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Musa Set 3 - Musa Log Model
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FIG . 16. Musa Log OP Plots For Data Set 3
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Musa Set 4 - OS LogNormal Model
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Observed Program Failure Rate

FIG . 17. OS Model OP P lo t For Data Set 4

1 0 .3 .2  C o m p a r in g  T h e  B e s t  F i t  F or E a c h  M o d e l

The sixteen plots o f the best fits for each run made during this study are shown in 

Figures 22 to 37. As pointed out earlier, these plots show the noisy nature o f the 

observed data. Given the observed data in  these plots, i t  is d ifficu lt to imagine 

any d is tribu tion  tha t would provide a be tte r f it  to the observed data than the 

fits provided by the models used in  this experiment. The data provided in Figure 

38 shows tha t for any one of the data sets, a ll o f the models performed about 

the same. These observations suggest tha t no software re liab ility  model (or any 

other statistica l method) would be able to  provide really accurate estimates and 

predictions for this data.
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©
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Musa Set 4 - Jelinski-Moranda Model
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FIG . 18. JM Model OP P lo t For Data Set 4
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o
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Musa Set 4 - Musa Basic Model
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Observed Program Failure Rate

FIG . 19. Musa Basic OP Plots For Data Set 4
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Musa Set 4 - Musa Log Model
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FIG . 20. Musa Log OP Plots For Data Set 4

Model JM MB M L OS
Set 1 
Set 2 
Set 3 
Set 4

0.424323
0.000564
0.024337
5.621282

0.424323
0.000564
0.024337
5.621283

0.400713
0.000563
0.023249
5.563041

0.452195
0.000589
0.024303
5.733988

FIG . 21. Average E rro r For Each OP P lo t
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LS Fit For Lognormal Based OS Model - Musa Set 1
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FIG . 22. Best Fits For OS Model Data Set 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pr
og

ra
m

 
Fa

ilu
re

 
R

at
e

CHAPTER 10. APPLYING  TH E  MODEL TO REPRESENTATIVE DATA 78

0.1
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LS Rt For Jelinski-Moranda Model - Musa Set 1
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FIG . 23. Best F its For JM Model Data Set 1
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LS Fit For Musa Basic Model - Musa Set 1
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FIG . 24. Best F its For M B Model Data Set 1
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LS Fit For Musa Log Model - Musa Set 1
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FIG. 25. Best Fits For M L  Model Data Set 1
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0.1 tr
LS Rt For Lognormal Based OS Model - Musa Set 2

Observed o 
Predicted +

0.01 r

0.001 r

0.0001 r

1e-05
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Failure Number
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FIG . 26. Best F its For OS Model Data Set 2
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0.01
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0.0001

1e-05

LS Fit For Jelinski-Moranda Model - Musa Set 2
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FIG . 27. Best Fits For JM  Model Data Set 2
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LS Rt For Musa Basic Model - Musa Set 2
0.1 ,7-

Observed o 
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FIG . 28. Best F its  For MB Model Data Set 2
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0.1 r
LS Rt For Musa Log Model - Musa Set 2
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FIG. 29. Best F its For M L Model Data Set 2
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LS Fit For Lognormal Based OS Model - Musa Set 3
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FIG. 30- Best F its For OS Model D ata Set 3
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LS Rt For Jelinski-Moranda Model - Musa Set 3
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LS Fit For Musa Basic Model - Musa Set 3
-i------------1------------1----— —r
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FIG . 32. Best F its For MB Model Data Set 3
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L.S Fit For Musa Log Model - Musa Set 3
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FIG . 33. Best Fits For M L Model Data Set 3
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caCC
CD

caUL
E505o

LS Fit For Lognormal Based OS Model - Musa Set 4
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Predicted +•
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0.001
0 10 20 30 40 50

Failure Number
60 70 80

FIG . 34. Best F its  For OS Model Data Set 4

1 0 .3 .3  C o m p a r in g  T h e  P a r a m e te r  P r o g r e s s io n  F or E a ch  

M o d e l

The plots o f the parameter progression for each parameter for each model during 

the generation o f the OP Plot is shown in  Figure 39 to 47.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pr
og

ra
m

 
Fa

ilu
re

 
R

at
e

CHAPTER 10. A PPLYIN G  TH E  MODEL TO REPRESENTATIVE DATA 90

LS Fit For Jelinski-Moranda Model - Musa Set 4

Observed o 
Predicted +
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FIG . 35. Best F its  For JM Model D ata Set 4
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0.1

0.01

0.001

LS Fit For Musa Basic Model - Musa Set 4
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0 10 20 30 40 50 60 70 80
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FIG. 36. Best Fits For M B Model Data Set 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 10. APPLYING TH E  M O D EL TO REPRESENTATIVE DATA  92

LS Fit For Musa Log Model - Musa Set 4

Observed o 
Predicted +

0.1 -
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FIG. 37. Best F its  For M L Model Data Set 4

Model JM MB M L OS
Set 1 
Set 2 
Set 3 
Set 4

0.45232
0.000757267
0.035536
6.29474

0.445232
0.000757267
0.035536
6.29474

0.414309
0.000758417
0.0356122
6.31988

0.465994
0.000781957
0.0354903
6.40239

FIG . 38. E rro r For Each Best F it
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FIG . 39. OS Model Mean Progression For A ll Data Sets
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FIG . 40. OS Model Standard Deviation Progression For A ll Data Sets
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FIG. 41. OS Model N Progression For A ll Data Set.s
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FIG. 42. Jelinski-Moranda Phi Progression For A ll Data Sets
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FIG . 43. Jelinski-Moranda N Progression For A ll Data Sets
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|  0.0195

FIG. 44. Musa Basic In itia l Program Failure Rate Progression For A ll Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H A PTER  10. APPLYING  TH E  M O D EL TO  REPRESENTATIVE DATA  99

FIG . 45. Musa Basic N Progression For A ll Data Sets
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FIG . 46. Musa Log Decay Parameter Progression For A ll Data Sets
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lo g

Log
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FIG . 47. Musa Log In itia l Program Failure Rate Progression For A ll Data Sets

10.4 Conclusions

In  this chapter, the in it ia l verification of the model proposed in this dissertation 

was presented. The biggest problem that surfaced during this experiment afflicted 

all o f the software re liab lity  models being used. I t  seems that data based on 

observations made during testing is simply too noisy to be of use for making 

accurate re liab ility  estimates.

D uring this experiment, a ll o f the models performed similarly, providing in it ia l 

verification tha t the Order Statistics Model is at least as good as the existing 

models. In  addition, this experiment provided further evidence that time based 

measures observed during testing (such as interfailure times) are simply too prone 

to statistica l noise to provide a good basis for m aking accurate re liab ility  estimates 

and predictions.
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C h apter 11

D a ta  From  G en era ted  D eb u g g in g  
S eq uences

This chapter describes the second experiment that was conducted during the 

course o f this research. The data fo r this experiment was generated by simulating 

debugging sequences based on existing failure rate data for an actual software 

system.

11.1 The D ata Set

The basis for this study was a data set obtained in p rio r research conducted 

by W ild  et al.[31], where the authors tested the Launch-Intercept-Control (LIC) 

software system using both representative methods and a directed testing method 

known as Knowledge-Driven Functional Testing. During W ild ’s experiment, the 

operational failure rate and directed failure rate for each discovered fau lt was 

recorded. This failure rate in form ation is summarized in Figure 48.

Debugging sequences were generated from this data and the resulting failure 

rate data was used as input in to  selected re liab ility  growth models. The process 

o f generating the debugging sequences is described in the next section.

102
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Reproduced with

#  Failures /  #  Tests
Fault Best Random

# Refined
(100 tests) (106 tests)

18.1 0 .000008
19.1 1.0 .000264
20.1 1.0 .000323
20.2 .46 .000697
21.1 1.0 .000085
21.2 0 .000007
22.1 1.0 .006551
22.2 1.0 .001735
22.3 1.0 .001735
23.1 1.0 .000072
23.2 0 .000008
24.1 1.0 .000260
25.1 1.0 .000014
25.2 1.0 .000080
25.3 .19 .000003
26.1 1.0 .000140
26.2 1.0 .000009
26.3 0 .000001
26.4 1.0 .000006
26.5 1.0 .000004
26.6 .15 .000368
26.7 .15 .000243

#  Failures /  #  Tests
Fault Best Random

# Refined
(100 tests) (106 tests)

1.1 0 .000002
3.1 1.0 .000135
3.2 1.0 .000195
3.3 1.0 .000537
3.4 0 .000006
6.1 1.0 .000607
6.2 .89 .000511
6.3 1.0 .000032
7.1 0 .000071
8.1 1.0 .000225
8.2 1.0 .000098
9.1 .71 .000047
9.2 .15 .000006
11.1 .46 .000554
12.1 1.0 .000356
12.2 0 .000071
13.1 0 .000004
14.1 1.0 .001297
14.2 0 .000071
16.1 1.0 .000028
16.2 0 .000034
17.1 0 .000201
17.2 0 .000076

FIG. 48 . Directed Fault Failure Rates ( K d f t ) versus Representative Fault Failure 
Rates [31]
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11.2 Experim ent D esign

During this experiment, debugging sequences for both representative testing and 

the mixed method approach to testing were generated from the fa ilure rate data 

provided by W ild  et al [31]. The mixed method approach to testing was mod­

eled as using representative methods at the start o f testing and switching to 

directed methods later. The mixed method data was used as inpu t in to  the Or­

der Statistics model. The representative testing data was used as input into the 

Jelinski-Moranda model, the Musa Basic model, and the Musa Log model.

A  to ta l o f four data sets o f each type were generated for this experiment.

1 1 .2 .1  G e n e r a t in g  R e p r e s e n ta t iv e  T e s t in g  D a ta

The generation o f failure data from representative testing involved sim ulating and 

executing 100,000 representative test cases. This number of representative test 

cases is the same number of cases generated and executed in W ild ’s research. For 

each test case in  this experiment, the probability  o f exposing a given fau lt was 

dictated by the operational failure rate o f tha t fau lt in  W ild ’s table.

For example, i f  given fault in the program had an operational failure rate of 

.000002, then on each iteration (1-100,000), a random number between 1 and 

1,000,000 was generated. I f  the value o f this random number was less than or 

equal to 2 (1, 000,000 * .000002 =  2), then this fau lt was considered to be found 

by this simulated test case, and the failure time (iteration number) was recorded.

Simulating 100,000 test case iterations resulted in  a set of system failure times 

tha t were converted to interfailure times, and then to  program failure rates.

1 1 .2 .2  G e n e r a t in g  A  M ix tu r e  O f R e p r e s e n ta t iv e  a n d  D i­

r e c te d  T e s t in g  D a ta

The process o f generating data tha t could be obtained from a mixed approach 

to  testing was s ligh tly  different than generating representative testing data. This 

section describes these differences.
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Fault Failure Rate Fault Failure Rate
12.2 0.3333333 17.1 0.0015432
24.1 0.0344828 7.1 0.0025974
22.2 0.0322581 17.2 0.0004836
22.1 0.0526316 26.7 0.0015152
22.3 0.0128205 23.1 0.0001931
14.2 0.1250000 13.1 0.0000548
20.2 0.0909091 25.1 0.0003589
14.1 0.0024390 9.1 0.0003834
6.2 0.0476190 26.2 0.0006345
8.2 0.0036232 3.4 0.0001058
26.6 0.0135135 16.1 0.0003194
20.1 0.0136986 25.3 0.0007133
3.2 0.0012953 23.2 0.0000544
12.1 0.0023041 18.1 0.0045872
6.1 0.0344828 16.2 0.0000851
3.3 0.0062893 9.2 0.0000910
6.3 0.1428571
11.1 0.0039370
3.1 0.0053763
19.1 0.0285714
21.1 0.0046296
8.1 0.3333333
26.1 0.0013245

FIG. 49. Generated Representative Set One
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Reproduced with

Fault Failure Rate Fault Failure Rate
20.2 0.0232558 26.1 0.0003253
6.1 0.0312500 8.2 0.0006262
14.1 0.0079365 16.1 0.0009606
22.2 0.0108696 7.1 0.0013587
22.1 0.0208333 3.1 0.0004953
26.6 0.0109890 26.5 0.0000910
14.2 0.0066225 12.2 0.0007692
17.1 0.0086207 6.3 0.0001166
24.1 0.0119048 3.4 0.0001420
9.1 0.0030581 17.2 0.0000757
12.1 0.0833333 16.2 0.0001149
21.1 0.0400000 25.1 0.0000329
22.3 0.0043668
3.3 0.0038168
25.2 0.0049261
11.1 0.0036232
6.2 0.0029499
26.7 0.0027322
20.1 0.0007849
3.2 0.0003922
19.1 0.0625000
8.1 0.0004666
23.1 0.0081967

FIG. 50. Generated Representative Set Two
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Fault Failure Rate Fault Failure Rate
24.1 0.0500000 14.2 0.0112360
22.1 0.0172414 21.1 0.0005845
22.2 0.0027933 19.1 0.0019685
14.1 0.0588235 17.2 0.0009615
3.2 0.0434783 16.1 0.0019380
22.3 0.0714286 26.1 0.0005599
6.1 0.0035211 12.2 0.0002147
12.1 0.2500000 25.2 0.0003804
20.2 0.0082645 9.2 0.0002263
23.1 0.0031250 9.1 0.0001856
17.1 0.0034364 21.2 0.0001381
11.1 0.1250000 25.3 0.0001907
6.2 0.0022371 16.2 0.0004218
3.3 0.0022422 13.1 0.0001182
3.1 0.3333333 23.2 0.0000231
8.1 0.0106383
26.7 0.0016103
20.1 0.0025510
26.6 0.0021277
26.4 0.0004348
8.2 0.0035587
6.3 0.0013477
7.1 0.0019231

FIG . 51. Generated Representative Set Three
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Fault Failure Rate Fault Failure Rate
22.1 0.0476190 7.1 0.0009681
24.1 0.0555556 25.2 0.0027701
14.1 0.0121951 26.1 0.0007862
22.2 0.0103093 17.2 0.0016129
26.6 0.0072464 3.2 0.0001279
3.3 0.0555556 14.2 0.0005299
6.1 0.0054054 12.2 0.0058480
26.7 0.2000000 26.5 0.0004502
22.3 0.0147059 26.4 0.0000615
16.2 0.0227273 6.3 0.0000967
19.1 0.0588235 26.2 0.0000799
12.1 0.0011198 25.1 0.0000845
17.1 0.0034483 18.1 0.0002861
11.1 0.0013699
8.1 0.0072464
23.1 0.0033898
6.2 0.0277778
20.2 0.0078125
8.2 0.0020080
3.1 0.0029762
21.1 0.0029940
20.1 0.0026954
9.1 0.0007225

FIG. 52. Generated Representative Set Four
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Determining The Testing Cross-Over Point

Before generating data fo r a mixed method testing process, the point at which 

simulated testing would sw itch from representative methods to  directed methods 

had to be identified. The actual determination o f th is  cross-over point w ill u lt i­

mately be made by testers when they feel tha t representative testing is starting 

to “ take too long” .
For th is experiment, the cross-over from representative methods to directed 

methods was made when the first interfailure tim e exceeding 1000 was observed. 

Therefore, the crossover occured when 1000 representative test cases had been 

generated and executed w ith o u t exposing a fau lt.

For each directed da ta  set, the representative fa ilu re  rate data for the set is 

taken from the corresponding generated representative data set. Thus, the data in 

each generated mixed testing  set matches the data in  the corresponding generated 

representative teting set up u n til the crossover po in t. For example, in the first pair 

of generated sets, the firs t 26 values o f the representative data set are identical to 

the first 26 values of the m ixed data set.

Determining The Number Of Directed Test Cases To Generate

A fte r the cross-over po in t had been reached during the generation of a mixed data 

set, instead of s im ula ting the failure behavior o f the software over the remainder of 

the 100,000 test cases as was done when representative testing was simulated, the 

behavior of the software when executing five passes through the refined functional 

test cases defined by W ild  [31] was simulated.
Five passes through the refined functional test set represents the execution of 

about 500 directed test cases. In  practice, testers wall probably only make one pass 

through their directed test sets. M ultip le  passes were made during this experiment 

in order to maximize the amount of data available fo r analysis. As it  turned out, 

however, the first pass through the directed test suite usually ended up finding 

over ninety percent o f the faults that were found during  the five iterations. Figure 

53 shows the number o f fau lts found for each data set fo r each directed testing
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Pass Set I Set 2 Set 3 Set 4
1 9 14 12 9
2 2 1 1 0
3 0 0 0 1
4 0 0 0 0
5 0 0 0 1

FIG . 53. Number O f Faults Found For Each Directed Testing Pass For Each Data 
Set

pass.

Determining Fault Exposure Under Directed Testing

D uring generation of representative testing data, the probability o f find ing a given 

fau lt was dictated by the fa u lt’s operational failure rate from W ild ’s table. During 

s im ulation o f directed testing, however, the probability of find ing a given fau lt was 

dictated by fa u lt’s failure rate under directed testing. Additiona lly , instead of 

recording the program failure rate fo r each o f the faults found during  the directed 

testing phase of the data generation, the fau lt failure rate was recorded.

11.3 Results
A fte r the data sets had been generated, they were used as inpu t to several relia­

b ility  models and the results were compared.
As in  the experiment presented in  the previous chapter, the analysis o f the 

models consisted of generating O P-P lots for each model for each data set, com­

paring the best fits for each model fo r each complete data set, and comparing the 

s ta b ility  o f the models using parameter progression plots.
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Fault Failure Rate Fault Failure Rate
12.2 0.3333333 17.1 0.0015432
24.1 0.0344828 7.1 0.0025974
22.2 0.0322581 17.2 0.0004836
22.1 0.0526316 9.2 0.0000060
22.3 0.0128205 16.1 0.0000280
14.2 0.1250000 23.1 0.0000720
20.2 0.0909091 25.1 0.0000140
14.1 0.0024390 25.2 0.0000800
6.2 0.0476190 25.3 0.0000030
8.2 0.0036232 26.2 0.0000090
26.6 0.0135135 26.4 0.0000060
20.1 0.0136986 26.5 0.0000040
3.2 0.0012953 9.1 0.0000470
12.1 0.0023041 26.7 0.0002430
6.1 0.0344828
3.3 0.0062893
6.3 0.1428571
11.1 0.0039370
3.1 0.0053763
19.1 0.0285714
21.1 0.0046296
8.1 0.3333333
26.1 0.0013245

FIG . 54. Generated Mixed Testing Set One
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Fault Failure Rate Fault Failure Rate
20.2 0.0232558 8.2 0.0000980
6.1 0.0312500 16.1 0.0000280
14.1 0.0079365 19.1 0.0002640
22.2 0.0108696 23.1 0.0000720
22.1 0.0208333 25.1 0.0000140
26.6 0.0109890 25.3 0.0000030
14.2 0.0066225 26.1 0.0001400
17.1 0.0086207 26.2 0.0000090
24.1 0.0119048 26.4 0.0000060
9.1 0.0030581 26.5 0.0000040
12.1 0.0833333 9.2 0.0000060
21.1 0.0400000
22.3 0.0043668
3.3 0.0038168
25.2 0.0049261
11.1 0.0036232
6.2 0.0029499
26.7 0.0027322
20.1 0.0007849
3.1 0.0001350
3.2 0.0001950
6.3 0.0000320
8.1 0.0002250

FIG. 55. Generated Mixed Set Two
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Fault Failure Rate Fault Failure Rate
24.1 0.0500000 16.1 0.0000280
22.1 0.0172414 19.1 0.0002640
22.2 0.0027933 21.1 0.0000850
14.1 0.0588235 25.1 0.0000140
3.2 0.0434783 25.2 0.0000800
22.3 0.0714286 25.3 0.0000030
6.1 0.0035211 26.1 0.0001400
12.1 0.2500000 26.2 0.0000090
20.2 0.0082645 26.5 0.0000040
23.1 0.0031250 9.1 0.0000470
17.1 0.0034364
11.1 0.1250000
6.2 0.0022371
3.3 0.0022422
3.1 0.3333333
8.1 0.0106383
26.7 0.0016103
20.1 0.0025510
26.6 0.0021277
26.4 0.0004348
6.3 0.0000320
8.2 0.0000980
9.2 0.0000060

F IG . 56. Generated Mixed Set Three
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Fault Failure Rate Fault Failure Rate
22.1 0.0476190 3.2 0.0001950
24.1 0.0555556 6.3 0.0000320
14.1 0.0121951 16.1 0.0000280
22.2 0.0103093 25.1 0.0000140
26.6 0.0072464 25.2 0.0000800
3.3 0.0555556 26.1 0.0001400
6.1 0.0054054 26.2 0.0000090
26.7 0.2000000 26.4 0.0000060
22.3 0.0147059 26.5 0.0000040
16.2 0.0227273 25.3 0.0000030
19.1 0.0588235 9.2 0.0000060
12.1 0.0011198
17.1 0.0034483
11.1 0.0013699
8.1 0.0072464
23.1 0.0033898
6.2 0.0277778
20.2 0.0078125
8.2 0.0020080
3.1 0.0029762
21.1 0.0029940
20.1 0.0026954
9.1 0.0007225

FIG . 57. M ixed Set Four
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1 1 .3 .1  T h e  R e s u lt s  O f  A n a ly z in g  T h e  P r e d ic t iv e  A c c u r a c y  

O f T h e  M o d e ls

Figures 58 to 73 show the OP Plots tha t were generated for each model for each 

data set. The sum of the squared error for each iteration of each OP P lot was 

averaged and is shown in  Figure 74. I t  is d ifficu lt to  te ll much difference between 

the models sim ply by looking at the plots, but the data in Figure 74 indicates 

tha t the Order Statistics model and the Musa Log model perform similarly. Both 

o f these models performed better than the Jelinski-Moranda model and the Musa 

Basic model.
When looking at the OP Plots, i t  is evident tha t the OP Plots for the Order 

Statistics model have fewer points plotted than do the other models. The cause 

for the difference in  the number o f plotted points is the Order Statistics model’s 

use o f data from a combination of representative and directed testing.

Under purely representative testing, every fau lt tha t is found is represented on 

the OP P lot by its program failure rate. The Order Directed Testing Property, 

however, dictates tha t predicted program fa ilure rates w ill only have meaning 

under directed testing as testing nears coverage.

For this reason, instead of p lo tting 10-15 points corresponding to the faults 

found under directed testing, only 5 points are p lotted on the OP Plot - one for 

each directed testing coverage pass simulated in  th is experiment.

1 1 .3 .2  C o m p a r in g  T h e  B e s t  F it s  F o r  E a c h  M o d e l

Figures 75 to 90 show the best fits for each model for each of the data sets. One 

of the most noticeable differences between these plots and the best f it plots in  

the last chapter is the discontinuity present in  the plots for the Order Statistics 

model. This discontinuity is caused by the switch from representative testing to 

directed testing in  the mixed method approach to  testing. When representative 

testing is used, the program failure rates are plo tted. Once testing switches to  

directed methods, fau lt failure rates are plo tted. Therefore, the discontinuity in  

the best f it  p lo t reflects the fact that program fa ilure rates values are generally an
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order o f magnitude (or more) larger than fau lt failure rate values.

Com bination o f these two different quantities into a single fitt in g  process w ith ­

out biasing the results was accomplished by norm alizing the error measures during 

fittin g . Instead o f calculating the f itt in g  error as:

n

e =  Y,(predictedi — observedi)2, (21)
i = l

the f it t in g  error was calculated as:

predictedi — observedi 
observedi

Upon examination o f the best f it  plots and the data in  Figure 91, i t  is apparent 

tha t performance o f the Order Statistics model when fitt in g  to the entire data set 

compares favorably to the other models. For a ll o f the test sets, the error measure 

for the Order Statistics model is s im ilar to or better than the error measure for 

the Musa Log model. The error measures fo r the Order Statistics model and the 

Musa Log model are much better than the error measures for the Jelinski-Moranda 

model and the Musa Basic Model.

One o f the most im portant observations to  be made about the best f i t  plots is 

tha t the Order Statistics model does a very good job  of fittin g  to the fa u lt failure 

rates present in  the mixed method data sets. The fact tha t the fau lt fa ilu re  rates 

are sorted in to  descending order by the Order Statistics model, along w ith  the fact 

tha t the fau lt failure rates seem more stable than the program failure rates seems 

to greatly improve the goodness of fit. These observations lend yet more support 

to the argument tha t software re lia b ility  practicioners should consider switching 

the ir emphasis from quantities observed during  testing to quantities estimated 

during debugging in order to improve model performance.

(22)
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1 1 .3 .3  C o m p a r in g  T h e  P a r a m e te r  P r o g r e s s io n s  F o r  E a ch  

M o d e l

The parameter progressions for each parameter for each model during  the gener­

ation o f the OP Plots is shown in  Figures 92 to 100.

As in  the previous chapter, a fter examining the parameter progression plots, 

i t  appears that in most cases the Order Statistics model’s estimates for N as 

faults are discovered appear to  be more stable than the estimates provided by the 

Jelinski-Moranda Model and the Musa Basic model. The plots generated from 

the parameter estimate sequences o f the la tte r models show tha t the estimate for 

N almost always increases as new data is added. The plots generated from the 

parameter estimate sequences o f the Order Statistics model (w ith  the exception of 

Set 3) consist of several subsequences w ith in  which N is fa ir ly  constant. From these 

plots, i t  appears that the Order Statistics model provided more stable predictions 

for N as faults were discovered.
Examination of the parameter progression plots for the other parameters for 

all o f the models seems to lead to  the same conclusion. The subsequences of 

parameter progressions in the plots tend to be more stable for the Order Statistics 

model than for the Jelinski-Moranda model and the Musa Basic model. The 

s tab ility  o f the Musa Log model seems to similar to the s ta b ility  o f the Order 

Statistics model.

11.4 Verification O f T he Ordered D irected  Test­
ing Property

In previous work, M itchell and Zeil [17] conducted a statistica l test on the failure 

rate data used in this chapter to determine the relationship between the directed 

testing failure rates and the operational failure rates for each fa u lt in  the data 

set. M itche ll and Zeil calculated the Spearman rank correlation coefficient for the 

two fa ilure rate sets to be 0.42. A  coefficient of 0.42 or higher has on ly a 0.0027 

p roba b ility  o f arising in  independent variables. These results lend prelim inary
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support to the va lid ity  o f the Ordered Directed Testing Property.

11.5 Conclusions

I t  appears tha t the results from the Order Statistics model under mixed testing 

and the Musa Log model under representative testing are very similar. Both 

o f these models seem to provide better fits and predictive performance than the 

Jelinski-Moranda model and the Musa Basic model.
An im portant difference between the Order Statistics model and the Musa 

Log model, however, is tha t the the Order Statistics Model required far fewer 

test cases to generate its failure set, because i t  used a mixed method approach 

to testing tha t utilized directed testing. O f course, since i t  is more expensive to 

generate a directed test case than a representative test case, this advantage may 

be somewhat offset or negated. Nonetheless, the use o f m ultip le testing methods 

for re liab ility  assessment should yield a more robust and comprehensive testing 

process than would be obtained i f  a single method were used.
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Simulated Data * Order Statistics Model

1e-06

0.01  -

0.001  -

0.0001

1e-05 -

1e-05 0.0001 0.001 0.01 
Observed Program Failure Rate

F IG . 58. OS Model OP P lot For Generated Data Set One
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Generated Data - Jelinski-Moranda Model

0.01

0.001

0.0001

©o

1e-05

1e-06 0.10.010.001
Observed Program Failure Rate

0.00011e-05

FIG. 59. JM M odel OP P lot For Generated D ata Set One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pr
ed

ict
ed

 
Pr

og
ra

m
 

Fa
ilu

re
 

R
at

e

CHAPTER 11. DATA FR O M  GENERATED DEBUGGING SEQUENCES  121

Generated Data - Musa Basic Model
1

0.1

0.01

0.001

0.0001

oo

1e-05

1e-06 —  
1e-05 10.10.001 0.01 

Observed Program Failure Rate
0.0001

FIG- 60. MB Model OP P lo t For Generated Data Set One
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Generated Data - Musa Log Model

1e-06

0.01 -

0.001  -

0.0001  -

1e-05 -

1e-05 0.0001 0.001 0.01 
Observed Program Failure Rate

FIG. 61. M L Model OP P lot For Generated D ata Set One
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Simulated Data - Order Statistics Model

203oc©
03IU

0.1

0.01

i  0.001

Q_
T3©
=5 0.0001

1e-05

1e~06
0.0001 0.001

Observed Program Failure Rate

FIG. 62. OS Model OP P lot For Generated Data Set Two
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Generated Data - Jelinski-Moranda Model

0.0001

1e-05

0.01 -

0.001

1e-06
1e-05 0.0001 0.001 0.01 

Observed Program Failure Rate

FIG . 63. JM Model OP P lo t For Generated Data Set Two
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0.1

0.01

0.001

0.0001

1e-05

1e-06
le-05 0.0001 0.001 0.01 0.1

Observed Program Failure Rate

FIG . 64. MB Model OP Plot For Generated Data Set Two

Generated Data - Musa Basic Model
— ,-------- ,----- ' - r  . . . . |-------------- .-------- .----- ■ ' T
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Generated Data - Musa Log Model

0.01

0.001 -

0.0001  -

1e-05 -

1e-06
1e-05 0.0001 0.001 0.01 

Observed Program Failure Rate

F IG . 65. M L Model OP P lo t For Generated Data Set Two
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Generated Data - Order Statistics Model
1

0.1 -

0.01 -

0.001  -

0.0001

1e-05 -

1e-06 —  
1e-05

FIG . 66. OS Model OP P lo t For Generated D ata Set Three

0.0001 0.001 
Observed Program Failure Rate

0.01
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Generated Data - Jelinski-Moranda Model

0.1

0.01

0.001

0.0001

1e-05

1e-06 —  
1e-05 0.10.010.0010.0001

Observed Program Failure Rate

FIG . 67. JM Model OP P lo t For Generated Data Set Three
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Generated Data - Musa Basic Model

0.1

0.01

0.001

<s>

0.0001

1e-05

1e-06 —  
1e-05 0.01 0.10.0010.0001

Observed Program Failure Rate

FIG . 68. MB Model OP P lot For Generated D ata Set Three
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Generated Data - Musa Log Model

0.1

0.01

0.001

0.0001

1e-05

1e-06 —  
1e-05 0.10.010.0010.0001

Observed Program Failure Rate

FIG . 69. M L Model OP P lot For Generated Data Set Three
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0.1

0.01
©
CO CC 
<D

L i .

« 0.001
a>o£
*o

'■a 0.0001

1e-05

1e-06
0.0001

Generated Data - Order Statistics Model
T

0.001
Observed Program Failure Rate

FIG. 70. OS Model OP Plot For Generated Data Set Four
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Generated Data -  Jelinski-Moranda Model
T T

0.1

0.01

0.001
o
or 'o  oo o

0.0001
'V

1e-05

1e-06
1e-05 0.0001 0.001 

Observed Program Failure Rate

FIG. 71. JM Model OP Plot For Generated Data Set Four
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1

0.1 -

0.01 -

0.001 -

0.0001 -

le -05  -

1e-06 —  
1e-05

FIG. 72. M B  Model OP Plot For Generated Data Set Four

Generated Data * Musa Baste Model
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o
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o
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0.0001 0.001 
Observed Program Failure Rate
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Generated Data - Musa Log Model1

0.1

0.01

0.001

0.0001

1e-05

1e-06 —  
1e-05 0.0001 0.001 0.01

Observed Program Failure Rate

FIG. 73. M L  Model OP Plot For Generated Data Set Four

Model JM M B M L OS
Set 1 
Set 2 
Set 3 
Set 4

21.9155
15.91654
15.46484
17.21274

21.9155
15.91654
15.46484
17.21274

18.43406
8.871714
13.69872
13.63313

15.24542
7.095273
11.33527
10.99466

FIG. 74. Error For The OP Plots
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LS Fit For Order Statistics Model - Generated Data

0.1
■ ■ 9 o

0.01 -

0.001 -

0.0001 -

+ + o

o
+ 0 0

Observed o 
Predicted +

1e-05 -

1e-06 10 15 20 25
Failure Number

30 35 40

FIG. 75. Best Fit For OS Model Simulated Data Set One
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LS Rt For Jelinski-Moranda Model -  Generated Data

Observed o 
Predicted +

0.1
o o

0.01 -

0.001 -

o o
O o o

O o

O O
"  +■ + -I- + + + ■*• + + + + + + + + +
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FIG. 76. Best Fit For JM Model Simulated Data Set One
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LS Fit For Musa Basic Model - Generated Data

Observed o 
Predicted +

0.1 -

o o

0.01 -
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o
o o

o o+■ + + + +
0.0001 + + + + ° ° o "r +
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FIG. 77. Best Fit For M B  Model Simulated Data Set One
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<»
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FIG. 78. Best Fit For M L  Model Simulated Data Set One
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LS R t For Order Statistics Model - Generated Data
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FIG. 79. Best Fit For OS Model Simulated Data Set Two
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LS Rt For Jelinski-Moranda Model - Generated Data
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FIG. 80. Best Fit For JM Model Simulated Data Set Two
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LS R t For Musa Basic Model - Generated Data1
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LS Fit For Musa Log Model - Generated Data
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FIG. 82. Best Fit For M L  Model Simulated Data Set Two
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LS Fit For Order Statistics Model - Generated Data
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FIG. 83. Best Fit For OS Model Simulated Data Set Three
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LS Rt For Jelinski-Moranda Model - Generated Data
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FIG. 84. Best Fit For JM Model Simulated Data Set Three
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LS R t For Musa Basic Model - Generated Data
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FIG. 85. Best Fit For M B  Model Simulated Data Set Three
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FIG. 86. Best Fit For M L  Model Simulated Data Set Three
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LS Rt For Order Statistics Model - Generated Data
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FIG. 87. Best Fit For OS Model Simulated Data Set Four
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FIG. 88. Best Fit For JM Model Simulated Data Set Four
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LS R t For Musa Log Model - Generated Data
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FIG. 90. Best Fit For M L  Model Simulated Data Set Four
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FIG. 91. Error For The Fits To The Full Data Set
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FIG. 92. OS Model Mean Progression For All Data Sets
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FIG. 93. OS Model Standard Deviation Progression For All Data Sets
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FIG. 94. OS Model N  Progression For All Data Sets
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FIG. 95. Jelinski-Moranda Phi Progression For All Data Sets
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FIG. 96. Jelinski-Moranda N Progression For All Data Sets
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FIG. 97. Musa Basic Initial Program Failure Rate Progression For All Data Sets
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FIG. 98. Musa Basic N Progression For All Data Sets
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FIG. 99. Musa Log Decay Parameter Progression For All Data Sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



In
M

l 
Pr

op
am

 
fa

ta
 

In
ta

i 
Pr

op
am

 
Fa

du
ra

 
R

al
a

CHAPTER 11. DATA FRO M  GENERATED DEBUGGING SEQ UENCES  159

FIG. 100. Musa Log Initial Program Failure Rate Progression For All Data Sets
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C h ap ter 12 

T estin g  A n  E x is t in g  Softw are  
S y stem

The experiments described in the two previous chapters used pre-existing failure 
data as input into the models. In order to gain more insight into the reliability 
testing process using the mixed method approach to testing, the next step in 
this work was to conduct an experiment that involved testing and debugging an 
existing software system. This chapter describes the experiment and the results 
that were obtained.

12.1 System  D escription

The software system chosen for this experiment is the server portion of a real-time 
alarm tracking software system used by Eastalco Aluminum Company. The plant 
being monitored has two production lines with a total of 480 identical pieces 
of equipment (pots) used in the process. For each of these pots, the values of 
about 125 process variables (temperatures, effects, etc.) are tracked and fed to a 
plant-wide data historian that stores the data in a relational database.

Once a minute, the alarm server software examines the data for each of the 
240 pots in the production line and uses the values for 13 of the 125 available 
process variables to determine if any of eight different alarm conditions are met.

160
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This alarm information is instantly available to plant management and plant floor 

personnel, who are running the client portion o f the alarm software. Plant per­

sonnel are able to use the client software to  quickly determine which pots are in 

alarm, and are able to  select a given pot to receive a graphical presentation (time 

vs. value p lo t) o f all o f the significant process variables for th a t pot.

The server portion o f this software system consists o f two modules. The first 

module is a 600 line Delphi program responsible for providing the server’s graph­

ical interface. This module also provides support fo r interprocess communication 

w ith  the client software. The second module is a 3500 line Dynamic Link Library 

(D LL) w ritten  using C + + . Th is D LL  is responsible for retrieving the required 

process data from the plant data historian and determ ining the alarm status for 

each pot in  the production line.

The alarm server software was chosen for this experiment for several reasons. 

F irst, the lis t o f bugs discovered in  this system had been maintained since the 

software had been released for general use in  the plant. Whenever a bug was 

found during system use and the fix  was applied, the orig inal (incorrect) code was 

kept in the source program as a comment. Thus, for this experiment, i t  was fa irly  

straightforward to go back and construct a version o f the software containing all 

o f the known faults. A  to ta l o f 13 known faults were documented in the software. 

A  table detailing each of these faults w ill be presented la te r in  this chapter.

Second, since the software had been running for several years in an industria l 

environment, a large amount o f data was available to use for representative test­

ing. The lack o f representative data and the subsequent need to construct an 

operational profile to drive testing is one of the basic problems confronting soft­

ware re liab ilty  researchers. Selection o f this software system allowed us to avoid 

this problem.

Th ird , the nature o f the outputs (byte values corresponding to a given alarm 

state) made the creation of an automated oracle possible and fa irly  straightfor­

ward. Some o f the other software systems we considered for use in this experiment 

had ou tpu t tha t would be much more d ifficu lt to compare between the gold and 

test versions. For example, one software system considered for this experiment

permission of the copyright owner. Further reproduction prohibited without permission.
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was a tex t form atting u tility . This system had a lis t o f bugs that would cause the 

appearance o f the output document to differ between the test and gold version, 

but the problem o f how to compare the ou tpu t o f the two versions autom atically 

seemed d ifficu lt at best.

Fourth, the selected software consists o f over 4000 lines of code and contains 

13 faults. The smaller programs we considered contained only a few faults, which 

would not be useful for making re liab ility  estimates.

Finally, the selected software is an application tha t is used in  a real-world 

environment, which made it  much more attractive than using other alternatives, 

such as student programs.

12.2 Experiment Setup

The experiment described in this chapter was intended to provide the software 

re liab ility  models under investigation w ith  fa ilure data from the software system 

under test. Setting up this experiment required several steps. This section de­

scribes each o f these steps.

12.2 .1  O b tain in g  R ep resen ta tive  D ata_

The first step in setting up this experiment was to obtain representative data 

to use in the testing process. A  program was developed to extract one year o f 

representative data for each of the required process values from the plant data 

historian at the plant where the software had been running for several years.The 

extracted data was placed on a CD-R disk and was taken to the testing site where 

it  was transferred to a hard drive for use by the input driver of the experiment.

12.2 .2  S e ttin g  U p T he In p u t D river

Once the representative data had been obtained from  the plant, the next step was 

to devise a way to feed this data to the alarm  server in the test environment. A t 

the plant, the data historian software receives inpu t from the pots and stores the
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data in a relational database. The alarm server software then retrieves the process 

data directly from this database and uses i t  in  its calculations.

For this experiment, the d rive r tha t feeds the plant data to  the data historian 

was modified to  retrieve its  data from  a file-based source instead o f d irectly from 

the pots. The input files used by this modified driver are te x t files containing 

representative data extracted from  the database files obtained from  the plant. 

This data is fed to the plant data historian, which stores i t  in  its  database system 

(just as i t  does at the p lant). The alarm server then is able to  retrieve this data 

fo r its own use.

12 .2 .3  A u to m a tin g  T h e  Failure D etectio n  P r o c e ss

In  order to automate the fa ilu re  detection process, a gold version o f the software 

and an oracle were required. The gold version was readily obtained, as i t  is 

merely the alarm server software compiled w ith all o f the known faults removed. 

Conditional compilation flags were utilized to allow a single code base to be used 

to  build both the gold and the test versions of the software.

An oracle was created to  automate the process o f checking the outputs o f 

the test version against the ouputs o f the gold version. Th is  oracle consists of 

a graphical interface showing the alarm status of each o f the pots in the gold 

and test systems. Whenever a discrepancy is detected between the gold and test 

versions, the oracle stops processing and outputs a log file de ta iling the time of the 

failure, the number of test cases tha t have been run before the failure occurred, 

and the nature o f the failure.

12.3 Estimating Fault Failure Rates

In  order to use the data from  the experiment w ith the mixed method approach to 

testing, i t  was neccesary to  determine the operational fau lt fa ilure rates for each 

o f the th irteen faults present in  the test software. The fau lt fa ilure rate for each 

fau lt was estimated by analyzing one month of representative data (44460 values
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Fault Description FFR
1 Incorrect Tag Name For Breaker Faults 0.020923
2 Wrong zone name for Swing 0.000067204
3 Incorrect comparison for AE ACK 0.000224014
4 Incorrect operator for comparison to AE ’s lim it 0.2564516
5 Array o ff by one in swing queue wrapaxound 0.000002240
6 Incorrect comparison for swing active vals 0.00067204
7 Incorrect comparison for Soda Ash on alarm. 0.0291667
8 Incorrect comparison for Soda Ash off alarm. 0.000067204
9 Incorrect operator for comparison to BF on lim it. 0.020923
10 Incorrect operator for comparison to BF off lim it. 0.0146461
11 Incorrect comparison for swing active vals 0.000000093
12 Incorrect type for minute vals 0.000067204
13 Possibility o f negative number being passed to 

sleep function, resulting in an infinite loop.
0.0000113811728

FIG . 101. The Fault Set

for each inpu t tag) to  determine the number o f times each fault would manifest 

as a failure. The set o f faults (along w ith the each fault failure rate) is shown in 

Figure 101
As an example o f how the fau lt failure rates were calculated, let us consider 

fau lt number seven, (Incorrect Operator For Soda Ash A larm  On). During the 

estimation process, i t  was determined tha t th is  fau lt w ill manifest as a failure 

whenever the soda ash tag has a value of one. Therefore, the failure rate estimation 

program was modified to  calculate the percentage o f time tha t the soda ash tag 

had a value of one during  the m onth of data th a t was analyzed. This percentage 

(.029166667) was used as the estimated fau lt fa ilu re  rate for this fault.

As a second (s ligh tly  different) example, le t us consider fau lt number eight, 

(Incorrect Operator For Soda Ash A larm  O ff). During the estimation process, 

i t  was determined tha t this fau lt w ill manifest as a failure whenever the soda 

ash alarm acknowledgement tag has a value o f one AND the Soda Ash A larm  is 

active. The fau lt fa ilure rate (.000067204) was calculated by scanning one month 

o f representative data to  calcuate the percentage o f time that this combination of 

input values occurred.
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Fault Interfailure Time
1 180
10 2130
9 3390
2 2370
6 2370
12 180
11 180
13 29370
7 40830
8 14490
4 180

FIG. 102. Faults Found During Representative Testing

12.4 Representative Testing

The firs t part of this experiment involved testing the software using representative 

methods. During this pa rt o f the experiment, the input driver was used to send 

representative data to the data historian for use by the test software. The test 

version o f the software was in it ia lly  compiled to contain all o f the known faults. 

As testing was conducted, the oracle compared output o f the gold version to the 

output o f the test version. Whenever a discrepancy was found, the gold and test 

versions were stopped and the fau lt responsible for causing the failure was found 

and removed from the test version. The gold and test versions o f the software 

were then restarted. Th is process was repeated for the duration of testing.

D uring the course o f this experiment, a tota l of about 200,000 test cases were 

generated, executed, and tested for correctness. Testing was stopped after the 

test software processed 100,000 consecutive test cases w ithou t a failure.

The list of faults th a t were found during representative testing is shown in 

Figure 102. The first column o f the table shows the fau lt number, as given in 

Figure 101. The second column of the table shows the interfa ilure time (in terms 

o f number of test cases) for the fau lt. The faults in  th is table are listed in the 

same order in which they were found during this experiment.
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12.4.1 R e p r e se n ta tiv e  T estin g  R esu lts

As in the experiments presented in  previous chapters, the analysis o f the models 

consisted o f generating OP-Plots for each model for the data, comparing the best 

fits for each model, and comparing the s ta b ility  o f the models using parameter 

progression plots.

Com paring T h e  P red ic tiv e  A ccuracy O f Each M odel

The OP Plots fo r each model are shown in  Figures 103 to 106. To obtain the 

OP Plots, the fa ilure data was input in to  the models in  incremental steps. For 

example, for the firs t pass o f OP P lo t generation, only five failure rates were 

used as input, and the models predicted the s ixth  failure rate. This prediction of 

the sixth fa ilu re  rate was paired w ith  the actual observed sixth fa ilure rate and 

the result was plo tted as a point on the OP P lot. This process was repeated, 

w ith  an additiona l inpu t po in t being added during each step, un til a ll points were 

considered.
When looking at the OP Plots for the models, i t  appears tha t a ll o f the mod­

els performed s im ila rly  under representative testing. These observations are sup­

ported by the data in Figure 107, which shows the relative error for the OP Plots 

for each model.

Com paring T h e  B e st  F its  For Each M od el

The best fits fo r each model under representative testing are shown in  Figures 108 

to 111. Once again, we see th a t all o f the models performed sim ilarly. The relative 

error for the best fits for is model is shown in Figure 112. From the graphs, i t  

appears tha t a ll o f the models were overly op tim is tic  about the predicted program 

failure rate.

Com paring T h e  P aram eter  P rogressions For Each M odel

The parameter progressions fo r each model are shown in  Figures 113 to  121. These 

graphs show how the estimated values fo r each model parameter changed from
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Order Statistics Model (Representative Data)
0.01

cc 0.001<D
U -

E

0.0001
£al

1e-05
1e-05 0.0001 0.001 

Observed Program Failure Rate
0.01

FIG . 103. OP P lo t For Order Statistics Model (Representative Data)

one step o f the OP P lot generation to the next. For all of the models under 

representative testing, the model parameters are fa irly  stable as long as the data 

is fa ir ly  stable. We see a change in the pattern for each parameter sequence when 

the number o f failures is 6 on the X -Axis. Th is point in the data corresponds 

to the point where the observed interfa ilure tim e goes from 180 to  29370, which 

could be expected to cause a model to change its parameter estimates.
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0.01

Jetinski-Moranda Model

0.001

0.0001

le -05
1e-05 0.0001 0.001

Observed Program Failure Rate

FIG . 104. OP Plot For Jelenski-Moranda Model(Representative Data)

0.01
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Musa Basic Model
0.01 --------- ------■--- ■ ■ ■ ' ■ r rn----------.----- .--- .—........ ..

0.001 -

0.0001

1e-05
1e-05 0.0001 0.001 0.01

Observed Program Failure Rate

FIG . 105. OP P lot For Musa Basic Model (Representative Data)
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Musa Log Model
0.01

0.001

0.0001

1e-05
1e-05 0.0001 0.001 

Observed Program Failure Rate
0.01

FIG . 106. OP Plot For Musa Log Model (Representative Data)

Model JM MB M L OS
E rro r 55.5226 54.2328 84.3532 54.0217

FIG . 107. Relative Error For The OP Plots Under Representative Testing
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LS Fit For Order Statistics Model (Representative Data) 
0.01 r----------------------------- 1----------------------------- 1------------------------------r

0.001 r

0.0001 -

1e-05

Observed + 
Predicted x

10
Failure Number

FIG- 108. Best F it  For Order Statistics Model (Representative Data)
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LS Rt For Jelinski-Moranda Model
0.01

0.001

0.0001 -

1e-05

Predicted

4 6
Failure Number

FIG . 109. Best F it For Jelinski Moranda Model (Representative Data)
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LS Fit For Musa Basic Model
0.01

Observed
Predicted

0.001o
cc
CD

COu_
e
COo>o

^  0.0001

1e-05
10

Failure Number

FIG . 110. Best F it For Musa Basic Model (Representative Data)
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LS Rt For Musa Log Model
0.01

<5DCa>

0.001  -

0.0001  -

1e-05

Predicted

4 6
Failure Number

FIG . 111. Best F it For Musa Log Model (Representative Data)

Model JM MB M L OS
Error 7.74072 7.73239 7.88717 7.80969

F IG . 112. Relative E rror For The Best F its Under Representative Testing
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FIG . 113. OS Model Mean Progression W ith  Representative Data
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0.7 ------------------------------ 1------------------------------- 1 f  i

0.6  -  +
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FIG. 114. OS Model Standard Deviation Progression With Representative Data

Order Statistics Model
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Jelinski-Moranda Model
6e-05 ----------------------------- 1-------------------------------1------------------------------1------------------------------ 1-----------------------------

+■

5e-05 -  

4e-05 -  

£  3e-05 -

+
2e-05 . r

+ +

1e-05 -

0  1 1 ■ 1 -
0 1 2  3 4 5

Number Of Failures

FIG . 116. Jelinski-Moranda Phi Progression W ith  Representative Data
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FIG . 117. -Jelinski-Moranda N Progression W ith  Representative Data

Jelinski-Moranda Model
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FIG . 118. Musa Basic In itia l Failure Rate Progression W ith  Representative Data
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FIG . 119. Musa Basic N Progression W ith  Representative Data

Musa Basic Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 12. TESTING  A N  EXISTING  SOFTW ARE SYSTEM 182

Musa Log Model

2  3
Number Of Failures

FIG. 120. Musa Log In itia l Failure Rate Progression W ith  Representative Data
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Musa Log Model
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FIG. 121. Musa Log Decay Progression W ith  Representative Data
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12.5 Mixed Method Testing

The second part o f th is experiment involved testing the software using the mixed 

method approach to testing described in  earlier chapters. D uring the represen­

ta tive testing phase o f the mixed method testing process, the input driver fed 

representative data to the data historian for use by the test software. The test 

version of the software was in it ia lly  compiled to contain a ll o f the known faults. 

As testing was conducted, the oracle compared output o f the gold version to the 

ou tpu t o f the test version. Whenever a discrepancy was found, the gold and 

test versions were stopped and the fau lt responsible for causing the failure was 

found and removed from  the test version. The gold and test versions of the soft­

ware were then restarted. Th is process was repeated un til one fu ll day o f testing 

passed w ithout finding any new faults. A t th is time, the testing process switched 

from  representative testing to  directed testing. To reach this point in the testing 

process required a to ta l o f 85,800 test cases, w ith  the last 43,200 of these test 

cases being run to satisfy the crossover criteria.

A fte r switching to directed testing, the inpu t driver was fed uniform random 

data for each tag value. Th is data then sent to the data historian and fina lly  

to  the alarm server software. The directed testing crite ria  tha t was used for this 

experiment was statement coverage. For th is experiment, instrumentation was 

added to the software being tested to keep track of which lines of code had been 

executed during the testing process. Th is inform ation was logged to output files 

for analysis to aid in the creation o f the test cases required to  meet the coverage 

requirements.

A  to ta l o f 5400 test cases were run (sim ulating three hours o f system execution) 

using uniform  random data. D uring this interval, about 74 percent coverage 

was obtained. The remainder o f the directed testing process involved directly 

targeting specific unexecuted lines o f code and creating test cases to execute as 

many o f those lines o f code as possible. A  to ta l coverage of about 95 percent was 

eventually obtained. None o f the unexecuted code contained any of the faults 

being tested for. The uncovered code consisted of error handling code tha t would
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Fault Interfailure Time Fault Failure Rate
1 9270
9 10260
4 3810
2 180
12 2100
6 1170
10 5700
13 3750
3 .000224014
7 .02916
8 .000067204

FIG. 122. Faults Found During Mixed Testing

be executed in case of corrupted databases, indexes, or network failures.

During the course o f this experiment, a to ta l o f about 91,000 cases were gen­

erated, executed, and tested for correctness, w ith  about 94 percent o f these test 

cases occuring during the representative phase of testing.

The list o f faults tha t were found during mixed testing are shown in Figure 

122. The first column o f the table shows the fau lt number, as given in  Figure 101. 

The second column o f the table shows the interfailure tim e (in  terms of number 

o f test cases) for the fau lt i f  i t  was found during representative testing. The th ird 

column of the table shows the fau lt failure rate for the fau lt i f  i t  was found during 

directed testing. The faults in this table are listed in the same order in which they 

were found during this experiment. The set o f faults found under mixed testing 

and the set o f faults found under representative testing are very sim ilar. In  fact, 

they only d iffer by one element. This observation lends support to the Ordered 

Directed Testing Property, which states tha t directed and representative testing 

w ill uncover largely the same set o f faults as testing approaches coverage.
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12.5 .1  M ixed  T estin g  R esu lts

Since the failure data under mixed testing was gathered separately from  the data 

gathered under representative testing, the observed failure times were very differ­

ent. These differences would make i t  d ifficu lt to  make meaningful comparisions 

between the Order Statistics Model under mixed testing and the other models un­

der representative testing. For this reason, hybrid  versions o f the Jelinski-Moranda 

Model, the Musa Basic Model, and the Musa Log Model were developed during 

th is research.

Like the Order Statistics Model, these hybrid  models w ill accept failure data 

in the form  o f either program failure rates or fa u lt failure rates. The hybrid 

models were developed by m odifying the existing models to make fau lt failure 

rate predictions based on the existing model parameters. The calculation made 

by each model to predict fau lt failure rates is derived from  tha t model’s program 

failure rate calculation.

When estim ating fau lt failure rates, the Jelinski Moranda H ybrid Model uses 

the follow ing calculation:

f f n  =  <t> (23)

where 4> has the same meaning els in  the orig ina l model. This equation for the 

fau lt failure rate follows immediately from the Jelinksi-Moranda equation for the 

program failure rate which is:

At- = { N -  i)d>. (24)

When estim ating fau lt failure rates, the Musa Basic Hybrid Model uses the 

follow ing calculation:

f f r t =  ^  (25)
^0

where A0 and v0 have the same meaning as in  the orig ina l model. Th is equation 

for the fau lt failure rate was orig ina lly derived by Musa. [12]

When estim ating fau lt fa ilure rates, the Musa Log Hybrid Model uses the 

fo llow ing calculation:

f f r i  =  Ao0 e x p (-0 i)  (26)
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where A0 and 0 have the same meaning as in the original model. Th is equation 

for the fau lt failure rate was also orig ina lly  derived by Musa. [12]

Once these hybrid models were developed, they were applied to  the failure 

data from mixed testing and the results were analyzed. Once again, the analysis 

was carried out by generating O P-Plots for each model for the  data, comparing 

the best fits for each model, and comparing the s tab ility  o f the models using 

parameter progression plots.

C om paring T he P red ic tiv e  A ccu racy  Of Each M odel

The OP Plots for each model are shown in Figures 123 to 126. To obtain the 

OP Plots, the failure data was in p u t into the models in incremental steps. For 

example, fo r the firs t pass o f OP P lo t generation, only five fa ilure rates were 

used as input, and the models predicted the sixth failure rate. Th is prediction of 

the sixth failure rate was paired w ith  the actual observed s ix th  fa ilure rate and 

the result was plo tted as a po int on the OP Plot. This process was repeated, 

w ith  an additional inp u t po in t being added during each step, u n til a ll points were 

considered.

When looking at the OP Plots fo r the models, i t  appears th a t a ll o f the models 

performed sim ilarly  under mixed testing. These observations are supported by the 

data in Figure 127, which shows the relative error for the OP P lots for each model.

When comparing the results under mixed testing to the results under repre­

sentative testing, one item  of note is th a t the relative errors under mixed testing 

are less than the relative errors under representative testing. However, a large 

part o f the discrepancy between theses results can be explained by the nature of 

the data used as inpu t to the models. The data in Figure 102 appears to be much 

more erratic and noisy than the data in  Figure 122. For example, consider the 

starting sequence o f program failure rates in Figure 102. A fte r seeing program 

failure rates o f 180, 2130, 3390,2370, 2370, i t  is not likely tha t any model w ill pre­

d ic t a subsequent failure rate o f 180, which is the next oberved value. Likewise, 

after seeing 180,2130, 3390, 2370, 2370,180,180, i t  is not like ly  th a t any model 

w ill predict tha t the next value w ill be anywhere close to 29370, which is the next
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Order Statistics Mode! (Mixed Data)
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FIG. 123. OP P lo t For Order Statistics M odel (M ixed Data)
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Jelinski-Moranda Model (Mixed Data)

0.01

0.001

0.0001

1e-05

1e-06
1e-05 0.0001 0.001

Observed Failure Rate
0.01

FIG . 124. OP P lot For Jelenski-Moranda Model(Mixed Data)
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Musa Basic Model (Mixed Data)
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FIG . 125. OP P lot For Musa Basic Model (M ixed Data)
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FIG. 126. OP Plot For Musa Log Model (Mixed Data)

Model JM MB ML OS
Error 4.42641 4.43517 4.54007 4.50907

FIG. 127. Relative Error For The OP Plots Under Mixed Testing
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observed value. The data in Figure 102 does not exhibit these large swings in 
order of magnitude for the observed values, resulting in better predictions by the 
model.

Therefore, since it seems like model performance is dependent largely on the 
nature of the input data, it follows that the failure data  acquisition process and 
the type of failure data used has as much or more impact on the quality of the 
predictions made as any other factor.

Comparing The Best Fits For Each Model

The best fits for each model under mixed testing are shown in Figures 128 to 
131. Once again, we see that all of the models performed similarly. The relative 
error for the best fits for is model is shown in Figure 132. From the graphs, it 
appears that all of the models were overly optimistic about the predicted program 
failure rate. This optimism can possibly be explained by the fact that the first 
two observed interfailure times are the largest of all observed values, which would 
lead the models to believe that the software is more reliable than it really is.

Comparing The Parameter Progressions For Each Model

The parameter progressions for each model are shown in Figures 133 to 141. These 
graphs show how the estimated values for each model parameter changed from 
one step of the OP Plot generation to the next. For all of the models under mixed 
testing, the model parameters are fairly stable as long as the data is fairly stable.
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FIG. 128. Best F it For Order Statistics Model (Mixed Data)
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FIG. 129. Best F it For Jelinski M oranda Model (Mixed Data)
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FIG. 130. Best F it For Musa Basic Model (Mixed Data)
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LS Fit For Musa Log Model
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FIG. 131. Best F it For Musa Log Model (Mixed Data)

Model JM MB ML OS
Error 6.44925 6.45965 6.20296 6.45437

FIG . 132. Relative Error For The Best Fits Under Mixed Testing
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FIG. 134. OS Model Standard Deviation Progression W ith Mixed Data
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Order Statistics Model
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Number Of Failures

FIG. 135. OS Model N Progression W ith  Mixed Data
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12 .5 .2  C on clu sion s

During this experiment, in addition to the results detailed above, some basic 
observations were made about the general nature of the software reliability testing 
process. These observations, in combination with observations m ade in previous 
experiments, support a move away from using program failure ra tes for reliability 
testing.

F irst, the amount of statistical noise present in the program failure rate data 
is apparent simply by looking a t the failure data obtained during representative 
testing. It is hard to imagine any model being able to fit to this data. Similar 
results were observed in the previous experiments. All of the representative data 
sets examined during the course of this research exhibited this problem. Since all 
models performed similarly for all da ta  sets during this research, i t  appears that 
any models based on the use of data  obtained during testing will no t provide any 
better estimates.

Second, several artifacts of the testing process were observed th a t  caused mis­
leading results because of the use of observed program failure rates for making 
reliability estimates. Specifically, we observed that two of the th irteen  faults in 
the te s t software (Faults 11 and 12) cause an incorrect variable initialization when 
reading in the history values for the associated tags a t system sta rtup . Since these 
history  values are only used during the first hour of the software’s execution, these 
faults will only manifest as failures during the first hour of testing- Thus, the in­
terfailure time will always be low for such a manifestation, and a large fault failure 
rate would be assumed for these faults. This problem is made worse by the fact 
th a t during testing the test software will be restarted quite frequently, giving these 
faults more of an opportunity to manifest and thereby introduce misleading data 
into th e  reliability model. During actual use the software, a res ta rt only occurs a 
few tim es a year. During the actual estimation of the fault failure ra tes conducted 
a t the s ta r t of this experiment, it was found that these faults have low fault failure 
rates (0.000067204 and 0.000000093, respectively).

Therefore, we have direct evidence that the use of observed program  failure 
rates can lead to poor reliability estimates and predictions. This evidence supports
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our suggestion th a t the emphasis in software reliability modelling be shifted from 
the use of program failure rates to fault failure rates wherever possible. The 
Order Statistics Model developed in this dissertation represents a first step in this 
direction.

During the course of this experiment, all of the models performed similarly 
for the observed failure data. However, by using the mixed method approach to 
testing developed earlier in this dissertation, the models required only about half 
of the number of test cases to provide their estimates.

During this experiment, several existing models were modified to allow them  
to provide estim ates of fault failure rates in addition to the estimates of program  
failure rates th a t they already provide. T his modification enabled these models 
to use the da ta  from the mixed method approach to  testing, with similar results 
to those obtained by the Order Statistics Model.
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C onclu sions A n d  Future  
D irection s

In this chapter, the results of the research described in this disseration are sum­
marized and future areas of research are suggested.

13.1 R esu lts O f T h is W ork

This section describes the results of this work with respect to each of the goals 
defined in Chapter 4.

13 .1 .1  D evelop m en t O f A  M ixed  M e th o d  A p p roach  To 

T esting

Prior to this work, software reliability testing was conducted using only represen­
tative testing methods. In this work, a mixed method approach to testing was 
developed that employs both representative and directed testing methods. Each 
type of testing method is used when it is most efficient to do so, in order to accel­
erate the reliability testing process. During the final two experiments discussed in 
this dissertation, using the mixed method approach to testing required far fewer 
test cases than were required by representative testing.
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13.1.2 D eve lop m en t o f T echn iques To A llow  R eliab ility  

E stim a tio n  R egardless O f T h e T estin g  M eth o d  

U sed

Observed failure times during testing can only be used for reliability estimation 
if testing is conducted using representative methods. Since the mixed method 
approach to testing uses directed testing methods for a portion of the testing 
process, failure data gathered using this process cannot be used for reliability 
modelling.

One of the goals of this research was to develop techniques for obtaining failure 
rate data  th a t does not depend on the way th a t a program is tested. This goal 
was accomplished by switching the emphasis of data  collection from quantities 
observed during testing to quantities obtained during debugging.

Specifically, the random variable of interest for reliability estimation is 
switched from observed program failure rates to individual fault failure rates. 
Several methods for estimating fault failure rates were suggested and several of 
these methods were used in the experiments conducted during this work.

13.1 .3  D ev e lo p m en t O f A  Softw are R elia b ility  M od el C a­

p ab le  O f U sin g  D irected  T estin g  D a ta

Traditional software reliability models require tha t failure da ta  take the form of 
observed failure times during representative testing. During the course of this re­
search, a software reliability model based on order statistics was developed. This 
model differs from existing models, in that it allows data  from both representa­
tive and non-representative testing to be used as input. All of the experiments 
conducted during this work confirmed that the Order Statistics Model provides 
estimates and predictions as good as or better than the existing models th a t it 
was compared to.
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1 3 .1 .4  D evelop m en t O f H ybrid  V ersions O f E x is tin g  M od ­

els

Several existing models were modified to allow them to use fault failure rate data, 
in addition to the program failure rate  data tha t they already use. This modifi­
cation enabled these models to use the data from the mixed m ethod approach to 
testing to make reliability estim ates. These hybrid models performed similarly to 
the Order Statistics Model. The techniques used to convert these models could 
also be used with other models.

13 .1 .5  E valuation  O f T h e  S u itab ility  O f T im e  B a sed  D a ta  

For R elia b ilitly  E stim a tio n

As each experiment was conducted during this research, it became more and more 
apparent tha t observed program failure rates are poorly suited for making accurate 
reliability estimates and predictions. By their very nature, observed program 
failure rates will vary widely as testing is conducted. In order to minimize the 
noise and to provide stable d a ta  to reliability models, one must either combine 
m ultiple occurrences of a failure to obtain a better picture of the true current 
program  failure rate, or move away from the program failure rate. In any event, it 
has become clear that using program  failure rates based on software failures during 
testing does not provide good d a ta  to use as the basis of reliability modeling.

13.2  Future D irectio n s

The work completed during the course of this research has provided some insight 
into the software reliability testing process and has suggested some ways to im­
prove this process. As with any research, this work can be extended in several 
directions. This section outlines some of these potential areas of future research.

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



C H A P TE R  13. CONCLUSIONS AND FU TU RE D IREC TIO NS 2 1 1

13 .2 .1  R efin em en t O f M eth od s O f F ault Failure R a te  Es­

tim a tio n

Several techniques for determining fault failure rates were suggested in this dis­
sertation. Some of these techniques were used during this work, but further devel­
opment of these techniques will allow fault failure rate estim ates to be made more 
accurately and a t lower costs, especially in the absence of existing representative 
data .

13 .2 .2  D ev e lo p m en t O f A  M o d el T h a t U ses  O n ly  Fault 

Failure R a tes

A nother possible direction of future research is the development of a software 
reliability model th a t uses fault failure rates exclusively. During the course of this 
research, it became increasingly clear that program failure rates are not suited 
for making reliablity estimates because of their noisy nature. A model based 
solely on fault failure rates should provide more stable and accurate estimates 
and  predictions than any of the existing models th a t rely on program failure 
rates.

It would be interesting to design this model in such a  way that the software 
reliability engineering process could parallel the engineering process that is already 
used by other disciplines. For example, when engineers design a dam, it may be 
built to withstand a one hundred year flood, but maybe not a five hundred year 
flood. The reliability testing process could follow a similar procedure. Instead of 
working with the number of faults remaining in the program, the model would 
have a param eter that specifies a threshhold value th a t denotes the smallest fault 
th a t  is of interest. For example, the analyst would be able to specify tha t he 
doesn’t care about faults tha t occur less often than once a  year. The output of 
the  model could then be used to determine if the software has met this reliability 
criteria. In other engineering disciplines, such design methodologies are currently 
guided by the use of asymptotic order statistics. Thus, this new model would be 
a variation on the model developed in this dissertation.
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