
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Mathematics & Statistics Theses & 
Dissertations Mathematics & Statistics 

Summer 1985 

Minimal Norm Constrained Interpolation Minimal Norm Constrained Interpolation 

Larry Dean Irvine 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_etds 

 Part of the Fluid Dynamics Commons, and the Mathematics Commons 

Recommended Citation Recommended Citation 
Irvine, Larry D.. "Minimal Norm Constrained Interpolation" (1985). Doctor of Philosophy (PhD), 
Dissertation, Mathematics & Statistics, Old Dominion University, DOI: 10.25777/k9fd-rm76 
https://digitalcommons.odu.edu/mathstat_etds/100 

This Dissertation is brought to you for free and open access by the Mathematics & Statistics at ODU Digital 
Commons. It has been accepted for inclusion in Mathematics & Statistics Theses & Dissertations by an authorized 
administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mathstat_etds
https://digitalcommons.odu.edu/mathstat_etds
https://digitalcommons.odu.edu/mathstat
https://digitalcommons.odu.edu/mathstat_etds?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_etds/100?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


Minimal Norm 

Constrained Interpolation

by

Larry Dean Irvine 
B.S. May 1981, Georgetown College 

M.S. December 1982, Old Dominion University

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of

Doctor of Philosophy 

Computational and Applied Mathematics

Old Dominion University 
August, 1985

Approved by:

Philip W. Smith (Director)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ABSTRACT

MINIMAL NORM CONSTRAINED INTERPOLATION

Larry Dean Irvine 
Old Dominion University, 1985 
Director: Dr. Philip W. Smith

In computatonal fluid dynamics and in CAD/CAM a physical boundary, 

usually known only discreetly (say, from a set of measurements), must 

often be approximated. An acceptable approximation must, of course, 

preserve the salient features of the data (convexity, concavity, etc.) 

In this dissertation we compute a smooth interpolant which is locally 

convex where the data are locally convex and is locally concave where 

the data are locally concave.

Such an interpolant is found by posing and solving a minimization

problem. The solution is a piecewise cubic polynomial. We actually

solve this problem indirectly by using the Peano kernel theorem to 

recast this problem into an equivalent minimization problem having the 

second derivative of the interpolant as the solution.

We are then led to solve a nonlinear system of equations. We 

show that with Newton's method we have an exceptionally attractive and 

efficient method for solving this nonlinear system of equations.

We display examples of such interpolants as well as convergence 

results obtained by using Newton's method. We list a FORTRAN program 

to compute these shape-preserving interpolants.

Next we consider the problem of computing the interpolant of 

minimal norm from a convex cone in a normed dual space. This is an

extension of de Boor's work on minimal norm unconstrained interpolation.
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1. The Natural Spline Interpolant 

We consider the problem of computing an interpolant to given data. 

Throughout our discussion we shall denote the data

(t^,y^) i = 1,2,...,n 

where a = t^ < t2  < • • • < t = b and in this chapter we place no 

restrictions on the numbers y^. There are, of course, many such 

interpolants which we can form. For example, we can calculate the 

unique polynomial p of order n (degree n-1 or less) which interpolates 

the data. However, as pointed out in [deB(l), chapter 2], for large 

n (and especially for equally spaced points ti) the polynomial inter­

polant is notorious for large changes in its first derivative near the 

endpoints. Figure (1.1) displays the polynomial interpolant to the 

function

f(t) = 7T t)

at the points t^ = (i-l)/10 for i = 1,2,...,11. Since 0 s y^ < 1 for

each i, we expect a good interpolant to remain reasonably close to

these bounds. However, because of its behavior near the endpoints,

the polynomial interpolant fails to model the data well. This behavior

is typical of high-order polynomial interpolants.

In order to decrease the unnaturally large changes in the first

derivative characteristic of the polynomial interpolant, we wish to

calculate the interpolant which "bends" the least over all suitable

interpolants. The norm of the second derivative of an interpolant

will furnish a measure of the bending of the interpolant so we pose a
(2)minimization problem on 1^ [a,b], the Sobolev space of functions with
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Figure (1.1): The Polynomial Interpolant.
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3

second derivatives in'the normed linear space Let A denote

the set of all interpolants in the Sobolev space. We consider the 

minimization problem

Find A such that ||f^^ || _ s ||f^^ for all feA. (1.1)2 = ii- n 2

We shall see that the solution to (1.1) is piecewise cubic with two 

continuous derivatives; that is

f_„_(t) = p.(t) if t. £ t S t . .“ l x+1

for i = l,2,...,n-l where p^ is a cubic polynomial and f# is in 
2

C [a,b]. We follow the pattern in [deB(l), chapter 5], taking advan­

tage of the fact that L 2 [a,b] is not only a normed linear space, but 

also a Hilbert space with an inner product defined by

(f»g) = f(t)g(t)dt

for any two elements f and g in L2 [a,b].

Assume f is an element of A. (The set A is nonempty since it

contains the polynomial interpolant.) We shall use the Peano kernel
(2)theorem to obtain a set of equations for f . By the Fundamental 

Theorem of Calculus we have

We integrate

f(t) = f(a) +

r  ( 1 )

f ̂ ^(s)ds

Let

so that

f (s)ds by parts noting that

u(s) = f^^(s) and dv(s) = ds

du(s) = f^^(s)ds and v(s) = -(t-s)

udv = uv

(1.2)

vdu.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4

where t is a constant. Hence

and so (1.2) becomes

(1.3)

where q-̂ (t) = f(a) + f^^(a)(t-a). (This is actually a Taylor's series

with integral remainder.)

To acquire constant limit of integration we can write (1.3) as

Now we consider the divided difference operator. Given a function

g and a set of points { , T^ ^,...,T^+m}> the m-th divided difference

of g - denoted by *) ~ is t*ie leading coefficient

of the polynomial of order m+1 which interpolates g at

(and hence is a function of ). The recursive relationsi l+l l+m

hold if Tj_+ m ^ ( w h i c h  we assume for our data). Presently we are 

interested in the case m=2. Equation (1.5) becomes (with = t )

,b
f(t) = q1(t) + (t-s)+f.-(2) (s)ds (1.4)

where (h)+ , the positive part of the function h, is defined by

h(t) if h(t) s 0

[ T p ] g ( 0  =  g ( T p )
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which is computable for i=l,2,___,n-2.

Notice that tT.j_>T^+p  —  ,Ti+m^^*^ = 0 if p is a polynomial of 

order m or less (degree m-1 or less). (From equation (1.6) we see

that (t^+2 - ti ^ ti’ti+l,ti+2^^*^ measures a difference in slopes; 

difference in slopes being zero if g is linear.)

Now we apply the (scaled) second-divided difference operator 

^i+2 ~ ti')*-ti’ti+l,ti+2^ to (1.4) and interchange the order of the 

integral and divided difference operators to obtain

(b
di,2 = g(s)Nj.(s)ds i=l,2 9 • • • ,n-2 (1.7)

where

yi+2 ~ yi+l yi+l ~ yi
t - t t* - t1+2 i+1 i+1 i

(1.8)

(1.9)
(2)and g = f . We call N. „ the (normalized) linear B-spline (or1 • z9

B-spline of order 2) with knots t ^  ti+1 and ti+2. The graph of ^  2

is displayed in figure (1.2).
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Figure (1.2): The Normalized Linear B-spline.
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We have shown that if f is an interpolant in the Sobolev space 
(2)(f e A), then g = f satisfies (1.7). Let the set B consist of all 

functions which are in L2[a,b] and which satisfy (1.7).

Now consider the problem

Find g* E B such that || g# || 2 = II gll 2 for a11 8 £ B C1-10)

A unique solution exists since (1.10) is a minimal norm problem over

a nonempty closed convex set in a Hilbert space. Furthermore, the
(2)solutions of problems (1.1) and (1.10) are related via g* = f*

Hence, to compute f# we can first calculate g^ and then integrate g#

twice. Since much of our emphasis will be on g^, rather than f*, we

shall call g* the interpolant of minimal norm.

For brevity we denote the index m = n-2, the B-spline

and the divided difference d. = d. We also define the vector-valuedi i,2
function T:L2[a,b] Rm by

(Tx). =
b
x(t)N.(t)dt i=l,2,...,m.i 

a

To solve problem (1.10) we shall show that g^, the interpolant of 

minimal norm, is the intersection of two specific sets— one an ortho­

gonal complement of a subspace and the other a translate of a subspace 

— in L^fajb] via a variation of the Projection Theorem. If W is a 

closed subspace of a Hilbert space H and if x is an arbitrary element 

of H, then the Projection Theorem states that there exists a unique 

element w q in W satisfying

|| x - 'Wq IIs IIx - w II f°r aLL w e W (1.11)

and characterized by
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(x - w q jw) = 0 for all w e W.

Hence x - w q is in W 1 , the orthogonal complement of W. The proof of 

the Projection Theorem can be found in any book dealing with Hilbert 

spaces (for example, [L, page 517]). The next proposition will serve 

as the actual form of the Projection theorem which we shall use.

Proposition ([L, page 64]): Let W be a closed subspace in a Hilbert

space H. For a fixed elementx in H define V: = x + W. Then there 

exists a unique element x in V of minimal norm. Furthermore, x is----------------- a----------------  Q --------- ----------  ---------------- L. Q ---
I

in W

(The translate V is called an affine set or linear variety.) Notice

that x q is the intersection of the orthogonal complement of W and the

translate V of W. In fact, (1.11) reveals that x = x - w .o o
Define

W: = { z£ L 2 [a,b] : Tz = 0}

which is a closed subspace in L^fajb]. Let g e L 2 [a,b] be any element 

such that Tg = d_. (Equivalently, let g be any element of B.) Then 

B = g + W and B corresponds to the linear variety in the proposition. 

Hence ĝ . is the unique element in W 1 satisfying Tg7„_ = d_.

We consider the contents of W 1 . Any element which is orthogonal 

to each is also orthogonal to any linear combination of the B-

splines. Hence S: = s p a n ^ , ^ ,  ,N ).isa subset of W i . We now

show that W 1 is a subset of S (and hence S = W ±) by contradiction; 

Assume that there exists an element y which is in W 1 but not in S . 

Since S is a closed subspace there exists .(by the Projection Theorem)
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an element s in S such that o

y - so!| S II y - s I] for all s £ S

with y - sq in the orthogonal complement of S. This implies 

T(y - sq) = 0 or (y - sq)£ W. However y - sq is also in W 1 since 
both y and sq are in W x . Therefore (y - sq) = 0 and S = W x .

In summary, ĝ . is characterized by

m
g„ = I a.N. . , 1 1  i=l

(since g^ is in the span of the B-splines) where the coefficients

ct, ,a„,...,a are chosen to satisfy i z m
m

( Z a.N.,N.) = d. i=l,2, ,m (1-12). , i j i  lJ=1 J J

(since Tg# = d) • Equation (1.13), a system of m linear equations in m 

unknowns, can be written in matrix notation as

Aa = d (1.13)

where the symmetric matrix A has entries A = (N^,N^).

Because the B-splines are linearly independent, the matrix A, a 

Grahm matrix, is nonsingular and hence a unique solution exists for 

any given _d. Furthermore, since has support the matrix

A is tridiagonal. For any x.£Rm we have
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with equality holding if and only if x. = 0. The matrix A is hence 

positive definite and (1.13) can be solved by Gauss elimination with­

out pivoting, or, better still, by Cholesky decomposition.

We note also that

II g« II = aTAa = aTd.

The entry A_, the integral of the product of two piecewise linear 

polynomials, can be computed exactly by Simpson's rule applied on each 

subinterval [t^,t^].] • Denoting At̂ .: = - t^ and z^ the midpoint

of the interval we have for i=l,2,...,m

A. . = 
1 1

*1+1
N,(t)zdt +

Jt.l

ti+2
N.(t) dt i

ti+l

= (4t.+1/6)[».(t.)2 + « L ( 2 .)2 + N ^ ) 2]

+ (At. /6)[N.(t. )2 + 4N.(z. )2 + N (t )2]i+2 l l+l i i+1 i i+2

= (ti+2 - t.)/3.
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We also compute for i=l,2,...,m-l

,i+1 ^i+1,i

ti+2
N.Ni+1(t)dt

i+1

(ti+2 ti+l)/6‘

The solution g*, being a linear combination of linear B-splines, 

is piecewise linear (and continuous) with knots t^. After integrating 

g.„. twice and applying the interpolation conditions, we obtain f^ which 

is piecewise cubic (with knots t^) with two continuous derivatives. 

Define 3. e Rn via

3± = ̂  a±_1 i=2,3,...,n-l

i=n

and A3 = ~ 0n defined by a unique cubic

polynomial p^ and hence f.„_ can be determined by specifying the numbers 

p ^ v^(t^) for i=l,2,... ,n-l and j=0,l,2,3. Then

, P*i(2)Cti) (t-ti)
- o! + 1!

, P ^ c y ct-tj)2 + pai(3)(ti)(t-ti)3 (114)
2! 3!

for t£ [L Pi+q]* course, (1.14) can be more efficiently evaluated 

by using nested multiplication.
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The polynomial solves the differential equation

(2),P*i (t) = 6i + (ABi/Ati)(t-t±) (1.15)

on the interval with boundary conditions p^Ct^) = y and

p,-i(ti+l) = yi+1- Therefor

®i 9 A^ i  3P*,-(t) = -x~(t-t.) +7T— (t-t. ) + c, (t-t.) + e. (1.16)2 i 6At. i'l i l

where the constants c. and e. are evaluated as e. = y. andl i  i

Ay, 
Ci At.l

6i+l . ASi
2 + 6 At.l

with Ay^ = yi+1 - y^. From (1.17) we obtain

p*.(0)(t.) = y.i l Ji

(1.17)

(1.18)

where c^ is given by (1.17). A complete FORTRAN program for computing

the natural cubic spline interpolant is given in Appendix A.

Figure (1.3) displays the natural cubic spline interpolant that

is in contrast to the polynomial interpolant of figure (1.1).

We complete this chapter by posing (and solving) a generalization

of problem (1.1). For k fixed satisfying 2 < k s n, let A(k) be the
(k)be the set of interpolants (to the data) which are in [a,b]. We
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Figure (1.3): The Natural Cubic Spline Interpolant.
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1 4

consider the problem

Find f* £ A(k) such that || 2 = j j f ||2 for all f £ A(k)
(1.19)

Let f be an element of A(k). Since (1.3) is valid for f, we can 

integrate by parts again (assuming k >2) to obtain

t
f(t) = q 2 (t) +

2!
(1.20)

where

q2(t) = f(a) + f(1)(a)(t-a) + (t-a)2.

In general, after integrating by parts k-1 times we obtain

rb
f (t) = + zslk 1f(k)(s)ds 

(k-l)! 1 l'S;clS (1.21)

or

f(t) = qk-l(t> +
(t-s)
(k-l)!

k-l
■f ■c(k),' N,f (s)ds. (1.22)

Now we take the (scaled) k-th divided difference of (1.22) to 

obtain

rb
(1-23)d- L. i,k g(s)Ni k(s)ds i=l,2,...,n-l
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where

d.jk - , (1.24)

"i,k'S> ' (ti4k-ti>f;i ,...,ti+kl ( - S>+k'1 <1-2«

(2 )(the normalized B-spline of order k), and g = f .

Let B(k) denote the set of elements (in L2[a,b]) wich satisfy 

(1.23). Then the solution f_;,_ to (1.20) is related to the solution 

to the problem

Find g* e B(k) such that ||g*/k |̂| 2 S ||g^ ||2 for all gsB(k) (1.26)

(k) n—kvia g.x_ = f.„ . Furthermore, for some a £ R we have

n^k
g.„. = Z a.N .

The coefficients a2,..., are chosen to solve the linear system

of n-k equations in n-k unknowns represented by the matrix equation 

A a = d where A is symmetric and positive definite with entries

A. . = (N. . ,N. . ).xj i,k j,ky

Since ĝ ;. is a linear combination of piecewise polynomials of order 

k, f_„. will be a piecewise polynomial of order 2k. We call f^ the 

natural spline interpolant of order 2k.
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2. A Minimal Norm Interpolation Problem 
in the Lp fa,b1 Spaces

For p such that 1 < p £ 00 we define the set

G(p): = <g £ Lp[a,b]: g(t)<J>i(t)dt = 80(t)d^(t)dt

1
for i=l,2, ,n > (2.1)

where i-s a set °f elements in L^[a,b], q is conjugate to p

(p+q = pq if p*00 and q=l if d = °°), and gQ is a fixed element of 

Lp[a,b]. Consider the problem

Find g* s G(p) such that ||g*(| S || g || for all g e G(p). (2.2)

In chapter 1 we solved (2.2) for the special case p=2; finding 

from a linear variety in a Hilbert space the element of minimal norm. 

The Projection Theorem came in handy to characterize g^ as well as to 

guarantee uniqueness. However, for p *2 Lp[a,b] does not have the 

orthogonality properties of a Hilbert space and hence, we cannot use 

the Projection Theorem to solve (2.2). Instead we solve (2.2) in this 

chapter by utilizing the Hahn-Banach theorem to characterize g#

Uniqueness follows in the case 1 < p < 0 0 by the strict convexity of the 

norm. This chapter, modeled after [deB(2)], motivates the use of the 

Hahn-Banach theorem in chapter 5.

Let X be the linear functional defined on the subspace

S: = span(d>1,... ,<J>n)

16
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via

A(,Z,a .0.) =i=l l i

rb n

Any element of G(p) (including g ) will serve as an extension of A to 

a bounded linear functional defined on all of L^[a,b]. Hence,

II ̂  II s = li g lip for all g£G(p). (2.4)

Conversely, any extension of A to a bounded linear functional defined

on all of L^[a,b], being identical to A on S, is represented by an

element of G(p).

The Hahn-Banach theorem guarantees the existence of an element

g£G(p) such that 
b
f(t)g(t)dt i || A || • || f || for all f eL [a,b].

Ja q q

This implies that ||g|j S ||A|| which, taken along with (2.4), gives us 

llsll = II ^ Hs and, therefore, a solution to (2.2). Now we characterize

n *
Let Z ct. <f>. be an element such that 

i=l 1 1

|| Z a.0 || = 1  and A( Z a i  ) = ||A||.
i=l 1 1 q i=l 1 1 s

(This element is unique if 1 < p < « since the norm is strictly 

convex.) Then
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n
= X( Z a i  ) 

1=1

( 2 ct.4> )(t)g(t)dt 
i=l

= 1181

Therefore, equality holds throughout and we have

n
Z
i=l
( Z a <0 )(t)g(t)dt = || Z a.*. || -||g IL-

i=l x x 4 y

A
Since g and I Q.<(). are aligned, we must have 

i=l

g(t) = I U L  'II 2 °k<M q 1 signum ( Z a <j).)(t).1 s " . , 1 1  i=l i=l l  l

We close this chapter by stating the interpolation problem that

goes along with solving (2.2). Let p be a number such that 1 < p < °° ,
(k)let k be an integer such that k s 2, and let f e L [a,bl. Define °  o p

the sets

F: = {f e L (k)[a,b]: f(t.) = f (t.) i=l,2,...,n}p 1 o 1
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and

rb

G: = (g e L [a,b]:
Ja

Then the problems

Find f- e F such that ||f*Ak  ̂II £ ||f^|| for all f £ F

and

Find f* £ G such that ||ĝ  || £ || g || for all g £ G

are equivalent and

g*(t) = f*(k)(t)
n-k
Z 6 iNi k i=l 1 1,1C

q-1 n-k
signum ( Z 3.N , )(t)

i=l 1 1,K
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3. The Convex Spline Interpolant 

The data { ( ) }  are called convex if the point (t^ , y^ )

lies on or beneath the line joining the points (t. ,y. ) and
X1 X1

(t. ,y. ) whenever 1 £ i, < i» < i, ^ n. Equivalently,
3 - 3 1 3  ± / J

[t ,t ,t )f(*) = 0 
n  2 3

(where f is any interpolant to the data) or

, yi+2 " yi+l yi+l ~ yi „
di * r — V T T 7  “ - t.s 01+2 l+l l+l 1

for i = l,2,...,m(= n-2).

In this chapter we address the problem of finding, for convex 

data, the smoothest convex interpolant; that is, the convex interpolant 

having second derivative of minimal norm over all smooth convex inter- 

polants. The natural cubic spline interpolant, the smoothest of all 

interpolants, regrettably does not always preserve the convexity of 

the data. In chapter 1 we showed that f̂ ., the natural cubic spline 

interpolant, has second derivative

m 
I

j=l J 3
f..(2) = I o.N.

where the coefficients satisfy (1.13). If any is

negative, then f^ is actually concave on a subset of [a,b].

Let ^ d e n o t e  convex data and let A denote the set
(2)of convex.interpolants in [a,b]. We assume that A is nonempty.

20
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(There are convex data for which A is empty. For example, let

yi = |tj and t^ = -2, t2 = -1, t^ =0 ,  t^ = 1, and t^ = 2. The only

convex interpolant is f(x) = |x|, which is not in [-2,2].)

Using the Peano kernel theorem as we did in chapter 1 we can show 

that if f eA then T ( f ^ )  = d_ where T:L2[a,b] ->-Rm is given by 

( T g ^ ^  (g*^). Hence if

B = { g e L 2[a,b]: g ^ 0 and Tg = d},

then problems

Find f*eA such that 11 f 11 2 S H f ^ ^ l ^  f°r a11 f e A  (3.1)

and

Find g *£B such that ||g# ||2 £ ||g ||2 for all g e B  (3.2)

(2)are equivalent and the solutions are related via g# = f* • Since B 

is a nonempty closed convex set, we consider (3.2) as finding the 

distance from a point to a closed convex set in a Hilbert space.

Proposition ([L, page 69]): Let x be an element of a Hilbert space H

and let K be a nonempty closed convex subset of H. Then there exists 

a unique element k QE K such that

11x - kj| £ |Jx - k 11 for all k e K

Furthermore, k is characterized by -------------  o  L

( x - k , k - k ) s 0  for all keK. o o--------------

Since we wish to find the element of minimal norm in B, X corre­

sponds to the zero function and hence g^ is characterized by

(g*>g“g*) = 0 for a11 geB- (3-3)
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Propostion ([MSSW, proposition 2.1]): If there exist coefficients

oipO^j —  »a satisfying

b

( Z a N ) N (t)dt = d. i=l,2 ,...,m, (3,4)
j=l 3 3 + 1 1a J

m
then g# = ( Z a .N .) . Furthermore, such coefficients exist if there 

j=l  ̂ m
exists g e B  such that are linearly independent over the support

of g.

m
Proof: Assume a., ,ou,... ,a satisfy (3.4). Denote s = E a.N. and-----  1 2 m  j \ ^

J=1
assume geB. Define (h)_ = (-h) so that

h= (h)+ - (h)_.

Then

((s)+, g-(s)+)

= (s + (s)_, g - (s)+ )

= (s,g - (s)+) + ((s)_,g - (s)+)

= ((s)_,g) - (Cs)_, (s)+)

= ((s)_,g)

S 0.

The last inequality is valid since both (s)_ and g are nonnegative

functions. Hence (s)+ satisfies (3.3).

We now show that we can find coefficients 0L,ao, ,a so that1 2  m

(3.4) holds by following the procedure employed in [MSSW].
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We begin by considering the problem

inf
'a'

(Za.N.) ,(t)dt : Za.d. = 1 
i=lJ J + 1 1

(3.5)

and showing that if the infimum is attained at some a, then for some 

positive constant C the coefficients Ca^, Ca2 ,..., Cam satisfy (3.4).

If the infimum of (3.5) is attained at a, then ot is a critical 

point of the Largrangian

rb
L(a, A) =

m
( I a.N.) (t)dt + A(l- Z a.d.)
> 1  J  ̂+ j=l J ^

At a minimum of L we must have

(3.6)

0 =  2
m

Ja

( Z a.N.) N. (t)dt 
j=1 J J + i

Ad. i=l,2, i > • j m (3.7)

and a • _d = 1 for some A.

Now multiply (3.7) by cu and sum over i=l,2,...,m to obtain

rb m m
( Z a.N.) ( 2 ot.N.)(t)dt - AZ a.d. = 0 • 1 J J + • . 1 x . , i xj=l J J i=l i=l

or

A = 2
m

( Z a.N,)f(t)dt g 0. 
j=l J J +

(3.8)

If A>0, then (3.7) reveals that
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where a. = 2 & If X = 0, then (3.8) reveals that

rb m
( Z a .N.) (t)dt = 0 
j=l J J +

a
m

where a • _d = 1. This implies that ( Z a.N.) SO. However, for any
j=l J J

g £ B we have

fb m m
( 2 a N )g(t)dt = Z a (N g) 
j=l 3 3 j=l 3 3

Ja

m
= Z a.d. 
j=i3 3

= i

which is impossible because g is nonnegative on [a,b]. We conclude 

that X is strictly positive and, if the infimum in (3.5) is attained 

by some ot, that (3.4) is solvable. We now show that the infimum is 

attained.

Let be a minimizing sequence. If { ||a^ || is

unbounded, then divide the objective function of (3.6) by ||̂  || and 

the constraint by ||a . There then exists a such that
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We conclude that Z a.N. is nonpositive, but not identically 
j=l J J

/s
zero- Since we have assumed there exists g £ B such that the

B-splines are linearly independent on the support of g,

m m
0 = E a.d. = E a.(g,N.) 

j=l J J j=l  ̂ J

m
= (g, E a.N ) 

j=l J 3

< 0

which is a contradiction. Hence a minimizing sequence must be bounded

and the infimum is attained via a convergent subsequence. This

completes the proof of the proposition.

We note that the existence of g£B, such that {N.}m are linearly
1 i=l

Aindependent over the support of g, in the previous proposition is 

guaranteed if d^ > 0 for each i. Then each g £B must be positive on

some subinterval of [t^,t^+ 2 ], the support of N^, for each i.

Now we consider the implication of allowing d^ = 0 for some k.

TAs a specific example let t^ = (i-1) for i=l,2,3,4 and let jd = (1,0) .

If g*. is the positive part of a linear combination of B-splines, then 

there must exist numbers a^ and 0.̂  satisfying

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



26

1 if i=l
(ce]LN1 + a2N2)+Ni(t)dt = < (3.10)

'0 if i=2

which implies that a2 = - 00 . This is equivalent to the solution 

being identically zero on [1,3]. In fact, any g £ B  must be of the 

form g = g X j-q j]. It is shown in [MSSW, theorem 3.1] that the 

solution to (3.2) is

m

g* ' (.z “jV+xrJ=1 J J
for appropriate coefficients .,. ,a^ where

in
T: = [a,b]/{U (tj,tj+2) : dj = 0 } .

Hence the solution to (3.2) with t^ = (i— 1) for i=l,2,3,4 and 

d = (1,0)T is

8* - 3NiX [o,l].

Unless otherwise stated we assume d^> 0 for each i for the remainder 

of this chapter.

Before we consider how to compute the coefficients a]/a2’"  ’,0m 

which satisfy (3.4), we give a procedure for integrating g^.

Define 0^, A0^, At^, and Ay^ as in chapter 1. We integrate g# on each 

subinterval separately, forming a piecewise polynomial, by

solving the differential equation

(2) ^ ip*iU ; (t) = (b ± + ^ r ( t - t i))+ (3.iD
i

for t. S t S t- with boundary conditions p„(t.) = y. andi i+l J  ̂ i

p*(ti+l) = yi+r
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Two integrations gives us

(1) ^ Pi ^ i  2
P*i ^  = 2A3. ® i  + AtT (‘t_ti^+ + Ci (3.12)1 x

and

i 3P#i(t) =---- ^ ( 3 ±+ A8.(t-t ))>c,(t-t.) + e. (3.13)
X 6(A3.)Z 1 1 i + i i  i

for constants and e^. We proceed by cases.

Case 1 occurs when both 8^ and 3^+-̂ are nonnegative. The nonnega­

tivity constraint is not active in this case and so (3.13) is equiva­

lent to (1.16), although with modified constants c^ and e^. The values 

P*-^'^^) for J = 0,1,2,3, are given by (1.18).

Case 2 occurs when 3^ < 0 and > 0. In this case p ^  can be

defined by two polynomials: a linear polynomial q ^  defined on 

[t^,T^] - where the nonnegativity constraint is active and hence the 

second derivative is zero - and a cubic polynomial defined on

[Ti,t:i+l] where

x. = t. - 3-At./A3. (3.14)
1  1  1  l x v '

Applying the boundary condition p.x.^(t^) = y^ we obtain e^ = y^. 

Applying P-x-i(t^+q) = we §et an equation for c^:

(At.)2 3
(3,^) + e At + y = y.

6(A3±)2 i+1 i 1 1 i+1’

Solving for c^ we have
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From (3.11), (3.12), and (3.13) we obtain

q. -i (t . ) = y. tLl 1 1

q ^ ( t . )  = c.Mil l l

* 0

q.„(x.) = c.(t ,-t .) + y .Mi2 l i l i Jx

q-^^T.) = c.^i2 l l

, < « < V  = 0

(3.16)

,<f(T.) = AB./At.

where T and are given by (3.14) and (3.15) respectively.

Case 3 occurs when 6. > 0 and < 0. In this case p,,_. is
l  l + l

defined by a cubic polynomial q ^  on [t^,T^] and by a linear poly­

nomial q ^  on with Tji_ defined by (3.14). These polynomials

are determined by the values
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qil)(ti) = ci + (Si)2At./(2A6.)

( 3 . 1 7 )

qU )(ti) = A3i/At±

q.0(x.) = c.(x.-t.) + e. ^i2 1  1  x l

= c.

= 0

qil)(xi) = 0

where and e^ are given by

Ayi
1 Ati 2(A6.)2

and

(6i)3(At.)2
e. = y. - -------- -̂-  .

1 1 6 ( A 6 . ) 2

Case 4 occurs when (3̂  and are both nonpositive. In this

case we obtain a linear polynomial defined on anc* determined by
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p*i(V  = yi

= Ayi/At±
(3.18)

p.*3)(t.) = 0. i

Since gx_ is piecewise linear and continuous (with knots at the

t / s  and t / s ), f̂ . will be piecewise cubic with two continuous

derivatives (if d. > 0 for each i). We call f„ the convex cubic i

spline interpolant.

Now we turn our attention to the task of numerically calculating

the coefficients a^,a2 >--->am which satisfy (3.4). We continue to

assume that d. > 0 for each i. Define F:Rm->- Rm by F = (F1 ,F0,...,F )^ l - ' 1 2 m
where

rb
F±(a) =

m
( Z a.N.) N.(t)dt i=l,2, —  ,m. (3.19).. l v + l J=1 J J

We wish to solve F(x) = d_.

One method is to use Jacobi iteration. An initial guess
(o) , (o) (o) (o)sT , , (k).co

x. = (xj » x 2  »•••» xm ) 1S chosen and a sequence {x. j^-q

is generated by calculating x ^ +'^, once x^k  ̂ is known, by solving

F (x(k) x(k) x(k+1) x(k) x(k)) = d i 1 * i+1 ’ ‘ ‘ ‘ ’ m ' ai
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for for each i. A modification, the Gauss-Seidel iteration,

involves calculating x^k+^ \  once x . ^  is known, by solving

, (k+1) (k+1) (k+1) (k) (kl _
i 1 ’•••’xi-l ’ i ’ i+1 ’ * * * m ; i

for x^k+1  ̂ for i=l,2,...,m in succession. Both Jacobi and Gauss-

Siedel iterations converge globally as proved in [IMS]

Now we consider Newton's method to solve G(x) = F(x) - d_ = 0 .

We pick a suitable initial guess x . ^  and form a sequence { x.̂ k/}!°_— K—0
by solving

(VG)(x(k))(x(k+1) - x(k)) = -G(x(k)) (3.20)

(k+1) (k)for 2i once x_ is known. Since VG = VF, we can express (3.20)

alternately as

(VF)(x(k))(x(k+1)) - x(k)) = d - F(x(k)). (3.21)

The entries of the Jabocian matrix F are
rb

(VF). (a) =
m

( Z akNk)°N N.(t)dt (3.22)
k=l a

m
where ( Z \^iP+ tke c*iaracter:’-st;‘-c; function for the support of 

k=l

( Z a.N.) . We see that VF is symmetric and tridiagonal at each a. 
j=l J J

We now characterize those a for which (VF)(a) is positive definite.

Lemma (3.1): The Jacobian (Vf)(a) is positive definite if and only if
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( Z ak^k^+ d°es not vanish identically on any of the subintervals 
k=l

E ^  i . . . , m .

Proof: For any x £ Km we have

m m
x(VF)(a)x= Z x. Z(VF)..(a)x.

i=l 1 j=l 1J J

b m m mo( Z a,N, ),( Z x.N.)( Z x.N. )(t)dt
i=l

b m m
( * \ V ° S Z * ± V <c>dt„ k=l i=la

£ 0

If ( Z a.N.), does not vanish identically on [t.,t. „] for each i,-j=l J J + i i+2

then equality holds if and only if x. = 0 for each i. If there exists 
m

some k such that ( Z a.N.)+ is identically zero on Etk ,tk+2^’ t l̂en 
j=l 3 3

equality does hold for the nonzero vector x. defined by x^ = 6 ^

for each i. This completes the proof of the lemma.

From (3.20) we see that

F.(a)
m rb m 
Z a . 
j=l J

( Z a, N. )TN.N.(t)dt 
k=l ^

m
= I a.(VF)..(a) 

j =1 3 13
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so that F(a) = (VF)(a) Newton's method - equation (3.22) - takes 

the form

(VF)<*<k>)*(k+1) - d. (3.23)

Theorem (3.2): If (VF)(x^)) is positive definite, then (VF)(x^k-+-*-)

is positive definite for each k and, hence, Newton's method - equation 

3.23) - is always well-defined.

(k)Proof: Having the known values , we wish to determine the values
(k+1) . . . .x^ satisfying

( “ x (k+1)N )N (t)dt = d i=l,2,...,m (3.24) 
S(k) J=1

where S(k) is the support of ( £ x / ^ N . )  . Since (VF)(x^)) is
j=l J 3 +

positive definite, then S(k) U [t^t^^] contains an interval for each i.
m * ^

Since d. > 0, then ( Z x. N.), is positive on some subinterval of
1 j=l 3 3

[ti»tf 2 ]. Hence, (\7 F)(x^+l)) is positive definite. This completes 

the proof of the Theorem.

Note that if has all positive components (for example, if
(0) m (1)x. = 1 for each i, then S(0) = [a,b1 and Z x. N . is the second 

1 j=1 J J

derivative of the natural cubic spline interpolant.

Now we assume that d^ = 0 for some k. In this case special care 

must be exercised since { x^*^} j_ q may diverge to -®°, preventing any

numerical convergence. We already know that d^ = 0 implies that the
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data points (tk>yk), ^ k + i ’̂ k+l^’ and ^ + 2 * ^ + 2 ^  are collinear and> 

hence, any convex interpolant must be linear on [tk >tk+2■l• Equiva­

lently, the second derivative of any convex interpolant must be zero 

on [tjc,tjc+2^* Hence 8* ds °E the form

m
}(X(a,tk ] + X [tk+2,b]

Since the value of xk is immaterial and the k-th equation is 

automatically satisfied, the number of equations and unknowns each 

reduce by one. For computational convencience (3.23) can still be used 

with the following modifications: (^E)kk = 1, (^E)k k+^ = and

(VF>k,k-L = °*

If d, = 0 ,  then the solution is discontinuous at t. if x, , > 0 k k k-1
and is discontinuous at t, ,0 if x, - > 0. If the solution is discon-k+2 k+1
tinuous, then f_x. will have only one continuous derivative.

A further problem is encountered when dk_^ and dk+  ̂are both 

zero, but dk is nonzero for some k. Any nonnegative function g which 

satisfies the (k-l)-st and (k+l)-st equations can not satisfy the k-th 

equation since g is identically zero on [tjc-l,tk+l^ and on ^tk+l,tk+2^’

We conclude that there does not exist any convex interpolant in 

(2)[a,b] (and no solution to the problem as posed). However, we can 

find a convex interpolant whose second derivative is of the form
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m
( E X N ) { Xr t I + Xrt 
j=1 J J + l-a = tic_lJ L k+3’ J

satisfying all but the k-th equation. We already know that this convex

interpolant must be linear on [ t^_^, ̂ + 1  ] and on an<i,

hence, piecewise linear on [t^_^, ] • If is nonzero, then there

will be a discontinuity in slope at t^+l' ^or t*ie c°nvenience of

utilizing (3.23) we can set d^ to be zero to satisfy the k-th equation.

The discontinuity in slope will show up after we integrate the solution 

to obtain the interpolant.

Figure (3.1) displays the natural cubic spline interpolant to the 

function

f(t) = (0.05+t)(1.05-t)

at the knots t^ =0, ^2 = 0.1, t^ = 0.4, t^ = 0.7, t,- = 0.8, and

tg = 1.0. Figure (3.2) displays the convex spline interpolant to this

function. Table (3.1) shows the convergence results for Jacobi, Gauss- 

Seidel, and Newton's method iterations taken from [IMS]. Note the 

quadratic convergence characteristic of Newton's method. These conver­

gence results are typical.
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t-mis

Figure (3.1): The Natural Cubic Spline Interpolant.

?

Figure (3.2): The Convex Cubic Spline Interpolant
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TABLE 

|| F(x(n))

Iteration
Number Jacobi

1 .46 X 102
2 .28 X 102
3 .75 X 101
4 .12 X 102
5 .26 X 101
6 .49 X 101
7 .10 X 101
8 .21 X 101
9 .43 X 10°
10 .86 X 10°
20 .11 X io_1
30 .14 X 10-3
40 .18 X IO-5
50 .24 X 10-7
60 .30 X 10-9
70 .39 X io-11

.1

Gauss
Seidel Newton

.27 X 102 .19 X io2

.11 X io2 .85 X 601

.42 X 101 ,29 X io1

.18 X io1 .49 X 10°

.75 X 10° .14 X io-1

.31 X 10° .11 X 10“4

.13 X 10° .71 X io-11

.55 X io-1
-1

.49 X io-12
.23 X 10
.96 X io-2
.16 X 10~5
.26 X 10~9
.58 X io-13
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4. The Shape-Preserving Spline Interpolant

We addressed in chapter 3 the problem of finding, for convex data, 

the smoothest convex interpolant. We begin this chapter by considering 

the problem of finding, for concave data, the smoothest concave inter­

polant. Then we continue the chapter by examining the problem of 

finding, for general data, the smoothest interpolant which is locally 

convex where the data are locally convex and is locally concave where 

the data are locally concave.

Let { ( denote concave data and let A denote the set of

(2)all concave interpolants in L2 [a,b]. Assume A is nonempty. Using 

the Peano kernel theorem as we did in chapter 1, we see that, if f £ A, 

then
rb

f^^(t)N^(t)dt = d^ i=l,2,...,m(=n-2)
 ̂a

Equivalently, we have T(f(2))= d.

Defining

B: = {g e L2[a,b] : g S 0 and Tg = d} , 

we conclude that the problems

Find f# £ A such that 2  = llf^^ll 2  ^or £ A (4.1)

(the problem of finding the smoothest concave interpolant) and

Find g* £ B such that ||g# ||2 S ||g ||2 for all g £ B

38
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(2)are equivalent and the solutions are related via = f^

Of course, the smoothest concave interpolant to the concave data 

is the negative of the smoothest convex interpolant to 

the convex data {(t^,-y^)} We highlight this with the following

proposition.

Proposition [MSSW]: If there exist coefficients __

satisfying
•b m
- ( I a.N.) N.(t)dt = d. i=l,2 ,...,m (4.3)

j=l J J 1 1
Ja J

m
then g* = - ( Z a.N.)_. Furthermore, such coefficients exist if there

j=l J J
exists g e B such that are linearly independent over the

support of g.

We note that the existence of g e B, such that {N .}™ . are& l i=l
linearly independent over the support of g, in the previous proposition 

is guaranteed if d^ < 0 for each i. Then each g e B is negative on 

some subinterval of » t îe support for N , for each i.

Now we consider the problem of finding, for general data, a 

smooth shape-preserving interpolant - a smooth interpolant which is 

locally convex where the data are locally convex and is locally concave 

where the data are locally concave. Assuming for the moment that d^ 

is nonzero for each i, we define the sets
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: “ Tl'/T2’

and ^  : = [a»b]/((2^U f^) •

Now we define the sets

A: = {f e L2(2)[a,b] : f(2)X ^   ̂ 0 , s 0,

and f(t^) = i=l,2,...,n}

(which we assume is nonempty) and

B: = {g e 1*2[a,b] : gx^ ^ 0 , gx^ S 0, and Tg = d_} .

We conclude that the problems

Find fs e A such that || f.*̂ 2  ̂|| 2  = II f II 2  ^or a-^ (4.4)

and

Find g* £ B such that ||g* ||2 S ||g \\2 for all g £ B (4.5)
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(2)are equivalent and .

The following proposition gives the solution to (4.5). We see 

that ^as t'ie character of the convex spline interpolant, f*X^

has the character of the concave spline interpolant, and f#Xo ^as bke
“3

character of the natural spline interpolant.

Proposition [MSSW]: If there exists coefficents 

satisfying
rb

,am

m m

then

m
+  (  aj Nj )X^ o } Ni C t ) d tJ=1 J 3

d > i—1,2,... ,m 
1

(4.6)

m
g *  =  ( I  a i N - i )+ X n  "  < Z +  (  Z “ i N iJ=1  J  3 +  j =1 J  1 j = l  J  J

)x,

Furthermore, such coefficients exist if there exists g e B such that 

{ tL} are linearly independent over the support of g.

We note that the existence of g e B, such that are

linearly independent over the support of g, in the previous proposition 

is guaranteed if d^ is nonzero for each i. Then each g £ B is nonzero on
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some subinterval of [ j_ » ^ + 2  ̂ » t*ie suPPort of N > for each i.

We now solve (4.6). Define F : Rm -»■ Rm where F = (F.,FOJ...,F )^l z m
is given

m
( Z x .N .) N.(t)dt 

J J + i 
Sl1

m
( Z x.N.) N.(t)dtV l  J J ~ 1ft

m
( Z x.N.)N.(t)dt i=l,2,...,m 

i J J 1
3 J

(4.7)

We use Newton's method to solve F(a) = d_. Picking a suitable 

initial guess x . ^  we produce a sequence {x.^, x. ^ , ,} by solving

(VF)(x(k))(x(k+1) - x(k)) = d - F(x(k)) (4.8)

for x^k+^  once is known. The Jacobian matrix has entries given

by

,b
(VF) (a) = P(a)N (t)N.(t)dt (4.9)

where
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From (4.9) we see thatVF is symmetric and tridiagonal at each a 

We also note that

m
P(x)( Z x.N.) = ( Z x.N.) Xn

j - i 2 2 > i J J + ni

m

m

+

so that F(_x) = (VF)(x)x and, hence, (4.8) reduces to

(VF)(x(k))x(k+1) = d. (4.11)

The following lemma (with proof similar to its counterpart in 

chapter 3) characterizes those a for which (vF)(a) is positive definite.

Lemma(4.1): The Jacobian (VF)(a) is positive definite if and only if

P(ct) does not vanish identically on any of the subintervals 

•̂ti’ti+2^ for i=l»2,... ,m.
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The following theorem is modeled after theorem (3.2).

Theorem (4.2): If (VF)(_x^^) is positive definite, then Newton’s

method - equation (4.10) - is always well-defined.

Note that if x ^ ^  is given by = signum (d^) for each i,

then P(x^^) is the characteristic function for the interval [a,b] and

m (1)£ x. N . is the second derivative of the natural cubic spline
j-1 J ^

interpolant.

If d^ = 0 for some k, then we already know that any shape-preser­

ving interpolant must be linear on [ ̂  ’ ̂ + 2 -1 • fact any g £ B must

satisfy

g ' s { x [°.‘k ] + X[W ]>

The solution in this case is of the form

8* = h < > W kl + X (

where

m m m
h = ( Z a.N.) ,Xn - ( Z a.N.) Xn + ( Z a.N.)Xn

j=l B J 1 J J - «2 j=l J J S
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Since the value of is immaterial - the k-th equation F̂ (oi) = of

(4.11) being automatically satisfied - the number of equations and 

unknowns reduce by one each. For computational convenience we can 

still use (4.10) by setting (VF)kk = 1» (VF)k k+1 = °> and (VF)k k-l=0. 

Once we solve F(a) = d_ we proceed to integrate g_x_ which is 

piecewise linear (but not necessarily continuous, even if d^ is non­

zero for each k) to obtain f# which is piecewise cubic. On the 

interval ds given by the solution to the differential

equation

Pi(2)(t) = S. + (AS./At.Xt-t.) (4.12)

for t. S t S t.+1 if Cti ,t.+1] C Q 3,

Pi(2)(t) = (e± + (Asi/At.)(t-t.))+ (4>13)

for t. g t s t.+1 if or

P ± ( 2) ( t )  = -(6± +(ASi/At.)(t-t.))_ (4.14)

for t^ s t s ^i^i+l^ ^-^2 wit^ boundary conditions

p.(t.) = y. and p.(t.-) = y.,.. rx x Jx rx x+1 Jx+1
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The function is either a cubic polynomial or piecewise cubic

given by two polynomials q-^ and defined on separate subintervals 

of The:solution p^ to (4.11) is given by (1.18). The

solution to (4.12) is, depending on signum (6^) and signum (3i+^)> 

given by (1.18), (3.16), (3.17), and (3.18). The solution to (4.13) 

is determined by (1.18) if 8̂  = 0 and S 0, by (3.16) if 8^ > 0

and < 0, by (3.17) if 8^ < 0 and > 0, and by (3.18) if

8^ = 0 and = 0.

Figures (4.1), (4.3), (4.5) and (4.7) display the natural cubic 

spline interpolants to the given data. Figures (4.2), (4.4), (4.6), 

and (4.8) display the corresponding shape-preserving interpolants. 

Tables (4.1), (4.2), (4.3), and (4.4) give convergence results for 

Newton's method. Note the quadratic convergence characteristic of 

Newton’s method.

Appendix B lists a FORTRAN program for computing the shape-preser­

ving cubic spline interpolant.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



47

Figure (4.1): The Natural Cubic Spline Interpolant.

Figure (4.2): The Shape-Preserving Cubic Spline Interpolant.
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Figure:(4.3): The Natural Cubic Spline Interpolant.

3

Figure (4.4): The Shape-Preserving Cubic Spline Interpolant.
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Figure (4.5): The Natural Cubic Spline Interpolant.

Figure (4.6): The Shape-Preserving Cubic Spline Interpolant.
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Figure (4.7): The Natural Cubic Spline Interpolant.

a •»

Figure (4.8): The Shape-Preserving Cubic Spline Interpolant.
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Table 4.1

Iteration Number ||F(x^n )̂ - dj| ^

1 0.13 x 101

2 0.67 x 10°

3 0.25 x 10°

4 0.42 x 10" 1

5 0.12 x 10" 2

6  0 . 8 8  x 1 0 - 6

7 0.58 x 10- 1 2

8  0.64 x 10- 1 3
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Table 4.2

Iteration Number ||F(x^n^) - d j ^

1  0 . 1 2  x 1 0 1

2 0.56 x 10°

3 0121 x 10°

4 0.36 x 10- 1

5 0.11 x 10“ 2

6  0.85 x 10- 6

7 0.54 x 10- 1 2

8  0.70 x 10~ 1 3
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Table

Iteration Number 

1

2

3

4

5

6

7

8 

9

10

11

||F(x(n)) -  d || 2 

0.24 x 101

0.16 x 1 0 3

0 . 1 2  x 1 0 1

0.90 x 10°

0.53 x 10°

0 . 2 0  x 1 0 °

0.26 x 1 0 - 1

0.42 x 10- 3

0.97 x 10- 7

0.37 x 10- 1 2

0 . 2 1  x 1 0 - 1 2
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Table 4.4

Iteration Number

1

2

3

4

5

6

7

8

l|F(x(n) " d ||2

0.29 x 101  

0.13 x 101  

0.50 x 10° 

0 . 1 1  x 1 0 ° 

0.56 x 10- 2  

0.16 x 1 0   ̂

0.13 x 10- 9  

0.26 x 1 0 - 1 2
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5. Constrained Minimization in a Dual Space

Let C be a convex cone in a normed dual space X with predual Y. 

Assume y-^y^* • • • >Yn are elements of Y and define T: X->-Rn by

Tx = (x(y1 ),x(y2 ),...,x(yn))T

Let B: = {x £ C : Tx = d} for a given vector d_. Consider the 

problem

Find x_x. £ B such that ||x# || £ ||x|| for all x £ B (5.1)

of which (1.10), (3.2), and (4.5) are special cases. In this chapter

we study existence and characterization of solutions to (5.1). The

following lemma gives sufficient conditions for existence of a solution.

Lemma(5.1): If B is nonempty, if C is weak closed, and if Y is

separable, then there exists a solution to problem (5.1).

Proof: Let y : = inf {|| x || : x e C and Tx = d } . Let { xfl} be a 

sequence in C such that

Txn = d  (5.2)

and

|| x j  = Y + 1/n (5.3)

55
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for each n. Since Y is separable,' by Alaoglu's theorem there exists 

a weak* convergent subsequence of {xn} with weak* limit x. Since C 

is weak* closed we have x£C, from (5.2) we have Tx = d_, and from 

(5.3) we have ||x|| S y (and hence ||x|| = y). This completes the 

proof of the lemma.

Throughout this chapter we assume that B is nonempty, C is weak* 

closed, and Y is separable. Since x̂ , = 0 if d_ = 0, we assume also

that _d * 0 . The following proposition gives us sufficient conditions 

for C being weak* closed.

Proposition (5.2): If C is normed closed and if Y is a reflexive

space, then C is weak* closed.

Proof: Assume {xn} is a sequence in C with weak* limit x. We want 

to show that x is in C. We do this by contradiction. If x is not an 

element of C, then there exists an element y (an element of both the 

dual and predual of X) which serves to separate x from C in the sense 

that

xn(y)> K

for each n and

x(y) < K

for some constant K. This implies that

lim x (y) * x(y) 
n -»• “
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which is a contradiction. Therefore x £ C and C is weak* closed. 

This completes the proof of the proposition.

For y > 0 we define the convex set G(y) C  Rn by

G(y): = {Tx : x £ C and || x || 2  y} .

We now show that G(y) = YG(1) and G(y) is closed.

Proposition (5.3): For each y > 0 we have G(y) = YG( 1 ).

Proof: By definition

G(y) = {Tx : x £ C and ||x || 2  y}

= { Tx : y  £ C an(j |J x/y || 2  1}

= {T(x/y) : —  e C  and J|x/y|| 2  1 }

= y{Tw : w £ C and ||w|| 2  1}

= yG(i).

Proposition (5.4): The set G(l) is closed.

Proof: Assume {_£n) is a sequence in G(l) which converges to _z. We

want to show that _z is an element of G(l). Equivalently, we want to 

show that x £ C exists such that ||x || 2  1 and Tx = _z.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



58

For each n there exists x £ C such that II x || s 1 and Tx = z .n n n —n
By Alaoglu's theorem there exists a subsequence of || || which

converges weak* to some x £ C. Hence ||x || SI and Tx = jz. This 

completes the proof of the proposition.

We define

Y*: = inf{ y : d. £ G(y)} . (5.4)

Equivalently,

* r
Y = infiY : There exists x £ C such that 

Tx = _d and || x || S y}

= inf { || x || : x £ C and Tx = d) . (5.5)

By lemma (5.1) we know that there exists x* £ C such that

II x# II = Y and Tx.;,. = _d. We call x# an interpolant of minimal norm.

We now attempt to characterize x^ via the Hahn-Banach theorem.

We begin by defining a functional p : Y + R by

p(y) = sup { x(y) : x e C and || x || S i } .

Notice that if C = X (the unconstrained problem), then p is the norm 

on Y. In general, since we are taking the supremum over a subset of 

the closed unit ball U in X, we have p(y) S ||y || for all y e Y.

Since 0 is an element of C, we have pSO. In convex analysis p is 

called the support functional of the convex set {x £ C : ||x|| S 1}.
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Since C is weak* closed, the supremum is attained at some element of 

(x £ C : || x || S 1} ; that is, for any y e Y there exists an x (a

function of y) such that x e C, ||x || S 1, and p(y) = x(y). In fact

we have ||x|| = 1 unless x = 0 . The following two propositions reveal

that p is continuous, subadditive, and positive homogeneous.

Lemma(5.5): The functional p is continuous.

Proof: Assume y^ and y 2  are elements of Y and define y = y^ - y2- 

Let x be the element in {x e C : ||x|| s 1} such that p(y2 ) = x(y2 ) • 

Since |x(y)| S ||y || , we have

x(y2) - if y !i § x(y2) + x(y)

or

*(y2) - II y II s x(y;L)*

Therefore,

P (y2) - || y || SP (yi).

The elements and y2  can be interchanged to obtain

P (yx) - II y II s P (y2)
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and hence

|p(y1) - P(y2)l = llyx - y2 II •

Lemma (5.6): The functional p is subadditive and positive homogeneous

(hence convex).

Proof: Assume and y2  are Y. ^o show that p is subadditive we

must show that

p Cyx + y2) - p(yx) •+ p(y2) •

By definition

p ( yl + y 2 ) = sup {x(y1 +y2) : x e C and ||x|| S 1}

= sup {x(y^) : x e C and ||x|| = l}

+ sup (x(y2) : x £ c and ||x|| 2  1 }

= P ( y x ) + p ( y2 )-

Now assume a > 0 and y e Y. To show that p is positive homoge­

neous we must show that

p(ay) = ap(y).
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By definition

p(oiy) = sup (x(cty) : x e C and ||x || £ 1}

= a • sup {x(y) : x e C and ||x|| £ 1}

= otp(y).

This completes the proof of the lemma.

As an example we compute p for the case C = {x £ Lp[a,b]: x S 0} 

where 1 < p < °°. For an arbitrary element g in L^[a,b], the predual 

of Lp[a,b] where p + q = pq, we have for any f e C with ||f || 2  1 by

the Minkowski inequality

f(t)g(t)dt S f(t)g+(t)dt

= II8 .
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Assuming g+ * 0, let

csxT1

Then we have f £ C, || f |j = 1, and

f (t)g(t)dt = ||g+ || .

Hence

p(g) = sup { f(t)g(t)dt : f £ C and ||f || = 1}

=*+ "q

If g+ = 0, then p(g) = 0.

Lemma(5.7): For all £ Rn we have

Z a . d .  s  y  p (  Z a . y . ) .. , i x  . , xJ xi=l i=l
(5.

Proof: Since y = inf{ y : _d £ G(y)}, we have d_£G(y + £) for any

£ > 0. Hence for every positive integer n there exists £ C
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such that Tx = d and IIx || £ y + 1/m. Therefore, for any a e Rn m —  m J —

Z a.d. = Z a.x (y.), 1  m w i i=l i=l

= x ( Z a.y.) m . , r  i i=l

s II* II P ( I « , )
1=1

n
S (y + l/m)p( Z a y ) .

i=l

Now let m t o  obtain (5.6). This completes the proof of the lemma.

Since we know that G(Y*) is closed from proposition (5.4), we 

could have used x* in place of x^ in the proof of lemma (5.7). The 

next lemma states that there exists a nonzero vector S e En such that

equality holds in (5.6) .

Proposition (5.8): There exists a vector 3. E Rn such that ||8 || = 1

and

-x- n
3 • d_ = y ( Z B .y .). (5.7)

i=l

Proof: The vector d̂ is an element of G(y ), but not an element of
■X- 'X*

G(y--e) for any e > 0> Hence the closed convex set G(y - e) and the
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vector d_ can be strictly separated by a hyperplane. This implies 

the existence of a nonzero vector 6 (e) such that

6 (e) • z  < 3(e) * d_

-X-
for all e G(y - e ) and without loss of generality we may assume 

that ||B(£) || = 1. Equivalently, we have

6 (e) • Tx < j3(e) • d.

and by the linearity of T

x( Z 6 .(e)y-) < 6 (e) • d 
i=l 1

for all x £ C such that ||x|| S Y - E. Hence we obtain

(y - s)p( Z 6 . (e)y .) < 3(e) • d. 
i=l 1  1

We can take the limit as £ + 0 to obtain a vector 6 . such that |)_6 || = 1 

and

n
Y"p( Z 6 .y .) S 6  * d. 

i=l 1  X
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We have the reverse inequality from lemma (5.7) and therefore

* n
J3 • d = y p ( Z B y  ). 

i=l

This completes the proof of the lemma.

Let A be a linear functional defined on the subspace 

S : = span(y1 ,y2 ,..•»yn)

by

A( Z ct .y.) = la.d. . . i-'x . . 1 1  i=l i=l

so that (5.6) can now be written

,\(y) S y p(y) for all y e S.

The Hahn-Banach theorem states that there exists an element w

in X such that

w(y) = A(y) for all y e S (5.8)

and

w(y) S y p(y) for all y £ Y. (5.9)
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Theorem (5.9): The Hahn-Banach extension w is an interpolant of

minimal norm.

Proof: From (5.8) we see that Tw = _d so that w interpolates the data.

To complete the proof we show that w e C and | j w j j = y .

We show that w is in C by contradiction. Assume w is not an 

element of C. Since C is weak*' closed, there exists an element yo

in Y which strictly separates w from C in the sense that

w(yQ) > x(yQ) for all x £ C. (5.10)

Since C is a cone we have Ax £ C whenever A > 0 and x £ C. Hence 

(5.10) implies

0 S x(yQ) for all x £ C (5.11)

(or p(yQ) = 0 ) and

w(yQ) > 0. (5.12)

However, from (5.9) and (5.12) we have

o < w( y Q) s  Y = 0

which is a contradiction. Hence w must be an element of C.
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Lastly, we show that ||w|| = y  . We already know that

Y* S || w || (5.13)

since w e B (w e C and Tw = d̂ ). Because p is bounded above by the 

norm on Y, (5.9) yields

w(y) S y ||y || for all y £ Y

and hence

IIw || S y*. (5.14)

Taken together, (5.13) and (5.14) imply that ||w|| = y  . This completes 

the proof of the theorem.

Recall that for a given element yQ in Y there exists an element

x (a function of y ) in C such that p(y ) = x(y ). Furthermore, o Jo w o o

either l|xo ll = 1 or x q is the zero element. The following lemma

will lead us to the conclusion that, if p is differentiable at y ,j o’

then p'(y ) = x .J o o

Lemma (5.10): Let f be a functional defined on a normed linear space

Z. If f is differentiable at x e Z and if there exists a linear—    o------------------------------------------------

functional X such that

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



68

f(zQ) + A(z -z q ) S f(z) (5.15)

for all z in some neighborhood of z q , then A = (Vf)(zo).

Proof: Let z = z q + tu where t > 0 and u £ Z. Inequality (5.15)

yields

f(z + tu) - f(z )
A(u) g --- 2 ----  2. . (5 .i6)

Since (5.16) holds for all t > 0 (and sufficiently small) and for all 

u £ Z, we have AS(Vf)(zQ). Substituting -u for u in (5.16) yields

f(z - tu) - f(z )
A(u) £ — 2---   2. (5.17)

for all t > 0 (and sufficiently small) and for all u £ Z. Taken 

together, (5.16) and (5.17) imply A = (Vf)(zQ).

Corollary (5.11): If p is differentiable at yQ £ Y, then p'(y ) = x q .

Proof: Since p ( y Q) = x0( y o ) an<  ̂ xq (y )  = p ( y )  f ° r  y £ Y, we have

p ̂ yo^ + xo(y " yo^ = p(y)
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for all y £ Y. By the previous lemma we have p’(y ) = x • This 

completes the proof of the corollary.

Inequality (5.6) motivates the problem

inf{ p( I a.y.) : a • d_ = 1 } . (5.18)
a i=l 1  1

Notice that if a. is any vector satisfying a • d_ = 1 and if x is any 

element of B, then

n n
1 = Z aid± = x( Z a ^ )  

i=l i=l

£ IIx||p( Z a.y.) 
i=l 1

and hence

nP ( Z a . y . ) = jj r
i = i 1 1  w

This implies that the infimum is positive (and, in fact, is bounded
-3£-  n

below by (y ) . If the infimum is attained. at some e R and if p

II
is differentiable-at Z a.y., then we are led to a solution to (5.1) as

i=l 1  1
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the next theorem reveals.

w q if
Theorem (5.12): If there exists e R such that a • d_ = 1  and

n n
p( I a.y.) = inf { p ( I a.y.) : a • d_ = 1 } 

i=l 1  1  a i=l 1  1

and if p is differentiable at I a.y., then   --------------------------- .=i 1 y1  ------

* n 
Y V( I ay )

i=l

is an interpolant of minimal norm.

Proof: Problem (5.18) has Lagrangian

n n
L(a,X) = P(iI 1 a iyjL) - M  S aidi - 1 ). (5.19)

i=l

If there exists a solution a to (5.18), then there exists A." so
ic -X-

that (a ,A ) is a stationary point of (5.19). Hence

x(yi) - Ad. = 0 i=l,2,...,n (5.20)
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We first show that' X > 0. Multiply (5.20) by

sum over i to obtain

x( Z ct^) = X I a*d± = X'. 
i=l i- 1

n *Since x = p ’( £ a y ), we have 
i=l

il * x( Z a.y.) . , n/i i=l

so that

•JC ** ‘X*
X = p( E a.y.) I 0 . r  i i=l

n
= p( Z a y )  

i=l

a. andl
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Actually, we know that since the infimum is positive, we have A > 0. 

We can also show this by contradiction. If A = 0 ,  then

n #
x( la .y.) S 0 for all x £ C. (5.21). . r i  i=l

Let s be any interpolant in C. (We know that there exists an inter- 

polant in C since B is nonempty.) Then

n ^ n
s ( 2 a.y.)= Za.d. = 1  . , i-'i/ . 1 1i=l i=l

(5.21). Therefore, A > 0 .
-5C- ^  ■>(■
A y  = 1 . From (5.20) we see that x/A is an 

Hence

Y S || x || /A = 1 /A 

or

Y*A* S i  (5.22)

Let w be an interpolant of minimal norm satisfying (5.9). Then

which contradicts 

Now we show that 

interpolant in C.
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Equivalently, we have

which leads to

1 2 (5.23)

Taken together, (5.22) and (5.23) imply

/V <v
1 = Y A .

This concludes the proof of the theorem.

We consider now the problem of determining when the infimum is 

attained in (5.18). From proposition (5.8) we know that there exist 

a nonzero vector 8  such that

„ v  i i

0 = I * A  = y"p( £ 8  v )
i=l i i
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If 8  * d. > 0, then the infimum is attained in (5.18) at a = 3/(J3 • _d). 

Proposition (5.13): If d_ is in the relative interior of

S: = {_r : _r £ G(y) for some y } , 

then there exists a vector 8  such that

1  = g • d = y p( Z 8  y ).
i=l 1  1

Proof: We prove by contradiction. Assume that every vector J3 which

satisfies

6  • jd = Y P( Z 8 -y-) 
i=l 1

also satisfies 8 . * d_ = 0. Without loss of generality it can be 

assumed that there exists a nonzero vector 8  such that

0  = 8  • d = y p( Z B y )  
i=l 1  1

and

8  * X  = 0 for all z G (y ).
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In any relative neighborhood of ji there is a vector such that 

S. * Zl < 0. If z were an element of S, then there would be an 

element _r in G(y ) such that _z = otr_ for some a > 0. However, we 

would then have

which is a contradiction. Therefore is not an element of S and d_

is not in the relative interior of S. This completes the proof of 

the proposition.
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Appendix A

A Program for Constructing the Natural Cubic Spline Interpolant

to Given Data.
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00001
00002C
00003C
00004C
00005
00006 
00007 
00008C 
00009C 
00010C 
00011C 
00012C 
00013C 
00014C 
00015C 
00016C 
00017C 
00018C 
00019C 
00020C 
00021C 
00022C
00023
00024
00025 
00026C 
00027C 
00028C. 
00029C
00030
00031
00032
00033 100 
00034C 
00035C 
00036C 
00037C 
00038C 
00039C 
00040C
00041
00042
00043
00044
00045
00046
00047
00048 200
00049
00050

PROGRAM UNCONC INPUT .OUTPUT,TAPE5=INPUT,TAPE6=0UTPl)T)

WE FORM THE NATURAL CUBIC SPLINE INTERPOLANT *

INTEGER N, M, I
REAL T (5 0 ),F (5 0 ) ,D (5 0 > ,X < 5 0 ) ,A < 5 0 ) ,P P (4 ,5 0 )
REAL A A (50),B B (50),C C <50)

THE ARRAYS (T ) AND (F ) -  EACH OF SIZE M, THE NUMBER 
OF DATA* POINTS -  CONTAIN THE COMPONENTS OF THE DATA* 
THE DATA FILE  IS  OF THE FOLLOWING FORM

M
T ( 1 ) , F ( I )
T < 2 ) ,F (2 )

T (M ), F(M)

WHERE WE ASSUME (T ) HAS STRICTLY INCREASING COMPONENTS* 

READ( 3 , * )  M
R E A IK 3,*) < T m , F ( I > ,  1=1 ,M)
N= M-2

THE ARRAY (D) CONSISTS OF THE SCALED 
SECOND DIVIDED DIFFERENCES.

DO 100 1 = 1 ,N
D( I )= ( F ( IF 2 ) -F ( I+ 1 >  >/< T ( IF 2 ) - T <1+1) )

C . -  ( F ( I + 1 ) - F ( I )  ) / (  T <1+1) - T <I ) )
CONTINUE

THE SECOND DERIVATIVE OF THE NATURAL CUBIC SPLINE 
INTERPOLANT IS  A LINEAR COMBINATION OF LINEAR B-SPLINES. 
WE CALCULATE THE COEFFICIENTS*

AA(1)= 0 .0
BB <1)= ( T ( 3 ) - T ( l ) ) / 3 . 0
CC(1)= ( T ( 3 ) - T ( 2 ) ) / 6 .0
DO 200 1 = 2 ,N - l
A A ( I)= (T (1 + 1 ) - T ( I ) ) /6 .0
B B (I)=  < T ( I+ 2 ) - T ( I ) ) / 3 .0
C C (I)=  ( T ( I t 2 ) - T < I + l ) ) / 6 . 0
CONTINUE
AA(N)= ( T ( N + l) - T ( N ) ) /6 .0  
BB-;N)= (T (N + 2 )-T (N )) /3 *0
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00051 CC(N)= 0 .0
00052 CALL TRIIK AA,BB,CC,H,N)
00053C
00054C
00055C
00056 A ( l )  = 0 .0
00057 A(M) = 0 .0
00058 DO 300 1 = 2 ,N+l
0005? A ( I ) = D ( I - l )
00060 300 CONTINUE
00061C
00062C
00063C NOW UE COMPUTE THE NUMBERS P P (J , I )  -  THE VALUE
00064C OF THE ( J - l)S T  DERIVATIVE OF THE NATURAL CUBIC
00065C SPLINE INTERPOLANT EVALUATED AT T ( I ) .
000i>oC
00067C
00068 DO 400 K=1,N+1
0006? DF= F (K + 1 )-F (K )
00070 DT= T<K +1)-T (K )
00071 DA= A (K + 1 )-A (K )
00072 P P (4 ,K )=  DA/DT
00073 PP( 3 , K)= A(K)
00074 PP(2 ,  K) = DF/DT -  < A (K )/2 . + D A /6 .)*D T
00075 P P (1 ,K )=  F (K )
00076 400 CONTINUE
00077 PP( 4 , M)=  0 .0
00078 PP < 3 , M) = 0 .0
0007? P P(2,M )=  0 .0
00080 PP < 1 ,M) = F(M)
00081C
000B2C
00083C
00084 DO 500 K=1,M
00085 U R ITE (6 ,450) K, T ( K) , ( PP( I , K) ,  1 = 1 ,4 )
00086 450 FQ RM AT(5X ,I5 ,5F14.6)
00087 500 CONTINUE
000880
0008?C UE CREATE A DATA FILE FOR PLOTTING THE (JDER)-TH
000?0C DERIVATIVE OF THE NATURAL CUBIC SPLINE INTERPOLANT
000?1C BY EVALUATING IT  AT (MM) EQUALLY SPACED POINTS,
000?2C INCLUDING THE ENDPOINTS, UE ASSUME THAT (JDER)
00093C HAS VALUE 0 , 1 , 2 , OR 3 .
00094C
000?5 JDER= 0
00096 MM= 201
00097 CALL DATAFL(T,PP,M,MM,JDER)
00098C
00099 STOP
00100 END
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00001 SUBROUTINE DATAFL(TX,PP,LI,MM,JDER)
00002C
00003C WE CREATE A DATA FILE FOR PLOTTING THE (JDER)-TH
00004C DERIVATIVE OF THE PIECEWISE CUBIC POLYNOMIAL. WE
00005C ASSUME <JDER) HAS VALUE 0 , 1 , 2 , OR 3 ,
00006C
00007 INTEGER LI,MM-JDER
00008 REAL T X (IO O ), P P M ,100)
00007 LEFT= 1
00010 MMONE= MM -  1
00011 WRITE-;4 , * )  MM
00012 XE= ( T X (L I) -T X (1 )  ) /FLOAT<MMONE)
00013 DO 500 IP=1,MM
00014 XT= TX (1) + XEfcFLOAT( IP - 1 )
00015C
00016C WE FIND THE INTERVAL IN  WHICH THE POINT (XT) L IE S .
00017C
00018 IF  ( LEFT .NE. L I  ) THEN
00017 DO 200 IS =LE F T ,L I-1
00020 IF  ( XT ,L T . TX (IS +1) ) GO TO 300
00021 200 CONTINUE
00022 300 CONTINUE
00023 END IF
00024 LEFT= IS  
00025C
00026C WE NOW COMPUTE THE VALUE OF THE POLYNOMIAL AT
00027C THE POINT (XT) BY USING MESTED MULTIPLICATION,
00028C
00027 H= XT -  TX(LEFT)
00030 FAC= 4 .0  -  FLOAT(JDER)
00031 YT= 0 .0
00032 DO 400 M=4,JDER+1,-1
00033 YT= (YT/FACUH + PP(M,LEFT)
00034 FAC= FAC -  1.0
00035 400 CONTINUE
00036 W RITE(4,450) XT,YT
00037 450 FORMAT(F8.4,E18,7)
00038 500 CONTINUE
00037 RETURN
00040 END
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00001 SUBROUTINE TRID(SUB,DIAG,SUP,B,N)
00002 INTEGER N ,I
00003 REAL B(N>,DIAG<N>,SUB(N>,SUP<N)
00004 IF  (N .L E . l)  THEN
00005 B (1)=  B<1)/BIAG<1>
00006 RETURN
00007 END IF
00008 DO 111 1= 2 ,N
00009 S U B (I)=  S U B (I) /D IA G (I-1 )
00010 D IA G (I)=  D IA G (I) -  SUB<I)*SUP<I-1>
00011 B ( I )= B ( I ) -  S U B ( I) * B ( I -1 )
00012 111 CONTINUE
00013 B(N )=  B(N)/DIAG<N)
00014 DO 222 I= N -1 ,1 , - 1
00015 B ( I ) =  (B ( I) -S U P < I) *B ( I+ 1 ) ) /D IA G ( I>
00016 222 CONTINUE
00017 RETURN
00018 END
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Appendix B

A Program for Constructing the Shape-Preserving Cubic 

Spline Interpolant to Given Data
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00001 
00002C 
00003C 
00004C 
00005C 
00006C 
00007C 
00008C 
00009C 
00010C 
OOOllC 
00012C 
00013C 
00014C 
00015C 
00016 
00017 
00013 
00019 
00020C 
00021C 
00022C 
00023C 
00024C 
00025C 
00026C 
000270 
00028C 
00029C 
00030C 
00031C 
00032C 
00033C 
00034C 
00035C 
00036C
00037
00038
00039 
00040C 
00041C 
00042C 
00043C 
00044C 
00045C
00046
00047 
00043C 
00049C 
00050C

PROGRAM MAIN( INPUT, OUTPUT, TAPE5=INPUT, TAPE6=0UTPUT)

WE COMPUTE A SHAPE-PRESERVING INTERPOLANT 
TO GIVEN DATA.

NOTE ON THE SIZE OF THE ARRAYS:
THE ARRAYS ( T ) ,  CF>, AND (A ) MUST BE OF LENGTH 
AT LEAST M, THE NUMBER OF DATA POINTS. THE 
ARRAY (TX) AND THE SECOND COMPONENT OF THE 
ARRAY <PP) SHOULD BE OF LENGTH 2M. THE ARRAYS 
(X ) ,  ( Y ) , AND (ID  MUST BE OF LENGTH AT LEAST M-2. 
THE ARRAY ( ID ) MUST BE OF LENGTH AT LEAST M - l.

REAL T ( 5 0 ) ,F ( 5 0 ) ,X ( 5 0 ) ,Y (50  > ,A (5 0 ) 
REAL TX(1 0 0 ) ,PP( 4 ,1 0 0 ) ,T L , TR, EPS 
INTEGER M ,N ,IT M A X ,I, J,IFLAG,MM 
COMMON D (5 0 ) , IB (50 )

THE ARRAYS (T ) AND (F ) -  EACH OF SIZE M, THE NUMBER 
OF DATA POINTS -  CONTAIN THE COMPONENTS OF THE DATA. 
THE DATA FILE IS  OF THE FOLLOWING FORM

M
T (1 ) ,F (1 )
T (2 ),F<2>

¥

T(M),F(M>

WHERE WE ASSUME (T ) HAS STRICTLY INCREASING COMPONENTS. 

R E A IK 3 ,*) M
R EA IK 3,*) ( T ( I ) , F ( I ) ,  1= 1 ,M)
N= M-2

(EPS) IS  A SMALL POSITIVE NUMBER USED TO TEST FOR 
CONVERGENCE IN NEWTON'S METHOD -  SUBROUTINE (ZERO).
( ITMAX) IS  THE MAXIMUM NUMBER OF ITERATIONS 
WHICH WE PERMIT FOR NEWTONS METHOD TO CONVERGE.

EPS= 1 .0E -8  
ITMAX= 25

THE ARRAY (X ) IS  THE KNOT SEQUENCE (T ) WITH ThE 
ENDPOINTS TL AND TR DELETED.
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00051C
00052
00053
00054
00055
00056 120 
00057C 
00053C 
00059C 
00060C 
00061C 
00062C 
00063C 
00064C 
00065C 
00066
00067
00068
00069
00070
00071
00072 130
00073 135
00074 
00075C
00076
00077
00078
00079
00080 140 
000810 
00082C 
00083C 
000840 
000850 
000860 
00087C 
00088 
000890 
00090C
00091
00092
00093
00094
00095 
000960 
000970 
00098 145 
00099C 
001000 
00101

TL= T (1)
TR= T(M)
DO 120 1=1,N 
X ( I )  = T (1+1)
CONTINUE

THE ARRAY (10 CONSISTS OF THE SCALED 
SECOND DIVIDED DIFFERENCES.

IT  IS  IMPORTANT THAT UE IDENTIFY DIVIDED DIFFERENCES 
WHICH ARE ZERO* THIS MEANS THAT UE MUST COMPARE TWO 
FLOATING-POINT NUMBERS* TO DO THIS UE ASSUME IK K ) IS  
ZERO IF  IKK) IS  SMALL*

XEPS= 1*0 
DO 130 J = l,2 0  
XEPS= XEPS/10.
Z= 1*0 + XEPS
IF  ( Z *EQ. 1*0 ) GO TO 135
YEPS= XEPS
CONTINUE
CONTINUE
YEPS= YEPS*1000.

DO 140 K=1,N
D<K)= ( F (K + 2 )-F (K + l)  ) /<  T (K + 2 )-T (K + l)  )

C -  ( F (K + 1 )-F (K ) ) /<  T (K + l) -T (K )  )
IF  ( A B S (IK K )) *LE* YEPS ) D (K)= 0 .0  
CONTINUE

THE IN IT IA L  GUESS (Y ) FOR NEWTON'S METHOD 
WILL YIELD THE SECOND DERIVATIVE OF THE 
NATURAL SPLINE SOLUTION, EXCEPT POSSIBLY 
WHEN IK K )= 0*0 FOR SOME K.

DO 145 K=1,N

IF  ( IK K ) *GT. 0 .0  ) THEN 
Y < K) = 1 .0

ELSE
Y(K)= -1 * 0  

END IF

CONTINUE

W RITE(6,150)
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00102 150
00103
00104 160
00105
00106 170 
00107C 
00108C 
00109C 
0 0 1 1 0 C 
00111C 
00112C • 
00113C 
00114C 
00115C 
00116C 
00117C 
OOUSC 
00119C 
00120C 
00121C 
00122C
00123
00124
00125
00126
00127 180
00128
00129
00130
00131
00132 
00133C
00134
00135
00136
00137
00138 
00139C 
00140C 
00141C 
00142C 
001430
00144
00145
00146 185 
001470 
00148C 
00149C 
00150C 
00151C 
00152

FORMAT(/,' DATA VALUES ',/> 
URITE<6,160) <D(I), 1=1,N) 
FORMAT( 5X f 4E12.6) 
WRITE<6,170)
FORMAT(//)

ID(K)= 1 INDICATES THAT THE INTERPOLATING FUNCTION 
IS CONSTRAINED TO BE CONVEX ON CT<K),T(K+1)3 
AND, HENCE, ITS SECOND DERIVATIVE IS CONSTRAINED 
TO BE NONNEGATIVE ON THIS INTERVAL.
ILKK> = -1 INDICATES THAT THE INTERPOLATING FUNCTION 
IS CONSTRAINED TO BE CONCAVE ON CT(K),T(K+1)1 
AND, HENCE, ITS SECOND DERIVATIVE IS CONSTRAINED 
TO BE NONPOSITIVE ON THIS INTERVAL.

ID(K)= 0 INDICATES THAT THE INTERPOLATING FUNCTION 
IS UNCONSTRAINED ON CT(K),T(K+1)I.

DO 180 1 = 1 ,N - l  
ID ( 1+1)= 0
IF  ( IK I) .G E .O .O  .AND. IK 1 + 1 ).GE.O.O) I IK I+ 1 )=  1 
IF  ( IK I) .L E .O .O  .AND. D <I+1>.LE .O .O ) ID ( I+ 1 )=  -1  
CONTINUE
IF  ( IK 1 ) .GE. 0 .0  ) THEN 

ID ( 1)=  1
ELSE

I I K l  )=  -1  
END IF

IF  ( IKN) .GE. 0 .0  ) THEN 
ID (N +1)=  1

ELSE
ID (N +1) = -1  

END IF

IF  A NONZERO DATA VALUE D ( I )  LIES BETWEEN TWO 
ZERO DATA VALUES D ( I - l )  AND I K I + l ) ,  THEN D ( I )
IS  TAKEN TO BE ZERO FOR COMPUTATIONAL PURPOSES.

DO 185 1 = 2 ,N - l
IF  ( E K I - l )  .E Q .0 .0  .AND. D (I-F l)  .E Q .0 .0  ) D ( I )=  0 .0  
CONTINUE

SUBROUTINE (ZERO) CALCULATES THE PIECEWISE 
LINEAR SECOND DERIVATIVE OF THE SHAPE- 
PRESERVING INTERPOLANT.

CALL ZERO( Y, X , N, ITHAX, EPS, IFLAG ,TL, TR)
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00153C
00154
00155
00156
00157 
00153 
00159C 
00160 
00161 
00162
00163
00164
00165 
00166C 
00167C 
00168C 
Q0169C 
00170 
00171C
00172
00173
00174
00175
00176
00177
00178
00179
00180 
00181 : 
00182C 
00183C 
00184C 
00185C 
00186C 
00187C 
00188C 
00189C
00190
00191
00192 
00193C
00194
00195

190

200
210

20

230

240
250

260

270

A ( l )  = 0*0
A(M) = 0 .0  
DO 190 1= 2 ,N+l 
A ( I )  = Y ( I - l )
CONTINUE

WRITE<6,200)
FORMAT< / , 7 PIECEWISE LINEAR 2ND DERIVATIVE ' , / >  
W RITE(6,210) ( I , T ( I ) , A ( I ) ,  1 = 1 ,M)
FORMAT<5X,1 5 ,7 ( 7,F 1 4 .6 ,7 , 7,F 1 4 .6 ,7 ) 7> 
W RITE(6,220)
FORMAT< / / )

SUBROUTINE (POLY) INTEGRATES THE RESULT 
FROM SUBROUTINE (ZERO).

CALL P D LY (A ,T ,P P ,M ,F ,L I,T X )

WRITE(6 ,2 3 0 )
FORMAT< / , 7 KNOTS AND COEFFICIENTS OF PIECEWISE CUBIC7 
DO 250 1=1 ,L I
W RITE(6,240) I , T X ( I ) , ( P P ( J , I ) , J = l ,4 )
FORM AT(5X,I5,5F14.6)
CONTINUE
WRITE(6 ,2 6 0 ) IFLAG
FORMAT( / , 7 ERROR CODE = 7, I 5 , / )
W RITE(6,270) ITMAX
FORMAT( / , 7 NUMBER OF ITERATIONS = 7 , I 5 , )

SUBROUTINE (DATAFL) IS  USED TO CREATE A 
DATA FILE FOR PLOTTING. WE EVALUATE THE 
(JDER)-TH DERIVATIVE OF THE PIECEWISE CUBIC 
POLYNOMIAL AT MM EQUALLY SPACED POINTS,
INCLUDING THE ENDPOINTS TL AND TR. WE 
ASSUME (JDER) HAS VALUE 0 , 1 , 2 , OR 3.

MM= 201 
JDER= 0
CALL DATAFL(TX,PP,LI,MM,JDER)

STOP
END
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00001 SUBROUTINE ZERO ( A, X , N, ITMAX, EPS, IFLAG, TL , TR)
00002C
00003C
00004 INTEGER N ,IT M A X ,K ,J ,L J ,L ,IF L A G
00005 REAL A (N ),X (N > ,FX <50),A L ,X L ,A R ,X R ,D T ,D A ,T ,U
00006 REAL SUB(50),D IAG (50),SUP(50),H (50),SUM 1,SUM 2
00007 REAL RATI0 , GLEFT, GRIGH, EPS, FN0RM1, TL , TR
00008 COMMON H< 5 0 ) , ID (50)
00009C
00010C INPUT param eters :
00011C
00012C A* * . IN IT IA L  ESTIMATE FOR NEWTON'S METHOD*
00013C
00014C X . .  ♦KNOT SEQUENCE WITH THE ENDPOINTS DELETED*
00015C
00016C N ..*TH E  SIZE OF THE ARRAY (A)** THE NUMBER OF UNKNOWNS*
00017C
00018C ITMAX*»*MAXIMUM NUMBER OF ITERATIONS FOR NEWTON'S METHOD
00019C
00020C EPS...PARAMETER USED TO TEST FOR CONVERGENCE*
00021C
00022C T L ,T R .♦ .LEFT- AND RIGHT-ENDPOINTS OF THE
00023C INTERVAL RESPECTIVELY*
00024C
00025C output param eters :
00026C
00027C A ...T H E  CALCULATED ZERO IF  CONVERGENCE OCCURRED.
00028C
00029C ITMAX*..NUMBER OF ITERATIONS REQUIRED FOR NEWTON'S
00030C METHOD TO CONVERGE.
00031C
00032C IF LA G .. .  IFLAG= 1*. CONVERGENCE INDICATED BY COMPARING
00033C THE L I NORMS OF THE ITERATES
00034C I.FLAG= 2J NUMBER OF ITERATIONS EXCEEDED ITMAX.
00035C
00036 PRINT 100
00037 100 FORMAT<' ITERATION NUMBER AND R E S ID U A L :',/
00038 C '  QUADRATIC CONVERGENCE IS  EXPEC TED .',/)
00039 DO 350 LJ=1,ITMAX
00040C
000410 THE ARRAYS (SUB), (D IA G ), AND (SUP) CONTAIN
00042C THE ELEMENTS OF THE TRIDIAGONAL POSITIVE-DEFINITE
00043C JACOBIAN MATRIX ( J ) ,  EVALUATED AT THE VECTOR (A ) .
00044C IT  SHOULD BE NOTED.THAT THE MATRIX EQUATION SOLVER,
00045C THE SUBROUTINE (T R ID ), DOES NOT TAKE ADVANTAGE OF
00046C THE SYMMETRY OF ( J ) . HENCE (SUB) AND (SUP) ARE
00047C BOTH NECESSARY. ALTHOUGH SUB(K)=SUP(K-1) ,  EQUATIONS
00048C FOR BOTH ARRAYS ARE WRITTEN OUT IN FULL,
00049C
00050C IF  D (K )= 0 .0  FOR SOME K, THEN THE NUMBER
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00051C 
00052C 
00053C 
00054C 
00055C 
00056 
00057C 
00058 
0005? 
00060 
00061 
00062
00063
00064 
00065C 
00066C
00067
00068 
0006?
00070
00071
00072
00073 
00074C 
00075C

00085C
00086
00087
00088C
00089
00090C
00091
00092C
00093
00094C
00095
00096 
00097C 
00093 
00099C 
00100 
00101

OF UNKNOWNS (AND EQUATIONS) REDUCE* IN  ORDER 
TO PERMIT THE COMPUTATION OF ONE JACOBIAN 
MATRIX THE PROGRAM SETS S U B (K )=S l!P (K -l>=0*0 
AND D IAG (K)=1*0*

DO 125 K=1,N

IF  (K *E Q .l) THEN
AL= 0*0  
XL= TL

ELSE
AL= A (K - l)
XL= X ( K - l)

END IF

IF  (K*EQ.N) THEN
AR= 0*0  
XR= TR

ELSE
AR= A(K+1)
XR= X(K+1)

END IF

00076 IF ( AL.GE*0*0 ♦ AND. A (K ).G E *0 .0 ) J l= 1
00077 IF ( A L .LT *0 *0 . AND * A (K )*G E *0 .0 ) J l  = 2
00078 IF ( AL*GE*0*0 , AND, A (K )*L T *0 .0 ) J l  = 3
00079 IF ( AL*LE*0*0 * AND * A (K )*L E *0 .0 ) J l  = 4
00080C
00081 IF ( A(K)*GE.O* 0 . AND. AR*GE.0*0 ) J2= 1
00082 IF ( A( K) . LT * 0 . 0 * AND, AR*GE*0*0 ) J2= n
00083 IF < A(K ).G E .O . 0 . AND * A R .LT*0 .0 ) J2= 3
00084 IF < A (K )*LE *0 * 0 .AND* AR*LE*0*0 ) J2= 4

DT= X (K )-X L  
DA= A (K )-A L

IF  ( ID (K ) *EQ* 1) THEN

IF  (K .N E *1) THEN

IF  <J1*EG*1> THEN

SUB(K)= D T /6*0  
GLEFT= DT/'3*0

ELSE IF  (J1 .E Q .2 ) THEN

T= XL-CDT/DA)*AL 
W= 0*5*<  X(K)+T )
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00204
00205
00206 
00207C- 
00208 
00209C 
00210 
00211 
00212
00213
00214
00215 
00216C 
00217 
00218C
00219
00220 
00221C 
00222 
00223C 
00224 
00225C 
00226
00227
00228 
00229C 
00230 
00231C 
00232 
00233C
00234
00235 
00236C 
00237 
00238C 
00239 
00240C 
00241 
00242C
00243
00244 
00245C 
00246 
00247C
00248
00249
00250
00251
00252
00253 
00254C

C P 4 .0 # (  (W -X C K ))/D T )(X R -W )/D T ) )
GRIGH= < X R -T )/6 .0  # < <(X R -T )/D T )**2  

C P 4 .0 *< < < X R -U )/IiT )*S 2 ) )

ELSE IF  ( J 2 .E 0 .3 )  THEN

T= X( K) - ( DT/DA)# A( K)
W= 0 .5 $ ( TPX(K) )
SUP( K)= ( T -X (K ) ) /6 .0  *  < 4.0#<<W -X(K>)/DT)*(<XR-W )/DT> 

C P ( (T -X (K ) )/D T )$ ( (X R -D /D T ) )
GRIGH= < T -X (K )) /6 *0  *  < 1 .0 P 4 .0 * < ( (XR-W )/DT>#*2)

C P < (X R -D /D T )*#2 )

ELSE IF  (J2 .E G .4 ) THEN

SUP < K) = 0 .0  
GRIGH= 0 .0

END IF

ELSE IF  (K .EG .N) THEN

SUP(N)= 0 .0  
GRIGH= 0 .0
IF  (J2 .E G .1 ) GRIGH= D T /3 .0  

END IF

ELSE IF  < I IK K P l)  .EG. 0 ) THEN

SUP(K)= D T /6 .0  
GRIGH= D T /3 .0

ELSE IF  < I IK K P l)  .EG. -1  ) THEN

IF  (K .N E .N ) THEN

IF  (J2 .E G .4 ) THEN

SUP<K)= D T /6 .0  
GRIGH= D T /3 .0

ELSE IF  (J2 .E G .3 ) THEN

T= X( K)-<  DT/DA) #A < K)
W= 0 .5 *<  XRPT )
SUP(K>= < X R -T )/6 .0  *  ( ( ( T -X ( K) ) /D T ) # ( ( XR-T) /D T )

C P 4 .0 *< (W -X < K ))/D T )*(< X R -W )/D T ) )
GRIGH= (X R -D /6 .0  *  ( ( <X R -T )/B T )**2

C P 4 .0 *< (< X R -W )/D T )#*2 ) >
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00255
00256C
00257
00253
0025?
00260
00261
00262
00263C
00264
00265C
00266
00267
00263C
0026?
00270C
00271
00272C
00273
00274
00275 
00276C 
00277 
00278C 
0027? 
00280C 
00281 
00232
00283
00284
00285
00286 
00287C 
00238 
0023?C 
002?0C 
002? 1 
002?2 
002?3
00294
00295 
00296C 
00297 125 
00298C 
0029?
00300
00301 150 
00302C 
00303C 
00304C

ELSE IF  ( J2 .E Q .2 ) THEN

T= X( K) - C DT/DA) #A( K)
W= 0 .5 *<  T+X<K) )
SUP( K)= < T -X < K ))/6 ,0  *  < 4 .0 *((W -X (K ))/D T )*< < X R -W )/D T ) 

C + U T -X (K ))/D T > *< (X R -T )/B T ) )
GRIGH= (T -X (K ) ) / 6 .0  *  ( 1 .0  + 4 *0 ^ ( ( (XR-W >/DT)**2)

C + (< X R -T )/D T )**2  )

ELSE IF  ( J 2 .E P .1) THEN

SUP(K)= 0 ,0  
GRIGH= 0 ,0

END IF

ELSE IF  (K .EQ .N) THEN

SUP(N)= 0 .0  
GRIGH= 0 .0
IF  U 2 .E Q .4 )  GRIGH= D T /3 .0  

END IF  

END IF

IF  (K .N E .N ) THEN 
IF  ( D<K+1) .EQ, 0 ,0  ) THEN 

SUP(K)= 0 .0  
GRIGH = 0 .0  

END IF  
END IF

D IAG(K)= GLEFT+GRIGH

IF  < IK K ) .EQ, 0 .0  ) THEN 
D IAG(K)= 1 .0 
SUB(K)= 0 ,0  
SUP( K )= 0 .0

END IF

CONTINUE

DO 150 L=1,N 
H (L )=  D (L)
CONTINUE

UE SOLVE THE MATRIX EQUATION JX=H, THE ARRAY <H>
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00305C
00306C
00307C
00308C
00309
00310C
00311
00312
00313
00314
00315 200 
Outlie 
00317C 
00318C 
00319C 
00320C 
00321C 
00322C
00323
00324
00325
00326
00327 250
00328
00329
00330 300 
003310 
00332C
00333
00334
00335
00336
00337
00338
00339
00340 350
00341
00342 400
00343
00344
00345

BEING IDENTICAL TO THE ARRAY ( ID , THE SOLUTION 
IS  RETURNED IN THE ARRAY (H>.

CALL TRID(SUBf BIAG,SUP,H,N)

SUM1= 0 ,0  
DO 200 L=1,N  
A (L )=  H (L)
SUM1= SUM1 + A B S (A (L ))
CONTINUE

THE FUNCTION EVALUATION SUBROUTINE COMPUT MAY 
BE DELETED, IN  THIS CASE THE FOLLOWING EIGHT 
LINES ARE TO BE DELETED AND THE ARRAY (FX)
CAN BE TAKEN FROM THE REAL STATEMENT AT THE 
BEGINNING OF THIS SUBROUTINE,

CALL COMPUT(A,FXr N ,X ,TL ,TR )
FN0RM1= 0 .0  
BO 250 L=1,N  .
FN0RM1= FN0RM1 + FX<L)*FX(L)
CONTINUE
FN0RM1= SORT(FN0RM1)
W RITE(6,300) L J r FNORMl 
FORM AT(I5jE15,6)

IF  ( L J .N E . l)  THEN 
RATIO= ABS(SUM1-SUM2)
AB= EPS#SUM2 
IFLAG= 1
IF  (RATIO ,L E . AB) GO TO 400
END IF
SUM2= SUM1
CONTINUE
IFLAG= 2
CONTINUE
ITMAX= LJ
RETURN
END

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.
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0 0 0 0 1

00002C
00003C
00004C
000050
00006C
00007
00008
00009
00010 
00011 
00012C 
00013 
00014C
00015
00016
00017
00018
00019
00020 
00021 
00022C
00023
00024
00025
00026
00027
00028 
00029 
00030C 
00031C 
00032C
00033
00034
00035
00036 
00037C 
0003S
00039
00040
00041 
00042C 
00043 
00044C 
00045 
00046C 
00047 
00048C 
00049 
00050C

SUBROUTINE COMPUT( A, FX, N, X, T L , TR)

SUBROUTINE (COMPUT), THE FUNCTION EVAULATING 
SUBROUTINE, IS  OPTIONAL,

REAL A( N) , FX( N) , F1 ,ALO, A H I, TLO, THI 
REAL GLEF,GRIG,TS,X(N)
INTEGER N ,K ,J 1 ,J 2  
COMMON I i ( 5 0 ) , ID (50 )
DO 100 K=1,N

IF  ( IK K ) ,NE, 0 ,0  ) THEN

IF  (K .E G .l)  THEN
ALO= 0 .0  
TLO= TL

ELSE
ALO= A (K - l)
TLO= X (K - l)

END IF

IF  (K .EG .N) THEN
AHI= 0 .0  
THI= TR

ELSE
AHI= A(K+1)
THI= X (K + l)

END IF

IF  (ALO.GE.0 .0  .AND, A(K ).G E.O .O ) J l=  1
IF  (A LO .LT .0 .0  .AND. A (K ).G E .O .O ) J l=  2
IF  (ALO.GE.O.O .AND. A (K ).LT .O .O ) J l=  3
IF  (A LO .LT .0 ,0  .AND. A (K ).L T .O .O ) J l=  4

IF  (A (K ).G E .O .O  .AND. AHI.GE.O.O) J2= 1
IF  (A (K ).L T .O .O  .AND. AHI.GE.O.O) J2= 2
IF  (A (K ).G E .O .O  .AND, A H I.L T ,0 .0 )  J2= 3
IF  (A (K ).L T .O .O  .AND. A H I.L T .0 .0 )  J2= 4

DT= X ( K) -TLO

IF  ( I IK K )  .EQ. 1 ) THEN

IF  ( J l . E G . l )  THEN

GLEF= DT*( 2 .0 *A (K ) + ALO ) /6 ,0
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00102C
00103
00104C
00105
00106C
00107
00108 
00109C 
00110 
00111C 
00112
00113
00114 
00115C 
00116 
00117C 
00118
•00119C
00120
00121C
00122
00123C
00124
00125C
00126
00127C
00128
00129C
00130
00131C
00132
00133C
00134
00135 
00136C 
00137 
00138C
00139
00140
00141 
00142C 
00143 
00144C 
00145 
00146C 
00147 
00148C 
00149 
00150C 
00151C 
00152

GRIG= BT#< 2 .0*A (K >  + AHI ) /6 .0

ELSE IF  (J2 .E G .2 ) THEN

TS= X<K> -  A (K >*D T /( AH I-A (K ) )
GRIG= ( <TH I-TS>**2 )#A H I/< 6 .0 *D T )

ELSE IF  (J2 .E G .3 ) THEN

TS= X<K) -  A (K )*B T /<  A H I-A (K ) )
F l=  C T H I-0 .5 *<  TSFX(K) ) )/HT
GRIG= ( TS -X (K ) ) * A (K ) * (  1 .0  + 2.0#F1 ) / 6 . 0

ELSE IF  (J2 .E Q .4 ) THEN

GRIG= 0 .0

END IF

ELSE IF  ( ID (K +1) .EG. 0 ) THEN

GRIG= DT*( 2 .0 *A (K >  + AHI ) /6 .0

ELSE IF  < I IK K + l) .EG. -1  ) THEN

IF  (J2 .E G .4 ) THEN

GRIG= DT*< 2 .0 *A (K ) + AHI > /6 .0

ELSE IF  (J2 .E Q .3 ) THEN

TS= X(K) -  A (K )*D T /( A H I-A (K ) )
GRIG= < (TH I-TS >#*2  )*A H I/(6 .0 *D T )

ELSE IF  (J2 .E G .2 ) THEN

TS= X(K) -  A (K )#D T /( AH I-A (K ) )
F l=  ( T H I-0 .5 * (  TS+X<K) ) )/DT
GRIG= ( TS -X (K ) >#A<K)*( 1 .0  + 2 .0 *F 1  ) / 6 . 0

ELSE IF  (J2 .E Q .1 ) THEN

GRIG= 0 .0

END IF

END IF

IF  C K .N E .l) THEN
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00153 IF  ( D (K - l)  .EQ. 0 .0  ) GLEF= 0 ,0
00154 END IF  
00155C
00156 IF  (K .N E.N ) THEN
00157 • IF  ( IKKT1) .EQ. 0 .0  ) GRIG= 0 .0
00153 END IF
00159C
00160 FX(K)= GLEF + GRIG -  IKK )
00161C
00162 ELBE IF  ( IKK ) .EQ. 0 .0  ) THEN
00163 FX<K>= 0 .0
00164 END IF  
00165C
00166 100 CONTINUE
00167 RETURN
00163 END
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00001 
00002C 
00003C 
00004C 
00005C 
00006C 
00007C 
00008C 
00009C 
00010C 
00011C 
00012C 
00013C 
00014C 
00015C 
00016C 
00017C 
00018C 
00019C 
00020C 
00021C 
00022C 
00023C 
00024C 
00025C 
00026C 
00027C 
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037 
00038C
00039
00040
00041
00042
00043
00044
00045
00046
00047 
00043C 
00049C 
00050C

SUBROUTINE POLY( A, T fPP, M, F , L I , TX)

SUBROUTINE POLY INTEGRATES BACK TWICE THE 
POSITIVE PART OF THE PIECEWISE LINEAR SECOND 
DERIVATIVE WHERE THE DATA SUGGESTS THAT THE 
INTERPOLATING CURVE SHOULD BE CONVEX, THE 
NEGATIVE PART OF THE PIECEWISE LINEAR SECOND 
DERIVATIVE WHERE THE DATA SUGGESTS THAT THE 
INTERPOLATING CURVE SHOULD BE CONCAVE, AND 
THE REMAINING PORTION OF THE PIECEWISE LINEAR 
SECOND DERIVATIVE ON THE TRANSITION INTERVALS,

THE INTEGRATION YIELDS A PIECEWISE CUBIC 
POLYNOMIAL WITH KNOTS GIVEN BY THE SEQUENCE 
(T X ). THIS CUBIC POLYNOMIAL INTERPOLATES THE 
DATA AND ITS COEFFICIENTS ARE DENOTED BY THE 
NUMBERS F'P ( J , I ) -  THE VALUE OF THE (J - l)S T  
DERIVATIVE OF THE FUNCTION EVALUATED AT T X ( I ) .  
FOR X SUCH THAT T X ( I)  .G E .X .L T .T X (I-F l)  THE VALUE 
OF THE CUBIC POLYNOMIAL IS

P P (1 ,I)
+ PP( 2 , I > *  ( X -T X ( I)  )
+ U /2 ) P P ( 3 , I )  *  ( X -T X ( I)  )**2
+ < 1 /6 )F 'P (4 ,I>  *  ( X -T X ( I)  )*S 3

INTEGER M ,J ,L ,L I
REAL A (50) ,T (5 0 )  ,P F '(4 ,100) ,F (5 0 )  ,TX( 100) ,TAU 
REAL DF,DT,DA,C,E 
COMMON D( 5 0 ) , ID (50)
L I=  1 
MN1= M -l 
DO 100 L=1,MN1 
DF= F (L + 1 )-F (L )
DT= T ( L + l) - T ( L )
DA= A (L + 1 )-A (L )

JP= 0
IF  (L .E Q . l)  THEN

IF  ( I K l )  .EQ, 0 .0  ) JP= 1 
ELSE IF  (L.EQ.MN1) THEN

IF  ( IKM -2) ,EQ, 0 .0  ) JP= 1
ELSE

C= D (L -1 )*D (L )
IF  ( C .EQ. 0 .0  ) JP= 1

END IF
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100

00102 F'F'(2jLI )= C + A(L)*A(L)*DT*0.5/BA
00103 P P (1 ,L I)=  F<L)
00104 P P (4 ,L I+ 1 )=  0 .0
00105 F 'P (3 ,L I+ 1 ) = 0 .0
00106 P P (2 ,L I+ 1 )=  C
00107 P P (1 ,L I+ 1 > =  C *( TAU-T(L) ) + E
00108 T X <L I)=  T (L )
00109 TX(LI+1>= TAU
00110 LI= LI+2 
00111C
00112 ELSE IF  (J .E Q .4 ) THEN
00113C
00114 P P (4 ,L I)=  0 .0
00115 P P (3 ,L I)=  0 .0
00116 PF’ ( 2 r L I  )= DF/DT
00117 PP(1yLI)= F(L)
00118 T X (L I)=  T (L )
00119 L I=  L I+1 
00120C
00121 END IF
00122C
00123 ELSE IF  < IEKL) .EQ, 0 ) THEN
00124C
00125 C= DF/DT -  (D A /6 .0  + A (L ) /2 .0 )*D T
00126 P P (4 ,L I)=  DA/DT
00127 P P (3 f L I ) =  A (L )
00128 F'P(2,LI)= C
00129 F'F'( 1 1 L I  )= F (L )
00130 T X (L I )= T (L )
00131 L I=  L I+1 
00132C
00133 ELSE IF  ( ID (L ) .EQ. -1  ) THEN
00134C
00135 IF  (J .E Q .4 ) THEN
00136C
00137 C= DF/DT -  (D A /6 .0  + A < L )/2 .0 )# D T
00133 F 'P (4 ,L I)=  DA/DT
00139 P P (3 ,L I> =  A(L>
00140 F'P(2f LI )= C
00141 P P ( l f L I ) =  F (L )
00142 T X (L I)=  T (L )
00143 L I=  L I+1 
00144C
00145 ELSE IF  (J .E Q .3 ) THEN
00146C
00147 TAU= T (L ) -  A(L)#DT/DA
00148 C= DF/DT -  (A (L + 1 )^ 3 )*D T /(6 ,0 *D A *D A )
00149 F'F'(4 ,LI )= 0.0
00150 PP(3,LI)= 0.0
00151 P P (2 ,L I)=  C
00152 P P (1 ,L I)=  F (L )
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00153 F'P(4tL I + 1)= DA/DT
00154 PP<3,LI+1>= 0 .0
00155 PP<2r L I+ 1 )=  C
00156 P P <1 ,L I+ 1 )=  C*<TAU-T<L)) + F (L )
00157 T X (L I)= T (L )
00153 T X (L I+ 1 )=  TAU
0015? L I=  L I+ 2
00160C
00161 ELSE IF  (J .E G .2 ) THEN
00162C
00163 TAU= T (L )  -  A(L)*DT/DA
00164 E= F (L ) -  (A (L )**3 )« iT *D T /< 6 .0 :t:D A *D A )
00165 C= DF/DT + < A (L m 3 )*D T /(6 .0 *n A *D A >
00166 P P (4 ,L I)=  DA/DT
00167 P P (3 ,L I)=  A<L)
00163 P P (2 ,L I)=  C + A (L )*A < L )*D T *0 .5 /n A
00169 PF'< 1 tL I )=  F (L )
00170 P P (4 f L I+ 1 )= 0 .0
00171 P P (3 ,L I+ 1 )=  0 .0
00172 • P P (2 ,L I+ 1 )=  C
00173 P P a ,L I+ l> =  C*( TAU-T(L) ) + E
00174 TXCLI)= T (L )
00175 T X (L I+ 1 )=  TAU
00176 L I=  L I+ 2
00177C
00173 ELSE IF  ( J .E G . l) THEN
00179C
00180 PP(4r L I ) =  0 .0
00181 P P < 3 ,L I)=  0 .0
00182 P P (2 ,L I> =  DF/DT
00183 P P (1 ,L I> =  F (L )
00184 T X (L I)= T (L )
00135 L I=  L I+1
00186C
00187 END IF
00188C
00189 END IF
00190C
00191 END IF
00192C
00193 100 CONTINUE
00194 P P (4 ,L I)=  0 .0
00195 PP(3r L I )=  0 .0
00196 PP<2,L I>=  0 .0
00197 P P (1 ,L I)=  F(N)
00198 T X (L I>=  T(H)
0019? RETURN
00200 END
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Subroutines TRID and DATAFL are listed in Appendix A.
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