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ABSTRACT
MINIMAL NORM CONSTRAINED INTERPOLATION
Larry Dean Irvine
01d Dominion University, 1985
Director: Dr. Philip W. Smith

In computatonal fluid dynamics and in CAD/CAM a physical boundary,
usually known only discreetly (say, from a set of measurements), must
often be approximated. An acceptable approximation must, of course,
preserve the salient features of the data (convexity, concavity, etc.)
In this dissertation we compute a smooth interpolant which is locally
convex where the data are locally convex and is locally concave where
the data are locally concave.

Such an interpolant is found by posing and solving a minimization
problem. The solution is a piecewise cubic polynomial. We actually
solve this problem indirectly by using the Peano kernel theorem to
recast this problem into an equivalent minimization problem having the
second derivative of the interpolant as the solution.

We are then led to solve a nonlinear system of equations. We
show that with Newton's method we have an exceptionally attractive and
efficient method for solving this nonlinear system of equations.

We display examples of such interpolants as well as convergence
results obtained by using Newton's method. We list a FORTRAN program
to compute these shape-preserving interpolants.

Next we consider the problem of computing the interpolant of
minimal norm from a convex cone in a normed dual space. This is an

extension of de Boor's work on minimal norm unconstrained interpolation.
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1. The Natural Spline Interpolant

We consider the problem of computing an interpolant to given data.

Throughout our discussion we shall denote the data
(ti,yi) i=1,2,...,n

where a2 = t1 < t2‘<... <tn = b and in this chapter we place no
restrictions on the numbers yi. There are, of course, many such
interpolants which we can form. For example, we can calculate the
unique polynomial p of order n (degree n-1 or less) which interpolates
the data. However, as pointed out in [deB(1l), chapter 2}, for large
n (and especially for equally spaced points ti) the polynomial inter-
polant is notorious for large changes in its first derivative near the

endpoints. Figure (1.1) displays the polynomial interpolant to the

function

£(t) = 1 - s%?(7 T t)

at the points t; = (i-1)/10 for i = 1,2,...,11. Since O = y; S 1 for
each i, we expect a good interpolant to remain reasonably close to
these bounds. However, because of its behavior near the endpoints,

the polynomial interpolant fails to model the data well. This behavior
is typical of high-order polynomial interpolants.

In order to decrease the unnaturally large changes in the first
derivative characteristic of the polynomial interpolant, we wish to
calculate the interpolant which "bends" the least over all suitable
interpolants. The norm of the second derivative of an interpolant
will furnish a measure of the bending of the interpolant so we pose a

minimization problem on Lz(z)[a,b], the Sobolev space of functions with
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Figure (1.1): The Polynomial Interpolant.
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second derivatives -inthe normed linear space L2[a;b]. Let ‘A denote
the set of all interpolants in the Sobolev space. We consider the
minimization problem

Find f,€ A such that Hf%(z)ll , = Hf(z)ﬂ , for all feA. (1.1)

We shall see that the solution to (1.1) is piecewise cubic with two

continuous derivatives; that is

IA

f.(t) = pi(t) if st o=t
for i = 1,2,...,n-1 where P is a cubic polynomial and £, is in
C2[a,b]. We follow the pattern in [deB(1l), chapter 5], taking advan-
tage of the fact that Lz[a,b] is not only a normed linear space, but
also a Hilbert space with an inner product defined by

b
(f,g) = J f(t)g(t)de
a

for any two elements f and g in L2[a,b}.

Assume f is an element of A. (The set A is nonempty since it
contains the polynomial interpolant.) We shall use the Peano kernel
theorem to obtain a set of equations for f<2). By the Fundamental
Theorem of Calculus we have

t
(1)
f(t) = f(a) + | £/ (s)ds (1.2)

a

F(1)

We integrate J f (s)ds by parts noting that f udv = uv ~ jvdu.
a
Let
u(s) = f(l)(s) and dv(s) = ds

so that

du(s) = £2)(s)ds and v(s) = ~(t-s)
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where t is a constant. Hence

t t
Jf(l)(s)ds = (e-a)E P (a) + J(t—s)f(z)(s)ds
a

a

and so (1.2) becomes

£(t)

t
4 (t) + J(t—s)f(z)(s)ds (1.3)
a

where ql(t) = f(a) + f(l)(a)(t—a). (This is actually a Taylor's series
with integral remainder.)

To acquire constant limit of integration we can write (1.3) as

b
£(£) = qq(£) + j(t-s)+f(2)(s)ds (1.4)
a

where (h)+, the positive part of the function h, is defined by

h(t) if  h(t)

v

0
(h)+(t) =
0 if  h(t)

IA

0.
Now we consider the divided difference operator. Given a function

g and a set of points {Ti,Ti «>T.. }, the m~th divided difference

+17°° i+m
of g - denoted by [Ti,Ti+l,...,Ti+m}g(-) ~ is the leading coefficient

of the polynomial of order m+l which interpolates g at Tl Tigm

(and hence is a function of Ty T ). The recursive relations

. ceas T
i+1’ > “i+m

[Tp]g(-) = g(rp)

[t lgCo)-i7; | Tiumal80) (1.5

T. -~ T.
i+m 1

. T.
i+l,.s.,.i4m

hold if Tiom* '3 (which we assume for our data). Presently we are

interested in the case m=2. Equation (1.5) becomes (with Ti==ti)
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g(ti+2)—g(ti+1);_ g(t; 1)-8(t;)

Y10 Y41 YTy

(t

o=ttt ot ,]g(0) =
i+2 i 1?7141 "i+2 142

(1.6)
which is computable for i=1,2,...,n-2.

Notice that [Ti,Ti+l,...,Ti+m]p(') = 0 if p is a polynomial of
order m or less (degree m-1 or less). (From equation (1.6) we see
that (ti+2 - ti)[ti,ti+l,ti+2]g(‘) measures a difference in slopes; the
difference in slopes being zero if g is linear.)

Now we apply the (scaled) second-divided difference operator

(t - ti)[ti’ti+1’ti+2] to (1.4) and interchange the order of the

i+2

integral and divided difference operators to obtain

b

di,2 = LF(S)Ni(S)ds i=1,2,...,0n-2 (1.7)
where
dj 9= (bypp = B0t g0t HIEC)
y. - Y. Y - y.
- t1+2 . t1+1 _ t1+l . tl , (1.8)
i+2 i+l i+l i
TG I I B S LSS RLIY (Ch M
_ <ti+2 - 8), - (ti+l - s)+ _ (ti+1 - s’)+ - (ty - S)+
tiv2 T tia fiv1 7Y
(1.9)
and g = f(z). We call Ni , the (normalized) linear B-spline (or
B-spline of order 2) with knots s, ti and tioe The graph of Ni,2

is displayed in figure (1.2).
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Figure (1.2): The Normalized Linear B-spline.
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We have shown that if f is an interpolant in the Sobolev space
(f € A), then g = f(z) satisfies (1.7). Let the set B consist of all
functions which are in Lz[a,b] and which satisfy (1.7).

Now consider the problem
Find g, € B such that Ilg*llz §|Ig]|2 for all g € B (1.10)

A unique solution exists since (1.10) is a minimal norm problem over
a nonempty closed convex set in a Hilbert space. Furthermore, the
solutions of problems (1.1) and (1.10) are related via g, = f*(?‘).
Hence, to compute f, we can first calculate g, and then integrate g,
twice. Since much of our emphasis will be on gy, rather than £, we
shall call g, the interpolant of minimal norm.

For brevity we denote the index m = n-2, the B-spline Ni = Ni,Z’

and the divided difference di = d. We also define the vector-valued

i,2°
function T:Lz[a,b] > R™ by

b
(Tx)i = J x(t)Ni(t)dt i=1,2,...,m.

a

To solve problem (1.10) we shall show that g,, the interpolant of
minimal norm, is the intersection of two specific sets—-one an ortho-
gonal complement of a subspace and the other a translate of a subspace
—in L2[a,b] via a variation of the Projection Theorem. If W is a
closed subspace of a Hilbert space H and if x is an arbitrary element
of H, then the Projection Theorem states that there exists a unique

element v in W satisfying
“x—woﬂé lx = w]|| for all we W (1.11)

and characterized by
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(x - wo,w) =0 for all we W.

Hence x - v, is in W %, the orthogonal complement of W. The proof of
the Projection Theorem can be found in any book dealing with Hilbert
spaces (for example, [L, page 517]). The next proposition will serve

as the actual form of the Projection theorem which we shall use.

Proposition ([L, page 64]): Let W be a closed subspace in a Hilbert

space H. For a fixed element xin H define V: = x + W. Then there

exists a unique element X, in V of minimal norm. Furthermore, X is
L

in W .

(The translate V is called an affine set or linear variety.) Notice
that X is the intersection of the orthogonal complement of W and the
translate V of W. In fact, (1.11) reveals that X, =X = W.

Define

W: = {zeLz[a,b] : Tz = 8}

which is a closed subspace in Lz[a,b]. Let g¢ Lz[a,b] be any element
such that Tg = d. (Equivalently, let g be any element of B.) Then
B =g+ Wand B corresponds to the linear variety in the proposition.
Hence g, is the unique element in W + satisfying Tg, = d.

We consider the contents of W . Any element which is orthogonal
to each Ni is also orthogonal to any linear combination of the B-
splines. Hence S: = span(NrNé,...,Nm)isa subset of W l. We now
show that W + is a subset of S (and hence S =W l) by contradiction:
Assume that there exists an element y which is in W * but not in S.

Since S is a closed subspace there exists (by the Projection Theorem)
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an element S5 in S such that
HY-SJlé Hy—s” for all seS

with y - S, in the orthogonal complement of S. This implies
T(y - so)==6 or (y - so)E:W. However y ~ S, is also in W % since
both y and s, are in WT. Therefore (y - so) =0 and S=W"T,

In summary, g, is characterized by

(since g, is in the span of the B-splines) where the coefficients
Up50gs-ee,Q  are chosen to satisfy
m

(jf-lajNJ"Ni) =d,  i=1,2,...,m (1.12)

(since Tg, = d). Equation (1.13), a system of m linear equations in m

unknowns, can be written in matrix notation as

Aa =d (1.13)

where the symmetric matrix A has entries Aij = (Ni’Nj)'
Because the B-splines are linearly independent, the matrix A, a
Grahm matrix, is nonsingular and hence a unique solution exists for

any given d. Furthermore, since Ni has support [ti’t , the matrix

i+2]

A is tridiagonal. For any gﬁ:Rm we have
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m
x Ax = ii Xi(Ai)i

m m
= X2 x.(N., ZxN.)
jop 101 =1 id

m m
(£ x.N., Zx.N,)
i=1 *t y=1 33

I

T 2
Iz %N 5
i=1 * 7t

v
o

with equality holding if and only if x = 6. The matrix A is hence
positive definite and (1.13) can be solved by Gauss elimination with-
out pivoting, or, better still, by Cholesky decomposition.

We note also that

lexll =alae = a’a.

The entry Aij’ the integral of the product of two piecewise linear
polynomials, can be computed exactly by Simpson's rule applied on each

subinterval [tk’tk+l]' Denoting Atk: = tk+l - tk and 2y the midpoint

of the interval [t 1] we have for i=1,2,...,m

Kk Sk

=g
]

tie1 ) ti42 )
ii Ni(t) dt + Ni(t) dt
t

i 1:i+1

- (Ati+l/6)[Ni(ti)2 +AN (z)% + N, (t,, )]

+

2 2 2
Cﬁti+2/6)[Ni(ti+l) * 4Ni(2i+l) * Ni(ti+2) ]

(tiyp - Fi)/3’
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11
We also compute for i=1,2,...,m~1

Ai,i+1 = Ai+1,i

I

i+2
NiNi+1(t)dt
i+l

(t - ti+1)/6.

it+2
The solution g,, being a linear combination of linear B-splines,
is piecewise linear (and continuous) with knots ti. After integrating
g, twice and applying the interpolation conditions, we obtain f, which
is piecewise cubic (with knots ti) with two continuous derivatives.
Define B8 € R" via
0 i=1
5 i1 i=2,3,...,n-1

0 i=n

and AB = %ﬁl - Bi. On [ti’t ] £, is defined by a unique cubic

i+l

polynomial p, and hence f, can be determined by specifying the numbers
(3 .

p*i\J)(ti) for i=1,2,...,n~1 and j=0,1,2,3. Then

(2)
Pes (i) Py, () (t-t,)
£.(t) = *®i = i, i! i i

3
N p*i(z)(ti)(t-ti)2 + p%i(3)(ti)(t—ti) (1.14)

2! 31!

Of course, (1.14) can be more efficiently evaluated

for te [ti,ti+1].

by using nested multiplication.
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The polynomial Psg solves the differential equation
(2)ey
Py (€)= By + (88 /bt,)(e-t,) (1.15)

on the interval [ti’ti+l] with boundary conditions p*i(ti) =y and

P%i(ti+l) = Y41 Therefore
(t) ——Bil-(t—t )2 + A—Bj;(t—t )3 + c.(t-t.) + (1.16)
Priit) =T\t 6ht. i VTR TS :

where the constants s and e, are evaluated as e, =7y, and

. by; Bi+1+ABi A (1.17)
i _Ati 2 6 i

with By = Y50 ~ Vs From (1.17) we obtain

pey Ve =y

1)
we (L) =
Prs 1 © (1.18)

pey P(e,) = 88, /ne,

where c; is given by (1.17). A complete FORTRAN program for computing
the natural cubic spline interpolant is given in Appendix A.

Figure (1.3) displays the natural cubic spline interpolant that
is in contrast to the polynomial interpolant of figure (1.1).

We complete this chapter by posing (and solving) a generalization
of problem (1.1). For k fixed satisfying 2 g k =< n, let A(k) be the

be the set of interpolants (to the data) which are in Lgk)[a,b]. We
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Figure (1.3): The Natural Cubic Spline Interpolant.
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14

consider the problem

Find £, € ACK) such that [|£,.%) || s |£%0 ] for a11 £ € a0
(1.19)

Let f be an element of A(k). Since (1.3) is valid for f, we can
integrate by parts again (assuming k > 2) to obtain
t
(t-5)°
2!

£(t) = q, (£) + £3)(5)as (1.20)

()

where

(2)
a,(0) = £(a) + £ (@) (e-a) + £L8) (ca)?,

In general, after integrating by parts k-1 times we obtain

b
k-1
- (=)™ (k)
£(t) = q _;(t) + 1) £ 7 (s)ds (1.21)
a
or
b
(=)t 0
£(t) = q () + D71 § (s)ds. (1.22)
a
Now we take the (scaled) k-th divided difference of (1.22) to
obtain
b
di,k = J g(s)Ni,k(s)ds i=1,2,...,n-1 (1.23)
a
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where

3 — ' — L]
di,k (k l)'(ti+k ti)[ti’.”’ti_*_k]f( ), (1.24)
N, (s) = (t,,,-t)[t £, 1C-s) (1.25)
ik itk 171,400, itk + :
(the normalized B-spline of order k), and g = f(z).

Let B(k) denote the set of elements (in Lz[a,b]) wich satisfy
(1.23). Then the solution f, to (1.20) is related to the solution

to the problem

Find g, € B(k) such that|‘gy(k)} s 11X ). for a11 g eB(k) (1.26)
3% X 2 2

via g, = f%(k). Furthermore, for some & € R*™® ve have
K
8. = ZaN.. .
5=1 3 J.k
The coefficients al,az,...,an_k are chosen to solve the linear system

of n-k equations in n-k unknowns represented by the matrix equation

A o = d where A is symmetric and positive definite with entries

—_ 3
A= O LN .

Since g, is a linear combination of piecewise polynomials of order
k, f, will be a piecewise polynomial of order 2k. We call f, the

natural spline interpolant of order 2k.
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2. A Minimal Norm Interpolation Problem

in the Lp [a,b] Spaces

For p such that 1 < p £ « we define the set

b b
G(p): = ig e L [a,b]: Jg(tmi(t)dt - [go<t>¢i<t>dt

a a
for i=l,2,...ﬂ{§ (2.1)

where {¢i}2=1 is a set of elements in Lq[a,b], q is conjugate to p
(p+q = pq if p#® and q=1 if p=), and g is a fixed element of

Lp[a,b]. Consider the problem
Find g, € G(p) such that Hg%llp sle ”p for all g € G(p). (2.2)

In chapter 1 we solved (2.2) for the special case p=2; finding
from a linear variety in a Hilbert space the element of minimal norm.
The Projection Theorem came in handy to characterize g, as well as to
guarantee uniqueness. However, for p =2 Lp[a,b] does not have the
orthogonality properties of a Hilbert space and hence, we cannot use
the Projection Theorem to solve (2.2). Instead we solve (2.2) in this

chapter by utilizing the Hahn-Banach theorem to characterize g,

Uniqueness follows in the case 1 < p < ® by the strict convexity of the
norm. This chapter, modeled after [deB(2)], motivates the use of the
Hahn-Banach theorem in chapter 5.

Let A be the linear functional defined on the subspace

S: = span(d;,...,0)

16
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via

b
n n
a
Any element of G(p) (including go) will serve as an extension of A to

a bounded linear functional defined on all of Lq[a,b]. Hence,
IAllg = liglly for a1l geG(p). (2.4)

Conversely, any extension of A to a bounded linear functional defined
on all of Lq[a,b], being identical to A on S, is representedvby an
element of G(p).

The Hahn-Banach theorem guarantees the existence of an element

§€G@)amhtMt
b

[ foawae = 111 -
a

| £ ||q for all fan[a,b].

This implies that ||g]| = HA”S which, taken along with (2.4), gives us

Hell =1 A!L and, therefore, a solution to (2.2). Now we characterize

aQ?

n .
Let Z a.¢i be an element such that
i=1l

b3

.

n n
12 a0, [l =1 and A(iilaicbi) = [IAlL-

i=1

(This element is unique if 1 < p < o since the norm is strictly

convex.) Then
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130, = 1l

n
ACE ag0,)

b n
[ (% ;) (03(0)ae
a

n
JREXAT R

- I3l .

Therefore, equality holds throughout and we have

b n n
Zod ) (e)g(t)de =] Tad. ] Mgl
( L o0 (DR(0) lli=l 03l g Mgl
a
. n
Since g and Z ai¢i are aligned, we must have
i=1

~ n -1 n
8e) = UMl + Il 2 o6 7 signum ( 2 o;0)(0).

i=1

We close this chapter by stating the interpolation problem that
goes along with solving (2.2). Let p be a number such that 1 < p < o ,
let k be an integer such that k 2 2, and let fO € Lp(k)[a,b]. Define

the sets

F: = {fe Lp(k)[a,b]: f(ti) = fo(ti) i=1,2,...,n}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and

b
G: = {g¢ Lp[a,b]: [ g(t)Ni,k(t)dt = di,k i=1,2,...,n-k}
a

Then the problems
Find f, € F such that || &) I, s | £ |, for al1 £ e F

and

Find f, € G such that “g*lfp §]|gl!p for all g € G

are equivalent and

n-k g-1 n-k
ZRB.N

g.(t) = f*(k)(t) = ;N kl signum ( T B.N. k)(t).
i=1 © 77 i=1 t b

1
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3. The Convex Spline Interpolant

n . .
The data {(ti,yi)}i=1 are called convex if the point (tiz,yiz)

lies on or beneath the line joining the points (ti Y5 ) and
1 1

(ti 25 ) whenever 1 £ il < 12 < i3 £ n. Equivalently,

[t. ,t. ,t. )E(s) =0
1 t2 13

(where f is any interpolant to the data) or

g oJdix2 " Yin Yind T Vi

1o b0~ B4 Y

for i =1,2,...,m(= n-2).

In this chapter we address the problem of finding, for convex
data, the smoothest convex interpolant; that is, the convex interpolant
having second derivative of minimal norm over all smooth convex inter-
polants. The natural cubic spline interpolant, the smoothest of all
interpolants, regrettably does not always preserve the convexity of
the data. In chapter 1 we showed that f,, the natural cubic spline
interpolant, has second derivative

m

£, - 5 an.
P

where the coefficients s Ogyeeesl satisfy (1.13). If any ay is
negative, then f, is actually concave on a subset of [a,b].
Let {(ti,yi)}g_1 denote convex data and let A denote the set

of convex.interpolants in LZ(Z)[a,b]. We assume that A is nonempty.

20
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(There are convex data for which A is empty. For example, let
y; = ltil and t1 = -2, t2 = -1, t3 = 0, t4 = 1, and t5 = 2. The only
convex interpolant is f(x) = |x|, which is not in Lz(z)[—2,2].)

Using the Peano kernel theorem as we did in chapter 1 we can show
that if f e A then T(f(z)) = d where T:Lz[a,b]--*Rm is given by

CTgi):= (g,Ni). Hence if

B = {geLz[a,b]: g 20and Tg =d},

then problems

IA

Find f, € A such that ]]f*(z) ||2 ||f(2) I, for all feA (3.1)

and

llg ”2 for all geB (3.2)

e

IA

Find g,€B such that Hg*llz
are equivalent and the solutions are related via g, . Since B

is a nonempty closed convex set, we consider (3.2) as finding the

distance from a point to a closed convex set in a Hilbert space.

Proposition ([L, page 69]): Let x be an element of a Hilbert space H

and let X be a nonempty closed convex subset of H. Then there exists

a unique element lcos K such that

[|x - kOH s |]x - k|| for all kek

Furthermore, ko is characterized by

(x -k ,k -k ) =20 for all keKk.
o o —_—

Since we wish to find the element of minimal norm in B, X corre-

sponds to the zero function and hence g, is characterized by

(g,,8-8x) 2 0 for all geB. (3.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

Propostion ([MSSW, proposition 2.1]): If there exist coefficients

al,az,...,am satisfying

b
n
(2 aN)N.(t)dt = d.  i=1,2,...,m, (3.4)
=1 i+ i i .
a
m
then g, = ( Z aij)+. Furthermore, such coefficients exist if there

=1 m
exists ge B such that {Ni}i_l are linearly independent over the support

of g.

m
Proof: Assume al,a

PYRRETIN satisfy (3.4). Denote s = a N, and

j=1
assume g€ B. Define (h) = (—h)+ so that

h= (h), ~ (h)_.
Then
((s),, 8~(s),)
= (s + ()_s g - (9),)

= (5,8 = (8),) + ((8)_,g = (5),)

((s)_s8) = ()5 (D))

((s)_,8)

v

0.
The last inequality is valid since both (s)_ and g are nonnegative
functions. Hence (s)+ satisfies (3.3).

We now show that we can find coefficients al;uz,...,am so that

(3.4) holds by foliowing the procedure employed in [MSSW].
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We begin by considering the problem

i
=t

b
m
. 2 )
inf Ig}i%ij) +(t)dt : Zocidi . (3.5)

and showing that if the infimum is attained at some ¢, then for some

positive constant € the coefficients C(xl, COLZ,..., Cam satisfy (3.4).

V3

If the infimum of (3.5) is attained at Q‘L\, then ¢ is a critical

3

point of the Largrangian

b
m m
La,A) = Z o N, t)dt + M(1- Z «.d.). 3.6
@0 [(__1JJ>+(> (- Loy (3.6)
J= J=
a
At a minimum of L we must have
b
m
0= ZJ (jilaij)+Ni(t)dt - )\di i=1,2,...,m (3.7)
a

and ¢ * d = 1 for some A.

Now multiply (3.7) by oy and sum over i=1,2,...,m to obtain

bm -
21(Z aN) (2

j=lJJ+i=
a

m
a.N.)(t)dt - AZ a.d, =0
11 . N

1 i=1
or

b

m
A=2| (ZaN)X(r)de 2 0. (3.8)
jo1 33
a

If A>0, then (3.7) reveals that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

b
m

(<
j=
a

10Lij)+Ni(t)dt = di i=1,2,...,m (3.9)

x*
where 03. = 20£j/>\. If A = 0, then (3.8) reveals that

b

m
ZaN. t)dt = 0
<j=1 RPRO
a

m
where ¢ * d = 1. This implies that ( Z ajNJ.) £ 0. However, for any
j=1

g € B we have

b o
( ZaN)g(t)dt = Z a.(N,.,g
a
m
= 2 ad.
j=1 33
=1

which is impossible because g is nonnegative on [a,b]. We conclude
that A is strictly positive and, if the infimum in (3.5) is attained
by some &, that (3.4) is solvable. We now show that the infimum is
attained.

Let {Q(k)};;l be a minimizing sequence. If {”g(k)”}:;l is
unbounded, then divide the objective function of (3.6) by [l ”020 and

the constraint by “g ”w . There then exists @ such that
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lall, =1,

o *d=20, and

D m 2
( Z o ND(t)dt = 0.
j=1 3 3

a

m
We conclude that £ «_N. is nonpositive, but not identically
j=1

zero. Since we have assumed there exists éx:B such that the

B-splines are linearly independent on the support of é,

m m
0= Zod.= Za.(gN.
2397 0 58Ny
m
= (g, £ a.N.)
o1 33
<0

which is a contradiction. Hence a minimizing sequence must be bounded
and the infimum is attained via a convergent subsequence. This
completes the proof of the proposition.
We note that the existence of @E:B, such that {N.}m are linearly
i=1

independent over the support of é, in the previous proposition is

guaranteed if di > 0 for each i, Then each g €B must be positive on
some subinterval of [ti’ti+2]’ the support of Ni’ for each i.

Now we consider the implication of allowing dk = 0 for some k.
As a specific example let ti = (i-1) for i=1,2,3,4 and let d = (l,O)T.
If g, is the positive part of a linear combination of B-splines, then

there must exist numbers oy and o, satisfying
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o 1 if i=1
(alNl+a2N2)+Ni(t)dt= 0 it i (3.10)
0

which implies that Q) == @. This is equivalent to the solution

being identically zero on [1,3]. In fact, any g€ B must be of the
formg = g X[0,11" It is shown in [MSSW, theorem 3.1] that the

solution to (3.2) is

m
. ={( Za.N.
for appropriate coefficients al,az,...,am where
m
I's = [a,b t.,t, :d.=01}.
[,V (tpe )t d, = 0)

j=1
Hence the solution to (3.2) with ti = (i-1) for i=1,2,3,4 and
d-= (1,0)T is

8x = WNX1g,17.

Unless otherwise stated we assume di> 0 for each i for the remainder
of this chapter.
l’a2"”’am

which satisfy (3.4), we give a procedure for integrating g,.

Before we consider how to compute the coefficients @

Detine Bi’ ABi, Ati, and Ayi as in chapter 1. We integrate g, on each
subinterval [ti’ti+l] separately, forming a piecewise polynomial, by

solving the differential equation

8.
(2) _ i
for t; St s tiq with boundary conditions p*(ti) =y and
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Two integrations gives us

At AB.
by (0 =gt B+ g (e g (3.12)
1 a1 A
and
(t) —Ji——<s + 08, (t-t.)) 2+ ) (3.13)
Py (L) = 6(ABi)2 1708 (0=t )) e, (e-ty) + ey .

for constants ¢ and e . We proceed by cases.

Case 1 occurs when both Bi and Bi+ are nonnegative. The nonnega-

1
tivity constraint is not active in this case and so (3.13) is equiva~
lent to (1.16), although with modified constants c; and e, - The values
P%i(j)(ti) for j = 0,1,2,3, are given by (1.18).

Case 2 occurs when Bi < 0 and Bi+1 > 0. In this case Py; Can be
defined by two polynomials: a linear polynomial 459 defined on
[ti,Ti] - where the nonnegativity constraint is active and hence the

second derivative is zero - and a cubic polynomial defined on

[Ti’ti+l] where

T =ty BiAti/ABi (3.14)

Applying the boundary condition p*i(ti) =y; we obtain e = ¥5-

Applying p*i(ti+l)'= Y541 We get an equation for gt

ot,)?
6(48,)

3 _
1410 F OBty Yy = V-

Solving for ¢; we have
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Ay, (B..q) At
R S (3.15)

ZMBi)

From (3.11), (3.12), and (3.13) we obtain

q49(t5) =y;
(1)(t ) = C
(2 _
(3)(t ) =0

(3.16)
455073 = e (T-t;) +y;

(l)

(T ) = i
(2)(T )y =0
(3) -

(T ) = ABi/Ati

where Ti and c; are given by (3.14) and (3.15) respectively.

> < i i
Case 3 occurs when Bi 0 and Bi+l 0. In this case Py 18

defined by a cubic polynomial q;q on [ti,Ti] and by a linear poly-
nomial q;, On [Ti’ti+1] with TS defined by (3.14). These polynomials

are determined by the values
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41080 =33
(1) 2
0;77(8) = ¢ + (B,)0t,/(288;)
2
qgl)(ti) = B; (3.17)
$D(r,) = s, /ne,

149(T3) = ¢ (T4-t;) + ey

qgé)(Ti) = %4
$Pz) = 0
qgg)(ri) =0

where <y and e; are given by

AY, (Bi)SAti
i 8y 2088,)° '

and
3 2
8;)7t,)
e, =y, - —m———

i i 2
6(ABi)

Case 4 occurs when Bi and Bi+1 are both nonpositive. In this

case we obtain a linear polynomial defined on [ti’ti+l] and determined by
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Py (E5) = y;
oD (x,) = ay /e,
(3.18)
pif)(ti) =0
péf)(ti) - 0.

Since gy is piecewise linear and continuous (with knots at the
ti's and Ti's), f, will be piecewise cubic with two continuous
derivatives (if di > 0 for each i). We call f, the convex cubic
spline interpolant.

Now we turn our attention to the task of numerically calculating

the coefficients Qpslnseeeslp which satisfy (3.4). We continue to

assume that di > 0 for each i. Define F:R™ R" by F = (Fl’FZ”"’Fm)T
where
b
m
Fi(g)= (ji:laij)"'Ni(t)dt i=1,2,...,m. (3.19)
a

We wish to solve F(x) = d.

One method is to use Jacobi iteration. An initial guess

(o) _ (o) (o) (0)4T (k)=
X = (x1 ) Xy seees X )" is chosen and a sequence {x }k=o
is generated by calculating Eﬁk+l), once Eﬁk) is known, by solving

(k) (k) _(k+1) (k) (k)y _
Fi(xl ERRPS SUETEA X 0 Xy ) = di
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for x§k+1) for each i. A modification, the Gauss-Seidel iteration,

involves calculating Eﬁk+1), once Eﬁk) is known, by solving
(k+1) (k+1) _(k+1) _(k) (k) _
Fi(x1 ERETE NN sXg qo e Xy % = di

for x§k+1) for i=1,2,...,m in succession. Both Jacobi and Gauss~
Siedel iterations converge globally as proved in [IMS]

Now we consider Newton's method to solve G(x) = F(x) - d = 6.

\

We pick a suitable initial guesslg(o) and form a sequence{.ﬁ(k’}z=o
by solving

@6) N ) - 09y o g () (3.20)
for_z(k+l) once Eﬁk) is known. Since VG = VF, we can express (3.20)
alternately as

@R Ny - Wy g - r)y, (3.21)
The entries of the Jabocian matrix F are
b
o 0
(VF)ijQE) = J (kzlaka)+NjNi(t)dt (3.22)

a

m
where ( I akaYi is the characteristic function for the support of
k=1

m
( 2 a.N,

),.- We see that VF is symmetric and tridiagonal at each a.
j_lJJ+ -

We now characterize those o for which (VF)(a) is positive definite.

Lemma (3.1): The Jacobian (Vf)(a) is positive definite if and .only if
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m
(2 aka)+ does not vanish identically on any of the subintervals
k=1

[ti’ti+2] for i=1,2,...,m.

Proof: For any x€ K™ we have

m m
2 x, I (VF). .(a)x.
i=1 T j=1 T3

1]

zT( VE) (a)x

b m o m
= (ZaN)(Z
kk7+" .

Ja k=1 j=1

m
xij)(iilxiNi)(t)dt

b m ° m 9
= CZ o N)(Z x.N.)(t)dt
k=1 k k’+ i=1 ii

‘a

v

0

If (jilaij)+ does not vanish identically on [ti,ti+2] for each i,

then equality holds if and only if x5 = 0 for each i. If there exists

m
some k such that ( X

J_laij)+ is identically zero on [tk’tk+2]’ then

equality does hold for the nonzero vector x defined by X; = 6ik

for each i. This completes the proof of the lemma.

From (3.20) we see that

]

m b m o
F.(2) Za.! (2 oN)N.N(t)dt
;@ J B %N

421 3 + 31

m
z
J_=locj(\7F)iJ.(§)
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so that FQZ) = (VF)(a) a. Newton's method - equation (3.22) - takes

the form

(k)y (k+1) _
@F)(x" x = d. (3.23)

(k+1)

is positive definite for each k and, hence, Newton's method — equation

Theorem (3.2): ;ﬁ_(VF)(E(k)) is positive definite, then (VF)(x

3.23) - is always well—-defined.

(k)

Proof: Having the known values X , we wish to determine the values

. (k+1)

5 satisfying

[ ( ;x.(k+l)N.)Ni(t)dt =d;, i=1,2,...,m (3.24)
s(k) J=1 )

(k) (k)
where S(k) is the support of ( Z xj Nj)+. Since (VF)(x'"7) is
31

positive definite, then S(k)L)[ti,ti+2] contains an interval for each i.

m
z x.(k+1)N

Since d, > 0, then (
i .
. J=1

j)+ is positive on some subinterval of

[ti,ti+2]. Hence, G7F)(§(k+1)) is positive definite. This completes

the proof of the Theorem.

(0)

Note that if x has all positive components (for example, if

m
xi(o) = 1 for each i, then S(0) = [a,b] and I Xj(l)N- is the second
j=1

derivative of the natural cubic spline interpolant.
Now we assume that dk = 0 for some k. In this case special care

must be exercised since {xk(J)T§=O may diverge to -«, preventing any

numerical convergence. We already know that d, = 0 implies that the

k
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data points (tk,yk), (tk+1’yk+l)’ and (tk+2’yk+2) are collinear and,

hence, any convex interpolant must be linear on [tk Equiva~

’tk+2]’

lently, the second derivative of any convex interpolant must be zero

on [tk Hence g, is of the form

’tk+2]'

m
L x.N. :
(j=1x3 P+ Xpaye

X[y }.

k] k+2’b]

Since the value of X is immaterial and the k~th equation is

automatically satisfied, the number of equations and unknowns each

reduce by one. For computational convencience (3.23) can still be used

with the following modifications: (VF)kk =1, (VF)k,k+l = 0, and
(VF)k,k—l = 0.

If dk = 0, then the solution is discontinuous at tk if X1 >0
and is discontinuous at t if x > 0. If the solution is discon-

k+2 k+1

tinuous, then f, will have only one continuous derivative.

A further problem is encountered when d and dk+l are both

k-1

zero, but dk is nonzero for some k. Any nonnegative function g which
satisfies the (k-1)-st and (k+l)-st equations can not satisfy the k-th

equation since g is identically zero on [tk-l’tk+1] and on (tk+1’tk+2]‘
We conclude that there does not exist any convex interpolant in

L2(2)[a,b] (and no solution to the problem as posed). However, we can

find a convex interpolant whose second derivative is of the form
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m
(Zx.N)D

je1 33 + X[astk_l] X[

}
k+3’b]

satisfying all but the k-th equation. We already know that this convex

interpolant must be linear on [t ] and,

k-1 k1) 304 0n [y 0085

If d, is nonzero, then there

hence, piecewise linear on [tk—l’tk+3]' K

will be a discontinuity in slope at t For the convenience of

k+1°

utilizing (3.23) we can set dk to be zero to satisfy the k-th equation.

The discontinuity in slope will show up after we integrate the solution
to obtain the interpolant.
Figure (3.1) displays the natural cubic spline interpolant to the

function

1
£(t) = 505%0) (1.05-0)
at the knots tl = 0, t2 = 0.1, t3 = 0.4, t4 = 0.7, t5 = 0.8, and

tg = 1.0. Figure (3.2) displays the convex spline interpolant to this

function. Table (3.1) shows the convergence results for Jacobi, Gauss-
Seidel, and Newton's method iterations taken from [IMS]. Note the
quadratic convergence characteristic of Newton's method. These conver-

gence results are typical.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure (3.1): The Natural Cubic Spline Interpolant.

Figure (3.2): The Convex Cubic Spline Interpolant
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Iteration
Number

1

2

10

20
30

40
50
60

70

TABLE 3.1

17y - qf

Jacobi

.46 x 102

.28 x 10%

.75 x 107

.12 x 102

.26 x 10%

.49 x 100

.10 x 10

.21 x 10t

.43 x 100

.86 x 10°

11 x 107T
-3

.14 x 10

.18 x 107°

.24 x 10~/

.30 x 1077

.39 x 101

Gauss
Seidel
.27 x 102

11 x 102

.42 x 10

.18 x 10%

.75 x lOO

.31 x 10°

.13 x 10°

.55 x 10T

.23 x 1071

.96 x 10~
.16 x 107>
.26 x 1072

.58 x 10~

Newton
.19 x 10°

.85 x 60

.49 x 10
14 x 107
.11 x 107
.71 x 10

.49 x 10
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4. The Shape-Preserving Spline Interpolant

We addressed in chapter 3 the problem of finding, for convex data,
the smoothest convex interpolant. We begin this chapter by considering
the problem of finding, for concave data, the smoothest concave inter-
polant. Then we continue the chapter by examining the problem of
finding, for general data, the smoothest interpolant which is locally
convex where the data are locally convex and is locally concave where
the data are locally concave.

Let {(ti’yi)}g—l denote concave data and let A denote the set of

all concave interpolants in Lz(z)[a,b]. Assume A is nonempty. Using
the Peano kernel theorem as we did in chapter 1, we see that, if f € A,

then

b
[ f(z)(t)Ni(t)dt =dq,  i=1,2,...,m(=n-2)

a

Equivalently, we have T(f<25 = d.

Defining

B: = {g ¢ Lz[a,b] : g £0and Tg =

e
[S—;

we conclude that the problems
Find f, € A such that Hf*(z)ll 5 S Hf(z)H , for all £ e A (4.1)

(the problem of finding the smoothest concave interpolant) and

Find g, € B such that Hg*ll2 §l[g||2 for all g € B

38
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(2)

are equivalent and the solutions are related via g, = f,
Of course, the smoothest concave interpolant to the concave data
{(ti,yi)}2=l is the negative of the smoothest convex interpolant to

the convex data {(ti,—yiﬂ 2:1' We highlight this with the following

proposition.

Proposition [MSSW]: If there exist coefficients Qg 50550y ee el

satisfving
b m
J - (.Z aij)_Ni(t)dt = di i=1,2,...,m (4.3)
j=1
m
then g, = - ( 2 aij)_. Furthermore, such coefficients exist if there

j=1

exists g € B such thatv{Ni}?_1 are linearly independent over the

A
support of g.

We note that the existence of g € B, such that {Ni}?=1 are
linearly independent over the support of g, in the previous proposition
is guaranteed if di < 0 for each i. Then each g € B is negative on
some subinterval of [ti,ti+2], the support for Ni’ for each i.

Now we consider the problem of finding, for general data, a
smooth shape-preserving interpolant ~ a smooth interpolant which is
locally convex where the data are locally convex and is locally concave
where the data are locally concave. Assuming for the moment that di

is nonzero for each i, we define the sets
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3
I

= {[ti’ti+2] : di >0},

3
[

2 ¢ = {[ti’ti+2] : di > O} ’

ko)
1l

¢ Tl/TZ’

2, : = T,/Ty,

and Q

[a,b]/(Qlqu).
Now we define the sets

A: = {f e Lz(z)[a,b] : f(z)xQl >0, f(z)XZQZ <o,

and f(ti) =y; i=1,2,...,n}

(which we assume is nonempty) and

B: = {g¢ L2[a,b] : ng1 z0, g’)(a,2 =0, and Tg=4d} .

We conclude that the problems

A

Find £, €A such that ||£,(2)| L= £2) | , for all feA  (4.4)

and

Find g, € B such that”g*H2 §||g|l2 for all ge B (4.5)
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are equivalent and g, = f%(z)

The following proposition gives the solution to (4.5). We see
that f*)(Q has the character of the convex spline interpolant, f*XQ
1 2

has the character of the concave spline interpolant, and f*xQ has the

3

character of the natural spline interpolant.

Proposition [MSSW]: If there exists coefficents Qs eenslp

satisfying
b
m m
CZalN), xo -~ (ZalN) X
=1 T e TG
a
m
+ (2 oN. N.(t)dt = d, i=1,2,...,
(J=l i J)XQS} l() i 1 m
(4.6)
then
m m m
8. =(ZaN)xs ~(ZalN) x, + (ZalNIx, -
ge1 33 T Ty N0 Ty

Furthermore, such coefficients exist if there exists § € B such that

{N} T are linearly independent over the support of g.

i i=1

We note that the existence of g € B, such that {N}?—l are
linearly independent over the support of §, in the previous proposition

is guaranteed if di is nonzero for each i. Then each ge B is nonzero on
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some subinterval of [ti’ti+2]’ the support of Ni’ for each i.

We now solve (4.6). Define F : R™ > R™ where F = (F,,F),...,F )T
is given
F.(x) = J ( Z x.N. ) N. (t)dt
i 1 i
?) J=
1
=[ (ZxN)N(t)dt
j=1 7
2
+ ( Z x.N. )N (t)dt i=1,2,...,m (4.7)
=1 JJ
0 J=
We use Newton's method to solve F(a) = d. Picking a suitable
initial guess zﬁo) we produce a sequence {EFO)’ Eﬁl),...,} by solving
IO ICI R L Sy R TN (4.8)
for 5‘k+1) onceli(k) is known. The Jacobian matrix has entries given
by
b
(VF), (@) =] PN ()N, (£)dt (4.9)
a
where
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m
P(@) = ( I

m
0. lo] .
; aij)+X'Ql + (jilcthj)_XQ + Xg - (4.10)

1 2 3

From (4.9) we see that VF is symmetric and tridiagonal at eachg.

We also note that

m m
P(x)( Z x.N.) = (Zx.N.)X
j=1 33 j=1 33

m
-(z

x.N.) x
j 1 JJ- 92

m
N.
+ (_ XJ J)XQ

j=1 3

so that F(x) = (VF)(x)x and, hence, (4.8) reduces to

wh) (D g, (4.11)

The following lemma (with proof similar to its counterpart in

chapter 3) characterizes those o for which (VF)(a) is positive definite.

Lemma(4.1): The Jacobian (VF)(a) is positive definite if and only if

P(a) does not vanish identically on any of the subintervals

[ti’ti+2] for i=1,2,...,m.
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The following theorem is modeled after theorem (3.2).

Theorem (4.2): lﬁ_(VF)(i(O)) is positive definite, then Newton's

method — equation (4.10) - is always well-defined.

(0) )

Note that if x is given by X; = signum (di) for each i,

then P(EFO)) is the characteristic function for the interval [a,b] and

m
z x.(l)N. is the second derivative of the natural cubic spline
j=1
interpolant.
If dk = 0 for some k, then we already know that any shape-preser-

ving interpolant must be linear on [t,,t, , ,]. In fact any g € B must
& k’ “k+2

satisfy

g=glyx + X }.
le,t, 1 ¥ X[ty ,,,b]
The solution in this case is of the form
gx = h {x + X }
[a,e] * Xty , 0]
where
m m m
h=(ZaN)X, ~(ZaND)X, +(Za.N.)X .
j=1J J+Ql j=133—92 j=1J J Q3
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Since the value of @, is immaterial - the k-th equation Fin) = dk of

(4.11) being automatically satisfied ~ the number of equations and
unknowns reduce by one each. For computational convenience we can

still use (4.10) by setting (VF)kk =1, (VF) = 0, and (VF)k k—l=0'

k,k+1

Once we solve F(a) = d we proceed to integrate g, which is

piecewise linear (but not necessarily continuous, even if d, is non-

k

zero for each k) to obtain fy which is piecewise cubic. On the

interval [ti’ti+l] f, is given by the solution to the differential
equation
p.(B(t) = B + @8 /bt )(t-t,) (4.12)
i i i i i -
for tystst if [ti,ti+l]CIQ3,
) @y = @, + (88,708t )(t=t.))
i i i85 i’/ (4.13)
for ty ststyy if [ti’ti+l]<: Ql, or
2ty = (8, +@8,/at,)(t-t,)) (4.14)
Py i i/5% i’/-
for t; Stst if [ti’ti+l] C:Qz with boundary conditions

Pi(t;) =y; and p(ty 1) =y;,,-
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The function 12 is either a cubic polynomial or piecewise cubic
given by two polynomials 41 and 9 5 defined on separate subintervals

of [ti’ti+ The:solution p; to (4.11) is given by (1.18). The

l]'
solution to (4.12) is, depending on signum (Bi) and signum (Bi+l),
given by (1.18), (3.16), (3.17), and (3.18). The solution to (4.13)

is determined by (1.18) if §i§ 0 and Bi+l £ 0, by (3.16) if Bi >0
and Bi+l < 0, by (3.17) if Bi < 0 and Bi+1 > 0, and by (3.18) if
Bi 2 0 and Bi+1 z 0.

Figures (4.1), (4.3), (4.5) and (4.7) display the natural .cubic
spline interpolants to the given data. Figures (4.2), (4.4), (4.6),
and (4.8) display the corresponding shape-preserving interpolants.
Tables (4.1), (4.2), (4.3), and (4.4) give convergence results for
Newton's method. Note the quadratic convergence characteristic of
Newton's method.

Appendix B lists a FORTRAN program for computing the shape-preser-—

ving cubic spline interpolant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure (4.1): The Natural Cubic Spline Interpolant.

3
X-A1S

Figure (4.2): The Shape-Preserving Cubic Spline Interpolant.
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Figure:(4.3): The Natural Cubic Spline Interpolant.

Figure (4.4): The Shape-Preserving Cubic Spline Interpolant.
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Figure (4.5): The Natural Cubic Spline Interpolant.

Figure (4.6): The Shape-Preserving Cubic Spline Ianterpolant.
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Figure (4.7): The Natural Cubic Spline Interpolant.

Figure (4.8): The Shape-Preserving Cubic Spline Interpolant.
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Iteration Number

Table 4.1

51

IFG™) - all,

0.13 x 10!
0.67 x 10°
0.25 x 10°
0.42 x 107+
0.12 x 1072
0.88 x 1070
0.58 x 10712
0.64 x 103
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Table 4.2
Iteration Number ||F(_>g(n)) -4 ”2
1 0.12 x 10%
2 0.56 x 10°
3 0121 x 10°
4 0.36 x 107+
5 0.11 x 1072
6 0.85 x 107°
7 0.54 x 10712
8 0.70 x 10713

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52



Table 4.3

Iteration Number ”F(lc_(n)) -

all,
1
1 0.24 x 10
1
2 0.16 x 10
3 0.12 x 107
4 0.90 x 10°
5 0.53 x 10°
6 0.20 x 10°
-1
7 0.26 x 10
8 0.42 x 1073
9 0.97 x 10~/
10 0.37 x 10712
11 0.21 x 10712
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Table 4.4

Iteration Number ”F(}_(n) -d ”2
1 0.29 x 10°
2 0.13 x 10
3 0.50 x 10°
4 0.11 x 10°
5 0.56 x 1072
6 0.16 x 107*
7 0.13 x 1077
8 0.26 x 1072
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5. Constrained Minimization in a Dual Space

Let C be a convex cone in a normed dual space X with predual Y.

Assume Y1sYgs+e+»y, are elements of Y and define T: X-+R" by

Tx = (X(Yl) ,X(Yz) PR ,X(Yn))T

Let B: = {x € C : Tx = d} for a given vector d. Consider the

problem

Find x, € B such that ||x.|| s |[x|] for all x ¢ B (5.1)

of which (1.10), (3.2), and (4.5) are special cases. In this chapter
we study existence and characterization of solutions to (5.1). The

following lemma gives sufficient conditions for existence of a solution.

Lemma(5.1): If B is nonempty, if C is weak closed, and if Y is

separable, then there exists a solution to problem (5.1).

Proof: Let y: =inf {|{x| : xe Cand Tx =d }. Let {xn} be a

sequence in C such that

Tx =d (5.2)
and
flx Il =v+1/n (5.3)
55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

for each n. Since Y is 'separable, by Alaoglu's theorem there exists
a weak¥ convergent subsequence of {xn} with weak® limit x. Since C
is weak* closed we have x€C, from (5.2) we have Tx = d, and from
(5.3) we have ||x]] =y (and hence [[x]| = Y). This completes the
proof of the lemma.

Throughout this chapter we assume that B is nonempty, C is weak®
closed, and Y is separable. Since x, =0 if d = 6, we assume also
that d # 8 . The following proposition gives us sufficient conditions

for C being weak¥* closed.

Proposition (5.2): If C is normed closed and if Y is a reflexive

space, then C is weak® closed.

Proof: Assume {xn} is a sequence in C with weak® limit x. We want

to show that x is in C. We do this by contradiction. If x is not an
element of C, then there exists an element y (an element of both the
dual and predual of X) which serves to separate x from C in the sense

that

x (y)> K

for each n and

x(y) <K
for some constant K. This implies that

lim x (y) = x(y)

n-—>
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which is a contradiction. Therefore x € C and C is weak* closed.
This completes the proof of the proposition.

For v > 0 we define the convex set G(y) C R by
G(y): ={Tx : x e Cand||x || =v}.

We now show that G(y) = YG(1) and G(y) is closed.

Proposition (5.3): For each +y > 0 we have G(y) = YG(1).

Proof: By definition

G(y) {Tx : x € Cand [|x}] = v}

= {Tx : % € C and ||x/v]| =1}

{T(x/y) - % € C and ||x/v|] = 1}

Y{Tw : we Cand |[w]] =1}

YG(1).

Proposition (5.4): The set G(1) is closed.

Proof: Assume {En} is a sequence in G(1) which converges to z. We
want to show that z is an element of G(1). Equivalently, we want to

show that x € C exists such that [[x]| £ 1 and Tx = z.
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For each n there exists x_ € C such that ,Ix ” <land Tx_ = z-.
n n n
By Alaoglu's theorem there exists a subsequence ofllxnll which
converges weak* to some x € C. Hence llxllé 1 and Tx = z. This

completes the proof of the proposition.

We define

3%

Y :=dinfly: d €G(y)} . (5.4)

Equivalently,

i

Y = inf{y : There exists x € C such that
Tx = d and lell < v}
=inf{|lx]| : x€C and Tx = db . (5.5)

By lemma (5.1) we know that there exists %, € C such that
[| x4 || = Y and Tx, = d. We call x, an interpolant of minimal norm.
We now attempt to characterize x, via the Hahn-Banach theorem.

We begin by defining a functional p : YR by

o(y) =sup{x(y) : xeCand ||x]] =1}.

Notice that if C = X (the unconstrained problem), then p is the norm
on Y. In general, since we are taking the supremum over a subset of
the closed unit ball U in X, we have p(y) =||y|l for all y e Y.

Since © is an element of C, we have p2 0. In convex analysis p is

fIA

called the support functional of the convex set {x £ C : ||x]|| = 1}.
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£

Since C is weak® closed, the supremum is attained at some element of
{xe C: |lx]| = 1}; that .is, for any y € Y there exists an x (a
function of y) such that x € C, [|x ]| 1, and p(y) = x(y). In fact
we have ||x|| = 1 unless x = §. The following two propositions reveal

that p is continuous, subadditive, and positive homogeneous.

Lemma(5.5): The functional p is continuous.

Proof: Assume y, and y, are elements of Y and define y =y, - y,.
—_— 1 2 1 2

Let x be the element in {x € C : |[x|| = 1} such that p(yz) = x(yz).

Since [x(y)| = ||y ||, we have
x(yy) = Nyl s x(yy) + x(y)
or
x(yy) = ly | sx(yp).
Therefore,
0 (yy) = llyll=se (yp)-

The elements Yy and ¥, can be interchanged to obtain

Py = llyll s ey
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and hence

lp(yl) - D(Y2)| g ”yl - y2” .

Lemma (5.6): The functional p is subadditive and positive homoceneous

(hence convex).

Proof: Assume Y1 and y, are in Y. To show that p is subadditive we

must show that

O

(y) +v9) Solyy) + o(yz)-

By definition

]

0(y;+yy) = sup {x(y;+y,) : x € Cand [x|| = 1}

IA

1}

A

sup {x(yl) : x € Cand [x]

A

+ sup {x(yz) : x € cand [x] 1}

= p(y) + o(y,).

Now assume o > 0 and y € Y. To show that p is positive homoge--
neous we must show that

play) = op(y).
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By definition

A

sup {x(ay) : x € C and ||x || 1}

p(ay)

IA

a*sup {x(y) : x € C and ||x]| 1}

It

ap(y).
This completes the proof of the lemma.

As an example we compute P for the case C =1{x ¢ Lp[a,b]: x 2 0}
where 1 < p < o, For an arbitrary element g in Lq[a,b], the predual
<

of Lp[a,b] where p + q = pgq, we have for any f € C with “fllp £ 1 by

the Minkowski inequality

b b
f(t)g(t)dt = f(t)g+(t)dt
a a
el e,
s llg, It -
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Assuming g, z 0, let

EC ] [T 18

Then we have f € C, ]]f[]p = 1, and

b
J £(t)g(t)de = llg Il .
a

Hence

b
o(g) = sup{[ f(t)g(t)dt : £ € C and ||£]] , 51

a

= g, Il

I
o

If g, = 0, then p(g)

Lemma(5.7): For all o € R® we have

1A

x D
z ozidi Y o(Z aiyi). (5.6)
i=1 i=1

Proof: Since Yw = inf{y: d €G(Y)}, we have d € G(Y + &) for any

€ > 0. Hence for every positive integer n there exists x € C
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such that Tx = d and lfxm I| = vy  + 1/m. Therefore, for any o € R"
n n
Zo;d; = Zoa;x(y;)
i=1 i=1
n
= xm(.z 0Liyi)
i=1

n
s me ” p( Z aiyi)
i=1
* n
(v +1/mef 2 a.y.).
i=1

Now let m—+% to obtain (5.6). This completes the proof of the lemma.

Since we know that G(Y¥*) is closed from proposition (5.4), we
could have used x, in place of X in the proof of lemma (5.7). The
next lemma states that there exists a nonzero vector B € R" such that

equality holds in (5.6).

Proposition (5.8): There exists a vector B € R" such that I8l =1
and
%« I
B-d=y (IBy,). (5.7)
i=1

Proof: The vector d is an element of G(YT), but not an element of

G(yﬁ~e) for any € > 0. Hence the closed convex set G(Yw ~ €) and the
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vector d can be strictly separated by a hyperplane. This implies

the existence of a nonzero vector B(g) such that

B(e) ~y<Ble) »d

for all y € G(YW -~ €) and without loss of generality we may assume

that ||B(e)|| = 1. Equivalently, we have
B(e) = Tx < B(e) = d

and by the linearity of T

n
*(I8;(Ey) <8 - 4

for all x € C such that |/x|| = Y* - €. Hence we obtain

n

(Y - €0 T8, (e)y,) < B(e) * d

i=1

We can take the limit as € > 0 to obtain a vector B such that ||8] = 1

and

- n
“o( S B e
Y O(i_lBiyi) B - d.
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We have the reverse inequality from lemma (5.7) and therefore

s N
B d=y p(ii B¥;)-

This completes the proof of the lemma.

Let X be a linear functional defined on the subspace

S: = Span(yla}'Z’ .o -syn)

by

n
A(iilaiyi) ) iilaidi

so that (5.6) can now be written

*
Ay) v o(y) for all y e S.

The Hahn-Banach theorem states that there exists an element w

in X such that

w(y) = Ay) for all y € S (5.8)

and

w(y) s v o(y) for all y e Y. (5.9)
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Theorem (5.9): The Hahn-Banach extension w is an interpolant of

minimal norm.

Proof: From (5.8) we see that Tw = d so that w interpolates the data.

*

To complete the proof we show that w € C and ||w|] = v .
We show that w is in C by contradiction. Assume w is not an

element of C. Since C is weak¥ closed, there exists an element Yo

in Y which strictly separates w from C in the sense that
w(yo) > x(yo) for all x € C. (5.10)

Since C is a cone we have Ax € C whenever X > 0 and x € C. Hence

(5.10) implies
0z x(yo) for all x € C (5.11)

(or O(yo) = 0) and
w(y) > 0. (5.12)

However, from (5.9) and (5.12) we have
0 <w(y) syvply)=0

which is a contradiction. Hence w must be an element of C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67
Lastly, we show that |lw]| = Y“. We already know that

Y os |lwl] (5.13)

since w € B (w € C and Tw = d). Because p is bounded above by the

norm on Y, (5.9) yields

w(y) = Y* Ity Il for all ye Y

and hence

X3

b

(5.14)

(7
<

llw ]

>l

Taken together, (5.13) and (5.14) imply that |[w]|= Y. This completes

the proof of the theorem.

Recall that for a given element Yo in Y there exists an element

X (a function of yo) in C such that p(yo) = x(yo). Furthermore,
either ||xo|| =1 or X, is the zero element. The following lemma
will lead us to the conclusion that, if p is differentiable at Yoo

then p'(yo) = x_.

Lemma (5.10): Let f be a functional defined on a normed linear space

Z. 1If f is differentiable at X, € Z and if there exists a linear

functional A such that
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f(zo) + A(z—zo) 2 f(z) (5.15)

for all z in some neighborhood of z then A = (Vf)(zo).

Proof: Let z = z  + tu where t > 0 and u € Z. Inequality (5.15)

yields

f(zO + tu) - f(zo)

Alu) T

A

(5.16)

Since (5.16) holds for all t > 0 (and sufficiently small) and for all

u € Z, we have Aé(vf)(zo). Substituting -u for u in (5.16) yields

f(zO - tu) - f(zo)
t

Alu)

nw

(5.17)

for all t > 0 (and sufficiently small) and for all u € Z. Taken

together, (5.16) and (5.17) imply X = (Vf)(zo).

Corollary (5.11): If pis differentiable at Vo € Y, then p'(yo) =X, -

Proof: Since p(yo) = xo(yo) and xo(y) £ p(y) for all y € Y, we have

py) +x,(y -y )= o(y)
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for all y € Y. By the previous lemma we have p'(yo) =X This

completes the proof of the corollary.

Inequality (5.6) motivates the problem

n
infl p( Z oziyi) o d=1}. (5.18)
a i=1

Notice that if o is any vector satisfying @ * d = 1 and if » is any

element of B, then

n
= llxlleC 2 ayy,)

and hence

3 1
o Z T

This implies that the infimum is positive (and, in fact, is bounded
* - *
below by (y ) 1. If the infimum is attained.at some & € R" and if @
o s

is differentiable.at Za
i=1

y., then we are.led to a solution to (5.1) as

11
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the next theorem reveals.

X,

Theorem (5.12): If there exists gf € R" such that ¢ *d=1and

n n
o( X of."y.) =inf{p( 2 a.y.) o d =1}
jop 101 o jop 101
ooy
and if p is differentiable at £ @y, then
i=1

e n
w '
Y P (iilaiyi)

is an interpolant of minimal norm.

Proof: Problem (5.18) has Lagrangian

n n
L(e,N) = p(Z; a.y,) - A(iilmidi - 1). (5.19)

If there exists a solution g” to (5.18), then there exists A so

that (g{

ks

,)\w) is a stationary point of (5.19). Hence

x(y,) - A”di =0 i=1,2,...,n (5.20)
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1, and @ . d=1.

n
where x =p'( % aiyi), x e C, |[lxll
i=1

We first show that A > O. Multiply (5.20) by aj and

sum over i to obtain

3%

n* -X-ny.
(% a:¥:) = A I asds = A -
i=1 171 i-1 171

n
Since x = p'('zld&yi), we have
1:

so that
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J"L
Actually, we know that since the infimum is positive, we have A > O.

We can also show this by contradiction. If A= 0, then

x( Za.y.) £0 for all x € C. (5.21)
o1 11

Let s be any interpolant in C. (We know that there exists an inter-

polant in C since B is nonempty.) Then

which contradicts (5.21). Therefore, AT > 0.

Now we show that Awyw =1, From (5.20) we see that x/Kw is an

interpolant in C. Hence

v s Ikl AT ="

or

53
%

YA

A
-

(5.22)

Let w be an interpolant of minimal norm satisfying (5.9). Then
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n . « D oy
w(Zoay)syp(E @;y;)-
i=1 i=1

Equivalently, we have

n - % n
w < 5%
W(izlaiyi) <y X(iz‘ilot )

which leads to

1 sy A, (5.23)

This concludes the proof of the theorem.
We consider now the problem of determining when the infimum is
attained in (5.18). From proposition (5.8) we know that there exist

a nonzero vector B such that

n

0sB-d=vo(ZB
Brd=vo(Z8y).
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If B *d > 0, then the infimum is attained in (5.18) at gﬁ =B/(B - d).

Proposition (5.13): If d is in the relative interior of

S: ={r : r € G(Y) for some Y },

then there exists a vector B such that

% n
1=8<d=Y o(iElBiyi).

Proof: We prove by contradiction. Assume that every vector B which

satisfies
% n

also satisfies B * d = 0. Without loss of generality it can be

assumed that there exists a nonzero vector B such that

> n
0=8+d=Y o(iElBiyi)

and

B+ y2z0 forallye G(Yw).
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In any relative neighborhood of d there is a vector z such that
B *z <0. If z were an element of S, then there would be an
element r in G(Y ) such that z = 0r for some 0 > 0. However, we

would then have

=
)
I~
n
Q
[Lon}
L ]
3]
w
o

which is a contradiction. Therefore z is not an element of S and d
is not in the relative interior of S. This completes the proof of

the proposition.
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Appendix A

A Program for Constructing the Natural Cubic Spline Interpolant

to Given Data.
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00001 FPROGRAM UNCONCINFUT,OUTPUT, TAPES=INPUT, TAFES=0UTFUT)
00092C
00003C WE FORM THE NATURAL CURIC SPLINE INTERFOLANT.
00004C
00005 INTEGER HsH,7
00004 REAL T(T0),F(30),I{501,X{(30),A(30),FF(4,50)
00007 REAL AA(50) ,ER(50),CC(50)
00008C
00009C THE ARRAYS (T) ANI (F) - EACH OF SIZE M, THE NUMEER
00010C OF DIATA. POINTS - CONTAIN THE COMFONENTS OF THE IIATA.
00011C THE DATA FILE IS OF THE FOLLOWING FORM
00012C
00013C M
- 00014C TL),F(D)
00015C T2, FL(2)
000146C .
00017C .
9018¢€ .
00019C TH) ,F{M)
00020C ‘
00021C WHERE WE ASSUME (T) HAS STRICTLY INCREASING COMFONENTS.
00022C
00023 READI(3. %) M
00024 REALI{Z, ¥) (T(I),F{I), I=1,M)
00025 N= H-2
Q0024C
00027 THE ARRAY (It) CONSISTS OF THE SCALED
00028C SECOND DIVIDED' DIFFERENCES.
00029C
00030 08 100 I=1,N
00031 D(Id= ( FOIF)-FOI+L) /¢ T(IT2)-T{I+1) )
00032 C o= CFIHFD =R /70 TR -TLCID) D
00033 100  CONTINUE
0D034C
00035C
00034C THE SECONDX DERIVATIVE OF THE NATURAL CURIC SFLINE
00037C INTERFPOLANT IS A LINEAR COMERINATION OF LINEAR B-SFLINES.
00038C WE CALCULATE THE COEFFICIENTS.
00037C . .
000400
00041 AAc1)= 0.0
00042 BR{1)= (T(3)-T(1))/3.0
00043 CC{L)= (T(3)-T{2)) /6.0
00044 ng 200 I=2,N-1
00045 ()= (T(I+1)-T(I))/6.0
00044 BE(I)= {T{I+2)-T(I))/3.0
00047 CCCId)= (TL(I+2)-T(I+1))/6.0
00048 200  CONTINUE
00047 AAINY= (TINFLI-T(N))/6.0

00050 ERIN)= (TINE2I-T(N) /3.0
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00051
00052
P00353C
GO054C
000355C
00054
00057
00058
00039
00060 300
00061C
00062C
00063C
000464C
000635C
00064C
00067C
00068
00087
00070
00071
00072
00073
Q0074
00075
00075 400
00077
00078
00077
00089
00081C
00082C
00083C
00084
00085
000846 450
00087 =00
00088C
00087C
00020C
00091C
00092¢C
0D093C
00094C
000935
00096
00097
000 98C
00099
001900

CC{N)= 0.0
CaLL TRIL{AA,RE,CC,I,N)

A{1)= 0.0
A{H)= 0.0

0g 300 I=2,N+1
A(I)= I{I-1)
CONTINUE

NOW WE COMFUTE THE NUMBERS FPF(J,I) - THE VALUE
0OF THE (J-1)ST DERIVATIVE OF THE NATURAL CUEIC
SPLINE INTERFOLANT EVALUATED AT T(ID.

[0 400 K=1,N+1

IF= F{K+1)-F(K)

IT= TR+ ~TK)

IA= A(K+1)-A(K)

FF{4,K)= DA/DT

FFP{3,K)= ALK)

FR{Z2,K)= DF/OT - (ACKY/2. + DA/6.IXDT
PF{1,K)= F(K)

CONTINUE
FF{4,M)= 0.0
FF{3,M)= 0.0
FR2,MH)= 0.0
FF{1:M)= F(H

00 500 R=1,M

WRITE{H+450) KyT{K){FF{I,K), I=1,4)
FORMAT(OX,13,3F14.6)

CONT INUE

WE CREATE & DATA FILE FOR FLOTTING THE (JDER)-TH
LERIVATIVE OF THE NATURAL CURIC SPLINE INTERFOLANT
BY EVSLUATING IT AT (MM) EQUALLY SPACED FOINTS,
INCLUDING THE ENDFOINTS. WE ASSUME THAT (JOER)
HAS VALUE O, 1, 2, OR 3.

JIER= O
MM= 201
CaLL DATAFLT,FF.M.MH, JOER)

STOF
ENII
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00001
00002C
02003C
00004C
00005C
00006C
09¢07
00008
09009
00010
02011
00012
00013
00014
00015C
00014C
00017C
00018
00019
00020

00021 200

00022
00023
00024
00025C
00024C
00027
£0028C
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
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300

400

43590
00

SURROUTINE DATAFL{TX,PF.LI.HH,JIER)

WE CREATE A DATA FILE FOR FPLOTTING THE (JDER)-TH
DERIVATIVE OF THE PIECEWISE CURIC POLYNOMIAL. WE
ASSUME (JDER) HAS VaLUE O, 1, 2, OR 3.

INTEGER LI, MM.JDER

REAL TX(100),FF(4,100)

LEFT= 1

HMONE= MM - 1

WRITE{4,%) MH

XE= ( TX{LI>-TX(1)> )/FLOAT{MMONE)
L0 500 IF=1,HMM :

XT= TX{1) + XEXFLOAT(IP-1)

WE FINIY THE INTERVAL IN WHICH THE FOINT (XT) LIES.

IF ( LEFT .NE. LI ) THEHN
o0 200 IS=LEFT,LI-1
IF ¢ XT .LT. TX{IS+1) ) GG 70 300
CONTINUE
CONTINUE
ENL IF
LEFT= IS

WE NOW COMFUTE THE VALUE OF THE FOLYNOMIAL AT
THE FOINT (XT) RY USING MESTED MULTIFLICATION.

H= XT - TX{(LEFT)

FAC= 4.0 - FLOAT(JDER)

YT= 0.0

0 400 M=4,JIER+1,-1
YT= (YT/FAC)¥H + FRP(M,LEFT)
FaC= FAC - 1.0

CONTINUE

WRITE(4,450) XT,YT

FORMAT(F8.4,E18.9)

CONTINUE

RETURN

ENL

80
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00001 SUBRQUTINE TRID(SUR,DIAG,SUF,E,N)

00002 INTEGER NI

00003 REAL R{N),IIAG(N)Y,SUR{N),SUP(N)

00004 IF (N.LE.1) THEN

60005 B(1)= E{1)/DIAG(1)

00004 RETURN

00007 ENIY IF

00008 DO 111 I=2,N

00009 SUE(I)= SUR(I)/DIAG(I-1)

00010 DIAG(I)= DIAG(I) - SUR(IJXSUF(I-1)
00011 ' B(I)= B(I) - SURBCIIXR{I-1)

00012 111  CONTINUE

00013 E(N)= B(N)/DIAGIN)

00014 00 222 I=N-1,1,-1

Q0013 R(D)= (B(D)-SUF(IIXB(I+1))/DIAGKLT)
00016 222  CONTINUE

00017 RETURN

00018 ENI
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Appendix B

A Program for Constructing the Shape-Preserving Cubic

Spline Interpolant to Given Data
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00001

00002C
00003C
00004C
00005C
Q000&C
00007C
00008C
00009C
00010C
00011C
00012C
0001.3C
00014C
00015C
00014

00017

00012

Q09019

0D020C
00021C
00022C
00023C
00024C
00025C
00026C
00027C
00028C
00029C
00030C
00031C
00032C
00033C
00034C
00035C
0003460
00037

00038

Q0039

00040C
00041C
00042C
02043C
00044C
00045C
00044

00047

00048C
00049C
00050C

83

FROGRAM MAINCINFUT,OUTFUT, TAPES=INFUT, TAFES=CUTFUT)

WE COMFUTE A& SHAFE-FRESERVING INTERFOLANT
TO GIVEN DIATA.

NOTE ON THE SIZE OF THE ARRAYSS

THE ARRAYS (T), (F), AND (A) MUST BE OF LENGTH
AT LEAST M, THE NUMRER OF DIATA FPOINTS. THE
ARRAY (TX) AND THE SECONIT COMPONENT OF THE

ARRAY (FF) SHOULD* BE OF LENGTH 2M. THE ARRAYS
X2y (Y), AND (D) MUST BE OF LENGTH AT LEAST M-2.
THE ARRAY (ID) MUST BE OF LENGTH AT LEAST M-1.

REAL T{(S0),F(50),X(50),Y(50) :A(50)
REAL TX(100),FF(4,100),TL,TR,EPS
INTEGER M.N,ITMAX,1,J,IFLAG,MN
COMHON D{30),IN(S0)

THE ARRAYS (T) AND (F) - EACH OF SIZE M, THE NUMEER
OF DATA FOINTS - CONTAIN THE COMPONENTS OF THE DATA.
THE DATA FILE IS OF THE FOLLOWING FORM

i
TR
T(2),F(2)

+

T(H) SF (M)
WHERE WE ASSUME (T) HAS STRICTLY INCREASING COMPONENTS.

READ3, %) M
READ(Z,X) (TC(I),F(I), I=1,M)
N= M-2

(EFS) 15 A SMALL FOSITIVE NUMEER USED TO TEST FOR
CONVERGENCE IN NEWTON‘S METHOR - SUERROUTINE (ZERDD.
(ITMAX) IS THE MAXIMUM NUMEER OF ITERATIONS

WHICH WE PERMIT FOR NEWTONS METHOD TG CONVERGE,

EFS= 1.0E-8
ITHAX= 25

THE ARRAY (X) IS THE KNOT SEBUENCE (T) WITH ThE
ENDFOINTS TL AND TR DELETEL.
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00051C
000352 TL= T(1)
Q0053 TR= T{H#)
00054 0o 120 I=1,N
00055 X{ID)= T(I+D)
00056 120  CONTINUE
02057C
00058C THE ARRAY (I CONSISTS OF THE SCALELD
00059C SECOND IIVIDED DIFFERENCES.
00060C
00061C IT IS IMPORTANT THAT WE IDENTIFY DIVIDEL DIFFERENCES
00062C WHICH ARE ZERO. THIS MEANS THAT WE HUST COMFARE THWO
00063C FLOATING-FDINT NUMRERS. TO I0 THIS WE ASSUME D{(K) IS
00054C ZERO IF LK) IS SMALL.
00065C
00064 XKEPS= 1.0
00067 no 130 J=1,20
00048 XEFS= XEFS/10.
Q0067 Z= 1.0 + XEFS
02070 IF ¢ Z ,EQ. 1.0 ) GO TO 133
00071 YEFS= XEFS
00072 130 CONTINUE
Q0073 135 CONTINUE
00074 YEFS= YEFS%1000.
00075C
00074 0 140 K=1,N
00077 I{K)= { F(R+2)-F(K+1) )/¢ T(K+2)-T(K+1) )
00078 c = { F(R+D)~F(K) )/¢ TIK+1)-T(K) )
00079 IF ( ABS(IKK)) .LE. YEPS ) I{K)= 0.0
00080 140  CONTINUE
00081C :
00082C
00083C THE INITIAL GUESS (Y) FOR NEWTON’S METHOD
00084C WILL YIELD THE SECOND DERIVATIVE OF THE
00085C NATURAL SPLINE SOLUTION, EXCEFT PDSSIBLY
00086C WHEN I{K)= 0.0 FOR SOME K.
00087C
00083 0 145 K=1,N
00089C
000%90C
60091 IF ( D(K) .G6GT. 0.0 ) THEN
00092 Y{K)= 1.0
00093 ELSE
00094 Y{K)= -1.0
00095 ENDY IF
00096C
00097C
00098 145  CONTINUE
00097C
00100C
00101 WRITE{4,150)
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00102 150
00103
00104 1460
00105
00106 170
00107C
00108C
00109C
00110C
00111C
00112C -
00113C
00114C
00115C
00116C
00117C
00118C
00119C
00120C
00121C
00122C
00123
00124
00125
00124
00127 1890
- 00128
00129
00130
00131
00132
00133C
00134
00135
00136
00137
00138
00139C
00140C
00141C
00142C
00143C
00144
00145
00145 185
00147C
00148C
00149C
00150C
00151C
00152

85

FORMAT(/,* DATA VALUES /,/)
YRITE{5,160) (I(I), I=1,N)
FORMAT(3X,4E12.4)
WRITE(6,170)

FORMAT(//)

IN(K)= 1 INDICATES THAT THE INTERPOLATING FUNCTION
IS CONSTRAINED TO BE CONVEX ON ET(K),T¢(K+1)3

ANDy, HENCE, ITS SECOND' DERIVATIVE IS CONSTRAINED
TO EE NONNEGATIVE ON THIS INTERVAL.

IIK)= -1 INDICATES THAT THE INTERFOLATING FUNCTIODN
IS CONSTRAINELD TG BE CONCAVE ON CT(K),T(K+1)1

ANIl, HENCE, IT5 SECONDN DERIVATIVE IS CONSTRAINEI

TO BE NONPOSITIVE ON THIS INTERVAL.

IN(KY= 0 INDIICATES THAT THE INTERPOLATING FUNCTION
IS UNCONSTRAINEDN ON L[T(K),T(K+1)1.

D0 180 I=1,N-1
IN{I+1)=0
IF (I(I).GE.0.0 +ANI, I{(I+1).GE.0.0) II{I+1)= ]
IF (IKI).LE.0.0 +ANDI, D{I+1).LE.0.0) ID{I+1)= -1
CONTINUE
IF ¢ (1) .GE. 0.0 ) THEN
= 1
ELSE
Inc1)= -1
ENDN IF

IF ¢ IN) .GE. 0.0 ) THEN
INN+L)= 1

ELSE
IN(NTL)= -1

ENDN IF

IF A NONZERO DATA VALUE D(I) LIES RETWEEN TWO
ZERO DATA VALUES I(I-1) AND D{(I+1), THEN IKI)
IS TAKEN TO RE ZERO FOR COMFUTATIONAL PURFPOSES.

0 185 I=2,N-1
IF ( IM{I-1).EQ.0.0 .AND. I(I41).EG.0.0 ) I(I)= 0.0
CONTINUE

SUBROUTINE (ZERO) CALCULATES THE PIECEWISE
LINEAR SECOND DERIVATIVE OF THE SHAPE-
PRESERVING INTERFPOLANT.

CALL ZERO{Y,X, N, ITHAX,EPS,IFLAG,TL,TK)
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00153C
00154 ACL)= 0.0

00155 ALMI= 0.0

00156 00 190 I=2,N+1

00157 AL = Y(I-1)

00158 190  CONTINUE

00159C

00160 WRITE(6,200)

00161 200  FORMAT(/,’ PIECEWISE LINEAR 2NI' DERIVATIVE ‘,/)
00162 WRITE(6,210) (I,TC(I),A(I), I=1,H)

00163 210  FORMAT(SX,I5y¢ ( “4+F14.6s7 4 *yF14.6,7 )7
00164 WRITE (6,220)

00165 220  FORMAT(//)

00166C _

00167C SUBRDUTINE (FOLY) INTEGRATES THE RESULT
00168C FROM SUEROUTINE (ZERO).

00169C

00170 CALL POLY(A,TsFF,MyFyLI,TX)

00171C

00172 WRITE (&,230)

00173 230  FORHAT(/,’ KNOTS AND COEFFICIENTS OF PIECEWISE CURIC’,/)
00174 00 250 I=1,LI

00175 WRITE(6,240) 1,TX(I)4(FP(J,1), J=1,4)

00175 240  FORMAT(SX,13,3F14.6)
00177 250  CONTINUE

00178 WRITE(6,260) IFLAG

00179 260  FORMAT(/,’ ERROR COLE = ’,IS,/)

00130 WRITE(5,270) ITHMAX

00181 270 FORMAT(/,’ NUMBER OF ITERATIONS =/,15,)
00182C

00183C SUBROUTINE (DATAFL) IS USED TO CREATE A
00184C DATA FILE FOR FLOTTING. WE EVALUATE THE
00185C (JUER)-TH DERIVATIVE OF THE FIECEWISE CURIC
00184C FOLYNOMIAL AT HM EQUALLY SFACED POINTS,
00187C INCLUIIING THE ENDFOINTS TL ANDI' TR. WE
00183C ASSUME (JOER) HAS VALUE 0, 1, 2, OR 3.
00189C

00190 HH= 201

00191 JIER= 0

00192 CALL DATAFL(TX,FF,LI,MM,JOER)

00193C

00194 5T0P

00193 ENI
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00001 SUBROUTINE ZERQ{A,XyNyITHAXyEFS,IFLAG,TL,TR)

00002C

00003C

00004 INTEGER Ny ITMAX,K,JsLJsL,IFLAG

000035 REAL ACN) »X{(N),FX{50) AL, XL, AR XK, LT, 0A,T,U

00004 REAL SUR(S0),DIAG{S0),5UF(50),H(50),5UM1,SUM2

00007 REAL RATIO,GLEFT,GRIGH,EFS,FNORML,TL,TR

00008 COMMON D{50),IDI{50)

00009C

00010C INFUT PARAMETERS?S

00011C

00012C A+ INITIAL ESTIMATE FOR NEWTON‘S METHOL,

00013C

00014C X++oKNOT SEQUENCE WITH THE ENDPOINTS DELETED.
00015C

00014C N...THE SIZE OF THE ARRAY (A)! THE NUMRER OF UNKNOUWNS,
00017C

00018C ITHAX, . . MAXIMUM NUMBER OF ITERATIONS FOR NEWTON’S METHOL.
20017C

00020C EFS...FARAMETER USED' TO TEST FOR CONVERGENCE.
20021C

00022C TLy TR+« LEFT- ANIN RIGHT-ENIPOINTS OF THE

00023C INTERVAL RESPECTIVELY.

00024C

00025C QUTPUT PARAMETERS?

00025C

00027 f...THE CALCULATED' ZERDO IF CONVERGENCE QOCCURREL.
00023C

00029C ITMAX. . .NUMBER OF ITERATIONS REQUIRED FOR NEWTON’S
00030C METHOD' TO CONVERGE.

090031C

00032C IFLAG...IFLAG= 1% CONVERGENCE INIDICATEI BY COMFARING
00033C THE L1 NORMS OF THE ITERATES

00034C IFLAG= 2! NUMBER OF ITERATIONS EXCEELED ITMAX.
Q0035C

0003 FRINT 100

00037 100  FORMAT(’ ITERATION NUMBER AND' RESIDUALS’ ./

00428 C Y QUADRATIC CONVERGENCE IS EXFECTELD.,./)
00039 o 350 LJ=1,ITHAX

00040C

00041C THE ARRAYS (SUR), (DIAG), ANI' (SUF) CONTAIN
00042C THE ELEMENTS OF THE TRIDIAGONAL FOSITIVE-DEFINITE
00043C JACORIAN MATRIX (1), EVALUATED' AT THE VECTOR (A).
00044C IT SHOULD BE NOTED.THAT THE MATRIX EQUATION SOLVER,
000450 THE SURROUTINE (TRII), DIOES NOT TAKE ADVANTAGE OF
00044C THE SYMMETRY OF (J). HENCE (SUR) ANII (SUF) ARE
00047C ROTH NECESSARY. ALTHOUGH SUR(K)=8UF(K-1), ERQUATIONS
00042C FOR BOTH ARRAYS ARE WRITTEN OUT IN FULL.

£60049C

N0050C IF I{K>=0.0 FOR SOME K, THEN THE NUMRER
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Q0051C OF UNKNOUWNS (ANDN EQUATIONS) REDUCE. IN ORLER

00052C TO PERMIT THE COMPUTATION OF ONE JACORIAN

00053C MATRIX THE FROGRAM SETS SUB{K)=SUP(K-1)=0.,0

Q0054C ANDN ITAG{K)=1.0.

00055C

00056 0 125 K=1,N

00057C

00053 IF (K.EQ.1) THERN

00057 AL= 0.0

00060 XL= TL

00061 ELSE

0062 ab= A{K-1)

00063 XL= X{K-1)

00064 END' IF

QO0&EC

00046C

00067 IF (K.ER.N) THEN

00068 AR= 0.0

00069 XR= TR

00070 ELSE

00071 fifk= A(K+L)

00072 XR= X{K+1)

00073 END' IF ‘

00074C

Q0075C

000746 IF { AL.GE.0.D .ANI. A(K).GE.0.0 ) Ji=1
. Q0077 IF ( AL.LT.0.0 JAND. a{K).GE.0.0 ) Ji=2

00078 IF ¢ AL.GE.0.0 ANDI, AC(K).LT.0.0 ) J1=3

00079 IF { AL.LE.D.O AND. ACK).LE.0.0 ) Ji= 4

00080C

00081 IF { a(K).GE.0.0 .ANIL, ARGE.0.0 ) J2=1

00082 IF ¢ ACKDLLT.0.0 ANI. ARWGE.O.0 ) J2= 2

00083 IF { ACKY.GE.Q.0 .AND. ARL.LT.0.0 } J2= 3

00084 IF ¢ ACK)LLE.Q.O0 AND AR.LE.Q.Q ) J2= 4

00085C

000846 I7T= X({K)-XL

00087 A= A(K) -AL

00088C

000879 IF ( IDKK) LER. 1) THENM

-00090C

00091 IF (K.NE.,1) THEN

00092C

00093 IF (J1.EQ.1) THEN

00074C

00095 SUR(K)= DIT/&.0

00096 GLEFT= IT/3.0

00097C

00098 ELSE IF (J1.E®.2) THEN

00099C

00109 T= XL-(UT/TA)XAL

60101 W= 0.3%(¢ X{K)4T )
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00102
00103
00104
00105
00104C
00107
00108C
00109
00110
00111
00112
00113
00114
00115C
001156
00117C
00118
00119
00120C
00121
00122C
00123
00124C
00125
00125
00127
00128C
00127
00130C
00131
00132C
00133
00134
001350
001346
00137C
00138
00139C
001490
0141C
00142
00143
00144C
00145
00144C
00147
00148
00147
00150
00151
00152
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SUB(K)= (X(K)=T)/6.0 % ( ({T~-XL)/DTIRC{X(RY-TI/OT)
+ 4. 030 U-XL)Y/ITY RO IR =W /1T )

GLEFT=  (X{K)-T)/6.0 % { {T-XL)/OT)%%2
+ 4. 0% C(W=-XL)/TTHX%2) + 1.0 )
ELSE IF (J1.EQR.3) THEN
T= XL-(TIT/DA) kAL

W= 0.3%C THXL D
SUR(K)= (T-XL)/6.0 % { 4.0%{{U-XL)/ITIX{ (XK= /1T)
+ {T-XL)/OTIRCCX(RY-T)/IT) )
(T-XL)/6.0 % 4, 0%CC(W=-XL) /DT I %%2)
+ ({(T-XL)/DTHE%2 )

GLEFT=

ELSE IF (J1.ER.4) THEN

SUR{(K)="0.0
GLEFT= 0.0

ENDI IF
ELSE IF (K.EQ.1) THEN
SUR(1)= 0.0
GLEFT= 0.0
IF (J1.EQ.1) GLEFT= 0T/3.0
END IF
ELSE IF ( ID(K) .ER@. 0 ) THEN

SUR{K)= DT/6.0
GLEFT= IT/3.0

ELSE IF { IIK) .EQ@. -1 ) THEN
IF (K.NE.1) THEN
IF (J1.EQ.4) THEN

SUR(K)= TT/&.0

GLEFT= IT/3.0
ELSE IF (J1.EG.3) THEN
T= XL-(DT/0A)XAL

W= 0,3%{ X{K)4T )
SURBCKY= (X(K)-T)/ 6.0 % ( ({T=-XL)/ITIR({X(KI-TH/OT)
+ 4, 0% CCU-XL)/DTIRCCX (K -W) /LT) )
{(X(K)-T)/6.0 % { ({T-XL)/ITIX%2
4. 0% W-XL) /0T %2 + 1.0 )

BLEFT=
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00153C
00154
00153C
00156
00157
00158
00159
001560
00161
00162C
00163
00164C
00165
00146
001467
00163
001469C
00170
00171C
00172
00173
00174
00175C
001746
00177
00178
00179C
00180
00181
00182
00183
00184
00185
001i86C
00187
o188
00189C
00190
00191C
00192
Q0193C
00194
Q0193C
00194
00197
00198C
00199
00200C
00201
00202
Q0203
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ELSE IF (J1.EQ.2) THEN

T= XL-(UT/0&) %AL

W= 0.3%( T+XL O

SUR(K)= (T-XL)/6.,0 % ¢ 4, 0%{(W-XL)/OUTIKC{XK)=-W)/OT)
+ (T-XLY/DTIRCX(RY-TY/LT) )

GLEFT= (T-XL)/6.0 ¥ { 4., 0X{({{W-XL)/DLT)I%k%2)
+ (T-XLO/DTIN%2 )

*

ELSE IF (J1.EQ.1) THEN

SUR{K)= 0.0
GLEFT= 0.0
ENI IF

ELSE IF (K.ER.1) THEN
SUER(1)= 0.0
GLEFT= 0.0
IF (J1.EQ.4) GLEFT= IT/3.0
ENDN IF
END' IF

IF (K.NE.1) THEN
IF ¢ I(R-1) .EQ. 0.0 ) THEN

SUR(K) = 0.0
GLEFT = 0.0
ENDI IF
END IF
O7= XR-X{K)
A= AR-8(K)

IF ¢ ID(K+1) ER. 1 ) THEWN
IF (K.NE.N) THEN
IF {(J2.EQ.1) THEN

SUP(K)= T1T/6.0
GRIGH= @07/3.0

ELSE IF (J2.EQ.2) THEN

-y
L}

X(K)-{TT/DA) XA (K)
0.5%( XR+T )
SUF(K)= (XR-T) 6.0 X ( ((T-X{KN)ITIX({XR-T)/LT)

©
i
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00204
00205
00206
00207C
00208
00209C
002190
00211
00212
00213
00214
00215
002160
00217
00218C
00219
00220
00221C
00222
00223C
00224
00225C
00224
00227
00228
00229C
00230
00231C
00232
00233C
00234
00233
00235C
00237
00238C
00239
00240C
00241
00242C
00243
00244
00245C
00244
00247C
00248
00249
00230
00251
00252
00233
00254C

€

c

c

C
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+ 4. 0% CCU-XCKND /DT X CCXR-W /OTY )
GRIGH= {(XR-T)/6.0 ¥ { ({(XR-T)/LT)%%2
+ 4. 0XCC(XR-W)/OTIXX2) )
ELSE IF (J2.EB.3) THEN
T= X(K)={IT/IAY¥A(KD
W= 0.3%( THX{K) )
SUF(K)= (T=X(K))/6.0 % { 4.0%{ (W-X(K))/OTIX({XR-W)/TT)
+ ((T-X(KN /DT H((XR-TI/LT) )
GRIGH= (T-X(K))/6.0 ¥ { 1.0 + 4, 0%{C(XR-W)/OTI%%2)
+ ((XR-TX>/ITI%%Z )
ELSE IF (J2.EG.4) THEN

SUF{K)= 0.0
GRIGH= 0.0

ENDI IF
ELSE IF (K.EQ.N> THEN
SUP{N)= 0.0
GRIGH= 0.0
IF (J2.EQ.1) GRIGH= UT/3.0
ENDI IF
ELSE IF ( ID(K+1) EQ. O ) THEN

SUP{K}= DT/&6.0
GRIGH= IT/3.0

ELSE IF ( ID(K+1) .EQ@. -1 ) THEN
IF (K.NEJ.N) THEN
IF (J2.ER.4) THERN

SUP(K)= IIT/6.0
GRIGH= IT/3.0

ELSE IF (J2.EQ.3) THEW

T= X(K)=(OT/UA)IXACK)
W= 0.3%{ XR4T )
SUF(K)= {XR~-T)/6.0 ¥ ¢ ({T-X(K))/OTIX{{XR-T)/LT)
+ 4, 0%CUW-X{K)/OTIS({XR-WI/DIT) )
GRIGH= (XR-T)/6.0 ¥ { ({XR-T)/DT)%x%2
+ 4. 0%CCIXR-W) /DTH%32) D
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00255 ELSE IF (J2.EQG.2) THEN

00256C

00257 T= X{K)Y={IT /DA *A(K)

00258 W= 0,5%( THX(K) D

00259 SUF(K)= (T~X(K))/6.0 % { 4,0%C{W-X(K))/OTIK{{XR-U) /TT)
QD260 c + ((T-XC(KMI/ZOTYR((XR-TY/LT) D
00261 GRIGH= (T-X{K))/6.0 %X { 1.0 + 4.0%{{(XR-W)/TIITI¥K2)
00262 c + ({(XR-T)/UTH¥%2 )

00263C '

00264 ELSE IF (J2.EBG.1) THEN

00265C

00266 SUF(RK)= 0.0

00267 GRIGH= 0.0

00268C

00267 ENIt IF

P0270C

00271 ELSE IF (K.EQ.N) THEN

00272

00273 SUP(N)= 0.0

00274 GRIGH= 0.0

00275 IF {(J2.EQ.4) GRIGH= IIT/3.0

00276C

0027 END IF

00278C

0027 ENIt IF

00280C

00281 IF (K+NE.N) THEN

00282 IF ( D(K+1) .EQ. 0.0 ) THEN

00283 SUR{K)= 0.0

00284 GRIGH = 0.0

00285 END' IF

00284 ENDt IF

00287C

00288 OIAG(K)= GLEFT+GRIGH ’ -
00289C

00290C

00291 IF ¢ D(K) EQ. 0.0 ) THEN

00292 LIAG{K)= 1.0

00293 SUE(K)= 0.0

00294 SUF(K)= 0.0

0029% END IF

0029%94C

00297 125  CONTINUE

00298C

00299 [0 150 L=1,N

00300 H{L)= Li(L)

00301 150  CONTINUE

00302

00Q303C

00304C WE SOLVE THE MATRIX ERQUATION JX=H, THE ARRAY {H)
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00305C
00305C
Q0307C
00308C
00307
00310C
00311
00312
00313
00314
00315 200
003160
00317C
00318C
00319C
00320C
00321C
00322C
00323
00324
00325
00324
00327 250
00328
00329
00330 300
00331C
00332C
00333
00334
00335
00334
Q0337
00338
00339
00340 350
00341
00342 400
00343
00344
00345
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REING IDENTICAL TO THE ARRAY (Id. THE SOLUTION
IS RETURNED' IN THE ARRAY (H).

CALL TRID(SUE,IIAG,SUF,H,N)

SuMi= 0.0

0 200 L=1,N

AlL)= HL)

SUM1= SUM1 + ABS(A(L))
CONTINUE

THE FUNCTION EVALUATION SUBROUTINE COMFUT MAY
BE DELETED. IN THIS CASE THE FOLLOWING EIGHT
LINES ARE TO RE DELETEDN ANI* THE ARRAY (FX)
CAN BE TAKEN FROM THE REAL STATEMENT AT THE
BEGINNING OF THIS SURROUTINE.

CALL COMFUT(A,FX NyX,TL,TR)
FNORM1= 0.0 ‘

1 230 L=1.N .

FNORM1= FNORM1 + FX{L)IXFX(L)
CONTINUE

FNORH1= SQRT{(FNORM1)
WRITE{6,300) LJ,FNBRM1
FORMAT(IS,E13.58)

IF (LJ.NE.1) THEN

RATIO= ARS(SUM1-SUM2)

AR= EPSXSUM2

IFLAG= 1 :
IF (RATIO .LE. AK) GO TO 400

T ENDIF

SUM2= SUM1
CONTINUE
IFLAG= 2
CONTINUE
ITHAX= LJ
RETURN

END
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00001 SUBROUTINE COMPUT(A,FXeNsX,TL,TR)

00002C

00003C SURRDUTINE (COMFUT), THE FUNCTION EVAULATING
20004C SUBROUTINE, IS OFTIONAL.

00005C

0000&C

00007 REAL ACN) o FX{(N),F1,AL0,AHI,TLO,THI
00008 REAL GLEF,GRIG,TS,X(N)

00009 INTEGER N,K,J1,J2

00010 COMMON D(50),IN(50)

00011 no 100 K=1,N

00012C

00013 IF { I(K) .NE. 0.0 ) THEN

00014C

00015 IF (K+EQ.1) THEN

00016 ALo= 0.0

00017 TLO= TL

00018 ELSE

00019 ALO= A(K-1)

00020 TLO= X{K-1)

00021 END' IF

00022

00023 IF (K.EQ.N) THEN

00024 fAHI= 0.0

00025 THI= TR

00026 ELSE

00027 AHI= AK+D)

00028 THI= X{K+1)

00029 ENDt IF

00030C

Q0031C

00032C

00033 IF (ALOLGE.Q.Q .&ND, A(K) .GE.Q.0) Jd1= 1
00034 IF {ALOLT.0.0 AND. A(K).GE.0.0) J1= 2
00035 IF (ALOLGE.O.O .ANI, A(K).LT.0.0) J1= 3
00034 IF (ALOLWLT.0.0 ANII. A{K)LLT.0.0) Ji= 4
00037C

00038 IF (A(K).BE.0.0 .AND., AHI.GE.Q.0) J2= 1
00037 IF (A(K).,LT.0.0 .ANDI, AHI.GE.0.0) J2= 2
00040 IF (A(K).BE.0.0 AN, AHILLT.0.0) J2= 3
00041 IF (A(K).LT.0.0 .AND. AHILLT.0.0) J2= 4
00042C

00043 IT= Xi{K)-TLO

00044C

00045 IF ¢ II{K) JEQ. 1 ) THEN

00046C

00047 IF (J1.EQ.1) THEN

00042C

00049 GLEF= IT%{ 2.0%A(K) + ALD )/6.0

06050C
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00051
00032C
00053
00034
00055
00056C
00057
00038C
00059
00050
00061C
000562
000463C
000464
00045C
00066
00067C
00068
00069C
00070
00071C
00072
00073C
00074
00075C
00076
00077C
00078
00079C
00080
000381
00082
00083C
00084
00085C
00086
00087
00088C
00087
00090C
00091
00092C
60093
00094C
00095
000%6C
00097
00098C
00097
00100C
00101
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ELSE IF (J1.EQ.2) THEN

TS5= TLO - ALOXDT/{ A{K)-4LO0 )

Fil= { (TS+X{K))%0.,5 - TLO )/IT

GLEF= (X{K)-TSIXA(K)I%{ 2,0%F1 + 1.0 )/4.0
ELSE IF (J1.EGQ.3) THEN

TS= TLO - ALOXDT/{ A{K)-ALD )
GLEF= ( (TS-TLOY¥%2 )¥ALO/{(6.0%D7)

"ELSE IF (J1.EG.4) THEN
GLEF= 0.0
ENDY IF
ELSE IF ( IIKK) .EQ. O ) THEN
GLEF= DT%( 2.0%A(K) + ALD )/6.0
ELSE IF ( IIMK) LEQ. -1 ) THEN
IF (J1.EQ.4) THEN
GLEF= ITX%( 2,0%A(K) + ALD )/6.,0
ELSE IF (J1.EG.3) THEN
TS= TLO - ALOXDT/{ ACK)-ALD )
Fl= ( (TS+X{K))%0.5 - TLO )/IT
GLEF= (X{K)-TSIXACKI*( 2.0%F1 + 1.0 )/6.0
ELSE IF (J1.EQR.2) THEN

TS= TLO - ALDXIT/( ACK)-ALD )
GLEF= ( {TS-TLO)¥¥2 1XALG/{6.0%IT)

ELSE IF (J1.EQ.1) THEN

GLEF= 0.0
END Hw.
END IF
IT= THI-X(K)

IF ( II{K+1) .EG. 1 ) THEN

IF {J2.EQR.1) THEN
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00102C
00103
00104C
00105
001060
00107
00108
00109€
00110
00111C
00112
00113
00114
00115¢
00114
00117C
00118
$00119C
00120
00121C
00122
00123C
00124
00125C
00124
00127C
00128
00125C
00130
00131C
00132
00133C
00134
00135
00134C
00137
00138C
00139
00140
00141
00142C
00143
00144C
00145
001460
00147
00148C
00149
00150C
00151C
00152
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GRIG= DT%{ 2.0%A(K) + AHI )/46.0
ELSE IF (J2.ER.2) THEN

TS= X{K) - A{RKIXDT/( AHI-A(K) )
GRIG= ( (THI-TS)¥¥2 )¥AHI/{6.0%IT)

ELSE IF (J2.EQ.3) THEN
TS= X{K) - ACKIXDT/( AHI-A(K) )
Fl= ¢ THI-0.33%( TSH+X(K) ) )/IT
GRIG= ( TS-X(K) H)*A{KI¥( 1.0 + 2,0%F1 )/6.0

ELSE IF (J2.EQ.4) THEN

- BRIG= 0.0

ENDI IF
ELSE IF ( Iﬁ(K+1) +EQ. 0 ) THEW
BRIG= DITx{ 2,0%A(K) + AHI )/8.0
ELSE IF { IIK+1) LEQR. -1 ) THEN
IF (J2.ER.4) THEN
GRIG= DT%{ 2,0%A(K) + AHI )/6.0
ELSE IF (J2.ER.3) THEN

T8= X(K) - A(KIXIT/{ ﬁHi—ﬁ(K) )
GRIG= ( (THI-TS)¥¥2 )RAHI/(6.0%DT)

ELSE IF (J2.ER.2) THEN

TS= X(K) - A(KIXDT/( AHI-A{K) )

Fi= ( THI-0.3%{ TS+X(K) ) J)/IT

GRIG= ( TS-X(K) I%A(KIX{ 1,0 + 2.0%F1 1)/6.0
ELSE IF (J2.EQ.1)> THEN

GRIG= 0.0
END IF

ENDIN IF

IF {(K.NE.1) THEN
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00133
00154
00155C
00156
00157
00158
00139C
00160
00151C
00162
00163
00164
Q01465C
001646 100
00167
00168

IF ¢ D{K-1) ,EQ, 0,0 ) GLEF= 0.0
ENDN IF .

IF (K.NE.N) THEN

- IF { I{K+1) .EQ. 0,0 ) GRIG= 0.0

ENDN IF
FX{K)= GLEF + GRIG - IK)

ELSE IF ¢ T{K) .EG. 0.0 ) THEN
FX{K)= 0.0
END IF

CONTINUE
RETURN
END
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00001 SUBROUTINE POLY(A,T:PFsM,F,LI,TX)

00002C

00003C SURROUTINE FOLY INTEGRATES BACK TWICE THE
00004C FOSITIVE FART OF THE PIECEWISE LINEAR SECOND
00005C DERIVATIVE WHERE THE IATA SUGGESTS THAT THE
00006C INTERFOLATING CURVE SHOULL BE CONVEX, THE
00007C NEGATIVE FART OF THE PIECEWISE LINEAR SECOND
00008C DERIVATIVE WHERE THE DATA SUGGESTS THAT THE
00009C INTERFOLATING CURVE SHOULD' RE CONCAVE, AND
00010C THE REMAINING PORTION OF THE PIECEWISE LINEAR
G0011C SECOND DERIVATIVE ON THE TRANSITION INTERVALS.
00012C

00013C THE INTEGRATIDN YIELDS 4 FIECEWISE CURIC
00014C FOLYNOMIAL WITH KNOTS GIVEN RY THE SEQUENCE
00013C (TX). THIS CURIC FOLYNOMIAL INTERPOLATES THE
00016C IATA AND ITS COEFFICIENTS ARE LENOTED RY THE
00017C NUMBERS FF(J,I) - THE VALUE OF THE (J-1)8T
00018C DERIVATIVE OF THE FUNCTION EVALUATED AT TX(I).
00019C FOR X SUCH THAT TX(I).BE.X.LT.TX(I+1) THE VALUE
00020C OF THE CURIC FOLYNOMIAL IS

00021C

00022C FP(1,1I)

00023C + FPL2,1) % ( X-TX(I) )

00024C + (L/2IFFP(3,I) % ( X-TX{(I) )xx2

00025C + (1/8)FF(4,I) % { X-TX{I) )¥XX3

00024C

00027

00048 INTEGER MyJyb,LI

00029 REAL A{30),T(50),PF(4,100),F{30),TX(100),TAU
00030 REaL DF,IT.DA,C,E

00031 COMHON D(50),I0{(50)

00032 LI=1

00033 MNi= M-1

00034 0 100 L=1,MN1

00035 IF= FL+L)-F(L)

D036 OT= T{L+1)-T(L)

00037 A= AL+ -AL)

00038C

00039 JP= 0

00040 IF (L.EQ.1) THEN

00041 IF ¢ (1) JER. 0.0 ) JP=1

00042 ELSE IF (L.EQ.MN1) THEN

00043 ' IF ( I{M-23 .EQ. 0.0 ) JdP=1

00044 ELSE

00045 C= IML-13XT(L)

00045 IF ¢ T +ER. 0.0 ) JP=1

00047 ENDN IF

00043C

00049C

00030C
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00051
00052C
00033
00054
09055
00056
00057
00038
00059C
00060
0004561C
00062
00043
00064
00045
00054C
00067
00068C
00069
00070C
00071
00072
00073
00074
00075
00074
00077
00078C
00079
00080C
00081
00082
00083
00084
00085
00084
00087
00088
02089
00090
00091
00092
00093
000%4C
00095
00094C
00097
00098
00099
00100
00101
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IF (JFJ.EQ.1) THEN

FF{4,LI)= 0.0
FE3,LI)= 0.0
FF{2,LI)= LF/0T
PR(1,LIX= F(L)

X{LID)= T(L)
LI= LI$1

ELSE IF (JP.EQ,0) THEN

IF {A{L).BGE.O
IF (A{L).LT.O
IF {(A{L).GT.0
IF (A(L).LE.D

«0 «ANI. A(L+1).GE.0.0) J=
0 JAND, A(L+1).GT.0.0) J=
0 JANI, ALF1).LT.0.0) 4=
0 JAND, A(L+1).LE.0.0) J=

D ot) M s

IF  In{L) LEQ. 1) THEN
IF (J.EQ.1) THEN

C= IF/0T - (IA/6.0 + ACL)Y/2.0XXKITT
FF{4,LI)= DA/DT

FF{3.LI)= AlL)

FP(2,L1)=C

FFR{1,LI)= F(L)

TX{LI)= T(L)

LI= LI+1

ELSE IF (J.ER.2) THEN

Tal= T(L) - ALIXIT/DA

C= DF/0T - (A(LFDIXXIDXDT/ (6, OXTIAXDA)
FF{4,LI)= 0.0

FF(3,L1)= 0.0

FP{2,LI)=C

FP(1,LI)= F(L)

PF{4,LI+1)= DA/IT

FP{3,LI+1)= 0.0

FF{2,LI+1)=C

FRI1L,LI+1)= CX{TAU-T(L)) + F(L)
TX{LI)= T(LO

TX{LI+1)= TAU

LI= LI+2

ELSE IF (J.EQ.3) THEN

TaU= T(L) - ALIXIT/IA

E= FCL) - (ACLIXXIIKDTRUT/ (6. OXDAXDA)
C= DF/0T 4+ (ALIXEIIKOT/{46.0XDAKEA)
FPFP{4,L1)= DA/DT

FFROE,LI)= AdL)
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00102
00103
00104
00105
00106
00107
00108
00109
00110
00111C
00112
00113C
00114
00115
00115
00117
00118
00119
00120C
00121
00122
00123
00124C
00125
00126
00127
00128
00129
00130
00131
00132C
00133
00134C
00135
001346C
00137
00138
00139
00140
00141
00142
00143
00144C
00145
00144C
00147
00148
00149
00150
00131
00132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FF(2,L10= C + ALIXA(LIXITH0.5/1A
FP{1,LI)= FL(L)

PP(4,LI+1)= 0.0

FF{3,LI+1)= 0.0

FF(2,LI+1)=C

FP{1,LI+1)= C¥( TAU-T(L) ) + E
TX(LI)= T(L)

TX(LI+1)= TAU

LI= LIt+2

ELSE IF (J.EQ.4) THEN

FP(4,L1)= 0.0
PF{3,LI)= 0.0
FF{2,LI)= DF/TT
FF(L,LI)= F(L)
TX{LI)= T{L)
LI= LI+l

END' IF
ELSE IF ( II{L) .EG, O ) THEN

C= IF/DT - (I4/6.0 + AL)/2.00XIT
FP{4,LI)= DA/IT

FF{3:LI)= A(L)

FP(2Z,LI)=C

FF(1,LI)= Fi{L)

TX(LI)= TLL)

LI= LI

ELSE IF ¢ II(L) .EQ., -1 ) THEN
IF (J.EG.4) THEN

C= DF/0T - (IA/6.0 + A(L)/2.0)XDT
FP{4,LI)= DA/IT

FR{3,LI)= a{L)

FP(2,LI3=C

FFP(1,LI)= F{L)

TX(LI)= T(L)

LI= LI+

ELSE IF (J.EQ.3) THEN

Tal= T(L) - ALYXDT/DA

C= DF/DT = (ALFLIXXIIXDT/ (6. OXDAXLA)D

F'F":41LI)= 0.0
PP{3,LI)= 0.0
FF(2,LI)= C

FP{1,LI)= FL)
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00153
00154
00155
00156
00157
00158
00159
00160C
00161
00142C
001463
00164
00165
00164
00167
00168
00169
00170
00171
00172
00173
00174
00173
00176 |
00177C
00173
00179C
00189
00181
00182
00183
00184
00185
00184C
00187
00188C
00189
00190C
00191
0019%92C
00193 140
00194
00195
00196
00197
00198
00199
00200
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FF(4,LI+1)= DA/DT

FF(3,LI+1)= 0.0

PR{2,LI+1)= C ’
FRP{L,LI+1)= CHLTAU-T(LY) + F(L)
TX(LI)= T(L)

TX(LI+1)= TAU

LI= LI42

ELSE IF (J.EQ.2) THEN

Tal= TL) - a(LIXDT/IA

E= F(L) - (ACLIXXIIXOTROT/ 6. 0KDAXDA)
C= DF/0T + (ALIYXEIIEDT/ (6. 0XDAKTA)
FP(4,LI)= DA/DT

FF{3:LI)= ACL)

FRC2,LI)= € + ALIXAL)XOTH0.5/14
FP{1,LI)= F(L)

PR{4,LI+1)= 0.0

FF{(3,LI+1)= 0.0

CFR(2,LItD)=C

FR{1.LI+1)= C*k{ TAU-T(L) ) + E
TX(LI)= T(L)

TX(LI41)= TaU

LI= LI42

ELSE IF (J.EQ.1) THEWN

FFP(4,LI)= 0.0
PP{3,L 1= 0.0
FF(2,LI)= DF/LT
PP{1,LI)= F{(L)
TX{LI)= T(L)
LI= LI+l

ENDI IF
END IF
ENDIN IF

CONTINUE
PP(4,LI)= 0.0
FP{3,LI)= 0.0
FF{2,LT)= 0.0
FR({1,LI)= FiM)
TX{LI)= T{H
RETURN

END
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Subroutines TRID and DATAFL are listed in Appendix A.
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