Old Dominion University
ODU Digital Commons

Mathematics \& Statistics Theses \&
Dissertations

Summer 1985

Minimal Norm Constrained Interpolation

Larry Dean Irvine
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_etds
Part of the Fluid Dynamics Commons, and the Mathematics Commons

Recommended Citation

Irvine, Larry D.. "Minimal Norm Constrained Interpolation" (1985). Doctor of Philosophy (PhD), Dissertation, Mathematics \& Statistics, Old Dominion University, DOI: 10.25777/k9fd-rm76
https://digitalcommons.odu.edu/mathstat_etds/100

This Dissertation is brought to you for free and open access by the Mathematics \& Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics \& Statistics Theses \& Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Minimal Norm
Constrained Interpolation

by
Larry Dean Irvine B.S. May 1981, Georgetown College M.S. December 1982, O1d Dominion University

A Dissertation Submitted to the Faculty of 01d Dominion University in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy
Computational and Applied Mathematics

01d Dominion University
August, 1985

Annroved hy:

Philid W. 8mith (Directior)

ABSTRACT
MINIMAL NORM CONSTRAINED INTERPOLATION
Larry Dean Irvine
Old Dominion University, 1985
Director: Dr. Philip W. Smith

In computatonal fluid dynamics and in CAD/CAM a physical boundary, usually known only discreetly (say, from a set of measurements), must often be approximated. An acceptable approximation must, of course, preserve the salient features of the data (convexity, concavity, etc.) In this dissertation we compute a smooth interpolant which is locally convex where the data are locally convex and is locally concave where the data are locally concave.

Such an interpolant is found by posing and solving a minimization problem. The solution is a piecewise cubic polynomial. We actually solve this problem indirectly by using the Peano kernel theorem to recast this problem into an equivalent minimization problem having the second derivative of the interpolant as the solution.

We are then led to solve a nonlinear system of equations. We show that with Newton's method we have an exceptionally attractive and efficient method for solving this nonlinear system of equations.

We display examples of such interpolants as well as convergence results obtained by using Newton's method. We list a FORTRAN program to compute these shape-preserving interpolants.

Next we consider the problem of computing the interpolant of minimal norm from a convex cone in a normed dual space. This is an extension of de Boor's work on minimal norm unconstrained interpolation.

Dedication

To Dr. Philip Smith for his help and guidance.

Acknowledgements

I wish to express my appreciation to Dr. Philip Smith, Dr. Robert Smith, and Dr. John Swetits for their advice, assistance, and encouragement during my doctoral work and research. I wish to thank Dr . Surendra N. Tiwari for the financial support which I received from the Institute for Computational and Applied Mechanics.

I also wish to thank Barbara Jeffrey for typing the dissertation.
Page
Chapter 1. THE NATURAL SPLINE INTERPOLANT 1
Chapter 2. A MINIMAL NORM INTERPOLATION PROBLEM IN THE $L_{p}[a, b]$ SPACES 16
Chapter 3. THE CONVEX SPLINE INTERPOLANT 20
Chapter 4. THE SHAPE-PRESERVING SPLINE INTERPOLANT 38
Chapter 5. CONSTRAINED MINIMIZATION IN A DUAL SPACE 55
LIST OF REFERENCES 76
APPENDIX A A PROGRAM FOR CONSTRUCTING THE NATURAL CUBIC SPLINE INTERPOLANT TO GIVEN DATA 77
APPENDIX B A PROGRAM FOR CONSTRUCTING THE SHAPE-PRESERVING
CUBIC SPLINE INTERPOLANT TO GIVEN DATA 82

1. The Natural Spline Interpolant

We consider the problem of computing an interpolant to given data. Throughout our discussion we shall denote the data

$$
\left(t_{i}, y_{i}\right) \quad i=1,2, \ldots, n
$$

where $a=t_{1}<t_{2}<\ldots<t_{n}=b$ and in this chapter we place no restrictions on the numbers y_{i}. There are, of course, many such interpolants which we can form. For example, we can calculate the unique polynomial p of order n (degree $n-1$ or less) which interpolates the data. However, as pointed out in [deB(1), chapter 2], for large n (and especially for equally spaced points t_{i}) the polynomial interpolant is notorious for large changes in its first derivative near the endpoints. Figure (1.1) displays the polynomial interpolant to the function

$$
f(t)=\frac{1-\sin (7 \pi t)}{2}
$$

at the points $t_{i}=(i-1) / 10$ for $i=1,2, \ldots, 11$. Since $0 \leqq y_{i} \leqq 1$ for each i, we expect a good interpolant to remain reasonably close to these bounds. However, because of its behavior near the endpoints, the polynomial interpolant fails to model the data well. This behavior is typical of high-order polynomial interpolants.

In order to decrease the unnaturally large changes in the first derivative characteristic of the polynomial interpolant, we wish to calculate the interpolant which "bends" the least over all suitable interpolants. The norm of the second derivative of an interpolant will furnish a measure of the bending of the interpolant so we pose a minimization problem on $L_{2}{ }^{(2)}[a, b]$, the Sobolev space of functions with

Figure (1.1): The Polynomial Interpolant.
second derivatives in the normed linear space $L_{2}[a, b]$. Let A denote the set of all interpolants in the Sobolev space. We consider the minimization problem

Find $f_{*} \varepsilon A$ such that $\left\|f_{*}^{(2)}\right\|_{2} \leqq\left\|f^{(2)}\right\|_{2}$ for all $f \varepsilon A$.
We shall see that the solution to (1.1) is piecewise cubic with two continuous derivatives; that is

$$
f_{¥}(t)=p_{i}(t) \quad \text { if } \quad t_{i} \leqq t \leqq t_{i+1}
$$

for $i=1,2, \ldots, n-1$ where p_{i} is a cubic polynomial and f_{*} is in $C^{2}[a, b]$. We follow the pattern in [deB(1), chapter 5], taking advantage of the fact that $L_{2}[a, b]$ is not only a normed linear space, but also a Hilbert space with an inner product defined by

$$
(f, g)=\int_{a}^{b} f(t) g(t) d t
$$

for any two elements f and g in $L_{2}[a, b]$.
Assume f is an element of A. (The set A is nonempty since it contains the polynomial interpolant.) We shall use the Peano kernel theorem to obtain a set of equations for $f^{(2)}$. By the Fundamental Theorem of Calculus we have

$$
\begin{equation*}
f(t)=f(a)+\int_{a}^{t} f^{(1)}(s) d s \tag{1.2}
\end{equation*}
$$

We integrate $\int_{a}^{t} f^{(1)}(s) d s$ by parts noting that $\int u d v=u v-\int v d u$. Let

$$
u(s)=f^{(1)}(s) \text { and } d v(s)=d s
$$

so that

$$
\mathrm{du}(\mathrm{~s})=f^{(2)}(s) \mathrm{ds} \text { and } \mathrm{v}(\mathrm{~s})=-(\mathrm{t}-\mathrm{s})
$$

where t is a constant. Hence

$$
\int_{a}^{t} f^{(1)}(s) d s=(t-a) f^{(1)}(a)+\int_{a}^{t}(t-s) f^{(2)}(s) d s
$$

and so (1.2) becomes

$$
\begin{equation*}
f(t)=q_{1}(t)+\int_{a}^{t}(t-s) f^{(2)}(s) d s \tag{1.3}
\end{equation*}
$$

where $q_{1}(t)=f(a)+f^{(1)}(a)(t-a)$. (This is actually a Taylor's series with integral remainder.)

To acquire constant limit of integration we can write (1.3) as

$$
\begin{equation*}
f(t)=q_{1}(t)+\int_{a}^{b}(t-s)_{+}(2)(s) d s \tag{1.4}
\end{equation*}
$$

where $(\mathrm{h})_{+}$, the positive part of the function h, is defined by

$$
(h)_{+}(t)=\left\{\begin{array}{lll}
h(t) & \text { if } & h(t) \geqq 0 \\
0 & \text { if } & h(t) \leqq 0
\end{array}\right.
$$

Now we consider the divided difference operator. Given a function g and a set of points $\left\{\tau_{i}, \tau_{i+1}, \ldots, \tau_{i+m}\right\}$, the m-th divided difference of g - denoted by $\left[\tau_{i}, \tau_{i+1}, \ldots, \tau_{i+m}\right] g(\cdot)$ - is the leading coefficient of the polynomial of order m+l which interpolates g at $\tau_{i}, \tau_{i+1}, \ldots \tau_{i+m}$ (and hence is a function of $\tau_{i}, \tau_{i+1}, \ldots, \tau_{i+m}$). The recursive relations

$$
\begin{gathered}
{\left[\tau_{p}\right] g(\cdot)=g\left(\tau_{p}\right)} \\
{\left[\tau_{i}, \tau_{i+1}, \ldots, \tau_{i+m}\right] g(\cdot)=\frac{\left[\tau_{i+1, \ldots, \tau_{i+m}}\right] g(\cdot)-\left[\tau_{i, \ldots,{ }^{\tau}+m-1}\right] g(\cdot)}{\tau_{i+m}-\tau_{i}}(1.5)}
\end{gathered}
$$

hold if $\tau_{i+m} \not \tau_{i}$ (which we assume for our data). Presently we are interested in the case $m=2$. Equation (1.5) becomes (with $\tau_{i}=t_{i}$)

$$
\begin{equation*}
\left(t_{i+2}-t_{i}\right)\left[t_{i}, t_{i+1}, t_{i+2}\right] g(\cdot)=\frac{g\left(t_{i+2}\right)-g\left(t_{i+1}\right)}{t_{I+2}-t_{i+1}}-\frac{g\left(t_{i+1}\right)-g\left(t_{i}\right)}{t_{i+1}-t_{i}} \tag{1.6}
\end{equation*}
$$

which is computable for $\mathrm{i}=1,2, \ldots, \mathrm{n}-2$.
Notice that $\left[\tau_{i}, \tau_{i+1}, \ldots, \tau_{i+m}\right] p(\cdot)=0$ if p is a polynomial of order m or less (degree $\mathrm{m}-1$ or less). (From equation (1.6) we see that $\left(t_{i+2}-t_{i}\right)\left[t_{i}, t_{i+1}, t_{i+2}\right] g(\cdot)$ measures a difference in slopes; the difference in slopes being zero if g is linear.)

Now we apply the (scaled) second-divided difference operator $\left(t_{i+2}-t_{i}\right)\left[t_{i}, t_{i+1}, t_{i+2}\right]$ to (1.4) and interchange the order of the integral and divided difference operators to obtain

$$
\begin{equation*}
d_{i, 2}=\int_{a}^{b} g(s) N_{i}(s) d s \quad i=1,2, \ldots, n-2 \tag{1.7}
\end{equation*}
$$

where

$$
\begin{gather*}
d_{i, 2}=\left(t_{i+2}-t_{i}\right)\left[t_{i}, t_{i+1}, t_{i+2}\right] f(\cdot) \\
=\frac{y_{i+2}-y_{i+1}}{t_{i+2}-t_{i+1}}-\frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}}, \tag{1.8}\\
N_{i, 2}(\cdot)=\left(t_{i, 2}-t_{i}\right)\left[t_{i}, t_{i+1}, t_{i+2}\right](\cdot-s)_{+} \\
= \tag{1.9}\\
=\frac{\left(t_{i+2}-s\right)_{+}-\left(t_{i+1}-s\right)_{+}}{t_{i+2}-t_{i+1}}-\frac{\left(t_{i+1}-s\right)_{+}-\left(t_{i}-s\right)_{+}}{t_{i+1}-t_{i}}
\end{gather*}
$$

and $g=f^{(2)}$. We call $N_{i, 2}$ the (normalized) linear B-spline (or B-spline of order 2) with knots t_{i}, t_{i+1} and t_{i+2}. The graph of $N_{i, 2}$ is displayed in figure (1.2).

Figure (1.2): The Normalized Linear B-spline.

We have shown that if f is an interpolant in the Sobolev space ($f \varepsilon A$), then $g=f^{(2)}$ satisfies (1.7). Let the set B consist of all functions which are in $L_{2}[a, b]$ and which satisfy (1.7).

Now consider the problem

Find $g_{*} \varepsilon B$ such that $\left\|g_{*}\right\|_{2} \leqq\|g\|_{2}$ for all $g \varepsilon B \quad$ (1.10) A unique solution exists since (1.10) is a minimal norm problem over a nonempty closed convex set in a Hilbert space. Furthermore, the solutions of problems (1.1) and (1.10) are related via $g_{*}=f_{i}{ }^{(2)}$. Hence, to compute f_{*} we can first calculate g_{*} and then integrate g_{*} twice. Since much of our emphasis will be on g_{*}, rather than f_{\neq}, we shall call g_{*} the interpolant of minimal norm.

For brevity we denote the index $m=n-2$, the $B-\operatorname{spline} N_{i}=N_{i, 2}$, and the divided difference $d_{i}=d_{i, 2}$. We also define the vector-valued function $T: L_{2}[a, b] \rightarrow R^{m}$ by

$$
(T x)_{i}=\int_{a}^{b} x(t) N_{i}(t) d t \quad i=1,2, \ldots, m
$$

To solve problem (1.10) we shall show that $g_{*:}$, the interpolant of minimal norm, is the intersection of two specific sets-one an orthogonal complement of a subspace and the other a translate of a subspace --in $L_{2}[a, b]$ via a variation of the Projection Theorem. If W is a closed subspace of a Hilbert space H and if x is an arbitrary element of H, then the Projection Theorem states that there exists a unique element w_{o} in W satisfying

$$
\begin{equation*}
\left\|x-w_{\odot}\right\| \leqq\|x-w\| \quad \text { for all } w \varepsilon W \tag{1.11}
\end{equation*}
$$

and characterized by

$$
\left(x-w_{o}, w\right)=0 \quad \text { for all } w \varepsilon W .
$$

Hence $x-w_{0}$ is in W^{1}, the orthogonal complement of W. The proof of the Projection Theorem can be found in any book dealing with Hilbert spaces (for example, [L, page 517]). The next proposition will serve as the actual form of the Projection theorem which we shall use.

Proposition ([L, page 64]): Let W be a closed subspace in a Hilbert space H. For a fixed element x in H define $V:=x+W$. Then there exists a unique element x_{0} in V of minimal norm. Furthermore, x_{0} is in $W{ }^{5}$.
(The translate V is called an affine set or linear variety.) Notice that x_{o} is the intersection of the orthogonal complement of W and the translate V of W. In fact, (1.11) reveals that $x_{0}=x-w_{0}$.

Define

$$
\mathrm{W}:=\left\{z \varepsilon L_{2}[a, b]: T z=\theta\right\}
$$

which is a closed subspace in $L_{2}[a, b]$. Let $g \varepsilon L_{2}[a, b]$ be any element such that $\mathrm{Tg}=\mathrm{d}$. (Equivalently, let g be any element of B.) Then $B=g+W$ and B corresponds to the linear variety in the proposition. Hence $g_{\%}$ is the unique element in W^{\perp} satisfying $\mathrm{Tg}_{\%}=\underline{d}$.

We consider the contents of W^{\perp}. Any element which is orthogonal to each N_{i} is also orthogonal to any linear combination of the Bsplines. Hence $S:=\operatorname{span}\left(N_{1}, N_{2}, \ldots, N_{m}\right)$ is a subset of W^{\perp}. We now show that W^{\perp} is a subset of S (and hence $S=W^{\perp}$) by contradiction: Assume that there exists an element y which is in W^{\perp} but not in S. Since S is a closed subspace there exists (by the Projection Theorem)
an element s_{o} in S such that

$$
\left\|y-s_{o}!\right\| \leqq\|y-s\| \quad \text { for all } s \varepsilon S
$$

with $y-s_{o}$ in the orthogonal complement of S. This implies $T\left(y-s_{0}\right)=\theta$ or $\left(y-s_{0}\right) \varepsilon W$. However $y-s_{o}$ is also in W^{\perp} since both y and s_{0} are in W^{\perp}. Therefore $\left(y-s_{0}\right)=\theta$ and $S=W^{\perp}$.

In summary, g_{*} is characterized by

$$
g_{*}=\sum_{i=1}^{m} \alpha_{i} N_{i}
$$

(since $g_{\%}$ is in the span of the B-splines) where the coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are chosen to satisfy

$$
\begin{equation*}
\left(\sum_{j=1}^{m} \alpha_{j} N_{j}, N_{i}\right)=d_{i} \quad i=1,2, \ldots, m \tag{1.12}
\end{equation*}
$$

(since $\mathrm{Tg}_{\%}=\underline{d}$). Equation (1.13), a system of minear equations in m unknowns, can be written in matrix notation as

$$
\begin{equation*}
\mathrm{A} \underline{\alpha}=\underline{d} \tag{1.13}
\end{equation*}
$$

where the symmetric matrix A has entries $A_{i j}=\left(N_{i}, N_{j}\right)$.
Because the B-splines are linearly independent, the matrix A, a Grahm matrix, is nonsingular and hence a unique solution exists for any given d. Furthermore, since N_{i} has support $\left[t_{i}, t_{i+2}\right.$], the matrix A is tridiagonal. For any $\underline{x} \varepsilon R^{m}$ we have

$$
\begin{aligned}
\underline{x}^{T} \underline{A x} & =\sum_{i=1}^{m} x_{i}(A \underline{x})_{i} \\
& =\sum_{i=1}^{m} x_{i}\left(N_{i}, \sum_{j=1}^{m} x_{j} N_{j}\right) \\
& =\left(\sum_{i=1}^{m} x_{i} N_{i}, \sum_{j=1}^{m} x_{j} N_{j}\right) \\
& =\left\|\sum_{i=1}^{m} x_{i} N_{i}\right\|_{2}^{2} \\
& \geqq 0
\end{aligned}
$$

with equality holding if and only if $\underline{x}=\theta$. The matrix A is hence positive definite and (1.13) can be solved by Gauss elimination without pivoting, or, better still, by Cholesky decomposition.

We note also that

$$
\left\|g_{*}\right\|=\underline{\alpha}^{\mathrm{T}} \underline{\mathrm{~A}} \underline{\alpha}=\underline{\alpha}^{\mathrm{T}} \underline{d} .
$$

The entry $A_{i j}$, the integral of the product of two piecewise linear polynomials, can be computed exactly by Simpson's rule applied on each subinterval $\left[t_{k}, t_{k+1}\right]$. Denoting $\Delta t_{k}:=t_{k+1}-t_{k}$ and z_{k} the midpoint of the interval $\left[t_{k}, t_{k+1}\right.$] we have for $i=1,2, \ldots, m$

$$
\begin{aligned}
A_{i i} & =\int_{t_{i}}^{t_{i+1}} N_{i}(t)^{2} d t+\int_{t_{i+1}}^{t_{i+2}} N_{i}(t)^{2} d t \\
& =\left(\Delta t_{i+1} / 6\right)\left[N_{i}\left(t_{i}\right)^{2}+4 N_{i}\left(z_{i}\right)^{2}+N_{i}\left(t_{i+1}\right)^{2}\right] \\
& +\left(\Delta t_{i+2} / 6\right)\left[N_{i}\left(t_{i+1}\right)^{2}+4 N_{i}\left(z_{i+1}\right)^{2}+N_{i}\left(t_{i+2}\right)^{2}\right] \\
& =\left(t_{i+2}-t_{i}\right) / 3 .
\end{aligned}
$$

We also compute for $i=1,2, \ldots, m-1$

$$
\begin{aligned}
A_{i, i+1} & =A_{i+1, i} \\
& =\int_{t_{i+1}}^{t_{i+2}} N_{i} N_{i+1}(t) d t \\
& =\left(t_{i+2}-t_{i+1}\right) / 6
\end{aligned}
$$

The solution g_{\approx}, being a linear combination of linear B-splines, is piecewise linear (and continuous) with knots t_{i}. After integrating g_{*} twice and applying the interpolation conditions, we obtain $f_{\%}$ which is piecewise cubic (with knots t_{i}) with two continuous derivatives.

Define $\underline{\beta} \varepsilon R^{n}$ via

$$
\beta_{i}= \begin{cases}0 & i=1 \\ \alpha_{i-1} & i=2,3, \ldots, n-1 \\ 0 & i=n\end{cases}
$$

and $\Delta \beta=\beta_{i+1}-\beta_{i}$. On [$\left.t_{i}, t_{i+1}\right] f_{*}$ is defined by a unique cubic polynomial $p_{\#}$ and hence f_{*} can be determined by specifying the numbers $p_{*_{i}}{ }^{(j)}\left(t_{i}\right)$ for $i=1,2, \ldots, n-1$ and $j=0,1,2,3$. Then

$$
\begin{align*}
f_{\varkappa_{n}}(t) & =\frac{p_{\varkappa_{i}}(2)\left(t_{i}\right)}{0!}+\frac{p_{*_{j}}\left(t_{i}\right)}{1!}\left(t-t_{i}\right) \\
& +\frac{p_{\varkappa_{i}}(2)}{2!}\left(t_{i}\right)\left(t-t_{i}\right)^{2}+\frac{p_{*_{i}}(3)}{3!}\left(t_{i}\right)\left(t-t_{i}\right)^{3} \tag{1.14}
\end{align*}
$$

for $t \varepsilon\left[t_{i}, t_{i+1}\right]$. Of course, (1.14) can be more efficiently evaluated by using nested multiplication.

The polynomial $\mathrm{P}_{\mathrm{H}_{i}}$ solves the differential equation

$$
\begin{equation*}
p_{*_{i}}{ }^{(2)}(t)=\beta_{i}+\left(\Delta \beta_{i} / \Delta t_{i}\right)\left(t-t_{i}\right) \tag{1.15}
\end{equation*}
$$

on the interval $\left[t_{i}, t_{i+1}\right.$] with boundary conditions $p_{*_{i}}\left(t_{i}\right)=y_{i}$ and $p_{\dddot{x}_{i}}\left(t_{i+1}\right)=y_{i+1}$. Therefore

$$
\begin{equation*}
P_{*_{i}}(t)=\frac{\beta_{i}}{2}\left(t-t_{i}\right)^{2}+\frac{\Delta \beta_{i}}{6 \Delta t_{i}}\left(t-t_{i}\right)^{3}+c_{i}\left(t-t_{i}\right)+e_{i} \tag{1.16}
\end{equation*}
$$

where the constants c_{i} and e_{i} are evaluated as $e_{i}=y_{i}$ and

$$
\begin{equation*}
c_{i}=\frac{\Delta y_{i}}{\Delta t_{i}}-\left(\frac{\beta_{i+1}}{2}+\frac{\Delta \beta_{i}}{6}\right) \Delta t_{i} \tag{1.17}
\end{equation*}
$$

with $\Delta y_{i}=y_{i+1}-y_{i}$. From (1.17) we obtain

$$
\begin{align*}
& p_{\varkappa_{i}}^{(0)}\left(t_{i}\right)=y_{i} \\
& p_{*_{i}}(1)\left(t_{i}\right)=c_{i} \tag{1.18}\\
& p_{*_{i}}(2)\left(t_{i}\right)=\beta_{i} \\
& p_{\varkappa_{i}}{ }^{(3)}\left(t_{i}\right)=\Delta \beta_{i} / \Delta t_{i}
\end{align*}
$$

where c_{i} is given by (1.17). A complete FORTRAN program for computing the natural cubic spline interpolant is given in Appendix A.

Figure (1.3) displays the natural cubic spline interpolant that is in contrast to the polynomial interpolant of figure (1.1).

We complete this chapter by posing (and solving) a generalization of problem (1.1). For k fixed satisfying $2 \leqq k \leqq n$, let $A(k)$ be the be the set of interpolants (to the data) which are in $L_{2}^{(k)}[a, b]$. We

Figure (1.3): The Natural Cubic Spline Interpolant.
consider the problem
Find $f_{*} \varepsilon A(k)$ such that $\left\|f_{*}{ }^{(k)}\right\|_{2} \leqq\left\|f^{(k)}\right\|_{2}$ for all $f \varepsilon A(k)$

Let f be an element of $A(k)$. Since (1.3) is valid for f, we can integrate by parts again (assuming $k>2$) to obtain

$$
\begin{equation*}
f(t)=q_{2}(t)+\int_{a}^{t} \frac{(t-s)^{2}}{2!} f^{(3)}(s) d s \tag{1.20}
\end{equation*}
$$

where

$$
q_{2}(t)=f(a)+f^{(1)}(a)(t-a)+\frac{f^{(2)}(a)}{2!}(t-a)^{2}
$$

In general, after integrating by parts $\mathrm{k}-\mathrm{l}$ times we obtain

$$
\begin{equation*}
f(t)=q_{k-1}(t)+\int_{a}^{b} \frac{(t-s)^{k-1}}{(k-1)!} f^{(k)}(s) d s \tag{1.21}
\end{equation*}
$$

or

$$
\begin{equation*}
f(t)=q_{k-1}(t)+\int_{a}^{b} \frac{(t-s)_{+}^{k-1}}{(k-1)!} f^{(k)}(s) d s \tag{1.22}
\end{equation*}
$$

Now we take the (scaled) k-th divided difference of (1.22) to obtain

$$
\begin{equation*}
d_{i, k}=\int_{a}^{b} g(s) N_{i, k}(s) d s \quad i=1,2, \ldots, n-1 \tag{1.23}
\end{equation*}
$$

where

$$
\begin{align*}
& d_{i, k}=(k-1)!\left(t_{i+k}-t_{i}\right)\left[t_{i}, \ldots, t_{i+k}\right] f(\cdot), \tag{1.24}\\
& N_{i, k}(s)=\left(t_{i+k}-t_{i}\right)\left[t_{i}, \ldots, t_{i+k}\right](\cdot-s)_{+}^{k-1} \tag{1.25}
\end{align*}
$$

(the normalized B-spline of order k), and $g=f^{(2)}$.
Let $B(k)$ denote the set of elements (in $L_{2}[a, b]$) wich satisfy (1.23). Then the solution $f_{\check{\circ}}$ to (1.20) is related to the solution to the problem

Find $g_{*} \varepsilon B(k)$ such that $\left\|g_{*}^{(k)}\right\|_{2} \leqq\left\|g^{(k)}\right\|_{2}$ for all $g \varepsilon B(k)$
via $g_{*}=f_{*}^{(k)}$. Furthermore, for some $\underline{\alpha} \varepsilon R^{n-k}$ we have

$$
g_{*}=\sum_{j=1}^{n-k} \alpha_{j} N_{j, k} .
$$

The coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-k}$ are chosen to solve the linear system of $n-k$ equations in $n-k$ unknowns represented by the matrix equation $A \underline{\alpha}=\underline{d}$ where A is symmetric and positive definite with entries

$$
A_{i j}=\left(N_{i, k}, N_{j, k}\right)
$$

Since $g_{\text {. }}$ is a linear combination of piecewise polynomials of order k, f_{*} will be a piecewise polynomial of order $2 k$. We call f_{*} the natural spline interpolant of order 2 k .

2. A Minimal Norm Interpolation Problem
 in the $L_{p}[a, b]$ Spaces

For p such that $I<p \leqq \infty$ we define the set

$$
G(p):=\left\{g \varepsilon L_{p}[a, b]: \int_{a}^{b} g(t) \phi_{i}(t) d t=\int_{a}^{b} g_{0}(t) \phi_{i}(t) d t\right.
$$

where $\left\{\phi_{i}\right\}_{i=1}^{n}$ is a set of elements in $L_{q}[a, b], q$ is conjugate to p ($p+q=p q$ if $p \neq \infty$ and $q=1$ if $p=\infty$), and g_{0} is a fixed element of $L_{p}[a, b]$. Consider the problem

$$
\text { Find } g_{\%} \varepsilon G(p) \text { such that }\left\|g_{*}\right\|_{p} \leqq\|g\|_{p} \text { for al1 } g \varepsilon G(p) \text {. (2.2) }
$$

In chapter 1 we solved (2.2) for the special case $p=2$; finding from a linear variety in a Hilbert space the element of minimal norm. The Projection Theorem came in handy to characterize $g_{\%}$ as well as to guarantee uniqueness. However, for $p \neq 2 L_{p}[a, b]$ does not have the orthogonality properties of a Hilbert space and hence, we cannot use the Projection Theorem to solve (2.2). Instead we solve (2.2) in this chapter by utilizing the Hahn-Banach theorem to characterize g_{*}. Uniqueness follows in the case $1<p<\infty$ by the strict convexity of the norm. This chapter, modeled after $[\operatorname{deB}(2)]$, motivates the use of the Hahn-Banach theorem in chapter 5.

Let λ be the linear functional defined on the subspace

$$
S:=\operatorname{span}\left(\phi_{1}, \ldots, \phi_{n}\right)
$$

via

$$
\begin{equation*}
\lambda\left(\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right)=\int_{a}^{b}\left(\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right)(t) g_{o}(t) d t . \tag{2.3}
\end{equation*}
$$

Any element of $G(p)$ (including g_{o}) will serve as an extension of λ to a bounded linear functional defined on all of $L_{q}[a, b]$. Hence,

$$
\begin{equation*}
\|\lambda\|_{\mathrm{s}} \leqq\|g\|_{\mathrm{p}} \text { for all } \mathrm{g} \varepsilon G(\mathrm{p}) \tag{2.4}
\end{equation*}
$$

Conversely, any extension of λ to a bounded linear functional defined on all of $L_{q}[a, b]$, being identical to λ on S, is represented by an element of $G(p)$.

The Hahin-Banach theorem guarantees the existence of an element $\hat{g} \varepsilon G(p)$ such that

$$
\int_{a}^{b} f(t) \hat{g}(t) d t \leqq\|\lambda\|_{s} \cdot\|f\|_{q} \text { for all } f \varepsilon L_{q}[a, b]
$$

This implies that $\|\hat{g}\| \leqq\|\lambda\|_{\mathrm{S}}$ which, taken along with (2.4), gives us $\|\hat{g}\|=\|\lambda\|_{s}$ and, therefore, a solution to (2.2). Now we characterize \hat{g}.

Let $\sum_{i=1}^{n} \alpha_{i}^{*} \phi_{i}$ be an element such that

$$
\left\|\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right\|_{q}=1 \quad \text { and } \quad \lambda\left(\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right)=\|\lambda\|_{s} .
$$

(This element is unique if $1<p<\infty$ since the norm is strictly convex.) Then

$$
\begin{aligned}
\|\hat{g}\|_{p} & =\|\lambda\|_{s} \\
& =\lambda\left(\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right) \\
& =\int_{a}^{b}\left(\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right)(t) \hat{g}(t) d t \\
& \leqq\left\|\sum_{n=i}^{n} \alpha_{i} \phi_{i}\right\| \cdot\|\hat{g}\|_{p} \\
& =\|\hat{g}\|_{p} .
\end{aligned}
$$

Therefore, equality holds throughout and we have

$$
\int_{a}^{b}\left(\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right)(t) \hat{g}(t) d t=\left\|\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right\|_{q} \cdot\|\hat{g}\|_{p}
$$

Since \hat{g} and $\sum_{i=1}^{n} \alpha_{i} \phi_{i}$ are aligned, we must have

$$
\hat{g}(t)=\|\lambda\|_{s} \cdot\left\|\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right\|^{q-1} \operatorname{signum}\left(\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right)(t) .
$$

We close this chapter by stating the interpolation problem that goes along with solving (2.2). Let p be a number such that $1<p<\infty$, let k be an integer such that $k \geqq 2$, and let $f_{o} \varepsilon L_{p}{ }^{(k)}[a, b]$. Define the sets

$$
F:=\left\{f \varepsilon L_{p}^{(k)}[a, b]: f\left(t_{i}\right)=f_{o}\left(t_{i}\right) \quad i=1,2, \ldots, n\right\}
$$

and

$$
G:=\left\{g \varepsilon L_{p}[a, b]: \int_{a}^{b} g(t) N_{i, k}(t) d t=d_{i, k} \quad i=1,2, \ldots, n-k\right\}
$$

Then the problems

Find $f_{*} \varepsilon F$ such that $\left\|f_{*}^{(k)}\right\|_{p} \leqq\left\|f^{(k)}\right\|_{p}$ for all $f \varepsilon F$
and

$$
\text { Find } f_{*} \in G \text { such that }\left\|g_{*}\right\|_{p} \leqq\|g\|_{p} \text { for all } g \varepsilon G
$$

are equivalent and

$$
g_{*}(t)=f_{*}^{(k)}(t)=\left|\sum_{i=1}^{n-k} \beta_{i} N_{i, k}\right|^{q-1} \text { signum }\left(\sum_{i=1}^{n-k} \beta_{i} N_{i, k}\right)(t) .
$$

3. The Convex Spline Interpolant

The data $\left\{\left(t_{i}, y_{i}\right)\right\}_{i=1}^{n}$ are called convex if the point $\left(t_{i_{2}}, y_{i_{2}}\right)$ lies on or beneath the line joining the points $\left(t_{i_{1}}, y_{i_{1}}\right)$ and $\left(t_{i_{3}}, y_{i_{3}}\right)$ whenever $1 \leqq i_{1}<i_{2}<i_{3} \leqq n$. Equivalently,

$$
\left[t_{i_{1}}, t_{i_{2}}, t_{i_{3}}\right) f(\cdot)=0
$$

(where f is any interpolant to the data) or

$$
d_{i}=\frac{y_{i+2}-y_{i+1}}{t_{i+2}-t_{i+1}}-\frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}} \geqq 0
$$

for $i=1,2, \ldots, m(=n-2)$.
In this chapter we address the problem of finding, for convex data, the smoothest convex interpolant; that is, the convex interpolant having second derivative of minimal norm over all smooth convex interpolants. The natural cubic spline interpolant, the smoothest of all interpolants, regrettably does not always preserve the convexity of the data. In chapter 1 we showed that $f_{\dddot{\varkappa}}$, the natural cubic spline interpolant, has second derivative

$$
f_{*}{ }^{(2)}=\sum_{j=1}^{m} \alpha_{j} N_{j}
$$

where the coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ satisfy (1.13). If any α_{i} is negative, then $f_{\%}$ is actually concave on a subset of $[a, b]$.

Let $\left\{\left(t_{i}, y_{i}\right)\right\}_{i=1}^{n}$ denote convex data and let A denote the set of convex.interpolants in $L_{2}{ }^{(2)}[a, b]$. We assume that A is nonempty.
(There are convex data for which A is empty. For example, let $y_{i}=\left|t_{i}\right|$ and $t_{1}=-2, t_{2}=-1, t_{3}=0, t_{4}=1$, and $t_{5}=2$. The only convex interpolant is $f(x)=|x|$, which is not in $L_{2}{ }^{(2)}[-2,2]$.)

Using the Peano kernel theorem as we did in chapter 1 we can show that if $f \varepsilon A$ then $T\left(f^{(2)}\right)=\underline{d}$ where $T: L_{2}[a, b] \rightarrow R^{m}$ is given by $\left(\mathrm{Tg}_{i}\right):=\left(\mathrm{g}, \mathrm{N}_{\mathrm{i}}\right)$. Hence if

$$
B=\left\{g \varepsilon L_{2}[a, b]: \quad g \geqq 0 \text { and } T g=\underline{d}\right\},
$$

then problems

$$
\begin{equation*}
\text { Find } f_{*} \varepsilon A \text { such that }\left\|f_{*}(2)\right\|_{2} \leqq\left\|f^{(2)}\right\|_{2} \text { for all } f \varepsilon A \tag{3.1}
\end{equation*}
$$ and

$$
\begin{equation*}
\text { Find } g_{*} \in B \text { such that }\left\|g_{*}\right\|_{2} \leqq\|g\|_{2} \text { for all } g \varepsilon B \tag{3.2}
\end{equation*}
$$

are equivalent and the solutions are related via $g_{\%}=f_{*}(2)$. Since B is a nonempty closed convex set, we consider (3.2) as finding the distance from a point to a closed convex set in a Hilbert space.

Proposition ([L, page 69]): Let x be an element of a Hilbert space H and let K be a nonempty closed convex subset of H. Then there exists a unique element $k_{0} \varepsilon K$ such that

$$
\left\|x-k_{0}\right\| \leqq\|x-k\| \text { for all } k \varepsilon K
$$

Furthermore, k_{o} is characterized by

$$
\left(x-k_{o}, k-k_{o}\right) \leqq 0 \text { for all } k \varepsilon K .
$$

Since we wish to find the element of minimal norm in B, X corresponds to the zero function and hence g_{*} is characterized by

$$
\begin{equation*}
\left(g_{⿻ 丷}^{*}, g-g_{\star}\right) \geqq 0 \text { for all } g \varepsilon B \text {. } \tag{3.3}
\end{equation*}
$$

Propostion ([MSSW, proposition 2.1]): If there exist coefficients
$\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ satisfying

$$
\begin{equation*}
\int_{a}^{b}\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)+N_{i}(t) d t=d_{i} \quad i=1,2, \ldots, m \tag{3.4}
\end{equation*}
$$

then $g_{*}=\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+}$. $\frac{\text { Furthermore, such coefficients exist if there }}{m}$ exists $\hat{g} \varepsilon B$ such that $\left\{N_{i}\right\}_{i=1}^{m}$ are Iinearly independent over the support of \hat{g}.

Proof: Assume $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ satisfy (3.4). Denote $s=\sum_{j=1}^{m} \alpha_{j} N_{j}$ and assume $g \in B$. Define (h)_ $=(-h)_{+}$so that

$$
h=(h)_{+}-(h)_{-}
$$

Then

$$
\begin{aligned}
\left((s)_{+}, g\right. & \left.-(s)_{+}\right) \\
& =\left(s+(s)_{-}, g-(s)_{+}\right) \\
& =\left(s, g-(s)_{+}\right)+\left((s)_{-}, g-(s)_{+}\right) \\
& =\left((s)_{-}, g\right)-\left((s)_{-},(s)_{+}\right) \\
& =\left((s)_{-}, g\right) \\
& \geqq 0
\end{aligned}
$$

The last inequality is valid since both (s)_ and g are nonnegative functions. Hence (s) satisfies (3.3).

We now show that we can find coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ so that
(3.4) holds by foliowing the procedure employed in [MSSW].

We begin by considering the problem

$$
\begin{equation*}
\left.\inf \int_{a}^{b} \underset{j=1}{b} \sum_{j} \alpha_{j}\right)^{2}(t) d t: \sum \alpha_{i} d_{i}=1 \tag{3.5}
\end{equation*}
$$

and showing that if the infimum is attained at some $\underline{\alpha}$, then for some positive constant C the coefficients $C \alpha_{1}, C \alpha_{2}, \ldots, C \alpha_{m}$ satisfy (3.4).

If the infimum of (3.5) is attained at $\underline{\underline{\alpha}}$, then $\underline{\alpha}^{*}$ is a critical point of the Largrangian

$$
\begin{equation*}
L(\underline{\alpha}, \lambda)=\int_{a}^{b}\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+}(t) d t+\lambda\left(1-\sum_{j=1}^{m} \alpha_{j} d_{j}\right) . \tag{3.6}
\end{equation*}
$$

At a minimum of L we must have

$$
\begin{equation*}
0=2 \int_{a}^{b}\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+} N_{i}(t) d t-\lambda d_{i} \quad i=1,2, \ldots, m \tag{3.7}
\end{equation*}
$$

and $\underline{\alpha} \cdot \underline{d}=I$ for some λ.
Now multiply (3.7) by α_{i} and sum over $i=1,2, \ldots, m$ to obtain

$$
2 \int_{a}^{b}\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+}\left(\sum_{i=1}^{m} \alpha_{i} N_{i}\right)(t) d t-\lambda \sum_{i=1}^{m} \alpha_{i} d_{i}=0
$$

or

$$
\begin{equation*}
\lambda=2 \int_{a}^{b}\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+}^{2}(t) d t \geqq 0 \tag{3.8}
\end{equation*}
$$

If $\lambda>0$, then (3.7) reveals that

$$
\begin{equation*}
\int_{a}^{b}\left(\sum_{j=1}^{m} \alpha_{j}^{*} N_{j}\right)^{*} N_{i}(t) d t=d_{i} \quad i=1,2, \ldots, m \tag{3.9}
\end{equation*}
$$

where $\alpha_{j}^{*}=2 \alpha_{j} / \lambda$. If $\lambda=0$, then (3.8) reveals that

$$
\int_{a}^{b}\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+}(t) d t=0
$$

where $\underline{\alpha} \cdot \underline{d}=1$. This implies that $\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right) \leqq 0$. However, for any $g \varepsilon B$ we have

$$
\begin{aligned}
\int_{a}^{b}\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right) g(t) d t & =\sum_{j=1}^{m} \alpha_{j}\left(N_{j}, g\right) \\
& =\sum_{j=1}^{m} \alpha_{j} d_{j} \\
& =1
\end{aligned}
$$

which is impossible because g is nonnegative on [a,b]. We conclude that λ is strictly positive and, if the infimum in (3.5) is attained by some $\underline{\alpha}$, that (3.4) is solvable. We now show that the infimum is attained.

Let $\left\{\underline{\alpha}^{(k)}\right\}_{k=1}^{\infty}$ be a minimizing sequence. If $\left\{\left\|\underline{\alpha}^{(k)}\right\|\right\}_{k=1}^{\infty}$ is unbounded, then divide the objective function of (3.6) by $\|\underline{\alpha}\|_{\infty}^{2}$ and the constraint by $\|\underline{\alpha}\|_{\infty}$. There then exists $\underline{\alpha}$ such that

$$
\begin{gathered}
\|\underline{\alpha}\|_{\infty}=1, \\
\underline{\alpha} \cdot \underline{d}=0, \text { and } \\
\int_{a}^{b}\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+}^{2}(t) d t=0 .
\end{gathered}
$$

We conclude that $\sum_{j=1}^{m} \alpha_{j} N_{j}$ is nonpositive, but not identically zero. Since we have assumed there exists $\hat{g} \varepsilon B$ such that the B-splines are linearly independent on the support of \hat{g},

$$
\begin{aligned}
0 & =\sum_{j=1}^{m} \alpha_{j} d_{j}=\sum_{j=1}^{m} \alpha_{j}\left(\hat{g}, N_{j}\right) \\
& =\left(\hat{g}, \sum_{j=1}^{m} \alpha_{j} N_{j}\right) \\
& <0
\end{aligned}
$$

which is a contradiction. Hence a minimizing sequence must be bounded and the infimum is attained via a convergent subsequence. This completes the proof of the proposition.

We note that the existence of $\hat{g} \varepsilon B$, such that $\left\{N_{i}\right\}^{m}$ are linearly independent over the support of \hat{g}, in the previous proposition is guaranteed if $d_{i}>0$ for each i. Then each $g \varepsilon B$ must be positive on some subinterval of $\left[t_{i}, t_{i+2}\right]$, the support of N_{i}, for each i.

Now we consider the implication of allowing $d_{k}=0$ for some k. As a specific example let $t_{i}=(i-1)$ for $i=1,2,3,4$ and let $\underline{d}=(1,0)^{T}$. If $g_{\%}$ is the positive part of a linear combination of B-splines, then there must exist numbers α_{1} and α_{2} satisfying

$$
\int_{0}^{3}\left(\alpha_{1} N_{1}+\alpha_{2} N_{2}\right)+N_{i}(t) d t=\left\{\begin{array}{lll}
1 & \text { if } & i=1 \tag{3.10}\\
0 & \text { if } & i=2
\end{array}\right.
$$

which implies that $\alpha_{2}=-\infty$. This is equivalent to the solution being identically zero on $[1,3]$. In fact, any $g \varepsilon B$ must be of the form $g=g X_{[0,1]}$. It is shown in [MSSW, theorem 3.1] that the solution to (3.2) is

$$
g_{*}=\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+} \chi_{\Gamma}
$$

for appropriate coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ where

$$
\Gamma:=[a, b] /\left\{\bigcup_{j=1}^{m}\left(t_{j}, t_{j+2}\right): d_{j}=0\right\}
$$

Hence the solution to (3.2) with $t_{i}=(i-1)$ for $i=1,2,3,4$ and $\underline{d}=(1,0)^{T}$ is

$$
g_{*}=3 N_{1} X[0,1]
$$

Unless otherwise stated we assume $d_{i}>0$ for each i for the remainder of this chapter.

Before we consider how to compute the coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ which satisfy (3.4), we give a procedure for integrating g_{*}. Define $\beta_{i}, \Delta \beta_{i}, \Delta t_{i}$, and Δy_{i} as in chapter 1 . We integrate g_{*} on each subinterval $\left[t_{i}, t_{i+1}\right]$ separately, forming a piecewise polynomial, by solving the differential equation

$$
\begin{equation*}
\mathrm{p}_{K_{i}}(2)(\mathrm{t})=\left(\beta_{i}+\frac{\Delta \beta_{i}}{\Delta t_{i}}\left(t-t_{i}\right)\right)_{+} \tag{3.11}
\end{equation*}
$$

for $t_{i} \leqq t \leqq t_{i+1}$ with boundary conditions $p_{x}\left(t_{i}\right)=y_{i}$ and $p_{*}\left(t_{i+1}\right)=y_{i+1}$.

Two integrations gives us

$$
\begin{equation*}
p_{\gtrless_{i}}^{(I)}(t)=\frac{\Delta t_{i}}{2 \Delta \beta_{i}}\left(\beta_{i}+\frac{\Delta \beta_{i}}{\Delta t_{i}}\left(t-t_{i}\right)\right)_{+}^{2}+c_{i} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{*_{i}}(t)=\frac{\Delta t_{i}}{6\left(\Delta \beta_{i}\right)^{2}}\left(\beta_{i}+\Delta \beta_{i}\left(t-t_{i}\right)\right)_{+}^{3}+c_{i}\left(t-t_{i}\right)+e_{i} \tag{3.13}
\end{equation*}
$$

for constants c_{i} and e_{i}. We proceed by cases.
Case 1 occurs when both β_{i} and β_{i+1} are nonnegative. The nonnegativity constraint is not active in this case and so (3.13) is equivalent to (1.16), although with modified constants c_{i} and e_{i}. The values $p_{\text {* }_{i}}{ }^{(j)}\left(t_{i}\right)$ for $j=0,1,2,3$, are given by (1.18).

Case 2 occurs when $\beta_{i}<0$ and $\beta_{i+1}>0$. In this case $p_{\%_{i}}$ can be defined by two polynomials: a linear polynomial $q_{i 1}$ defined on [t_{i}, τ_{i}] - where the nonnegativity constraint is active and hence the second derivative is zero - and a cubic polynomial defined on $\left[\tau_{i}, t_{i+1}\right]$ where

$$
\begin{equation*}
\tau_{i}=t_{i}-\beta_{i} \Delta t_{i} / \Delta \beta_{i} \tag{3.14}
\end{equation*}
$$

Applying the boundary condition $\mathrm{P}_{\%_{i}}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}$ we obtain $\mathrm{e}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}$. Applying $p_{*_{i}}\left(t_{i+1}\right)=y_{i+1}$ we get an equation for c_{i} :

$$
\frac{\left(\Delta t_{i}\right)^{2}}{6\left(\Delta \beta_{i}\right)^{2}}\left(\beta_{i+1}\right)^{3}+c_{i} \Delta t_{i}+y_{i}=y_{i+1}
$$

Solving for c_{i} we have

$$
\begin{equation*}
c_{i}=\frac{\Delta y_{i}}{\Delta t_{i}}-\frac{\left(\beta_{i+1}\right)^{3} \Delta t_{i}}{2\left(\Delta \beta_{i}\right)^{2}} \tag{3.15}
\end{equation*}
$$

From (3.11), (3.12), and (3.13) we obtain

$$
\begin{align*}
& q_{i 1}\left(t_{i}\right)=y_{i} \\
& q_{i 1}^{(1)}\left(t_{i}\right)=c_{i} \\
& q_{i 1}^{(2)}\left(t_{i}\right)=0 \\
& q_{i 1}^{(3)}\left(t_{i}\right)=0 \tag{3.16}\\
& q_{i 2}\left(\tau_{i}\right)=c_{i}\left(\tau_{i}-t_{i}\right)+y_{i} \\
& q_{i 2}^{(i)}\left(\tau_{i}\right)=c_{i} \\
& q_{i 2}^{(2)}\left(\tau_{i}\right)=0 \\
& q_{i 2}^{(3)}\left(\tau_{i}\right)=\Delta \beta_{i} / \Delta t_{i}
\end{align*}
$$

where τ_{i} and c_{i} are given by (3.14) and (3.15) respectively.
Case 3 occurs when $\beta_{i}>0$ and $\beta_{i+1}<0$. In this case $P_{*_{i}}$ is defined by a cubic polynomial $q_{i l}$ on $\left[\mathrm{t}_{i}, \tau_{i}\right]$ and by a linear polynomial $q_{i 2}$ on $\left[\tau_{i}, t_{i+1}\right.$] with τ_{i} defined by (3.14). These polynomials are determined by the values

$$
\begin{aligned}
& q_{i 1}\left(t_{i}\right)=y_{i} \\
& q_{i 1}^{(1)}\left(t_{i}\right)=c_{i}+\left(\beta_{i}\right)^{2} \Delta t_{i} /\left(2 \Delta \beta_{i}\right) \\
& q_{i 1}^{(2)}\left(t_{i}\right)=\beta_{i} \\
& q_{i 1}^{(3)}\left(t_{i}\right)=\Delta \beta_{i} / \Delta t_{i} \\
& q_{i 2}\left(\tau_{i}\right)=c_{i}\left(\tau_{i}-t_{i}\right)+e_{i} \\
& q_{i 2}^{(1)}\left(\tau_{i}\right)=c_{i} \\
& q_{i 2}^{(2)}\left(\tau_{i}\right)=0 \\
& q_{i 2}^{(3)}\left(\tau_{i}\right)=0
\end{aligned}
$$

where c_{i} and e_{i} are given by

$$
c_{i}=\frac{\Delta y_{i}}{\Delta t_{i}}-\frac{\left(\beta_{i}\right)^{3} \Delta t_{i}}{2\left(\Delta \beta_{i}\right)^{2}}
$$

and

$$
e_{i}=y_{i}-\frac{\left(\beta_{i}\right)^{3}\left(\Delta t_{i}\right)^{2}}{6\left(\Delta \beta_{i}\right)^{2}}
$$

Case 4 occurs when β_{i} and β_{i+1} are both nonpositive. In this case we obtain a linear polynomial defined on $\left[t_{i}, t_{i+1}\right]$ and determined by

$$
\begin{align*}
& p_{*_{i}}\left(t_{i}\right)=y_{i} \\
& p_{*_{i}}^{(1)}\left(t_{i}\right)=\Delta y_{i} / \Delta t_{i} \\
& p_{*_{i}}^{(2)}\left(t_{i}\right)=0 \tag{3.18}\\
& p_{*_{i}}^{(3)}\left(t_{i}\right)=0 .
\end{align*}
$$

Since g_{*} is piecewise linear and continuous (with knots at the t_{i} 's and τ_{i} 's), f_{*} will be piecewise cubic with two continuous derivatives (if $d_{i}>0$ for each i). We call $f_{\%}$ the convex cubic spline interpolant.

Now we turn our attention to the task of numerically calculating the coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ which satisfy (3.4). We continue to assume that $d_{i}>0$ for each i. Define $F: R^{m} \rightarrow R^{m}$ by $F=\left(F_{1}, F_{2}, \ldots, F_{m}\right)^{T}$ where

$$
\begin{equation*}
F_{i}(\underline{\alpha})=\int_{a}^{b}\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+} N_{i}(t) d t \quad i=1,2, \ldots, m \tag{3.19}
\end{equation*}
$$

We wish to solve $F(\underline{x})=\underline{d}$.
One method is to use Jacobi iteration. An initial guess $\underline{x}^{(0)}=\left(x_{1}{ }^{(0)}, x_{2}^{(0)}, \ldots, x_{m}^{(0)}\right)^{T}$ is chosen and a sequence $\left\{\underline{x}^{(k)}\right\}_{k=0}^{\infty}$ is generated by calculating $\underline{x}^{(k+1)}$, once $\underline{x}^{(k)}$ is known, by solving

$$
F_{i}\left(x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i}^{(k+1)}, x_{i+1}^{(k)}, \ldots, x_{m}^{(k)}\right)=d_{i}
$$

for $x_{i}^{(k+1)}$ for each i. A modification, the Gauss-Seidel iteration, involves calculating $\underline{x}^{(k+1)}$, once $\underline{x}^{(k)}$ is known, by solving

$$
F_{i}\left(x_{1}^{(k+1)}, \ldots, x_{i-1}^{(k+1)}, x_{i}^{(k+1)}, x_{i+1}^{(k)}, \ldots, x_{m}^{(k)}\right)=d_{i}
$$

for $x_{i}^{(k+1)}$ for $i=1,2, \ldots, m$ in succession. Both Jacobi and GaussSiedel iterations converge globally as proved in [IMS]

Now we consider Newton's method to solve $G(\underline{x})=F(\underline{x})-\underline{d}=\theta$. We pick a suitable initial guess $\underline{x}^{(0)}$ and form a sequence $\left\{\underline{x}^{(k)}\right\}_{k=0}^{\infty}$ by solving

$$
\begin{equation*}
(\nabla G)\left(\underline{x}^{(k)}\right)\left(\underline{x}^{(k+1)}-\underline{x}^{(k)}\right)=-G\left(\underline{x}^{(k)}\right) \tag{3.20}
\end{equation*}
$$

for $\underline{x}^{(k+1)}$ once $\underline{x}^{(k)}$ is known. Since $\nabla G=\nabla F$, we can express (3.20) alternately as

$$
\begin{equation*}
\left.\left.(\nabla F)\left(\underline{x}^{(k)}\right)\left(\underline{x}^{(k+1)}\right)-\underline{x}^{(k)}\right)=\underline{d}^{(k)} \underline{x}^{(k)}\right) \tag{3.21}
\end{equation*}
$$

The entries of the Jabocian matrix F are

$$
\begin{equation*}
(\nabla F)_{i j}(\underline{\alpha})=\int_{a}^{b}\left(\sum_{k=1}^{m} \alpha_{k} N_{k}\right)_{+}^{O} N_{j} N_{i}(t) d t \tag{3.22}
\end{equation*}
$$

where $\left(\sum_{k=1}^{m} \alpha_{k} N_{k}\right)_{+}^{o}$ is the characteristic function for the support of
$\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+}$. We see that ∇F is symmetric and tridiagonal at each $\underline{\alpha}$.
We now characterize those $\underline{\alpha}$ for which ($\nabla \mathrm{F})(\underline{\alpha})$ is positive definite.

Lemma (3.1): The Jacobian ($\nabla \mathrm{f}$)($\underline{\alpha}$) is positive definite if and only if
$\left(\sum_{k=1}^{m} \alpha_{k} N_{k}\right)+$ does not vanish identically on any of the subintervals $\left[t_{i}, t_{i+2}\right]$ for $i=1,2, \ldots, m$.

Proof: For any $\underline{x} \varepsilon K^{m}$ we have

$$
\begin{aligned}
\underline{x}^{T}(\nabla F)(\underline{\alpha}) \underline{x} & =\sum_{i=1}^{m} x_{i} \sum_{j=1}^{m}(\nabla F)_{i j}(\underline{\alpha}) x_{j} \\
& =\int_{a}^{b}\left(\sum_{k=1}^{m} \alpha_{k} N_{k}\right)_{+}^{o}\left(\sum_{j=1}^{m} x_{j} N_{j}\right)\left(\sum_{i=1}^{m} x_{i} N_{i}\right)(t) d t \\
& =\int_{a}^{b}\left(\sum_{k=1}^{m} \alpha_{k} N_{k}\right)_{+}^{o}\left(\sum_{i=1}^{m} x_{i} N_{i}\right)^{2}(t) d t \\
& \geqq 0
\end{aligned}
$$

If $\left(\sum_{j=1} \alpha_{j} N_{j}\right)_{+}$does not vanish identically on $\left[t_{i}, t_{i+2}\right]$ for each i, then equality holds if and only if $x_{i}=0$ for each i. If there exists some k such that $\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)$ is identically zero on $\left[t_{k}, t_{k+2}\right]$, then equality does hold for the nonzero vector \underline{x} defined by $x_{i}=\delta_{i k}$ for each i. This completes the proof of the lemma. From (3.20) we see that

$$
\begin{aligned}
F_{i}(\alpha) & =\sum_{j=1}^{m} \alpha_{j} \int_{a}^{b}\left(\sum_{k=1}^{m} \alpha_{k} N_{k}\right)_{+}^{o} N_{j} N_{i}(t) d t \\
& =\sum_{j=1}^{m} \alpha_{j}(\nabla F)_{i j}(\underline{a})
\end{aligned}
$$

so that $F(\underline{\alpha})=(\nabla F)(\underline{\alpha}) \underline{\alpha}$. Newton's method - equation (3.22) - takes the form

$$
\begin{equation*}
(\nabla F)\left(\underline{x}^{(k)}\right) \underline{x}^{(k+1)}=\underline{d} . \tag{3.23}
\end{equation*}
$$

Theorem (3.2): If $(\nabla F)\left(\underline{x}^{(k)}\right)$ is positive definite, then $(\nabla F)\left(\underline{x}^{(k+1}\right)$
is positive definite for each k and, hence, Newton's method - equation 3.23) - is always well-defined.

Proof: Having the known values $x_{i}{ }^{(k)}$, we wish to determine the values $x_{i}{ }^{(k+1)}$ satisfying

$$
\begin{equation*}
\int_{S(k)}\left(\sum_{j=1}^{m} x_{j}(k+1) N_{j}\right) N_{i}(t) d t=d_{i} \quad i=1,2, \ldots, m \tag{3.24}
\end{equation*}
$$

where $S(k)$ is the support of $\left(\sum_{j=1}^{m} x_{j}(k)_{j}\right)_{+}$. Since $(\nabla F)\left(\underline{x}^{(k)}\right)$ is positive definite, then $S(k) \cup\left[t_{i}, t_{i+2}\right]$ contains an interval for each i. Since $d_{i}>0$, then $\left(\sum_{j=1}^{m} x_{j}{ }^{(k+1)} N_{j}\right)_{+}$is positive on some subinterval of $\left[t_{i}, t_{i+2}\right]$. Hence, $(\nabla F)\left(\underline{x}^{(k+1)}\right)$ is positive definite. This completes the proof of the Theorem.

Note that if $\underline{x}^{(0)}$ has all positive components (for example, if $x_{i}{ }^{(0)}=1$ for each i, then $S(0)=[a, b]$ and $\sum_{j=1}^{m} x_{j}{ }^{(1)} N_{j}$ is the second derivative of the natural cubic spline interpolant.

Now we assume that $d_{k}=0$ for some k. In this case special care must be exercised since $\left\{\mathrm{x}_{\mathrm{k}}{ }^{(\mathrm{j})^{\infty}} \mathrm{j}_{\mathrm{j}=0}\right.$ may diverge to $-\infty$, preventing any numerical convergence. We already know that $\mathrm{d}_{\mathrm{k}}=0$ implies that the
data points $\left(t_{k}, y_{k}\right),\left(t_{k+1}, y_{k+1}\right)$, and $\left(t_{k+2}, y_{k+2}\right)$ are collinear and, hence, any convex interpolant must be linear on $\left[t_{k}, t_{k+2}\right]$. Equivalently, the second derivative of any convex interpolant must be zero on $\left[t_{k}, t_{k+2}\right]$. Hence g_{*} is of the form

$$
\left(\sum_{j=1}^{m} x_{j} N_{j}\right)_{+}\left\{x_{\left[a, t_{k}\right]}+X_{\left[t_{k+2}, b\right]}\right\}
$$

Since the value of x_{k} is immaterial and the k-th equation is automatically satisfied, the number of equations and unknowns each reduce by one. For computational convencience (3.23) can still be used with the following modifications: $(\nabla F)_{k k}=1,(\nabla F)_{k, k+1}=0$, and $(\nabla F)_{k, k-1}=0$.

If $d_{k}=0$, then the solution is discontinuous at t_{k} if $x_{k-1}>0$ and is discontinuous at t_{k+2} if $x_{k+1}>0$. If the solution is discontinuous, then f_{*} will have only one continuous derivative.

A further problem is encountered when d_{k-1} and d_{k+1} are both zero, but d_{k} is nonzero for some k. Any nonnegative function g which satisfies the ($k-1$)-st and ($k+1$)-st equations can not satisfy the k-th equation since g is identically zero on $\left[t_{k-1}, t_{k+1}\right]$ and on $\left(t_{k+1}, t_{k+2}\right]$. We conclude that there does not exist any convex interpolant in $L_{2}{ }^{(2)}[a, b]$ (and no solution to the problem as posed). However, we can find a convex interpolant whose second derivative is of the form

$$
\left(\sum_{j=1}^{m} x_{j} N_{j}\right)_{+}\left\{x_{\left[a, t_{k-1}\right]}+x_{\left[t_{k+3}, b\right]}\right\}
$$

satisfying all but the k-th equation. We already know that this convex interpolant must be linear on $\left[t_{k-1}, t_{k+1}\right]$ and on $\left[t_{k+1}, t_{k+3}\right]$ and, hence, piecewise linear on $\left[t_{k-1}, t_{k+3}\right]$. If d_{k} is nonzero, then there will be a discontinuity in slope at t_{k+1}. For the convenience of utilizing (3.23) we can set d_{k} to be zero to satisfy the k-th equation. The discontinuity in slope will show up after we integrate the solution to obtain the interpolant.

Figure (3.1) displays the natural cubic spline interpolant to the function

$$
f(t)=\frac{1}{(0.05+t)(1.05-t)}
$$

at the knots $t_{1}=0, t_{2}=0.1, t_{3}=0.4, t_{4}=0.7, t_{5}=0.8$, and $t_{6}=1.0$. Figure (3.2) displays the convex spline interpolant to this function. Table (3.1) shows the convergence results for Jacobi, GaussSeide1, and Newton's method iterations taken from [IMS]. Note the quadratic convergence characteristic of Newton's method. These convergence results are typical.

Figure (3.1): The Natural Cubic Spline Interpolant.

Figure (3.2): The Convex Cubic Spline Interpolant

TABLE 3.1

$\left\\|F\left(x^{(n)}\right)-\mathrm{d}\right\\|_{2}$			
Iteration		Gauss	
Number	Jacobi	Seidel	Newton
1	$.46 \times 10^{2}$	$.27 \times 10^{2}$	$.19 \times 10^{2}$
2	. 28×10^{2}	. 11×10^{2}	. 85×60^{1}
3	$.75 \times 10^{1}$	$.42 \times 10^{1}$,29 $\times 10^{1}$
4	$.12 \times 10^{2}$. 18×10^{1}	$.49 \times 10^{0}$
5	. 26×10^{1}	$.75 \times 10^{0}$	$.14 \times 10^{-1}$
6	$.49 \times 10^{1}$	$.31 \times 10^{0}$. 11×10^{-4}
7	$.10 \times 10^{1}$	$.13 \times 10^{0}$	$.71 \times 10^{-11}$
8	$.21 \times 10^{1}$	$.55 \times 10^{-1}$	$.49 \times 10^{-12}$
9	$.43 \times 10^{0}$	$.23 \times 10^{-1}$	-----
10	. 86×10^{0}	$.96 \times 10^{-2}$	-----
20	. 11×10^{-1}	. 16×10^{-5}	
30	$.14 \times 10^{-3}$	$.26 \times 10^{-9}$	-----
40	$.18 \times 10^{-5}$	$.58 \times 10^{-13}$	-----
50	$.24 \times 10^{-7}$	----	-----
60	$.30 \times 10^{-9}$	-----	----
70	$.39 \times 10^{-11}$	-----	---

4. The Shape-Preserving Spline Interpolant

We addressed in chapter 3 the problem of finding, for convex data, the smoothest convex interpolant. We begin this chapter by considering the problem of finding, for concave data, the smoothest concave interpolant. Then we continue the chapter by examining the problem of finding, for general data, the smoothest interpolant which is locally convex where the data are locally convex and is locally concave where the data are locally concave.

Let $\left\{\left(t_{i}, y_{i}\right)\right\}_{i=1}^{n}$ denote concave data and let A denote the set of all concave interpolants in $L_{2}{ }^{(2)}[a, b]$. Assume A is nonempty. Using the Peano kernel theorem as we did in chapter 1 , we see that, if $f \varepsilon A$, then

$$
\int_{a}^{b} f^{(2)}(t) N_{i}(t) d t=d_{i} \quad i=1,2, \ldots, m(=n-2)
$$

Equivalently, we have $T\left(f^{(2)}\right)=d$. Defining

$$
B:=\left\{g \varepsilon L_{2}[a, b]: g \leqq 0 \text { and } T g=d\right\}
$$

we conclude that the problems

$$
\begin{equation*}
\text { Find } f_{*} \varepsilon A \text { such that }\left\|f_{*}^{(2)}\right\|_{2} \leqq\left\|f^{(2)}\right\|_{2} \text { for all } f \varepsilon A \tag{4.1}
\end{equation*}
$$

(the problem of finding the smoothest concave interpolant) and

$$
\text { Find } g_{*} \varepsilon B \text { such that }\left\|g_{*}\right\|_{2} \leqq\|g\|_{2} \text { for all } g \varepsilon B
$$

are equivalent and the solutions are related via $g_{*}=f_{*}^{(2)}$.
Of course, the smoothest concave interpolant to the concave data $\left\{\left(t_{i}, y_{i}\right)\right\}_{i=1}^{n}$ is the negative of the smoothest convex interpolant to the convex data $\left\{\left(t_{i},-y_{i}\right)\right\}_{i=1}^{n}$. We highlight this with the following proposition.

Proposition [MSSW]: If there exist coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{m}$ satisfying

$$
\begin{equation*}
\int_{a}^{b}-\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{-} N_{i}(t) d t=d_{i} \quad i=1,2, \ldots, m \tag{4.3}
\end{equation*}
$$

then $g_{\%}=-\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)^{-}$. Furthermore, such coefficients exist if there exists $\hat{g} \varepsilon B$ such that $\left\{N_{i}\right\}_{i=1}^{m}$ are Iinearly independent over the support of \hat{g}.

We note that the existence of $\hat{g} \varepsilon B$, such that $\left\{N_{i}\right\}_{i=1}^{m}$ are linearly independent over the support of \hat{g}, in the previous proposition is guaranteed if $d_{i}<0$ for each i. Then each $g \varepsilon B$ is negative on some subinterval of $\left[t_{i}, t_{i+2}\right]$, the support for N_{i}, for each i.

Now we consider the problem of finding, for general data, a smooth shape-preserving interpolant - a smooth interpolant which is locally convex where the data are locally convex and is locally concave where the data are locally concave. Assuming for the moment that d_{i} is nonzero for each i, we define the sets

$$
\begin{aligned}
& T_{1}:=\left\{\left[t_{i}, t_{i+2}\right]: d_{i}>0\right\} \\
& T_{2}:=\left\{\left[t_{i}, t_{i+2}\right]: d_{i}>0\right\} \\
& \Omega_{1}:=T_{1} / T_{2} \\
& \Omega_{2}:=T_{2} / T_{1} \\
& \Omega_{3}:=[a, b] /\left(\Omega_{1} \cup \Omega_{2}\right)
\end{aligned}
$$

and

Now we define the sets

$$
\begin{gathered}
A:=\left\{f \varepsilon L_{2}{ }^{(2)}[a, b]: f^{(2)} \chi_{\Omega_{\Omega_{1}}} \geqq 0, f^{(2)}{\underset{X_{\Omega_{2}}}{ } \leqq 0,}^{\text {and } \left.f\left(t_{i}\right)=y_{i} \quad i=1,2, \ldots, n\right\}}\right. \text {, }
\end{gathered}
$$

(which we assume is nonempty) and

$$
B:=\left\{g \varepsilon L_{2}[a, b]: g X_{\Omega_{1}} \geqq 0, g x_{\Omega_{2}} \leqq 0, \text { and } T g=\underline{d}\right\} .
$$

We conclude that the problems

$$
\begin{equation*}
\text { Find } f_{\circledast} \varepsilon A \text { such that }\left\|f_{*}^{(2)}\right\|_{2} \leqq\left\|f^{(2)}\right\|_{2} \text { for all } f \varepsilon A \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Find } g_{\pi} \varepsilon B \text { such that }\left\|g_{*}\right\|_{2} \leqq\|g\|_{2} \text { for all } g \varepsilon B \tag{4.5}
\end{equation*}
$$

are equivalent and $g_{*}=f_{*}{ }^{(2)}$.
The following proposition gives the solution to (4.5). We see that $f_{\star} X_{\Omega_{1}}$ has the character of the convex spline interpolant, $f_{*} X_{\Omega_{2}}$ has the character of the concave spline interpolant, and $f_{*} X_{\Omega_{3}}$ has the character of the natural spline interpolant.

Proposition [MSSW]: If there exists coefficents $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$
satisfying

$$
\begin{align*}
\int_{a}^{b}\left\{\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)+x_{\Omega}\right. & -\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)-x_{\Omega} \\
& \left.+\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right) x_{\Omega}\right\} N_{i}(t) d t=d_{i} \quad i=1,2, \ldots, m \tag{4.6}
\end{align*}
$$

then

$$
g_{*}=\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+} \chi_{\Omega_{1}}-\cdots\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{-} \chi_{\Omega_{2}}+\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right) \chi_{\Omega_{3}}
$$

Furthermore, such coefficients exist if there exists $\hat{g} \varepsilon B$ such that $\left\{N_{i}\right\} \quad \mathrm{m}=1$ are linearly independent over the support of \hat{g}.

We note that the existence of $\hat{g} \varepsilon B$, such that $\{N\}_{i=1}^{m}$ are linearly independent over the support of \hat{g}, in the previous proposition is guaranteed if d_{i} is nonzero for each i. Then each $g \varepsilon B$ is nonzero on
some subinterval of $\left[t_{i}, t_{i+2}\right]$, the support of N_{i}, for each i. We now solve (4.6). Define $F: R^{m} \rightarrow R^{m}$ where $F=\left(F_{i}, F_{2}, \ldots, F_{m}\right)^{T}$ is given

$$
\begin{align*}
F_{i}(\underline{x}) & =\int_{\Omega_{1}}\left(\sum_{j=1}^{m} x_{j} N_{j}\right)_{+} N_{i}(t) d t \\
& =\int_{\Omega_{2}}\left(\sum_{j=1}^{m} x_{j} N_{j}\right)_{-} N_{i}(t) d t \\
& +\int_{\Omega_{3}}\left(\sum_{j=1}^{m} x_{j} N_{j}\right) N_{i}(t) d t \quad i=1,2, \ldots, m \tag{4.7}
\end{align*}
$$

We use Newton's method to solve $F(\underline{\alpha})=\underline{d}$. Picking a suitable initial guess $\underline{x}^{(0)}$ we produce a sequence $\left\{\underline{x}^{(0)}, \underline{x}^{(1)}, \ldots,\right\}$ by solving

$$
\begin{equation*}
(\nabla F)\left(\underline{x}^{(k)}\right)\left(\underline{x}^{(k+1)}-\underline{x}^{(k)}\right)=\underline{d}-F\left(\underline{x}^{(k)}\right) \tag{4.8}
\end{equation*}
$$

for $\underline{x}^{(k+1)}$ once $\underline{x}^{(k)}$ is known. The Jacobian matrix has entries given by

$$
\begin{equation*}
(\nabla F)_{i j}(\underline{\alpha})=\int_{a}^{b} P(\underline{\alpha}) N_{j}(t) N_{i}(t) d t \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
P(\underline{\alpha})=\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+}^{o} \chi_{\Omega_{\Omega_{1}}}+\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{-}^{o} X_{\Omega_{2}}+X_{\Omega_{3}} . \tag{4.10}
\end{equation*}
$$

From (4.9) we see that ∇F is symmetric and tridiagonal at each $\underline{\alpha}$. We also note that

$$
\begin{aligned}
P(\underline{x})\left(\sum_{j=1}^{m} x_{j} N_{j}\right) & =\left(\sum_{j=1}^{m} x_{j} N_{j}\right)_{+} x_{\Omega_{1}} \\
& -\left(\sum_{j=1}^{m} x_{j} N_{j}\right)-x_{\Omega_{2}} \\
& +\left(\sum_{j=1}^{m} x_{j} N_{j}\right) x_{\Omega_{3}}
\end{aligned}
$$

so that $F(\underline{x})=(\nabla F)(\underline{x}) \underline{x}$ and, hence, (4.8) reduces to

$$
\begin{equation*}
(\nabla F)\left(\underline{x}^{(k)}\right) \underline{x}^{(k+1)}=\underline{d} \tag{4.11}
\end{equation*}
$$

The following lema (with proof similar to its counterpart in chapter 3) characterizes those $\underline{\alpha}$ for which $(\nabla F)(\underline{\alpha})$ is positive definite.

Lemma(4.1): The Jacobian (∇F)($\underline{\alpha}$) is positive definite if and only if
$P(\alpha)$ does not vanish identically on any of the subintervals $\left[t_{i}, t_{i+2}\right]$ for $i=1,2, \ldots, m$.

The following theorem is modeled after theorem (3.2).

Theorem (4.2): If ($\nabla F)\left(\underline{x}^{(0)}\right)$ is positive definite, then Newton's method - equation (4.10) - is always wel1-defined.

Note that if $\underline{x}^{(0)}$ is given by $x_{i}{ }^{(0)}=\operatorname{signum}\left(d_{i}\right)$ for each i, then $P\left(\underline{x}^{(0)}\right.$) is the characteristic function for the interval $[a, b]$ and $\sum_{j=1}^{m} x_{j}{ }^{(1)} N_{j}$ is the second derivative of the natural cubic spline interpolant.

If $d_{k}=0$ for some k, then we already know that any shape-preserving interpolant must be linear on $\left[t_{k}, t_{k+2}\right]$. In fact any $g \varepsilon B$ must satisfy

$$
g=g\left\{X_{\left[a, t_{k}\right]}+X_{\left[t_{k+2}, b\right]}\right\}
$$

The solution in this case is of the form

$$
g_{*}=h\left\{x_{\left[a, t_{k}\right]}+X_{\left[t_{k+2}, b\right]}\right\}
$$

where

$$
h=\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)_{+} X_{\Omega_{1}}-\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right)-X_{\Omega_{2}}+\left(\sum_{j=1}^{m} \alpha_{j} N_{j}\right) X_{\Omega_{3}}
$$

Since the value of α_{k} is immaterial - the $k-t h$ equation $F_{k}(\alpha)=d_{k}$ of (4.11) being automatically satisfied - the number of equations and unknowns reduce by one each. For computational convenience we can still use (4.10) by setting $(\nabla F)_{k k}=1,(\nabla F)_{k, k+1}=0$, and $(\nabla F)_{k, k-1}=0$.

Once we solve $F(\underline{\alpha})=\underline{d}$ we proceed to integrate $g_{\%}$ which is piecewise linear (but not necessarily continuous, even if d_{k} is nonzero for each k) to obtain f_{*} which is piecewise cubic. On the interval $\left[t_{i}, t_{i+1}\right] f_{*}$ is given by the solution to the differential equation

$$
\begin{align*}
& p_{i}{ }^{(2)}(t)=\beta_{i}+\left(\Delta \beta_{i} / \Delta t_{i}\right)\left(t-t_{i}\right) \tag{4.12}\\
& \text { for } t_{i} \leqq t \leqq t_{i+1} \text { if }\left[t_{i}, t_{i+1}\right] \subset \Omega_{3} \text {, } \\
& p_{i}^{(2)}(t)=\left(\beta_{i}+\left(\Delta \beta_{i} / \Delta t_{i}\right)\left(t-t_{i}\right)\right)_{+} \tag{4.13}\\
& \text {for } t_{i} \leqq t \leqq t_{i+1} \text { if }\left[t_{i}, t_{i+1}\right] \subset \Omega_{1} \text {, or } \\
& p_{i}{ }^{(2)}(t)=-\left(\beta_{i}+\left(\Delta \beta_{i} / \Delta t_{i}\right)\left(t-t_{i}\right)\right)_{-} \tag{4.14}\\
& \text {for } t_{i} \leqq t \leqq t_{i+1} \text { if }\left[t_{i}, t_{i+1}\right] \subset \Omega_{2} \text { with boundary conditions } \\
& p_{i}\left(t_{i}\right)=y_{i} \text { and } p_{i}\left(t_{i+1}\right)=y_{i+1} .
\end{align*}
$$

The function p_{i} is either a cubic polynomial or piecewise cubic given by two polynomials $q_{i 1}$ and $q_{i 2}$ defined on separate subintervals of $\left[t_{i}, t_{i+1}\right]$. The solution p_{i} to (4.11) is given by (1.18). The solution to (4.12) is, depending on signum $\left(\beta_{i}\right)$ and signum $\left(\beta_{i+1}\right)$, given by (1.18), (3.16), (3.17), and (3.18). The solution to (4.13) is determined by (1.18) if $\beta_{i} \leqq 0$ and $\beta_{i+1} \leqq 0$, by (3.16) if $\beta_{i}>0$ and $\beta_{i+1}<0$, by (3.17) if $\beta_{i}<0$ and $\beta_{i+1}>0$, and by (3.18) if $\beta_{i} \geqq 0$ and $\beta_{i+1} \geqq 0$.

Figures (4.1), (4.3), (4.5) and (4.7) display the natural cubic spline interpolants to the given data. Figures (4.2), (4.4), (4.6), and (4.8) display the corresponding shape-preserving interpolants. Tables (4.1), (4.2), (4.3), and (4.4) give convergence results for Newton's method. Note the quadratic convergence characteristic of Newton's method.

Appendix B lists a FORTRAN program for computing the shape-preserving cubic spline interpolant.

Figure (4.1): The Natural Cubic Spline Interpolant.

Figure (4.2): The Shape-Preserving Cubic Spline Interpolant.

Figure:(4.3): The Natural Cubic Spline Interpolant.

Figure (4.4): The Shape-Preserving Cubic Spline Interpolant.

Figure (4.5): The Natural Cubic Spline Interpolant.

Figure (4.6): The Shape-Preserving Cubic Spline Interpolant.

Figure (4.7): The Natural Cubic Spline Interpolant.

Figure (4.8): The Shape-Preserving Cubic Spline Interpolant.

Table 4.1

Iteration Number	$\\| F\left(\underline{x}^{(\mathrm{n})}\right)-\underline{d}_{2}$
1	0.13×10^{1}
2	0.67×10^{0}
3	0.25×10^{0}
4	0.42×10^{-1}
5	0.12×10^{-2}
6	0.88×10^{-6}
7	0.58×10^{-12}
8	0.64×10^{-13}

Table 4.2

Iteration Number

1

2
3

4

5

6

7
8
$\left\|F\left(\underline{x}^{(n)}\right)-\underline{d}\right\|_{2}$
0.12×10^{1}
0.56×10^{0}
0121×10^{0}
0.36×10^{-1}
0.11×10^{-2}
0.85×10^{-6}
0.54×10^{-12}
0.70×10^{-13}

Table 4.3

Iteration Number	$\left.\\| F \underline{x}^{(\mathrm{n})}\right)-\underline{d} \\|_{2}$
1	0.24×10^{1}
2	0.16×10^{1}
3	0.12×10^{1}
4	0.90×10^{0}
5	0.53×10^{0}
6	0.20×10^{0}
7	0.26×10^{-1}
8	0.42×10^{-3}
9	0.97×10^{-7}
10	0.37×10^{-12}
11	0.21×10^{-12}

Table 4.4

Iteration Number	$\left\\|F \underline{\underline{x}}^{(\mathrm{n})}-\underline{\mathrm{d}}\right\\|_{2}$
1	0.29×10^{1}
2	0.13×10^{1}
3	0.50×10^{0}
4	0.11×10^{0}
5	0.56×10^{-2}
6	0.16×10^{-4}
7	0.13×10^{-9}
8	0.26×10^{-12}

5. Constrained Minimization in a Dual Space

Let C be a convex cone in a normed dual space X with predual Y. Assume $y_{1}, y_{2}, \ldots, y_{n}$ are elements of Y and define $T: X \rightarrow R^{n}$ by

$$
T x=\left(x\left(y_{1}\right), x\left(y_{2}\right), \ldots, x\left(y_{n}\right)\right)^{T}
$$

Let $B:=\{x \in C: T x=\underline{d}\}$ for a given vector \underline{d}. Consider the problem

Find $x_{\%} \varepsilon B$ such that $\left\|x_{*}\right\| \leqq\|x\|$ for all $x \varepsilon B$
of which (1.10), (3.2), and (4.5) are special cases. In this chapter we study existence and characterization of solutions to (5.1). The following lemma gives sufficient conditions for existence of a solution.

Lemma(5.1): If B is nonempty, if C is weak ${ }^{*}$ closed, and if Y is separable, then there exists a solution to problem (5.1).

Proof: Let $\gamma:=\inf \{\|x\|: x \in C$ and $T x=\underline{d}\}$. Let $\left\{x_{n}\right\}$ be a sequence in C such that

$$
\begin{equation*}
T x_{\mathrm{n}}=\underline{d} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x_{n}\right\| \leqq \gamma+1 / n \tag{5.3}
\end{equation*}
$$

for each n. Since Y is separable; by Alaoglu's theorem there exists a weak* convergent subsequence of $\left\{x_{n}\right\}$ with weak* limit x. Since C is weak* closed we have $\mathrm{x} \varepsilon$ C, from (5.2) we have $T \mathrm{x}=\underline{\mathrm{d}}$, and from (5.3) we have $\|x\| \leqq \gamma$ (and hence $\|x\|=\gamma$). This completes the proof of the lemma.

Throughout this chapter we assume that B is nonempty, C is weak* closed, and Y is separable. Since $x_{r}=\theta$ if $\underline{d}=\theta$, we assume also that $\underline{d} \neq \theta$. The following proposition gives us sufficient conditions for C being weak* closed.

Proposition (5.2): If C is normed closed and if Y is a reflexive space, then C is weak* closed.

Proof: Assume $\left\{x_{n}\right\}$ is a sequence in C with weak* limit x. We want to show that x is in C . We do this by contradiction. If x is not an element of C, then there exists an element y (an element of both the dual and predual of X) which serves to separate x from C in the sense that

$$
x_{n}(y)>k
$$

for each n and

$$
x(y)<K
$$

for some constant K. This implies that

$$
\lim _{n \rightarrow \infty} x_{n}(y) \neq x(y)
$$

which is a contradiction. Therefore $\mathrm{x} \varepsilon \mathrm{C}$ and C is weak* closed. This completes the proof of the proposition. For $\gamma>0$ we define the convex set $G(\gamma) \subset R^{n}$ by

$$
G(\gamma):=\{T x: x \in C \text { and }\|x\| \leqq \gamma\} .
$$

We now show that $G(\gamma)=Y G(1)$ and $G(\gamma)$ is closed.

Proposition (5.3): For each $\gamma>0$ we have $G(\gamma)=\gamma G(1)$.

Proof: By definition

$$
\begin{aligned}
G(\gamma) & =\{T x: x \in C \text { and }\|x\| \leqq \gamma\} \\
& =\left\{T x: \frac{x}{\gamma} \varepsilon C \text { and }\|x / \gamma\| \leqq 1\right\} \\
& =\left\{T(x / \gamma): \frac{x}{\gamma} \in C \text { and }\|x / \gamma\| \leqq 1\right\} \\
& =\gamma\{T w: w \in C \text { and }\|w\| \leqq 1\} \\
& =\gamma G(1) .
\end{aligned}
$$

Proposition (5.4): The set $G(1)$ is closed.

Proof: Assume $\left\{\underline{z}_{n}\right\}$ is a sequence in $G(1)$ which converges to \underline{z}. We want to show that \underline{z} is an element of $G(1)$. Equivalently, we want to show that $\mathrm{x} \varepsilon \mathrm{C}$ exists such that $\|\mathrm{x}\| \leqq 1$ and $\mathrm{Tx}=\underline{z}$.

For each n there exists $x_{n} \varepsilon C$ such that $\left\|x_{n}\right\| \leqq 1$ and $T x_{n}=z_{n}$. By Alaoglu's theorem there exists a subsequence of $\left\|x_{n}\right\|$ which converges weak* to some $\mathrm{x} \varepsilon \mathrm{C}$. Hence $\|\mathrm{x}\| \leqq 1$ and $\mathrm{Tx}=\underline{z}$. This completes the proof of the proposition.

We define

$$
\begin{equation*}
\gamma^{*}:=\inf \{\gamma: \underline{d} \varepsilon G(\gamma)\} . \tag{5.4}
\end{equation*}
$$

Equivalently,

$$
\begin{gather*}
\gamma^{*}=\inf \{\gamma: \text { There exists } x \in C \text { such that } \\
T x=\underline{d} \text { and }\|x\| \leqq \gamma\} \\
=\inf \{\|x\|: x \in C \text { and } T x=\underline{d}\} . \tag{5.5}
\end{gather*}
$$

By lemma (5.1) we know that there exists $\mathrm{x}_{\check{\prime}} \in C$ such that $\left\|x_{*}\right\|=\gamma^{*}$ and $T x_{*}=$ d. We call x_{*} an interpolant of minimal norm. We now attempt to characterize $x_{i \%}$ via the Hahn-Banach theorem.

We begin by defining a functional $\rho: Y \rightarrow R$ by

$$
\rho(y)=\sup \{x(y): x \in C \text { and }\|x\| \leqq 1\}
$$

Notice that if $C=X$ (the unconstrained problem), then ρ is the norm on Y. In general, since we are taking the supremum over a subset of the closed unit ball U in X, we have $\rho(y) \leqq\|y\|$ for all y εY. Since θ is an element of C, we have $\rho \geqq 0$. In convex analysis ρ is called the support functional of the convex set $\{x \in C:\|x\| \leqq 1\}$.

Since C is weak* closed, the supremum is attained at some element of $\{\mathrm{x} \varepsilon \mathrm{C}:\|\mathrm{x}\| \leqq \mathrm{I}\}$; that is, for any $\mathrm{y} \varepsilon \mathrm{Y}$ there exists an x (a function of y) such that $x \in C,\|x\| \leqq 1$, and $\rho(y)=x(y)$. In fact we have $\|x\|=1$ unless $x=\theta$. The following two propositions reveal that ρ is continuous, subadditive, and positive homogeneous.

Lemma(5.5): The functional p is continuous.

Proof: Assume y_{1} and y_{2} are elements of Y and define $y=y_{1}-y_{2}$. Let x be the element in $\{\mathrm{x} \varepsilon \mathrm{C}:\|\mathrm{x}\| \leqq 1\}$ such that $\rho\left(\mathrm{y}_{2}\right)=\mathrm{x}\left(\mathrm{y}_{2}\right)$. Since $|x(y)| \leqq\|y\|$, we have

$$
x\left(y_{2}\right)-\|y\| \leqq x\left(y_{2}\right)+x(y)
$$

or

$$
x\left(y_{2}\right)-\|y\| \leqq x\left(y_{1}\right)
$$

Therefore,

$$
\rho\left(y_{2}\right)-\|y\| \leqq \rho\left(y_{1}\right) .
$$

The elements y_{1} and y_{2} can be interchanged to obtain

$$
\rho\left(y_{1}\right)-\|y\| \leqq \rho\left(y_{2}\right)
$$

and hence

$$
\left|\rho\left(y_{1}\right)-\rho\left(y_{2}\right)\right| \leqq\left\|y_{1}-y_{2}\right\| .
$$

Lemma (5.6): The functional ρ is subadditive and positive homogeneous (hence convex).

Proof: Assume y_{1} and y_{2} are in Y. To show that ρ is subadditive we must show that

$$
\rho\left(y_{1}+y_{2}\right) \leqq \rho\left(y_{1}\right)+\rho\left(y_{2}\right) .
$$

By definition

$$
\begin{aligned}
\rho\left(y_{1}+y_{2}\right) & =\sup \left\{x\left(y_{1}+y_{2}\right): x \in C \text { and }\|x\| \leqq 1\right\} \\
& \leqq \sup \left\{x\left(y_{1}\right): x \in C \text { and }\|x\| \leqq 1\right\} \\
& +\sup \left\{x\left(y_{2}\right): x \varepsilon c \text { and }\|x\| \leqq 1\right\} \\
& =\rho\left(y_{1}\right)+\rho\left(y_{2}\right) .
\end{aligned}
$$

Now assume $\alpha>0$ and $y \varepsilon Y$. To show that ρ is positive homogeneous we must show that

$$
\rho(\alpha y)=\alpha \rho(y) .
$$

By definition

$$
\begin{aligned}
\rho(\alpha y) & =\sup \{x(\alpha y): x \in C \text { and }\|x\| \leqq 1\} \\
& =\alpha \cdot \sup \{x(y): x \in C \text { and }\|x\| \leqq 1\} \\
& =\alpha \rho(y) .
\end{aligned}
$$

This completes the proof of the lemma.

As an example we compute ρ for the case $C=\left\{x \in L_{p}[a, b]: x \geqq 0\right\}$ where $I<p<\infty$. For an arbitrary element g in $L_{q}[a, b]$, the predual of $L_{p}[a, b]$ where $p+q=p q$, we have for any $f \varepsilon C$ with $\|f\|_{p} \leqq 1$ by the Minkowski inequality

$$
\begin{aligned}
\int_{a}^{b} f(t) g(t) d t & \leqq \int_{a}^{b} f(t) g_{+}(t) d t \\
& \leqq\|f\|_{p} \cdot\left\|g_{+}\right\|_{q} \\
& \leqq\left\|g_{+}\right\|_{q} .
\end{aligned}
$$

Assuming $g_{+} \neq 0$, let

$$
f=(g)_{+}^{q-1} /\left\|(g)_{+}^{q-1}\right\|_{p}
$$

Then we have $f \varepsilon C,\|f\|_{p}=1$, and

$$
\int_{a}^{b} f(t) g(t) d t=\left\|g_{+}\right\|
$$

Hence

$$
\begin{aligned}
\rho(g) & =\sup \left\{\int_{a}^{b} f(t) g(t) d t: f \varepsilon C \text { and }\|f\|_{p} \leqq I\right\} \\
& =\left\|g_{+}\right\|_{q} .
\end{aligned}
$$

If $g_{+}=0$, then $\rho(g)=0$.

Lemma(5.7): For all $\underline{\underline{\alpha}} \varepsilon \mathrm{R}^{\mathrm{n}}$ we have

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} d_{i} \leqq \gamma^{*} \rho\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right) . \tag{5.6}
\end{equation*}
$$

Proof: Since $\gamma^{*}=\inf \{\gamma: \underline{d} \varepsilon G(\gamma)\}$, we have $\underline{d} \varepsilon G\left(\gamma^{*}+\varepsilon\right)$ for any $\varepsilon>0$. Hence for every positive integer n there exists $x_{m} \varepsilon C$
such that $T x_{m}=\underline{d}$ and $\left\|x_{m}\right\| \leqq \gamma^{*}+1 / m$. Therefore, for any $\underline{\alpha} \in R^{n}$

$$
\begin{aligned}
\sum_{i=1}^{n} \alpha_{i} d_{i} & =\sum_{i=1}^{n} \alpha_{i} x_{m}\left(y_{i}\right) \\
& =x_{m}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right) \\
& \leqq\left\|x_{m}\right\| \rho\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right) \\
& \leqq\left(\gamma^{*}+1 / m\right) \rho\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right) .
\end{aligned}
$$

Now let $\mathrm{m} \rightarrow \infty$ to obtain (5.6). This completes the proof of the lemma.

Since we know that $G\left(Y^{*}\right)$ is closed from proposition (5.4), we could have used x_{\approx} in place of x_{m} in the proof of lemna (5.7). The next lemma states that there exists a nonzero vector $\beta \in R^{n}$ such that equality holds in (5.6).

Proposition (5.8): There exists a vector $\underline{\beta} \varepsilon R^{n}$ such that $\|\underline{\beta}\|=1$ and

$$
\begin{equation*}
\underline{\beta} \cdot \underline{d}=\gamma^{*}\left(\sum_{i=1}^{n} \beta_{i} y_{i}\right) . \tag{5.7}
\end{equation*}
$$

Proof: The vector \underline{d} is an element of $G\left(\gamma^{*}\right)$, but not an element of $G\left(\gamma^{*}-\varepsilon\right)$ for any $\varepsilon>0$. Hence the closed convex set $G\left(\gamma^{*}-\varepsilon\right)$ and the
vector d can be strictly separated by a hyperplane. This implies the existence of a nonzero vector $\underline{\beta}(\varepsilon)$ such that

$$
\underline{\beta}(\varepsilon) \cdot \underline{y}<\beta(\varepsilon) \cdot \underline{d}
$$

for all $y \varepsilon G\left(\gamma^{*}-\varepsilon\right)$ and without loss of generality we may assume that $\|\underline{B}(\varepsilon)\|=1$. Equivalently, we have

$$
\underline{\beta}(\varepsilon) \cdot T x<\underline{\beta}(\varepsilon) \cdot \underline{d}
$$

and by the linearity of T

$$
x\left(\sum_{i=1}^{n} \beta_{i}(\varepsilon) y_{i}\right)<\underline{\beta}(\varepsilon) \cdot \underline{d}
$$

for all $x \in C$ such that $\|x\| \leqq \gamma^{*}-\varepsilon$. Hence we obtain

$$
\left(\gamma^{*}-\varepsilon\right) \rho\left(\sum_{i=1}^{n} \beta_{i}(\varepsilon) y_{i}\right)<\underline{\beta}(\varepsilon) \cdot \underline{d}
$$

We can take the limit as $\varepsilon \rightarrow 0$ to obtain a vector \underline{B} such that $\|\underline{\beta}\|=1$ and

$$
\gamma^{*} \rho\left(\sum_{i=1}^{n} \beta_{i} y_{i}\right) \leqq \underline{\beta} \cdot \underline{d} .
$$

We have the reverse inequality from lema (5.7) and therefore

$$
\underline{\beta} \cdot \underline{d}=\gamma \gamma^{*} \rho\left(\sum_{i=1}^{n} \beta_{i} y_{i}\right) .
$$

This completes the proof of the lemma.

Let λ be a linear functional defined on the subspace

$$
S:=\operatorname{span}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

by

$$
\lambda\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)=\sum_{i=1}^{n} \alpha_{i} d_{i}
$$

so that (5.6) can now be written

$$
\lambda(y) \leqq \gamma^{*} \rho(y) \quad \text { for all y } \varepsilon S
$$

The Hahn-Banach theorem states that there exists an element w in X such that

$$
\begin{equation*}
w(y)=\lambda(y) \quad \text { for all } y \varepsilon S \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
w(y) \leqq \gamma^{*} \rho(y) \quad \text { for all } y \varepsilon Y \tag{5.9}
\end{equation*}
$$

Theorem (5.9): The Hahn-Banach extension w is an interpolant of

 minimal norm.Proof: From (5.8) we see that $T w=\underline{d}$ so that w interpolates the data. To complete the proof we show that $w \in C$ and $\|w\|=\gamma^{*}$.

We show that w is in C by contradiction. Assume w is not an element of C. Since C is weak* closed, there exists an element y_{o} in Y which strictly separates w from C in the sense that

$$
\begin{equation*}
w\left(y_{0}\right)>x\left(y_{0}\right) \quad \text { for all } x \in C \text {. } \tag{5.10}
\end{equation*}
$$

Since C is a cone we have $\lambda \mathrm{x} \varepsilon \mathrm{C}$ whenever $\lambda>0$ and $\mathrm{x} \varepsilon \mathrm{C}$. Hence (5.10) implies

$$
\begin{equation*}
0 \geqq x\left(y_{0}\right) \quad \text { for all } x \in C \tag{5.11}
\end{equation*}
$$

(or $\rho\left(y_{0}\right)=0$) and

$$
\begin{equation*}
w\left(y_{0}\right)>0 . \tag{5.12}
\end{equation*}
$$

However, from (5.9) and (5.12) we have

$$
0<w\left(y_{0}\right) \leqq \gamma^{*} \rho\left(y_{0}\right)=0
$$

which is a contradiction. Hence w must be an element of C.

Lastly, we show that $\|w\|=\gamma^{*}$. We already know that

$$
\begin{equation*}
\gamma^{*} \leqq\|w\| \tag{5.13}
\end{equation*}
$$

since $w \in B(w \in C$ and $T w=d)$. Because ρ is bounded above by the norm on Y, (5.9) yields

$$
w(y) \leqq Y^{*}\|y\| \quad \text { for all } y \in Y
$$

and hence

$$
\begin{equation*}
\|w\| \leqq \gamma^{*} \tag{5.14}
\end{equation*}
$$

Taken together, (5.13) and (5.14) imply that $\|w\|=\hat{\gamma}^{*}$. This completes the proof of the theorem.

Recall that for a given element y_{o} in Y there exists an element x_{0} (a function of y_{0}) in C such that $\rho\left(y_{0}\right)=x\left(y_{0}\right)$. Furthermore, either $\left\|x_{0}\right\|=1$ or x_{0} is the zero element. The following lemma will lead us to the conclusion that, if ρ is differentiable at y_{0}, then $\rho^{\prime}\left(y_{0}\right)=x_{0}$.

Lemma (5.10): Let f be a functional defined on a normed linear space
Z. If f is differentiable at $x_{o} \in Z$ and if there exists a linear functional λ such that

$$
\begin{equation*}
f\left(z_{0}\right)+\lambda\left(z-z_{0}\right) \leqq f(z) \tag{5.15}
\end{equation*}
$$

for all z in some neighborhood of z_{0}, then $\lambda=(\nabla f)\left(z_{0}\right)$.

Proof: Let $z=z_{o}+$ tu where $t>0$ and $u \varepsilon Z$. Inequality (5.15) yields

$$
\begin{equation*}
\lambda(u) \leqq \frac{f\left(z_{o}+t u\right)-f\left(z_{o}\right)}{t} \tag{5.16}
\end{equation*}
$$

Since (5.16) holds for all $t>0$ (and sufficiently small) and for all $u \in Z$, we have $\lambda \leqq(\nabla f)\left(z_{o}\right)$. Substituting -u for u in (5.16) yields

$$
\begin{equation*}
\lambda(u) \geqq \frac{f\left(z_{o}-t u\right)-f\left(z_{o}\right)}{t} \tag{5.17}
\end{equation*}
$$

for all $t>0$ (and sufficiently small) and for all $u \in Z$. Taken together, (5.16) and (5.17) imply $\lambda=(\nabla f)\left(z_{o}\right)$.

Corollary (5.11): If ρ is differentiable at $y_{0} \varepsilon Y$, then $\rho^{\prime}\left(y_{0}\right)=x_{0}$.

Proof: Since $\rho\left(y_{0}\right)=x_{0}\left(y_{0}\right)$ and $x_{0}(y) \leqq \rho(y)$ for all $y \varepsilon Y$, we have

$$
\rho\left(y_{0}\right)+x_{0}\left(y-y_{0}\right) \leqq \rho(y)
$$

for all y ε Y. By the previous lemma we have $\rho^{\prime}\left(y_{0}\right)=x_{0}$. This completes the proof of the corollary.

Inequality (5.6) motivates the problem

$$
\inf _{\underline{\alpha}}\left\{\rho\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right): \underline{\alpha} \cdot \underline{d}=1\right\} .
$$

Notice that if $\underline{\alpha}$ is any vector satisfying $\underline{\alpha} \cdot \underline{d}=1$ and if \dot{x} is any element of B, then

$$
\begin{aligned}
I=\sum_{i=1}^{n} \alpha_{i} d_{i} & =x\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right) \\
& \leqq\|x\| \rho\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)
\end{aligned}
$$

and hence

$$
O\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right) \geqq \frac{1}{\|x\|}
$$

This implies that the infimum is positive (and, in fact, is bounded below by $\left(\gamma^{*}\right)^{-1}$. If the infimum is attained at some $\underline{\alpha}^{*} \varepsilon R^{n}$ and if ρ is differentiable at $\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}$, then we are led to a solution to (5.1) as
the next theorem reveals.

Theorem (5.12): If there exists $\underline{\alpha}^{*} \varepsilon R^{n}$ such that $\underline{\alpha}^{*} \cdot \underline{d}=1$ and

$$
\rho\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right)=\inf _{\underline{\alpha}}\left\{\rho\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right): \underline{\alpha} \cdot \underline{d}=1\right\}
$$

and if ρ is differentiable at $\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}$, then

$$
\gamma^{*} \rho^{\prime}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)
$$

is an interpolant of minimal norm.

Proof: Problem (5.18) has Lagrangian

$$
\begin{equation*}
L(\underline{\alpha}, \lambda)=\rho\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)-\lambda\left(\sum_{i=1}^{n} \alpha_{i} d_{i}-1\right) . \tag{5.19}
\end{equation*}
$$

If there exists a solution $\underline{\alpha}^{*}$ to (5.18), then there exists λ^{*} so that $\left(\underline{\alpha}^{*}, \lambda^{*}\right)$ is a stationary point of (5.19). Hence

$$
\begin{equation*}
x\left(y_{i}\right)-\lambda^{*} d_{i}=0 \quad i=1,2, \ldots, n \tag{5.20}
\end{equation*}
$$

where $x=\rho^{\prime}\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right), \quad x \in C,\|x\|=1, \quad$ and $\alpha^{*} \cdot \underline{d}=1$. We first show that $\lambda^{*}>0$. Multiply (5.20) by α_{i}^{*} and sum over i to obtain

$$
x\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right)=\lambda \sum_{i-1}^{* n} \alpha_{i}^{*} d_{i}=\lambda^{*}
$$

Since $\mathrm{x}=\rho^{\prime}\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right)$, we have

$$
{\underset{i=1}{n}\left(\alpha_{i}^{*} y_{i}\right)=\rho\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right), ~}_{\text {in }}
$$

so that

$$
\lambda^{*}=\rho\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right) \geqq 0
$$

Actually, we know that since the infimum is positive, we have $\lambda^{*}>0$. We can also show this by contradiction. If $\lambda^{* *}=0$, then

$$
\begin{equation*}
x\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right) \leqq 0 \quad \text { for all } x \in C . \tag{5.21}
\end{equation*}
$$

Let s be any interpolant in C. (We know that there exists an interpolant in C since B is nonempty.) Then

$$
s\left(\sum_{i=1}^{n} a_{i}^{*} y_{i}\right)=\sum_{i=1}^{n} \alpha_{i}^{*} d_{i}=1
$$

which contradicts (5.21). Therefore, $\lambda^{*}>0$. Now we show that $\lambda^{*} \gamma^{*}=1$. From (5.20) we see that x / λ^{*} is an interpolant in C. Hence

$$
\gamma^{*} \leqq\|x\| / \lambda^{*}=1 / \lambda^{*}
$$

or

$$
\begin{equation*}
\gamma^{*} \lambda^{*} \leqq 1 \tag{5.22}
\end{equation*}
$$

Let w be an interpolant of minimal norm satisfying (5.9). Then

$$
w\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right) \leqq \gamma^{*} \rho\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right) .
$$

Equivalently, we have

$$
w\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right) \leqq \gamma^{*} x\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\right)
$$

which leads to

$$
\begin{equation*}
1 \leqq \gamma^{*} \lambda^{*} \tag{5.23}
\end{equation*}
$$

Taken together, (5.22) and (5.23) imply

$$
1=\gamma^{*} \lambda^{*}
$$

This concludes the proof of the theorem.
We consider now the problem of determining when the infimum is attained in (5.18). From proposition (5.8) we know that there exist a nonzero vector $\underline{\beta}$ such that

$$
0 \leqq \underline{\beta} \cdot \underline{d}=\gamma^{*} \rho\left(\sum_{i=1}^{n} \beta_{i} y_{i}\right) .
$$

If $\underline{\beta} \cdot \underline{d}>0$, then the infimum is attained in (5.18) at $\underline{\alpha}^{*}=\underline{\beta} /(\underline{\beta} \cdot \underline{d})$.

Proposition (5.13): If d is in the relative interior of

$$
S:=\{\underline{r}: \underline{r} \varepsilon G(\gamma) \text { for some } \gamma\},
$$

then there exists a vector $\underline{\beta}$ such that

$$
I=\underline{\beta} \cdot \underline{d}=\gamma^{*} \rho\left(\sum_{i=1}^{n} \beta_{i} y_{i}\right) .
$$

Proof: We prove by contradiction. Assume that every vector \underline{B} which satisfies

$$
\underline{\beta} \cdot \underline{d}=\stackrel{*}{\gamma} \rho\left(\sum_{i=1}^{n} \beta_{i} y_{i}\right)
$$

also satisfies $\underline{\beta} \cdot \underline{d}=0$. Without loss of generality it can be assumed that there exists a nonzero vector \underline{B} such that

$$
0=\underline{\beta} \cdot \underline{d}=\gamma^{*} \rho\left(\sum_{i=1}^{n} \beta_{i} y_{i}\right)
$$

and

$$
\underline{\beta} \cdot \underline{y} \geqq 0 \quad \text { for all } y \in G\left(\gamma^{*}\right) \text {. }
$$

In any relative neighborhood of \underline{d} there is a vector \underline{z} such that $\underline{\beta} \cdot \underline{z}<0$. If \underline{z} were an element of S, then there would be an element \underline{r} in $G\left(\gamma^{*}\right)$ such that $\underline{z}=\alpha \underline{r}$ for some $\alpha>0$. However, we would then have

$$
\underline{\beta} \cdot \underline{z}=\alpha \underline{\beta} \cdot \underline{r} \geqq 0
$$

which is a contradiction. Therefore \underline{z} is not an element of S and \underline{d} is not in the relative interior of S. This completes the proof of the proposition.
[de $B(1)]$ C. de Boor (1978): "A Practical Guide to Splines," Springer-Verlag, New York.
[de $B(2)$] C. de Boor (1976): On "best" interpolation, J. Approx. Theory, 16:28-42.
[IMS] L.D. Irvine, P.W. Smith, S.P. Marin (1985): Constrained interpolation and smoothing, General Motors Research Report No. MA-312, Warren, Michigan.
[L] D.G. Luenberger (1973): "Optimization by Vector Space Methods," John Wiley and Sons, Inc., New York.
[MSSW] C.A. Micchelli, P.W. Smith, J. Swetits, J.D. Ward (1985): Constrained L_{p} approximation, J. Constructive Approximation, 1:93-102.

Appendix A

A Program for Constructing the Natural Cubic Spline Interpolant
to Given Data.

```
00001
000020
00003C
00004C
00005
00006
00007
00008C
000090
00010C
00011C
00012C
000135
0001.4C
00015C
00016C
00017C
00018C
00019C
00020C
00021C
00022C
00023
00024
00025
00026C
00027C
00028C
00029C
00030
00031
00032
00033100
00034C
00035C
00035C
00037C
00038C
00039C
000400
00041
00042
00043
00044
00045
00046
00047
00048200
00047
00050
```

```
    FFOGFAMM UNCON(INFUT,OUTFUT,TAFES=INFUT,TAFEG=OUTFUT)
```

 FFOGFAMM UNCON(INFUT,OUTFUT,TAFES=INFUT,TAFEG=OUTFUT)
 WE FOFMH THE NATUFIBL CUBIC SFLIINE INTEFFOLANT.
 WE FOFMH THE NATUFIBL CUBIC SFLIINE INTEFFOLANT.
 INTEGEF {\,M, I
 INTEGEF {\,M, I
 FEAL T(50),F(50),T1{50),X(50),A(50),FP(4,50)
 FEAL T(50),F(50),T1{50),X(50),A(50),FP(4,50)
 FEEAL MA(50), EH(50),CC(50)
 FEEAL MA(50), EH(50),CC(50)
 THE AFFAYYS (T) ANII (F) - EACH OF SIZE M, THE NUMEEF
 THE AFFAYYS (T) ANII (F) - EACH OF SIZE M, THE NUMEEF
 OF IMTA. FOINTS - CONTAIN THE COMFONENTS OF THE IATA.
 OF IMTA. FOINTS - CONTAIN THE COMFONENTS OF THE IATA.
 tHE IATA FILE IS OF THE FOLLOWING FOFM
 tHE IATA FILE IS OF THE FOLLOWING FOFM
 if
 if
 Ti1),F(I)
 Ti1),F(I)
 T(2),F(2)
 T(2),F(2)
 *
 *
 T(M),F(M)
 T(M),F(M)
 WHEFE WE ASSUME (T) HAS STRICTLY INCFEASING COMFONENTS.
 WHEFE WE ASSUME (T) HAS STRICTLY INCFEASING COMFONENTS.
 FEEAII(3.*) M
 FEEAII(3.*) M
 FEAII(己,*) (T(I),F(I), I=1,M)
 FEAII(己,*) (T(I),F(I), I=1,M)
 N=N-2
 N=N-2
 THE ARFAMY (I) CONSISTS OF THE SCMLEII
 THE ARFAMY (I) CONSISTS OF THE SCMLEII
 SECONH IIUIIIEN IIFFEFENCES.
 SECONH IIUIIIEN IIFFEFENCES.
 IO 100 I=1,N
 IO 100 I=1,N
 I(I)= (F(I+2)-F(I+1))/(T(I+2)-T(I+1))
 I(I)= (F(I+2)-F(I+1))/(T(I+2)-T(I+1))
 C . - (F(I+1)-F(I))/(T(I+1)-T(I))
C . - (F(I+1)-F(I))/(T(I+1)-T(I))
CONTINUE
CONTINUE
THE SECONII IEFIUATIVE OF THE NATUFiAL CUBIC SFLINE
THE SECONII IEFIUATIVE OF THE NATUFiAL CUBIC SFLINE
INTEFFOLANT IS A LINEAF COMEINATION OF LINEAR E-SFLITNES.
INTEFFOLANT IS A LINEAF COMEINATION OF LINEAR E-SFLITNES.
WE calculate THE COEFFICIENTS.
WE calculate THE COEFFICIENTS.
AA(1)=0.0
AA(1)=0.0
EF(1)=(T(3)-T(1))/3,0
EF(1)=(T(3)-T(1))/3,0
CC(1)= (T(Z)-T(2))/6.0
CC(1)= (T(Z)-T(2))/6.0
I10 200 I=2,N-1
I10 200 I=2,N-1
AM(I)=(T(I+1)-T(I))/6.0
AM(I)=(T(I+1)-T(I))/6.0
BE(I)=(T(I+2)-T(I))/3.0
BE(I)=(T(I+2)-T(I))/3.0
CC(I)=(T(I+2)-T{I+1))/6.0
CC(I)=(T(I+2)-T{I+1))/6.0
CONTINUE
CONTINUE
AA(N)=(T(N+1)-T(N))/6.0
AA(N)=(T(N+1)-T(N))/6.0
EF(N)=(T(N+2)-T(N))/3.0

```
    EF(N)=(T(N+2)-T(N))/3.0
```

```
00051 CC(N)=0.0
00052 CALL TFIM(AA,RE,CC,II,N)
0005SC
00054C
00055C
0005S G(1)=0.0
00057 A(M)=0.0
00058 IN 300 I=2,N+1
00059 A(I)=II(I-1)
00060 300 CONTINUE
00051C
00002C
00063C
00054C
000650
00050C
00067C
00068 [10 400 k=1,N+1
0006? IIF=F(K+1)-F(K)
00070 IIT= T(K+1)-T(K)
00071 INA=A(K+1)-A(K)
00072 F'F(4,K)= IM/IIT
00073 FFF{3,K)=A(K)
00074 FFF(2,N゙)= IF/IHT - (A(K)/2+ + IIA/6.)*ITT
00075 FF(1,K゙)=F(K)
00075 400 CONTINUE
00077 F'F(4,M)=0.0
00078 F'F'(S,M)=0.0
0007% FFF(2,M)=0.0
00080 FFF(1,M)=F(M)
00081C
00082C
00083C
00084 IN 500 K=1,M
00085 WKITE(6.450) K,T(K), (FF(I,K), I=1,4)
00088 450 FOFHMT (5X,I5,5F14,6)
00087 500 CONTINUE
00088C
00089C WE CFEATE A mATA FILE FOR FLOTTING THE (JIEF)-TH
00090C
00091C
00092C
00093C
00094C
00095 JIIEF=0
00096 MM= 201
00057
00098C
00099 STOF
00100 ENII
```

```
00001 SURROUTINE IIATAFL\TX,FF:LLI,HM,JIEF)
00002C
00003C WE CFEATE A IIATA FILE FOF FLOTTING THE (JIEFi)-TH
00004C
00005C
00006C
00007
00008
0000%
00010
00011
00012
00013
00014
00015C
00016C
00017C
00018
00019
00020
00021200
00022300
00023
00024
00025C
00025[
00027C
0002gc
00029 H= XT - TX(LEFT)
00030 FAC= 4.0 - FLOAT(JIEF)
00031 YT= 0.0
00032
00033
00034
00035400
0 0 0 3 6
00037450
00038500
00039
00040 ENI
```

```
00001 SUEFOUTINE TFINSSUE,IIAGG,SUF,E,N)
00002 IWTEGEF N,I
00003 FEAL B(N),IIAG(N),SUE(N),SUF(N)
00004 IF (N.LE.1) THEN
00005
0000S
00007
00008
0000;
00010
00011
00012 111 CONTINUE
00013 E(N)=E(N)/IIAG(N)
00014 INO 222 I=N-1,1,-1
00015 E(I)={E(I)-SUF(I)*E(I+1)}/IIAG(I)
00016 222 CONTINUE
00017 FETUFN
00018 ENII
```


Appendix B

A Program for Constructing the Shape-Preserving Cubic Spline Interpolant to Given Data

00001
00002 C 00003 C 00004 C 00005 E 00008 C 00007 C 00008 C 00009 C 00010 C 00011 C 00012 C 00013 C 00014 C 00015 C 00016 00017 0001.8 00019 00020 C 00021 C 00022 C 00023 C 00024 C 00025 C 00026 C 000275 $00028 C$ 00029 C 00030 C 00031 C 00032 C 00033 C 00034 C 00035 C 000352 00037
00038 00039 00040 C 00041 C 00042 C 00043 C 00044 C 00045 C 00046 00047 00048 C 00049 C 00050 C
FFIOGFAAM MAIN(INFUT, OUTFUT,TAPES=INFUT, TAFEG=OUTFUT)
WE COMFUTE A SHAF'E-FFESERUING INTEFFOLANT
TO GIVEN IIATA.
NOTE ON THE SIZE OF THE ARFAYS:
THE AFRAYS (T), (F), ANI (A) MUST EE OF LENGTH
at least m, the number of iatin foints. the
ARRAY (TX) ANII THE SECONII COMFONENT OF THE
AFRAY (FF') SHOULII RE OF LENGTH 2H. THE ARFAYS
(X), (Y), ANI (II) MUST EE OF LENGTH AT LEAST M-2.
THE AFFAY (III) MUST EE OF LENGTH AT LEAST M-1.
FEAL $T(50), F(50), X(50), Y(50), A(50)$
FEAL TX(100), FF' $(4,100)$,TL,TF:, EF' S
IRTEGEF M, N, ITMAK,I.J,IFLAG, MM
common IM50), IIM(50)
THE AFRAYS (T) ANII (F) - EACH OF SIZE M, THE NLMEEF
OF IIATA FOINTS - CONTAIN THE COMFONENTS OF THE IATA.
the inata file is of the follouing form
H
$T(1), F(1)$
$T(2), F(2)$
+
-
$T(M), F(M)$
WHEFE WE ASSUME (T) HAS STFICTLY INCREASING COMPONENTS.
FEAIM
FEATl(3,*) (TiI), F(I), I=1, M)
$\mathrm{N}=\mathrm{H}-2$
(EF'S) IS A SMALL FOSITIUE NUMEEF USEII TO TEST FOF:
CONUERGENCE IN NEWTON'S METHON - SUEROUTINE (ZEFO).
(ITMAX) IS THE MAXIMUM NUMBEF OF ITERATIONS
WHICH WE FEFMIT FOR NEWTONS METHOI TO CONUEFIGE.
$E F S=1.0 E-8$
ITMAX $=25$
THE ARFIMY (X) IS THE KNOT SEDUENCE (T) WITH THE
ENIIPOINTS TL ANJI TE IELETEI.

```
00051C
00052 TL=T(1)
00053 TF:= T(iN)
00054 IO 120 I=1,N
00055
0005S 120
00057C
00053C
00059C
00060C
000615
00052C
00063C
00054C
00065C
00066
00057
00068
0006?
00070
00071
00072130
00073 135
00074
00075C
00076
00077
00078 C
    I(K)=(F(K+2)-F(K+1) )/( T(K+2)-T(K+1) )
00079
00080140
00081C
00082C
00083C
00084C
00085C
00085C
00087C
00088
00089C
00090C
00091
00072
00093
00094
00095
00096C
000970
00098145
00099C
00100C
00101
C
    IF ( AES(II(K)).LE YEF'S ) II(K)=0.0
    CONTINUE
        THE INITIAL GUESS {Y` FOR NEUTON'S METHOI
        WILL YIELII THE SECONI IIEFIUATIVE OF THE
        NATURAL SFLINE SOLUTION, EXCEFT POSSIELY
        WHEN I(k)=0.0 FOR SOME K.
    INO 145 K=1,N
    IF { I(K) ,GT, 0.0 ) THEN
            Y(K)=1.0
    ELSE
        Y(K)= -1.0
    ENII IF
    CONTINUE
    WFITE(6,150)
```

00102150
00103
00104160
00105
00105170
00107 C
00108 C
00109 C
00110 C
$00111 C$
00112 C
00113 C
00114 C
00115 C
00116 C
00117 C
00118C
00119 C
00120C
00121 C
00122 C
00123
00124
00125
00128
00127180
00128
00129
00130
00131
00132
00133 C
00134
00135
00136
00137
00138
00139 C
00140C
00141 C
00142 C
$00143 C$
00144
00145
00146185
00147 C
001490
00149 C
00150 C 00151 C 00152

FOFMAT(/,' IATA VALUES ',/)
WFITE(6,160) (II(I), $I=1, N$)
FBFitat (5K. $4 E 12.6$)
WFITE(G,170)
FORMAT (//)

ILI $(K)=1$ INIIICATES THAT THE INTEFFPLATING FUNCTION
IS CONSTFAINEII TO EE CONVEX ON [T(K),T(K+1)]
ANI, HENCE, ITS SECONI IEERIUATIUE IS CONSTRAINEII TO BE NONREGATIVE ON THIS INTEFUAL.

II(K) $=-1$ INIICATES THÂT THE INTEFFOLATING FUNCTION
IS CONSTRAINEI TO EE CONCAVE ON $[T(K), T(K+1)]$
ANI, HENCE, ITS SECONII IEEIVATIUE IS CONSTFAINEII TO EE NONPOSITIUE ON THIS INTEFVAL.

III $(K)=0$ INIICATES THAT THE INTEFFOLATING FUNCTION IS UNCONETRAINEI ON [T(K), T(K+1)].

IID $180 \quad \mathrm{I}=1, \mathrm{~N}-1$
$I I(I+1)=0$
$I F(I M(I), G E+0.0, A N I \cdot I(I+1) . G E+0.0) I I(I+1)=1$
IF (II(I),LE.0,0, ANI, I $(I+1), L E, 0,0) I I(I+1)=-1$
CONTINUE
IF (I(1).GE. 0.0) THEN
$\operatorname{II}(1)=1$
ELSE
$\operatorname{III}(1)=-1$
ENH IF

IF (I (N) , GE, 0.0) THEN $\operatorname{II}(N+1)=1$
ELSE
$\operatorname{IM}(N+1)=-1$
ENII IF

If a nonzefio mata value in(I) LIES betueen two ZERO IAATA UALUES I(I-1) ANI IM(I+1), THEN I(I) IS TAKEN TO EE ZERO FOF COMFUTATIONAL FUFFOSES.
$110185 \mathrm{I}=2, \mathrm{~N}-1$
IF $(I(I-1), E Q, 0.0, A N I, I(I+1), E Q, 0.0) I(I)=0.0$
CONTINUE
SUAFOUTINE (ZEFO) CALCULATES THE FIECEWISE LINEAF SECONII IEEIVATIVE OF THE SHAFEPRESEFUING IRTEFFPLANT.

CALL ZEFOSY,X,N,ITMAX,EPS,TFLAG,TL,TRS

```
00153C
00154 n(1)=0.0
00155 A(M)=0.0
00156 INO 190 I=2,N+1
00157 A(I)= Y(I-1)
00158190
001590
00160
00161.200
00162
00103 210
00164
00155 220
001660
00167C
00168C
00169C
00170
00171C
00172
00173230
00174
00175
00175 240
00177250
00178
00179260
00180
00181270
00182C
00183C
00184C
00185C
001850
00187C
001880
00189C
00190
0 0 1 8 1
00182
00173C
00194 STOF
00195 ENII
```

```
00001.
00002C
00003C
00004 INTEGEF N,ITMAX,K,J,LJ,L,IFLAG
00005 FEAL A(N),X(N),FX(50),AL,XL,AF;,XF,IIT,IIA,T,H
00006 FEALL SUE{50),IIIAG(50),SUF(50),H(50),SUM1,SUM2
00007 FEAL FATIO,GLEFT,GRIGH,EFS,FNOFMI,TL,TR
00008 COMMON IM50),II(50)
00009C
00010C
000110
00012C
00013C
00014C
00015C
00016C
00017C
00018C
00017C
000200
000210
00022C
00023C
00024C
00025C
00026C
00027C
00028C
000290
00030C
000310
00032C
00033C
00034C
00035C
00036
00037100
00038
00039
00040C
00041.C
00042C
00043C
00044C
00045C
00046C
000470
00043C
000490
000500
    SUFFIOUTINE ZEFO{A,X,N,ITMBX,EFS,IFLAG,TL,TF)
INFUT FARAMETEFS:
A...INITIAL ESTIMATE FOF NEUTON'S METHOI.
            X...KNOT SEQUENCE WITH THE ENIFOINTS IELETEI.
            N...THE SIZE OF THE AFFiAY (A): THE NLMEEEF OF UNKNOWNS.
            ITMAX...MAXIMUM NUMEER OF ITEFATIONS FOF NEWTON'S METHOI.
            EF'S...FAFIAMETEF USEII TO TEST FOF: CONWEFGENCE.
            TL,TFi. + LEFT- ANII FIGHT-ENIFPINTS OF THE
                INTERUAL FESFECTIUELY.
                    OUTFUT FAFAMETEFS:
            A...THE CALCULATEII ZERO IF CONUEFGENCE OCCURFEI.
            ITMAX. + NUMEEF OF ITEFATIONS FEQUIFEII FOR NEWTON'S
                    METHOI TO CONVEFIGE.
            IFLAG.+.IFLAG= 1: CONUEFGENCE INIICATEII EY COMFARING
                                    THE L1 HOFIMS OF THE ITERATES
                                    IFLAG= 2: NUMEEF OF ITEFATIONE EXXCEEIEII ITMAX'.
    FFINT 100
    FORMAT(' ITEFAATIOR NUMEEF; ANII FESIIUAL:'./
C
                                    QUAIFATIC CONUERGENCE IS EXFECTEII,',')
            IO 350 LJ=1,ITMAX
            THE AFFIAYS (SUE), (IIIAG), ANII (SUF) CONTAIN
            THE ELEMENTS OF THE TFIIIIAGONAL FOSITIUE-IIEFINITE
            JACOBIAN MATFIX (1), EVALUATEI AT THE VECTOR (A).
            IT SHOULII EE NOTEI.THAT THE MGTEIX EQUATION SOLVEF,
            THE SURROUTINE (TRIII), IOES NOT TAKE AIIUNNTAGE OF
            THE SYMMETFYY OF (J). HENCE (SUE) ANII (SUF) AFE
                        BDTH NECESSAFYY. ALTHOUGH SUB(K)=SUF(K-1), EQUATIONS
                        FOF EOTH AFFAYS AFE WRITTEN OUT IN FULL.
            IF I(K)}=0.0 FOF SQME K゙, THEN THE NUMEEF
```

```
00051C OF UNKNOWNS (ANII EQUATIONS) FEIUCE. IN ORIIER
00052C TO FEFMMT THE COMFUTATION OF ONE IACOEIAN
00051C
00051C
00051C
00051C
00057C
00058
00059
00060
00061
00062
00053
00064
00065C
00066C
00067
00068
00069
00070
00071
00072
00073
00074C
00075C
00076
00077
    IF ( AL,LT,0.0 ,ANI, A(K)+GE,0.0 ) }11=
00078
    IF (AL.GE.0.0 +ANI, A(K).LT+0.0) , 11= 3
00079
00080C
00081
00082
00083
00084
00085C
0008S
00087
00088C
00089
.00090C
00091
00092C
00093
00074C
00095 SUB(K)= IIT/6.0
00096
00097C
00098
00089C
00100
00101
    MATFIX THE FFROGFANM SETS SUE(K゙)=SUP(K゙-1)=0.0
    ANII IIIAG(K)=1.0.
00051C
    ELSE
                                    XL=TL
        AL=A(K-1)
        \chiL=X(K-1)
    ENII IF
IF (N゙,EQ,N) THEN
00051C
    IF (K.EQ.1) THEN
                                    AL= 0.0
0005
AF}=0.
                    XF}=T
    ELSE
        AFi=A(K+1)
        XF}=X(K+1
    ENII IF
    IF ( AL.GE.0.0 +ANI, A(K).GE.0.0) JI= 1
    IF (AL.LE.0.0.ANII. A(K).LE.0.0) JI= 4
    IF (A(K゙),GE.0.0 + NNII, AF,GE.0.0) J2= 1
    IF (A(K),LT,0.0 .ANII. AR,GE,0.0) J2= 2
    IF (A(K).GE,0.0 .AND. AF,LT.0.0) J2= 3
    IF (A(K),LE.0.0 ,ANII, AR+LE.0.0) J2= 4
    IIT= X(k゙)-XL
    IIA=A(K゙)-AL
    IM(K) +EQ* 1) THEN
        IF (K.NE.1) THEN
                    IF (J1+EQ+1) THEN
    GLEFT= IIT/3.0
                            ELSE IF (J1+E[1+2) THEN
    T= XL-(IIT/IIA )*AL
```


	GLEFT $=(X(K)-T) / 6.0 *(\{(T-X L) /[1 T) * * 2$
C	$+4.0 *(\{(W-X L) / \mathrm{IIT}) * ⿻ 丷 木 冖 2)+1.0)$
ELSE IF（J1．ER．3）THEN	
$T=X L-\langle I T T / I M) * A L$	
$W=0.5 *(T+X L)$	
	SUE $(K)=\{T-X L) / 6.0 *(4+0 *((W-X L) / T I T) *((X) K)-W) / I T T)$
C （ $+(\{T-X L) /[I T) *((X\{K)-T) / I T T))$	
GLEFT $=(T-X L) / 6.0 *(4.0 *((\langle W-X L) /[I T) * * 2)$	
ELSE IF（11．EQ．4）THEN	
SUF（K）$=0.0$	
GLEFT $=0.0$	
ENII IF	
ELSE IF（K．EQ．1）THEN	
$\operatorname{SUE}(1)=0.0$	
GLEFT $=0.0$	
IF（ $31 . \mathrm{EQ} .1$ ）GLEFT $=\mathrm{IIT} / 3.0$	
ENII IF	
ELSE IF（ IIM K ）．EQ． 0 ）THEN	
SUE（K）$=\operatorname{IIT} / 6.0$	
GLEFT $=\mathrm{IIT} / 3.0$	
ELSE IF（ III（K），EQ，－1 ）THEN	
IF（K゙，NE．1）THEN	
	IF \｛ $31+E Q .4)$ THEN
SUE（K）$=$ ITT／E．0	
GLEFT $=\mathrm{IT} / 3.0$	
ELSE IF（J1．EQ，3）THEN	
$T=X L-(I I T / T A) * A L$	
$W=0.5 *$（ $X(k)+T$ ）	
C	＋4，0\％$((W-X L) / I T T) *((X, K)-W) / I T T))$
	GLEFT $=$（K $(K)-T) / 6 \cdot 0$＊$((T-K L) / \mathrm{IIT}) * * 2$
C	＋ $4.0 *((\langle W-X L) /[1 T) * * 2)+1.0)$

ELSE IF (J1.EQ.2) THEN
$\mathrm{W}=0.5{ }^{(1)}(T+X L)$
$\begin{gathered} 5 U E(K)=(T-X L) / 6+0 *(4,0 *((W-X L) / I T T) *((X(K)-W) / I I T) \\ +((T-X L) / T T) *((X(K)-T) / I T)) \end{gathered}$
$\begin{gathered} \text { GLEFT }=(T-X L\rangle / 6.0 *(4.0 *(((W-X L) /[I T) * * 2) \\ +((T-X L) / I T T) * * 2) \end{gathered}$
ELSE IF ($11+\mathrm{EQ} .1$) THEN
SUB(K) $=0.0$
GLEFT $=0.0$
ENII IF
ELSE IF (K.EQ.1) THEN
$\operatorname{SUE}(1)=0.0$
GLEFT $=0.0$
IF (J1, EQ 4 \% GLEFT $=117 / 3.0$
ENI IF
ENII IF
IF (K.NE, 1) THEN
IF (IM(K-1) , EQ. 0,0) THEN
SUE $(K)=0.0$
GLEFT $=0.0$
ENI IF
ENI IF
IIT $=\times \mathrm{XF}-\times(\mathrm{K})$
$I \mathrm{~A}=A \mathrm{~A}-\mathrm{A}(\mathrm{K})$
IF (IMKK+1) , ER. 1) THEN
IF (K゙.NE.N) THEN
IF (J2.EQ.1) THEN
$\operatorname{SUP}(\mathrm{K})=\mathrm{IIT} / 6.0$
GRIGH $=[1 T / 3.0$
ELSE IF (J2.E日.2) THEN
$T=X(K)-\{I T T /[(A) * A(K)$
$\omega=0.5 *$ ($X R+T$)

```
00204
00205
00206
00207C
00208
002090
00210
0 0 2 1 1
00212
0 0 2 1 3
00214
00215
0021.6C
00217
00218C
00219
00220
00221C
00222
00223C
00224
00225C
00225
00227
00228
002290
00230
00231C
00232
00233C
00234
00235
002365
00237
00238C
0023%
00240C
00241
00242C
00243
00244
00245C
00246
00247C
00248
00249
00250
00251
0025:2
00253
00254C
C
+ 4.0*((W-X(K))/ITT)*((XR-W)/ITT);
(XFi-T)/G.0 * ( ((XR-T)/ITT)**2
+4.0*(((XF-W)/IT )**2))
ELSE IF (J2.EQ.3) THEN
T=X(K)-{ITT/IAA)*A(K)
    U=0.5** T+X(K))
    SUF(K)= (T-X(K))/6.0 * (4.OW((U-X(K))/IIT)*({XF-W)/IIT)
C
    GRIGH= (T-X(K))/6.0 * (1.0 + 4.0*(((XF-W)/ITT)**2)
    C
                            t ((XR-T)/IIT)**2)
                    ELSE IF (J2.EQ.4) THEN
    SUF'(K)=0.0
    GFIGH= 0.0
                    ENII IF
            ELSE IF (K.EQ.N) THEN
    SUP(N)=0.0
    GFIGH=0.0
    IF (J2.EQ.1) GRIGH= IIT/3.0
            ENII IF
    ELSE IF (IIM(K+1) , EQ. 0) THEN
    SUP(k)= IIT/%.0
    GRIGH= IIT/3.0
    ELSE IF (III(K+1) ,EQ. -1 ) THEN
            IF (K.NE,N) THEN
                    IF (J2.EQ,4) THEN
    SUF(K)}=\operatorname{IIT}/6.
    GRIGH= IIT/3.0
                    ELSE IF (J2.ER.3) THEN
    T=X(K)-{ITT/[AA)*A(K)
    |= 0.5*( XF+T )
    SUF(K)= (XF-T)/6.0 * ( ((T-X(K))/IIT)w({员K-T)/IIT)
C + 4.0*((W-X(K))/IIT)岍({XR-W)/[IT))
    GFIGH= (XF-T)/E.0 * ( ( (XFI-T)/IT )**2
C + 4.0*(((XR-W)/ITT)**2))
```

GFIGH=

```
00255
00256C
0025:7
00258
0025?
00250
00261
00282
00263C
00264
00255C
00266
00267
00268C
00267
00270C
00271.
00272C
00273
00274
00275
00276C
00277
00278C
00279
00280C
00281
00282
00283
00284
00285s
0028S
002S7C
0 0 2 8 8
00289C
00290C
00291
00292
00293
00294
00295
002960
00297 125 CONTINUE
00298C
00299 IIO 150 L=1,N
00300 H(L)= II(L)
00301 150 cONTINUE
00302C
00303C
00304C WE SOLVE THE MATRIX EQUATION JX=H, THE ARRAY (H)
```

```
00305C EEING IHENTICAL TO THE AF*FAY (II). THE SOLUTION
0030.C IS FETURNEII IN THE ARFIAY (H).
00307C
00308C
0030%
00310C
00311 SLIM1=0.0
00312 IO 200 L=1,N
00313 A(L)=H(L)
00314 SUM1= SUR1 + AES(A(L))
00315200
00316C
00317C THE FUNCTION EVALUATION SURROUTINE COMFUIT MAY
00318C EE IIELETEI. IN THIS CASE THE FOLLOWING EIGHT
00319C LINES ARE TO HE IIELETEII ANII THE AFFIAY (FX)
00320C CAN EE TAKEN FROM THE FEEAL STATEMEINT AT THE
O0321C EEGINNING OF THIS SUBROUTINE.
00322C
00323
00324 FNOFM1= 0.0
00325 IO 250 L=1,N
00325 FNORM1= FNOFM1 + FX(L)*FX(L)
00327 250 CONTINUE
00328 FNOFIM1= SRFT(FNOKM1)
00329 WRITE{0,300) LJ,FNOFim1
00330300 FOFMAT(I5,E15.6)
00331C
00332C
00333 IF (LJ.NE.1) THEN
00334 FAATIO= ABS(SUM1-SUM2)
00335 AF= EPS*SUM2
00333 IFLAG= 1
00337 IF (FIATIO .LE. AB) GO TO 400
00338 ENL IF
00359 SUM2= SUM1
00340 350 CONTINUE
00341 IFLMG=2
00342400 CONTINUE
00343 ITMnX= LJ
00344 FETUFN
00345 ENII
```

```
00001
00002C
00003C
00004C
000050
0000sC
00007
00008
00009
00010
00011
00012C
00013
00014C
0001.5
00016
00017
00018
00019
00020
00021
00022C
00023
00024
00025
00020
00027
00028
0002?
00030C
00031C
00032C
00033
00034
00035
00036
00037C
00038
00039
00040
00041
00042C
00043
00044C
00045
00046c
00047
00048C
00049
00050C
```

00001 00002 C 000030 00004 C 000050 0000 EC 00007 00008 00009 00010 00011 00012 C 3 00014 C 00016 00017 00018 00019 00020
00021 00022 C 00023 00024 00025 00026 00027 00028 00029 00030 C 00031 C 00032 C 00033
00034 00035 00036 00037 C 00038 00039 00040
00041 00042 C 00043 00044 C 00045 00046 C 00047 00048 C 00050 C

```
            SURROUTINE COMFUT{A,FX,N,X,TL,TFS
        sugroutine (COmfut), the function Evalulating
        SUBROUTINE, IS OFTIONAL.
            FEAL A(N),FX(N),F1,PALO,PHI,TLO,THI
            FEAL GLEF,GEIG,TS,X(N)
            INTEGEK N,K,J1,J2
            COMMON II(50),IH(50)
            INO 100 K=1,N
            IF ( II(K) +NE. 0.0) THEN
            IF (K;EQ.1) THEN
            ALO= 0.0
                        TLO= TL
            ELSE
                        ALO= A(K-1)
                            TLO= X(K-1)
    ENII IF
    IF (K.EQ.N) THEN
        AHI= 0.0
        THI= TR
    ELSE
        AHI= A(K+1)
                        THI= X(K+1)
    ENII IF
    IF {ALO,GE,0,0 .ANII, A(K),GE,0,0) JI=1
    IF (ALO,LT,0,0 ,ANI, A(K),GE,0.0) JI= 2
    IF (ALO.GE.0.0 ,ANII, A(K),LT,0.0) J1=3
    IF (ALO.LT,0.0 ,ANII. A(K),LT,0.0) JI=4
    IF (G(K).GE 0.0 .ANII. AHI +GE.0.0) J2= 1
    IF ( }A(K),LT,0.0 ,ANII, AHI,GE,0.0) J2= 2
    IF (A(K),GE,0+0 .ANII. AHI,LT,0.0) J2=3
    IF (A(K),LT,O,O ,ANII, AHI,LT,O.0) J2=4
    ITT}=\textrm{x}(\textrm{K})-\textrm{TLO
            IF ( IINK) .EQ. 1 ) THEN
            IF (J1.ER.1) THEN
    GLEF= IIT*( 2.0*A(K) + ALO )/6.0
```


	 $\begin{aligned} & \text { (Y) } X-\text { IHL }=1 I I \\ & \text { JI INE } \\ & \text { II INE } \\ & 0.0= \pm 379 \end{aligned}$
	NヨHL（I・ロヨ・I「）II 357ヨ （110＊0＊9）／07४＊（ 己＊＊（071－51））$=3379$
$0.9 /\left(0^{\circ} I+\tau \pm * 0^{\circ} \mathrm{Z}\right) *(X) \forall *(S L-(X) X)= \pm \exists 79$ 	
	$N \exists H \perp(\Sigma \cdot 03 \cdot$ Ir $)$ II 3573
	0．9／（ $074+\left(\right.$（ ）U＊ $\left.0^{\circ} \mathrm{Z}\right) * 1 \mathrm{I}=1379$
	HI 10
	$0.0=5379$
	（110＊0．9）／07世＊（ 己＊＊（071－S1））＝」ヨา9
$0.9 / 1$	$\left.11 /\left(071-\xi^{\circ} 0 *(C X) X+51\right)\right)=51$

```
00102C
00103
    GFIG= ITT*( 2.0*G(K) + AHI )/G.0
00104C
00105
0010sc
00107
00108
001090
00110
00111C
00112
00113
00114
00115C
00116
00117C
00118
00119C
00120
00121C
0 0 1 2 2
00123C
00124
00125C
00126
00127C
0 0 1 2 8
001290
00130
00131C
00132
00133C
00134
00135
00136C
00137
00138C
00139
00140
00141
00142C
00143
00144C
00145
001460
00147
00148C
00149
00150C
00151C
00152 IF (K.NE,1) THEN
```

```
00153
00154
00155C
00156
00157
00158
00159C
00160
00161C
00162
00163
00164
00165C
00166100
00167
00162
    IF (II(K-1),EQ. 0.0) GLEF=0.0
    ENII IF
FX(K) = GLEF + GFIG - II(K)
00167 100 CONTINUE
IF (K.NE.N) THEN
    IF (IMK+1),EQ. 0.0) GRIG=0.0
    ENII IF
ELSE IF (II(N) ,EQ. 0.0) THEN
FX(K)=0.0
ENII IF
CONTINUE
GETURN
ENI
```

00001
00002 C 00003 C
00004 C
00005 C
00006 C
000075
00008 C
00009 C
00010C
00011 C
00012 C
00013 C
00014 C
00015 C
00016 C
00017 C
00018 C
00019 C
00020 C
00021 C
00022 C
00023 C
00024 C
$00025 C$
00026 C
$00027 C$
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038 C
00039
00040
00041
00042
00043
00044
00045
00045
00047
00048 C
00049 C 00050 C
SUEFOUTINE FOLY INTEGFIATES BACK TWICE THE FOSITIVE FART OF THE PIECEUISE LINEAE SECONI IIERIVATIUE WHEFE THE IIATA SUGGESTS THAT THE INTEFPOLATING CUFVE SHOULI EE CONUEX, THE NEGATIUE FART OF THE FIECEWISE LINEAF SECONI IIERIVATIUE WHEEE THE IAATA SUGGESTS THAT THE INTEFFOLATING CURUE SHOULII BE CONCAVE, ANI THE FEMAINING PORTION OF THE FIECEWISE LINEAF SECONI IIERIVATIUE ON THE TRANSITION INTERVALS.
THE INTEGRATION YIELIS A FIECEWISE CUEIC FOLYNOMIAL WITH KNOTS GIVEN EY THE SEGUENCE (TX). THIS CUEIC FOLYNOMIAL INTEFPOLATES THE IIATA ANI ITS COEFFICIENTS AFE IIENOTEII EY THE NUMBEFSS F'F(J,I) - THE VALUE OF THE ($1-1$)ST IIEFIVATIUE OF THE FUNCTION EUALUATEI AT TX(I). FOF X SUCH THAT TX(I). GE. $X, L T$. TX($I+1)$ THE VALUE OF THE CUBIC FOLYNOMIAL IS
FF(1, I)
$+\quad F \cdot F(2, I) *(X-T X(I))$
$+(1 / 2) F F(3, I) *(X-T X(I)) * * 2$ $+(1 / 6) F^{\prime} F^{\prime}(4, I) *(X-T X(I)) * * 3$
INTEGEF M, J,L,LI
FEAL $A(50), T(50), \operatorname{PF}(4,100), F(50), T X(100)$, TAU
FEAL IF, IIT, IIA,C,E
COMMON II(50), III(50)
$L I=1$
$M N 1=N-1$
IIO $100 \mathrm{~L}=1$, MKN
$I F=F(L+1)-F(L)$
$I T=T(L+1)-T(L)$
$I A=A(L+1)-A(L)$
$J P=0$
IF (L.EQ.1) THEN
IF (II(1),EQ. 0.0) $J F=1$
ELSE IF (L.ER.MN1) THEN
IF (IMK-2), EQ, 0.0) $J F=1$
ELSE
$C=I(L-1) * I(L)$
$J F(E \cdot E Q \cdot 0+0) J F=1$
ENII IF

```

\section*{}
\begin{tabular}{|c|}
\hline IF (.JF.EQ.1) THEN \\
\hline \(\mathrm{FF}(4, L I)=0.0\) \\
\hline \(F \cdot \mathrm{~F} \cdot(3, L I)=0.0\) \\
\hline FFP(2.LI) \(=\) IF \(/\) IIT \\
\hline \(F^{\prime} F^{\prime}(1, L I)=F(L)\) \\
\hline \(T X(L I)=T(L)\) \\
\hline \(L I=L I+1\) \\
\hline ELSE IF (JF.EQ.0) THEN \\
\hline IF ( \(A(L)+G E+0.0, A N I+A(L+1), G E+0,0) \mathrm{J}=1\) \\
\hline IF ( \(M(L), L T, 0.0\). ANI. \(A(L+1) . G T, 0.0) \mathrm{J}=2\) \\
\hline IF ( \(A(L)+G T, 0,0, A N I . A(L+1), L T, 0,0) J=3\) \\
\hline IF \(\{A(L), L E+0,0, A N I I, A(L+1), L E, 0,0) J=4\) \\
\hline IF ( IM(L) , EQ. 1) THEN \\
\hline IF ( \(1 . E Q .1)\) THEN \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& C=I F / I I T-\{I A A / 6+0+A(L) / 2.0) * I I T \\
& F \cdot F(4, L I)=I A /[I T
\end{aligned}
\]} \\
\hline \\
\hline \(F \cdot F^{(3 . L I)}=A(L)\) \\
\hline \(F^{\prime} F(2, L I)=C\) \\
\hline \(F \cdot F(1, L I)=F(L)\) \\
\hline \(T X(L I)=T(L)\) \\
\hline \(L I=L I+1\) \\
\hline ELSE IF (J.EQ.2) THEN \\
\hline TAll \(=T(L)-A(L) * I T / T I A\) \\
\hline \(\mathrm{C}=\mathrm{IIF} / \mathrm{IIT}-(\mathrm{A}(\mathrm{L}+1) * * 3) * \mathrm{IT} /\) ( 6.0 (IIM*IIA \()\) \\
\hline \(F \cdot F(4, L I)=0.0\) \\
\hline \(\mathrm{FF}(3, L I)=0.0\) \\
\hline \(F^{\prime} P(2, L I)=C\) \\
\hline \(F^{\prime} \cdot(1, L I)=F(L)\) \\
\hline \(\mathrm{FP}^{\prime}(4, L I+1)=[1 / 4 /[1 T\) \\
\hline \(F^{\prime} F^{\prime}(3, L I+1)=0.0\) \\
\hline F'F(2,LIt 1\()=C\) \\
\hline \(\mathrm{FF}^{\prime}(1, L I+1)=C *(T A U-T(L))+F(L)\) \\
\hline \(T X(L I)=T(L)\) \\
\hline \(T X(L I+1)=T \hat{S}\) \\
\hline \(L I=L I+2\) \\
\hline ELSE IF (1.EQ.3) THEN \\
\hline TAUS \(=\) T(L) - A(L)*IT/ IIA \\
\hline  \\
\hline  \\
\hline \(\mathrm{FF} \cdot(4, L I)=I \mathrm{~A} / \mathrm{IT} T\) \\
\hline \(F F \cdot(3, L I)=A(L)\) \\
\hline
\end{tabular}
```

00102 F'F{2,LI)=C+A(L)*B(L)*ITT*0.5/IMA
00103 FPF(1,LI)= F{L)
00104 FPF(4,LI+1)=0.0
00105 F
00105 F
00107 F'F(1.LIt1)= C%(TAU-T(L)) +E
00108 TX(LI)= T(L)
00109 TX(LI+1)= TAU
00110 LI= LI+2
00111C
00112
00113C
00114
00115
00115
00117
00118
00119
00120C
00121
00122C
00123
00124C
00125
00126
00127
00128
00129
00130
00131
00132C
00133
00134C
00135
00136C
00137
00138
00139
00140
00141
00142
00143
00144C
00145
00146C
00147
00148
00149
00150
00151
00152 FP(1,LI)= F(L)

```
```

00153 F'F(4,LI+1)= [IA/IIT
00154 FF'(3,LI+1)=0.0
00155 F'F(2,LI+1)=C
0015s FPF(1,LI+1)=C*(TAU-T(L))+F(L)
00157 TX(LI)= T(L)
00158 TX(LI+1)= TAU
0015? LI= LI+2
00.160C
00161
00152C
00163 TAU=T(L) - 自(L)*IIT/IIA
00164 E=F(L) - (A(L)**3)*ITT*ITT/{6.0*IIA*IMA)
00165 C= IF/[IT + {A(L)**3)*IIT/(6.0*TAA*IA)
00166 F'F(4,LI) = IM/IIT
00167 - FF'(3,LI)=A(L)
00168 FFF(2,LI)=C + A(L)*A(L)*IIT*0.5/IAA
00169 F'F(1,LI)=F(L)
00170 FF'(4,LI+1)=0.0
00171 FFF(3,LI+1)=0.0
00172 \cdotFF(2,LI+1)=C
00173 F'F(1,LI+1)= Cw; TAU-T(L)) +E
00174 TX(LI)=T(L)
00175 TX(LI+1)= TAU
00176 LI= LI+2
00177C
00178
001790
00180 F'F(4.LI)=0.0
00181 FPF{3,LI)=0.0
00182 FFF(2,LI)= IF/IIT
00183 FP(1,LI)=F(L)
00184 TX(LI)=T(L)
00185 LI= LI+1
00186C
00187 ENII IF
00188C
00189 ENII IF
00190C
00191 ENII IF
00192C
00193100
00194 F'F{4,LI)=0.0
00195 F'F(S.LI)=0.0
00196 FF(i2,LI)=0.0
00197 FF(1,LI)=F(M)
00190 TX(LI)=T(K)
00199 FETUFN
00200 ENII

```

Subroutines TRID and DATAFL are listed in Appendix A.

\begin{abstract}
Autobiographical Statement
The author was born in Ironton, Ohio on July 15, 1959. He received the Bachelor of Science degree in mathematics from Georgetown College in Georgetown, Kentucky in May 1981. He received the Master of Science degree in computational and applied mathematics from Old Dominion University in December 1982. As a doctoral candidate the author was supported by a fellowship by the Institute for Computational and Applied Mechanics. He is co-author along with Drs. Philip W. Smith and Samuel P. Marin of "Constrained Interpolation and Smoothing," General Motors Research Report Number MA-312.
\end{abstract}```

