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ABSTRACT

MATHEMATICAL MODELS OF QUIESCENT SOLAR PROMINENCES

Iain McKaig 
Old Dominion University, 2001 
Director: Dr. John A. Adam

Magnetic fields in the solar atmosphere suspend and insulate dense regions of cool 

plasma known as prominences. The convection zone may be the mechanism that 

both generates and expels this magnetic flux through the photosphere in order to 

make these formations possible. The connection is examined here by modeling the 

convection zone as both one-dimensional, then more realistically, two-dimensional.

First a Dirichlet problem on a semi-infinite strip is solved using conformal map­

ping and the method of images. The base of the strip  represents the photosphere 

where a current distribution can be given as a boundary condition, and the strip ex­

tends into a current free atmosphere. Secondly a diffusion equation with convection 

terms is assigned to a two-dimensional region below the photosphere to represent the 

convection zone, and this is matched to Laplace’s equation above the photosphere to 

represent the corona. The PD E’s are solved numerically to find the magnetic field 

lines.

In both cases the solutions obtained resemble classic magnetic topologies that 

have been used to model quiescent prominences. Some of the solutions even have the 

feet observed to drop into supergranule boundaries.
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C H A PTER  1

INTR O D U CTIO N

If the Sun had no magnetic field, then it would be as boring as most 

astronomers think it is. R.B.  Leighton

This thesis* is concerned with modeling a specific formation of plasma that can 

be observed in the corona, or atmosphere, of the Sun -  quiescent prominences. The 

magnetic fields that create and support these structures are presumably generated 

in the convection zone below the visible surface. This chapter is offered as a brief 

introduction to solar structure so the reader can better understand the regions under 

discussion. Subsequent chapters will review the m athem atics needed to describe 

the interaction of magnetism and electrically charged fluids, present a history of 

prominence models, and introduce new models created to tie together the expulsion 

of magnetic flux by convection to the support of prominences in the solar atmosphere.

To a first approximation the  Sun can be thought of as a ball of hot plasma formed 

by the gravitational collapse of a  primordial cloud of hydrogen gas. Once the internal 

pressure and temperature became high enough nuclear reactions could begin to pro­

vided an outward force to balance the inward force of gravity. The resulting ball of 

plasma, in hydrothermal equilibrium, is layered like an onion into regions defined by

the most dominant form of energy transport (see figure 1.1). This picture is compli- 

*The Model Journal used for this dissertation is Wave Motion.

1
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2

cated though by rotation and magnetism, effects that give rise to interesting features 

in the surface and above.

The Sun is roughly divided into two basic regions, the interior th a t lies below 

the photosphere (the visible surface of the Sun) and the exterior atmosphere above 

-  but even these regions axe further subdivided. The former is divided into the core, 

radiative zone and the convection zone.

T h e  C o r e : The pressure in the core is high enough for nuclear fusion (through 

several intermediate steps) to convert four hydrogen nuclei (protons) into a helium ion 

(two protons and two neutrons). The helium ion is 3% less massive than  the protons 

and the resulting mass loss is converted into energy (E  = me2) th a t escapes in the 

form of high energy photons (gamma rays). As the photons move away from the core 

they are continually absorbed and em itted by electrons as they go. It can take up to 

the order of 10000 years for a photon to  reach the surface; its energy reduced to that 

of visible light by this time. This defines the photosphere. The core takes up about 

25% of the Sun’s radius and has a density ranging from 10 times th a t of lead in the 

very center to approximately equal to lead at the edge of the core. The central core 

temperature is about 107 K and 7 x l0 6 K at the boundary.

T h e  R a d ia t iv e  Z o n e : In this region the pressure is not high enough for nuclear 

reactions to occur but it is still too hot for protons to capture free electrons. Heat 

energy rises to the surface by radiation. This zone extends to 70% of the Sun’s radius 

and the temperature drops slowly from about 7 x l0 6 K to 2 x l0 6 K. The density of 

the radiative zone is about a fifth that of water.

T h e  C o n v e c t io n  Z o n e : In the convection zone the tem perature becomes low
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Fig. 1.1: The various layers of the Sun together with some surface and atmospheric 
features.
co u rte sy  S O H O /B IT  conso rtium , & p ro je c t o f  NASA a n d  ESA
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enough for ions to trap electrons increasing the opacity (the ability of a material 

to transmit photons) of the gas. This slows the transport of radiation and the gas 

now starts absorbing heat so the dominant energy transportation method becomes 

convection. Hot cells of plasma expand and become buoyant, rising to the surface 

then cooling and sinking to pick up more heat. The tops of the convection cells can be 

seen at the surface as supergranules that are about 30 000 km across and on a smaller 

scale as granules (see figure 1.2) approximately 1000 km across. The temperature 

drops to about 6600 K at the surface where the density has fallen to less than that 

of air at sea level.

The Sun’s magnetic field is thought to be generated at the border of the radiative 

and convection zones. The high shearing of the plasma’s velocity field stretches and 

twists the magnetic field lines making them stronger (this is the mechanism associated 

with the so called “solar dynamo”). The convection then carries field to the surface 

where it emerges to shape the surrounding material into many types of interesting 

phenomena (see figure 1.3).

The flow in the convection zone is not ju st outward. Since the Sun is a ball of 

gas it does not rotate as a rigid body and convection cells are sheared by differential 

rotation. It takes the Sun about 27 days to rotate at the equator and 37 days near 

the pole. Buoyancy also drives a  weak equator-to-pole flow known as meridional flow. 

Acoustic waves generated in the convection zone resonate through the interior provide 

information used to study stellax structure [l, 2].

The exterior atmosphere of the Sun is usually divided into the photosphere, chro­

mosphere and the corona, although there is a thin region below the corona known as
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the transition zone. It is in the atmosphere that the plasm a pressure drops so the 

magnetic field can move and structure the gas.

T h e  P h o t o s p h e r e : This is the visible surface of the  Sun where the energy of 

the photons generated in the core has been reduced to  tha t of visible light. The 

magnetic field escaping the convection zone creates m any types of formations on 

and above the photosphere: sunspots, flares, spicules, prominences, etc. Sunspots 

are regions of an intense and organized magnetic field th a t insulate the gas from its 

surroundings so the sunspot has a tem perature of approximately 1000 K less than the 

rest of the photosphere. Lasting from days to months they form near mid latitudes 

and drift towards the equator (see figures 1.2 and 1.4). Sound waves have been 

observed resonating through sunspots [3]. Flares can erup t suddenly near sunspots, 

ejecting m aterial into the atmosphere above. Spicules are columns of plasma that 

form at the edge of supergranule boundaries where 90% of the surface magnetic field 

is concentrated. They rise suddenly into the chromosphere at 20-30 km /s but are not 

observed falling back, the gas presumably becoming part of the corona or the solar 

wind -  a stream  of gas and ions flowing away from the Sun. The photosphere is also 

structured by acoustic waves that propagate through the  convection zone. Doppler 

shifts in the velocity of the photospheric gas can be inverted to provide information 

about the interior structure.

T h e  C h r o m o s p h e r e : This is an irregular layer th a t is structured by tangled 

magnetic field lines. The temperature rises from about 6000 K to 20000 K but is 

extremely dependent on the local magnetic field configuration. In a thin region at 

the top of the chromosphere known as the transition zone the tem perature rises from
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20 000 K to 1000 000 K over a  distance of <  100 km. The cause of this temperature 

increase is an active area of research.

T h e  C o r o n a : The corona is the true atmosphere of the Sun and extends past 

the earth and outer planets to the heliopause where the Sun’s magnetic field meets 

the intergalactic field. Visible close to the Sun as light scattered by dust and stray 

electrons, the gas is often organized into helmet streamers, tall columns of gas shaped 

by closed field lines th a t connect active regions on the surface (usually sunspots) that 

taper off at the end, and coronal holes, regions composed of open field lines where the 

plasma can escape to become part of the solar wind (see figure 1.5). The structure 

of the corona changes slowly with the 11 year magnetic cycle, but sudden events 

known as coronal mass ejections can occur (see figure 1.6). Over a period of hours 

plasma caught in closed field lines is ejected into interplanetary space. These storms 

can effect the earth causing power failures and damage to satellites. A resource for 

pictures of the solar surface and atmosphere is the website of SOHO, the SOlar and 

Heliospheric Observatory, a t http://sohowww.nascom.nasa.gov/. This is a satellite 

tha t monitors the Sun continuously with various instruments.

It is clear that the Sun is a complicated object, ripe for many applications of 

techniques in m athem atical physics. Since the magnetic field plays a m ajor role in 

how the fluid flows it is necessary to introduce the subject of magnetohydrodynamics 

(MHD). This is surveyed in the next chapter. This outline of MHD comes from 

three sources: Cosmical Magnetic fields - their origin and activity, a monumental 

work by E.N. Parker [4], Solar Magnetohydrodynamics by E.R. Priest [5], a useful 

compendium wherein MHD theory is applied to the Sun, and the classic work that
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started the field, Magnetohydrodynamics by T.G. Cowling [6].
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Fig. 1.2: A sunspot surrounded by granulation cells.
co u rte sy  o f th e  H igh A lt i tu d e  O bserv& tory /N C A R .
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Fig. 1.3: Magnetic flux escaping the surface of the Sun.
c o u rte sy  S O H O /E IT  c o n so r tiu m , & p ro jec t o f  N A SA  a n d  E SA

Fig. 1.4: A large sunspot group. W ith an area of more than  13 times the surface of 
the earth this group was responsible for many flares and coronal mass ejections.
c o u rte sy  S O H O /E I T  c o n so r tiu m , & p ro jec t o f N A SA  a n d  EISA
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Fig. 1.5: Helmet streamers (right/left) and coronal holes (top/bottom)
c o u r te sy  S O H O /B IT  c o n so rtiu m , a p ro je c t  o f N A SA  end  ESA

Fig. 1.6: Two coronal mass ejections on opposite sides of the Sun.
c o u r te sy  S O H O /B IT  c o n so rtiu m , a  p ro je c t  o f  N ASA a n d  BSA
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CH APTER 2

M AG NETOH YDRODYNAM ICS

Magnetohydrodynamics (MHD) is the branch of fluid dynamics concerned with the 

motion of an electrically conducting fluid in an electromagnetic field. The charges in 

the fluid, when set in motion, create a magnetic field which can then influence the 

motion of the fluid itself. Charge densities external to the fluid can also affect (and 

be affected by) the motion of the fluid. Thus there is a coupled system of fields and 

bulk motion of m atter.

....the motion of a conduct­
ing fluid generates currents

....set up a magnetic field 
that creates body forces 
that cause....

In MHD the fluid is often called a plasma, but an im portant distinction has to 

be made. In plasmas the charges (usually electrons) have room to be accelerated 

by the field between atomic collisions. The electrons and positive ions can become 

separated, creating strong electrostatic restoring forces (the cause of plasma waves); 

electrical conductivity becomes im portant and particle velocities can become a  signif­

icant percentage of the speed of light (c). A particle /  statistical approach has to  be 

used (using Boltzmann’s equation) and relativistic effects have to be considered. In 

MHD the fluid (which could be a dense ionized gas) has no significant separation of 

charge, the collision frequency is high, and a continuum approach can be used. The

11
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velocity of a parcel of fluid satisfies u C c s o  relativistic effects can be ignored. MHD 

waves are the low-frequencey counterpart of plasma waves.

So, in MHD a  fluid element is not only acted upon by the  usual hydrodynamic 

forces of viscosity, buoyancy and gravity, but also by an electromagnetic (Lorentz) 

force. As the element moves it changes the distribution of charge, hence changing 

the field. This added electromagnetic force can impart elastic properties to the fluid 

bringing in new modes of wave propagation to transmit fluid properties around the 

domain of interest. The governing equations of MHD are a  union of Maxwell’s equa­

tions and the usual fluid equations.

2 .1  The B asic Equations o f M HD

2.1 .1  T h e F lu id  E quations

The fluid equations consist of a continuity equation and an equation of motion in 

addition to an energy equation and an equation of state. They couple together the 

primary variables p (the m atter density), v (the fluid velocity field) and p (the fluid 

pressure). All dependent variables are functions of space and time, and are given in 

SI (MKS) units. The equations are:

The Continuity Equation:

l  + v-wij-o,

expresses the fact th a t m atter can neither be created nor destroyed. If the density is 

increasing in tim e then the mass flux must be negative, and vice versa.
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The Equation of Motion:

Dv  -  -p —— =  —Vp + j  x B  + pg + puV2v,
I S  tf

is essentially Newton’s second law of motion. ^  +  (v • V) is the m aterial (or

convective) derivative. The forces included here are the pressure, the Lorentz force 

(mentioned above but to be explained later in section 2.3), gravity, and the viscous 

force for an incompressible fluid. The Lorentz force is electromagnetic in origin and 

couples the fluid equations with the electromagnetic equations (section 2.1.2). u is the 

coefficient of kinematic viscosity. The viscous force term  becomes more complicated 

for a compressible fluid. More force terms can be added as needed for more involved 

situations (for example, if the rotation of the fluid is taken into account by moving 

to a frame of reference with an angular velocity). Also, force terms can be neglected 

to obtain approximate solutions. It is common, for example, to neglect gravity when 

the maximum length scale of a model is less than  the scale height, H  =  (— 

for a stable atmosphere (the height over which the pressure varies by a factor of e).

The Energy Equation:

PT 7T  =  ~ L >H Dt

is presented here in a very basic form. L  is the energy loss function, s is the entropy per 

unit mass of the fluid, and T  is the temperature. This equation expresses the fact that 

any increase in heat energy per unit volume as a  fluid element moves around a domain 

is due to energy sources or sinks as reflected in L. Note that L =  0 corresponds to the 

constant entropy case. This equation can be w ritten in a myriad of forms depending 

on the sources of energy considered important and will be discussed more fully in
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section 2.4.

The Equation of State:

p =  4  pRT,

is the ideal gas law. R  is the gas constant, and p, is the mean atomic weight (usually 

set to |  due to the abundance of Hydrogen). This equation can also take on different 

forms depending on the physical properties of the domain.

2.1.2 The Electromagnetic Equations

These are the empirically-derived Maxwell equations and Ohm’s law. They link the 

values of B  (the magnetic induction, often called the magnetic field), E  (the electric 

field) and j  (the current density). All are also given in SI units and are functions 

of space and time. Maxwell’s equations consist of Ampere’s equation, Faraday’s 

equation, the solenoidal condition, and a charge conservation law.

Ampere’s Equation:

^  ~ ,  1 dEV x B = w  + ? — ,

where p. is the magnetic permiability, states that currents or time-varying electric 

fields can create a magnetic field.

Faraday’s Equation:

V x E  =  — — , 
dt  ’

expresses the observation that time-varying magnetic fields can create an electric field. 

The Solenoidal Condition:

V - B  = 0,
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“prevents” the existence of sources or sinks of magnetic fields. Lines of constant 

magnetic field must form closed loops.

Charge Conservation:

V • £  =  —, 
e

where p* is the charge density and e is the perm ittiv ity  of free space (note th a t 

c =  (/ze)~5), shows that charges create electric fields.

In solar MHD the last term in Ampere’s equation (called the displacement cur­

rent), so ingeniously added by Maxwell to create the equations named after him, is 

ignored. The reason is as follows:

Let L  and T  be length and time scales, so V  = L / T  is a  characteristic 

velocity scale. Also let B  and E  be characteristic values for the magnetic 

and electric fields. Faraday’s equation |  ~  |  so £  «  7 B , =i> ^  ^

=  Now V x 5 « f s o i f y c c  then «C V x B  thus the

displacement current can be neglected.

Note th a t when this term is neglected Ampere’s equation => V  • j  =  0, so accumula­

tions of charge are negligible and currents flow in closed loops.

Ohms Law:

j  =  a (E  + v x  B) ,

is the final electromagnetic equation and links (through v) these equations to those 

of the fluid, a  is the electrical conductivity. This is the usual Ohm’s law j  = a E  

generalized to a moving conductor (which generates a magnetic field). Note tha t in 

the infinite conductivity limit this becomes E  +  v  x B  =  0.
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In most solar MHD problems Ampere’s equation , Faraday’s equation, O hm ’s law 

and the solenoidal condition are all used to get one equation involving ju st B  and v. 

This is called the induction equation and can be used to explore some wide ranging 

properties of solar plasmas.

2 .2  The Induction Equation

Ampere’s equation (without the displacement current) and Ohm’s law can be com­

bined to eliminate j ,  the current density. This gives E  =  x B —v x  B.  Substitute 

this expression for E  into Faraday’s equation, and let 77 =  ^  (the magnetic diffu- 

sivity) to find 77 V x V x B - V x f x B  =  - ^ .  Next use the solenoidal condition 

V  • B  =  0 with the vector identity V x V  x B  =  V (V  • B) — V 2B to obtain:

The Induction Equation:

—  = V x ( v x B ) + t j V 2B ,

one equation connecting the fluid velocity and the magnetic field. Therefore in solar 

MHD, the only primary electromagnetic variable used is the magnetic field B . Once 

the magnetic field is found, Ampere’s equation gives the current density and Ohm’s 

law can be used to find the electric field. The induction equation can be used to 

illustrate some consequences of combining magnetic fields with conducting fluids. 

Mathematically, both terms on the right hand side behave completely differently. The 

first term is convective while the second is diffusive -  each can be dominant on different 

time and length scales. The convective term  has a time scale of Tmotion = L / V  

while the diffusion term  operates on a time scale TdiffwHon — L2/ t). The ratio of
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these time scales is a non-dimensional number called the magnetic Reynolds number 

Rm =  T£ffu*'on =  ^ .  If «C 1  the diffusion dominates and if Rm 1  convection
1 motion *1

dominates. Consider the consequences of each approximation.

2.2.1 The Diffusive Limit

If Rm <C 1 (so Tdiffusion <C Tmotlon) then the induction equation reduces to the diffusion 

equation =  t]V2B  making the coupling between v and B  very weak (note that 

this is also the case if v =  0). The magnetic field is free to spread through the 

fluid and any initially convoluted field will smooth out and decay over a time scale 

of Tdiffusion =  L2/ t). The energy in the magnetic field is converted to heat. This is 

known as ohmic dissipation. However, in most solar applications the length scale is 

large making this approximation invalid. For example, the magnetic field of a typical 

sunspot has a diffusion time of ~  300 years, but sunspots develop and fade over a 

m atter of weeks.

2.2.2 The Perfectly Conducting Limit and the Frozen Flux 

Theorem

If Rm »  1  (so Tdiffusion Tmotion) then an appropriate approximation for the induc­

tion equation is the transport type equation ^  =  V x (v x B). The fluid velocity 

and the magnetic field are tied together and the magnetic field can no longer diffuse 

freely through the fluid. This is often called the perfectly conducting limit because if 

Tdiffusion dominates then tj must be small so a  must be large. However, the electrical
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conductivity varies little over large domains in the solar atmosphere so it has been 

suggested [5] tha t a  better title  should be the large length scale approximation. Note 

that this is the equation satisfied by the vorticity field in non-viscous fluid dynamics, 

with B  = u  (not an exact analogy since B  ^  V x v ) , and since vortex lines move with 

a fluid (the vorticity theorem of Helmholtz and Kelvin) then maybe lines of magnetic 

field do too. This is the case and the result is known as the frozen-flux theorem of 

Alfven [6 ]:

In a perfectly conducting fluid (Rm —» oo) magnetic field lines move with 

the fluid, i.e. the field lines are “frozen” into the plasma.

The proof involves showing th a t if $  =  f  f  B  • dS  (the total magnetic flux through
s

a surface S ) then ^  =  0. The flux through S  as the surface moves about the fluid 

remains constant in time.

2 .3  T he L orentz Force

The fluid velocity in Ohm’s law couples the electromagnetic equations to the fluid 

equations and the j  x B  term in the equation of motion connects the fluid equations 

to the electromagnetic ones. This force term is known as the Lorentz force and only 

has an effect on the fluid perpendicular to B, and does not contribute parallel to 

B. Any variation in fluid properties along the magnetic field lines must be due to 

hydrodynamic forces (such as gravity or a pressure gradient) only.

Using Ampere’s equation and a vector identity and writing the first term  of the
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result in a Prenet frame of reference, we can write the Lorentz force as:

J  x B  =  i ( V  * B)  x B  =  1 ( 8 . V ) B  -  V ( | )  =  +  ±  ( g )  f  -  V g )  ,

where Pf is the curvature of the field line, s is the arc-leDgth parameter, and N  and 

T  are unit normal and tangent vectors to the field line. This shows that the Lorentz 

force contributes a tension, of magnitude along the field lines directly proportional 

to how much the field lines curve, and an isotropic pressure force of magnitude J^-. 

So the Lorentz force can be thought of as a magnetic tension along the field lines and 

a  magnetic pressure in all directions. Lines of magnetic flux therefore have elastic 

properties and push against each other, achieving equilibrium only when these forces 

balance. These properties of the field lines suggest th a t they can support wave motion, 

dragging the fluid with them  if the conductivity is high.

2 .4  E nergy C on sideration s

The energy equation p T =  —L  mentioned above is very general, but by using the 

equation of state for an ideal gas, and the fact tha t s oc In where 7  is the ratio 

of specific heats, it can be put into the form ^ 7 ^  (^ 7 ) =  —L. The decision to be 

made next is what sources and /o r sinks of energy to include in L, the energy loss 

function. In the solar atm osphere the dominant energy transport mechanisms are 

therm al conduction, radiation and heating. To account for these mechanisms, L  can 

be taken as:

L  =  - V  • («VT) +  p2Q(T) -  H.
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The first term is for thermal conduction and k is the anisotropic thermal conductivity 

tensor. The second term accounts for energy losses by plasma radiation. Q (T ) is the 

radiative loss function and is usually approximated by a  piecewise continuous function 

of the form Q(T) = x T a where x  Q: are constant over various temperature ranges. 

The last term accounts for all the other sources of heating in the atmosphere -  for 

example; heating due to the magnetic field, large scale currents (called ohmic heating), 

viscous heating, or mechanical heating by dissipation of acoustic waves.

However, when dealing with wave motions that act on a  short enough time scale, 

we can neglect all these terms and set L  =  0. A typical fluid element, when displaced 

by wave motions, will not have time to be acted on by any of these elements before 

the restoring forces act to displace the parcel once more. This is the adiabatic ap­

proximation which =£• is constant. Using the continuity equation, the adiabatic 

form of the energy equation becomes:

dp  _—— b v • V p  +  7 pV • v =  0. 
at

2 .5  S um m ary o f E q u ation s

The fundamental equations of MHD are:

The Continuity Equation: §f +  V • (pv) =  0

The Equation of Motion: p§f +  p(v • V )v  = —V p  + ^ (V  x B) x  B  + F

The Induction Equation: ^  =  V  x ( u  B) +  rjV2B

The Energy Equation: ^  +  v • Vp +  7 p V  • v =  0
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Where Ampere’s equation has been used to eliminate j  from the Lorentz force term  in 

the equation of motion, and non-adiabatic sources of energy have been ignored in the 

energy equation. The ex tra  force term in the motion equation may include gravity 

and /o r any viscous terms.

These are two vector equations and two scalar equations for a total of 8  equations. 

The unknowns are v, B , p, and p  -  two scalar and two vector quantities, for a  total 

of eight quantities. So these equations, together with the appropriate boundary and 

initial conditions, should be enough to completely determine the relevant solutions to 

any well-posed physical problem involving the solar atmosphere. Once v and B  are 

found, Ampere’s equation can be used to find j  and Ohm’s law to find E.

The initial configuration of a magnetic field is often set up in terms of flux tubes 

or current sheets. We now examine these structures.

2 .6  F lux  T ubes an d  Current S h eets

The basic units used to model structures in the solar atmosphere axe flux tubes and 

current sheets. They are usually considered as isolated entities, but can also be made 

to interact with each other and the surrounding atmosphere. We review them one at 

a time.

2 .6 .1  F lux T ub es

As the name suggests, a flux tube is a three dimensional region filled with a prescribed 

magnetic field between two non-coplanar simple closed curves. The field lines can be

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



22

thought of as filling the region with a magnetic “flow” or flux. T he closer the lines the

stronger the field, and the further apart the weaker the field. Since B  =  (B x, By, B z) is

tangent to the field lines, we can graph them by solving the equations ^  = j*-.

The strength of the field at a particular cross-section of the tube can be defined as

a flux integral, J f  B  ■ d S , where d S  is taken in the same direction as B  so that the 
s

strength will always be positive.

A nice property of flux tubes is tha t the strength is the same a t all cross-sections. 

This follows from the following argument (see figure 2.1):

Let Si and S2 be two cross-sections and S  be a surface connecting them 

(along the field lines) to form a volume V, then:

f f  B - d S  = f  J  B  • d S  + f f B - d S  + f f B  - dS
SUS1US2 S  Si S2

= JS  B - d S  + SS B - d S  =  0,
Si S2

since f  f  B  ■ dS  =  J f f  V • B d V  =  0 by the divergence theorem (and the
SUS1US2 v

solenoidal condition) and f f  B  • d S  =  0 since B  and d S  are orthogonal
s

over S. So J J B  • dS  =  — J f B  • dS. Take the absolute value and the result
Si Si

follows.

Note that since the strength of the field is the same at any cross-section, it follows 

that as the tube narrows the mean field must gain strength and as the tube widens 

the mean field must weaken.
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2.6.2 Current Sheets

In most solar applications the magnetic field is spread over a large region. This makes 

the current density j  ( «  small. But if two regions of magnetic field (two flux 

tubes for example) become close, and we want to model the region between them, 

then we axe looking at a  smaller length scale and a higher current density. This type 

of domain is known as a current sheet. It is a non-propagating boundary separating 

two regions of fluid with its magnetic field squeezed between and tangent to both 

boundaries. Essentially it is a  tangential discontinuity in a  larger domain of plasma. 

Note tha t due to the smaller length scale Rm *C 1 , so diffusion dominates in the 

current sheet.

A current sheet can be thought of as a stationary shock wave. It separates two 

regions of fluid where the equations of MHD hold, and its properties axe governed by 

diffusive effects. Standing waves can result from plasma being ejected from the ends 

of the sheet. The magnetic field forming the sheet can diffuse into the surrounding 

plasma, converting its magnetic energy into heat (a process known as ohmic diffusion) 

and plasma motion.

2 .7  M agn etoh yd rosta tics

Many solar phenomena remain in equilibrium for long periods of time. The magnetic 

field is frozen into the fluid and provides a magnetic pressure to balance the sources 

of fluid pressure. In this static  case we can set v =  0 and =  0 so the equation of
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motion becomes:

-  Vp + j  x  B  + pg =  0,

expressing the magnetohydrostatic balance of forces. In certain situations some of 

these forces dominate the others. For example, if g =  (0,0, —g) and s is an arc-length

of z  alone. Now p =  c • pT  (the equation of state) where c is a constant, so T  = T(z)  

and we obtain the differential equation ^  +  * % =  0. The solution is:

where po is the pressure at z = 0 and A(s) =  |T (s )  is called the pressure scale 

height. Hence the pressure following a magnetic field line decreases exponentially. If 

the atmosphere is isothermal then A is constant and p =  p0 e- *, with A being is the 

height over which the pressure falls by a factor of e~l . Hence, if L  is a typical length 

scale for a problem and L < A  then gravity can be neglected.

Note that p0  =  po{x, y ) is the pressure at z  =  0. If this pressure is constant then the 

pressure is the same a t a fixed height and the atmosphere is plane-parallel. However, 

if the base pressure changes then this change will propagate up the atmosphere along 

the field lines at the sound speed.

parameter along the magnetic field lines (so ds cos 9 =  dz where 9 is the angle between 

B  and the vertical) then the component of the above equation in the direction of B  is 

— % — pg cos 9 — 0 (see figure 2.2). This — pg = 0 where p and p axe functions
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Fig. 2.1: A Flux Tube.

field line

Fig. 2.2: ds and dz  on a  field line.
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2.7.1 The Plasm a B eta

Other approximations can be made depending on the relative strengths of the pressure 

gradient compared to the Lorentz force. The magnitude of the pressure gradient is £ 

and that of the magnetic pressure is ^  so define a quantity called the plasma beta:

2 Pfj. gas pressure
B 2  magnetic pressure

If /? :»  1  then the pressure gradient dominates, while if (3 <§C 1  the Lorentz force 

dominates and (if gravity can be neglected also) we get j  x  B  =  0. In this case the 

magnetic field is called force-free.

2.7.2 Potential Fields

A special case of force-free fields occurs when j  =  0. Then Am pere’s equation becomes 

V x B  =  0 which =» B  =  V<£ for some potential function <3>. So a current-free field 

is also called a  potential field. Taking the  divergence of both sides, it follows from 

the solenoidal condition that $  is a solution to Laplace’s equation V 2<$ =  0. This of 

course, can be solved by a variety of m ethods from separation of variables to conformal 

mapping, depending on the context.

2.7.3 Force-Free Fields

If L  A, /3 1 but j ^  0 everywhere, then j  x  B  =  0 =$■ j  and B  are parallel.

Thus, fj,j =  ctB which implies, by Ampere’s equation that:

- j
V x B  =  ctB (where a  =  a(x) in general).
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TaJcing the divergence of the above we get B  • V a  =  0; therefore B  must be tangent 

to surfaces of constamt a . Even though a  is a function of position, it must remain 

constant aiong individual field lines.

Note that if a  is constant everywhere then talking the curl of both sides, and 

using the identity V x V x B  =  V ( V 'B )  -  V 2 jB, yields (V 2  +  a 2)B  =  0, a linear 

Helmholtz equation, while if a  varies across field lines then a nonlinear coupled system, 

V25  +  o?B  =  B  x V a  with B  • V a  =  0 results.

2.7.4 M agnetohydrostatics and Flux Tubes

A useful special case of sta tic  equilibrium is the cylindrically symmetric flux tube 

with B  =  (0, Bg(r), B z{r)). The field lines axe found by solving —  — |r-, so they axe 

helices twisting around the cylinder with raidius r . If we suppose that the flux tube 

has length 2L  then a particular field line has a total twist of:

\ [  ja  f 2L Bo j  2L B 0# (r ) = y ^ = y o ^ = 7 5 7 -

This quantity is called the twist of the flux tube. Neglecting gravity, the force balance

ri ft { L g 2 \  q 2equation in cylindrical coordinates is j® +  ^  ( e2fi * J + =  0. Any two of the three

dependent variables can be fixed and the third one obtained. Note tha t if Bg and 

B z are prescribed, this is equivalent to fixing the twist of the flux tube. If Bg =  0 

(the axial case) then the equation simply says tha t the total pressure (plasma and 

magnetic) is constant.
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2 .8  W aves

An important method of distributing m atter and energy in a plasma is by means of 

waves. Even if the wave amplitude is small (so there is no bulk motion of plasma) 

energy can still be transported. If the wave amplitude is large then shock waves 

can form, and these have im portant consequences for the properties of the fluid. All 

waves transport energy from a source throughout the plasma and are supported by 

restoring forces. In the solar atmosphere there are three basic restoring forces that 

produce different wave modes. The fluid pressure acts to produce sound waves. The 

magnetic tension produces a wave unique to MHD called Alfven waves, and buoyancy 

gives rise to internal gravity waves (the word internal is used here to distinguish such 

waves from surface waves between two fluids). There is a fourth type of wave mode 

called inertial waves that result from solar rotation (Coriolis forces), but these modes 

will not be considered here. The energy transported by rotation is significantly less 

than that of the other modes.

To determine which wave modes propagate and which decay the fluid is first 

assumed to be in a state of equilibrium, and then a perturbation is added that is 

much smaller than this basic state. This is substituted into the governing equations 

and they can then be simplified using the equilibrium solution. The equations are 

then linearised by neglecting any products of the small perturbation terms. Once 

we have linear equations, a plane wave solution can be assumed which will lead to a 

dispersion relation. This is a  relationship between the wavelength and the frequency 

that can determine which modes can propagate.
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The basic equations are (neglecting any dissipative forces like viscosity, and as­

suming frozen field lines):

§f + V ■ (pv) =  0

P % + P (v -  v )p =  - V p +  j ( V  x B )  x  B  + pg 

f  = V x ( v x B )

2% +  v • Vp +  7 pV • v =  0.

Now, let

S  =  So -+- S i 

v = 0 + Vi 

p  =  Po +  Pi 

p = Po + P i ,

where the “0 ” subscripts satisfy the equilibrium equations (i.e. Vp 0  =  ~(V x S 0) x 

B q +  pog and V • S 0  =  0) and the “1 ” subscripts are small in comparison to the “0 ” 

subscripts (i.e. |pi| |po|, etc.) and are functions of space and time. Substitute 

these into the basic equations above, simplify and linearise to get:

^  +  V  • ( p o u O  =  0

Pojjt ~  —Vpi -I- i ( V  x S i)  x 5 0  +  i (V  x S 0) x S i  -I- p^g 

f  =  V x (t? !X  So)

^  -I- uL • Vpo -1- 7 P o  V  • vx =  0.

These equations can be reduced to  one equation by taking of the motion equation, 

then using the others to eliminate pi, pi and S t :

Po-Qjjr =  V(ui • Vpo +  7 PoV-Ui) +  -  (v X  V  x  (ui X  So)) x So

+ —(V x S 0) x V x (uL x S 0) — V  • {pQvi)g. (2 .1 )
P
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This is the linearised equation of motion and describes the evolution of all linear 

MHD waves [7]. To provide physical insight we first simplify this equation to obtain 

each pure wave mode alone.

2.8.1 Sound Waves

Setting B0 = g = 0 ensures tha t the only restoring force is fluid pressure. Here 

f3 =  oo and L  *C A. This will isolate the acoustic modes. Since the equilibrium 

pressure satisfies V • po =  0j Po is constant and the linearised equation of motion

(2.1) becomes Po^§L =  V (7 p0V • ui). Now assume constant density and take the 

divergence of both sides to get Jp-(V • Ui) =  - ^ V 2(V • n\). Setting V& =  V • Vi gives 

a  wave equation in the divergence of the velocity perturbation (i.e. compressibility is 

propagated):

^ 5- =  c2 V2\& where c2  =  (the square of the sound speed).ot Po

Note that a non-zero VP implies th a t sound waves only propagate in a compressible 

medium. This wave equation has constant coefficients so we assume the standard 

plane wave solution where:

'J  =  a constant

k — a  wave vector that points in the direction of propagation 

t  =  (x , y, z )  = a position vector 

u  =  a (possibly complex) frequency.
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Substituting in this solution gives ui2 =  c |̂|fc| | 2  giving the dispersion relation (letting 

k  =  | | %

cj =  ±csk.

The dispersion relation can be used to define two important quantities, the phase 

velocity and the group velocity. The phase velocity vp = f k ,  where k is the unit 

vector in the direction of k, gives the velocity of a  single wave. Note tha t if a; is not 

proportional to k then waves of different wave numbers travel at different speeds and 

the wave propagation is said to be dispersive. Any initial condition composed of a 

variety of Fourier components will tend to spread out as the wave progresses. The 

group velocity is defined as vg =  V ^cj = ( J ^ , Jj^, and gives the velocity of the 

envelope for a wave packet. A group of waves transports energy at this velocity. If uj 

is proportional to k  then the group velocity will be constant and vp =  vg. For sound 

waves vp =  vg =  ± cak, so sound waves propagate isotropically.

2.8.2 Alfven Waves

Next we isolate the effect of the Lorentz force. Let p0 =  0 and g =  0, so L  <C A and 

the plasma is low beta (/3 =  0 ). Furthermore, let the equilibrium magnetic field be 

uniform. The linearised equation of motion (2 .1 ) then reduces to:

Po~djT =  ~  (V  x V x (ui x B 0)) x  B q.

Now assume a plane wave solution for Vi, namely Vi = ve^k'r~ut  ̂ where v is a 

constant vector, (note th a t with this solution form V x  =  —i k x ) to get =

(A: x k x (v x Bo)) x B0, where B0  =  ||B0|| and B q is a  unit vector in the direc­
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tion of B q. Using the vector identities A  x  (B x  C) = (A • C ) B  — (A • B )C  and 

(A x B) x  C  = (A • C ) B  — (B • C) A  and letting cQ =  the following equation is 

found:

;2
— v  = k ?  cos2  9 v  — ( k  •  v ) k  cos 9 B q  +  [(£ • v )  — ( B q  • v ) k  cos k ,

where 9  is the angle between the direction of propagation ( k )  and the constant equi­

librium field ( B q ) .  This equation can be simplified by taking the dot product of both 

sides with B0. The first and last terms cancel, together with the two middle terms, to 

show that v  • B q  =  0 .  The last term can now be neglected. Now take the dot product 

with k  (cancelling the first two terms) to  get:

(u; 2  -  ^ k 2)  ( k  •  v) = 0 .

This equation has two solutions. E ither k  • v  =  0 or uj  =  ± c a k .  If k  • v  =  0 then we 

get the dispersion relation:

u j  =  ± c a k  cos 9.

This gives both a phase and group velocity of:

v p — v g =  ± ca cos 9 k .

This means that wave fronts in the direction of the magnetic field propagate (and 

carry energy) at the speed c0  along the field lines. The field lines act as tau t strings 

carrying transverse waves (since k  and v  are orthogonal). These waves are called 

Alfven waves and c a  is known as the Alfven speed. If the direction of propagation is 

normal to the field lines then there is no wave motion. The fluid simply carries the
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field lines w ith it. These types of waves are called shear Alfven waves (or “slow-mode” 

waves if the  gas pressure is included but dominates the  magnetic pressure) and are 

due to the  magnetic tension in the field lines.

The other solution, uj =  ± c ak, gives a phase and group velocity of:

vp = vg = ± cak.

These waves do not depend on the direction of the field and propagate isotropically 

with speed ca. These axe known as compressions! Alfven waves (or “fast-mode” waves 

if the gas pressure is included but is dominated by the magnetic pressure) and are 

due to the magnetic pressure (see figure 2.3). Note th a t if 0 =  § then the field lines 

carry waves longitudinally, much as sound waves are propagated.

2.8.3 Gravity Waves

We now ignore the magnetic field and include gravity. For simplicity we assume 

that the density and pressure of the fluid are vertically stratified, increasing with 

depth, and that gravity acts vertically (g = —gz). This density stratification leads 

to buoyancy forces that produce waves called gravity waves. If the density of a fluid 

element does not match that of its surroundings then it will either rise or fall. If 

such an element is initially in equilibrium with its surroundings at the equilibrium 

density and pressure of po and po respectively (see figure 2.4), for the element to be 

in equilibrium the equation of hydrostatic equilibrium ^  =  —po9 must be satisfied 

throughout. Now say the element is displaced by a small height dz, with the following 

assumptions:
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\ ✓

B 0

Fig. 2.3: A polar diagram for shear (solid) and compressions! (dashed) 

Alfven waves.

po +  dpo po +  dp

Po Po

Fig. 2.4: A rising parcel of fluid.
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i) the motion is slow enough that the element remains in pressure equilibrium 

with the surrounding fluid (this is necessary if we want to ignore sound waves) and

ii) the motion is fast enough to be adiabatic (i.e. no heat is lost or gained by the 

element).

If p and p are the density and pressure in the element after displacement, then as­

sumption ii) =>■ is constant. So dp =  ^ d p  =  (?3dp. Therefore, using assumption i), 

dp =  —Qfdz. The buoyancy force is g(dp0 — dp), so if dp < dp0 the element will rise 

and if dp > dpQ then the element will fall. Now, using dpQ =  ^ d z  we find tha t the 

buoyant force is:
1 r l  / I .  r-1

pQdz =  —N 2p0dz
1  d p Q g_

Po d z

where N* = - g  +  g ] is called the Brunt-Vaisala frequency. To see why this 

quantity is called a frequency, write the equation of motion for the element: =

—N^Podz. The element will move in simple harmonic motion with angular frequency 

N  as long as N 2 > 0.

To derive a dispersion relation for gravity waves, start with the linearized equation 

of motion (2.1) with B q  set to  zero, vertically stratify the density by letting p 0 =  

P o ( z )  =  c o n s t a n t  ■ e~%  where A is the scale height, and let ui =  v e l k̂ 'r ~ u t \  This will 

lead to:

u 2v  =  (?3 ( k  •  v ) k  +  i g v z k  +  2 ( 7  —  1 ) g ( k  •  v ) z ,

where v z  is the z  component of v  and z  is the standard unit vector directed vertically 

upwards. Next take the dot product of both sides of this equation with k ,  then with
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z , and eliminate the ^  term between the resulting system to get:

<jj4 — (vygkz 4- (?3k2)u 2 +  ( 7  — l)g2(fc2 — A:2) =  0. (2.2)

At this point we can take advantage of the fact that we are neglecting sound waves 

that would swamp any waves caused by buoyancy, so cj -C kc„. This is known as the 

Boussinesq approximation -  the fluid is considered as incompressible, but variations 

in density are still included in the buoyancy term so this force alone drives any 

fluid motions. W ith this in mind, the above dispersion relation becomes k2u 2cl =  

( 7  — l)g2(k2 — k 2). Now using the exponential form for the density stratification 

(valid in an isothermal medium), the Brunt-Vaisala frequency can be written as 

N 2 =  —g =  (~y-̂ )g2 The above dispersion relation can then be written

as:

ui = ± N  sin 9.

where Q is the angle between k  and z. Note that u  < N  so gravity waves cannot 

propagate faster that the Brunt-Vaisala frequency, and that they do not move verti­

cally. Also note that the z  component of the group velocity is =  — |§-a;, so energy 

flows down when waves propagate up.

2.8.4 M agnetoacoustic Waves

We now consider combinations of two of the basic three restoring forces. If the 

magnetic and fluid pressure are comparable, but L  A (so we can neglect gravity), 

we will combine the properties of the magnetic and sound waves. T he compressibility 

of the plasma and the magnetic field will interact. The linearized equation of motion
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(2 . 1 ) will be:

q2 x j

Po-q^ -  = V (v v 'Vp0+'yp0V -v l) + - ( y  x V x ( * x  £ 0)) x B 0 + - ( V x B 0)x  V x ^  x 5 0).

Assuming the equilibrium field to be constant, setting v\ = vex̂k"r~UJt'i and simplifying 

as above, this becomes:

to2 -
— v =  k2 cos2  Qv — (k - u)A: cos 9B0 + 1 +  ^  j  (k • v) — (B0 • z5)A: cos 0 A:,

where 0 is again the angle between k and B q. N o w  take the dot product of this 

equation with k, then B 0, and eliminate from the resulting system, to get theDQ'V

dispersion relation for magnetoacoustic waves:

cj4 — k2{(?s +  c2)u>2 +  c^c^k4 cos2  9 = 0.

Using the quadratic formula we get:

U) r . 1
*’ = k k  =

c] +  c2  ±  yjc* + c Aa -  2c2c% COS 20 2 k.

A polar plot shows the two distinct phase speeds quite well. There is clearly a  fast 

(almost isotropic) wave and a slow wave (see figure 2.5).

2.8.5 Acoustic-G ravity Waves

The dispersion relation for compressible and buoyant forces will be the same as ini­

tially obtained for gravity waves (2 .2 ), but we cannot simplify the equation by ne­

glecting compressibility. By introducing an extra  param eter N a = and introducing 

another wave vector k' as k 1 =  k  +  i ^ z  we can rewrite the relation as:

cu4 — (N 2 +  k'2c23)u 2 +  N 2k ,2c2  sin2  & =  0,
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Fig. 2.5: Polar diagram for fast (dashed) and slow (solid) magnetoacoustic 

waves. The semi-major axis of the smaller ellipse is the smaller of c3 and 

ca.
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where & is the angle between k! and z. The introduction of the wave vector k' changes
Xgz _

the velocity perturbation to v =  ve 2c» e*(# r-ut) ̂  so waves can grow exponentially.

To see which modes propagate for a given horizontal wave number kx{= kx) we 

can let k'2 =  k'2 4 - kx to get:

w 4  -  (iVa2  +  k2xc2)u2 +  N 2k2c2 =  kflz c?3u 2,

and then note that disturbances will propagate vertically when the left hand side is 

positive. This gives the cu — kx diagnostic diagram (see figure 2.6).

Unlike the magnetoacoustic waves, these modes are only weakly coupled -  the 

high-frequency modes remain acoustic in nature and the low-frequency modes propa­

gate as gravity waves. The waves with frequencies between N  and N 3 are evanescent.

2.8.6 M agnetoacoustic-Gravity Waves

Adding a magnetic field to  the acoustic-gravity case (or gravity to the magnetoacous­

tic case) adds another restoring force and another preferred direction. All the terms 

in the linearized equation of motion (2 .1 ) have to be included, complicating the situa­

tion. The waves supported by all three restoring forces -  compressibility, gravity and 

the Lorentz force -  are often refered to as magneto-atmospheric waves. Applications 

to the Solar atmosphere include waves in sunspots [8 ], waves induced in the corona 

by sudden events such as flares [9] and heating of the corona [10] (although a more 

recent explanation is resonant absorption of Alfven waves in coronal loops [11]). For a 

detailed treatment of such waves see [12]. Various special cases (boundary conditions, 

horizontal magnetic fields etc.) lead to many methods used in applied mathematics,
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from transform  theory to WKB approximation methods [9, 13].

2 .9  M H D  In stab ilities

In MHD, as in ordinary fluid dynamics, stability theory can be applied to determine 

what values of certain variables or parameters in a particular fluid configuration will 

cause th a t configuration to develop nonlinearties and ultimately turbulence. The 

underlying idea is similar to the plane wave analysis used to determine the wave 

modes th a t propagate in a plasma. First a basic flow is established that satisfies the 

equations and any boundary conditions. This basic flow is modified by adding small 

perturbation terms and then substituting into the governing equations. These equa­

tions are then simplified using the fact that the basic flow satisfies them and linearized 

by neglecting any products of the small perturbations. Now that the equations are 

linear, any disturbance can be treated  as a superposition of individual modes th a t 

can be treated  separately. Each mode f(x,t;u>) is then assumed to be of the form 

where uj is complex. Substituting this form into the linearized equations gives 

an eigenvalue/eigenfunction problem. The nature of the eigenvalues, ui then deter­

mines the stability of the system. If u; 2  is real and negative for all ui (at all points x), 

for example, then the configuration is stable. The system will simple oscillate about 

the basic flow. If, however, for a t least one mode ui2 is real and positive then th a t 

mode will grow exponentially and dominate the system. The flow is then said to  be 

unstable.

Any basic flow studied in fluid mechanics can be analyzed in MHD by (in principle)
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adding a magnetic field. Since a magnetic field has the effect of adding rigidity 

to a plasma, an otherwise unstable configuration may become stable. Consider for 

example, the case of Kelvin-Helmholtz instability. Here two incompressible, inviscid 

fluids flow in parallel horizontal streams a t constant velocity u\_ and u 2  (ui 7  ̂ u2). 

If the density of the upper fluid is px and the lower fluid pi (with p\ < p?) then it 

can be shown that the interface is unstable to  disturbances with wavenumber k > 

pipafui-ua) 4 S° regardless of the relative speed of the two fluids, small enough

wavelengths will be unstable. However if uniform magnetic fields are introduced in 

each fluid parallel to Ui and u2, then the magnetic tension produces a restoring force 

stabilizing the interface provided th a t B \  + B% > [15].
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Fig. 2.6: u) — kx diagnostic diagram.
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C H A PT E R  3

A HISTORY OF PRO M INENCE M ODELS AND  

M AG NETO CONVECTIO N

3 .1  A  H isto ry  o f P rom in en ce  M odels

A quiescent prominence is a large mass of radiating plasma suspended in the Sun’s 

corona by magnetic fields. First observed during solar eclipses in the 13th century 

they were thought to be “burning holes in the corona.” Later observers described 

them as “clouds in the lunar atmosphere” or “mountains on the Sun.” [16] It was not 

until the 19th century that they were more exactly described as solar cloud forma­

tions. A better understanding of the phenomenon was obtained with the invention 

of the spectroheliograph (a device th a t can take a photograph of the Sun at a fixed 

wavelength) and the coronagraph (a device that uses lenses and an occulting disk 

to block out the main body of the Sun so the corona can be imaged). Spectroscopy 

showed that prominences consisted of excited gas hot enough to  show emission lines 

(in fact the element helium was first discovered as an emission line from solar promi­

nence material). The lines were so bright tha t solar eclipses were no longer necessary 

to study prominences. The coronagraph allowed photographs of the corona to be 

taken at any time. In the 1960’s the Zeeman and Hanle effects (quantum  effects that 

split and broaden emission lines or enable the polarization of em itted photons to be
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measured respectively) enabled the measurement of the strength of the magnetic field 

in and around prominence m aterial [17].

Quiescent prominences are large, dense and comparatively cool vertical sheets of 

plasma (see figures 3.1 and 3.2). They are usually referred to as filaments when seen 

in absorption against the surface of the Sun and prominences when viewed in emission 

on the limb. They average 200 000 km in length, 50 000 km in height and 6000 km 

wide -  but each of these dimensions can vary by a factor of 10. They are 100-1000 

times as dense as their surroundings with an average temperature of 7000 K, cool 

compared to the surrounding 1000 000 K corona [5]. Their tem perature and density 

decrease with height. Remarkably stable objects, they remain for days to months 

arching through the atmosphere. They tend to migrate to the closest pole and are 

stretched by differential rotation as they travel, although the height and width tend to  

remain constant [18]. Approximately every 30 000 km, large tree trunk like feet drop 

into the chromosphere a t supergranule boundaries [5]. A low density region called a 

coronal cavity often surrounds the prominence and an arch of coronal material topped 

by a “helmet streamer” sits on top of this cavity (see figure 3.3).

At the end of their life, prominences disperse by either slowly breaking up with 

some material dropping to  the surface (usually through the feet) and some escaping 

into space, or in a sudden explosive event, lasting only hours, where most of its 

material is ejected into the solar wind. This is known as a coronal mass ejection (see 

figure 3.4). Resonant absorption of Alfven waves has been proposed as an explanation 

for these sudden disappearances [19].

Even though the prominence is threaded by fine ribbons of plasma that move
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Fig. 3.1: A prominence seen on the limb of the Sun.
co u rte sy  o f th e  B ig  B e a r  S o la r O b s e rv a to ry /N J IT

Fig. 3.2: Filaments seen against the surface of the Sun.
co u rte sy  o f th e  H igh A lt i tu d e  O b se rv a to ry /N C A R
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Fig. 3.3: An eclipse photograph showing helmet streamers and coronal cavities above 
solar prominences.
co u rte sy  o f th e  H igh A ltitu d e  O b a e rv a to ry /N C A R

Fig. 3.4: A sequence of photographs showing a coronal mass ejection.
c o u rte sy  S O H O /B IT  con so rtiu m , a  p ro je c t  o f  N A SA  a n d  ESA
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at about 5-15 km /s downward, most models consider them as isothermal blocks of 

plasma insulated and supported by a magnetic field that is ejected by the convection 

zone [2 0 ]. The field lines are in planes orthogonal to the sheet and the prominence is 

suspended over a magnetic inversion line, a line with opposite magnetic polarities on 

either side (see figure 3.5) [2 1 , 2 2 ]. Plasma is thought to be supplied to the sheet by 

either condensation from the corona or injection from the photosphere [18]. Math­

ematical models are usually divided into two classes; ones that ignore the magnetic 

field and concentrate on the internal structure of the prominence sheet itself and ones 

tha t attem pt to model the types of magnetic fields tha t can support plasma against 

gravity. Here we are interested in the second type of modeling.

There are two basic recognized types of magnetic topologies that can support 

plasma in the corona (see figure 3.6). The simplest type are magnetic arcade models 

of which the prototype is the Kippenhahn-Schliiter model [23]. This is known as a 

normal polarity model since the field lines above and below the prominence sheet are 

in the same direction. A more realistic model is the current sheet model called the 

Kuperus-Raadu model [24]. This model is called inverse polarity since the field lines 

above and below go in opposite directions. Each of these models will be discussed in 

detail later, but first we will briefly describe two of the first models developed; those 

by Menzel [25] and Dungey [26].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

Cool dense 
plasma sheet

Field Lines

Inversion
Line

Fig. 3.5: A representative plasma sheet suspended above the photosphere.

Fig. 3.6: Typical field lines of the KS (left) and KR (right) models, anchored to 

the photosphere. The base of the figures (x-axis) is the photosphere and the shaded 

rectangle is a cross-section of the vertical plasma sheet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

3.1.1 The Early Models o f M enzel and D ungey

In the early 1950’s the detailed photographs of prominences obtained by the corono- 

graph showed lines of force strung throughout. T hat, combined with the fact th a t 

they tend to form initially in active regions close to sunspots -  regions known to have 

intense magnetic fields, made it clear tha t magnetism must play a role in the forma­

tion of prominences. It was hypothesized that the Lorentz force (j  x B)  could support 

the plasma against gravity and the pressure gradient. Since quiescent prominences 

appear in static equilibrium for a long period, Menzel, in 1951 [25], looked for the 

magnetic field to be a  solution to the force balance equation —V p + j x B+pg =  0. He 

assumed that the gas was isothermal (hence the scale height (H ) would be a constant 

and the density could be found from the pressure by the ideal gas law p = pBT)  and 

that B  was dependent on the Cartesian variables x  and z  only, the x-axis orthogonal 

to the sheet and the y-axis aligned with the prominence axis. He further assumed a 

flux function F(x,  z) for B  so that B  =  (—§7 , 0 , §^) (a contour map of F  will then 

give the field lines) and that p(x, z ) along with F{x, z) were separable functions of the 

form p =  p(x)e~Tf and F  = F{x)e~^» . These forms gave an ODE for p(x) that could 

be solved exactly and one for F(x)  tha t had to be solved numerically, but from this 

equation it could be inferred that the lines of force were periodic in nature. A dip at 

x  =  0  could hold plasma with the bulk of the gas being held between two points of 

inflection [27] (see figure 3.7).

In 1953 Dungey [26] solved the same equation with the same assumption about the 

pressure variation bu t made no assumptions about F(x , z ) .  He solved the resulting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

PDE using conformal mapping techniques. The solution obtained was F{x , z )  =  

e~ « — 2e~^t  cos ^  + 1  which are closed loops for F  < 1 and infinite waves for F  > 1  

(see figure 3.8).

Both these models were criticized for their lack of physical reality. Menzel’s model 

predicted prominences to be as wide as they are high [28], and Cowling showed 

that Dungey’s model required currents to  flow inside the prominence in opposite 

directions [20], facts not supported by observation. These models were a good start 

but a more realistic model was developed in 1957 by Kippenhahn and Schliiter [23].

3.1.2 The Kippenhahn-Schluter M odel

Kippenhahn and Schliiter also solved the force balance equation in equilibrium and 

assumed the plasma sheet was isothermal bu t made the assumption tha t the x  com­

ponent of B  was a constant, B x. They further set all dependent variables (p, p and B  

-  the z component of B)  to be functions of x  alone. These assumptions gave a  simple 

ODE in B  which together with the boundary conditions B  —> ± B Z (a constant) as 

z —» ±oo and i?(0) = 0  yielded the solution B{x ) =  B z tanh which integrates to 

a  flux function of F(x)  =  — B XH  ln(cosh J^fjy) (see figure 3.9).

This model gave more realistic numbers for the pressure and density distribution 

inside the prominence, so it was widely accepted and used as a basis for many other 

papers in prominence theory. A major drawback of the model is its assumption that 

all variables are functions of x  alone, so the solution is only valid in a thin region 

about the prominence. Even though the field lines have the dips needed for plasma
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Fig. 3.7: Field lines of Menzel’s model. A cross-section of the plasma sheet is shown 

around the relative minimum of the field lines.

Fig. 3.8: Field lines of Dungey’s model.
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to collect [29], there is no mechanism connecting the field to the photosphere.

As an interesting m athem atical aside, the models of Menzel, Dungey and Kippen- 

hahn-Schliiter were all connected by Brown in 1958 [30, 20]. As with all the above 

models, Brown assumed the y component of B  to be zero, and introduced a flux 

function F  for the other components and all dependent variables to be independent of 

y. The force balance equation could then be rewritten as V  ( p e ^  = — (V 2 F e ^ )  V F . 

This shows that pe% is a function of F,  say $ (F ) . So <&'(F) =  —V 2 F e ^  which 

further implies that V 2 F e ^  is a  function of F  and th a t V 2F  =  0 (F )e~v  where 0 (F ) 

is any function of F . Brown called this the basic equation for 2-dimensional static 

equilibrium. For a given 0 (F ) the solution F  will give a field whose Lorentz force will 

balance plasma pressure and gravity.

Menzel’s solution corresponds to 0(F) = A F l~*z~ where A  and H  are constant 

and F ( x , z ) =  F(x)e~™. Dungey’s solution is found with 0(F ) =  D  where D  is 

constant (=  in Dungey’s case), then F (x ,z) =  D H 2e~Ti + f { x , z )  where f { x , z )  is 

any harmonic function. Setting 0 (F ) =  Cecw,  where c <  0 and G are constant and 

F(x, z) = Gz  +  F(x) will reproduce the solution of Kippenhahn and Schliiter.

3.1.3 The Kuperus-Raadu Model

In 1974 a completely different type of prominence model was developed by Kuperus 

and Raadu [24]. They considered how plasma formations could develop in a current 

sheet (say between two active regions) and then be supported when the field lines 

reconnect. This topology can be considered as the sum of a simple open field with
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straight field lines and a set of closed field lines, not tied to the photosphere, formed 

by superposition of the fields of two line currents (see figure 3.10) one above the 

photosphere (the prominence itself) and another an equal distance below the surface.

The KS and KR models have formed the basis for much work on quiescent solax 

prominences. Observational measurements show that most (75% to 90%) prominences 

are of the KR type [29]. Many other authors have extended these models. For exam­

ple; Poland and Anzer [31] (1971) studied energy balance in the KS model, Ballester 

and Priest [32] (1987) modeled how the magnetic field would change with height in 

the KS model, Milne et al. [33] (1979) changed the angle the prominence normal 

makes with the horizontal magnetic field, Priest et al. [34] (1989) looked at three 

dimensional effects such as twisting of the magnetic field and Hood and Anzer [35] 

(1989) used typical measured values of the magnetic field along the prominence to 

extend the KS model. Others have developed their own models. Low [36] (1975), 

for example, considered both magnetostatic support and energy transport to create 

nonisothermal plasma sheets in the corona.

In my study of these models I found the KS model to be rather phenomenological 

in nature since the supporting field is simply placed in the corona. Although under­

stood to be initially formed by currents in the convection zone and expelled through 

the photosphere there is no direct connection between the field in the corona and 

the convection. The KR model is more physical since the photospheric boundary is 

mimicked by a line current in the convection zone but a detailed field distribution 

is not specified. My aim was to generate magnetic fields in the corona directly from 

photospheric flows and convection. To do this it is necessary to introduce the subject
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Fig. 3.9: Field lines of the Kippenhahn-Schliiter model.

+

Fig. 3.10: The Kuperus-Raadu magnetic configuration.
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of magnetoconvection.

3 .2  M agn etocon vection

Convecting cells of plasma can generate, shape, amplify and expel magnetic fields. 

In dynamical magnetoconvection both the fluid velocity and the magnetic field are 

allowed to interact. The resulting equations are nonlinear and often require supercom­

puters to solve them numerically. However, if we assume that the magnetic energy 

is small compared to the kinetic energy of the fluid (i.e. <C ^pv2, a good ap­

proximation in the photosphere) then we can enter the linear realm of kinematical 

magnetoconvection. Here a steady fluid velocity is prescribed and its effect on the 

magnetic field computed; the magnetic field however does not influence the velocity. 

The basic equation is the induction equation:

rj £
=  V x (u x B) +  r]V2B.

at

Parker [37] (1963) found exact solutions to this equation on both infinite and semi­

infinite intervals for various flows v, and included both time-dependent and steady- 

state  cases. An example that will be of interest later is the velocity field given by 

the stream function ^ (x , y) =  —e- y sinx  on —27r < z  < and —oo <  y < oo. 

This velocity field represents a stationary convective upwelling, a convection cell. A 

steady state solution was sought (J^ =  0 ) with periodic boundary conditions in x  

and B =  (Bo, 0,0) as y  —»• oo. He obtained the solution B =  V x (0,0, A) where 

A(x,y )  =  B 0 exp(—̂ e~y cosx)K0(^e~y) (see figure 3.11). Note how the magnetic flux 

is expelled from the upwelling region and concentrated in the downflow.
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Weiss [38] (1966) numerically solved the induction equation over finite domains 

at various Reynolds numbers. Initially uniform fields were ejected from regions of 

high fluid velocity and concentrated a t the boundaries which were assumed to  be 

perfectly conducting - which ties the field lines to  the boundary and confines it to  the 

region of fluid flow. Even the time-dependent case reached a steady state. Weiss used 

a variety of convection patterns from a  single isolated eddy to multiple convection 

cells. At low Reynolds numbers, the field was concentrated at the edges but some 

field lines remained in the convection cell. At higher Reynolds numbers, reconnection 

took place in the center of the cell and a m ajority of the flux was concentrated a t the 

boundary. See figure 3.12 for an example of flux being expelled from a convection 

cell. For a comprehensive review of magnetoconvection see [39] and [40].
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Fig. 3.11: One of Parker’s solutions to the steady state induction equation. The light 

lines are the streamlines of the fluid, and the darker lines represent the magnetic field.
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Fig. 3.12: The expulsion of magnetic flux from a convection cell.
re p ro d u c e d  w ith  perm ission  o f D r. N .O . W eiss
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C H APTER 4

SOLAR PRO M INENCE M AGNETIC CONFIGURATIONS

A N D  CONVECTION

4 .1  A  D irich let P rob lem  w ith  A pplications to  Solar Prom i­

nences

Before tackling the full two-dimensional convection problem, a simpler case was con­

sidered. The convection was simulated only a t the photosphere by a  one-dimensional 

boundary condition th a t will generate a potential magnetic field in a region free of 

current. This is a special case of a force free field ( V x B  =  aB)  with or =  0. The 

equation to be solved is then V x B  =  0 on a semi-infinite strip |x| <  L, y > 0, 

the region above the convection cell. The two-dimensional problem can be simplified 

with the introduction of a vector potential A(x,  y ) for B,  otherwise know as a flux 

function. Then B  =  V  x (0,0, A)  =  ( |^ ,  — 0) and the magnetic lines of force are

given by the contours of A.  In terms of A  the boundary value problem becomes:

V 2A(x , y) =  0

with boundary conditions,

M L , y )  =9 i ( y )

A { - L , y )  =  92{y)

A (x,0 ) =  f ( x ) .

59
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This problem can be solved by conformai mapping and then using the m ethod of 

images. Laplace’s equation is invariant under a conformai mapping and the transfor­

mation w =  sin ^ z  where z  = x  + iy and w = u + iv maps the semi-infinite region 

into the half-plane —oo < u < oo,v > 0 (see figure 4.1) [41]. In terms of u  and v the 

problem becomes:

V 2 A(u, v) =  0

with boundary conditions,

g2(u) , u <  1

A ( u , 0) =  / ( u) } - 1  <  u <  1

gi(u) , u > 1 ,

a  problem that can be solved by the method of images -  using infinite space Green’s

functions to obtain solutions on semi-infinite intervals. Details of this m ethod can be

found in [42] but a brief review is given as an appendix. The solution is:

A(s,0)v r® 
A { u , v )  =  -

7r J—c-oo ( s  — U ) 2 +  V 2

Transforming back to the xy-plane we find:

£2 (s) , f l f ( s )

ds.

A(x,  y) =  -  
7r r , ,*+/ / + r ,J - oo (s — u)z +  V z  J-l  (s — U y  +  v z J I (s — It)2 +  V

■ds

where,

u =  sinCsr*) co sh (^y ) 

v =  co s(^x ) s in h (^ r/)

/ (« )  =  firt sm_ 1s)

0 i(®) = 9i(rjjr cosh - 1  s)

0 2  (®) =  0 2 ( ¥ COsh_l( - S))-
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If we assume complete symmetry about x =  0, i.e. yi(y) =  g i ( y )  =  g(y)  and / ( —x) =  

/(x ) , then the solution can be reduced to:

g(s)  , y(s)A(x,  y) =  — 
7r

f  /W r
J - l  (s — U)2 +  V2 J1

+
(s  +  U) 2 +  V2 (s — U) 2  +  V2

-ds

where,

u =  s in (^ x )  co sh (^y ) 

v =  co s(^x ) s in h (^ y )

f ( s ) = / ( v s i n _ l s )

<7 (s) =  y (^ c o s h _ l s).

Let’s first examine some cases where the integrals can be found analytically. One

such case is / ( x )  =  a  and g( y)  =  /3 where a  and /? are constants. The integrals are

inverse tangent functions and use of the trigonometric identity tan (9+<j>) =  ^ ^ o v i n >4>

gives the solution:

A(x,y)  =  - ( a  -  /3) tan - 1
7T

c o s (^ x )  '
s in h (^ y ) +  /?•

A contour plot of A  with L = | ,  a  = 1  and — 0 (see figure 4.2) gives simple 

magnetic arches -  which could be a KS type configuration before any plasma has 

condensed to bend the field lines.

Another case tha t can be integrated exactly is / ( x )  =  |s in (^ x ) | and g( y)  = 0 . 

This is a photospheric potential that is weak at the center and gets stronger toward 

the edges of the cell. The integrals here can be w ritten as inverse tangent functions 

and natural logarithm s, and after using several trigonometric identities, becomes:

_  2A{ x , y )  =  I  s in (^ x )  cosh (^y ) tan " 1 

£  cos(^-x) s in h (^ y ) In+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

whose contour plot (again with L  =  f )  is figure 4.3.

A photospheric potential that is strong at the center and weak a t the edges is 

f { x ) =  cos(^rx). The integrals here have to be evaluated numerically. This was done 

on Mathematica using the NIntegrate and ListContourPlot commands. W ith L  =  |  

the field lines again resemble magnetic arches (see figure 4.4).

Here are some cases where g{y) ^  0. Figures 4.5 and 4.6 are f ( x )  =  | sin x| and

{ 1 , 0 <  y < .5
. Note how the field lines

0 , y > .5 
bunch together a t the edges to form “feet” .

4 .2  Solar Prom inence M agnetic Configurations Derived Nu­

merically from Convection

The Dirichlet problem shows that prominence type fields can be generated by pho­

tospheric motions, but the photosphere is just the visible top of the convection zone. 

It would be more physically realistic if two-dimensional convection could be used to 

expel magnetic flux into the corona. To this end we examine the induction equation. 

We want a solution that will satisfy this equation below the photosphere, where the 

primary physics is that of fluid convection, and be a current free field in the corona 

where there is no plasma motion (see figure 4.7). We will require that any solution 

match at the photospere (y =  0 ).

The photosphere is assumed to be non-conducting so magnetic flux can be expelled 

from the convection zone into the corona, and that enough time has elapsed in order 

tha t a steady solution has been reached. We introduce the same vector potential
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0 2  (y)

—L

y

9 i ( y )

X
f ( x )  L

Fig. 4.1: The xy  and uv  planes

i u

1 . 5 - 0 . 51 0 0 . 5 1 1 . 5
X

Fig. 4.2: f ( x )  — 1 and g(y) =  0.
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1 . 5 0 . 50 . 5 0 1 . 5i L

X

Fig. 4.3: / ( x) =  | s im | and g(y) =  0.

>. 2

1 . 5 - 0 . 5 0 . 50 1 1 . 5
x

Fig. 4.4: f ( x )  =  cos x  and g(y) = 0.
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Fig. 4.5: f ( x )  =  |s in x | and g(y) = <
1  , 0 <  y <  .5

0 , y > .5
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Fig. 4.6: f ( x )  =  1 and g(y) =  <
1 , 0 <  y < .5 

0 , y > .5
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A(x,  y) as before which gives Laplace’s equation, V 2A =  0, in the region y > 0. In 

the region y < 0  the steady state induction equation becomes a diffusion equation 

with convection terms:

. dA dA  o
Ui(x,y) —  + v2{x,y) —  - 7 7 V  A =  0.

where v = (vi, v2 ) will be specified. The computational box will be — L < x  < L  and 

—d < y < d with boundary conditions specified as g l ( y ) and g2(y) on x  =  L  and 

x  = —L  respectively, and hl(x)  and h2(x) on y = d  and y =  —d respectively.

To eliminate the first derivative terms and aid in matching the solutions on y  =  0 

we first make the transformation A  =  A(x, y)eH(-x,y) where H  =  ^  and d>(x, y) is the 

velocity potential (i.e. v =  V^»). This yields a Helmholtz equation:

t}V2K 4- f ( x ,  y) A =  0

where

/(* . y) =  \

We have restricted v to conservative flows only (i.e. those where V x v =  0), bu t by 

setting /  (x, y) =  0 in the region y > 0 we force the two solutions to match a t the 

photosphere. This follows even though V2A does not become Laplace’s equation in 

terms of A but the more complicated version:

77V2A + 1 / 2  2\ 1  ( &Vl &V2 \ dA dA „
A +  Vi~— I- U2 7 7 — =  0-ox  oyAy

This equation does reduce to V 2A =  0 in the corona since v =  0 there (also note that 

v =  0 =>■ <j> =  constant => H  = constant =► V 2A =  0). Since this transformation
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eliminates the first derivative terms there is no need to approximate them, making 

the numerical scheme more efficient and accurate.

Even though the equations match a t the photosphere (y  =  0) when f ( x , y )  =  0 

there is still the question of continuity in the magnetic field. To examine this, we 

look at the jum p in B  across y = 0. Since B  =  ( ^ ,  — §£) where A  =  Ae2*? we find 

(letting <f> =  0  for y > 0  to force no flow in the corona):

[B] = ^  -  1 ) —  +  _ _ e ^ ,  - ( e ^  -  1 )—  -  — — e 2*dA A d $  , ±. . d A  A d(f> a '' ----- —e 2,7 —(e2ri — 1 )-------------- — r n-
2r] d y  d x  2r) d x

From this it can be seen that sufficient conditions for the jum p in the tangential 

component (to the photosphere) to be zero are 4> and —> 0  as y —> 0 , and for the 

jum p in the normal component to be zero <f> and —>• 0 as y —> 0. These conditions 

form a special class of velocity flows that will force either (or both) of the magnetic 

field components to be continuous at y =  0. However, it is not necessary to restrict 

the velocity to this type of flow. A discontinuity in either component creates a current 

sheet whose diffusion will be counteracted by the convection term  in the induction 

equation. Accepting such a discontinuity is not without precedent. For example, in 

modeling running penumbra! waves in sunspots Nye and Thomas [3] used a two layer 

model where a horizontal magnetic field was placed above a region of zero magnetic 

field.

The numerical m ethod used was the finite difference method [43]. The computa­

tional box was discretized into a n n x m  mesh and the second partial derivatives were
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approximated by a central difference scheme:

A ~  A ( x j+ 1, y j ) - 2 A ( x j , V j ) + A ( i j - 1 , y j )
■‘‘■XX ~  p

A ^  A(x i , y j + i ) - 2 A ( x i , y , ) + A ( x , , y , _ i )
H y y  ~

where h = and k =  Each interior mesh point (Xi,yj) uses its four neigh­

boring points to form an equation. Substituting the above approximations for the 

second partials into the Helmholtz equation and using uJij ~  A(xi, yj), we obtain the 

difference-equation:

h2k2k2 — 2aJij -f +  h2 — 2u>ij 4- a;,-J _ 1] H — /(x*, Vj)oJij =  0

where

i =  1 , . . . ,  n  — 1

j  =  -  1 ,

and the boundary conditions give:

u o j  =  9 2 ( V j )  , j  =  0 , . . .  , m

=  g i ( y j )  , j  =  0 , . . . , m

^i,o =  h2{xi) , i =  1 , . . . ,  n -  1

u)itn =  hj.(xt) , i =  1 , . . . ,  n 1.

This yields an (n — l)(m  -- 1 ) x (n — l)(m  — 1) linear system. The scheme was 

programmed on M athem atica taking advantage of its extensively tested subroutine 

LinearSolve for solving the large linear systems created by the finite difference method. 

Once the solution for A(x, y) was found it was multiplied by e ir> to obtain A (x , y). A 

contour plot of A  then gives the magnetic field lines. The Mathematica code is given 

as an appendix.
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All the runs were made with L  =  6.3 ~  2ir, d =  4 and n =  m =  40. Two stream 

functions were used (see figures 4.8 and 4.9): ^ i(x , y) =  — sinxsinhy, and y) =  

—e- y sinx. Figures 4.10 through 4.20 are with various boundary conditions and 

figures 4.21 through 4.31 are 4 * 2  with the same set of boundary conditions. Note that 

figures 4.22, 4.23, 4.26 and 4.27 resemble Parker’s analytic solution.

The main results of this chapter were published in Astronomy & Astrophysics [44, 

45]. Since ||i?|| =  y (§ £ )  +  (§^) > the partials can be computed from the matrix 

A, the strength of the magnetic field along the contour lines could be found numeri­

cally. These values could then be compared to actual prominence field measurements. 

This could be an addendum to [45].
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Fig. 4.8: The stream function ^ i ( x , y ) =  — sinxsinhy . A deep convection cell with 

a downflow a t the center.
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Fig. 4.9: The stream function ^ ( x ,  y) =  —e ysinx. A deep convection cell w ith an 

upflow in the center.
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- 6  - 4  - 2  0 2 4 6

Fig. 4.10: The stream function 'I'i (light lines) and the magnetic field lines with 

g l ( y ) =  g2(y) = 0  and hl (x)  =  0 , h2(x) =  1 0 0

- 6  - 4  - 2  0 2 4 6

Fig. 4.11: The stream function (light lines) and the magnetic field lines with 

gl(y)  =  g2(y) =  0  and hl (x)  =  1 0 0 , h2{x) =  0
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Fig. 4.12: The stream function (light lines) and the magnetic field lines with 

gl(y)  =  g2(y) =  0  and hl (x)  =  1 0 0 , h2{x) =  1 0 0

-2

- 4
- 6 - 2 0 2 4 e

Fig. 4.13: The stream function (light lines) and the magnetic field lines with 

£l(z/) =  g2{y) = 1 0 0  and h l (x )  =  0 , h2(x) =  0
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Fig. 4.14: The stream function 'I't (light lines) and the magnetic field lines with 

#l(z/) =  9^(y)  =  1 0 0  and hl(a;) =  0 , h2(x) =  1 0 0
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Fig. 4.15: The stream function 'Fi (light lines) and the magnetic field lines with 

gl(y) = g2(y) =  1 0 0  and hl(x)  =  1 0 0 , h2(x) =  0
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Fig. 4.16: The stream  function \&i (light lines) and the magnetic field lines with 

gl(y)  = g2(y) =  1 0 0  and hl (x)  =  1 0 0 , h2(x ) =  1 0 0

- 6  - 4  - 2  0 2 4 6

Fig. 4.17: The stream function (light lines) and the magnetic field lines with 

1 0 0  , y  <  0
g l ( y ) = g2 ( y )  = < and h l ( x )  =  0 , h2(x)  =  0

0  , y > 0
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Fig. 4.18: The stream function (light lines) and the magnetic field lines with 

1 0 0  , y < 0
gl{y) = g2(y) =  ^ and hl(x) =  0 , h2(x)  =  1 0 0

0 y > 0
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Fig. 4.19: The stream function 'Fi (light lines) and the magnetic field lines with 

1 0 0  , y < 0
g l ( y )=g2(y)  = * and hl (x)  =  1 0 0 , h2(x) =  0

0  , y > 0
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Fig. 4.20: The stream  function \&i (light lines) and the magnetic field lines with 

1 0 0  , y < 0
gl(y) = g2(y) =  < and hl(x)  =  1 0 0 , h2(x) =  1 0 0

0 y  >  0
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Fig. 4.21: The stream function (light lines) and the magnetic field lines with 

<?l(y) =  g2(y) =  0  and h l (x )  =  0 ,/i 2 (x) =  1 0 0

- 6  - 4  - 2  0 2 4 6

Fig. 4.22: The stream function ' £ 2  (light lines) and the magnetic field lines with 

gl(y)  =  g2(y) =  0  and h l (x )  =  1 0 0 , h2(x) =  0
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Fig. 4.23: The stream function (light lines) and the magnetic field lines with 

=  g2(y) =  0  and /il(x) =  1 0 0 , h2(x)  =  1 0 0
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Fig. 4.24: The stream function \ & 2  (light lines) and the magnetic field lines with 

9l(y) = g2(y) =  1 0 0  and hl{x)  =  0 , h2(x) =  0
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Fig. 4.25: The stream function ^ 2  (light lines) and the magnetic field lines with 

<?l(y) =  g2(y) =  1 0 0  and hl(x)  =  0 ,/i2 (x) =  1 0 0

- 6  - 4  - 2  0 2 4 6

Fig. 4.26: The stream function # 2  (light lines) and the magnetic field lines with 

gl(y)  = g2(y) =  1 0 0  and hl(x)  =  1 0 0 , h2(x) = 0
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Fig. 4.27: The stream function ^ 2  (light lines) and the magnetic field lines with 

gl(y)  =  g2(y) =  1 0 0  and hl (x)  =  1 0 0 , h2(x) =  1 0 0
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Fig. 4.28: The stream  function (light lines) and the magnetic field lines with 

1 0 0  , y  <  0
gl{y)  =  g2(y) =  « and h l(x ) =  0 , h2(x) =  0

0  , y > 0
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Fig. 4.29: The stream function (light lines) and the magnetic field lines with

[ 1 0 0  , y <  0
gl(y)  =  g2(y) =  < and /il(:c) =  0 , h2{x) = 1 0 0

[ 0  , y > 0
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Fig. 4.30: The stream function 42 2  (light lines) and the magnetic field lines with 

1 0 0  , y < 0
9^{y) =  5 2 (y) =   ̂ and hl(x)  = 1 0 0 , h2(x) =  0

0  , y > 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 5

Fig. 4.31: The stream function ^ 2  (light lines) and the magnetic field lines with 

1 0 0  , y < 0
gl(y) =g2{y ) =  { and h l (x)  =  1 0 0 ,/i2 (x) =  1 0 0

0 y  >  0
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CHAPTER 5

CONCLUSION

The object of this thesis has been to show that the solar convection zone can be a 

driving force th a t expels magnetic flux into the solar atmosphere with the requisite 

topology needed to form quiescent prominences. Both problems solved have shown 

that this is possible. The solutions do not only resemble the models used by theorists 

to study prominence formation and support (the KS and K R models) but also provide 

a mechanism for their development (which has previously been lacking).

The gravitational scale height is too small compared to the prominence height for 

plasma pressure alone to hold up the material [29], and since the magnitude of the 

Lorentz force is directly proportional to the curvature of the field lines, dips in the lines 

are considered by many to be necessary for the magnetic field to support the plasma 

against gravity. It could even be possible that if the flux escapes the photosphere 

with the dips already formed, then they could trap  and lift the photospheric plasma 

to form the prominence; however, this would require further research with time- 

dependent models. The models derived in this paper certainly have many concave up 

field lines, along with current sheets, that could trap  plasma. Many of the diagrams 

have both features present a t once.

The structures also have many places where the field lines descend into the down­

ward flow of the convection cell. Plasma following these lines could form the feet

86
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th a t connect the prominence to the photosphere. The topologies also have enough 

variation to provide the fibril structure observed in nature.

Future work in this area could go in many directions -  towards actual prominence 

formation for example. The field lines derived here could be superimposed on an 

atmosphere with a given density distribution (creating high or low plasma P's) and 

the thermodynamics of the resulting prominences studied. The next phase of my 

research study will be to wave motion in plasmas. In a series of papers, Roberts 

along with Edwin and Joarder [46, 47, 27] studied wave propagation and oscillation 

modes in simple magnetic configurations, such as slabs and cylinders. The same 

could be done with the models developed here. W ith the lack of exact solutions the 

dispersion relation would have to be obtained numerically, but it would be interesting 

to see which MHD modes survive and propagate. This could provide an explanation 

as to why prominences suddenly erupt. Certain magnetoacoustic modes, for example, 

may upset the equilibrium of the prominence.

The propagation of magnetoacoustic-gravity waves in a magnetoatmosphere struc­

tured by the fields derived here could also be studied. Adam [48, 49, 9] and McKaig 

and Adam [50] treated such waves in an atmosphere with am imposed horizontal 

magnetic field. This work could be continued in the context of prominence theory.

As we learn more about the Sun’s atmosphere from satellites such as SOHO we 

see more phenomena for the field of applied mathematics to model. The detail seen 

by these instruments reveals structures and flows that will keep the student of MHD 

busy for many years to come.
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A P P E N D IX  A

T H E  M E T H O D  O F IM A G E S

The infinite space Green’s function satisfies the Poisson equation V 2G(x , y ; x0,y0) = 

S(x — xq, y — 2/0 ) the solution G gives the effect a t (x, y) of a concentrated 

source at (x0, y0). If we let r  be the distance from (x , y ) to (x0 ,j/o) and assume 

that G depends only on r , then away from (x0,y0) we have V 2 G (r) =  0 where 

r  =  (x — xq) 2  -h (y — yo)2. Writing the Laplacian in cylindrical coordinates gives:

1  d (  d G \  n 
r  dr \  dr )  ’

which can be solved by integration to get G[r) =  In r  +  c2.

Now, since V 2G =  5(x — xo,y — yo) a t r  =  0 we can use the the sifting property 

of the delta function, along with the divergence theorem to find:

J J  V2GdA =  1  =► j v G - h d s =  1 ,
c ac

where C  is a  circle centered on (x0} Vo)- Since G  only depends on r, which is constant

on the circle, we find 2 7 T =  1  so ct =  Setting ci =  0 for convenience gives the

infinite space G reen’s function:

G(x, y \ x0, y0) =  In \ J { x -  x 0 ) 2  +  (y -  yo)2-

Using the m ethod of images we can use this to find an infinite space Green’s 

function that satisfies G  =  0 on y =  0. We let V 2G =  S(x—x 0 , y —yo)—S(x—xo, y+yo)

94
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then, at y  =  0 , the response from (xo,y0) and (xo, —yo) being equal and opposite will 

cancel, forcing G  to be 0 along y  =  0. Since this equation is linear we have by 

superposition:

G(x,  y; x0, y0) =  £  In ^ (x  -  x0 ) 2  +  (y -  y0  j* -  ^  In ^ ( x  -  x 0 ) 2  +  (y +  y0 ) 2

_  I (a:-xo)^+(y-yo)^
4jt ( i - z o ) a+(y+Ko)*'

We can now use Green’s formula and the symmetry of G (i.e. G (x,y;x 0 ,y0) =  

G(x0,yo;x,y))  to solve Laplace’s equation V 2A(x,  y) =  0 subject to A(x,  0) =  h(x)  

on the half-plane —oo <  x <  oo, y > 0 :

/  /  A V 2G -  G V 2A  dxdy =  §{A V G  -  GVA )  • ( - j )  ds
0 —oo

V=0

Using the boundary conditions for A  and G, and interchanging (x, y) and (x0 ,yo):

°° dG 1  °°
=> A(x,y)  =  -  /  A(*„)
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A P P E N D IX  B

T H E  M A T H E M A T IC A  CO D E

Here is the M athematica code used to create the figures in the last section.

First define the box and the stepsize:

a =  —6.3; b =  6.3; c =  —4.; d =  4.; 

n =  40; m  =  40; h =  — ; k =  — ;7 7 n  7 m  7

x =  Table[a + i h, {z, 1, n — 1}];

y =  Table[c 4- i k,  {z, 1 , m  — 1}];

Now for the stream  function and the  velocity potential:

^[x_, yJ[ :=  — Sin[x]Exp[—y]

4>{x~, V-] '■= -Cos[x]Exp[-y]

v l [x_,z/_] :=  Sin[x]Exp[—y]

v2[x_, y_] :=  Cos[x]Exp[-y]

ulx[x_, y_] :=  Cos[x]Exp[—y]

u2y[x_, y_] :=  -Cos[x]Exp[—y]

Set the magnetic diffusivity 77, define the functions f(x,y) and g(x,y), and fill matrix

A with zero’s:

77 =  1 ;

/[x_,y_] :=  If[y <  0,0.25(2(ulx[x,y] +  u2y[x,y]) -  J(ul[x, y] 2  +  v2[x, y]2)), 0]; 

y[x_, y_] :=  ^ ^ / [ x ,  y] -  2 (h2 +  k 2)

A  =  Table[0, {*, 1 , (n -  1 )(m -  1)}, {j,  1, {n -  l)(m  -  1)}];

96
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Now to define the coefficient matrix: 

first the four comers:

!]] =  t f M 1]], y [[!]]]; ^[[1» 2]] =  k2] A[[l, n]] =  h2\

A [ [ n -  1  , n — 1 ]] = s[x [[n -l]] ,j/[[ l]]] ;

A[[n — 1, n — 2]] =  A;2; A[[n — 1 ,2n — 2]] =  h2\

A[[(m -  2 ) (n -  1 ) +  1 , (m -  2 )(n -  1 ) +  1 ]] =  y[x[[l]],j/[[m -  1

A\[(m  — 2)(ra — 1) +  1 , (m — 2)(n — 1 ) +  2 ]] =  k2;

A[[(m — 2 )(n  — 1 ) +  1 , (m — 2)(n — 1 ) +  2 — n]] =  h2;

A[[(m -  l ) (n  -  1 ), (m -  l)(n  -  1 )]] =  g[x[[n -  1 ]], y[[m -  1 ]]];

A[[(m -  l) (n  -  1 ), (m -  1  )(n -  1 ) -  1 ]] =  k2\

A[[{m -  l) (n  -  1 ), (m -  2 )(n -  1 )]] =  h2\
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now the four sides:

For[z =  n; j  =  2, j  < m  — 2, i =  z +  n  — 1; i  +  +, 

i4 [[*,i]]=^[x[[l]],y[[7 ]]];

A[[z,z +  1 ]] =  A:2;

A[[z, * -  (n -  1 )]] =  /z2;

A[[z, *' +  (n -  1 )]] =  h2}

For[z =  2n — 2; j  =  2, j  < m  — 2, z =  z +  n — 1 ; j  +  + ,

^ [ M ]  =  9[x[[n -  l]],y[|>']]];

A[[i, i -  1 ]] =  k2;

A[[i, i -  ( n -  1 )]] =  /z2;

A[[i, z +  (n -  1 )]] =  h2]

For[z =  2, i < n  — 2, i +  + ,

>l[[z-,i]] =  5 [x[[i]],y[[l]]];

A[[i, i -  1 ]] =  k2;

A[[i,i +  1]] =  k2;

A[[i, z +  (n -  1 )]] =  h2]

For[z =  (m — 2)(ra — 1 ) +  2; j  =  2, i < (m -  l)(n  -  1) — 1 , i +  + ; j  +  +, 

^ [ M ]  =  9 {x{\j]],y[{m -  1 ]]];

A[[i, i -  1 ]] =  k2]

A[[z,z +  1 ]] = k 2]

A[[i, i — (n — 1 )]] =  h2]
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Now fo r the interior:

For[z = 2 ,i < n  —2, i + +,

For[j =  2 , j  < m - 2 , j  + +,£ = i + ( j -  1 )(n -  1 );

A K .en  =  9[*[[*1].w(b']ll;

!]] =  fc2;

A [[{ ,f+ l]]  =  t J ;

.4[[? ,?-(n-l)]]=A2;

-4(K,£ +  (n  -  !)]] = ft2]]

Now for the boundary conditions:

yl[y_] : =  0 

g2[yJi :=  0  

/il[x_] := 100 

h2[x.] := 0

B  =  Table[0, {z, 1 , (n -  l) (m  -  1 )}]; B[[l]] =  h2 /z2[x[[l]]] +  k2 y2[y[[l]]]; 

B[[n -  1 ]] =  h2 h2[x[[n -  1 ]]] +  k2 yl[y[[l]]];

B[[(m -  2 )(n -  1) +  1]] =  h2 hl[x[[l])] + k2 g2[y[[m -  1]]];

B[[{m -  1  ){n -  1)]] =  h2 hl[x[[n -  1 ]]] +  k2 gl[y[[m -  1]]];

For[i =  n; j  =  2, j  < m  -  2, * =  i +  n -  1; j  + +, £[[z]] =  k2 y2[y[[)']]]];

For[z =  2n -  2; j  =  2, j  < m  -  2, i = i +  n -  1; j  +  + , B[[<]] =  k2 gl[y[[?']]]]; 

For[z =  2, i < n — 2, i +  + , #[[£]] =  h2 /z2[x[[z']]]];

For[z =  (m -  2)(n -  1 ) +  2 ; j  =  2 , i < (m -  l) (n  — 1) -  1 , * +  +; j  + +,  

B[\i}\ = h2 M[*[[7 ]]]];
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Lets get the solution, combine it with the stream function and save it:

A =  Partition[LinearSolve[A, — B], n  — 1 ];

n =  Tabte[A[[i,i]]Ejcp[*MMll], {ij i , m _  1}i i , „ _  i}];

p l =  ListContourPlotffi, ContourShading—»False, Contours—>50, 

MeshRange—>{{a, 6 }, {c, d}}]; 

p2  =  ContourPlot[^[x, y], {x, a, 6 }, {y, c, 0}, ContourShading—>False, 

Contours—)-30,PlotPoints—>100, ContourS tyle—>GrayLevel[0.5]] 

Show[pl,p2];

Export [” figure.eps” , %];
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PERM ISSION TO USE COPYRIG HTED MATERIAL

I would like to thank Dr. Denker of Big Bear Solar Observatory and Dr. Charbonneau 

of the High A ltitude Observatory for permission to use slides from their websites. 

Slides were also used from the website of the Solar and Heliospheric Observatory 

with appropriate credit given.

I should also thank Dr. Weiss for his permission to use a figure from one of 

his papers on flux expulsion, and Dr. Bertout (Editor-in-Chief of Astronomy and 

Astrophysics) for allowing me to use my papers published in that journal.
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From:
To:
Date:
Subject:

Carsten Denker <cdenker@ bbso.njit.edu> 
lain McKaig <tcmckai@tc.cc.va.us> 
2/27/01 12:09PM 
Re: Use of pictures

Dear Ian:

P lease feel free to use these images a s  long a s  put som ewhere a proper 
credit line (Big Bear Solar Observatory/NewJersey Institute of 
Technology), if it's not too much work for you, we would also appreciate a 
sample copy.

Clao,
Carsten

+ ------------------------------------------------------------------------------------------------------------------ +

I I
| Dr. Carsten Denker I
i I
| Big Bear Solar Observatory Tel.: 909-866-5791 Ext. 13 |
| 40386 North Shore Lane FAX: 909-866-4240 |
| Big Bear City E-Mail: cdenker@bbso.njit.edu |
j CA 92314-9672, U.S.A. WWW: http://www.bbso.njit.edu/~cdenker/ |
I i
+ ------------------------------------------------------------------------------------------------------------------ +

From: Paul Charbonneau <paulchar@hao.ucar.edu>
To: "lain McKaig" <tcmckai@tc.cc.va.us>
Date: 3/5/01 3:23PM
Subject: Re: Use of slides

Greetings lain. You may use all slides from 6 to 10 for your thesis, 
with appropriate credit to HAO/NCAR. Good luck with the dissertation 
writing.
Paul Charbonneau, HAO/NCAR
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From : Nigel W eiss <N.O .W eiss@ dam tp.cam .ac.uk>
To: lain McKaig <tcm ckai@ tc.cc.va.us>
Date: 3/1/01 7:59AM
Subject: Re: Use of figures

Dear lain

You are  welcom e to u se  those figures in your paper. I am  glad that they 
are still proving useful!

Since then there have been o ther investigations of flux expulsion. The 2D 
problem w as studied by Tao et al. (MNRAS 300, 907-914, 1998) and there  is 
a  much m ore ambitious 3D calculation that is about to appear in Ap.J.
You could get hold of it by contacting S teve T obias at Leeds (his email 
address is sm t@ am sta .leeds.ac .uk).

Best w ishes

Nigel W eiss

Professor N.O. W eiss
D.A.M.T.P. Phone: (+44) 1223 337910
Silver S treet Fax: (+44)1223 337918
Cambridge CB3 9EW, U.K. email: now@ dam tp.cam .ac.uk
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From:
To:
Date:
Subject:

Dear Mr. McKaig,

You are hereby permitted to use in your dissertation the A&A papers 
mentioned below.

With my best wishes for you thesis defense.
Yours sincerely

Claude Bertout 
Editor-in-Chief 
Copyright holder for A&A

 Original Message-----
From: "lain McKaig (by way of JoumalA&A <aanda@obspm.fr>)" 
<?cmckai@tc.cc.va.us>
To: <claude.bertout@obspm.fr>
Sent Tuesday, March 13, 2001 9:19 AM
Subject Permission to use material in H2492 and H2648

> Dear Dr. Bertout
>

> My name is lain McKaig and I teach mathematics at Tidewater Community
> College in Virginia Beach VA. Currently I am worfdng on my Ph.D. in
> applied mathematics at Old Dominion University in Norfolk VA. To this end
> I have published two papers in A&A. H2492 - "A Dirichlet Problem with
> Applications to Solar Prominences" and H2648 - "Solar Prominence Magnetic
> Configurations Derived Numerically from Convection."
>
> It is my understanding that I need your permission to use these papers in
> my dissertation. If you could grant me this permission I would greatly
> appreciate it Other than obtaining my degree I will not profit in any 
way
> from this thesis.
>
> Thanks for your consideration of this request, and I look forward to
> sending A&A more papers in the future.
>

> Best Regards
> lain McKaig

"Claude Bertouf <bertout@iap.fr>
"lain McKaig (by way of JoumalA&A <aanda@obspm.fr>)” <tcmckai@tc.cc.va.us> 
3/13/01 1:00PM
Re: Permission to use material in H2492 and H2648

R e p r o d u c e d  with p e r m is s io n  o f  t h e  co p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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VITA

Iain McKaig was bom in Dunfermline Scotland in 1963, moving to the States in 

1979 via Malta, Mauritius and London, England. In 1984 he received a Bachelor 

of Arts in Mathematics and Computer Science from Virginia Wesleyan College in 

Virginia Beach, Virginia, graduating magna cum laude. After waiting tables and 

then working as a systems analyst, he earned a Master of Science in Computational 

and Applied Mathematics at Old Dominion University in 1990. He will obtain a 

Doctorate in Computational and Applied Mathematics in December 2001.

Mr. McKaig has worked for the past ten years as a teacher of mathematics at 

Tidewater Community College in Virginia Beach, Virginia, rising through the ranks 

from Instructor to Associate Professor. W ith the completion of his Ph.D. he hopes 

to finally obtain the status of full Professor by August of 2 0 0 2 .

Publications:

Propagation of Magnetoacoustic-Gravity Waves in a Horizontally-Stratified Medium: 
IV. Kinematics, Astrophysics and Space Science, 2 0 2 : 259-271, 1993. Co-authored 
by Dr. J. A. Adam.

Scattering from Stellar Acoustic-Gravity Potentials: II. Phase Shifts via the First 
Bom Approximation, Applied Math. Letters, 10, No. 3: 39-42, 1997. Co-authored 
by Dr. J. .A. Adam.

A Dirichlet Problem with Applications to Solar Prominences, Astronomy and Astro­
physics, 368: 280-284, 2001.

Solar Prominence Magnetic Configurations Derived Numerically from Convection, 
Astronomy and Astrophysics, 371: 328-332, 2001
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