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ABSTRACT

A n  E x t e n s io n  o f  E s s e n t ia l l y  N o n - O s c il l a t o r y  S h o c k - C a p t u r in g  
Sc h e m e s  t o  M u l t i- D im e n sio n a l  S y s t e m s  o f  C o n se r v a t io n  L aws

Jay Casper

Old Dominion University, 1990 
Director: Dr. J. M. Dorrepaal

In recent years, a class of numerical schemes for solving hyperbolic partial dif­

ferential equations has been developed which generalizes the first-order method of 

Godunov to arbitrary order of accuracy. High-order accuracy is obtained, wherever 

the solution is smooth, by an essentially non-oscillatory (ENO) piecewise polyno­

mial reconstruction procedure, which yields high-order pointwise information from 

the cell averages of the solution at a given point in time. When applied to piecewise 

smooth initial data, this reconstruction enables a flux computation that provides a 

time update of the solution which is of high-order accuracy, wherever the function 

is smooth, and avoids a Gibbs phenomenon at discontinuities.

The promising results of Harten et al., in the use of ENO schemes in solving 

the one-dimensional Euler equations of gas dynamics, have aroused considerable 

interest in the aerodynamic community. However, the application of these schemes 

to areas of scientific and industrial interest, such as aircraft configuration, obviously 

requires compressible flow solutions in more than one spatial dimension. It is this 

extension of ENO schemes to multi-dimensional application to which this study
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is dedicated. In particular, a two-dimensional extension is proposed for the Euler 

equations of gas dynamics. Among the issues to be considered in this extension are 

achieving formal high-order two-dimensional spatial accuracy, the implementation 

of boundary conditions and application to general curvilinear coordinates.
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Chapter 1 

Introduction

Solutions of equations which govern the flow of a compressible fluid have been the 

subject of intense scientific interest for many years. In particular, solutions of the 

Euler equations of gas dynamics have proven extremely useful in the transonic flow 

regime. Moreover, since the advent of the high-speed computer, the development of 

numerical schemes for discretizing the Euler equations has become a growing area 

of academic interest.

Because the quality of a given numerical solution is largely dependent upon the 

scheme one chooses for its computation, some a priori judgements must be made. 

These decisions might include the speed of the computation or the accuracy of 

solution. On a more qualitative level, as the hyperbolic nature of the Euler equations 

can give rise to discontinuous solutions, we might desire that our approximation 

avoid oscillatory behavior near steep gradients.

Clearly, on a more global level, it is desirable that an approximation to the 

solution of a hyperbolic system mimic the behavior of the true solution, as well as 

it can be mathematically understood. In Chapter 2, we review some of the more 

prominent aspects of the theory concerning the solutions of hyperbolic equations 

(largely due to Lax [30]), as well as the results pertaining to the existence of such 

solutions.

In Chapter 3, we review some of the theory concerning the stability and conver-

1
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gence of discrete approximations to weak solutions of conservation laws. We then 

discuss some of the properties we desire in a numerical shock-capturing scheme, 

most notably high-order accuracy and monotonicity near discontinuities. Perhaps 

most important in this chapter is the discussion of what will become the design 

foundation of the class of essentially non-oseillatory (ENO) schemes. The basis of 

our design is due to Godunov [13], whose numerical scheme relied upon the char­

acteristic structure of the solution of a hyperbolic system. Though not the first 

characteristic-based shock-capturing scheme (See [6]), Godunov was the first to 

propose the ingenious use of the Riemann problem as a means of detecting charac­

teristic signal propagation.

A detailed discussion of ENO schemes in one spatial dimension is presented in 

Chapter 4. Unlike TVD schemes, in which we require that the solution’s total vari­

ation be a non-increasing function in time, the definition of ENO schemes requires 

that we release such rigid control. Only in this manner can we escape the inherent 

limit of second-order accuracy. The willingness to accept such a weakened version 

of control of the total variation of the numerical solution is attributed to Harten 

and Osher [25] and represented a major conceptual change in the area of non-linear 

shock-capturing schemes.

In Chapter 5, we achieve the stated goal of this dissertation, in that the ideas of 

the previous chapter are extended to the solutions of hyperbolic equations in two 

spatial variables. As opposed to a one-dimensional setting, there are particular 

areas of concern in two dimensions. Perhaps of foremost concern is the high- 

order pointwise evaluation of the solution which is required for the numerical flux 

computation. Also, we must consider the implementation of boundary conditions 

and the extension to curvilinear co-ordinates.

Results of numerical experiments are presented in Chapter 6. Scalar equations 

are used in a grid refinement study in order to support the claim in Chapter 5

2
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concerning the formal order of accuracy of our two-dimensional ENO scheme. Par­

ticular attention is paid to the two-dimensional Euler equations of gas dynamics. 

The test cases we discuss are demanding in that they involve non-trivial geome­

tries and develop complicated shock structures. These calculations represent the 

first successful application of ENO schemes to boundary-value problems with solid 

walls.

Some concluding remarks are made in Chapter 7. In addition, some comments, 

although speculative at this point, are given concerning the areas of future use for 

high-order accurate shock-capturing methods.

3
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Chapter 2 

The M athem atical Theory of 
Shock Waves

In this chapter, for the sake of completeness, we introduce the reader to some of 

the basic theory involving the solutions of hyperbolic systems of partial differential 

equations. We define some basic terms and discuss the characteristic structure of 

these solutions. We then discuss a specific solution, that of the Riemann problem, 

which will be fundamental to the development of a large class of numerical shock- 

capturing schemes.

2.1 H yperbolic System s of Conservation Laws

A conservation law, in words, simply states that the rate of change of the total 

amount of substance within a domain D must be equal to the flux of that quantity 

through the boundary of D. For the purpose of mathematical formulation, let u 

denote the pointwise distribution of some property of that substance within D at a 

given point in time, and the flux by /. The conservation law, then, can be written

^  [  udV = - [  f - f td S  , (2.1)
a t  Jd  Jqd

where dV is the volume element of D and dS is the surface element on dD, the 

boundary of D. We choose h to denote the outward normal to dD, so that the 

right-hand integral in (2.1) measures outflow, hence the minus sign.

4
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Whereas (2.1) represents the conservation of u on the entire domain of interest, 

we desire an equation which specifies the conservation of u pointwise throughout 

D. To this end, we take the time derivative under the left-hand integral and then 

apply the Divergence Theorem on the right, obtaining

f  ( ut +  div f ) dV =  0 . (2.2)
Jd

If we then divide by the volume V and take the limit of both sides of (2.2) as V —► 0, 

we obtain the differential conservation law

ut +  div /  = 0 . (2.3)

Now suppose that u in (2.3) represents more than one conserved quantity, i.e. is 

a vector of m components, each of which has a corresponding flux associated with it. 

Equation (2.3) then denotes a system of conservation laws. Imposing a coordinate 

system { x i,x 2, . . .  ,2* } on the domain D, we then have k directional components

to each of m fluxes. Carrying out the divergence of /  within this framework, we

write our system as

y t u i +  £  =  0 i y =  l , 2 , . . . , m ,  (2.4)

where each p  is a nonlinear function of u1, u2, . . . ,  um. This dependence of /  upon 

u enables us to finally write our non-linearly coupled system of conservation laws 

in the quasi-linear form
fc

« t +  X )  A i  U *i =  0  » (2 -5)
t= l

where Ai is the Jacobian matrix of /,• with respect to u. We call the system (2.5) 

hyperbolic (in the strict sense) if, for each x, t, u, and unit vector u>, the matrix

k
X  w< M

has real and distinct eigenvalues AJ(x,t,u,a;), j  = 1 ,2 ,... ,m .

5
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2.2 W eak Solutions and Entropy Conditions

We now concern ourselves with finding the solution of the system (2.4), subject to 

given initial and/or boundary conditions. At first glance, we would simply assume 

that any solution u of (2.4) would be continuously differentiable in each x,, for all 

t > 0, and proceed accordingly. However, in general, such a C1 solution does not 

exist. In fact, the solution u itself can become discontinuous within a finite time 

interval, even with smooth initial data. Due to this peculiar nature of hyperbolic 

equations, we develop the notion of a more generalized solution.

A solution u is called a weak solution of the system of conservation laws (2.4) if 

u satisfies the integral form of these laws, i.e., if

f  udV + f  [  f  -h  dS dt = 0 (2.6)
J g  u  J t i  J d G

holds for every smoothly bounded domain G in D and for every time interval (tx, t2). 

Equation (2.6) is valid if u is merely bounded and measurable. If u happens to be 

C1 in G, then it solves (2.4) in the classical sense.

Let z(t) be a smooth surface moving with time t, and u be a weak solution of (2.4) 

which is continuously differentiable on either side of z, but which is discontinuous 

across z. Then on each point of z, it can be shown that this weak solution satisfies

s [a] =  [/] • ht , (2.7)

where [u] and [/] denote the difference between values of u and /, respectively, on the 

two sides of z, hx is the unit normal to z, and s is the speed with which z propagates 

with respect to hs. Relation (2.7) is a generalization of the Rankine-Hugoniot jump 

condition.

It is well-known that, in general, weak solutions are not uniquely determined 

from their initial data. This ioss of uniqueness occurs in the class of piecewise 

smooth solutions, i.e. solutions which develop discontinuities. It turns out that cer­
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tain types of discontinuities, across which (2.6) and (2.7) are satisfied, are nonethe­

less “undesirable.” For instance, in the context of gas dynamics, the Rankine- 

Hugoniot conditions admit a “rarefaction shock” as a possible weak solution. Such 

a phenomenon (an obvious oxymoron!) is physically impossible, and therefore some 

condition of a qualitative or structural nature is needed to make such a solution 

inadmissible. An argument involving the way in which characteristics converge on a 

curve of discontinuity can be used to determine this condition. (See [30] for details.)

In order to formally express this condition, we first denote by and R2 the 

regions of G which are separated by the surface z. Choose a point P on z, and let 

and u2 denote the values of u at P, as limits from Ri and R2, respectively. Let 

{A7} denote the eigenvalues of the matrix
k

X ) A i ,
i= l

where {n,} are the components of hz, and are evaluated, as are the {A,}, at the 

point P. Furthermore, we assume that these eigenvalues are labeled in increasing 

order, A1 < A2, < . . . ,  < Am. Seeking to rule out “physically unrealizable” solutions, 

we require, for some k, 1 < k < m, that the following inequalities hold:

A*(ui) > s > Afc(u2) , (2.8a)

A; (ui) < s ,  for j < k ,  a < AJ(u2) ,  forj > k .  (2.8b)

Thus, for one and only one index k is the speed of the discontinuity intermediate 

to the characteristic speeds on either side. When considering the equations of gas 

dynamics, the relations (2.8) are equivalent to requiring that entropy increase across 

a shock. Hence we shall refer to these as entropy conditions, and to any solution 

which satisfies (2.6), (2.7), and (2.8) as an entropy solution. Relations (2.8) are also 

known as Lox’s shock conditions.

We now move on to some of the theoretical results concerning weak solutions, 

their existence and whether or not they satisfy entropy conditions. In order to facil-

7
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itate our presentation, until further notice, we restrict our discussion to hyperbolic 

systems in one spatial variable.

2.3 The Structure of Entropy Solutions

Consider the initial-value problem (IVP) for a one-dimensional hyperbolic system 

of differential conservation laws

ut + /(«)* =  0 , t > 0 , —oo < x < oo , (2.9a)

u(z,0) =  u°(x), (2.9b)

where u(x, t) is a vector of m unknowns and each of the m components of /  is a 

nonlinear function of u1,^" ,. . .  ,uTO. We assume that the IVP (2.9) is well-posed 

and that u°(z) is of bounded variation on (—oo, oo). Equation (2.9a) can be written 

in quasi-linear form

Ut +  Aux = 0 , (2 .10)

where A is the Jacobian matrix of /  with respect to u. We assume that the system 

is hyperbolic, and that the eigenvalues of A are labeled in increasing order, i.e. 

X1 < X2 < .. .  < Xm. Let rk denote the fc-th column vector of the right eigenvector 

matrix associated with A, and lk the fc-th row vector of the left eigenvector matrix.

Because the sysfom (2.9) admits discontinuities, we therefore seek weak solu­

tions. A weak solution of (2.9) must satisfy, for all rectangles (a, 6) x (ti,^)* the 

relation obtained by integrating (2.9a) over the rectangle :

f  u[x,t2)dx -  f  u(x,ti)dx + f  f(u(b,t))dt — [  f{u(a,i))dt — 0 . (2.11) 
Ja Ja Jti Jti

The solution u(z, i) in (2.14) satisfies (2.9) in each smooth region, while across each 

discontinuity, it will satisfy the jump condition (2.7), which in this case, can be 

written

/(«*) -  /(« l)  = s { u R -  uL) , (2 .12)

8
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where s is the speed of propagation of the discontinuity, and «£ and ur are the states 

on the left and right, respectively. Furthermore, in order to rule out “undesirable” 

discontinuous solutions we require, a priori, that our solution satisfy the entropy 

conditions (2.8), i.e. for some index k, 1 < k < m,

A*(ul) > s > A*(ttfl) , (2.13a)

AJ (ui) < s , for j  i  , s < A7 (ur) , for j  > k . (2.13b)

We define the k-th characteristic field by the family of curves that satisfies

! - * * .  (2.14)

We will call the field generated by (2.11) genuinely nonlinear if

VA‘ t ‘ ^ 0 ,  (2.15)

or linearly degenerate if

V A* • r fc =  0 , (2.16)

where the gradient is with respect to u. A Riemann invariant of the kth field is a

quantity o(u) which satisfies

rk • Vo = 0 , (2.17)

where the gradient is with respect to u.

A physically acceptable discontinuity in a genuinely nonlinear field satisfies the 

entropy inequalities (2.13). Pictorially, characteristics converge on either side of 

the discontinuity dx/dt = s , as shown in Figure la. Henceforth, in analogy to gas 

dynamics, we shall refer to such a discontinuity as a shock.

Now, suppose that the A:th characteristic field is genuinely nonlinear and that u 

is continuously differentiable in some region D of the x — t plane. If, in addition, all 

Riemann invariants are constant in D, then we refer to u as a centered simple wave 

or rarefaction wave. All characteristics within this region (Figure lb) are divergent
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=  3

Figure la. Characteristic structure of a shock

•/,

Figure lb. Characteristic structure of a rarefaction wave

10
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straight lines, along which u is constant. Throughout D, u is a function depending 

only on (x — xo)/(t — to), where (xo>*o) is the center of the wave. These waves are 

the classical C1 solutions of (2.9). We note that a rarefaction wave is continuous at 

its endpoints, but is not, in general, differentiable there.

If the kth  field is linearly degenerate and contains a discontinuity propagating 

at speed s, then across this discontinuity, we have

= s =  Afc(ufl) . (2.18)

This situation is illustrated in Figure lc. Again, in analogy to gas dynamics, we 

shall henceforth refer to this type of discontinuity as a contact discontinuity. In this

case, the characteristics on either side of the discontinuity do not converge and the

curve dxjdt =  s = A* is itself one of the characteristics.

2.4 T he Riem ann Problem

Because it is so fundamental to our nonlinear numerical schemes, we will now con­

sider the solution of the Riemann problem. This problem is a special case of the 

IVP (2.9) which can be stated

+ /(«)* = 0 , (2.19a)

■fc°» = { S :  : > S ,  <2-wb>

where Ur and ur are constants.

It is proven in [53] that, provided the “initial jump” uj,| is sufficiently small, 

the Riemann problem (2.19) has a unique solution consisting of at most m +1 con­

stant states {ux,=Uo,Ux,...,um=UA}, separated by shocks, contact discontinuities, 

and rarefaction waves, centered at the origin. The characteristic structure of this 

solution is pictured in Figure 2. The manner in which a state U£ can be connected 

on the right, through constant states, to a state ur makes the solution of (2.19) a

11
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Figure lc. Characteristic structure of a contact discontinuity

uR

0
Figure 2. Characteristic structure of a solution of the Riemann IVP (2.19)
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function only of uL,u R, and the ratio x/t. Furthermore, in the specific case where 

equation (2.19a) represents the Euler equations of gas dynamics, it can be shown 

(See [53].) that |u r—ux,| can be arbitrary and the conclusion concerning the solution 

remains the same.

13
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Chapter 3 

Numerical Shock-Capturing 
Schemes

We now begin our discussion of numerical approximations of weak solutions of 

hyperbolic equations. In this chapter, we present theoretical results concerning 

the convergence of discrete approximations and establish criteria for stability. In 

addition, we seek to unify these ideas with our desire for high-order accurate, non- 

oscillatory schemes.

3.1 D iscrete Approxim ations and Convergence

Now that we have developed the basic ideas concerning the existence of an entropy 

solution, we now wish to actually solve the IVP (2.9). Due to the nonlinearity 

of /, we cannot, in general, explicitly determine this solution and therefore seek to 

approximate it in a discrete fashion. To this end, we divide the spatial and temporal 

domains of (2.9) into finite intervals, where

X i - l / 2  <  X  <  X,-+1 / 2  , —OO <  t <  0 0  ,

defines the *th spatial interval with center x,- and

tn < t < tn+1, 0 < n < oo ,

represents the time discretization. Let Ax,- and Atn denote the (positive) lengths 

of the tth interval and »th time-step, respectively.

14
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In order that a discrete solution u be a weak solution of (2.9), we require that u 

satisfy equation (2.11) for all rectangles (x,-i/2 >Zi+i/2) x (tn,tn+1), which we write 

in the form
A / n » * 1

fi+l/ 2  — f i - 1/2 » (3.1a)0?+1 = fi? _  —
Ax,-

where

fi? = [  '+1/3 u{x,tn)dx, (3.1b)
./* ,•_  1/2

and will be referred to as the cell average of u on the tth interval (or cell), and

1 rtn+1
fi+1/2 = ^  J f{u(zi+1/2,t))d t, (3.1c)

is the flux through the cell interface x,+1/2 • We note here that there is nothing “ap­

proximate” about the discrete solution {fi?} given by (3.1). The problem arises, in 

the general nonlinear case, in determining explicitly the flux (3.1c). It is ultimately 

here that we must rely on some type of numerical scheme.

Let v? denote a numerical approximation to u(x,-,tn). The classical approach 

to the design of numerical methods for partial differential equations is to obtain a 

solvable set of equations for {v?} by replacing derivatives in the system (2.9a) with 

appropriate discrete approximations. Immediately, we have a conceptual difficulty 

using such an approach to compute solutions which may become discontinuous. 

We therefore follow the lead of Lax [29] who overcame this difficulty by considering 

numerical approximations to the weak formulation (3.1a), rather than to the system 

of PDE’s (2.9a). Therefore, we consider schemes in the form

At”v?+1 = v? - fi+l/ 2 — f i - 1/2  5 (3.2a)Ax,-

where v? approximates u(x,-,tn) and f  is the numerical flux. It is natural to expect 

that the information that ultimately determines this approximate flux will come 

from the values of the {«?} which are nearby. In particular, we assume that /  is a

15
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Lipschitz continuous function of 2k arguments :

7»+l/2 =  7[vi-k+lt' • (3.2b)

Furthermore, we require that the numerical flux be consistent with the “true flux” 

/ ( “) in the sense that, when all 2k arguments are equal, J reduces to /  :

f (w ,w ,...,w ) = f(w ) .  (3.2c)

It is through the recursive use of (3.2) as a numerical scheme, n =  1 , 2 , . . . ,  that the 

values {«"} can be successively updated from the previous time level.

We will say that a scheme of the form (3.2) is consistent with the conservation 

law (2.9a), whose solution it will approximate. A scheme in this form is also said 

to be in conservative form. The conservation character of (3.2) is expressed by the 

fact that, though the fluxes are approximated, the flux which is computed to enter 

the ith cell during the time interval (tn,tn+1) through the left endpoint is exactly 

equal to the approximate flux leaving the (t — l)st cell through its right endpoint 

during the same time interval.

We have now established a set of prerequisites which enables us to determine a 

“desirable” numerical scheme for the approximation of weak solutions of conserva­

tion laws. The following result is due to Lax and Wendroff [31].

Theorem  3.1 Suppose the difference scheme (S.2) is consistent with the conser­

vation law (2.9a) with initial condition {v°} = u°(x,) , —oo < i < oo . Further 

suppose that as A x and At tend to zero, {«"} converges boundedly almost every­

where to some function u(x,t). Then u(x,t) is a weak solution of (2.9) with initial 

values u°(x).

Furthermore, we know from Chapter 2 that the converged solution in Theorem

3.1 will satisfy the jump condition (2.12) across discontinuities. Hence, the term 

shock-capturing, a phrase coined by H. D. Lomax.

16
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Though this theorem yields a desirable result, the assumption of convergence is 

quite stringent. In fact, the convergence of an approximate solution is itself an issue 

of greater concern, and which we now consider. For simplicity, we assume that the 

spatial and temporal discretizations are uniform; Ax,- =  h, for all t, and Atn = At, 

for all n. We also assume that At = 0(h). Let Vh(x,t) be a globally defined 

numerical approximation associated with the discrete values {«”}. Furthermore, 

denote by Eh the numerical solution operator which advances Vk(x,t) in time. We 

express the operation of Eh on the discrete solution {v”} by rewriting (3.2a) as

u r 1 = (Eh vn)t-. (3.3)

The classical approach (e.g. [44]) to the question of convergence leads us to the 

requirement of linear stability. Let us consider the scalar constant coefficient case

ut + aux =  0 , a = constant. (3.4)

Equation (3.4) is also known as the linear advection equation, and its solution, with 

initial data u°(x), is explicitly given by

u(x,t) = u°(x — at). (3.5)

When applied to equation (3.4), many schemes (e.g. Cole-Murman [39], MacCor- 

mack [38]) take the form

< + 1  = £  . (3.6)
l = - k

where the {Cj} are constants independent of i. Thus, in the constant-coefficient 

case the numerical solution operator Eh becomes a linear operator, and we shall 

refer to such schemes as “essentially linear” or just linear schemes.

We say that the numerical scheme (3.6) is stable if the operator Eh is uniformly 

bounded on 0 < tn < T, where At = 0(h). The classical linear analysis leads 

us to the conclusion that the scheme (3.6) is stable if and only if it satisfies von

17
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Neumann’s condition :
k

E  ° i ‘l=-k
-He < 1 , 0 < e < 7T, (3.7)

where, in this equation, i is the imaginary unit.

Now consider Vh(x,t) as a sequence of approximations whose limit we seek, 

as h —> 0. The notion of linear stability is related to convergence through Laz’s 

equivalence theorem, which states that a consistent linear scheme is convergent if 

and only if it is stable.

Now suppose that a numerical scheme does not take the form (3.6) in the 

constant-coefficient case, or for any other reason the application of local linear 

stability analysis cannot be justified. The design of such nonlinear schemes that 

have desirable properties is the subject of the following sections, and these ideas 

will be carried throughout the remainder of this dissertation.

We close this section with an important theoretical result concerning the ap­

plication of nonlinear schemes to hyperbolic systems. This result, due to Harten 

and Lax [23], gives a set of sufficient conditions under which we may expect con­

vergence of a discrete solution to a weak solution of (2.9), the most crucial of which 

is the notion of total variation stability. Preparatory to this, we note that the total 

variation (TV) of the approximate solution vh(x,t) plays a critical role and, in the 

discrete case, can be defined

TV  M  = E K i - « T I -
I

Furthermore, we say that a numerical scheme is total-variation stable if the total 

variation in x of Vh(x,t) is uniformly bounded in t, At, and h. Recalling our as­

sumption of bounded variation of the initial data u°, we can express total-variation 

stability by

TV(v) < k TV(u° ) , 0 < t < T  , (3.8)

where & is a constant, independent of x. We may now state the following.

18
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Theorem 3.2 Suppose that a numerical scheme is in conservation form (S.S) . If 

the resulting approximation is total-variation stable, then the scheme is convergent, 

and its limit is a weak solution of (2.9).

If, in addition to the theorem’s hypothesis, it is assumed that consistency with 

an entropy condition implies uniqueness of the IVP (2.9), then the limit solution 

will be unique. However, uniqueness in the general case has yet to be proven.

3.2 A ccuracy and M onotonicity

Let Eh denote the numerical solution operator (3.3) and let E(t) denote the evolu­

tion operator of the exact solution u of the IVP (2.9). We say that the numerical 

scheme (3.2) is r th-order accurate (in a pointwise sense) if its local truncation error 

satisfies

£(At) u -  Eh u = 0 (hr+1) (3.9)

for sufficiently smooth h, where At =  0(h).

It might seem reasonable that any higher-order accurate scheme would be more 

desirable than any lower-order accurate one. However, a formally high order of 

accuracy is not the only desirable property of a numerical scheme. It is well- 

known (See [19,34,35].) that some schemes which yield excellent results for smooth 

solutions exhibit spurious 0 (1 ) oscillations in the presence of steep gradients.

Therefore, in addition to high-order accuracy in regions where the solution is 

smooth, we also desire that the scheme be capable of propagating discontinuities 

without such oscillations. In the scalar case, this can be accomplished by designing 

schemes to be monotonicity-preserving, i.e. whenever v is a monotone mesh func­

tion, so is Eh v. Godunov [13] considered this approach in the constant-coefficient 

case (3.4), and was able to prove that monotonicity-preserving linear schemes are 

necessarily only first-order accurate. Therefore, if we are to achieve our objectives
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of high-order accuracy and monotonicity in our design, we must do so with non­

linear schemes. Throughout the remainder of this dissertation, we concentrate on 

the design of such schemes, which even in the constant-coefficient case (3.4) are 

nonlinear.

In [16], Harten was able to achieve second-order accuracy by rigorously develop­

ing a class of nonlinear schemes which are required to be total-variation diminishing 

(TVD). A TVD numerical solution operator Eh is defined by

TV{Ehv) < TV{v) , 0 < t < T .  (3.10)

As has become customary in the literature, the word “diminishing” is used loosely 

as a synonym for “non-increasing.” We note that TVD schemes are automatically 

total-variation stable, since (3.10) satisfies (3.8) with k = 1 . Also it is shown in 

[16] that TVD schemes are necessarily monotonicity-preserving. Finally, it can be 

shown that TVD schemes are at most second-order accurate, in the Li norm. In 

fact, regardless of its form, any TVD scheme must be only first-order accurate, in a 

pointwise sense, near local extrema, and therefore is globally first-order accurate in 

the La, norm. This is due to the fact that, in order to satisfy (3.10) at every time 

step, the scheme’s design must ensure that the value of an isolated local maximum 

may only decrease in time, while that of a local minimum may only increase. It is 

this perpetual damping of extrema that ultimately determines the pointwise trun­

cation error, and is necessary in order that the total variation of the solution be so 

strongly controlled.

Harten and Osher [25] later introduced a larger class of schemes, in which the 

numerical solution operator is required only to diminish the number of local ex­

trema, rather then their relative size. These schemes are referred to as (strictly) 

non-oscillatory, and are defined by

N0{Eh v) < N0(v) , 0  < t  < T  . (3.11)
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where No{v) denotes the number of local extrema in v.

Unlike TVD schemes, which are a subset of this class, non-oscillatory schemes 

are not required to damp the value of each local extrema at every time step, but 

are allowed to occasionally accentuate them. Harten and Osher were able to design 

these schemes to be uniformly second-order accurate in smooth regions (including 

at extrema) as well as monotonicity preserving. However, the accuracy of a non- 

oscillatory scheme is limited to second order. Nonetheless, the willingness to accept 

a weaker notion of control over the possible growth in the total variation of the 

numerical solution introduced major conceptual changes. Indeed it was the new 

ideas in [25] that would lead to the development of the high-order accurate shock- 

capturing schemes which we further develop and extend in this dissertation.

3.3 G odunov-T ype Schem es

In this section we begin to design a class of nonlinear schemes, which we desire to 

be high-order accurate and capable of propagating discontinuities without spurious 

oscillations. As there is more than one approach to the actual implementation of 

such schemes, here we present an abstract design, leaving details to later sections.

First and foremost, we require our schemes to be in conservative form (3.2). 

Secondly, even though our initial interpretation of the discrete approximation {«"} 

was in a pointwise sense, through association with a globally defined numerical 

solution Vh(x,t), the scheme (3.2) is easily extended to the notion of cell averages 

(3.1b) by simply writing our scheme

AfnHP+ 1 = e" _
Ax,- Ji+l/2 ~ fi—1/2 (3.12)

where

v? — ~r~ [  '+1/3 vh(i;,tn)dx, (3.13)
£±X i  -  X,‘_ x /2
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is an approximation to the exact cell average fi” of the weak formulation (3.1). Thus, 

we choose to update approximate cell averages {fi”} of the exact solution {fi”}. 

This “finite-volume” approach was introduced by Godunov. Because the first- 

order accurate scheme he presented in [13] contains the basic elements upon which 

we build our class of high-order schemes, we find it prudent to discuss Godunov’s 

scheme in some detail, before proceeding with our general design.

Godunov begins the derivation of his scheme by considering the numerical ap­

proximation Vh(x, t") at the discrete time level t” to be a piecewise constant function 

in x (Figure 3a), where each constant is a cell average, i.e.

ty»(®,t ) ~  1/2 ^  ® <' ®«+1 /2 > (3.14a)

for all t. There are two steps in calculating the approximate solution at the next 

time level t” + 1  — tn + At. First, we solve exactly the initial-value problem

«t + /(«)* =  0  > «(*> *”) = vh{x, tn) (3.14b)

for the time interval f” < t < f”+1. Denote this solution globally as u"(i, f).

The piecewise-constant form of the initial conditions (3.14a) creates discontinu­

ities at each cell interface xi+1/2, with the value fi” on the left and fij^ on the right. 

Thus the IVP (3.14b) is a sequence of Riemann problems (Figure 3b). Recall from 

Section 2.4 that the solution of the Riemann problem (2.19) consists of at most 

m + 1 constant states separated by the various types of waves discussed in that 

section, and can be expressed as a function of the left and right states u l  and u r ,  

and the ratio x /t. Denote the general solution of (2.19) by u(x/t;u£,Ufl).

Now if we restrict the size of the time step At by

—  |A| < -|A |max 2:  ̂ 5

where |A|max is the magnitude of the globally largest eigenvalue, then there is no 

interaction amongst neighboring Riemann problems. In this way, the global solution
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X

Figure 3a. The horizontal bars represent the initial data of equation (3.14a)

A t

x

Figure 3b. “Solutions in the small” of IVP (3.14b)
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un(x,t) of (3.14b) can be expressed exactly in terms of the solutions of the local 

Riemann problems :

un(x,i) = u( { x -  X i+1/ 2) / { t  -  tn) ; 0?, 0"+1) , (3.14c)

for X i  < x  < Xj+i , for all f, and tn < t <  t n + 1 .

The second step in Godunov’s scheme actually updates the {©”}. We obtain 

a piecewise-constant approximation V k ( x , t n + 1 )  b y  averaging the solution (3.14c) at 

time tn+1, i.e.

©?+1 =  - i -  f*1+1/2 un{x,tn+1) d x . (3.14d)
A  X i  J x i . i / t

Thus, on the interval < x < x,+i/2 , the update ®"+ 1 is an average of the

contribution, at time tn+1, due to the right-running waves emanating from x,_i/2 , 

and that of the left-running waves emanating from x,-+1/2. Using this interpretation, 

we rewrite (3.14d) as

f>*+1 = 'Kxi Jo ''  u( x/ A t '’Vi-i’vi ) dx + -^ r . /_ Ai/2 «(x/At;©",®r+i)dx. (3.15)

We can show that Godunov’s scheme is conservative by noting that un(x, t) is

an exact solution of the system of conservation laws in (3.14b) and therefore must

satisfy the weak formulation (2.11) on the rectangle (x,-i/2 , Xi+i/2) x (tn, tn+1). Using 

this formulation and (3.14d), we can write Godunov’s scheme in the form

A  f ”

®"+ 1  =  7i+1/2 -  Ji—1/2 , (3.16a)

which is the conservative form (3.12) and the Godunov flux function is

fi+i/2 =  / (  «(0; v^, v"+1) ) . (3.16b)

Furthermore, in this form, because we require the solution of the local Riemann 

problem only at x =  x,+1/2, we may weaken our time-step restriction to

A x ^ max “  1 '
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As previously noted, Godunov’s scheme is first-order accurate. We now wish to 

generalize the procedure (3.14) to an arbitrary order of accuracy r. However, if we 

never deal with the numerical solution in any form but that of its cell averages, we 

see that there is a limitation on the order of accuracy, by the following argument. 

For some h > 0, define a global “sliding-average” value function ® in z by

1 /•*/»
= h J-h/2 (3-17)

If we apply the mid-point rule to the integral in (3.17), we get, for smooth ffi(z),

®(z) = ®(z) + 0(h2) ,

which shows that, as a pointwise approximation, a cell average is never any better 

than first-order accurate (or second-order accurate in the Li sense). Therefore, if 

we desire a higher-order accurate scheme, the cell averages themselves will not do. 

We must be able to somehow extract high-order pointwise information from these 

averages, in a manner that does not produce oscillations near discontinuities.

To this end, define an operator R = R{x\ w), which reconstructs a discrete set 

{©,}, and yields a piecewise smooth function that approximates w(x) to some order 

of accuracy. We define a Godunov-type scheme by essentially the same procedure 

as (3.14), except that the piecewise-constant approximation (3.14a) is replaced by 

the more general approximation determined by the operator R. Its abstract form 

can be expressed as follows:

(i) Reconstruction: Define

Vh(x,tn) — R (x ;  vn) . (3.18a)

(ii) Solution in the Small: For tn < t < tn+1, define

Vh{;t) = E { t- tn)v h{ ; tn) ,  (3.18b)
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where E(t) is the exact evolution operator of the IVP (2.9).

(iii) Cell-Averaging: Close the time loop of the algorithm by defining

0? +1 = /* ,+1/a vh(x,tn+1) dx . (3.18c)Ax,- J x i - i / t

Clearly, the reconstruction operator R is the most important feature in the 

design of these schemes. In fact, it is not immediately clear how to approach the 

“solution-in-the-small” step (3.18b), when left and right states at each interface 

are not constant values, as in the classical Riemann problem, but are higher-order 

pointwise approximations to v^(x,t). This issue, as well as the details of this re­

construction operator, the conservation of the schemes, and an analysis of their 

truncation error will be discussed in Chapter 4.

3.4 Approxim ate Riem ann Solvers

Before moving on to the rigorous development of high-order schemes of Godunov 

type, we make a general observation of these schemes at the abstract level presented 

in the last section. In step (ii) of these schemes (3.18), all of the local Riemann 

problems are solved exactly. This process, depending on a given system of equar 

tions, could be long and difficult. However, all of these local solutions are then 

averaged in the update step (iii). Consequently, many of the fine details of the 

exact solution in (3.18b) are later ignored in evaluating w” + 1  by averaging the exact 

solution over the interval (xt_i/2 ,xl+i/2). We therefore consider replacing the exact 

solution u(x/t\UL,UR) in (3.15) with an approximation.

In conservation form (3.16a), the numerical flux we desire contains only that 

part of the solution of the local Riemann problem which exists at x =  x, +1 / 2 in the 

time interval tn < t < tn+1. So we first desire an expression that will express the flux 

fi+i/ 2  in terms of the known initial conditions ur, ur of the Riemann problem. Once 

again, for ease of presentation, we assume a uniform computational mesh, and note
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that the Riemann solution u(x/t;u£,,ujj) must satisfy the weak formulation (2.11) 

on the rectangle (—h/2,0) x (tn,fn+1), i.e.

[  u(x/in+1; uL, uR)dx ~ ^ u L + A t Ji+y 2 -  At /(«/.) =  0 ,
J-h/2 *

which gives the relation

?i+1/2 =  /(« t) -  ^  j ^ u ( x / t n+1-,uL,uR)dx +  • (3.19a)

Performing the same operation over the rectangle (0 , h/2) x (tn, tn+1) yields

1 rh/2 h
Ji+i/2 =  /(«*) +  ^  yo u(x/tn+l\uL,uR)dx -  . (3.19b)

Thus, the only nontrivial operation in the flux computation is the integration of 

the Riemann solution through either the left-running waves or through the right- 

running waves. We therefore seek an approximate solution which will simplify the 

integrals in (3.19).

To this end, consider the IVP (2.9) in matrix form

ut + Aux = 0 , «(z,0) =  tt°(x), (3.20)

where A is the Jacobian of /  with respect to u. Recall from Section 2.3 that the 

matrix A has real and distinct eigenvalues {A*}, which therefore give rise to a 

complete set of right eigenvectors {r*}. Thus the matrix R of right eigenvectors 

is invertible and the rows of the inverse L  form a complete set of left eigenvectors

{/*}. We may also assume that, upon suitable normalization, the orthonormal

dot-product relation

I* • r 7 = 6ij (3.21a)

is satisfied, as well as the matrix product relation

LAR  =  A , (3.21b)

where the elements of the diagonal matrix A are given by

A a = A %  . (3.21c)
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Now consider the IVP (3.20) in the constant-coefficient case, i.e. let /  = Au, 

so that A is a constant matrix, as are R, L, and A. Let w be the column vector of 

characteristic variables, defined by

u) = L u , or wk = lk ■ u , k = l ,2 , . . . ,m .  (3.22a)

By multiplying (3.20) on the left by L  and using the relations (3.21) and the defini­

tion (3.22a), we see that the system in (3.20) decouples into m scalar characteristic 

equations, and the IVP becomes

wf + Akwk =  0 , wk{x, 0) =  /* • u°(a:) . (3.22b)

Each of the m differential equations in (3.22b) is identical to the linear advection

equation (3.4), whose solution (3.5) is easily obtained. The desired solution u can

then be recovered by noting the relation

m

wkrk =  u . (3.22c)
Jk=l

We now consider the Riemann problem (2.19) in the case of a constant co­

efficient matrix A. Here the solution (Figure 4) is composed of constant states 

{ul = Uo, ui, ti2 , • • • j tim = tifl}, separated by discontinuities only, whose characteris­

tic paths are straight lines determined by

dx . l
A , fc =  1 , 2 , . . .  , m  .

Using (3.22c), the difference in the initial conditions, ur — ul, can be expressed in 

terms of the differential characteristic variables ak= lk • (uR- u L),

m

ur -  uL = ^2 akrk . (3.23a)
*=i

An intermediate state xi, then can be calculated by

i
"j = «£ + a *ri > (3.23b)

*=i
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0 x

Figure 4. Solution of the constant-coefficient Riemann problem
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or

t ty  —  U r  —  ^  > (3,23c)
k = i

for j  = 1 ,2 , . . . ,  m l .

Let «,• (0 < j  < m) be the value of the Riemann solution at x  =  0, and for 

tn < t < tn+1. Because of the simple structure of the solution in this case, we see 

that the integration at t = tn+1 in (3.19) greatly simplifies. Upon substitution of 

the solution (3.23c) for the integrand in (3.19a), we can write the integral

=  2 T t UL + £ l T t c f r t '

where {ht}[ are points in the interval (—h /2 , 0 ) , as shown in Figure 5. Also,

because the characteristics are straight lines in this case, we have

^  =  A \  *  =  1 ,2  j .At

Thus, in the constant coefficient case, we can express the integral in (3.19a) as 

a discrete sum of the contributions of the Riemann solution, summed through the 

waves with negative speeds. Using this interpretation, we can write the flux (3.19a) 

in the form

li+1/2 = /(« l)  +  X) 0tkX , (3.24a)
k =  1

where

= mm(Afc, 0 ) = 1 / 2  ( Xk — |A*|) .

A symmetrical argument allows us to substitute (3.23c) into (3.19b), and we obtain

Ji+1/2 = /(«*) -  X) <xk*k(+)rk > (3.24b)
t=i

where

A*(+> = max ( A*, 0 ) =  1 / 2  ( Xk + |A*|) .

Summing (3.24a) and (3.24b) yields the particularly convenient result
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Figure 5. Integration of the solution of the constant-coefficient Riemann 

problem at t = tn+1 through its left-running waves.
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It has been suggested by Roe [47] that we account for the nonlinearity in the 

solution of a given hyperbolic system by “locally linearizing” the system at each 

point where the computation of a flux is desired. Thus, at the “solution-in-the- 

small” step (3.18b), we solve at each interface x,-+j/2, the IVP

«, +  =  0 , «(x,0) = [  _ (3.25)

A

where i4 ,+i/2  is the original matrix A whose value has been fixed relative to the left 

and right states at x,-+1/2 .

There are many ways to define A, the most convenient of which would be some

type of average of left and right states. Roe has proposed such a matrix A ( u i , u2)

with the following properties:

(i) A(u 1 , 1*2) has real eigenvalues and a complete set of eigenvectors.

(ii) For any two states tti,U2 ,

/(« 2) -  /(« 1) = -d(u1 ,u2) ( « 2  -  Mi) . (3.26a)

(iii) A(ui,u2) is consistent in the sense

A(u,u) = A(u) . (3.26b)

Once a particular A, + 1 / 2 is determined by the values ul, ur at an interface x,+1/2)
A A A

the corresponding quantities of the matrices Ri+1/2 , X,+x/2, and A,+1/2 are then 

used in the numerical flux formula (3.24c). We will use Roe’s ideas, “Roe’s scheme” 

as it is called, in the application of our new schemes, and discuss the details when 

appropriate.

Roe’s Riemann solver contains a great amount of detail including m — 1  inter­

mediate states. Furthermore, even when a characteristic separating two constant
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states lies upon the t-axis, the numerical flux (3.24c) is still valid in the sense of a 

weak solution. Such a characteristic satisfies dx/di = A* =  0  , in which case, the dis­

continuity between u*_i and u* is stationary, and the jump condition (2 .1 2 ) is still 

satisfied, i.e. /(u*_i) =  /(u*). Thus, Roe’s scheme is capable of perfectly resolv­

ing a stationary discontinuity. If, in addition, the relation A*(u*_i) > 0  > A*(u*) 

is satisfied, then such a discontinuity is a stationary shock. However, in the case 

where Afc(u*_i) < 0  < A*(u*), equation (3.24c) still results in /(u*_i) = / ( u*), 

and again a stationary discontinuity satisfying the jump condition (2.12). But in 

this case, the discontinuity violates the entropy condition (2.13), the solution being 

a “rarefaction shock.” The admission of such a physically unrealizable solution is 

due to the linearization, by which A is a constant matrix, all characteristics are 

discontinuities, and the finite spread of a rarefaction is not allowed. It should be 

noted that this problem usually only arises in practice when a stationary rarefaction 

wave is symmetrically aligned with a cell interface. Examples of entropy “fixes” are 

discussed in [22,16,17] . We will make note of such a “fix” when necessary for our 

later application.

There have been many other approaches to the solution of the Riemann problem 

in recent years, as “upwind” schemes have come to play a more prominent role in 

numerical shock-capturing. For examples of some of these approaches and their 

comparisons, the interested reader is referred to [3,12,33,41,46].
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Chapter 4 

Essentially Non-Oscillatory 
Schemes

In this chapter we develop the notion of essentially non- oscillatory (ENO) shock- 

capturing schemes. This large class of schemes is designed to approximate weak 

solutions of hyperbolic systems of conservation laws to an arbitrarily high-order

accuracy in smooth regions, as well as avoid a “Gibb’s-like” phenomenon near dis­

continuities. Though our goal is to develop these ENO schemes for application 

to multi-dimensional systems, we find it prudent to present the fundamental ideas 

first within a one-dimensional framework, before extending these notions to the 

approximation of functions of more than one spatial variable.

4.1 R eview  and Overview

We wish to design high-order accurate schemes for the numerical approximation of 

weak solutions of hyperbolic systems of conservation laws

+  /(u)x =  0 , (4.1a)

subject to given initial conditions

u ( z , 0 )  =  u ° ( z )  . ( 4 - lb )

The function u =  (u1,**2 , . . . , u m)T is a state vector and / ( u ) , the flux, is a 

vector-valued differentiable function of m components. We assume that the system
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(4.1a) is hyperbolic in the slightly weakened sense that the m  x m Jacobian matrix

A <“ > -  s

has m real eigenvalues

A^u) < A2 (u) < . . .  Am(u)

and a complete set of m linearly independent right eigenvectors {rfc(u)} and left 

eigenvectors {/*(u)}. Under suitable normalization, we assume that /V  =

We assume that the initial-value problem (4.1) is well-posed in the sense that 

the solution u depends continuously on the initial data, and that this solution is 

generically piecewise smooth, with at most a finite number of discontinuities.

As previously noted in Section 3.3, we wish to approximate weak solutions of

(4.1) in the “finite-volume” sense. To this end, we note that on any rectangle 

(®»-i/2 j®»+i/2) x (t",tn+1) , a weak solution of (4.1) satisfies

u? +1 = a?
At"
Axi fi+l/2 ~ fi—1/2

where

^  =  ^  u (x ’ *n) d x ’ Ax,- Jxi_l/3

(4.2a)

(4.2b)

is the cell average of u at time t= tn on the *th interval, and
r<n+l 

) t n

1 f tn+1
/.+!/! = J /(«(*«■ !/!.<))*. (4.2c)

is the flux through the cell interface x = i j+iy2 . Desiring to approximate equation 

(4.2a), we write our numerical scheme in the conservation form

At
®?+ 1 = v? -  —  

Ax fi+l/2 ~ f i-1/2 (4.3a)

where C" approximates u" in (4.2b), and the numerical flux /,+j/ 2 is a Lipschitz 

continuous function of 2k variables

fi+l/2 = /(«,” *+!>• ••>*&*) > (4.3b)
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which is consistent with the flux /(u) in the sense

7 = f[w ). (4.3c)

Denote by Eh the numerical solution operator defined by the right-hand side of 

(4.3a), whose operation can be expressed

e? +1 =  (Eh Vn)i.  (4.4)

Also, recall that Eh is said to be rth-order accurate if its local truncation error 

satisfies

u? +1 -  ( E h * n ) i  = 0 (h '+l) (4.5)

for sufficiently smooth u, where At =  0(h).

We desire that the scheme (4.3) approximate (4.2) to high-order accuracy, while 

being capable of propagating discontinuities without producing spurious 0 (1 ) os­

cillations. The first step taken in this direction was due to the work of Van Leer 

[36], who proposed a second-order extension of Godunov’s scheme. Harten [16,17] 

later provided a rigorous mathematical foundation for the ideas presented in [36], 

and developed the class of T VD schemes (See Section 3.2.), which are required to 

satisfy inequality (3.10). We recall though, that such schemes are inherently limited 

to second-order accuracy in the L\ sense. Harten and Osher [25] later developed 

a class of non-oscillatory schemes which could achieve uniform second-order accu­

racy (See Section 3.2.), again an inherent limit. In order to enable the design of 

even higher-order accurate schemes, Harten et al. [26] introduced the notion of 

essentially non-oseillatory (ENO) schemes, which exclude 0(1) Gibbs-like oscilla­

tions, but do allow for the production of spurious oscillations on the level of the 

truncation error. These schemes satisfy, in the scalar case,

TV(Eh ») < TV(v) +  0(hr) . (4.6)

Within this framework of numerical schemes which are abstractly defined by (4.6), 

we will describe a high-order generalization of Godunov’s scheme.
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4.2 ENO Schemes o f Godunov Type

Let Ah denote the cell-averaging operator defined by the right-hand side of (4.2a). 

We respectively denote the sliding average <&(x) or a discrete value G?,- as

®(x) = (Afc w )(x) , or ©,• =  (A* tv),-. (4.7)

As previously noted in Section 3.3, at points of smoothness in w(x), we have 

the relationship

tv(x) =  tv(x) + 0(h2) ,

which immediately demonstrates a limit on the order of accuracy if we choose to 

deal with the solution only on the level of cell averages. Therefore, when /(u) is a 

nonlinear function of u, the high-order accurate approximation of /,+i/2  in (4.2b) 

will require pointwise information of the solution to a correspondingly high-order 

accuracy. We must be able to extract high-order accurate pointwise information 

from the given {»"}, which are approximations to {u”} , the cell averages (4.2b) 

of the exact solution. Furthermore, we wish to do so without introducing 0(1) 

spurious oscillations at points of discontinuity. To this end, we define the following 

reconstruction operator R.

Given {tv,-}, cell averages of a piecewise smooth function tv(x), denote by R(x] tv) 

a piecewise polynomial function in x of uniform degree r — 1  that satisfies :

(i) At all points x for which there is a neighborhood where w is smooth,

JE(x; tv) = tv(x) +  e(x) hr . (4.8a)

(ii) R is conservative in the sense that Ah is its left-hand inverse.

(Ah R (x ; u>) ),• = tv,-. (4.8b)

(iii) R is essentially non-oscillatory.

TV  ( R (-; tv)) < TV  ( tv) +  0 (k r) . (4.8c)
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Property (4.8c) represents the manner in which we define the statement that 

R{x\ &) is an essentially non-oscillatory approximation of w(x). Furthermore,, this 

implies that R  does not generate 0(1) spurious oscillations at points of discontinuity, 

and any oscillations which do occur must be of the order of the truncation error 

made by the approximation (4.8a). We have expressed the truncation error in 

(4.8a) as e(x)hr rather than simply 0(hr) because the error made by polynomial 

approximation can always be expressed in this form. For example, if the (r—l)-st 

degree polynomial approximating w(x) is a Taylor expansion about the point x0> 

then

for some £=£(x) between x  and x0.

Using the reconstruction (4.8) and the averaging operator (4.7), we can express 

the higher-order Godunov-type scheme (3.18) by

vn+1 = Eh vn = A h E{At) R {-; Cn) , (4.9)

where E(t) is the exact evolution operator. These schemes (4.9) are a generalization 

of Godunov’s scheme in the sense that when R represents the piecewise constant 

reconstruction

R(x;Vn) =  v? , z ,-_  1 / 2  <  x < xi + 1 / 2 ,

then (4.9) is identical to Godunov’s scheme. If R represents the piecewise linear 

reconstruction

R(x; ®n) =  C" + s{(x -  x{) , xt--i/2  < x  < zt-+i/2 ,

such that

S< = ’

then (4.9) is the abstract form of the second-order accurate extension to Godunov’s 

scheme introduced by Van Leer [36].
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In the next section, we will review a particular reconstruction algorithm which 

satisfies (4.8). It is shown in [26] that the incorporation of any such R into the 

abstract Godunov-type scheme (4.9) will result in a scheme that is consistent with 

the conservation law, rth-order accurate, and essentially non-oscillatory, the second 

of which we now demonstrate.

For this purpose, we examine the local truncation error of the scheme, and show 

that it satisfies (4.5). For this purpose, we consider a single application of the 

process (3.18), beginning with exact initial data by setting {©"} =  {u"}. Starting 

with the reconstruction step (3.18a), it follows from (4.8a) that

Vh(x,tn) = u(x,tn) + e(x) hr . (4.10a)

For the solution-in-the-small step (4.13b), we use the exact solution operator E(t). 

This fact and our assumption of the well-posedness of the IVP (4.1) imply that

Vh(x,t) = u(x,t) +  6 (s) hr , tn < t  < tn+1, (4.10b)

where b(x) = 0(e(x) ) . Since /(u) is a differentiable function of u, it is therefore 

Lipschitz-continuous in u, and we have

/ ( Vh{x,t) ) = f(u (x ,t) ) +  d(x) hr , tn < t  < tn+ 1 , (4.10c)

where d(x) =  Q(b(x)) =  0(e(x)). Substituting (4.10c) for the integrand of the 

numerical flux (4.10b), we have, for tn < t  < tn+1 ,

1 /•‘n+I
Ji+i/2 = [ / ( “ (*«•+1/2 )0 ) + d(x,+i/2) hr ] dt

= fi+i/2 + d(x,+i/2) hr , (4.10d)

i.e. we have approximated the exact flux (4.2) to 0(hr). If we now put the result in 

(4.10d) into the conservative form of our scheme (4.3a) along with the exact initial
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data, we get

®"+1 = C" -  ^  { h+1/2 -  fi—1/2 +  [ d(xi+x/i) -  d(x,_l/2) ] hT } ,

and thus, we see that our local truncation error, in the sense of cell averages is

At
Ax d(xi+i/2) -  d(x,-_i/2) ] hr . (4.10e)

Recalling that we always assume that At = 0 (A x ) , the truncation error in (4.10e) 

is 0(hr+1) whenever d[x) is Lipschitz continuous, in which case the scheme (4.9) 

satisfies (4.5) and is therefore rth-order accurate, as desired.

Since d(x) = 0(e(x)), it is clear that non-smoothness in d(x) in (4.10e) can only 

result from non-smoothness in the error coefficient e(x) in (4.10a). We emphasize 

here that we have defined an rth-order accurate scheme in terms of one application, 

using exact initial data. Within this context, let u(x,t) be a smooth solution of

(4.1) and let us suppose that as h —► 0, At =  0 (h ) , the numerical approximation 

converges pointwise to u(x,t). If e(x) is globally Lipschitz continuous, then the 

local truncation error in the sense of cell averages is 0(hr+l) . When e(x) fails to 

be Lipschitz continuous at a point, the local truncation error (4.18f) is only 0(h r) . 

But, assuming that e(x) is globally Lipschitz continuous, then the local truncation 

error is given by (4.10e). At the end of N  time steps, where N  — t/A t — 0 ( l /h ) , 

we assume the cumulative error to be 0(h r) , i.e.

= u? + 0 (k r) ,  (4.11a)

in which case we see from (4.10a) that

Vh(x,tN) = R(x;Vu ) = u(x,tN) + 0(hr) . (4.11b)

Therefore, at the end of a given computation, we have two sets of output data at our 

disposal : discrete values { if}  that approximate { t f } to 0(hr) , and a piecewise 

polynomial function of x, R(x\ vN) , that approximates u(x,tN) to 0(hr) .
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4.3 ENO  Reconstruction

From the work of the previous section, we see that, in the abstract form (4.9), 

the design of high-order accurate Godunov-type schemes boils down to a problem 

on the level of approximation of functions. In this section, we review the scalar 

reconstruction ideas presented in [26]. We then describe a particular reconstruction 

operator R which we will presently employ and then extend to two dimensions

in Chapter 5. For this purpose, we introduce Qn{x ; w) , an nth-degree piecewise

polynomial function of z that interpolates w at the points {z,}, i.e.

Qn{xi; w) = w(zj) , (4.12a)

Qn(x;w) = qn,i(z;w ) , z,- < z < zi+1, (4.12b)

where qn,i is a polynomial in z of degree n.

We take each qn,i to be the (unique) nth-degree polynomial that interpolates 

w(z) at n + 1  successive points {z,} which include z,- and z,-+i. Denoting by j(i) 

the left-most index in this “stencil” of n + 1  points, we write

qn,i{xi ;w) = wixi) > i  = i(0>• • • f i(0  +  n ; (4.i3a)

1 -  n < j{i) -  * < 0 . (4.13b)

Clearly, there are exactly n such polynomials corresponding to the n possible choices 

of j(t) subject to the condition (4.13b). This freedom will be used to assign to 

(z,-, z,+i) a stencil of n+1 points satisfying (4.13). We will make this choice subject 

to the condition that w(z) be “smoothest” on the chosen stencil in some asymptotic 

sense.

Though the smoothness of a given function w(z) is ordinarily determined anar 

lytically in the sense of derivatives of w, this information is, in general, not available 

for a numerical solution, where only discrete values are known. However, informa­

tion relevant to smoothness can be extracted from a table of divided differences of
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w. Employing the standard notation, the kth divided difference of w can be defined 

recursively by

w[xj] =  w(xj) ; (4.14a)

w[xi t . . . , xj+k] =  -"f e+i *— • • •»*'+*-*! . (4 .1 4 b)
xi+k -  x:

It is well known that if w has k continuous derivatives on x, < x <  Xj+k then

1 dk
io[*y,. . . ,  xj+k] = — ^  «/(£) , X j < C <  Xj + k  . (4.14c)

Furthermore, if w has a jump discontinuity in the pth derivative in this interval, 

where 0  < p < k ,  then

w[xh . . . ,  xj+k] = 0[hp~k [tffW]) , (4.14d)

where [t//p)] denotes the jump in the pth derivative. Relationships (4.14c-d) suggest 

that

| u > [ * y , . . . , f l S j + f c ] |  ,

the magnitude of a kth divided difference, provides an asymptotic measure of the 

smoothness of w in (xj, Xj+k) , in the following sense. Suppose that w is smooth in 

the interval (xo, xk) but is discontinuous in [x\,xk+i). Then for h sufficiently small, 

we expect

|tt>[3b,...,Z*l| < | «>[*!,..., ®*+!] | ,

and hence these divided differences can serve as a tool to compare the relative 

smoothness of w in various stencils. Therefore, we assign a stencil of n+ 1  points for 

each qn,i in (4.13) by determining that interval in which w has the "smallest divided 

differences.”

Since we always assume any stencil we choose to be contiguous, we assign a 

particular stencil by determining its left-most index j(i). The simplest algorithm
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for determining the smoothest stencil is by the smallest magnitude of the highest 

order divided difference on all stencils subject to (4.13b), i.e. choose j (*) so that

| w[xm , . . . ,  zi(i)+„] | =  ,_n+min < . { | tufa , . . . ,  xj+n] \ } . (4.15)

Clearly, (4.15) selects the “smoothest” stencil, provided that h is sufficiently small. 

However, in order to make a sensible selection of stencil in the “pre-asymptotic” 

range, we prefer to use the following hierarchical algorithm.

Let y*(t) denote the left-most index of a chosen “smoothest” (AH-l)-point stencil 

for the interval (r,-,x,+i ) . Denote this stencil

{ xh (*)> • • • > *«(»)+* k = 1,2, . . . ,  n . (4.16a)

Since any stencil must include {x,-,z,+i} , our recursive algorithm begins (A=l) by 

setting

Ji (0 =  *• (4.16b)

In order to choose jk+i[i) ,k =  1, . . . ,  n—1 , we consider as candidates the two stencils 

{ i»• • • > xik{')+k } or • • • > } > (4.16c)

which are obtained by adding a point to the left or right, respectively, of the previ­

ously determined stencil. We select the one in which w is relatively smoother, i.e. 

the one in which the (fc+l)-th order divided difference is smaller in magnitude

• f'\ _  f  3k[i) ~ 1 j if I • • • ’ I < I • • • > *cit(«)+*+1] I >
3k+i(i) -  |  j k 5 otherwise .

(4.16d)

Finally, we set j (i) = jn{t) .

Appealing to well-known results pertaining to Newton interpolation, we see 

that a fcth-degree interpolating polynomial 9 *,, (a:), k — 1 , . . . ,  n , corresponding to 

the stencil (4.16a) selected by the above recursive algorithm, satisfies the relation

9k.i(x) = Qk-i,i(x) +  "[*»(•)>• ■ •»xh(i)+k] I I  (x ~ xi)  • (4-17)
}=ik( 0
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This shows that the choice made in (4.16d) selects Qk,i{x) t°  be the one that deviates 

least from qk-i,i{x). It is this property (4.17) that makes the hierarchical algorithm 

(4.16) meaningful in the “pre-asymptotic” range.

Now, if we assume that tu(x) has only a finite number of discontinuities, then for 

h sufficiently small, there are n+ 1  points of smoothness between any two discontinu­

ities. Consequently, if (x,-,x,+i) is an interval in which tu(x) is smooth, then there 

is at least one choice of j (*) such that the values {w(xj)} will represent smooth 

interpolation data on {£;(,),..., x;(,)+n} , as in the example (n =  3) in Figure 6 a. 

Therefore, qn,i{x;w) in (4.12b) is a polynomial that interpolates data from an in­

terval in which w(x) is smooth, and from classical interpolation results each such 

polynomial satisfies

dk dk
Qn,i{X'iW) =  «>(x) +  0{hn~k+1) , Xi <X< xi+1 ,

for k =  0 , . . . ,  n . It immediately follows that, for h sufficiently small and wherever 

iy(x) is smooth,

- ^ Q n(x]w) = ^ w ( x )  + 0(hn~k+1) , k =  0 , . . . , n .  (4.18a)

Furthermore, it follows from (4.18a), with k = 0, that wherever w(x) is smooth,

TV  ( Qn{x; u;)) < TV  ( u;(x)) +  0{hn+l) . (4.18b)

As for an interval (xj,x<+i) in which w(x) has a discontinuity, it is heuristically 

argued in [18,19], that for h sufficiently small, although the local interpolating poly­

nomial may oscillate wildly outside the tth interval, it is nonetheless monotone within 

this interval, regardless of the choice of interpolation stencil (Figure 6 b). Though 

we can only justify that qn>i{x\w) approximates w(x) to 0 (1 ) in this interval, the 

local approximations in the adjoining intervals retain high-order accuracy, due to 

the adaptive stencil algorithm. Using the discrete function {tu(xy)} of the two pre­

vious illustrations, an ENO polynomial approximation to this function might look 

like Figure 6 c.
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ENO Interpolation

Example : n =  3, tu(x) smooth in (x,-, x,+i).

O  Oo

T T

^  X,- X j+ i

Figure 6 a. Algorithm (4.16) determines a smooth interpolation stencil 

to the left for q s , i ( x ; w )  in (x,-,x,+i).
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ENO Interpolation

Example : n =  4, w(x) discontinuous in (x,-, x,+i ) .

Xj- £|‘+1

Figure 6 b. q4it(x;u;) is oscillatory, but is monotone in (x,-,xl+i ) .
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ENO Interpolation

Figure 6 c. Qn{x ; w) is a piecewise polynomial which interpolates u> 

in an essentially non-oscillatory fashion
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We will now employ the above interpolation ideas to develop a particular scalar 

reconstruction operator which satisfies the desired properties (4.8). We are initially 

given a discrete set of cell averages {©,•} of a piecewise smooth function w

i rxt+i/i
= — I w{x) d x , (4.19)

hi *1—1/2

where hi =  xi+i/2 — 1 /2 • We define the primitive function W[x) associated with

w by

W(x) = f  w(£)d£.  (4.20)
Jzo

Seeking a relationship between pointwise values of W(x) and the discrete values

{©,} we see immediately from the definitions (4.19) and (4.20) that

hi Wi = W(xi+1/2) -  W{xi-1/2) , (4.21)

and we can therefore establish such a relationship at the cell interfaces:

w{xi+1/2) = Y ,  hk ^ k -  (4.22)
k=k0

Now, since the definition (4.20) clearly implies

w{x) = - ^ W ( x ) ,  (4.23)

if we approximate W (x), in the afore-mentioned manner, by an rth-degree piecewise 

polynomial Qr{x\W) which interpolates W at the values given by (4.22), we can 

then obtain an approximation of w(x) by defining our reconstruction operator

jR(*;©) = ± Q r{x ;W ).  (4.24)

Using the interpolation results (4.18) and the heuristic argument referenced in re­

lation with Figure 6 b, it follows from its definition (4.24) that R  satisfies (4.8) (See 

[26] for details.).
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It is ultimately the adaptive-stencil algorithm that enables this reconstruction 

(for sufficiently small h) to be high-order accurate in any interval where w(x) is 

smooth, even if that interval is near one in which w(x) is discontinuous. We also 

note that this procedure does not require uniformity of the mesh and that we shall 

extend this scalar reconstruction to vectors in Section 4.5. This procedure will 

be henceforth referred to as “reconstruction by primitive.” As an example, if the 

function {w(z,-)} of the previous examples was available to us in the form of cell 

averages, then the reconstruction-by-primitive procedure would yield a piecewise 

polynomial approximation resembling that of Figure 6 d. The discontinuities at 

interval interfaces are the result of the differentiation (4.24) and the adaptive in­

terpolation which produces the piecewise polynomial Qr{x ; W ). The use of these 

interface values in the solution-in-the-small step is described in the following sec­

tion.

Finally, we recall the remark in the previous section, concerning the possible 

discontinuity of the error coefficient e(x) in (4.8a). We now see that this can occur 

at points where there is a change in the stencil of the associated interpolation, due 

to the algorithm (4.16). Thus, when the stencil becomes a discontinuous function 

in z, the local truncation error of our scheme becomes 0(hr) at such points and 

therefore 0{hT~l) cumulatively. However, due to the ENO property of the scheme, 

we expect the number of such points to remain bounded as h —> 0. If indeed this 

is the case, then we expect the cumulative error of our scheme to be 0 (hr-1) in the 

Loo norm but to remain 0(hr) in the Li norm. The interested reader is referred to 

[18,19] for results of numerical experiments which test this reconstruction operator 

for both its accuracy as well as its non-oscillatory properties.
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Reconstruction by Primitive

Figure 6 d. R (x ; tu) is a piecewise polynomial approximation to tu(x) 

as produced by the reconstruction (4.24).
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4.4 Tim e Accuracy: Scalar Conservation Laws

To this point, we have considered the details of the design of high-order Godunov- 

type schemes in terms of spatial accuracy alone, due in large part to the fact that, in 

the abstract form (4.9), the scheme relies upon the exact evolution operator E(t) of 

the IVP (4.1). Before extending the scalar reconstruction procedure of the previous 

section to vector functions, we find it prudent at this time to consider the issue of 

time accuracy, and therefore do so on the level of solutions of scalar conservation 

laws.

After reconstructing the discrete set {«"} of cell averages of the numerical so­

lution at time tn to a desired order of pointwise accuracy, we are then required to 

solve exactly

vt + f{v)x = 0 , (4.25a)

with the piecewise polynomial initial data

u(x,tn) = R(x',vn) , (4.25b)

in the time strip (—oo, oo) x (tn,tn + A t), for At small. (We have dropped the ah” 

subscript for convenience.)

Due to the adaptive selection of stencil and subsequent differentiation that are 

required in the reconstruction procedure, the piecewise polynomial R ( x ; vn) can be 

discontinuous at the cell interfaces {£,-+1/2}. In a smooth region of the solution, 

the relative size of these jump discontinuities will be of the order of the local inter­

polation error, whereas in the vicinity of a discontinuity, the size of the jump will 

be 0(1). A global description of the solution v(x,t) of (4.25) can be quite com­

plicated. However, in the conservation form (4.3a), our scheme calls for the exact 

evaluation of the “numerical flux” (4.3c). Therefore all we need is v(x;+i/2 , t ) , the 

solution-in-the-small at each interface, in a small time interval.

Now, in the case r =  1 , where R (x ; U”) is the piecewise-constant distribution
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determined by the cell averages {©”} themselves, the abstract scheme (4.9) is iden­

tical to Godunov’s scheme. Hence, t/(x,+x/2 ,t) is determined by the the solution of 

the local Riemann problem at x =  x,-+x/2, i.e. we solve

(4.26)

on the rectangle (x,-,xl+1) x {tn,tn +  A t), for At small. As the Riemann problem 

is well-understood in the scalar case (e.g. [53]), the self-similar solution v(x,t) of

(4.26) can be determined exactly.

However, when R ( x ; Vn) is a piecewise polynomial function of higher degree we 

cannot, in general, express the solution of (4.25) in a simple closed form, though an 

inspection of its structure may prove insightful. We turn now to the “generalized 

Riemann problem,” which we define for our purposes as

»1 + / w . = o ,  («n

where t/,-(x,in) is the polynomial of degree r —1 determined by R(x;vn) in the 

interval x,_x/2 < x  < x,-+1/ 2 , with r > 2. Though a closed-form solution v(x,t) is 

generally not available for (4.27), its structure can be described, for At sufficiently 

small, as two sections of smoothness separated by a “wave” emerging from the 

discontinuity at x,-+x/2. The term “wave” is used loosely here to describe a shock, 

a rarefaction fan, or a contact discontinuity, depending on the nature of / .  Let 

v ,- (x ,t) , tn < t < tn+1, denote the section of smoothness of the solution of (4.27) 

that is determined by the initial polynomial data in (x ,_x/2,x ,+x/2) . The solution 

v(x,t) at x  = x,-+x/ 2 of (4.27) can then be described in terms of u < (x ,t ) , Vj+1( x , t ) , 

and the “wave” emanating from x = x l+1/2 at t = tn , depending on whether the 

“wave” remains to the left or right of x = x,+1/2, or whether the “wave” covers 

x =  x,+x/2 • (See [26] for details.) Due to the non-uniformity of the initial data, 

the solution of (4.27) will generally not possess the self-similarity features of the
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Riemann problem (4.26). The sections of smoothness are not necessarily constant, 

end the trajectory of the “wave” may not be a straight line. The,solution t/(x,+i/2 ,t) 

is therefore variable for tn < t  < tn+ A t , and without a method to determine exactly 

what this arbitrary variation may be, the “numerical flux” (4.3c), in general, cannot 

be determined in an exact closed form. Therefore, the actual implementation of 

our numerical scheme for second- and higher-order accurate results will require a 

discretization in time to a correspondingly high order of accuracy.

There are two main approaches to the issue of time discretization. One is the 

fully-discrete or Taylor-series approach, which relies on the knowledge that, al­

though an exact solution is not available for the generalized Riemann problem

(4.27), we can obtain a local Taylor expansion of the solution to any desired order 

of accuracy. (See [1,14].) However, this approach requires a local Taylor expan­

sion of u,(x, t) in (x,-i/2 ,Xj+i/2) x (<”,tn+1) . The purely spatial derivatives required 

for this expansion clearly come from the reconstruction R (x ; vn) . Any derivative 

involving time must come from a successively ordered differentiation of the PDE 

(4.25a), i.e.

vt = 

vxt = 

vtt = 

etc.

This approach to the time integration has the advantage that only one spar 

tial reconstruction step is required per update from time tn to to tn+1. However, 

application of this time discretization to systems of conservation laws can be quite 

complicated. One needs only to look at the algorithm (4.28) to see that if v and f(v) 

in (4.25a) are vectors, then / '  is a matrix, f"  is a tensor, and so on. This process 

becomes particularly excessive as multi-dimensional systems are then considered.
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Therefore, we choose another approach to the issue of time integration.

We now consider the semi-discrete or “method-of-lines” approach to our time 

discretization. For our purposes, this approach amounts to a technique for replacing 

(4.25a), a partial differential equation in the two variables x and t, with an ordinary 

differential equation in the variable t. The region of integration (—0 0 , 0 0 ) x (tn, tn+1) 

is divided into strips by lines t = constant, and the operation of the discrete operator 

in x is retained along each of these lines.

We note here that the numerical update scheme (4.3a) which we have studied 

to this point is a one-step forward Euler formula, in which the solution is updated 

from time tn directly to tn+1. However, due to our semi-discrete approach, this will 

no longer be the case. In fact, we will require a modification of the abstract form 

(4.9) of our Godunov-type scheme. Therefore, at this time, we develop the details 

which are pertinent to our particular method-of-lines application.

Again, we begin with the requirement that we solve exactly the IVP (4.25). 

Integrating the partial differential equation (4.25a) over the interval (*»•-1/2 , £1+1/2) > 

we see that the exact solution v(x,t) satisfies

d 1 r i
^  [/(»(®i+i/*,0) -  /(w(*i-i/*.*))J • (4.29a)

The notation e,(t) is used here to stress the fact that a cell average is now considered 

a continuous function in time. We now treat (4.29a) as an ordinary differential 

equation for the purpose of time discretization. Along any t =  constant line, the 

right-hand side of (4.29a) is strictly a spatial operation in the unknown v, and we 

rewrite this equation, for fixed t, in the abstract operator-product form

d— Vi = { £ v ) i . (4.29b)

Now, in order to evaluate £ v for a fixed t, we must know how the exact solution 

v(a:,i) varies in time. As previously discussed, this information is only available 

when the initial distribution (4.25b) is piecewise constant. Therefore, for the general
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higher-order case, let L  denote the ENO spatial operator which approximates Z to 

r th-order, i.e.

L v  = Z v  + 0{hr) ,  (4.29c)

wherever v is sufficiently smooth. The use of D as the operand of L signifies the 

dependence of L on the reconstruction operator R which acts upon given cell av­

erages of the approximate solution. We can then define the approximate forward 

Euler method for (4.29b) in abstract form by

w = T v  = D +  A t L v  . (4.29d)

Clearly, T  is a nonlinear spatial operator.

Ultimately, we desire a numerical update scheme

v?+1 = {S vn)i ,  (4.30a)

where the operator S  depends on T. We want this scheme to be an r th-order ap­

proximation of (4.29b), i.e. if v(x,t) is an exact solution of (4.29b), then

(Ah v(x,tn+1) )i -  (5®n),- = 0(hr+1) , (4.30b)

thereby requiring a correspondingly high order time discretization of (4.29d). Fur­

thermore, because we have effectively “separated” the spatial and temporal opera­

tors, it is also desirable that the action of the discrete time operator itself not induce 

any oscillatory behavior into the solution. In [51,50], two such classes of high-order 

time discretizations were developed, one a class of multi-level methods, the other 

of Runge-Kutta type. These time discretizations are required to be TVD, in the 

sense that

T V { S v ) < T V { T  € ) ,  (4.30c)

under suitable restrictions on A t .

Because single-step methods are self-starting and less storage intensive, we 

choose to employ the class of Runge-Kutta type time discretizations developed
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in [50]. To this end, we replace the abstract forward Euler operation (4.29d) with 

a general explicit Runge-Kutta method, which can be written

0(*) =  3 (0) + At  £  Ca ( L  v(i) j . > fc = 1 , 2 , . . . ,  p , (4.31a)
1=0

where

=  e” , =  ©” + 1 .* » > 1 1

It is well-known that (p+l)th-order accurate methods of the form (4.31a) exist for 

p < 3, nth-order methods for p=4,5,6, or (p—l)th-order methods for p= 7 ,8 . For 

details, see e.g. [8 ].

For the purpose of obtaining a condition which fulfills the requirement (4.30c),

it is shown in [50], that (4.31a) can be equivalently written

*!k) =  + & i At (Li>M)t ] ,  k = 1 ,2 ,.. . ,p  . (4.31b)
1=0

For the classical 4th-order Runge-Kutta methods, the constants c« in (4.31a) are all 

positive. However, in the form (4.31b), some of the f)u may well be negative, which 

would hinder the TVD analysis. Therefore, in order to obtain a TVD condition, 

whenever /?ju is negative, we replace L in (4.31b) with L,  which approximates £. in 

the “adjoint” equation
Q
-T̂ Vi = - ( £ « ) , ' ,  (4.32a)

and satisfies

to = T v  = v — A t L v ,  (4.32b)

and

L V = Z v +  0(hr) , (4.32c)

wherever t; is sufficiently smooth.

Now, if the forward Euler version (4.29d) is total-variation stable under the 

CFL-iike restriction

^  max \f'{v) | < K  ,
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then the scheme (4.31b) is TVD if

At

where

^  m ax|/'(v)| < CrK  , (4.33a)

= V  W \ ’ (4'33k)

and if £ in (4.31b) is replaced by L in (4.32) whenever /?« is negative. The coeffi­

cients au and flu are chosen such that (4.31b) is of the highest possible order and 

such that the stability criterion (4.33) is optimal. The quantity Cr will be referred 

to as the “CFL coefficient.” The interested reader is referred to [51,50] for details.

We repeat here the “optimal” Runge-Kutta schemes presented in [50], with their 

respective CFL coefficients, which we intend to employ throughout the remainder 

of this dissertation :

i) Second-order case : Cr =  1.0

©J1) = v|0) + A t ( L v {0))i (4.34a)

= |e !0) + + |At(Lv^^)j

ii) Third-order case : C, = 1 .0

©}1} = ©j0) +  A t(L u (0))f

®!2) = f uj0) + +  i  At ( L  C(1) ),• (4.34b)

t><3) = |®J0) +  §b|2) + |A  t { Lv ®) i

iii) Fourth-order case : Cr = 0.87

®,-1) = ®i0) +  §Af (L v{0)),-

©J2) =  §©(°) -  |A t { L  v(°) ),• + f + f At ( L  vW ),• (4.34c)

=  & ! 0) - S A * ( i ® (0)). +  & f  - « A t ( L * « ) , +  

i t f  + |  At ( L ),•

= i»{0) + 5 * f + |A f ( L  t,« ),• + |ujs) +  i  At ( L  t)(3) ),•
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We note that (4.34a) is equivalent to the classical Heun’s method or modified 

Euler method (See e.g. [&}.). For remarks on (4.34b), (4.34c), as well as other third, 

fourth, and fifth order methods, see [50]. Unlike the Taylor-series method, the ideas 

in the method-of-lines approach described by (4.29)-(4.32) can be extended in a 

straight-forward fashion to systems of conservation laws, as well as systems in more 

than one spatial dimension. (See Chapter 5.)

We now describe the actual form of our numerical scheme. The most natural 

high-order approximation to (4.29a) would be to replace the flux /(u (x ,+1/2 , t ) ) 

with f(R(xi+1/2 ; ©(*))), where the argument of /  involves the ENO reconstruction 

of the cell averages {©»(f)} at time t. However, since the piecewise polynomial 

determined by R can be discontinuous at the {z,+1/2} , we cannot rigorously define 

L v in terms of such a multiple-valued quantity. Instead, we a choose a form which 

takes a local discontinuity into account, i.e. we make the approximation

/ ( v(xi+1/2,t ) ) »  f R{R{xi+1/2 -  0 ;v(t)), R(xi+1/2 + 0; ©(*))] ,

where f R[ui, Ur] is the flux across x = 0  associated with the solution of the Riemann 

problem whose initial states are uj, and Ur. The notation q(x — 0),q(z+0) denotes 

the limiting values of q at x from the left and right, respectively. Thus, along each t = 

constant line, our first step is to apply the reconstruction operator R to the {©(i)}. 

We then “partially update” the solution to the next time line, using a numerical 

flux computation which involves the solution of the local Riemann problem whose 

initial values are determined by the “endpoint” values of R {x ; ©(t)) in each interval 

(® » -l/2 )  ^£+1/ 2 ) •

In fully-discrete form, we write our scheme as the Runge-Kutta method

©!fc) = [otti v f  + Pu At (L  ©(,) ),• ] , k = l ,2 , . . . ,p  , (4.35a)
1=0

©!0) = ©?, ©Jp) = ©r+1 , (4.35b)
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where

(L «<*>), = -  - J -  [ /£>„ -  ?<_% ] , (4.35c)

and

fi+1/2 =  /* ( R (xi+i/i -  0 ; ®W) . R (xi+i/2 + o ; ) . (4.35d)

Both of the time-stepping approaches discussed in this section have been tested 

in numerical experiments by other authors [2,25,26,50] to compute solutions of 

one-dimensional, scalar conservation laws in both the linear and non-linear cases. 

Promising results were obtained for cases of convex and non-convex fluxes, giving 

numerical validation of the order of accuracy in time-accurate updates of smooth 

solutions as well as confirming monotonic behavior in discontinuous solutions.

Furthermore, in addition to computing numerical fluxes via the exact Riemann 

flux f R{vL,VR), experiments were also conducted in [26] using the approximate 

“Roe flux” which, in the scalar case, is

f ROE(vL,vR) =  ^ [ / K )  +  / M - | o | ( t ; R - v L)] , (4.36a)

where
/ ( vl)) /  (v* ~ vl) , if vL ± vR., (4.36b)if vL = vR , v '

employing an appropriate “entropy fix” where necessary. These tests also met with 

encouraging results. Due to this previous thorough numerical investigation, we omit 

any one-dimensional scalar results from our discussion.

4.5 System s of Conservation Laws

In this section, we extend the scalar reconstruction procedure of Section 4.3 and 

the method-of-lines time discretization of Section 4.4 to solutions of systems of 

hyperbolic conservation laws. To this end, we now reconsider the IVP (4.1), which 

we write as

Ut + F(U)X = 0 , (4.37a)
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U(x, 0) =  U°(x) , (4.37b)

using upper case notation to emphasize the fact that (4.47a) represents a system 

of m equations. We denote the vector-valued solution U = (u^u2, . . .  ,um)r , and 

therefore F(U) is also a vector of m components. As always, we assume that 

the initial data U°(x) are such that the state vector U(x, t) is a piecewise smooth 

function of x with at most a finite number of discontinuities.

Clearly, a cell average of a vector U is simply a vector whose components are 

the cell averages of the scalar components of U,

Vi =  (A* U)i =  ( (Aft u1),-, (Aft u2),-, . . . ,  (Aft um)i ) r  .

We now wish to develop a spatial operator, denoted by R (x ; U) , which will re­

construct a set {Vi} of vector-valued cell averages to high-order pointwise accu­

racy. It would seem natural, purely from an approximation theory viewpoint, to 

reconstruct the set {Ui} by applying the scalar reconstruction R to each of the 

component sets { (Aft u, )l} . However, this approach is valid only if we disregard 

the time-dependence of U(x,t) which allows for discontinuities to collide with each 

other. In the scalar case, where only one characteristic family exists, a potential 

collision of discontinuities is not a problem. But when U(x,t) is a solution of a 

coupled system of equations, such a solution can admit the collision of discontinu­

ities of the same or of different families, as well as their collision with boundaries, 

e.g. solid walls. In the vicinity of such collisions, in the solution of more than one 

dependent variable, a component-wise reconstruction may develop spurious oscilla­

tions during this brief encounter which do not dissipate as the discontinuities then 

distance themselves from one another. Numerical experiments to demonstrate this 

potential problem can be found in [26]. In the following, we describe an algorithm 

to reconstruct the vector-valued solution U(x,t) from its cell averages {£?/*} which 

avoids this difficulty.
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We begin by considering the constant coefficient case of (4.37), i.e. F(U) =  A U , 

where A is a constant m X m matrix;

Ut + AUx = 0 ,  (4.38a)

U(x, 0) =  U°{x) . (4.38b)

We note that the eigenvalues {A*} are constant as are the right eigenvectors {r*} 

and the left eigenvectors {/*}. We assume that these eigenvectors are suitably 

normalized so that

I'’ • H =  6ij . (4.39a)

If we define the kth characteristic variable to* by the dot product

wk = lk - U , k = 1,2,.. , ,m  , (4.39b)

then it follows from (4.39a) that

U = j r , w krk . (4.39c)
*=i

Multiplying (4.38) from the left by /*, we see that wk(x,t) satisfies the scalar 

IVP

(to*)t + A* (to*)* =  0 , (4.40a)

to*(x,0) = lk -U°(x) = wk(x) , (4.40b)

the solution to which is

wk{x,t) = to*(x-A*t) . (4.40c)

Performing the procedure (4.40) for k = 1,2 ,. . . ,  m , and using (4.39c) and (4.40c), 

we can express the solution U{x,t) of the IVP (4.38) as

m
U(x,t) = wk(x -  Xkt) r* . (4.40d)

*=i

It is easy to show that solving the IVP (4.38) “directly” in terms of U can 

lead to collisions of discontinuities in different characteristic fields. ( An illustrative
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example is given in [26]. ) However, if we work with the characteristic variables 

{to*}, the coupled system of equations (4.38a) becomes a set of uncoupled equations 

of the form (4.40a). Therefore, any discontinuity in wk(x,t) cannot interact with a 

discontinuity in wJ(x, t) , when j  ^  k .  Furthermore, for a fixed k, all discontinuities 

in wk(x,t) propagate with same speed A*, and therefore cannot collide. Thus, 

in this constant-coefficient case (4.38), it makes sense to use these characteristic 

variables in the reconstruction procedure, rather than U itself. To this end, define 

the cell averages of the characteristic variables by

tu* = lk . t) , (4.41a)

and then use the scalar reconstruction of these variables R[x ; wk) and the relation 

(4.39c) to define the vector reconstruction procedure

R (x ; U) = R(x 5 ®*)r* • (4.41b)
i = l

We now wish to generalize the reconstruction procedure (4.41) to the nonlinear 

system case. In the nonlinear case of (4.38a), the matrix A(U) is now a function 

of U, as are the eigenvalues (Afc(Z7)} and the eigenvectors {rk(U)}, {/*([/)} associ­

ated with A(Z7). Our extension will require the use of locally defined characteristic 

variables, in the following manner. In order to reconstruct U(x,t) in the inter­

val (x,_i/2 , Xi+1/2) , we first derive a set of local characteristic variables {©/(O’*)} 

by computing dot products of lk(U%) with the cell averages {£/}} associated with 

intervals in the im m edia te  vicinity of (£,-1/ 2 , £1+1/2)»

®i (^») = **(^«)' » for 3' = + q , (4.42a)

where q is the degree of the reconstruction polynomial. We then apply the scalar 

reconstruction operator R to this set {©*(£?,•)} of 2q+l variables in which the left 

eigenvector has been locally “frozen35 at the tth cell location. Our vector reconstruc­

tion procedure then becomes
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R (x;fr) =  £  R i x r f i U i ) ) ^ ) . 
k = l

(4.42b)

We turn now to our time discretization procedure. Having applied the vector 

reconstruction procedure (4.42) to the discrete set {Vy*} of approximations of the 

cell averages {&?} of the solution of (4.37) at time tn, the abstract form of our 

scheme then requires that we solve exactly

Vt + F{V)x =  0 , (4.43a)

V(x, tn) =  R (*;P") , (4 .4 3 b)

where (4.43a) represents a system of m equations.

The extension of our previous method-of-lines approach to systems of conservar 

tion laws is straight-forward. Analogous to the scalar case, we rewrite the system 

of partial differential equations (4.37a) in its semi-discrete formulation

I ’M  “  -  Axi
f (  V (x ,„ /„  t ) ) -  F( Vr(zj_1/2 , ()) 1 , (4.44)

and then treat (4.44) as a system of ordinary differential equations for the purpose 

of time discretization. This is accomplished by applying the Runge-Kutta scheme 

(4.35) to each of the m equations in (4.44). In vector form, we write our scheme

k- 1

El
1=0

where

and

V}k) = E l o u f ^  + f t iA i f Lp M) , ] ,  fc =  1,2,. . .  ,p , (4.45a)

t?(°) _  ’pn  ̂ y(p) — ^

(!?<*>)( = -  ^ pft) _  pW 
*i+1/2 *—1/2

= -f*! -  0  i ? m ) . + 0 ; ?<*») 1 ,

(4.45b)

(4.45c)

(4.45d)
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where FR[VL,VR] denotes the vector version of the “Riemann flux” defined in the 

previous section. Thus, the Runge-Kutta method (4.45a) is simply an application 

of the scalar method (4.35a) to each of the m components of the {t^n} . This simple 

extension is accomplished due to the previously mentioned "separation” of spatial 

and temporal operations.

We note, however, that the “Riemann flux” (4.45d) is not simply a component­

wise extension of (4.35d). In fact, it is the solution at x = xl+ 1 / 2 of the Riemann 

problem determining (4.45d) which ultimately takes into account the coupling of 

the system (4.44). We recall from Section 2.4 that, in the case of a hyperbolic 

system, the solution of the Riemann problem

V. + F(V ). =  0 , V(*,0 ) = { * > o ,  <4'46>

consists of m+1 constant states separated by m “waves.” (The term “wave” is used 

here in the same loose sense as in the previous section.) As in the scalar case, the 

Riemann problem for systems is well understood. However, in light of the fact that 

a local solution is required only at a cell interface x,+j/2, we see that much of the fine 

detail of this solution, which can be costly to compute, is ignored in the ultimate 

numerical flux computation (4.45d). Therefore, it makes sense to approximate the 

local solution of (4.46) through the use of an approximate “solver.” We see that 

the “locally-linearized” method of vector reconstruction (4.42) presented in this 

section is ideally suited to the Roe’s approximate Riemann solver derived in Section 

3.4. Our local approximation is achieved by a local linearization with respect to a 

particular average

t  = V(VL,VR) ,  (4.47a)

i.e. we replace (4.46) by

V, +  AV, = 0 , K(z,0) = { yLR\ I t l  (4.47b)
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where A = A(V'), the Jacobian matrix associated with (4.46) evaluated at V . 

Following the design of Roe [45], we take this matrix A.{VL,VR) to satisfy (3.26). As 

shown in Section 3.4, the flux at x=0  of the solution of (4.47b) can be expressed

F roe(Vl,Vr ) =  i  f F(Vl ) +  F(V «) 1 -  i  f )  S* |S»| f * , (4.48a)
1 J  1 k = l

where

6k = i k -{VR - V L) ,  (4.48b)

and the eigenvalues {Afc} and eigenvectors {/*}, {f*} are evaluated with respect to 

A . We recall from its derivation in Section 3.4 that the use of (4.48) can make it 

possible for the numerical scheme (4.45) to perfectly resolve a stationary disconti­

nuity. However, because it does not allow for the finite spread of a rarefaction fan, 

Froe can admit a stationary “rarefaction shock” as a weak solution. Therefore, 

strictly speaking, (4.48) requires a modification in order to ensure that computed 

solutions are indeed entropy solutions. Most of these modifications , or “entropy 

fixes,” to be found in the literature are based on the scalar problem. For some 

examples and their derivations, the interested reader is referred to [16,17,22].

Now that we have developed the high-order accurate ENO schemes for one­

dimensional nonlinear systems, a numerical application would be in order. We take 

this route because ENO schemes are highly nonlinear and consequently do not easily 

lend themselves to rigorous analysis. Under such circumstances, computer experi­

ments have become our main tool of “analysis.” With these experiments we hope 

to address some of the open questions which as yet are not fully answered by purely 

mathematical methods. These topics include the accumulation of error, the ade­

quacy of the “solution-in-the-small” procedure, consistency with entropy inequal­

ities, and the characteristic reconstruction method (4.42). In the following section, 

we perform two numerical experiments with solutions of the one-dimensional Euler 

equations of gas dynamics, in order to make at least some qualitative judgement as
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to the effectiveness of the scheme (4.45).

4.6 Euler Equations o f Gas Dynam ics

In this section, we describe the application of the scheme (4.45) to the Euler equa­

tions of gas dynamics, which we write in conservation form

Ut +  F(U)X = 0 ,

where
p pu

u  = pu F(U) = pu2 + P
pE . ( pE  + P)u  .

(4.49a)

(4.49b)

Here p , u , P , and E  are the density, velocity, pressure, and total specific energy, 

respectively. We close the system (4.49a-b) of three equations with the poly tropic 

equation of state :

P = , (4.49c)

where 7  is the ratio of specific heats.

The eigenvalues of the Jacobian matrix A(I7) = dF/dU  are

A1(f/) =  u -  c , A2(U) =  u , A3(U) =  u +  c , 

where c is the local speed of sound and, in this case, is given by

(4.50a)

c = (4.50b)

The corresponding right eigenvectors associated with A are

1 1 1

r1̂ )  = u — c 
H — uc

. r2(U) =

1
N

3 
*»H|M

1

, r*(17) = u +  c 
H  + uc

, (4.50c)

where H is the total enthalpy and satisfies

E + P H  = — —  =
2 2 C* U*

7 - 1  + ¥ (4.50d)
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The left eigenvectors {/*(!/)}, corresponding to the (rfc(C7)} in (4.50b), are

1 [ ( 7 - l ) t * 2 u ( 1 - 7 ) 1 1  _  1 ( 7 - 1 ) '
2  2  c2 c * c2 c ’ c2

(4.50e)

and satisfy the orthonormal relationship

V{U) • rk(U) = |

We now have all the information necessary to apply the scheme (4.45). Given 

a set {f^*} of approximate cell averages of the solution to (4.49) at time tn , we 

use (4.50e) to evaluate the local subsets of characteristic variables, to which we 

apply the vector reconstruction procedure (4.42). Then, in order to apply the fcth 

stage of the Runge-Kutta method (4.45a), our scheme ultimately boils down to the 

calculation of the numerical flux

Fi+1/2( ) = F*[ R(x , + 1 /2  -  0 ; P « ) , R(x,+i/2  + 0 ; P « )  ] , (4.51)

the flux across x=x,+1/2 associated with the solution of the local Riemann problem,

computation is performed for k = 1 , 2 , . . .  ,p, depending upon the desired order of 

accuracy of the Runge-Kutta scheme (4.45a).

Now, the flux computation (4.51) requires that each local Riemann problem be 

solved exactly. The solution to the Riemann problem for the one-dimensional Euler 

equations consists of at most four constant states separted by three centered waves,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

whose initial data are the limiting values at an interface from the left and right 

of the piecewise polynomial R(s;V^*)). This reconstruction and subsequent flux
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these waves being of the three types discussed in Section 2.3. If all three types of 

waves are present in the solution, then the inner wave must be a contact disconti­

nuity (See e.g. [37].). This solution is well understood and can be computed by an 

iterative algorithm. We note, however, that this algorithm is rather complicated 

and we refer the interested reader to [3,13,55] for its details. We choose, instead, 

to approximate (4.51) with the “Roe flux” (4.48). In order to accomplish this ap­

proximation with initial states Vl ,V r  for a local Riemann problem, we require a 

particular average ^(Vt, Vr) for the Euler equations of gas dynamics (See [47,45].). 

Specifically, the quantities (4.50) must be evaluated with respect to this average.
  A
Therefore, the only “Roe-average” values we need are u , c, and H , and are given 

by
& =  y/PL UL +  y/PR UR

'/Pl + '/Pr

& & + & Z *  (4.52)
V^£ +  VPr

It is shown in [48] that (4.52) represents the only average quantities for the Euler 

equations that satisfy (3.26).

We now describe two numerical experiments, both of which are themselves Rie­

mann problems. Solutions “in the large” of particular Riemann problems are of 

physical significance in that they model the flow of a gas in a shock tube, pictorially 

described in Figure 7. A shock tube experiment is initialized in a cylindrical tube 

in which a diaphragm, perpendicular to the cylinder’s axis, separates the gas into 

two different thermodynamic states (Figure 7a). Neglecting viscous effects near the 

cylinder walls, the ensuing motion of the gas, upon removal of the diaphragm, is 

one-dimensional. Therefore, the self-similar solution of the Riemann IVP (Figure 

7b) determined by the two initial states is a good model of this phenomenon. The
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Shock Tube

Figure 7c. Ensuing wave motion for t > 0.

Figure 7b. Solution of the Riemann IVP for the Euler equations

Figure 7a. Initial conditions
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physical orientation of both of our test problems will be as pictured in Figure 7c, 

with a shock moving to the right, followed by a contact discontinuity (dashed line), 

and a left-traveling expansion wave. The gas we model in both experiments is air, 

using the polytropic equation of state (4.49c) and 7  = 1.4.

We will apply the scheme (4.45), modified by the “Roe flux” (4.48), using the 

averages (4.52). No entropy correction is used for (4.48) due to the fact that the 

sonic point within the expansion waves in either of the test cases is not stationary. 

The solution’s spatial order of accuracy is achieved by the reconstruction (4.42), 

and for time accuracy we use the Runge-Kutta methods in (4.34).

Our first example, attributed to Sod [55], has become a standard test case in 

the literature. The initial conditions U l  , U r  can be stated in terms of the density, 

velocity, and pressure,

Pl  ' 1  ' PR ‘ 0.125 ‘
= 0 1 U r = 0

.  P L . 1 . P* . 0 . 1 0

We solve this IVP discretely on 0 < x  < 1, with 100 cells of uniform width. At 

t =  0, the “diaphragm” is positioned at x =  1/2, and the Euler equations (4.49) 

cire solved subject to the initial data (4.53) for 50 time steps with a CFL number 

of 0 . 8  .

Test runs were performed for orders of accuracy r =  1,2,3 and 4, with satisfac­

tory results. However, because viewing becomes impractical for four sets of data 

for each solution, we instead compare results for r =  2 and r = 4. In Figures 8 a-f, 

these comparisons are presented with solution plots for density, pressure, and ve­

locity. The numerical solution, depicted by circles, represents cell-centered output, 

while the continuous line represents the exact solution. Overall crisper resolution 

of discontinuities is observed in the fourth-order solution, with no visible sign of 

oscillatory behavior. In addition, “tighter” resolution of the smooth interior of the 

expansion fan is noticed near the wave’s head and foot, where the first derivative is
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Sod’s Problem

1.0
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Figure 8 a. Density ( 2nd-Order ENO )

1.0.2 ,4 .6 .80

Figure 8 b. Density ( 4th-Order ENO )
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Sod’s Problem

P

Figure 8 c. Pressure ( 2nd-0rder ENO )

1.0

P

0 2 .6 1.0,4 .8

Figure 8 d. Pressure ( 4th-Order ENO )
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Sod’s Problem

u
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Figure 8 e. Velocity ( 2nd-0rder ENO )

Figure 8 f. Velocity ( 4th-Order ENO )
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discontinuous.

Our second Riemann problem, first presented by Lax [29], is given by the initial 

data

Pl  ' ' 0.445 ' PR

1

O Cn

= 0.698 > = 0

. Pl . 3.528 . Pr . 0.571

Once again, the spatial domain is 0 < x < 1, with 100 cells of uniform width, and 

the “diaphragm” initially positioned at x =  1/2. We apply our numerical scheme 

for 75 time steps with a CFL number of 0.8 . Second- and fourth-order results are 

displayed in Figures 9a-f. Because of the initial velocity in this problem, this case 

differs from Sod’s problem, in that the density profile is no longer monotonic, and 

therefore has an intermediate state which has to be “built up,” causing a very steep 

contact discontinuity to form. Once again, there is a noticeable* difference between 

the second- and fourth-order cases, analogous to the previous example.
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Lax’s Problem
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Figure 9a. Density ( 2 nd-Order ENO )
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Figure 9b. Density ( 4th-Order ENO )
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Lax’s Problem
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Figure 9c. Pressure ( 2 nd-Order ENO )
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Figure 9d. Pressure ( 4th-Order ENO )
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Lax’s Problem
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Figure 9e. Velocity ( 2nd-0rder ENO )

Figure 9f. Velocity ( 4th-Order ENO )
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Chapter 5 

Two-Dim ensional ENO Schemes

Having thoroughly reviewed ENO schemes as applied to conservation laws in one 

spatial dimension, we are now prepared to discuss the central topic of this disserts 

tion, namely the extension of these schemes to multiple dimensions. In particular, 

we will extend the ideas presented in Chapter 4 to two-dimensional conservation 

laws. Within the context of a finite-volume formulation, this extension represents 

the present author’s contribution, for which purpose this dissertation is intended.

5.1 Formulation in Tw o Dim ensions

We wish to extend the ideas presented in Chapter 4 to the design of high-order 

accurate ENO schemes for the numerical approximation of weak solutions of a two- 

dimensional system of conservation laws

«t + f{u)z + ff(u)v = 0 > (5.1a)

subject to given initial conditions

«(*>!/> 0) = u°(x,y) . (5.1b)

We will first formulate our extension in terms of the initial-value problem (5.1) and 

consider the boundary-value problem later.

The function u =  (u1, u2, . . . ,  um)T is a state vector and the fluxes /  (u) and g(u) 

are vector-valued differentiable functions of m components. We assume that the
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system (5.1a) is hyptrbolie in the sense that the m x m  Jacobian matrices

A<u) = = t ;

are such that any linear combination of A and B has m real eigenvalues {A*(u)} and 

a complete set of m right eigenvectors {r*(u)} and left eigenvectors {/*(«)}, which 

we assume to satisfy the orthonormal relation /’ • rJ = .

We assume that the initial-value problem (5.1) is well-posed and that its solution 

is piecewise smooth, with at most a finite number of discontinuities. As in the one­

dimensional case, we seek weak solutions of (5.1). Again appealing to the theory 

of weak solutions (Chapter 2), we require that u obey the integral form of (5.1a), 

where the limits of integration can reflect any smoothly bounded domain in the x—y 

plane and any time interval (f1, t2) . To this end, let

Xi-1/2 < X <  Xi+1/2 , yj-1/2 < y < yj+1 / 2 , -oo  < i , j  < oo ,

denote a rectangular partition of the x —y plane, with (X{,yj) denoting the centroid 

of each rectangle. With a semi-discrete formulation in mind, we note that, for every 

rectangle (s.-i/2 > ̂ 1+1/2) * (j/y—1/2 5 yj+1/2) , a weak solution of (5.1a) must satisfy

d  1 f .
— (i) = -  —  + ft,;+l/2 (*) -  9 i , } - l / 2 ( t ) , (5.2a)

=  — f  +/ / ,+ / u{x,y,t)dxdy (5.2b)
fl-ii *X.’ 1/0 *!/.• 1/9

where dij is the area of the rectangle and

1 /’*.■+ i/a rvj+1/2

a i j  i /a  • ' V j - i /2

is the cell average of u over the control volume at time t. The fluxes f  and g are 

given by

/.•+i/2 ,jW =  f  3+1,3 /(«(®i+i/2 , y, t ))dy  ; (5.2c)
V j—l / 2

fZi+\/2
9i,j+i/2{t) =  / g{u{x,yj+1/2, t ) )d x  . (5.2d)
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We now treat (5.2a) as a system of ordinary differential equations for the purpose 

of time discretization, using a “method-of-lines” approach. Along any t = constant 

line, the right-hand side of (5.2a) is strictly a spatial operation in the unknown u, 

and we rewrite this equation, for fixed t, in the abstract operator-product form

JjM O  =  ( u(*) )*•; > (5-3)

thus effectively “separating” the spatial and temporal operations for computing 

solutions of (5.1).

Clearly, our two-dimensional extension of a finite-volume, semi-discrete formu­

lation has been straight forward. So, too, is the temporal discretization of (5.3), 

as we will employ the high-order Runge-Kutta methods discussed in Section 4.4 in 

order to achieve our desired accuracy in time. However, the high-order discretize 

tion of the right-hand side of (5.3) requires some special consideration when using 

a finite-volume approach, as will be explained in the following two sections. The 

use of the formulation (5.2a), rather than the finite-difference approach of [50,52], 

makes for a more immediate application of its numerical approximation to the so­

lutions of boundary-value problems involving solid walls or non-trivial geometries.

5.2 T w o-D im ensional Design

We now proceed to abstractly design a two-dimensional, finite-volume ENO scheme 

which retains the basic properties of the one-dimensional scheme in Chapter 4. 

Given {u*}, cell averages of a piecewise smooth solution u(x,y,t") of (5.1), we 

desire a high-order accurate numerical solution operator Eh which will update these 

averages to time tn+1 =  tn + A t .  Specifically, we require that Eh be rth-order 

accurate in the sense of local truncation error, i.e.

Eh -  an + 1  = 0(hr+1) (5.4)
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wherever u is sufficiently smooth, with Az, A y, and At all assumed to be 0(h) . 

Furthermore, we desire that our numerical update scheme avoid the development 

of spurious 0(1) oscillations near discontinuities in u. In order to achieve this 

property we require our operator to be essentially non-oscillatory, whose definition 

is relegated to the one-dimensional scalar case,

TV (E h U) =  TV(  u) +  0(hr) , (5.5)

where TV  represents total variation in z.

Employing the formulation (5.3) for the numerical update of the {u1} , we dis­

cretize the temporal operation by using a Runge-Kutta method of the type de­

scribed in Section 4.4, the extension to two dimensions being straight forward :

i-i
£
m= 0

fi(°) = g?., fi(?) =  §?.+1  .*j ’ ij tj

As in the one-dimensional case, the order of accuracy achieved by this time dis­

cretization, as well as its TVD property, is determined by the values of the integer 

p and the coefficients a and /?, and are given by (4.34) for r =  1,2,3, and 4.

Now, if we assume that the scheme (5.6) achieves our desired r th-order accuracy 

in time, then clearly, this scheme satisfies (5.4) if we can evaluate (£  u(t) )i}-, the 

exact spatial operation on the right-hand side of (5.2a). However, the calculation 

of the fluxes (5.2c-d) needed for this evaluation requires that we know the solution 

u(z,y,f), pointwise, at a given time t, whereas the information we have at any time 

t is that of the cell averages (5.2b). Analogous to the one-dimensional case, since

M O  = +  ° i h2) »

wherever u is smooth, there is an inherent limit on the order of accuracy if we use the 

cell averages themselves in the flux calculation. Therefore, we replace the operator
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C  with a discrete spatial operator L  which acts upon the {&(£)} and approximates 

the pointwise operation of C  to high order. To this end, we see that if

if i( t)  = £«(*) + 0(hr) ,  (5.7a)

wherever u is smooth, then, upon replacement of C  in (5.6), the local truncation 

error of our fully discrete scheme will satisfy (5.4), as required.

We define L  explicitly by

7 t+ l/2 ,;(0  -  7«—1 / 2 ( 0  +  ft,i+ l/2 (* ) -  f t , ,--1/2(0 , (5.7b)

where /  and 5  are to be designed as high-order numerical approximations to f  and 

g in (5.2c-d). We require that the numerical flux functions f , g

7 i + 1/ 2,,‘( 0  =  7 (® «-*+ l,,‘-» n + l(0 > - • * > ®»'+*.J+»n(0) > ^ m  — r  >
(5.7c)

f t , , -+1/ 2(0  =  y (® t-J+ l,,-n + l(0 > *  * • »®»'+l,J+»(0) >

be Lipschitz continuous functions of their arguments and consistent with the true 

fluxes f (u ) , g(u) in the sense

f (w , . . . ,w )  = /(« ;), g(w,.. .,w) = g(w) . (5.7d)

As in the previous one-dimensional design, the first and most important step
A

in the high-order approximations of f , g is the method by which we obtain high- 

order accurate pointwise information of the solution u(x, y, 0  from the given set of 

cell averages {5(0} • For this purpose, let R2 be a spatial operator which recon­

structs this set of cell averages and yields a two-dimensional, piecewise polynomial 

R2{x,y\u(t)) of degree r —1 and thereby approximates u(x,y,t) with a trunca­

tion error of 0[hr) , wherever u is sufficiently smooth. We write this approximate 

relationship in the form

iE2 (x,y;fl(i)) = u(x,y,t) + e(x,y)hr . (5.8)
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In general, the reconstruction operator R 2 which we have developed is a “natural” 

two-dimensional extension of the one-dimensional “reconstruction by primitive” 

presented in Section 4.3 . This operator is detailed in the following section.

In order to include the more general case, where /(u) cannot be integrated in 

closed form in (5.2c), we will approximate this integration by Gaussian quadrature. 

In order to express the error made by this approximation, let q ( x )  be a C ( 2 K ) 

function whose integration on [a, 6] we approximate by the “classical” Gaussian 

quadrature, i.e. relative to the unit weight function on the interval [—1,1]. It can 

be shown (e.g. [54]) that the error made by this approximation with a If-point 

quadrature is given by

~  £  c, ,(* ,) = « L P'k (x)dx ,

for some £ in (a, 6 ) , with Pk being the polynomial of degree If in the orthogonal ba­

sis that spans the space of polynomials of degree not exceeding K . This quadrature 

is exact when y(x) is a polynomial of degree less than or equal to 2 If  — 1 . The roots 

of Pk (x) = (x — Xi)(x — x2) • • • (x — xk ) are real and distinct, making it clear that 

the above truncation error is 0(h2K+1) . Relating this error to the (r—l)-st degree 

polynomial reconstruction (5.8), we see that for r < 2 If , this truncation error is at 

worst 0(hr+1) when r —1 is odd, and 0(hr+2) when r —1  is even. Therefore, using 

the “larger” error, for fixed x and t. and sufficiently smooth /, the approximation of 

the flux integral (5.2c) by Gaussian quadrature satisfies

/ t + i /2, j ( 0  =  [ V, +1/3 / ( ti(x ,+ x /2 , y ,  t ) ) d y
Vj—l/2

A y K
= - r 2  J2 c* f (  “ (*1+1/2 > Vk, t) ) +  s(xl+1/2 , r?) hr+1, (5.9a) 

L k=i

for some r) in (y,--1/2 , y,-+1/2), and Ayy = yJ+i/ 2 -  yy-1/2 .

Let V h ( x , y , t )  denote the piecewise polynomial approximation to u which is de-
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termined by the reconstruction operator R 2 in (5.8) and therefore satisfies

Vk[x,y,t) = u(x ,y , t )  + e(x,y) h T , (5.9b)

for fixed t, wherever u is sufficiently smooth. Since /  is assumed differentiable in u, 

it is therefore Lipschitz continuous in u, and thus, for fixed t,

/ ( u ( x ,y , t ) )  = /( t/fc( x ,y , t ) )  + d { x , y ) h r , (5.9c)

where d(x,y)  = 0 (e(x ,y )). Finally, we substitute (5.9c) into the quadrature in

(5.9a), and we see that

At/- K
/.+1/2 ,y (0 = - I T  £  c* [ / ( vhixi+i/ 2  , y t , t ) )  +  d(xi+1/2 , yjfc) hr ] (5.9d)

z *=i
+  5 (xt+i/2  , v) hr+1 .

Therefore, if we define our “abstract” numerical flux 7 »+i/2 , j ( 0  in (5.7b) by

At/- K
Ji+1/2 A*) = Vh(xi+i/2 > Vk , t ) ) , (5.10a)

z *=i

then the error made by the approximate flux difference 7 «+i/2 ,j(*) -  7 «-i/2 ,/(t) in 

the definition (5.7b) is given by

/ i+1/2 ,j ( 0  f »—1/2 ,j ( 0  = f  i+1/2 A*) -  7i-l/a,iW

A y  *
+  - r 1  X ]  c* [ <*(*i+i/a > y*) -  «f(ic.--i/2 , yk) ] hr

1 k= l

+ [«(®i+l/2 > f?) -  5(x,-_i/2 ,»?) ] hr+1 . (5.10b)

Clearly, if d and s are Lipschitz continuous on [x,-_i/2 ,x,-+i/2] for each y, then

the error relation in (5.10b) satisfies

7 t+l/2 ,j'(t) f s'—1/2 ,/(0  =  fi+l/2 ,i{t) -  f i - l /2 ,j{t) + 0 [ h r+2) . (5.10c)

Moreover, a symmetrical argument can be used to show

9i,j+i/2{t) ~  =  5«,i+i/2(*) ” 5»,i-i/2(0 + 0 (hr+2) , (5.10d)
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where
A a  K

9i,i+i/*{t) =  - 5 -  Z) c* S( M xk > yj+1/2 , 0 )  • (5.1°e)
1 k=i

Noting that the area a,,- is 0(h2) , we see that upon substitution of the numerical 

fluxes (5.10a) and (5.10e) which satisfy the error relations (5.10c) and (5.10d) into 

(5.7b), we have thus designed the spatial operator L  that satisfies (5.7a), and there­

fore, when substituted for £  in (5.6), yields a numerical solution operator Eh which 

is r th-  order accurate in the sense of local truncation error. We note here that the 

desired truncation errors given by (5.10c-d) are achieved only if the functions rep­

resenting the errors due to the quadrature (5.9a) and the solution approximation 

(5.8) are Lipschitz continuous on [x,--1/2 >£1+1/2] x [y,-i/2> I/j+1/2] •

We now wish to modify the numerical fluxes (5.10a) and (5.10e) such that (5.4) 

still holds in regions where the solution is smooth and, in addition, these fluxes 

will account for possible discontinuities in u . This modification is largely due to 

the nature of the reconstruction step, at which the pointwise behavior of u(x, y, t) 

is approximated in a piecewise polynomial fashion within each cell (Section 5.3.). 

As a result, the polynomial generated by the reconstruction operator can be dis­

continuous at cell interfaces, analogous to the one-dimensional reconstruction in 

Section 4.3 . Therefore, in order to resolve these discontinuities, the flux integrands 

in (5.2c-d) are approximated by

/(u (x , y ,  *)) «  / R[iE2 ( x - 0 ,y ;S ( t ) ) , .R 2 (x - t-0 ,y ;§ ( t) ) ] ,  (5.11a)

g ( u ( x , y , t ) )  «  yR[ R2( x , y — 0; fi(t)), R 2( x , y +  0; ii(t))] , (5.11b)

where / r [ u i , u 2] denotes the flux across x  = 0  associated with the solution to 

the Riemann problem whose initial states are ui and u2. As before, the notation 

q(x+0 ) , q ( x — 0 ) denotes the limiting values of q  at x from the right and left, respec­

tively. When the solution u is sufficiently smooth, the “jumps” in the approximate
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solution at cell interfaces will be 0(hr) in which case our previous conclusions con­

cerning high-order truncation error are not altered by the modification (5.11). The 

manner in which we interpret the Riemann problem in this two-dimensional setting 

is discussed in Sections 5.6 and 5.7.

In fully-discrete form, we write our two-dimensional scheme as the Runge-Kutta 

method

«$ = / = l , 2 , . . . , p > (5.12a)
TO= 0

= 6 " , oW = &n+1,

where

=(m)' 1
(LfiW )« = " O i j

_ f(m) -L Jj(m) _  7j(m)Ji+l/2,] h-l /I, j  ^  9i,j+1/2 Si.j-1/2 (5.12b)

and

^ 4=1
(5.12c)

i t m  = ^  5 :  «*«“[■«*(*». «>+!/« - 0 :  s M ) • -«*(**. ««-•/*+0; n1”1) 1 -
L  4=1

(5.12d)

Assuming the error functions d(x,y) and s(x,y) in (5.10b) to be globally Lips- 

chitz continuous, the numerical solution operator Eh defined by (5.12) is formally 

rth-order accurate in the sense of local truncation error as given by (5.4). Further­

more, if these error functions remain Lipschitz continuous for N  time steps, where 

N  =  t/A f = 0(1/k) , we assume the cumulative error to be 0(hr) . Thus, at the 

end of such a computation, we have a set {*>”}, approximations to the cell averages 

of u at time tN which satisfy

VN -  = 0(hr) . (5.13a)
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If we desire our high-order accurate output in pointwise form, we simply perform 

one final reconstruction which, by (5.8) and (5.13a), will yield

R2(x,y;VN) =  u(x,y,tJV) +  0(hr) . (5.13b)

In addition to the accuracy properties (5.13), we desire that if u should develop 

discontinuities, then the scheme (5.12) will avoid 0(1) spurious oscillations, and we 

will design the reconstruction operator R 2 to do so.

5.3 T w o-D im ensional Reconstruction

We turn now to describe more fully the high-order spatial reconstruction operator 

R2 in (5.8) which is crucial to the scheme’s accuracy. For the purpose of clarity, 

we discuss the finer points of this procedure within the framework a scalar function 

defined on a rectangular computational mesh.

At first glance, it might seem plausible to extend the reconstruction operator 

R (Chapter 4) to two dimensions by simply “overlapping” two one-dimensional 

stencils, as depicted in Figure 10. As will become apparent in this section, this 

“dimension-by-dimension” approach is inherently limited to second-order spatial 

accuracy. Nonetheless, if we restrict ourselves to the notion of a “structured” grid, 

we can describe the implementation of R2 as a composition of two applications of a 

one-dimensional operator R, where the latter is the “reconstruction-by-primitive” 

operator in Chapter 4.

We are initially given a discrete set of cell averages {©,•;•} of a piecewise smooth 

function tu(z,y),

_  1 / “*•'-H / 2  f V j + i / i
tVi, =  —  / / w(x, y) aydx , (5.14a)

• '* 1 - 1 /2  V /—1/2

where a{j =  Arc.Ay,- =  (z,-+i/ 2 -  x<_i/2) (yJ+1/ 2 -  y,-i/2) . For yj+1/2 < y < yy_i/2,
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Figure 10. A “dimension-by-dimension” stencil (bold outline) uses cell-average 
information from the x-stencil for point values on the vertical faces of 
the shaded cell ( i , j) , and the y-stencil accounts for those values on the 
horizontal faces. This approach is inherently limited to second-order 
accuracy.
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define the primitive function Wy(x) associated with w by

r* 1  rvi+i/2
w i (x) = I T— I «(£,y)dydC • (5.14b)Jx0 Ay;- Jvy_ 1/2

Seeking a relationship between pointwise values of Wj(x) and the discrete values 

{&,;}, we see immediately from the definitions (5.14a-b) that

Ax,' W i j  —  W j ( X i + 1/2) W j [ X i —\ j 2) , 

and we can therefore establish such a relationship at the cell interfaces:
t

Wy(z.-+1/2) =  Y ,  A xk • (5.14c)
t=«o

Now, the definition (5.14b) clearly implies

-7 - Wj(x) = f Vi+1/2 w{x, y)dy = iDj(x) , (5.14d)
ax Ay, Jvj-1/2

thus denoting by %(x) the line average in y of w(x,y) for a fixed x . This suggests 

that if we approximate Wj(x) by Qr(x;Wj), the ENO piecewise polynomial of de­

gree r which interpolates Wj at the values given by (5.14c), we can then obtain an 

approximation of tfy(x) by defining the first step in our reconstruction procedure as

-R(*;®) =  = Vj{x) . (5.14e)

Then Vj{x) is a polynomial in x of degree r —1 which satisfies

xij (x) =  Wj(x) + 0(Axr) , (5.14f)

wherever %(x) is sufficiently smooth in x .

If the procedure (5.14) is performed for all j , then we have a set of piecewise 

polynomials {v; (x)}, each of which is a high-order approximation in x to each 

Wj(x) . Cleaxly, from the definition (5.14d), the value of %(x) in x is equivalent in

form to a one-dimensional cell average on the interval [yJ+i/2, S/y—1/2] • Therefore,

for a fixed x , the remainder of our reconstruction procedure becomes equivalent to 

the one-dimensional method in Chapter 4, applied to the set {uy(x)}.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For fixed x, we now treat the set {v,-(x)} as one-dimensional cell averages in 

y of a piecewise smooth function v(x, y), which we wish to reconstruct to high- 

order pointwise accuracy in y. Analogous to the method (5.14), we define another 

primitive function W{x,y) associated with t/(x,y) by

W(x,y) = f V v{x,ri)drj , (5.15a)
"'I/O

whose pointwise values we know at cell interfaces

i
W{x,yj+1j2) = £  Ay*tJ*(x). (5.15b)

k = jo

Fitting the point values (5.15b) of W(y) with a piecewise polynomial Qr{y\W)  of 

degree r by ENO interpolation, we can obtain a high-order pointwise approximation 

to v(x, y) in y by defining the second reconstruction step

£(y ;«(*)) =  ^ Q r { y , w )  = p(x,y),  (5 .1 5 c)

where, for fixed x,p(x ,y)  is a polynomial in y of degree r —1 that satisfies

p(x,y) = v(x, y) + 0(Ayr) , (5.15d)

wherever v(x,y) is sufficiently smooth.

Noting the reconstruction definitions and the error relationships above, in ad­

dition to the standard polynomial approximation results referred to in Section 4.3, 

we can see that the values obtained in (5.15c) are the high-order pointwise approx­

imations to w(x,y) which we desired from the initial cell averages {&,,}, i.e.

R 2(x,y; m) = R (y ; R (x ; ib)) = w(x,y) + 0(A xr,Ayr) . (5.16)

In addition to the high-order truncation error in regions of smoothness, we also 

note that each of the one-dimensional reconstruction operators (5.14e) and (5.15c) 

is essentially non-oscillatory, due to the nature of the interpolating polynomial Qr 

as described in Chapter 4. Furthermore, we note that R2 is “conservative”, in the
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dx

sense that the cell-averaging operator A* defined by the right-hand side of (5.14a) 

is its left-hand inverse, i.e.

( A h R 2(x,y; ©)),,- =  —  [  '+l/* / W,+‘/a R[y; R{x\ w))dydx
a i j  *i—1/2 J V j - 1/2

=  —  r n  f  9 r ( W « / J  i « ' )  -  Q r f e - 1 / !  ;  I V )

= 7~ r*w \ w(x’y>+'n) - ,/,)<'*.-1/2 L

1  /•*.+l/2
=  -T— /Ax,- J*,_1/a

=  ^  [ <3r(zi+i „ ; IV,-) -  Q . t e - , / ! ; H'y)

dx

_ 1

Ax,-

ty.i

This property is necessary in order that our numerical scheme (5.12) remain 

conservative, as explained in the one-dimensional case in Chapter 4, and results di­

rectly from the various definitions in the reconstruction (5.14-15), and the fact that 

the Qr s are interpolating polynomials. It is the adaptive-stencil algorithm (4.16) 

that enables this reconstruction (for sufficiently small h) to be high-order accurate 

on any domain where w(x,y) is smooth, even if that region is near one in which 

u/(x,y) is discontinuous. Furthermore, algorithm (4.16) is ultimately responsible for 

the adequate resolution of a discontinuity, near which the “jumps” in R 2(x,y) ib) 

at cell boundaries become large relative to the mesh spacing.

We further note that the error coefficient e(x, y) in (5.8), due to this recon­

struction, becomes discontinuous at points where there is a change of orientation in 

the stencil of the associated interpolation. This discontinuity may occur at critical 

points of the function and/or its derivatives. It is clear that when e(x,y) fails to be 

Lipschitz continuous at a point, the truncation error of the approximate flux differ-
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ence in (5.10c) is only 0(h r+1) . We therefore expect the cumulative pointwise error 

due to N  applications of the operator Eh to be only 0 (hr-1) at such points, but 

to remain 0(hr) away from these points. Owing to the essentially non-oscillatory 

nature of E h , it is reasonable to expect the number of points at which e(x,y)  fails 

to be Lipschitz continuous to remain bounded as h —♦ 0 . In this case, we see that 

the cumulative error of our numerical scheme is 0(hr~1) in the norm and 0{hr) 

in the Li norm.

It should now be clear that this reconstruction procedure is not a “dimension- 

by-dimension” operation which simply employs two one-dimensional interpolation 

stencils, each based on the cell averages {©}. Such an approach would not take into 

account the necessary high-order cross derivatives required for a two-dimensional 

polynomial expansion. In fact, it is clear upon reviewing equation (5.14e), which 

represents a purely one-dimensional reconstruction, from which we recover not point 

values but {uy}, line averages in y. Though as a function in x, these line averages 

are high-order approximations to {%} as given by (5.14f), as a pointwise function 

in y, we have from the definition (5.14d),

Wj(x) = w(x,yj)  + 0 ( A x r, A y 2) .

Thus, for a general nonlinear flux, regardless of the number of cell averages we use 

in a one-dimensional stencil, any finite-volume scheme based on approximation by 

the overlapping of two such stencils is inherently limited to second-order accuracy. 

It is the second stage of the reconstruction which acts upon these line averages 

that then accounts for the high-order approximation to gradients in y. Figure 1 1  

depicts a “truly two-dimensional” fourth-order stencil as it might be chosen by the 

algorithm (5.14-15).

Lastly, we remark that this procedure does not require uniformity of the mesh 

and that we shall extend this scalar reconstruction to vector-valued functions and 

to curvilinear co-ordinates in the following sections.
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Figure 1 1 . The circles represent the stencils chosen in the x-direction for each 
j , for i  fixed, using the cell-averages. The diamonds then represent the 
stencil chosen in the y-direction, using the line-averages ®, (z ,), generated 
by the first step.Thus, the information entering into the polynomial ap­
proximation within the shaded cell (i,j) comes from the two-dimensional 
stencil within the bold outline.
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5.4 System s o f Conservation Laws

In this section, we extend the scalar reconstruction procedure of Section 5.3 to 

solutions of hyperbolic systems of conservation laws. To this end, we now reconsider 

the IVP (5.1), whose solution u is a vector of m components, as are the fluxes 

/(u) and g(u). We now wish to develop a vector reconstruction operator, denoted

by R2 , which will reconstruct a set {%} of vector-valued cell averages to high-

order pointwise accuracy. Recall from Section 4.5, due to the potential collision 

of discontinuities in time, it was reasoned that a component-wise reconstruction 

should be avoided. In the two-dimensional case, where discontinuities can intersect 

in space as well as collide in time, it becomes even more incumbent upon us to 

utilize the notion of characteristic reconstruction. We turn now to the discussion 

of this procedure as it applies to a function of two spatial variables.

For the purpose t-f clarity, we begin the discussion of a two-dimensional char­

acteristic reconstruction by considering the constant coefficient case of (5.1), i.e. 

/(«) =  A u , g(u) =  B u ,  where A and B are constant m x m  matrices:

ttt + A ux + B Uy = 0 , (5.17a)

u(z,y,0) =  u°(x,y) . (5.17b)

We also assume, for now, that our reconstruction takes place within the context 

of a Cartesian mesh. We note that the eigenvalues {A^} of A and {A^} of B are 

constant as are the right eigenvectors {r^}, {r|}  and left eigenvectors {/^}, {lB} . 

We assume that these eigenvectors are suitably normalized so that

l\'T*A =  l*B -r*B = &ij . (5.18a)

If we define the kth characteristic variables and w% by the dot products

wa = 1a ' u ’ wkB - l kB - u , k =  1 ,2 ,...,m  , (5.18b) 
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then it follows from (5.18a) that

u =  Y  wA rA =  Y  wB rB ■ (5.18c)
k=1 i=l

We argued in Section 4.5 that, in the constant-coefficient case, it is advantageous 

to use these characteristic variables (5.18b) in the reconstruction procedure, rather 

than u itself. This is due to the fact that, under the transformation (5.18b), the 

coupled system (5.17a) becomes an uncoupled set of equations, thereby rendering 

any discontinuity in a particular characteristic variable “undetectable” by another.

Therefore, in the case of a linear system (5.17a), we can describe our vector 

reconstruction as follows. Given {&,-/}, cell averages of a vector u, we begin by 

defining the cell averages of the characteristic variables in the i-direction by

= Â ’ ®»i > for j  fixed, all * , (5.19a)

and then perform the scalar reconstruction given by (5.14e) on these averages. Using

the result (5.18c), we can define the first step of our linear vector reconstruction

procedure by

R(x;fc) = Y  R (x > ®a) ra = viix) » (5.19b)
k= 1

the right-hand side of which is the vector-valued analogy of t)y(x) in (5.14f). In 

analogy to the two-step procedure in Section 5.3, the reconstruction (5.19b) is

performed for all j. For x fixed, we then proceed by approximating the line-average

characteristic variables in the {/-direction by the dot product

• (5.19c)

The scalar reconstruction (5.15c) is applied to the values (5.19c) and, for a fixed x, 

we have a polynomial in y

R (y ; »(*)) =  Y  R ( y ; ) r£ > (5.i9d)
i=l
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which completes our reconstruction for the linear case and we write

R 2 (*,y;&) = R (y ;R (* ;a))

= ' a -  (5.19e)

We now wish to generalize the reconstruction procedure (5.19) to the case of 

a nonlinear system. In the nonlinear case of (5.17a), the matrices A(u), B(u) are 

now functions of u, as are the eigenvalues (A^(u)} ,{A^(u)}, and the eigenvectors 

{rA(u)}> ( rB(u))> « ( • ) } ,  {&(*)}• extension will require the use of

locally defined characteristic variables, in the following manner. In order to recon­

struct u(x, y) on the region (®,- 1/ 2 , x,+ 1/ 2) x (yy—1/ 2 * yj+1/2) > we first derive a set of 

local average characteristic variables (®*y(fi.-y)}, where n varies in the z-direction. 

We do this, for a fixed j, by computing dot products of with the cell averages

associated with intervals in the immediate vicinity of (x,_i/2 >Xi+i/2) >

= 1a [*h) ' » for n =  * -  9 , +  9  , (5.20a)

where q is the degree of the reconstruction polynomial. We then apply the scalar
k —reconstruction operator R to this set {®ny(®»y)} of 2q + l  variables in which the 

left eigenvector has been locally “frozen” at the tth location of the j th row of cells. 

This “local linearization” allows us to apply locally the linear vector reconstruction 

described in (5.19). The first step in our nonlinear vector reconstruction procedure 

then becomes

m
R (x;S) = X! =  V j { x )  • (5.20b)

*=1

Upon performing (5.20b) for all j, then, for x fixed, we define a set of local “line- 

average” characteristic variables (®*(vy)} in the y-direction :

, for n = j  - q , . . . , j  + q.  (5.20c)
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We complete our “nonlinear” reconstruction by applying the scalar operator R to 

the set {&£(&/)} of local variables in (5.19c) which results in

m

R (y  ;» (* ))  =  53 • (5.20a)
*=1

Thus, our vector reconstruction operator R 2 is a composition of (5.20b) and (5.20d) 

and, for a polynomial within a cell (t ,j) , we write abstractly

R 2(z ,y ; fi).y =  53 R ( V ; isfcfa)) • 53 • n) \  r |(© ,(x)),*=i v p-i ;
(5.20e)

which satisfies

R 2 (x ,y ; fi(r)) = u(x,y,t) + 0(hr) , (5.20f)

wherever u is sufficiently smooth, and which is designed to avoid the oscillatory 

behavior associated with colliding discontinuities.

5.5 Curvilinear Co-ordinates

In order to apply the scheme (5.12) to realistic two-dimensional problems, it must 

be suitable to other than rectangular geometries. We therefore wish to generalize 

the spatial domain of solutions of the IVP (5.1). To this end let

x  =  x(£,»7) , y = y(£,T)) , (5.21a)

denote a smooth transformation from the physical x—y plane to the computational 

£— plane. The differential relationship between (x,y) and (£,77) can be written in 

the vector form

[ t  ] - i5-21b>
where the 2 x 2  matrix above is the Jacobian of the transformation, and its deter­

minant J  is given by

J  -  *€ yn -  ye xn . (5.2lc)
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Seeking a solution of (5.1) within this context, let denote a discrete region 

in physical space which is mapped into a rectangle (&-1/2 , &+1/2) x (Vj-i/2 ,Vj+i/2) 

by the transformation (5.21a), as in Figure 12. With a semi-discrete formulation 

in mind, appealing to the theory in Chapter 2, we integrate (5.1a) over the region 

Zij and note that a weak solution must satisfy

I f  u , i z d y  = -  £ f  dy -  g d x
K

where the form of the right-hand side is due to the application of Green’s theorem in 

the plane, and the contour C is oriented as in Figure 1 2 a. Performing the prescribed 

integration with the aid of the transformation (5.21), our semi-discrete formulation 

can be written identically to (5.2a):

d -  1  

dt * 1 ®  ~  aii
(5.22a)/.•+l/2,i(t) -  fi-l/2,j{t) + 9i,j+l/2(t) -  (0

Under the transformation (5.21), we interpret the cell average S,y(f) at time t as 

Uij(t) =  —  / €'+1/a r + ,/2  u((,rj,t) -/(£,»/) d£dq , (5.22b)
^  £ 1 - 1 /2  1 /2

where a,-,- is the area of Z i j . The fluxes /  and g are given by

a . r ^ j + 1 / 2  a/  . .

/«+1/2 .j(<) = /  ^ ( “ (6 +i/a. V, t))dri ; (5.22c)
■'1/ - 1 / 2

&.i+i/a(0 = / f +I/a G( u(£, r?J+i/ 2 , t) ) d£ , (5.22d)
£1—1 /2

where

^(u) =  yi»/(«) ~ x ng(u) , G(u) =  xey(u) - y €/(u) , (5.22e)

and /(u) and y(u) are the Cartesian flux vectors in (5.1a).

Having defined the necessary terms of our finite-volume formulation in a curvi­

linear co-ordinate system, we now wish to discretize our spatial and temporal oper­

ations. Again, with our Runge-Kutta time discretization, the extension is straight
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y

X

Figure 1 2 a. Curvilinear control volume in physical space.

V

Figure 1 2 b. Control volume as mapped into computational space.
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forward. As for the spatial operation, we note two basic modifications that must 

be made.

The first alteration involves the reconstruction operator. Having clearly and 

consistently defined this procedure in terms of a rectangular mesh, we therefore 

would like to be able to perform the reconstruction procedure in £ —17 space. Given 

a cell average 6 ,7 , as defined by (5.22b), we see that the quantity atJ- can be 

interpreted as a “cell average” of the function u(£,ri) J(£,r}) on the corresponding 

computational cell. Therefore if we choose, instead, to reconstruct the set {a,-,- StJ } 

of cell averages which are scaled by their respective areas, we transform the recon­

struction procedure to rectangular co-ordinates, and in the scalar case, we simply 

use the procedures described in Section 5.3. The polynomial p(£,rj) we obtain by 

this approach satisfies

p{Z,v) =  -R2 (£,»7 ;afi) = u{t,v)  +  0{hr) ,

approximating the function u(£,rj) J{Z,rj) to high order, and therefore must be 

re-scaled by in order to yield the pointwise values of u(£,r/) we need to

approximate the fluxes (5.22c-d). Thus, we define our curvilinear reconstruction 

operator R2 by

R 2t i , v ,  a) =  a S ) • (5 -23)

We can define a curvilinear vector reconstruction operator R 2 in an identical 

manner, with the understanding that the various eigenvalues and eigenvectors re­

quired for this purpose are the corresponding quantities of the Jacobian matrices 

of F(u) and G(u) in (5.22e), which are, respectively,

A(u) = A(ti) — xn B(u) , and B(u) = B(u) — A(u) .

Our second modification relates to the curvilinear mesh itself. We first note 

that in the application of second-order schemes, the integration of a numerical flux 

is achieved by the midpoint rule, and therefore the grid lines which form the cell
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boundaries can be approximated in a piecewise linear fashion. In this second-order 

accurate setting, all of the necessary grid quantities are easily approximated. For 

instance, the transformation “metrics” {x(,x,v y(,yn} are approximated to second 

order by simple finite differences, and the values {a,y} are easily computed, all the 

cells being quadrilaterals.

However, when we desire accuracy that is higher than second-order, a piecewise 

linear interpretation of a two-dimensional grid will no longer suffice. For example, 

when we require more than one point in the quadrature which will approximate the 

flux integrals (5.22c-d), we can no longer assume that the quantities {z^, xn,y^,yn} 

are constant along a given cell boundary. We must therefore assume that the mesh 

is “truly curvilinear” and account for any change in these grid metrics at each 

point required in the quadrature. It should also be noted that the curvature of cell 

boundaries also affects the lengths of cell interfaces, which become the curvilinear 

analogies of Ay;-, Ax,- in (5.12c-d). This curvature affects the values of the cell 

areas as well, which are given by

Clearly, if the transformation (5.21) avails itself to differentiation and integration in 

closed form, all these necessary quantities can be obtained exactly. If not, numerical 

techniques for their high-order approximation would be in order. Our numerical 

fluxes can then be written

(5.25a)

ft.* 1 /1W = £  «* GR[ £ ’(& , vl+y, - 0 ; 6 (1)), S»(6 , Hj+ , / , + 0 ; *(*)) ],
£ k= 1

(5.25b)

where R2 is given by (5.23), and the quantities \fj\i+i/2 j  and | |̂« .y+i/2  represent the 

arclengths of the boundaries of £ tJ- along £ = &+1/2 and y = yj+1/2 > respectively.
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r +1/2 r i/a j ( t , v ) d t d V
■'Si-1/2 ■''),-1/3

(5.24)

53 ct FR[ £ 2 (&+1/2 - 0 , 7}k ; u(t)), £ 2 (&+i/2+0 , yk ; u(t)) ] ,
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Now, assuming that the transformation (5.21a) is sufficiently smooth, the numeri­

cal scheme resulting from the curvilinear formulation (5.22) with numerical fluxes 

defined by (5.25) will be rth-order accurate as defined by (5.4) in smooth regions 

and avoid oscillations near steep gradients.

We make one further generalization. It happens that there are a lot of applies 

tions of structured computational meshes for which a closed-form transformation is 

not available. For example, a set of grid points may be initially generated as a so­

lution of a system of differential equations, after which they may then be subjected 

to some smoothing operator, &.g. Laplacian. In such a case we do not have a set of 

equations (5.21a) from which to determine all the grid variables necessary for the 

flux computations (5.25).

However, given such a set of points, we might consider the equivalent of a locally 

defined set of transformation equations which are derived by polynomial approxi­

mation. By this we mean that each “grid line” through a set of points is approx­

imated by piecewise polynomial interpolation of some pre-determined order, and 

that all the necessary mesh quantities are calculated from these polynomials. As 

the grid metrics y$,yn} represent the components of outward normals at

cell boundaries, a simple calculus argument involving the polynomial approxima­

tion to a cell boundary will enable us to compute these quantities at the desired 

quadrature points. Approximate cell areas are also straight forward, once the four 

polynomials defining each control volume are determined. Arclengths of cell faces 

can be approximated by an appropriate integration technique. An approximate 

Jacobian determinant, which we will denote by J ' , required for the curvilinear re­

construction procedure (5.23) is also obtainable by the following reasoning. The 

relationship (5.24) allows us to interpret a cell area a,-;- as a rectangular “cell av­

erage” of J(£,ri) . Thus, we first determine a set of high-order approximations to 

the cell areas, which we denote by {aj; } . We then apply our scalar reconstruction
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algorithm from Section 5.3 to this set and define the approximation J' by

=  iZ2(£,»?; a! ) .

We note here that, without a known transformation (5.21a) from which to math­

ematically determine “sufficient smoothness,” we can no longer make the claim 

concerning formal order of accuracy when this polynomial grid approximation is 

employed.

5.6 Im plem entation

In this section, we make a few general remarks concerning the implementation of 

some of the ideas in the preceding sections. Certainly, as with any numerical scheme, 

the fine details of its application will depend upon the equations one is solving as 

well as the given problem. We will make some specific remarks concerning the 

application of our two-dimensional ENO schemes to the Euler equations of gas 

dynamics in the following section.

Our first topic concerns the reconstruction procedure. As the adaptive stencil 

algorithm (4.16) ultimately relies on the entries in a divided-difference table, the 

obvious choice of polynomial approximation is Newton interpolation. Though it is 

possible to use the reconstruction operator R2 to compute the coefficients of a two- 

dimensional polynomial and then evaluate it at all of the points required for the flux 

calculations (5.12c-d), instead we choose to implement R 2 in the manner in which it 

is presented in Section 5.3, i.e. in one-dimensional “sweeps.” Furthermore, though 

it is not necessary from an approximation theory viewpoint, the order in which 

we apply these directional sweeps will depend upon the particular cell face along 

which we desire a flux computation. For the evaluation of the flux fi+i/2 ,j(t) in 

(5.12c), the pointwise approximation of u at the Gauss points {t/*} along x= x l+1 /2
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is determined by

u(x, + 1 / 2 ± 0 ,yk,t) «  R( t/jfc; i2( xf+i/ 2 ±  0; tt(t))) , (5.26a)

and for the evaluation of &+i/2 ,j ( 0  in (5.12d), we employ the composite operation 

(5.26a) in “reversed” form and achieve the required pointwise values by

«(**, yy+j/2  ±  0,t) «  R( xk; R( yj+l/2 ±  0; u(t) )) . (5.26b)

Also pertaining to the reconstruction is the issue of its implementation near a 

computational boundary. We have taken the position that a high-order approxima­

tion must reflect available information. For instance, in the case of an assumption 

of periodicity of the solution, we can allow interpolation stencils to move outside 

the “boundary” by simply installing the known periodic behavior of the solution 

into “ghost cells.” However, when the solution is not known beyond a boundary, as 

in the case of a solid wall, we restrict our interpolation stencil to remain within the 

computational domain.

It was found during numerical experimentation that problems could result from a 

high-order, one-sided interpolation procedure. In particular, in the case of the Euler 

equations, if a solution developed a shock which reflected from a wall, oscillatory 

behavior was noticed in the smooth region neax the reflection point between the 

shock and the wall. Attempting to eliminate such numerical noise, one might suggest 

some sort of test for a “desirable reconstruction” which, when failed, will result in 

a local reduction in the order of interpolation. Owing to the recursive nature of the 

Newton interpolation procedure, such a test can be readily applied during the actual 

“building” of the polynomial. One such test ([42]) simply checks for “over-shoots” 

or “under-shoots.” In a one-dimensional setting, this is equivalent to requiring the 

endpoint values of the polynomial p,(x) which approximates u(x) on [x,_i/2 ,x,+i/2] 

not to over-shoot a larger adjacent cell average, or to under-shoot a smaller one,
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as in Figure 13a. We can so restrict p,(x) by requiring that it satisfy

(c t+i - f i i )(fii+1 -p ,(x i+1/2)) > 0 , (5.27a)

(fi, - f i ,_ 1 )(p <(xi_1/2) - O i_1) > 0 . (5.27b)

We define any p,(x) which satisfies (5.27) to be a “desirable” reconstruction. If 

either of the inequalities (5.27) is not satisfied (Figure 13b), then the degree of 

p,(x) is reduced. Clearly, this restriction will never require any less than a locally 

linear reconstruction, SImCv Sf pIvCvV»l£0 linear polynomial is always locally monotone, 

thereby making the scheme “locally TVD.”

As for the application of the boundary conditions themselves, such conditions as 

inflow or outflow are handled in a standard manner, depending upon the direction 

of the characteristic wave speeds at these types of boundaries. On the other hand, 

a wall condition is relatively simple to handle. Because we actually approximate 

the solution on the boundary of each cell, those point values {««,} along a solid wall
A

are treated with an appropriate boundary condition and the numerical flux f w on 

the wall is simply

h  = f {B[um)) , (5.28)

with B(') denoting that a wall condition has been applied. A more detailed account 

of boundary conditions for the Euler equations is deferred to Section 5.7.

We make a final comment here concerning the interpretation of the Riemann 

problem in this two-dimensional formulation. Recently, other authors, e.g. Roe 

[49], have attempted to develop genuinely multi-dimensional characteristic based 

schemes, but these new ideas have not yet sufficiently matured. We therefore take 

the “conventional” approach which extends the solution of the Riemann problem 

into two dimensions by simply solving the one-dimensional problem in a manner 

which resolves waves which propagate normal to a cell boundary. In the following 

section, we detail this approach as it pertains to the Euler equations of gas dynamics.
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U.-+1

U.--1

Figure 13a. A polynomial reconstruction which satisfies inequalities (5.27).

«i+I

Figure 13b. A polynomial reconstruction which violates both inequalities (5.27).
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5.7 Euler Equations o f Gas D ynam ics

We now discuss the application of our two-dimensional high-order ENO scheme 

(5.12) to the Euler equations of gas dynamics. In a Cartesian frame of reference, 

we write them in conservation form

Ut + F[U)X + G{U)V =  0 , (5.29a)

where

p pu pv
u  = pu 

pv  
. PF .

, F(U) = pu2 + P 
puv  

. {pE + P ) u .

, G(tf) = puv  
pv2 + P 

. (p E  + P)v  .

. (5.29b)

The quantities p , P , and E  are the density, pressure, and total specific energy, 

respectively, and u and v are the Cartesian components of the velocity vector V . 

We close the system (5.29a) of four equations with the polytropic equation of state

P = (7 - l  ) p ( E - l V * ) ,

where 7  is the ratio of specific heats and V2 = u2 +  v2. 

In quasi-linear form, we can write (5.29a) as

Ut + AUX + BUy = 0 ,

where A{U) and B(U) are the 4 x 4  Jacobian matrices

(5.29c)

(5.30a)

A(U) = §  , (5.30b)

Appealing to the co-ordinate transformation (5.21), we rewrite (5.29a) as

Ut + F(U)t + G{U)„ =  0 , (5.31a)

where

F{U) = yn F(U) -  x , G(U) , G{U) = x* G{U) -  ye F{U) , (5.31b)
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and U=U J(Z,y),  where J  is the Jacobian determinant of the co-ordinate trans­

formation, and F(U) and G(U) are the Cartesian flux vectors in (5.29b). In quasi- 

linear form, (5.31a) can be written

Ut + AUX +  B  Uy =  0  , (5.31c)

where the Jacobian matrices A(U) and B(U) are related to their Cartesian coun­

terparts in (5.30b) by

A{U) =  yn A{U) -  B(U) , B{U) = x( B{U) -  yf A{U) . (5.31d)

We turn now to describe the eigenvalues and eigenvectors of A(U) and B(U) . 

Now, since these matrices (5.31d) are both of the form of a generic matrix M(U) , 

defined by

M(U) = aA[U) + 0B{U)  , (5.32)

with a  and (3 independent of U , it is therefore convenient to describe the neces­

sary quantities in terms of M(U) . We assume that the grid metrics are suitably 

normalized so that a, (3 will satisfy

y/a? + P2 = 1 .

The eigenvalues of M{U) are

A1 (17) = u  -  c , A2(17) = u = \ 3{U) , A4(U) = u + c , (5.33a)

where

w = au  + P v , c = j (5.33b)

and c is the sound speed. We note that the eigenvalues are not distinct, but nonethe­

less give rise to linearly independent eigenvectors, as required in our definition of a 

hyperbolic system.

As the equations (5.29a-b) and eigenvalues (5.33a) are ordered, the correspond­

ing right eigenvectors are
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r \U )  =
1_

cy/2

1
u — ac 
v — /3c 
H  — wc

r \V )  =  ^

1
u
v

1 y J
2 r

0 1

r*{U) = P
—a  

J u - a i )  .

u +  ac  
v + (3c 

. H  + wc .

where H is the total enthalpy, given by

H E + P
+

V 2

(5.33c)

p 7 - 1 2

The left eigenvectors {/*(#)}, corresponding to the {r*(C/)} in (5.33c), are

(5.33d)

'‘W  -  7* — V2 +w c ,  ( l - 7 ) u - o c ,  ( 1 - 7 ) v - / 3 c , 7 - I

l \U )  = ( 7 - i ) « ,  b - i K  1

/3(17) = [a v  —/?u, /?, —a ,  0 ]
(5.33e)

^  ^  V 2 -  wc, (1 -  7 ) u + a c , (1 -  7 ) u + /? c , 7 - I

The particular form taken by these left and right eigenvectors is due in part to well- 

conditioning considerations during their derivation, as they are required to satisfy 

the orthonormal relationship

V{U) • r*(l7) /  0, j ^ k  
\  1 , j  = k .

We now have all of the necessary information for the application of our two- 

dimensional scheme in the formulation (5.22), under the co-ordinate transformation
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(5.21). Along each t = constant line, we use (5.33e) for the evaluation of the local 

subsets of characteristic variables, to which we apply the vector reconstruction

, (5.34)

where R 3 is the Cartesian reconstruction (5.20). The appropriate interpretation of 

(a,/?) as (y,,,— *»») or (—!/(,£$) is determined by the direction of the interpolation 

at a particular stage of the reconstruction.

The high-order pointwise information in (5.34) is then used to evaluate the 

fluxes (5.25). At each Gauss point r/jt along £=£,+1/ 2 and each & along v —Vi+1/2 > 

we are required to determine

P 1 [ R J(fj+i/j - 0 , ; &(()), R !(6 +i/ 2  +  6(t)) ) , (5.35a)

GR [ R J( 6 , !),■«/! -  0 ; 6(t) ) , R '(& , i,y+1/! + 0 ; V( t ) ) ) , (5.35b)

respectively. Each of these Riemann fluxes then becomes a contribution to the 

quadratures which determine the numerical fluxes (5.25).

We now describe the Riemann problem as it is interpreted in our two- 

dimensional scheme for the Euler equations. As mentioned in the previous sec­

tion, our implementation will be one-dimensional, but in a directional manner as 

to account for characteristic wave propagation normal to a cell interface. Clearly the 

value u  =  au + v is the component of the flow velocity vector V which is normal 

to a cell boundary at a given point, and has the same role in the two-dimensional 

problem as that of u in the one-dimensional problem (Section 4.6). The quantity 

that distinguishes the present case is i/ = (3 u — a v , the tangential component of 

V in this reference frame.

We recall from Section 4.6 that, in one dimension, the Riemann IVP for the Euler 

equations gives rise to three waves, separating four constant states (Ul , U\, U2, Ur ).
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In our directional application, we must now account for four characteristic waves. 

As in the one-dimensional case, we have left and right acoustic waves, each of which 

is either a shock or a rarefaction. However, due to the repeated eigenvalues A3, A3, it 

is now possible to have two interior waves which propagate at the same speed. One 

of these interior waves is the contact discontinuity that we would ordinarily expect 

in the one-dimensional case. The other interior wave is due to the presence of the 

tangential velocity component u . Any difference in Ul and Vr will give rise to a 

shear wave which is coincident with the contact discontinuity. Therefore, there are 

still effectively three waves separating four states as originally depicted in Figure 

7b in Section 4.6. We can therefore solve this problem in the same manner as the 

one-dimensional problem, with the requirement that uk =  uL and u2 = Ur .

With the interpretation of the Riemann problem outlined above, the extension 

of any characteristic-based method to two-dimensional flows is straight forward. In 

particular, we outline here such an extension for Roe’s method. For this purpose, let 

{A*(£), r*(£), /*(£)} denote the eigenvalues and eigenvectors evaluated with respect 

to the Jacobian matrix A ,  and {Afc(r?), r*(r/), lk(rj)} the corresponding quantities 

associated with B . Then, given two values (UL, Ur) at rjk along £ = £,+1/2 , or at £* 

along V—Vj+i/ 2 •> we approximate the Riemann fluxes (5.35) by

F«oe (Vl ,Vr ) = 1 f F ( t y + !■(%)] -  i f ;  S‘(f)|A*(«)|f*(e) , (5.36a)
“  L  k = l

(Ul ,V r ) =  \  \ 5(Ul ) +  G(Ur ) 1 -  i  £  S ‘ ( l )  |S ‘ h ) | f ‘ (»|) , (5.36b)
1 1 *=1

where

$*(0 = • (Ur -  Ul) , l h(n) = i k(v) ■ (Ur -  uL) , (5.36c)

and the quantities {Afc(£), /*(£), ?*(£)} and {A*^), l k(r}), r k(r))} are evaluated 

with respect to A(tf) and B((f) , respectively. This quantity (f — U (UL, Ur) is the 

“Roe-average” value of Ul , Ur as previously discussed in Chapter 4. Now, in order
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to evaluate (5.36a-b), all the quantities (5.33) must be evaluated with respect to 

this average. We see that the particular values we need are u , t ) , 2, and H , which 

are given by

y / P L U L  +  y / p R U R  y / P L V L  +  y / P R V R

Vpl + Vp* ' Vpl +  Vpr '

(5.36d)

VPl + VPr

We recall here that the fluxes computed by the approximations (5.36) can result 

in the attainment of unphysical solutions (Section 3.4), which most commonly arise 

when one of the acoustic eigenvalues A1(Z7) or A4(17) is such that

A{UL) < 0 < \{UR) .

In such a case, the fluxes (5.36a-b) must be modified with an appropriate entropy 

correction. There are many ways of achieving this correction, and different consid­

erations might govern the choice of particular one. We therefore defer the details 

of such an entropy fix for (5.36) until such time that it is needed (Section 6.3).

We now address the issue of boundary conditions. To this end, let D denote the 

domain of our solution, Int(D) its interior, and dD its boundary. It happens that 

the extension of our two-dimensional ENO scheme to boundaries is quite natural. 

The pointwise approximation of the solution that is required on the boundaries of 

every cell is required as well on any cell boundary which interfaces with d D , and 

is achieved in a similar manner. The fluxes on dD are then calculated in a fashion 

which accounts for characteristic signal propagation, as is any flux in Int(D) . The 

only significant difference is in the application of the boundary conditions them­

selves. The two types of conditions we must address axe those of inflow/outflow 

and solid walls, and we do so by example.
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Suppose an inflow/outflow boundary exists at £ =  & whose orientation with 

regard to Int(D) is as illustrated in Figure 14a. Appealing to characteristic theory, 

we are required to specify those characteristic variables qk{U) = lk ■ U whose as­

sociated eigen-speeds dictate wave motion towards Int(D) , while those associated 

with outward traveling waves must remain unspecified.

In order to adequately account for the required inward wave propagation at 

such a boundary, we rely on the imposition of the boundary condition itself and the 

solution of the associated local Riemann problem (Figure 14b). Let t/j denote the 

limiting value of the solution on dD from Int(D) , and Ue the limiting value from 

the exterior. As we take the position that any value of the solution must reflect 

available information, £/} is therefore determined from the high-order reconstruction 

procedure, as is any other interior value, i.e.

Ui(Zb,Tl,t) = R 2( 6 - 0 , » / ;  . (5.37a)

The only modification we make to (5.37a) is to ensure that only the solution in 

Int(D) is made available for this reconstruction on d D . This may occasionally 

require that an interpolation stencil pass through an unsmooth region, causing 

oscillations, in which case a local reduction in the degree of the interpolating poly­

nomial would be in order (See Section 5.6). It is the boundary condition which 

must determine Ue and the manner in which we do so is problem dependent. For 

example, it might be appropriate to set Ue equal to a known free-stream value U^ . 

It is ultimately up to the Riemann solver to detect those characteristic waves which 

will influence the solution near the boundary, and our flux fk{t) through the point 

{Zb,Vk) in Figure 14a is

fk[t) = FR [Ui{£b,Vk,t),UE(£b,Vk,t)] . (5.37b)

Our second example involves a solid wall, which we assume to be aligned with 

the curve r\ = r\b, as in Figure 15. As in the previous example, the high-order
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Int(D)

Figure 14a. The Euler equations are solved along fi=r}k, where is a point
on an inflow/outflow boundary.

Figure 14b. Characteristic wave propagation at an inflow/outflow boundary is 
determined by the solution of a Riemann problem. The initial values 
Uj, Ue axe determined from the interior and the boundary condition, 
respectively.
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Figure 15. The Euler equations are solved along £= & , where (£k,Wb) is a point 
on a solid wall. In this case, tangency is enforced and the flux is not 
determined by the solution of a Riemann problem.
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pointwise approximation to t/j along the boundary is determined by

= i t 2U,>?* +  0 ;&(«)) , (5.37c)

where information for polynomial interpolation is restricted to Int(D) . At the 

wall we insist that there be no normal velocity, i.e. the wall is coincident with a 

streamline. Thus, along £=£*, we solve

Ut + G{U)n = 0 , 

subject to the boundary condition

— u + v = 0 .

(5.38a)

(5.38b)

Let Uw denote the solution Uj in (5.37c), with the boundary condition (5.38b) 

having been applied. Unlike the inflow/outflow case, there is no exterior value Ue 

along i] = rjt which can influence the solution interior to the wall. Therefore we can 

write our flux along the lower boundary of the pictured cell by direct integration of 

(5.38a),

9(t) = I**1' ’ G(Uw( Z, m , t ) ) d t  .
£i—1/2

In quadrature form then, the flux gt(t) through the point (£*, t/j) is simply

9k{ t )  =  G ( U w ( $ k ,  V b , t ) )  • (5.38c)

Now, since

G(V) = —!leF(P) + x( G(V) ,

using the Cartesian fluxes (5.29b) and the enthalpy relation (5.33d), we can rewrite 

G(U) as

G{U) =  p (-y €u + a*v)

■ 1 ■ ■ 0 ■ ■ 0 '
u p

+ X( 0
t; “  Vi 0 p

. H  . . 0 . . 0 .

(5.38d)
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Then upon application of the tangency condition (5.38b), we evaluate the flux 

(5.38c) at the point (tk,Vb) on the wall by

&(*) =

0
-y^Pw

x^Pw
0

(5.38e)

where the wall pressure Py? is ultimately determined by the interior reconstruction 

(5.39c).

We make two final remarks concerning the scheme. First, we will assume that 

the scheme (5.12) is stable when the time step is required to satisfy

A* = CFL y  . 1. , (5.39)maxtf ( |\^{U) j Ay + |\%{U)\ A x )

where “CFL” is a positive number bounded above by the appropriate value “Cr” 

in (4.34).

Secondly, we must ensure that, during the course of a calculation, the values of 

density and pressure remain positive. This is a consideration which arises from the 

high-order reconstruction operator R 2. For instance, when an interpolation stencil 

is forced to the interior near a boundary, it might cross a strong shock or near 

the center of a strong expansion fan. The steep gradients in density and pressure 

encountered in such an interpolation could easily cause a pointwise polynomial 

approximation of these variables to be negative within the interval of interest. In 

[26], a positivity check is suggested which requires consistency with the coefficients 

of the Taylor expansion of p{x) and P(x) . We choose instead to set lower bounds 

{Pmin > -Pmin} on these variables, and if the desired interface values at x = x,+i/ 2 do 

not satisfy

P(a'«'+l/2) ^  Pmin i P { x i+1/2) ^  Pmin > (5.40)

then the degree of the reconstruction polynomial is locally reduced. If it is not 

possible to determine {pmin > -Pmin} from a priori knowledge of a given problem,
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then these values must be arbitrarily set to some values which are small relative to 

the scale of the problem. Experience suggests that the positivity condition itself 

is not as important as ensuring that the manner in which it is enforced enables 

the numerical scheme to remain conservative. This is accomplished by the local 

reduction in the degree of polynomial interpolation.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 

Numerical Experiments

We present in this chapter several examples of numerically computed solutions 

using our two-dimensional ENO scheme as well as its various extensions. We have 

performed experiments on scalar equations in order to test for the computational 

order of accuracy, and for problems testing our extension to hyperbolic systems we 

solve the two-dimensional Euler equations of gas dynamics. The solutions we obtain 

for the Euler equations represent the first successful application of high-order ENO 

schemes to boundary-value problems with solid walls.

6.1 Linear Advection

In order to test the scheme (5.12) for its accuracy, we solve the two-dimensional 

linear advection equation

+ ux +  uv = 0 , t > 0 , (6.1a)

with initial data

u(x,y.O) = \  cos jr(x + y) +  §.  (6.1b)

The solution of (6.1) is 2-periodic in x and y for all time. By restricting our 

computational domain to —1 < x , y  < 1, we thereby make the boundaries 2- 

periodic also, effectively removing them from consideration. We note here that 

even though we are solving a linear equation, the scheme (5.12) applied to (6.1a) is
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still non-linear, due to the adaptive stencil algorithm of the reconstruction operator 

R 2.

The exact solution of (6.1) can be easily calculated one-dimensionally in terms 

of the variable £ = z + y , and can be written

u(x, y,f) = \  cos 7r (x + y -  2t) +  |  . (6.2)

However, because we computationally solve (6.1) on a Cartesian grid, our applicar 

tion is truly two-dimensional. We further emphasize the two-dimensionality of the 

numerical solution by discretizing the computational domain so that Ax ^  A y .

Since the solution (6.2) is smooth for all time, we apply our scheme for one 

period in time. We assume that our scheme is stable under the “conventional” 

explicit time-step restriction, which in the scalar case is given by

At = PFT_________ Ax Ay__________
maxu ( |/'(u) | Ay + |fl'(u) | A x) ’

where, for our purpose, “CFL” is a positive number bounded above by the stability 

limit of the chosen time discretization in (4.34). In this particular test case, we 

choose CFL =  2/3. The number of iterations required to reach t = 2.0 on a given 

grid is high enough to expect a significant accumulation of error.

We have measured solution errors on five consecutively refined meshes for the 

scheme (5.12) for the orders of accuracy r =  1,2,3,4. Though good results were 

obtained in all four cases, we are particularly interested in the higher-order cases 

r = 3 and r =  4. These errors are presented in Table A, and are calculated with 

respect to the Loo and L\ norms. We use rc to denote the “computational order of 

accuracy.” This value is calculated by assuming a linear accumulation of error as 

in (5.13), and is computed by

=  In {ehJ e hi)
l n ( W M  ’
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TABLE A

Solution Error for IVP (6.1) 

t =  2.0 CFL =  |

L0o ERROR

Grid r =  3 re r =  4 re

8 x 12 1.559 E-l 8.764 E-2

16x24 2.331 E-2 2.74 1.021 E-2 3.10

32 X48 3.002 E-3 2.97 1.239 E-3 3.04

64x96 3.749 E-4 3.00 1.390 E-4 3.16

128 x 192 4.666 E-5 3.01 1.544 E-5 3.17
1

Li ERROR

Grid r =  3 re r  =  4 re

8 x 12 3.890 E-l 2.078 E-l

16x24 5.678 E-2 2.78 1.605 E-2 3.69

32x48 7.627 E-3 2.97 1.764 E-3 3.20

64 X96 9.130 E-4 2.99 1.237 E-4 3.82

128 x 192 1.142 E-4 3.00 8.658 E-6 3.84
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where e* is the solution error measured on a grid of mesh-width h . The exact and 

computational solutions are compared by cell-centered pointwise output. We see 

“one less order” of accuracy in the norm for r  =  4. We therefore expect that 

there are points in the solution where the reconstruction stencil is discontinuous, 

as referred to in Section 5.3. However, the third-order error for this particular 

problem is uniform.

6.2 Burgers Equation

We now test a nonlinear equation, namely the two-dimensional Burgers equation

+ ( \  u2 ) x  + ( |  «2)» =  0 , t > 0 , (6.3a)

again with the initial data

u(x,y,0) =  |  cos 7r(x +  y) +  | .  (6.3b)

As in the previous example, we solve the IVP (6.3) on -1 < x ,y  < 1 and 

again apply periodic boundary conditions. In this case, due to the non-linearity 

of equation (6.3a), gradients immediately begin to steepen for t > 0 , until a shock 

eventually forms at time t =  1 /n . We apply the scheme using a CFL number of 

3/4, up to t =  0.15, when the solution remains smooth. Table B illustrates the 

accumulated errors for this test case for r = 3 and r = 4. The exact solution is 

computed by using Newton-Raphson iterations to solve the characteristic relation

u(x,y,t) =  |  cos 7r(x + y -  2ut) + \  . (6.4)

In this test case, we do notice the “drop” in the order of accuracy, with respect

to the Loo norm, in the third-order case as well as for r = 4. The solution was

then computed to and past the point of shock formation, with no visible oscillatory 

behavior near the discontinuity.
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TABLE B

Solution Error for IVP (6.3) 

t =  2.0 CFL =  f

Leo ERROR

Grid r =  3 re r =  4 re

8 x 12 3.765 E-2 2.632 E-2

16 x 24 9.549 E-3 1.98 4.373 E-3 2.59

32 X48 2.111 E-3 2.18 4.192 E-4 3.38

64x96 4.264 E-4 2.31 4.374 E-5 3.26

128 X 192 8.988 E-5 2.25 4.361 E-6 3.33

L\ ERROR

Grid r =  3 re r =  4 re

8 x 12 4.938 E-2 3.010 E-2

16x24 8.661 E-3 2.51 3.834 E-3 2.97

32x48 1.237 E-3 2.81 3.245 E-4 3.56

64x96 1.844 E-4 2.75 2.497 E-5 3.70

128 x 192 2.783 E-5 2.73 1.968 E-6 3.67
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6.3 M ach 3 Stepped Inlet

Our next numerical experiment involves the solution of the two-dimensional Euler 

equations of gas dynamics (5.29) in a Cartesian frame of reference. We take our 

test case from [56].

A simple two-dimensional inlet with a step is installed onto a uniform Cartesian 

grid, and the problem begins with a uniform Mach 3 flow directed towards the step, 

from left to right. We assume the height of the inlet’s entrance to be one length 

unit. The inlet is then three units long, and the step is located 3/5 unit from 

the entrance and is 2/5 unit high. With the physical time adjusted to this length 

scale, the solution reaches a steady state at approximately t =  12.0. However, the 

structure of this steady state is relatively uninteresting, and therefore we compute 

the solution in a time accurate manner up to t =  4.0, when the flow-field attains 

a complicated shock structure. A third-order time progression is shown in Figures 

16a-f on a 120 X 40 grid, using 30 equally spaced density contours.

At the problem’s outset, we assume that the inlet is filled with air which we 

model as an ideal gas, with 7  =  1.4, with normalized initial free-stream conditions

Poo = 1.4 , Poo = 1-0, Uoo = 3.0, «oo =  0 . (6.5)

The supersonic inflow boundary condition is specified by (6.5) and held fixed. 

Because the outflow is supersonic, the exit boundary condition has no effect on the 

flow, and therefore we simply assume all gradients to vanish at this boundary. At 

the walls, we apply the tangency condition

?  • ft. =  0 , (6.6)

where hw is the unit vector normal to a given wall. The nature of this solution 

is such that the corner of the step is the center of a rarefaction fan, and hence 

is a singular point of the flow. We therefore apply a special treatment at this
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MACH 3 STEPPED INLET

( Third-Order ENO )

Figure 16a. Density t =  0.5

Figure 16b. Density t =  1.0

Figure 16c. Density t =  1.5
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MACH 3 STEPPED INLET

( Third-Order ENO )

Figure 16d. Density t = 2.0

Figure 16e. Density t =  3.0

Figure 16f. Density t =  4.0
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corner, as described in [56] in order to avoid large numerical errors generated in the 

neighborhood of this point which would hinder our qualitative comparison.

Since we approximate the required “Riemann fluxes” by Roe’s method, the 

nature of this particular problem requires that we modify these fluxes with an 

entropy correction. We refer here to the expansion fan centered at the corner of the 

step. As the sonic line within this nearly steady rarefaction is virtually aligned with 

the computational mesh, the directional application of Roe’s method will yield an 

“expansion shock” in this area of the flow. This unphysical solution arises from the 

fact that, in the x-direction, the eigenvalue A1 (17) = u —c passes from negative to 

positive values near the sonic line (See Section 3.4). It is suggested in the literature 

that when

Ak{UL) < 0 < Afc(l/*) , (6.7)

we require that the magnitude |A*(i7)| of the average eigenvalue be no less than 

some specified distance from zero (See e.g. [22,16,24]). In our calculation, we will 

use an entropy fix suggested by Harten [21]. As it applies to the general “Roe flux”

1 i i  tn

F r o e (Vl,Vr ) = j [ F ( E y  + f (£ M ]  -  J  £ * ‘ 1**1**. (6.8)

we replace any |A*| in this expression which might locally satisfy (6.7) by a value ak 

which is dependent upon the difference in the left and right characteristic speeds, 

in particular,

. _  (A * ( t W - * ‘ ) i m )l +  ( t >~ m ) ) l > t (P'«)[ fa Qa\
'  1 1

It was found that this correction does an excellent job of accurately accounting 

for the spread of the expansion around the step’s corner. It was also found, however, 

that another slight modification had to be made, due to the ability of our scheme 

to capture shocks so narrowly. The numerical instabilities associated with strong, 

stationary shocks are well known (See [56]). In our case, by the time £ — 3.0, the
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Mach stem at the top wall as well as the base of the bow shock are moving very 

slowly (Figures 16e-f). Since the shocks in these areas are also very narrow and 

nearly aligned with the mesh, it was found that numerical instabilities would arise, 

most notably an unphysical kink in the Mach stem. We therefore sought to increase 

the scheme’s dissipation in these areas in order to slightly broaden such shocks. Our 

Roe flux (6.8) is then modified for this calculation by setting

JA1! =  max (&*,£) (6.9b)

where a* is (6.7) and £ is a small parameter.

We implement the scheme as detailed in Section 5.7 with the modifications 

mentioned above, using a CFL number of 0.8 on a 120 x 40 grid, and e =  0.1 in 

(6.9b). We present second- and fourth-order accurate solutions at t — 4.0 in Figures 

17a-d, choosing density and Mach number as the variables of comparison. Both 

variables are plotted using thirty equally spaced contours. Sharper discontinuities 

are the most notable improvement in the fourth-order case, particularly the slip line 

emanating from the triple point near the top wall. The Mach stem in this area is 

also more correct in its length and its position upstream. The weak shock from the 

corner of the step is also more pronounced in the fourth-order case, as is the other 

weaker slip line formed as this shock intersects the shock reflecting from the top 

of the step. This weaker slip line is virtually undetectable in the the second-order 

accurate solution on this computational mesh.

Because there is a tendency for less dissipative schemes to exhibit more numerical 

noise in the presence of strong stationary shocks on fine grids, we have tested our 

fourth-order scheme on a finer grid as well. Indeed, the instabilities arising from 

the narrow capturing of nearly steady shocks aligned with the grid were found to be 

more prominent on a finer computational mesh. Figures 18a-d display the results 

at t =  4.0 of a fourth-order solution on a 240 x 80 grid, with 50 contours. The 

only aspect of our numerical application which we have changed for this finer mesh
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STEPPED INLET

Mo, = 3.0

m

Figure 17a. Density ( 2nd-order ENO )

Figure 17b. Density ( 4th-order ENO )
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STEPPED  INLET

Moo = 3.0

£ J  Figure Mach No. ( 2nd-order ENO )

Figure 17d. Mach No. ( 4th-order ENO )
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is to set e = 0.2 in (6.9b). The quantity “Entropy” which is plotted in Figure 

18d is the entropy-like quantity In ( P/ p1) . Even with the added dissipation, it is 

this plot which displays the presence of the slight kink in the Mach stem. As the 

entropy generated by this instability propagates downstream, it reveals itself in the 

significant amount of “flag-waving” present in the slip line.

6.4 M ach 3 Shock Wave Over an Obstacle

We consider now an extension of the Euler equations (6.4) to a curvilinear co­

ordinate system. For this purpose, let

x = £ , 0 < r , < H  ,

V =
' V , 0  < £ < a  (6 .1 0 a)

rj + A(ri)[cos(B£ + C) + l ] , a < t < b  
rj , b < £ < L  ,

represent the relationship between a point (z, y) in physical space and a point (£, rj) 

in the rectangle [0, L] x [0, H \ . Now, if

0  = 7 , * =  = ~j~ , <? =  —2ir, (6 .1 0 b)
4 4 h

£  = ^ .  A M  =  ^ ( " - » ) .  (6.i0c)

then by the transformation (6 .1 0 ), we can generate a curvilinear mesh whose scale 

is exhibited in Figure 19a.

We now assume the curve determined by r? =0 to be a solid surface, and consider 

the motion of a strong shock toward the obstacle represented by the curved portion 

of this surface (Figure 19b). We wish to calculate the flow-field as determined by 

the solution of the Euler equations, which we solve in curvilinear co-ordinate form 

(See Section 5.6). For this experiment, all of the grid quantities necessary for the 

curvilinear flux computation (5.25) are evaluated exactly from the transformation 

(6.10).
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Figure 19a. Curvilinear mesh generated by the transformation (6.10).

Figure 19b. Initial conditions for a shock wave over an obstacle.
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Our initial conditions are the two constant states U0 and Uy which determine a 

normal shock whose shock Mach number is M s=3.0, in air. This shock is initially 

positioned along x=x&, between 0 and L/4, as in Figure 19b. We normalize these 

conditions with respect to the still-air initial state Uq . These conditions are

po =  1.0, Pq == 1.0, tto =  uo =  0 . (6.11)

Using these conditions and the shock Mach number M s , we can then determine 

the state Uy by the the Rankine-Hugoniot jump condition.

We note here that our mesh is not orthogonal, thereby providing a more general 

test of the curvilinear extension of our scheme. Furthermore, due to the significant 

amount of curvature posed by the geometry and the strength of the shock wave, this 

test is also quite demanding. Though this continuous curvature inhibits us from 

being able to predict the solution a priori, we can nonetheless expect the flow-field 

to exhibit certain characteristics as the shock travels over this body. For instance, 

there will be a compression near the base of the obstacle as the shock strikes, 

followed by a subsequent reflection. As the incident shock then passes over the top 

of the body, the fluid will expand, thereby weaking the incident shock and causing 

it to curve. By Crocco’s theorem (e.g. [37]), once we have curvature in a shock, we 

can expect vorticity to be induced into an otherwise irrotational flow-field.

Provided we ensure that the entire reflection remains within the limits of the 

grid, the boundary conditions are relatively simple. The initial conditions U0 ,Uy are 

held constant on the left and right boundaries, respectively. The linear degeneration 

in ti of the grid’s curvature to a straight line at rj = H  makes the far-field condition 

a simple matter of setting normal gradients to zero. On the solid surface, the 

tangency condition is imposed. We apply our scheme in its curvilinear version for 

350 time steps using a CFL of 0.8 on a 120 x 80 grid. Figures 20a-d depict the time 

progression of our solution with regard to density, while Figures 20e-f then show 

the pressure and velocity fields of the final calculation. Here we display 30 equally

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M ACH 3 SHOCK WAVE OVER AN OBSTACLE

( Third-Order ENO )

Figure 20a. Density 100 At

Figure 20b. Density 200 At
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M ACH 3 SHOCK WAVE OVER AN OBSTACLE

( Third-Order ENO )

Figure 20c. Density 250 At

Figure 20d. Density 350 At
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M A CH  3 SHOCK WAVE OVER A N  OBSTACLE

( Third-Order ENO )

Figure 20e. Pressure 350 A t

Figure 20f. Velocity magnitude 350 At
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spaced contours for all six plots. The curvature of the incident shock as well as 

evidence of the presence of vorticity are apparent. On the downwind side of the 

obstacle, the flow becomes quite complex. We notice what appears to be another 

shock and a quantitative inspection in this flow area reveals a region of separated 

flow.

In order to “test” the validity of this coarse grid computation we performed 

the identical experiment on a 240 x 160 grid, the results of which are in Figures 

21a-c. The flow variables of density, pressure, and velocity magnitude are displayed 

after 750 time steps, with 75 equally spaced contours. The smaller shock on the 

downwind side of the body is now apparently a detached shock, and the velocity 

vector plot in Figure 21-d clearly shows the flow separation.

6.5 M ach Reflections

Again, we solve the two-dimensional Euler equations of gas dynamics, this time 

as the solution pertains to the reflection of a moving shock wave from an inclined 

wall. The self-similar nature of such a solution lends itself to a rigorous analysis 

which is well documented in the literature (e.g. [27]), and we therefore omit any 

general discussion of this phenomenon. These oblique shock reflections have been 

the subject of extensive experimental and computational research and the interested 

reader is referred to [9,10,57] and the references therein.

Our problem begins with a plane shock, whose Mach number we denote by 

M s , which is moving into still air toward a wall inclined by an angle 0W to the 

direction of the shock’s motion as shown in Figure 22a. The flow orientation is 

chosen to facilitate comparison with existing experimental interferograms. The 

problem becomes truly two-dimensional when the shock encounters the wall and 

forms a reflection whose structure can be quite complex. Analysis shows that the 

resulting similarity solution can be entirely determined by the values Ms and 6W.
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M ACH 3 SHOCK WAVE OVER AN OBSTACLE

( Third-Order ENO )
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Figure 21d. Detail -  Velocity vectors in region of flow separation (See insert).
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FigUrC 22" “ ‘iaI « -  Mach reflection probiem

Figure m . Computational grid for the Mach reflection prohiem
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We examine two cases, both of which are double Mach reflections. The wall 

angle Bw 13 40 degrees in both cases, and the shock Mack numbers we examine 

are 2.87 and 3.72. This type of reflection exhibits a complex structure containing 

shock diffractions and slip lines, and is particularly demanding of any computational 

algorithm. For this reason, these computations are most commonly performed 

with the use of a self-similar transformation which effectively removes the time 

dependence of the solution. The resulting equations that are then solved resemble 

the steady Euler equations with the addition of source terms. However, because 

we wish to examine the temporal as well as the spatial accuracy of our scheme, we 

choose to compute our solutions in a time-accurate manner.

In addition to the demanding nature of the solution itself, such computations 

are also made difficult by geometric concerns, largely due to the presence of a sharp 

corner. Though there is no way to rid ourselves of the corner itself, we attempt to 

mitigate its presence by using a curvilinear grid transformation. A portion of our 

particular mesh is shown in Figure 22b, and is generated by a Schwarz-Christoffel 

transformation. We could use this transformation to derive all of the necessary grid 

quantities referred to in Section 5.5. However, we would like to test our scheme 

in its most general form. Therefore, given a collection of points generated by this 

transformation, we calculate all of our mesh variables from the approximate grid 

lines we generate by polynomial interpolation.

Our initial conditions are the two constant states Uo and U\ which determine the 

desired incident shock. We normalize these conditions with respect to the still-air 

initial state Uq . These conditions then are

Po = 1.0, Pq = 1.0 , Uo = Vo = 0 . (6-12)

Using these conditions and the shock Mach number Ms , we can then determine the 

state Ui by means of the Rankine-Hugoniot jump condition. These initial states 

are then conservatively interpolated onto the computational mesh.
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As in the preceding test case, the boundary conditions are relatively simple 

provided we ensure that the entire reflection remains within the limits of the grid. 

The initial conditions Uq ,Ui are applied on the left and right boundaries, while 

the only concern at the far-field is adequately accounting for the movement of 

the plane shock. Once again, the tangency condition is imposed on the wall. We 

apply our scheme in its curvilinear version to the two test cases for 400 time steps 

using a CFL of 0.8 on a 180 x 40 grid. Our purpose is not only to compare our 

numerical solutions by their order of accuracy, but also to compare each of them 

with experimental results, which we obtain from [11].

Figure 23a is an interferogram resulting from an experiment designed to photo­

graphically exhibit the density structure for the case Ms =  2.87. (The alphabetical 

labeling of this picture is not relevant to our discussion.) Density contour plots for 

the second- and fourth-order numerical solutions are compared in Figures 23b-c. 

Overall, crisper discontinuities are observed in the fourth-order solution. The shock 

structure itself is also more correct in Figure 23c, in that the more perpendicular 

orientation of the incident Mach stem with respect to the wall is more in line with 

the experimental observation. The “toeing out” of this Mach stem in Figure 23b 

appears to be due to the poorer resolution of the contact discontinuity emanating 

from the primary triple point.

In Figure 23d, we plot the fourth-order density solution on the wall in order to 

make a comparison with experimental measurements. The z-axis is scaled by the 

distance L from the incident Mach stem on the wall to the corner, the Mach stem 

location being x = 0, and the the corner at x  = 1. Overall agreement with the 

experimental data is as good if not better than the similar comparison in [11] in 

which the numerical solution was achieved in a self-similar fashion and on a much 

finer grid.
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M ACH REFLECTION

M s = 2.87 ©„ =  40°

Figure 23a. Experimental Isopycnics ( Ref. [11] )

Figure 23b. Density Contours ( 2nd-order ENO )

Figure 23c. Density Contours ( 4th-order ENO )
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WALL DENSITY

Ms =  2.87 ©«, = 40°

4th-order ENO 

o Experimental Data (Ref. [11])

8.0

6.4

4.8

3.2

1.20.92-.20 .08 .36 .64
x
L

Figure 23d. Comparison of 4th-order ENO solution and experimental data
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In Figures 24a-d, we have the analogous results for the case Ms =  3.72. In 

Figure 24b, the resolution of the contact discontinuity is much worse than in Figure 

23b, causing a serious error in the formation of the incident Mach stem. This type 

of error has been experienced by other authors (e.g. [43]) when applying Roe’s 

approximate Riemann solver in the presence of strong shear. There is no such 

problem, however, in the fourth-order case (Figure 24c) where the resolution of the 

contact discontinuity is excellent. Also, the density wall plot in Figure 24d appears 

to be an improvement over the similar result in [II].

Finally, we perform a third-order calculation for this test case on a 360 x 80 grid. 

Plots for the variables density, pressure, and Mach number are shown in Figures 

25a-c, using 30 equally spaced contours. This calculation was rim for 800 time steps 

using a CFL of 0.8.
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MACH REFLECTIO N

M s  = 3.72 0 „  =  40°

Figure 24a. Experimental Isopycnics ( Ref. [11] )

Figure 24b. Density Contours ( 2nd-order ENO )

Figure 24c. Density Contours ( 4th-order ENO )
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WALL DENSITY

Ms = 3.72 ©„ = 40°

4th-order ENO 

o Experimental Data (Ref. [11])
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Figure 24d. Comparison of 4th-order ENO solution and experimental data
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MACH REFLECTIO N  

Ms = 3.72 ©« =  40°

360 x 80 Grid

Figure 25a. Density ( 3rd-order ENO )

Figure 25b. Pressure ( 3rd-order ENO )

Figure 25c. Mach No. ( 3rd-order ENO )
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Chapter 7 

Concluding Remarks

We conclude this dissertation with a few remarks on the accomplishments of our 

research, as well as some comments concerning a possible future for the use of 

high-order shock-capturing methods.

We have developed a rigorous finite-volume formulation for high-order ENO 

schemes in two spatial dimensions. Moreover, this development is complete in the 

sense that we have carefully considered the important issues which distinguish two- 

dimensional problems from those in one dimension. Specifically, these issues include 

the application of our scheme to boundary-value problems, non-trivial geometries, 

and solid walls. We further note that our scheme can be further extended to three 

dimensions in a straight-forward manner, in that there is nothing inherent in our 

two-dimensional formulation which would prohibit this extension.

Numerical test cases involving the two-dimensional Euler equations of gas dy­

namics have shown our scheme to be robust in the sense that certain types of flow 

phenomena which rannot exist in one dimension have been exhibited. We refer here 

to such phenomena as the slip lines, vorticity, and separation regions in our various 

examples in Chapter 6.

The outlook is hopeful for the usefulness of shock-capturing schemes which are 

of formal high-order accuracy in more than one spatial dimension. For instance, 

the comparison in Figures 17a-d suggest that these types of schemes might provide
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better results than are currently available in scientific areas where the resolution 

of weak waves is crucial, such as in the area of acoustics. Furthermore, when 

compressible flow solutions are also required to be viscous, these schemes could 

play a major role in the computation of such flows, in which there are regions 

containing many local extrema, particularly when such flows also develop shocks, 

e.g. shock-turbulence interactions.
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