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A B ST R A C T
ERROR CO RRECTIN G  CODES ASSOCIATED WITH 

GENERALIZED HADAMARD MATRICES OVER GROUPS

Iem H. Heng 
Old Dominion University, 1998 
Director: Dr. Charlie H. Cooke

Classical Hadamard matrices are orthognal m atrices whose elements are ± 1 . It 

is well-known tha t error correcting codes having large m inim um  distance between 

codewords can be associated with these H adam ard matrices. Indeed, the success 

of early Mars deep-space probes was strongly dependent upon this communication 

technology.

T he concept of H adam ard matrices with elem ents drawn from  an Abelian group 

is a  natural generalization of the concept. For the  case in which the dimension 

of th e  m atrix  is q and th e  group consists of the p-th roots of unity, these gener

alized Hadam ard m atrices are called "Butson Hadam ard M atrices B H { p , q y . first 

discovered by A.T. Butson [6].

In this dissertation it is shown th a t an error correcting code whose codewords 

consist of real numbers in finite Galois field G f( p )  can be associated in a  simple 

way with each Butson Hadam ard m atrix  B H ( p , q ), where p > 0 is a prime number. 

Distance properties of such codes are studied, as well as conditions for the existence 

of linear codes, for which standard decoding techniques are available.

In the  search for cyclic linear generalized H adam ard codes, the  concept of an M- 

invariant infinite sequence whose elements are integers in a finite field is introduced. 

Such sequences are periodic of least period, T , and have the interesting property that
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arb itrary  identical rearrangements of the elements in each period yields a periodic 

sequence with the same least period. A theorem  characterizing such M-invariant 

sequences leads to  discovery of a  simple and efficient polynomial m ethod for con

structing  generalized Hadamard matrices whose core is a linear cyclic m atrix and 

whose row vectors constitute a  linear cyclic error correcting code.

In addition, the problem is considered of determ ining param eter sequences {£„} 

for which the corresponding potential generalized Hadamard matrices B H ( p , p t n ) 

do not exist. By analyzing quadratic Diophantine equations, new methods for con

structing  such param eter sequences are obtained. These results show the rich num 

ber theoretic complexity of the existence question for generalized Hadamard m atri

ces.
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Chapter 1

Introduction

1.1 Hadamard M atrices

The matrix H  =  H(q,  r)  is a Hadam ard m atrix  in the classical sense provided

• H  is of dimension r  x  r.

•  The elements of H  are ±1.

•  H  * HT = H T - H  =  r l r , where H T is the transpose of H.

There is a long history of the theory of such m atrices, with applications in alge

braic coding theory, com binatorial design, and weights and measures [13], [17], [30], 

[31], [32] and [33]. Reference [33] contains an  in-depth survey of these interesting 

matrices.

A first generalization of the concept was discovered by A .T . Butson [5], who 

defined what is called a ‘‘Butson Hadamard m atrix  B H ( q , r ) r> having the following 

attributes:

The journal used as a model fo r  this dissertation is Applied Math Letters.

1
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•  H  =  BH(q,  r) has dimension r  x r.

•  The elements of H  are q-th roots of unity, which lie in the cyclic group

G =  {1, w , w 2, ..., wq~l : wq =  1}.

•  H  ■ H “ =  H m ■ H  =  r / r, where is the conjugate transpose of H.

Clearly, the case q =  2 represents the classical H adam ard matrices.

In this dissertation interest is directed to the case in which q is a  prime num 

ber greater than two. A generalization of the concept which encompasses both the 

classical case and the complex Butson Hadamard matrices B H ( q . r )  is that of gen

eralized Hadamard matrices over general Abelian group G [6]. Such matrices are 

denoted by GH{g,X)  or GH( G,n) ,  n =  gX, and have the following attributes:

•  H  =  GH( g , A) has dimension n  x n,  where n =  gX.

•  The elements of H = GH(g , A) are members of Abelian group G, 

whose order is |G'| =  g.

•  Homogeneity-Under group operation ®, the vector difference of two arbitrary rows 

of H  satisfies a uniformity property: Each element of the group G appears A tim es.

Observe that for multiplicative groups, the analogy of an element difference is 

a — b <— ► ab~l . Clearly, when H  — G H ( g , A) has elements drawn from the complex 

cylic group Cp =  {1, w, w2, ..., wp~l : wp =  1}, then H  =  BH(g , gX)  is also Butson 

Hadamard.

Generalized Hadamard m atrices have been studied by several authors[Brock [4], 

Butson [5] and [6], Dawson [9], de Launey [10], [11] and [12], Drake [13], Jungnickel 

[17], Street [33]]. Brock and Street use the following definition or some closely 

related form:
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A generalized Hadamard m atrix  H  =  GH{As,G)  over the group G  of order s is a 

As x As m atrix  H  =  [AtJ] whose elements satisfy

(i) hij €  G  for all 1 <  i , j  < As,

(” ) Hit4i hikh~£ = 12geG ^9  whenever i ^  j ,  where the sum m ation is in the group 

ring associated with G.

Certainly, if G is the additive group from a  finite field, J2geG 9 =  0- Thus. Brock’s 

definition am ounts to a slight generalization of the previous. In the present work, 

Brock’s generalization will not be a m ajor concern.

1.2 E xistence o f Hadamard M atrices

It is known [22] that a necessary condition for existence of the classical Hadamard 

matrices B H ( 2 , r )  is th a t r  =  1,2, or a m ultiple of 4k,  where k  >  0 is an integer. 

It is a dem onstrated fact [24] that BH('2,4k)  exists for each 0 <  k  <  106. and a 

classical Hadam ard conjecture is that existence occurs for all integers k > 0. No 

counter exam ple to this conjecture is presently known.

For prim es p > 2, the  situation is quite  different. Butson [6] establishes th a t 

a  necessary condition for existence of H  =  BH(p  > 2. r) is th a t r  =  pt, where 

t > 0 is an integer. T he condition is also sufficient [5], for th e  special case of 

BH{ p >  2 ,2 mpk), provided 0 <  m  < k,  where k > 1 and m are integers.

It has been conjectured fairly recently [3] that BH(p , p t )  exists for all primes 

p > 2 whenever t > 0 is an integer. However, instances previously have been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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discovered where this generalized Hadam ard conjecture fails [7]. The most recent 

generalized Hadamard conjecture [10] which appears to  have m erit is that B H { p , n) 

exists only if /„  is H erm itian congruent to n /n, where n =  pt.

As the circumstances for non-existence of generalized H adam ard m atrices are 

not completely known, one aim of th is dissertation will be to  obtain param eter 

sequences {<„} for which the corresponding potential generalized Hadamard m atrices 

B H ( p , p t n ) fail to exist.

1.3 Statem ent of Purpose

T he investigations of th is dissertation are directed to  the general case of H adam ard 

m atrices over groups, w ith special consideration given to the question of non-existence, 

in general, and applications, in particu lar to th e  area of algebraic coding theory.

T he first focus of interest is directed to techniques for constructing param eter 

sequences {rt} such th a t the infinite sequence of potential generalized H adam ard 

m atrices B H (q ,  rjt) can be proven non-existent for k  €  A', where A' is a countably in

finite set. Techniques exploited consist chiefly of methods for proving non-existence 

of nontrivial integer solutions to homogeneous Diophantine equations

ax2 -f by2 +  cz2 =  0. (1.3.1)

T he second area of emphasis is application of Butson?s Hadam ard m atrices to 

the  discipline of algebraic coding theory. It is shown that for prim es p > 0 an  error
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correcting code whose codewords consist of real numbers drawn from a finite Galois 

field G f { p ) can be associated in a  simple way with each existing Butson Hadamard 

m atrix  BH(p , p t ) .  Distance properties of these codes, as well as conditions for 

existence of linear codes, are investigated. By introducing the concept of an M- 

invariant periodic infinite sequence whose elements are integers in a finite field, an 

efficient polynomial method for constructing H adam ard matrices which possess an 

associated linear cyclic code is made posssible.

1.4 Basic Literature Survey

Although necessary conditions for existence are known, for given integers q and r 

there are no general methods for proving non-existence of generalized Hadamard 

m atrix  BH(q , r ) .  However, there are several param eter dependent methods for 

investigating specific cases. A .T. Butson [5] determ ined th a t for primes p > 2 a 

necessary condition for the existence of B H { p  >  2, r) is th a t r  =  pt. where t is a 

positive integer. In addition, he showed th e  condition is sufficient for the existence 

of Hadam ard m atrix  BH{p  >  2 ,2mp*), provided 0 < m < k ,  where k > 1 and m  are 

non-negative integers. Existence or non-existence for th e  case m  > k is generally an 

open question.

Butson [6] subsequently established th a t the  existence of a generalized Hadamard 

m atrix  H (p, r) is equivalent to  th e  existence of Hadam ard exponent matrix, E,  whose 

elem ents are in Galois field Gf{p) .  Here, if H  is w ritten in standard form, then the 

first row and first column of E  are all zero. W ithout th e  first row and first column

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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of E,  the remaining elem ents constitute a  square subm atrix, Ec, called the core of 

H.  In order to  determ ine a  cyclic core E c for the case where H(p, pn) is considered, 

Butson introduced the concept of constructing a  relative difference set. He showed 

that the existence of a relative difference set is equivalent to  the existence of cyclic 

m atrix E c which constitutes a cyclic core for matrix H( p,pn). However, Butson’s 

method for constructing cyclic m atrix E c by means of a relative difference set is not 

very practical as m atrix size increases. In the present dissertation, a  polynomial 

method is introduced for constructing a  cyclic m atrix in an efficient manner.

Whereas Butson studies the concept of the existence of Hadamard m atrices, 

Warwick de Launey [10] focused upon a m ethod for establishing non-existence. He 

was able to exploit the num ber theoretic character of the Hadamard determ inant to 

establish non-existence in certain special cases, for groups whose orders are divisible 

by 3, 5 or 7. In particular, the GH{3,5), G H ( 5,3) and GH(  15,1) do not exist.

Moreover, de Launey [11] established th a t the existence of generalized Hadam ard 

matrices G H ( n , G)  developed modulo N  is equivalent to  the existence of a solution 

to a certain equation over the group ring of G  x N  over the integers. Here, G  and 

N  are finite groups of order |G| =  g and \N\  =  n,  respectively. These m atrices are 

equivalent to  relative difference sets, R D S ( g ,  n,  n ,0 , n/g) ,  modulo the direct sum of 

N  and G. By analyzing G H ( q , EA(q))  developed modulo EA(q) ,  and GH( q2, G) de- 

vloped modulo EA(q2), where q is an odd integer and EA(q)  denotes the elem entary 

Abelian group of order q, he was able to  come up with some non-existence results. 

Indeed, in all but 15 of th e  108 cases w ith  n <  50, the existence of a G H ( n , EA{q)) ,
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developed modulo E A( n ) ,  is either proved or disproved.

Furtherm ore, de Launey [12] determ ined that for Abelian groups G , only group 

Hadam ard matrices of type  p5 for Cv x ... x Cp exist. A group H adam ard m atrix  H  is a 

generalized Hadamard m atrix  whose rows and columns form a group. He also defined 

a group Hadamard m atrix  as reducible if there exist two group Hadamard matrices 

of smaller order such th a t H is equivalent to Hi  ® H 2 , denoted as H  ~  H\  x /f2; 

otherwise the group Hadam ard m atrix is said to be irreducible. Two generalized 

H adam ard matrices over an Abelian group G are said to be equivalent if one can 

be obtained from the o ther by perm uting the rows and columns or multiplying rows 

and columns by element of G.  Through de Launey’s concept of irreducibility, he is 

able to  count what he calls the p(m, t )-Hadamard matrices.

On the other hand, Bradley W. Brock [4] generalized the W itt cancellation law 

for Herm itian congruence and theorems of Hall and Ryser [14] to matrices whose 

elements are members of a general Abelian group. The m atrix equation

H  • H m = H '  • H  =  m l n +  f iJn (1.4.2)

is investigated. Here, H m is a conjugate transpose of H  of order m, Jn is a  square 

m atrix  whose elements are all l ’s, and p is an integer. He obtains a necessary 

condition for the existence of a nonsingular m atrix H  of order m  such th a t H  • H"  =  

m /n +  f i j n. W ith m = n  and ft = 0, Brock’s results yield a  non-existence theorem 

for certain generalized Hadamard m atrices, particularly those of the Butson type.

Deborah J. Street [33] analyzed the  connections between generalized Hadamard

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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matrices, orthogonal arrays and F-squares. By combining known orthogonal arrays 

associated with generalized H adam ard m atrices, several results of Shrikhande [32] 

are extended. In addition, established sets of mutually orthogonal F-squares emerge.

Motivated by an example of R ajkundlia [28] on balanced incomplete block de- 

signs(BIBD), Jennifer Seberry [30] was able to  construct m utually orthogonal F- 

squares from generalized H adam ard m atrices. First, for the case where pr and 

pr — 1 are both prime powers, with r  being an integer, there is a generalized 

Hadamard m atrix  of order pr (pr — 1) w ith elements from the elem entary Abelian 

group Zp x ... x Zp. This result is then used to produce pr — 1 m utually orthogonal 

F-squares F(pr(pr — l);p r — 1).

Jennifer Seberry and H. Kharaghani [19] have investigated the excess of complex 

Hadamard m atrices. The excess of a com plex Hadamard m atrix can be obtained 

as follows: Let H  =  [/*,_,] be a complex H adam ard m atrix  of order n w ith elements 

1, -1, i, —i which satisfies H  © H" =  n /„ , where H~ is the  conjugate transpose 

of H.  Then the excess of H , denoted as cr(H),  is the sum  of all entries of H.  In 

m athem atical term s, if S( H)  = J^ij then  cr(H) = |S ( / f ) |  is the excess of H.  As 

an application there emerges many real H adam ard m atrices of large excess and new 

clsses of Hadamaxd matrices of m axim um  excess.

Furthermore, with W. Holzmann, H. Kharaghani [16] investigated an infinite 

class of H adam ard matrices of order n , where n — 4 is a  perfect square, with an 

excess of riy/n — 4. An exhaustive com puter search indicates that for n  =  40, the 

corresponding m atrix  constructed has th e  m axim um  possible excess in its Hadam ard 

equivalence class. The key to  success of this exhaustive com puter search is s ta r t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

ing the construction using different Golay sequences [34]. There emerges various

interesting classes of H adam ard m atrices.

Following up with th e  idea of a Golay sequence, H. Kharaghani [18] went further

to construct the  class of H adam ard m atrices, with order ( r+ 4 n +  l)4n+lm2, by using
*

the concept of block Golay sequences. Here, 2nm  is the order of Hadamard m atrix 

and r  is the length of a  Golay sequence, where m  and n are block size and length 

of block Golay sequence, respectively. This provides more results on many regular 

complex H adam ard m atrices and H adam ard m atrices of new order.

1.5 Outline o f  Procedure

The purposes of this dissertation are  two-fold: First, to determine m ethods for 

proving non-existence of generalized H adam ard matrices, and second, to investigate 

error correcting codes which can be associated with certain generalized H adam ard 

m atrices of Butson.

In C hapter 2, the subject of generalized Hadam ard matrices over groups is in

troduced. The aim in th is chapter is to  investigate methods for establishing that 

certain param eter sequences {£„} lead to  non-existence of corresponding generalized 

H adam ard matrices G H ( s , t n) over group G  of order s. This work complements 

Warwick de Launey’s approach to non-existence by way of num ber theoretic prop

erties of the Hadamard d eterm inant [10]. T he two investigations, whereas neither is 

exhaustive of all possibilities, together reveal the  rich number theoretic com plexity 

of this existence problem.
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The aim of C hap ter 3 is to investigate error correcting codes which can be as

sociated with generalized Hadamard matrices by means of th e  Hadam ard exponent 

m atrix. In many cases where D is a  difference m atrix , for appropriate variable x

H  = x °  (1.5.3)

is a  generalized H adam ard m atrix, where the row vectors of D  form an error cor

recting code. B oth linear and nonlinear such codes are possible. It is desirable to 

determ ine exactly when linear codes occur.

In Chapter 4 the task  is considered of constructing generalized Hadamard m a

trices whose exponent m atrix, D , has a cyclic core and whose row vectors constitute 

a linear cyclic error correcting code. For such cases the task  of decoding becomes 

particularly simple. By introducing the concept of an M -invariant sequence over a 

finite field, a theorem  which characterizes such sequences aids in determ ining a  sim

ple polynomial m ethod for constructing generalized Hadamard matrices with cyclic 

core. Having th e  polynomial in hand also allows one to determ ine readily which 

relative difference set is associated with the particu lar Hadam ard m atrix, although 

this concept will not be explored fully.

In Chapter 5 the task  is to introduce the concept of M-sequences and circulant 

matrices. After reviewing the basic properties and  theorems sta ted  in Zierler [37], it 

is established th a t every m-sequence is M-invariant. Moreover, because Butson [6] 

does not give a  clear explanation or definition of what the cyclic core of a Hadamard 

m atrix  is, a precursory study of circulant m atrices is accomplished.
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Chapter 2 

Criteria for Non-Existence of 

Generalized Hadamard Matrices

2.1 Introduction

In this chapter attention is focused upon the question of non-existence for general

ized Hadamard matrices over groups. A well-known conjecture of Brock [4] states 

th a t generalized Hadam ard matrix G H {p , h) over group G of prim e order p exists 

only if the matrices /„ and n ln are Hermitian congruent, where n =  ph. T he CRC 

Handbook of Combinatorial Design, 1996 edition, documents some param eter val

ues for which non-existence is known to occur. Here, methods for establishing the 

lack of solutions to quadratic Diophantine equations are used to  prove non-existence 

of G H (p ,h )  for various param eter sequences. The methods exploited complement 

Warwick de Launey’s approach to non-existence via num ber theoretic properties 

of the Hadamard determ inant, which is published in J. Stat. Plann. and Infer-

11
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ence, Volume 11, pages 103-110, (1985). Neither investigation is exhaustive of all 

possibilities.

2.2 Prelim inary Considerations

Let Ca be the  multiplicative group of all complex s th roots of unity. The square 

m atrix  H  =  [/itJ] of order r  over Cs is said to be a  “Butson Hadamard. m a trix ’, 

briefly a  B H (s ,r )  m atrix, if and only if HH"  =  r / r . Here. H "  is the conjugate 

transpose of H.

B H { 2, r) m atrices axe referred to sim ply as H adam ard m atrices (or ± 1  m atrices). 

Such m atrices exist only if r  =  1, 2 o r else r  =  4A:, where k  is a  positive integer. 

Existence has been verified for a t least each and every k < 106, and the classical 

H adam ard conjecture states that existence occurs for each integer k  >  0.

For prim es p  >  2. the situation is quite different. A necessary condition for the 

existence of B H {p  >  2 , r) is that r  =  p t , where t is a  positive integer. This condition 

is also sufficient, for the case of B H {p  >  2,2mpk ), provided 0 <  m  < k, where k  is 

an integer [6].

I t has been conjectured [3] that B H (p ,p t)  exists, for primes p >  2 and all positive 

integers t. However, instances have been discovered where this conjecture fails [7]. 

The m ost recent generalized H adam ard conjecture[6] of any m erit is that H (p. n) 

exists only if /„  is Herm itian congruent to ra/n, where n  =  pt.

In  th is chapter techniques are explored for proving non-existence of infinite se

quences of potential B H (s ,  r*), k  €  K ,  where K  is a  countably infinite set of positive
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integers. Sets K  are identified for which {B H (s . r*) : k (E K }  = <t>. These techniques 

consist chiefly of m ethods for proving non-existence of nontrivial solutions to homo

geneous D iophantine equations

a x 2 4 - by2 +  cz2 =  0 .

2.3 Hadam ard M atrices Over Groups

D efinition 2 .3 .1  Let (G, G) b e  a group o f order g. T (g, k; X)-difference matrix is 

a k x gX m atrix D  =  (d,j) with entries from  G, such that fo r  each 1 <  i < j  < k, 

the multiset

{du 0  d~{1 : 1 <  / <  gX}

contains every element o f G, A times. When G is Abelian, typically, additive nota

tion is used, so that differences du — dji are employed.

Consider the  additive group G  =  {0,1.2} with modulo three arithm etic. Two 

inequivalent (3 ,6 ; 2 )-difference m atrices over G  axe
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A  =

0 0 0 0 0 0

0 0 1 1 2  2

0 1 0 2 2 1

0 1 2  0 1 2

0 2 2 1 0 1

0 2 1 2  1 0

(2.3.1)

and

B  =

0 0 0 0 0 0

1 2 0 2 0 1

1 0 2 2 1 0

0 2 2 0 1 1

2 2 0 1 1 0

2 0 2 1 0 1

(2.3.2)

D e fin itio n  2 .3 .2  A generalized Hadamard matrix G H ( g 1 A) over group G  is a {g.gX; A)- 

difference matrix [7],

A num ber of authors have studied theses matrices [13], [17], [30], [31], [32], and [33].

For a  sum m ary of the known matrices, see Theorem A of Street [33].

Clearly, both difference matrices A  and  B  from (2.3.1) and (2.3.2), respectively, 

are generalized Hadamard matrices G H {3,2), each having an associated Butson 

Hadam ard m atrix  B H {3 ,6 ). This association will now be clarified.
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Theorem  2.3.1 For prim es p > 2, there exists a generalized Hadamard m atrix 

BH(p,pX)  over the cyclic group Cp i f  and only i f  there exists a generalized Hadamard 

matrix GH(p,X)  over the additive group Zp =  {0 ,1 ,2 , ...,p  — 1}. (+).

A generalization of th is result is s ta ted  by Drake [13], whose proof follows from 

results of Butson [6]. This association will be illustrated by example.

Let Cz =  { l ,x ,x 2}, where x  =  e2x,//3 is a primitive cube root of unity. Consider the 

Butson Hadamard m atrices

H  = BH(3 . 6)  = x E

where E  is one of the difference m atrices A , B  from (2.3.1) and (2.3.2), respectively. 

The notation means th a t matrix elem ents obey hi3 =  x e,J.

By calculation, H H m =  6 /;  therefore, H  is a generalized Hadamard m atrix in the 

classical sense. Also, by calculation H  is a  G H (3.2) m atrix with respect to C3 . I'. 

The Hadamard exponent forms (m atrices .4, B  above) have already been cited  as 

G H (3,2) with respect to  the group Z3,© .

The next theorem provides a necessary condition for the  existence of GH[g, X) over 

an Abelian group G,  whose order is \G\ =  g:

Theorem  2.3.2 A G H ( g , A) with n  =  gX odd exists over Abelian group G o f  order 

|G'| =  g only if  a nontrivial solution in integers ( x , y , z )  exists to the quadratic 

Diophantine equation

z 2 =  nx 2 +  (—1 ){t~1)/2ty 2, (2.3.3)
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fo r  every order, t, o f  a homomorphic image o f G.

The proof of this theorem can be found in Brock [4], and it is discussed in Colbourn 

and Dinitz [7].

Corollary 2.3.1 For prim es p > 2, and X > 0 an odd integer, BH{p,pX)  exists 

only i f  there are nontrivial solutions in integers (x , y , z) to both equations

z* = p JU2 +  ( - l ) (' - ‘>/W  (2 .3 .4 )

and

z 2 =  p X x 2 +  if2. (2 .3 .3 )

P roof. If G is an Abelian group of order p > 2. where p is prim e, there exist 

homomorphic images of G of orders t =  l ,p . D

2.4 The Im bedding Problem

D e fin itio n  2.4 .1  Let G be an Abelian group o f order g. with n  =  gX, where X is a 

positive integer. For 0 <  k <  n, a k  x n difference matrix D over the group G  is 

“completablen i f  and only i f  there exists a GH(g,X)  matrix having D as its firs t k  

rows.
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The H adam ard imbedding problem concerns the question of w hether the matrix 

D  can be extended by the process of row addition so as to be com pletable. This 

problem has been studied variously by Beder [3], Brock [4], Drake [13] and others.

D e fin itio n  2 .4 .2  Difference matrix D o f  dimension kx . n ,  where n =  gX, is “locally 

maximal” (in  dimension) if there is no (k  +  1) x n difference matrix which reduces 

to D  by deletion o f a single row. I f  D is a GH(g,X) ,  then it is globally maximal [7J.

It is interesting to  note that there m ay exist locally maximal (g , k; A)-difference 

matrices for which k < gX, even in cases where a (g.gX; A)-difference m atrix  exists. 

For g =  2 and  A =  10, Beder [3] constructs such (± 1) matrices, characterized by 

k  =  8,12,16.

W ith respect to  the group G =  {0 , 1, 2 }, (+ ), by com putational methods the 

present authors have discovered locally maximal difference m atrices Dkxis  with 

k =  7,8 (see Tables 1 and 2 on next page). The observation th a t gcd (7 ,15) =  

gcd(8 ,15) =  1 appears a  stark contrast to  what may be observed in Beder’s (±1) 

difference m atrices; namely, in cases where locally maximal difference matrices 

of dimension Dkxn and Dnxn sim ultaneously exist, gcd(k,n )  ^  1 (for n =  20; 

k  =  8 ,12,16).

This contrasting behaviour leads to th e  likely conjecture th a t G H {3,15) does 

not exist. Actually, this has been known for several years. However, following 

up this conjecture in absence of this knowledge m otivated the present research on 

non-existence of certain GH(g,X).
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Tables 1 and 2 show the  locally maxim al difference matrices over group G  =  { 0 .1.2}, 

(+); previously discussed:

Table 1: (3,7,15)-Difference M atrix

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2

0 0 1 1 1 2 2 0 0 0 1 1 2 2 2

0 0 1 1 2 1 0 2 2 0 2 2 1 1 0

0 0 1 2 2 0 1 1 2 2 1 0 2 0 1

0 1 2 0 2 1 2 0 1 2 1 0 1 2 0

0 1 0 2 2 2 1 2 1 0 0 1 1 0 2

Table 2: (3 ,8 J 5 )-D iffe r en ce  M atrix

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 1 2 1 2 1 2 1 2 0 0 0 0

0 2 1 1 1 1 1 2 0 2 0 2 2 0 0

0 1 2 2 2 0 1 2 1 0 0 1 1 2 0

0 2 1 1 0 2 1 0 2 0 2 1 0 2 1

0 1 2 0 1 2 0 2 0 1 1 2 0 2 1

0 2 0 0 1 2 2 1 1 0 2 2 1 1 0

0 1 0 2 1 2 1 0 2 1 0 0 2 1 2
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2.5 Quadratic Diophantine Equations

We now consider m ethods for establishing non-existence of nontrivial integer solu

tions to  the homogeneous Diophantine equation

a x 2 +  by2 +  cz2 =  0 (2.5.6)

L e m m a  2 .5 .1  I f  a and b o f equation(2.5.6) are integers, then the equation

z 2 = abx2 ±  ay2 (2.5.7)

has nontrivial integer solutions only i f  the reduced equation

a l2 =  bx2 ±  y 2 (2.5.8)

has nontrivial integer solutions.

P ro o f . The result is obvious. If (x , y , z ) is a solution of (2.5.7), of necessity a\z. 

Therefore, let z =  a l , where I is an  integer if z is. E

M e th o d  I:

L e g e n d re ’s T h e o re m : [29]

Let a, b, c be pairwise relatively prim e integers which are squarefree and not all

o f the same algebraic sign. Then equation (2.5.6) has a nontrivial solution in the

integers i f  and only i f —be, —ac, —ab are quadratic residues o f a, b, c, respectively.
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W arwick de Launey [10] has approached th e  non-existence question for general

ized H adam ard m atrices by means of number theoretic  properties of the H adam ard 

determ inant. Basically, he proves the non-existence of m any generalized H adam ard 

m atrices for groups whose orders are  divisible by 3, 5 or 7; for example. GH( 15, C15). 

G H( 1 5 , C3), and G tf(1 5 ,C 5).

T hat his work is non-exhaustive is evidenced by the following result:

T h e o re m  2.5.1 For Abelian groups o f order p, and fo r  odd prim es 

p =  ± 3 (m od 5), GH(p,  5) does not exist.

P ro o f .  Consider the  problem of finding integer solutions to the equation

z2 =  bpx2 ±  py2, (2.5.9)

where p  =  ± 3 (mod 5). This can be done only if one can find integer solutions of

pq2 = ox2 ±  y 2 (2.5.10)

As x 2 =  ± 3 (mod 5) has no solutions, by Legendre’s theorem  neither does (2.5.9) or 

(2.5.10) have nontrivial integer solutions. a

N o te .  Clearly, Theorem(2.5.1) generalizes som e of de Launey’s results.

2.6 R eciprocity
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D e fin itio n  2.6.1 For groups G , H  with \G\ =  g and \ f f  \ = X, potential generalized 

Hadamard matrices GH(g,X) and GH(X,g)  satisfy a reciprocity relation provided 

both exist or both do not exist.

E x a m p le . G H (3,5) and G H (5,3) are reciprocally non-existent, as in each case 

the  pertinent reduced equation is of the form

5a2 =  362 +  c2.

By Legendre’s theorem, this equation has no nontrivial integer solutions (a. 6. c), 

since ± 3  is a quadratic non-residue of o. (The concept of quadratic residues is 

elaborated more completely in Appendix 1.)

By the same approach, the following result can be established:

T h e o re m  2.6.1 Let X be a prim e number. I f  ( — l ) 5̂  A and ( —l ) i 2i  A are both 

quadratic non-residues of 5, or i f  ( — 1 ) ^ 5  and (— 1) 5  are both quadratic non

residues o f X, then GH{5, A) and GH{A, 5) constitute a reciprocally non-existent 

pair.

C o ro lla ry  2.6.1 I f 7+ ok  is a prime number, then G H( o , 7 + 5 k )  and GH(7+ok , o)  

constitute a reciprocally non-existent sequence o f potential generalized Hadamard 

matrices.

T h e o re m  2.6.2 Let p = Ak +  3 and q =  4/ +  5 be prim e numbers, where 2 is a 

quadratic non-residue of p. Then (p. q) is a reciprocal pair.
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P ro o f .  Since p, q axe squarefiree and relatively prime. Legendre’s theorem  applies 

to  determ ine integer solutions of the equations

z 2 =  pqx2 -  py2

and

z 2 =  pqx2 +  qy2 ■

Existence of a  nontrivial integer solution of either equation can happen only if there 

exists a nontrivial integer solution (£ , m , n ) for equations of the following type

pH} =  qm 2 — n2.

No solution for this equation exists, as

x 2 =  2(m od p)

has no solution. a

A more general m ethod for finding reciprocal pairs employs a result of Euler: 

E u le r ’s T h e o re m : [35]

I f  p is an odd prime which does not divide a, then x 2 =  a(mod p) has a solution or 

no solution according as

a (p i)/2 =  i { m o d  p )  (2.6.11)
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or

q (p - i )/2  ^  —\(m od  p). (2 .6 .12)

R e c ip ro c ity  T h e o re m : Let p = 4k + 3 and a =  4/ +  5 be odd prim es which satisfy  

Euler’s condition

a (p-i)/2 s  — 1 (mod p).

Then GH(a,p)  and GH(p,  a) constitute a reciprocal non-existent pair o f generalized 

Hadamard matrices over groups G. H  o f order p, a.

P ro o f. Under the hypotheses of the  theorem. E uler’s condition guarantees the 

non-existence of nontrivial integer solutions (x, y . z )  to  both equations

2 2 2x =  apx -  py

and

z 2 =  apx 2 +  ay2, 

whose reduced equation is of the form

„n1   2 2pl  ~  ax  — y .

□
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Severed reciprocal pairs are given by Table 3:

Table 3: Reciprocal Pairs

3 5

3 17

3 29

11 13

11 17

11 29

19 29

19 37

19 41

59 61

107 109

M ethod H:

When th e  hypotheses of Legendre’s theorem fail, an analysis of the last digit [26] 

of separate members of equation (2.5.6) is sometimes fruitful. Here, if x is a nonzero 

integer, th e  last digit of x is denoted by [x]. For instance, th e  last digit of x 2 is in 

the set

[x2] =  { 0 ,1 ,4 ,5 ,6 ,9} , and 

[3x2] =  {0 ,2 ,3 ,5 ,7 ,8}  =  [7x2],

[(10A: +  l ) ^ 2] =  [x2], k  >  0 an integer,
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[5x2] =  {0,5},

[9x2] =  { 0 ,1 ,4 ,5 ,6,9}.

These facts are useful in proving some non-existence lem m as below.

L e m m a  2 .6 . 1  The equation

z 2 =  3 • 5 - (2k + 1 )x2 -  3y 2 (2.6.13)

where k is a non-negative integer satisfying (2k +  1) ^  0 (m od  5), does not possess 

a nontrivial solution in integers.

P ro o f. By the method of contradiction, assume a  nontrivial solution ( x . y . z )  

exists, where (x ,y , x) are non-negative integers. As th e  equation is homogeneous of 

degree two, (x, y, z) is a solution if and only if (tx.  iy , t z)  is a solution, where t is an 

integer. Therefore, it can be  assumed th a t gcd(x . y , z )  =  1.

Clearly, z  is divisible by 3. If z = 3f, where I  is an integer, then equation (2.6.13) 

reduces to

y2 =  5(2k  +  l ) x 2 -  U 2. (2.6.14)

As the last digit of each integer (x2, y2,^2) belongs to  th e  set L — { 0 ,1 ,4 ,5 ,6 ,9},

the last digits of 5(2Ar -I- l ) x 2 and Zi2 are members of {0,5} and { 0 ,2 ,3 ,5 ,7 ,8 },

respectively. For com patibility with (2.6.14), the last digit of y2 can only be zero or 

five; therefore, y =  5m, where m  is an integer.
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Now equation (2.6.14) becomes

U 2 =  5(2Ar +  l )*2 -  25m2. (2.6.15)

Therefore, £ =  5p, where p is an integer. Equation (2.6.15) becomes

(2k +  l)x 2 =  15p2 +  5m2.

Since five does not divide 2k  -+- 1, it is necessary that x  =  5q, where q is an integer. 

The conclusions 5|y  and 5|x im ply th a t 5|z. As this contradicts gcd(x, y.  z) =  1. the  

assum ption that (2.6.13) has a  nontrivial solution in the integers must be false. □

L e m m a  2 .6 .2  The equation

z2 =  5 • n • (10A: +  l)x 2 +  5y2 (2.6.16)

has no nontrivial solution fo r  integers k > 0 and n = 1,3, 7.

P ro o f .  By the method of contradiction, assume a nontrivial solution (x , y. z) exists, 

where (x , y , z )  are positive integers. As the equation is homogeneous of degree two. 

(x , y , z ) is a  solution if and only if (t x , t y , t z ) is a solution, where t is an integer. 

Therefore, it can be assumed th a t gcd(x .y , z )  =  1.

Clearly, z is divisible by 5 in equation (2.6.16).

Case 1: n  =  1

If z =  5i , where £ is an integer, then  equation (2.6.16) reduces to
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y 2 =  5/ 2 — (lOfc +  l)x 2. (2.6.17)

As the last digit of each integer (x2,^ 2,^2) belongs to  th e  set L =  {0 ,1 .4 ,5 .6 ,9 } ,

the  last digits of and (lOAr +  l)x2 are  members of {0,5} and { 0 ,1 .4 ,5 ,6 .9}.

respectively. For com patibility with (2.6.17), the last digit of x2 and y2 can only be

zero or five; therefore, x =  5m and y =  5p, where m  and  p  are integers.

The conclusions 5 |y and 5|x imply that 5|x. As this contradicts gcd(x*y.  z)  =  1, the 

assum ption th a t (2.6.16) has a nontrivial solution in th e  integers m ust be false. 

Case 2 : n =  3

If z = 5£, where I  is an integer, then equation (2.6.16) reduces to

y 2 =  U 2 -  3(10fc +  l)x2. (2.6.18)

As the last digit of each integer (x2,^ 2,^2) belongs to  the  set L =  {0 ,1 .4 ,5 ,6 .9 } ,

the last digits of ol2 and 3(10fc 4- l)x 2 are members of {0,5} and {0 ,2 .3 ,5 , 7.8}.

respectively. For com patibility with (2.6.18), the last digit of y2 can only be zero or 

five; therefore, y  =  5m, where m  is an integer.

Now equation (2.6.18) becomes

3(10Ar +  l)x 2 =  U 2 -  25m2. (2.6.19)

Since five does not divide 3(10A:+1), it is necessary th a t x  =  5p, where p is an integer. 

The conclusions 5|y and 5|x imply that 5 |z .  As this contradicts gcd(x , y, z)  =  1, the 

assum ption th a t (2.6.16) has a nontrivial solution in th e  integers m ust be false.
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Case 3: n =  7

If z  =  5£, where I  is an integer, then equation (2.6.16) reduces to

y 2 =  o l2 — 7(10fc +  l ) x 2. (2.6.20)

As the last digit of each integer (x2, y 2,(?)  belongs to the  set L — { 0 ,1 ,4 .5 .6,9}, 

the last digits of b#2 and 7(10A: +  l)x 2 a re  m em bers of {0,5} and { 0 .2 ,3 .5 .7 ,8 }, 

respectively. For com patibility with (2.6.20), th e  last digit of y 2 can only be zero or 

five; therefore, y  =  5m, where m  is an integer.

Now equation (2.6.20) becomes

7( lO t +  l)x 2 =  b£2 -  25m2. (2.6.21)

Since five does not divide 7( lOAr+1), it is necessary that x =  5p. where p is an integer. 

The conclusions 5 |y  and 5 |x  im ply that b\z.  As this contradicts gcd(x. y.  r)  =  1, the 

assumption th a t (2.6.16) has a nontrivial solution in the integers must be false. □

2.7 Summary

T h e o re m  2 .7 .1  Several sequences o f potential Hadamard matrices over Abelian 

group G o f order g which do not exist are:

1. G # (3 , 5 (2 t  +  1)), (2k  +  1) ^  0(m od  5), with k  a non-negative integer,

2. GH(b ,n( lQk  +  1)), f o r n  =  1 ,3,7, k  non-negative,
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3. GH(5,p) ,  where p =  ± 3 (m od  5) is an odd prime,

4 . Reciprocal pairs G H (5,7 +  5A:) and G H ( 1  +  ok, 5), where 7 + ok is an odd 

prime.

C o ro lla ry  2 .7 .1  F ork a non-negative integer, the following classes o f B H  matrices 

do not exist:

1. B H {3 ,15(2A: +  1)), (2k +  1) ^  0 (mod o),

2. BH (b,bn(\{Sk  + 1 )) ,  fo r  n  =  1,3,7,

3. BH(5,bp) ,  p =  ± 3 (mod 5), an odd prime,

4 . Reciprocal pairs B H (5,35 +  25k) and B H (  7 +  bk, 35 +  25A:). where 7 +  ok is 

an odd prime.

The following conjecture, which motivated this research, appears to gain some sup

port from Corollary 2.7.1 and Tables 1 and 2:

C o n je c tu re  2 .7 .1  I f  fo r  0 < k  < gX a locally maximal (g,k,X)-difference matrix  

with respect to Abelian group G o f order g exists fo r which gcd(k.gX) = 1, then

GH(g,X)  does not exist.
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Chapter 3 

Error Correcting Codes 

Associated With Complex 

Hadamard Matrices Over Groups

3.1 Introduction

In this chapter it is shown th a t the row vectors of the exponent m atrix  associated 

with a Butson Hadamard m atrix  B H ( p , p t ), p > 0 a prim e number, constitute an 

error correcting code. Some background from algebraic coding theory will therefore 

now be introduced.

A block code whose codewords are of length n is a  set of vectors of length n 

whose elements axe symbols drawn from some alphabet. For example, the alphabet 

of a p-ary code may consist of the symbols which are elements of a  finite field 

Zp = Gf(p) ,  p  > 0 a prim e number. Thus, any subset K  of Z" constitutes a block

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



31

code of length n. The code is called a linear group code if and only if K  is a linear 

subspace. Otherwise, the code is called nonlinear. K  is cyclic if and only if every 

cyclic perm utation of the symbols in a particu lar codeword x  €  K  produces another 

codeword y  G K.

The Hamming metric allows block code K  to become a metric space. The 

distance d( x , y )  between codewords x  and y  equals the num ber of differences between 

symbols which occupy corresponding elem ent positions. The minimum distance 

d(K)  between codewords of code AT is a distinguishing feature of the code.

T h e o re m  3 .1 .1  (Fundamental Theorem o f  Algebraic Coding Theory): An error 

correcting code K  corrects t errors i f  and only i f  its m inim um  distance, d(K) ,  be

tween codewords is greater than 2t.

The fundam ental parameters which characterize a  linear code. A', are (n. k . d). where

•  n  =  block length,

•  k  =  number of information bits(per word),

•  d  =  minimum distance between codewords.

The inform ation rate R  =  £ characterizes the  efficiency of a linear code, where n — k  

is the num ber of redundant bits per word, which is what allows error correction to 

occur. T h e  parameter d determ ines capacity to  correct errors in transmission.

The purpose of this chapter is to introduce a  class of error correcting codes which 

we call generalized Hadamard codes. Such codes are discovered by analyzing the 

Hadam ard m atrix of exponents, E , which is associated w ith a complex (Butson) 

H adam ard matrix, H .
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Recall, Hadam ard m atrices H(p,  q), of index p, are matrices of dimension q whose 

elements are p-th  roots of unity and whose rows are orthogonal. For the case p  =  2, 

the elements are ± 1 , and  the m atrix is referred to as a classical Hadamard m atrix .

For p >  2 , the  elem ents are numbers on the  unit circle, and th e  terminology used 

is tha t of a complex, or Butson Hadamaxd matrix. References [5], [6], [8] and [32] 

concern definition, s tru c tu re , properties, and applications of generalized Hadamard 

matrices.

Butson [6] proves th a t  for a  fixed prim e p, a necessary condition for existence 

of H(p,  q) is th a t p divides q. Thus, interest here is directed to  complex Hadamard 

m atrices H(p , p t ), where p  >  2 is a fixed prim e and t is a  positive integer. When such 

m atrices exist, a  real m atrix  E ( p , p t ), which is called a Hadam ard exponent [8]. can 

be associated with H(p.p t ) .  If x  is a prim itive p-th root of unity, the association 

is H(p,pt)  =  x E(p'pt). T he notation m eans that m atrix  elements are related by 

kij =  x e,>, where i and j  are m atrix indices.

The elements of th e  Hadam ard exponent, E , lie in the Galois field Gf(p) .  and 

its row vectors can be viewed as the codewords of what shall be called a generalized 

Hadamard code. D epending upon the value of the non-negative integer t. e ither a 

linear group code or a  nonlinear code m ay emerge.

3.2 Ternary Hadam ard Codes

As a first example of a  nonlinear Hadamaxd code, the  array Q given below provides 

the Hadamard exponent for a  standard form  Hadamaxd m atrix  H{3,6) =  x Q:
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Table 4: H adam ard Matrix H ( 3 ,6 ) =

*  *  Q  * * *

0 0 0 0 0 0

0 0 1 1 2  2

0 1 0 2 2 1

0 1 2  0 1 2  

0 2 2 1 0 1

0 2 1 2 1 0

Clearly, in forming code words by utilizing m atrix row vectors, the first column is 

superfluous. It may be seen that code Q has minimum distance d(Q)  = 4 : therefore, 

Q corrects up to one error per codeword when utilized as an error correcting code.

The next example (see Table 5 on next page) exhibits a linear group code, D , 

obtained from the H adam ard exponent of H{3,9), again w ritten in standard form. 

D has minimum distance 6 ; therefore, up to two errors in each transm itted codeword 

can be corrected.
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Table 5: Hadamard M atrix H[3.9) =

* * * * D * * * *

0 0 0 0 0 0 0 0 0

0 1 2 0 1 2 0 1 2

0 2 1 0 2 1 0 2 1

0 0 0 1 1 1 2 2 2

0 1 2 1 2 0 2 0 1

0 2 1 11. 0 2 2 1 0

0 0 0 2 2 2 1 1 1

0 1 2 2 0 1 1 2 0

0 2 1 2 1 0 1 0 2

If the first ail-zero column is om itted, one readily observes that the nine row 

vectors of D  =  E {3,9) constitute a ternary linear error correcting code characterized 

by param eters (n. A:, d) — (8 , 2 , 6 ). By augmentation, an  (8 ,3 ,5 ) code having twenty 

seven codewords can be obtained, which has the punctured f?(3,9) as a  subcode.

Similarly, there is associated with H{3,27) the exponent £(3,27) whose corre

sponding punctured linear Hadamard code has param eters (26,3,18). This code 

augm ents to a  code which possesses eighty one codewords, and which has the punc

tu red  lineax Hadamaxd code as a  subcode.
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3.3 Vectors Over Cp

In this section the problem of establishing th e  value, d (K ), which represents the 

minimum Hamming distance betw een the codewords of a generalized Hadamard 

code, K, is considered.

Let Cp =  { l ,x ,x 2, . . . ,x p-1} be the cyclic group generated by x, where x =  

exp(2 icj[p) is a complex prim itive p-th root of unity, and p >  2  is a  fixed prime. 

Further, let A  =  (xa*), B  =  (x6,) denote arb itrary  vectors over Cp which are of length 

N  = p t, where t is a  positive integer. Define the  collection of differences between 

exponents Q =  {(a* — 6,)(mod p) : i =  1,2, —iV}, and let nq be the m ultiplicity of 

element q of Zp which appears in Q.

Property U: Vectors A ,B  are said to satisfy this property U i f  each element q o f 

Zp appears in Q, exactly t times.

The following lem m a is of fundam ental im portance in constructing generalized 

Hadamard codes:

Lem m a 3.3.1 (Orthogonality O f Vectors Over Cp) For fixed primes p, arbitrary 

vectors A, B whose elements are from  Cp are orthogonal i f  and only i f  fo r  each 

element q in Zp, q appears in Q with multiplicity t. where N  =  pt is the length o f 

A, B, and Q is the collection o f mod p differences between the Hadamard exponents 

associated with A ,B .
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Proof.

S uffic iency : If Q contains each elem ent q of Zp, t tim es, then the inner product of 

A  and B

(A,B) = t - Y , x \
1=0

vanishes, since x  is a  p-th root of unity. Hence, A  and B  are orthogonal. 

N e c e ss ity : To the contrary, suppose n q is not uniform  as q varies over Q. If ail nq 

are non-zero, by using the fact th a t th e  sum of all p -th  roots of unity vanishes, the 

happy circum stance is cirrived at where the  sum involved in (A . B ) reduces to  an 

integral linear combination which does not involve all p-th roots of unity. Moreover, 

if any n q =  0, this circumstance is already present. Because the coefficients are 

positive integers, such a linear com bination can not vanish. (Indeed, if p = 3, for 

any arb itrary  set of non-zero coefficients the linear combination can not vanish, as 

any two cube roots of unity represent non-collinear vectors in the plane.) Hence, A 

and B  are not orthogonal. □

C o m m e n t 1: Lemma 3.3.1 above can also be inferred from assertions of Butson 

[6], for which he provides no proof, bu t which he m aintains are clearly valid. 

C o m m e n t  2 : For any p, Property U is sufficient for orthogonality. However, if 

p  is not prim e, cases are easily discovered of vectors over Cv which are orthogonal 

but which do not satisfy Property U. Thus, Property U is not always necessary for 

orthogonality.

C o ro lla ry  3 .3 .1  I f  p is a prime number and i f  the Hadamard m atrix H{p, pt) exists.
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the error correcting code, K(p , p t ) ,  associated with the corresponding row vectors o f  

the Hadamard exponent. E(p,pt ) ,  is characterized by the error protection afforded 

b yd ( K)  = ( p - l ) t .

P ro o f. In the  mod p  difference of any two arbitrary row vectors of the Hadamard 

exponent m atrix , the zero elem ent of Zp appears exactly t times; hence, two code 

words differ in (p — 1 )£ symbols. □

S ta n d a rd  F o rm : Any But son's Hadamard matrix can be transformed into a 

Hadamard m atrix  for which every element of the first row and first column is unity. 

In this case, the  first row and column of the  Hadamard exponent consists of elements 

which are all zero. Some equivalent of a standard form m atrix which is obtained by 

row and /or column interchanges is necessary but not sufficient in order to obtain 

from E  a linear group code, as such codes require presence of the zero vector.

The code words can now be shortened by removing the  first column, obtaining 

what is called a punctured code, which possesses the sam e level of error protection. 

When the code is linear, it can be imbedded in a linear group code having p times 

as many code words, through augm entation accomplished by adding appropriate 

cosets (add, respectively, each element of Zp to each symbol of each code word, to 

get a new codeword).

3.4 E xponent Generation By D irect Sum

Whereas the  m atrix Q  of Table 4 is tediously obtainable by trial and error, the  

m atrix D  of Table 5 easily follows by use of a  direct sum , employing the m atrix E
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now given,

Table 6 : Hadam ard Exponent

* £  *

0 0 0

0 1 2

0 2 1

together with the direct sum below, plus row and column interchanges:

Lem m a 3.4.1 I f  £  =  E(p,p)  o f Table 6  is a Hadamard. exponent, then the direct 

sum

E ( p . p 2) — (e 0 +  E; i . j  =  0 , 1, ...p — 1)

is a block Hadamard exponent which is also a Hadamard exponent.

Likewise, £(3 ,27) may be obtained as the direct sum of £ (3 ,3 ) and £ (3 .9 ).

3.5 Linear Hadamard Codes

An initial exploration of the properties of the  exponent matrix associated with a 

complex Hadamard m atrix  allows identification of a class of generalized Hadamard 

codes which can be linear or nonlinear, depending upon m atrix dimension N  =  pt. 

In this section values o f N  are identified which perm it existence of a sequence of 

linear H adam ard codes.
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By definition, code K  =  K { p , N )  is a  linear group code if and only if A" is a 

linear subspace of 5  =  ZVN [1]. Thus, every linear group code can be generated 

by a finite set Sk of linearly independent vectors in S.  If G = G\t is the k  x N  

m atrix whose row vectors are  the generators of K ,  G  is called the generator m atrix  

of K ,  and the parameters (N,  k, d) completely characterize K.  where d =  d(K)  is 

the minimum Hamming distance between codewords of K .  K  is called systematic 

if and only if G  =  { I k \ B }, where B  is of dimension k  x ( N  — k).

For prim es p, the sequence of codes characterized by the rows of the exponent 

m atrix E ( p , p k) form a sequence of linear error correcting codes whose codewords 

are equidistant a t Hamming distance d ( K )  =  pk+l — pk . Butson's results [6] guar

antee the  existence of such codes: whereas, linearity has not been established for 

the general case. Establishment requires only a determ ination th a t the code space 

possesses k  generating vectors, a patte rn  which has been verified for k  =  2,3 ,4 .

The following conditions characterize linear codes, K  =  K ( p , N ) :

Lem m a 3.5.1 A necessary condition that K { p , N )  be linear is that p ^ / N  be an 

integer.

Proof. Otherwise, K  is not a  subgroup of S. □

Lem m a 3 .5 .2  I f  p is a prim e, a necessary condition that K(p,pt )  be a linear code

is that pt be a positive integer power o f  p.

Proof. Clearly, if p is a  prim e and N  =  pt, K (p , N )  m eets the condition of 

Lemma 3.5.1 if and only if t  is a positive integer power of p. □
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T heorem  3.5 .1  I f  p is a prim e, the necessary and sufficient condition that 

K  =  K( p , p f )  be a linear code is that the rowspace of K  be o f dimension k.

P roof. B utson’s existence theorem s [6] assure that H{p,pk ) exists. Let G  be a 

m axim al independent set of th e  row vectors of K  =  K ( p , p k ). If dim (G ) =  n. the 

linear code span(G ) generated by G  coincides with the code constituted by the rows 

of K  if and only if n =  k. T he reason is th a t span(G) is a  linear vector space over 

G f ( p )  which contains exactly pn elements. As K  C span(G),  the cardinality  of K  

can not exceed th a t  of span(G ), and the two cardinalities are equal if and only if 

n  =  k. When th e  cardinalities are equal, K  m ust be a linear space, as K  coincides 

w ith span(G ). O

T heorem  3 .5 .2  I f  p is a prim e and k is a positive integer, then 

d i m{rowspace (K(p , pk))} =  k.

P roof. There is now given a  constructive algorithm for calculating a  generating 

m atrix  Gk for K  =  K(p,pk ):

R ow  1 : Fill row 1 by repeating the group of elements {0 ,1  p — 1} t tim es, where

t = p k~ l .

R ow  i: i =  2 ,3 , ...A:: Until row i is full, focusing consecutively upon elem ents 

repeat each elem ent p  times; j  =  1, 2 , ...pk~ l .

T h a t this procedure produces the generating m atrix for a  Hadam ard exponent 

K ( p , p k ) can be confirmed by th e  following observations:

Colum ns {pi + 1 : j  =  0 ,1 , . . . ,A: — 1} form an identity m atrix . Therefore, placing 

these columns in  th e  first k  positions yields the generating m atrix of a  system atic
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linear code possessing N  =  pk codewords. Moreover, it can be verified by com puter 

aided experim ent th a t, for fixed k. the vector difference, mod p, of any two codewords 

possesses a uniform distribution of the elements { 0 ,l , . . . ,p  — 1}. Hence, the iV — pk 

codewords form a Hadamard exponent A'(p, pk ), which can be placed in standard 

form by row interchanges. □

From another point of view, the k  row vectors of the generating matrix coincide 

with certain rows of the direct sum

E{PrPk) = E{p ,p)®E{p,pk~l );

namely, the vectors whose row indices are {p* +  1 : j  = 0 .1 . . . . ,  k  — 1}. Thus, E{p, pk) 

is the H adam ard exponent generated by G'fc.

The following example demonstrates the concept:

Table 7: Generating M atrix For A'(3.27)

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

The code K  generated by the above m atrix is not systematic. However, by

placing columns four and nine in the column three and column four positions, after 

shuffling the first column of zero's an equivalent system atic code will be generated. 

If the  first colum n of zeroes is not shuffled, after th e  zero codeword is moved to  the
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first row position, the  codewords of the generated code form the H adam ard exponent 

K(Z,  27) in standard form.

3.6 Summary

An initial exploration of the properties of the exponent matrix associated with a 

complex Hadamard m atrix  allows identification of a class of generalized Hadamard 

codes. For primes p, the  sequence K(p.pn) appears to  be a sequence of linear error 

correcting codes whose codewords axe equidistant a t Hamming distance d(K)  =  

pn+1 — pn. Butson?s results [6] guarantee the existence of such codes: whereas, 

linearity has not been established for the general case. Establishm ent would require 

only a determ ination tha t the code space possesses n generating vectors, a pattern  

which has been verified for n =  2 ,3 .

For some values of q it is not a t all certain that H(p, q) exists. In particular, the 

authors conjecture (and it is established in Chapter 2) th a t H(3.15) does not exist, 

which is a case not covered by Butson’s results on existence by construction or by 

direct sums.

A particularly interesting question is whether the linear codes possess an equiv

alent cyclic version, as then th e  potential exists for burst error protection against 

bursts of increasingly long duration.

Finally, one question whether there is a decoding technique which is unique to 

the  Hadamard codes, and exactly what is the best use for the nonlinear codes. In 

all cases, nature seems to have formed a vast lode of interesting codes, waiting to
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be exploited.
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Chapter 4 

Polynomial Construction Of 

Complex Hadamard Matrices 

With Cyclic Core

4.1 Introduction

Consider com plex Hadamard m atrix H  =  H(p,pn), where p > 2 is prim e and n is 

a positive integer. Let E  be th e  exponent m atrix which is defined by H  — x£ , with 

x =  exp('2iri/p). The notation implies hjk = x C}k, where j  and k are m atrix  indices. 

Here, the elem ents of E  lie in the Galois field Gf[p).

If H  is w ritten  in standard form, then  the  first row and first colum n of E  are 

all zero, and th e  remaining elements constitu te a square subm atrix, E c, called the 

core of H. Using the  theory of linear recurring sequences, Butson [6 ] shows how to 

construct from  an appropriately chosen relative difference set, a  cyclic m atrix E c

44
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(see Chapter 5 for a  study of cyclic matrices) which qualifies as the core of some 

Hadamard m atrix H( p, pn). In conjunction with the zero vector, the row vectors 

of Ec form a linear group. Thus, by omission of the all-zero first column, cyclic 

generalized H adam ard codes are possible, whose codewords are the row vectors of 

the punctured m atrix . Generalized Hadamard codes, both linear and nonlinear, are 

discussed in C hapter 3.

As m atrix  size increases, Butson’s m ethod for constructing cyclic core Ec be

comes proportionately less desirable. It is the opinion of the  authors th a t a  simple 

equivalent constructive approach can be obtained, by searching for polynomials over 

Gf(p)  whose zero-augmented coefficient vector satisfies a certain uniformity prop

erty later introduced. For several cases studied the approach has been found fruitful.

The purpose of the present chapter is to  supply proof that this approach is 

generally applicable. In order to  do so, it will first be necessary to develope a 

theorem concerning invariant M-sequences. Properties of Hadamard m atrices and 

complex H adam ard codes are then reviewed, followed by statem ent and proof of the 

main results, with some accompanying numerical examples.

4.2 M -Sequences

In this section there  is examined certain properties of infinite sequences with el

ements in the finite field Zp which are obtained by cycling the elements of some 

initial vector V  of length iV. T he resulting sequence is denoted by a(V) .  These 

sequences are usually studied in the context of solutions to  homogenuous linear

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



4 6

difference equations [37] (see Chapter 5 also).

Such sequences tire clearly periodic, of period N;  however, a smaller period may 

be possible. If N  is the least period, the sequence is called an M-sequence, or a 

sequence of maximal least period obtained by cycling N  elements. If, when the 

elements of the ordered set V  are permuted arbitrarily  to  yield V “, the sequence 

a (V ')  is an M-sequence, then the sequence a( V)  is called M-invariant under rear

rangements of its first period. In the sequel, the  property of M-invariance proves 

useful in constructing Hadamard matrices with cyclic core.

Let V  =  uo^i—Uiv-i be a vector over Zp. If j  is a residue in Zp, let Xj be the 

multiplicity of 7 , as a member of the set of elements of V. If j  is not such an element, 

define the multiplicity to be zero. Cyclic rotations of V  a re  defined by T k{V).  where 

k  is a positive integer and T (V)  =  uJv-iUoyi--^iv-2-

Let (i ) = I signify that i is congruent to l{m od p). Cycling V  produces an infinite 

sequence a(V)  = {u(t) : i =  0 ,1 ,2 ,...} . The following theorem  provides conditions 

under which a{V)  will be an invariant M-sequence:

Theorem  4.2.1 LetQ =  AoAi...Ap_i be a vector whose components are non-negative 

integers which satisfy compatibility relations ( l- ll):

( I)  : £  Aj =  N
i=o

{ I I ) :  g.c.d.(C ,N) = q.
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There exists a vector V  =  voV \...vs-i, whose set o f  components includes all residues 

from Z p with multiplicities £, such that the sequence a { V ) is an invariant M-sequence, 

i f  and only i f  q =  1.

Proof.

N e c ess ity : For £ a vector having non-negative integer components satisfying (I- 

II) w ith q >  1, suppose there exists a vector V  w ith associated multiplicities £ 

which generates an M -invariant sequence a(V).  A contradiction will be arrived at 

by showing th a t the ordered set V  can be perm uted into an ordered set V"  such 

that a ( V M) is periodic of period 0 <  L < N.

To this purpose, define non-negative integers Aj° =  Aj /q: j  =  0 ,1 — p — 1. which 

sum to  L = N/q .  It is clear that the sets S: = {Vi : V\ =  j }  of residues which appear 

in V  axe either empty, or else can each be divided into subsets S /  : i =  1.2. ...q 

of cardinality Aj°. For i =  1,2, ...<7, form a vector Qi of length L by arranging 

sequentially the elements from S f ,  for all residues j  represented in V. Next, form 

vector V ” by sequentially placing all elements of the  group Qi after the elements of 

Q i. 1, for i =  2 ,3 ,...? .

As it is clear that a (V ')  is periodic of period L , a(V)  can not be M-invariant. 

Thus, th e  assumption of an M-invariant sequence in conjunction with q > 1 is a 

contradiction.

S uffic iency : Suppose V  is a  vector whose associated m ultiplicity vector £ satisfies 

(I-II), where a{V)  is an  M-sequence, and q = 1. It will be shown that a ( V)  is 

M -invariant. Assume a( V)  is not M-invariant. Then, there is a  perm utation V '
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of V  whose elements satisfy m ultiplicity condition (I), such th a t a(V")  is not an 

M-sequence, but has period L  which satisfies 0 < L < N .  But this means V"  has 

a  first L  element pattern  which repeats Q times, w ith N  =  QL.  Moreover, this 

p a tte rn  assures that A j =  QXj°;j  =  0 ,1 ,. . .  p — 1. Therefore, g.c.d.(£, N )  =  Q, with 

1 <  Q < N. This contradicts q =  1. Hence, the assum ption a(V) is not M -invariant 

is false. □

C o m m e n ts : Suppose V  is of length N  and its associated vector of multiplicities 

has non-negative integer components, which satisfy (I-II) with q > 1. Suppose a{V)  

is periodic of period L < iV, and suppose two distinct residues appear in the first 

L components of V.  By interchanging one distinct pair of components only in the 

first period, the resulting vector V m generates an M-sequence. Thus, M-sequences 

exist which are not M-invariant.

4.3 Cyclic Hadamard Codes

Consider matrix E  which is the H adam ard exponent associated with H  =  H{p . pn) 

when it is written in standard  form. T hus, the first row and first column of E  are 

all zero, and the remaining elements constitu te a square subm atrix, Ec, called the 

core of H. Using the theory of linear recurring sequences, Butson [6] shows how to 

construct from an appropriately chosen relative difference set, a  cyclic m atrix  E c 

which qualifies as the core of a complex Hadamard m atrix  H{p, pn). Thus, cyclic 

generalized Hadamard codes are possible, by omission of the all-zero first colum n 

of E .  In coding theory, this is called puncturing (The concept of a  cyclic m atrix  is
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clarified in Chapter 5).

However, But son's method is somewhat unwieldy, and becomes less desirable as 

m atrix  size increases. It is the opinion of the authors th a t a simpler, yet equiva

lent approach to constructing Ec is possible. The approach now outlined has been 

found to provide in several cases a ttem pted  a cyclic m atrix Ec which qualifies as a 

Hadamard core for specific H(p,pn ).

The goal is to  find cyclic m atrix  E  =  Ec whose elements are in Galois field 

Gf (p)  and whose dimension is N  =  pn — 1. The rows of E  will be the non-zero 

codewords of a linear cyclic code K  if and only if there is a polynomial g(x)  with 

coefficients in G f ( p ), which is a  proper divisor of x N — 1 and which generates K  

[1], [22]. In order to have N  non-zero codewords, g(x)  must be of degree N  — n. 

Further, in order to  generate a cyclic Hadamard core, the vector (of coefficients of) 

g(x)  when operated upon with the cyclic shift operation must be of period .V. and 

the vector difference of two arbitrary rows of E  (augmented with zero) must satisfy 

the uniformity condition of Butson, previously referred to as Property U.

One necessary condition for N-peridoicity is th a t x N — I =  <j(x)/i(x), where h(x)  

is monic irreducible over Gf(p)  [37]. A sufficient condition is th a t, in addition, a 

certain subset [6] of the indices from the coefficients of g(x)  be a relative difference 

set.

The approach here is to replace the last requirement with the condition th a t the 

coefficients of the vector [0 ,y(x)] be uniformly distributed over Gf(p):  each residue 

0,1,...p-1 appears the same number of times (Property U). This heuristic approach 

has succeeded for all cases tried, and a proof th a t it always produces a cyclic core
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is now given.

4.4 Polynom ial Construction Algorithm

Consider all monic irreducible polynomials h(x)  over Gf(p)  which are of degree n. 

and which perm it a suitable companion g(x)  of degree N  — n such th a t g(x)h(x)  =  

x N — 1, where also vector [0 ,<7(x)J satisfies property U. This requires only a sim ple 

computer algorithm for long division over Gf(p).  Since A(z)|xjV — 1. the ideal 

generated by g(x)  mod(xN — 1), will be a cyclic code, K  [1], [22]. Moreover. P roperty  

U guarantees the non-zero codewords form a cyclic m atrix , each row being of period 

N  under cyclic perm utation, which serves as a cyclic core for Hadamard m atrix  

H{p,pn).

As an example, a cyclic core for H ( 3,9) results from the companions h(x)  =  

x 2 + x  + 2, and g(x) = x 6  +  2x5 + 2 x 4 + 2 x 2 + x  +  1. The coefficients of g(x)  

indicate that {0 , 1, 6 } is the relative difference set. m od 8 . which instead could be 

used to generate the cyclic core [5], certainly more intricately than  by calculating 

the codewords associated with g(x)  using the cyclic shift operation.

Theorem  4.4 .1  Let p be a prime and N  +  1 =  pn, with g(x) a monic polynomial o f 

degree N  — n whose vector o f coefficients C  =  [co,Ci, ...c.v_i] are elements o f Gf(p).  

The conditions

(i) The extended vector C  =  [0, c0 ,Cx,  ...,c/v-i] satisfies property U,

(ii) g(x)h(x)  =  x‘V — 1, where h(x) is a monic irreducible polynomial o f degree n,
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guarantee the existence o f a p-ary, linear cyclic code, K ,  o f  blocksize N, such that 

the augmented code K  =  [0, K \ is the Hadamard exponent, fo r  Hadamard matrix 

H ( p , p n ) =  x K , with x  = exp(2 iri/p), where the core o f H  is a cyclic matrix.

P ro o f .  Since g(x)  is monic, divides x s  — 1, and has degree N  — n , g(x)  generates 

a  p-ary, cyclic code which is an n-dimensional linear subspace, K  of ZP'V [1], [22], 

and  which possesses p" codewords, N  of which are nonzero. It is intended to show 

th a t the  m atrix E c whose rows are the nonzero codewords constitutes a cyclic core 

for some complex Hadamard m atrix, H(p,pn ), written in standard  form.

First, since C  satisfies property U, the nonzero residues of Gf(p) ,  all of which 

appear in C , will have multiplicity which is one unit greater than the m ultiplicity 

of the zero residue. Since any two successive positive integers are relatively prime, 

by Theorem 4.2.1, the infinite sequence, a(C),  obtained by cycling C  will be an 

M -invariant sequence, periodic of least period N .  Thus, every codeword of Ec can 

be obtained by cyclicly perm uting the first codeword. Hence, Ec is a cyclic m atrix 

(circulant with least period N).

Second, it follows that augm entation of each codeword of E c by adding a  leading 

zero element produces a vector which satisfies Property U. Moreover, since the code 

is linear, the mod p  vector difference of two arbitrary  codewords is also a codeword. 

Hence, vector differences of arb itrary  zero-augmented codewords satisfy property (J. 

Therefore, the row vectors of the  augmented code, K ,  form  a Hadamard exponent. 

It m ay be concluded that x K is the standard  form of some complex H adam ard 

m atrix  H(p,pn). O
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C o ro lla ry  4 .4 .1  Existence o f Hadamard matrix H(p.  pn) having cyclic core is equiv

alent to the existence o f a pair o f polynomials over Gf(p) which satisfy g(x)h(x)  = 

x N — 1, where h(x) is irreducible o f degree n, and [0, g(x)] satisifi.es Property U, mod 

p, where p is prime.

P ro o f . It is clear th a t the lines of proof in Theorem 4.4.1 can be reversed: Given 

H  =  H(p,pn), where p is prime, which has cyclic core, delete th e  first row and first 

column, and associate with the elem ents of arbitrary  remaining punctured row i, a 

polynomial /,(ar) whose coefficients are in Gf(p).  Let g(x) be th e  unique polynomial 

of minimal degree ( N  — n)  from the  collection { / , ( x ) : i =  2 , 3— N  + 1 } - (If g(x) 

is not monic, it becomes such upon multiplication by a su itab ly  chosen elem ent of 

Gf(p)) .  As the core of H  is cyclic, let h(x)  =  (x iV — I) /g(x) ,  where jV +  1 =  pn- 

Clearly, g(x)  satisfies Property U. As the  period of each row of cove(H)  under cyclic 

perm utation is N  [6], h(x)  is irreducible [37], □

4.5 Com puter-Aided Construction o f  Polynom ial 

Pairs

In this section there is given some results from com puter-aided construction (see 

Appendix 2) of the polynomial pairs (g(x),  h(x))  which satisfy Theorem 4.4.1. Ta

ble 8 shows typical irreducible h(x),  whose companion g(x)  (see Table 9) satisfies 

Property U.

Interestingly enough, analysis of th e  type represented by Table 8 yields insights
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into the  question of how many Hadam ard m atrices H(p,pn), unique to  within row 

and column interchanges when w ritten  in standard  form, can be expected to exist.

Table 8 : Parity  Check Polynomials

N  + 1  =  pn h(x)

32 X 2 +  X +  2

x2 +  2x +  2

33 x3 +  2x +  1

x3 +  2x2 +  1

x3 +  2x2 +  x +  1

x3 +  x 2 4- 2x +  1

34 x4 +  x +  2

x4 +  2x +  2

x 4 +  x3 +  2

x4 +  2x3 +  2

x4 +  x3 +  x 2 +  2x +  2

x4 +  2x3 +  x 2 +  x +  2

x 4 + x 3 + 2x 2 +  2x +  2

x4 +  2x3 +  2x 2 +  x +  2
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Table 9: Coefficients of Generating Polynomials

II 1 H-
» g(x)  =  a0 +  aix +  ... +  anx n

8 11202210

12202110

26 22201221202001110211210100

20212210222001012112011100

21112102022001222120101100

22020121112001101021222100

80

2201022002111012001000 

12122011122220202112

2102012001121011001000 

1001101211002102012210101111222011212000200220212200120102

1120202222111022121000

1220202121121021111000 

1221110022010010102210212110111121012000211222001102002020

1120121220222212021000 

1122120021020010102110222210121222022000221121001201002020

1220111120212111011000

2010100102200111221000 

1101112120211110221020200102100121122000220222121012222011

2010100201200212211000
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Chapter 5 

M-Sequences and Circulant 

Matrices

5.1 R eview  of the Theory of m -Sequences

Consider a  homogeneous linear difference equation of order m

Y ^ hk Vi+k = 0  (5.1.1)
k=0

which has characteristic polynomial

Mx ) =  51 hkxk-
k=0

It will be assumed th a t the coefficients, hk, lie in a  finite field G f { q ), where q =  pn, 

with p > 2 a prim e number, and n a positive integer.

55
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Denote by G(h)  the m-dimensional linear space of infinite sequences over Gf(q)  

which are solutions to (5.1.1). It is known th a t each solution a €  G(h)  is a periodic 

infinite sequence whose period p(a) is bounded by iV =  qm — 1. Sequence a is called 

an m-sequence, or a sequence of maximal least period, if and only if p(a)  =  N.

It is the intent of this section to review the classical theory of m-sequences as 

presented by Zierler [37]. T he connection to  the problem  of prescribing a circulant 

m atrix  whose rows form a linear space (whose zero vector has been removed) is 

indicated. Such cyclic m atrices are called linear circulant, and appear naturally (see 

C hapter 4) in a study of Hadam ard m atrices whose associated exponent has a cyclic 

core. The relation between m-sequences and  M-sequences is established. As it tu rns 

out, an m-sequence is M-invariant.

Let p(a) be the least period of sequence a, and d ( f )  the degree of polynomial 

f ( x ) .  The minimium polynomial of periodic sequence a is the nonzero 

polynomial f ( x )  of smallest degree such th a t a 6  G ( f ) .

Let p ( f )  = i n f  {s  > 0 : f \ x 3 — 1}.

Zierler proves the  following:

T heorem  5.1.1 a €  G{f)  &  p(a)\p(f)-

T heorem  5.1.2 I f  f  is the minimium polynomial o f  a, p(a) =  p ( f ) .

C orollary 5.1.1 I f  f  is irreducible, p(a) = p( f )  fo r  every a 6 G ( f ) .

T heorem  5 .1 .3  a €  G ( f )  is an m-seqence i f  and only i f  f  is irreducible and o f  

degree n , where p(a) =  qn — 1 .
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Corollary 5 .1 .2  a €  G ( f )  is an m-sequence if  and only i f  f  is an irreducible, 

prim itive polynomial in G f ( q n), where d ( f )  =  n.

Corollary 5 .1 .3  The number o f translation distinct m-sequences o f least period 

N  =  qn — 1 is ${qn — 1 ) /n,  where $  is the Euler totient function.

T heorem  5 .1 .4  I f  a is an m-sequence o f least period N  = qn — I, each nonzero 

element o f G f ( q )  appears qn~l times, and the zero element appears qn~l — 1 times, 

in a period o f a.

As Zierler states but does not prove Theorem  (5.1.4), this theorem will be proved 

in the  sequel.

5.2 Classification of Circulant M atrices Over Gf{q)

B utson’s paper [6] refers to the concept of the cyclic core of a Hadam ard m atrix , 

bu t with no explanation or definition o f what is meant. In this section the concept 

is clarified, by a study of circulant m atrices over a field. It is thus determ ined th a t 

by Butson’s reference to a cyclic m atrix  is meant a linear cyclic circulant m atrix  

w ith elements in a Galois field.

The notation C  =  C{v),  where v is a  vector having N  elem ents, denotes a 

circulant m atrix  which is generated by cycling the elements of v. A circulant m atrix ,

C,  of order N  has elements which satisfy

Gi,j =  C(,-_i)t(j_i), i , j  =  0 , 1, 2 , . . . ,  N  — 1,
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where (k ) is the smallest non-negative mod N  evaluation of k.

Let C(v)  be a circulant m atrix  of order N  over Gf(p) .  where sequence a(v)  has least

period p(a).  C(v)  falls into one of the following classes:

1. C(v)  has a repeated row if and only if 0 <  p(a) < N,  where of necessity

p(a )\N.

2. C(v)  has no repeated row if and only if p(a) =  N ,  in which case a(v)  is an 

m-sequence. Two finer classifications are  possible:

3. C(v)  is nonlinear cyclic with no repeated row if and only if C1J0, where 0 is 

the zero vector, is a proper subset of rowspace (C ). This happens if and only 

if either (i) the m inim ium  polynomial of a(u) is m (x) =  x‘v — 1, or else (ii) 

m (x)fx‘v — 1, with N  th e  degree of the  smallest such polynomial which m(x)  

divides. This means a(u ) is an M-sequence, but not an m-sequence.

4. C{v)  is linear cyclic if and  only if a(u) is an m-sequence. In other words, a(u) 

has minimium polynom ial m(x) of degree n, where iV =  pn — 1, and m(x)  is 

an irreducible, prim itive polynomial over some extension field Gf { p n ). This 

also implies th a t rowspace (C ) =  C1J0-

Example 1:

For p =  2, v =  (1010), N  =  4, yields C(v)  which has repeated rows. Namely,
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1 0  1 0  

0 1 0  1
C  =

1 0  1 0  

0 1 0  1

Example 2:

For p =  3, v  =  (2110), N  =  4, a(v)  is an M-sequence, with minimium polynomial 

m a(x)  =  x4 — 1. But g(v) is not an m-sequence, as N  p4 — 1. Thus, C(v)  is a 

nonlinear cyclic m atrix  with the rowspace (C) m uch larger th an  CU 0- Here,

2 1 1 0  

0 2 1 1
C  =

1 0  2 1 

1 1 0  2

Example 3:

For p =  3, v = (22110), iV =  5, a(v) is an M-sequence, whose minimium 

polynomial m a(x) — 1 +  x +  x2 +  x3 -|- x4 divides x iV — I, w ith  N  = 5 being the 

smallest such N.  a(v)  is not an m-sequence, as N  ^  p4 — 1. Therefore, C(u)  is 

nonlinear cyclic with rowspace much larger than  C  U 0. Here,
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2 2 1 1 0  

0 2 2 1 1 

C =  1 0 2 2 1

1 1 0  2 2 

2 1 1 0  2 

Example 4:

For p =  3, v =  (11202210), N  =  8, a(v) is an m-sequence with minimium 

polynomial h(x)  =  x 2 + x  +  2, which is irreducible primitive over G f ( 32)- Clearly, 

iV =  p2 — 1, — 1, with N  =  8 the smallest such iV (p(h)=8). Here,

C  =

1 1 2 0 2 2 1 0

0 1 1 2 0 2 2 1

1 0 1 1 2 0 2 2

2 1 0  1 1 2  0 2

2 2 1 0  1 1 2  0

0 2 2 1 0 1 1 2

2 0 2 2 1 0 1 1

1 2 0 2 2 1 0 1

5.3 The R elation B etw een m-Sequences and M-

Sequences

In this section, it will be established th a t every m-sequence is M-invariant.
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L e m m a  5 .3 .1  Over a period. N  o f an m-sequence which satisfies equation (5.1.1),

every k-tuple 6162...6jt o f G f ( q m) appears in a contiguous set o f locations v,vt+i...v t+k 

fo r  exactly I values o f i, where

{ qm~k, for nonzero k — tuples, 

qm k — 1, for the zero k — tuple 

P ro o f . Recall, an m-sequence is a  solution over Gf(q)  of th e  linear difference 

equation

Given a nonzero initial s ta te  5o =  (uoUi.-.Um-i), a  succeeding non-zero s ta te  Si =  

(viV2 ...vm) is obtained by solving the  difference equation for vm. This process defines 

a linear mapping

m

0

5jt =  A  • Sk-i

where
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0 0

0

0

A  =

0 0

- am.ho
~“ h f n —  i  ~ ~ h r n — 2  “ * ^ m - 3

Ao /io /lO
-/ll
/lO

Since |i4| =  ( —1 )mhm/ho, the map is one to one. As there are at most N  =  qm — 1 

possible non-zero states, eventually, for some 0 <  R  < N ,

S R =  A r  ■ So =  So-

Hence, sequence a (So) is periodic of least period R. a(So) is called an m-sequence, 

or a sequence of maximal least period if and only if R  =  :V. □

For an m-sequence, every possible nonzero initial state occurs exactly once over 

a period. Moreover, the starting element of a contiguous k-tuple will always coincide 

with the first element of some sta te  S. To count the  number of such states, observe 

th a t k  positions of the m-tuple will be occupied, with m — k  positions free, which 

can be filled qm~k ways. As the all-zero state is not possible in an m-sequence, the 

all-zero k-tuple appears one tim e less than  does a  nontrivial k-tuple.

C o ro lla ry  5 .3 .1  Every non-zero element o f Gf { q )  occurs exactly q171-1 times, and 

the zero element occurs qm_1 — 1 times, over period N , i f  and only i f  a(v) is an
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m-sequence.

T h e o re m  5 .3 .1  (M-Invariance): Every m-sequence over Gf ( q) ,  where q = pl , is 

M-invariant.

P ro o f. By the corollary (5.3.1), a  vector

v = [u0ui—wjv-i]

whose elem ents constitute the first period of an  m-sequence a(v)  is such th a t u (JO 

obeys property U of section 3.3. Therefore, a(v)  is an M -invariant sequence. □
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Chapter 6

Summary and Conclusions

1. Investigating the existence of B H { 3,15) by numerically constructive means leads 

to  the discovery of row m axim al difference matrices which lead one to  conjecture 

the non-existence of B H ( 3,15).

2. Therefore, investigation has been directed to  the question of existence for 

generalized H adam ard m atrices over groups. In particular, param eter sequences 

{fn} are identified for which th e  corresponding potential generalized Hadamard 

m atrices BH ( p , fn ) and GH( p,  £„) fail to  exist, where p > 2 is a prim e number. 

Several methods for establishing non-existence are identified.

3. Interest has been focused upon applications of Butson’s complex Hadamard 

m atrices BH(p,  pt)  to the area  of algebraic coding theory. It is shown that the 

row vectors of each existent such Hadamard exponent m atrix  can be viewed as 

an error correcting code. B oth linear and nonlinear codes are possible.

4. Distance properties of generalized Hadam ard codes have been explored. 

Minimum distance between codewords is derived. The exact circumstances
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under which a code will be linear or nonlinear are determ ined.

5. An efficient polynomial m ethod is obtained which can be used to construct a 

Butson Hadamard m atrix BH( p ,  pn) whose associated Hadam ard exponent 

possesses a linear cyclic core w ith row vectors which form a cyclic linear code. 

For such codes, standard decoding schemes may be employed.

6. The concept of an M-invariant sequence has been defined. Conditions necessary 

and sufficient for their construction are derived. Such sequences prove useful

in constructing Hadamard m atrices with cyclic core.

7. The characteristic polynomial used to construct BH(p,  pn), p > 2 a prim e 

num ber, can equally well be used to determ ine which relative difference set is 

associated with the  matrix. In general, this is not easy.

8. It is established th a t every m-invariant sequence (in the sense of Zierler [37]) 

is also M-invariant.

6.1 D irections o f Future Research

Although the  classical linear H adam ard codes are optim al in the sense th a t the 

Plotkin bound [22] is satisfied, this optim ality does not extend to the generalized 

Hadam ard codes studied here. T he Plotkin bound states th a t for any (n, M, d)  code 

K  for which n < 2d, we have
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The notation (n , M yd) code is a set of M  vectors of length n such tha t any two 

vectors differ in a t least d  places, and d  is the  largest num ber with th is property.

It is clear th a t the linear cyclic Hadam ard codes investigated have a  place in 

information and communication theory. However, the usefulness of the nonlinear 

Hadamard codes has not been ascertained.
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A p p e n d ix  1:

N o n -Q u a d ra tic  R e s id u e s

In C hapter 2 the non-existence of some quadratic residues was stated w ithout proof. 

Therefore, a  model proof of the  non-existence of a certain quadratic residue is now 

given.

L e m m a  6 .1 .1  x 2 =  10(mod 17) has no solutions (10 is not a quadratic residue o f  

17).

P ro o f .

x 2 =  I0(m od  17) => x 2 = 10 + I7y (6.1.1)

Clearly, no integer pairs (17m ,y) is a solution of (6.1.1).

Consider integers

x  =  17m +  n, where 0 <  n <  17 

x 2 =  (17m)2 -j- 34mn +  n2 (6.1.2)

Now let y  =  17m2 +  2m n  

Then (6.1.2) becomes

x 2 =  17y + n 2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



73

But if 0 < n  <  17, n 2 ^  10(mod  17) as the quadratic residues of 17 are

{0 ,1 ,2 ,4 ,8 ,9 ,1 3 ,1 5 ,1 6 } . Thus, x 2 =  10(mod 17) has no solutions. □

Lemma (6.1.1) implies GH{ 17,7) has no solutions. Therefore, the reciprocal 

pairs G H (7,17) and G H ( 17,7) do not exist. Indeed, the result can be used to prove 

the following theorem:

T h e o re m  6 .1 .1  Some sequences o f potential Hadamard. matrices over Abelian group

G o f order \G\ =  g which fa il to exist are:

1. G H (7,17 +  14(2fc_1 — 1)), where k is a non-negative integer.

2. G H (7,19 +  14(2fc_1 — 1)), u?Aere k is a non-negative integer.
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A ppendix  2:

C om puter Program for F inding the G enerator Polynom ial o f  a  Cyclic Code

C This program divides two monic polynomials, base p.

C is the irreducible generator of G f ( N ) .  with N  = P M.

*e :*e * * * * * *  *e *  :je jfc * * * * * * * *  3(e * *  jie sje *  :te * * *  ate :fc3 te :ic :< c:fc :te :fc :k :ie :* :* :icae :icae :ie

implicit real*8 (A-H, O-Z)

param eter(/.P  =  3, M  =  5,JV = ( I P )  * * M , M P l  =  M  +  1, 

I  S T O P  =  iV -  M ) 

integer F(N'), G (M P l), Q(N) 

do 10 J K  =  1,50 

do 9 /  =  1, M  +  1 

write(6,*) ’enter G(I), I =  ’, I 

read(5,*), G(I)

C where the divisor is X ‘v  1 — 1 and the  dividend

program Ndivide

9- continue

write(6,*) (G(I), I=1,M +1)

read(5^) IGO

******* *******

C initicilize

do /  =  1, N
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F ( I )  =  0 

Q( I )  =  0 

1 continue

F ( 1) =  1 

F ( N )  =  - 1

C the case G{ X)  = X 2 + X  + 2:

C <?(1) =  1 

C G{ 2) =  1 

C G{ 3) =  2

C the case G (X ) =  X 3 +  2 X  +  1 

C G (l) =  1 

C G{ 2) =  0 

C G(3) =  2 

C G(4) =  1

C IQP is the position where the action sta rts  

I Q P  =  1

do 2 I  = 1, 1 S T O P  

C get m ultip lier

IM U LT=F(IQ P)

w rite(6,*) ’I, IQP, IM U LT=’, I, IQP, IMULT 

Q (IQ P)=IM U LT
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C update dividend 

IQ P 2 = 0 

do 3 J =  1, M P l  

I J  =  IQ P  -  1 + J

C logic test

if (IJ.gt.N ) then 

write(6,*) ’past end’ 

stop 

endif

F ( I J )  = F ( I J )  — G(J)  * I  M U L T  

if (F(IJ).lt.O) F { I J )  =  F ( I J )  +  I P  

if (F(IJ).lt.O) F { I J )  =  F { I J )  +  I P

Q% *c * * * * * * * * * * * * *

C logic test

if (IJ.gt.O) then

write(6,*) F I J  = 0 at wrong tim e’ 

stop 

endif

e *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * : « * *  * * * * * * *

if ((F(IJ).gt.O).and.(IQP2.eq.O)) then 

I QP2  =  I J  

endif
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£ 1 * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

3 continue

if (IQ P2.gt.IQ P) then 

I QP  = IQ P 2  

else

write(6,*) ’that is ail she wrote! Q (I) = ’ 

write(6,*) (Q(L), L = l , N - l )  

go to 6 

endif

q************ **************************** ************* it**** ************

2 continue

write(6,*) ’Q (I)= ’ 

do 5 J  =  1, iV 

write(6,*) Q(J)

5 continue

£ » * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * » * * * * * * * * * * * * * * * *

6 continue 

C count

11 = 0

12 =  0 

1 3  =  0

do 17 J  =  1, N  

if (Q (J).eq .l) then
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11 =  11 +  1 

go to  16 

else

if (Q(J).eq.*2) then

72 = 1 2  + 1 

go to  16

else

73 =  73 +  1 

go to  16

endif

endif

16 continue

17 continue

w rite(6,“ ) ’II, 12, 13=’, II, 12, 13

Q * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  :**:«:*

10 continue 

stop 

end
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