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ABSTRACT

DETECTION OF OUTLIERS AND INFLUENTIAL OBSERVATIONS

IN REGRESSION MODELS 

ANWAR M. HOSSAIN 

Old Dominion University, 1989 

Director: Dr. Dayanand N. Naik

Observations arising from a linear regression model, lead one to believe 

that a particular observation or a set of observations are aberrant from the 

rest of the data. These may arise in several ways: for example, from incorrect 

or faulty measurements or by gross errors in either response or explanatory 

variables. Sometimes the model may inadequately describe the systematic 

structure of the data, or the data may be better analyzed in another scale. 

When diagnostics indicate the presence of anomalous data, then either these 

data are indeed unusual and hence helpful, or contaminated and, therefore, 

in need of modifications or deletions.

Therefore, it is desirable to develop a technique which can identify un

usual observations, and determine how they influence the response variate. 

A large number of statistics are used, in the literature, to detect outliers 

and influential observations in the linear regression models. Two kinds of 

comparison studies to determine an optimal statistic are done in this dis
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sertation: (i) using several data sets studied by different authors, and (ii) 

a detailed simulation study. Various choices of the design matrix of the re

gression model are considered to study the performance of these statistics 

in the case of multicollinearity and other situations. Calibration points us

ing the exact distributions and the Bonferroni’s inequality are given for each 

statistic. The results show that, in general, a set of two or three statistics is 

needed to detect outliers, and a different set of statistics to detect influential 

observations.

Various measures have been proposed which emphasize different aspects 

of influence upon the linear regression model. Many of the existing measures 

for detecting influential observations in linear regression models have natural 

extensions to the multivariate regression. The measures of influence are 

generalized to the multivariate regression model and multivariate analysis of 

variance models. Several data sets are considered to illustrate the methods. 

The regression models with autocorrelated errors are also studied to develop 

diagnostic statistics based on intervention analysis.
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l .  I n t r o d u c t i o n

Researchers and data analysts are often faced with the problem of find

ing an observation or a set of observations in their sample which stand apart 

from the rest. It seems likely the t such spurious observations should come 

from one or a combination of the following sources.

(i) The observation is in error. For example, an investigator might have 

recorded the response of a variate incorrectly.

(ii) The model is incorrectly specified.

(iii) The observation is inconsistent with the inherent variability of the 

system being investigated.

It must be emphasized that the first objective of a data analyst is to 

detect those aberrant observations, which are called outliers. This type of 

observations may or may not have an effect on the parameter estimation 

or prediction. The study of outliers has interested practicing statisticians 

and other scientists for a great number of years. Benjamin Pierce, in the 

Astronomical Journal (1852), produced an outlier criterion and applied it tc 

“fifteen observations of the vertical semi-diameters of Venus made by Lieu

tenant Herndon in 1846”. This data set has since become a classic in the 

literature and has been used by a number of authors to compare various 

outlier detection criteria. The authors of this period, including Chauvenet

1
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(1863), Stone (1867), and Edgeworth (1887), in developing their criteria, 

assumed knowledge of the population mean and population standard devia

tion.

Thompson (1935) was the first author to drop both assumptions about 

population mean and standard deviation, and his paper was the basis upon 

which most modern day outlier theory grew. Anscombe (1960) and Daniel 

(1960) were among the first authors to propose the use of standardized resid

ual for detecting a single outlier in linear regression models. Since then, 

many authors, Srikantan (1961), Ellenberg (1973), Teitjen, Moore and Beck

man (1973), and Cook and Weisberg (1982) have considered the problem of 

detection of outliers in linear regression models.

In recent years, considerable interest has centered on a particular class 

of diagnostic methods that are intended to aid in assessing the role that in

dividual observations play in determining a fitted model. Key features of a 

fitted model can be dominated by a single observation. It seems that spu

rious observations may not always be outliers. It is therefore important for 

an analyst to be able to identify such observations, and assess their effect on 

various aspects of the analysis. Such observations are called influential ob

servations. A definition, which seems most appropriate, is given by Belseley, 

Kuh, and Welsch (1980): “An influential observation is the one which, either

2
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individually or together with several other observations, has a considerably 

larger impact on the calculated values of various estimates... than is the case 

for most of the other observations”.

Wood (1983) referred to such influential cases as “golden points” and 

related an actual application in which such cases actually led to an improve

ment of the physical process from which the data arose. This discovery 

eventually translated into millions of dollars in additional profit for the com

pany.

An observation, however, may not have the same impact on all regression 

outputs. An observation may have influence on estimates of the regression 

coefficients, the estimated variance of these estimates and/or the fitted val

ues. The primary goal of the researcher should determine which influence 

to consider. Once the influential observations are identified, he must make 

use of all available additional information about those data points in the 

context of actual application and exercise his best statistical and common 

sense judgements in deciding the appropriate action to take. An even more 

immediate task, after the detection of potential or actual influence, is the 

attempt to understand or explain the source of the influence.

The detection of influential observations from the linear regression mod

els, known as regression diagnostics, received the attention of several authors

3
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after the paper by Cook (1977). There have been many books and research 

papers on this topic since then. Some of these are by Belsley, Kuh, and 

Welsch (1980), Cook and Weisberg (1982) and Atkinson (1985) with their 

references. Pendleton (1985) has looked at the application of many of these 

methods to analysis of variance problems. For some work on detection of 

outliers and influential observations in the case of multivariate regression, 

see the papers of Naik (1986) and Hossain and Naik (1989). The number 

of techniques available for regression diagnostics is indeed very large. The 

analyst must try to understand the basis of these methods, and choose the 

set that seems most appropriate. Chatterjee and Hadi (1986) reviewed most 

of the available statistics for detection of influential observations. Hoaglin 

and Kempthome (1986), pointed out that the calibration points considered 

in that paper, and in many earlier papers, are based on the rule of thumb. 

Recently, Balasooriya and Tse (1986) and Balasooriya, Tse and Liew (1987), 

have compared performance of several statistics, but many important and 

sensitive statistics were omitted in their study. With the analyses of several 

data sets and simulation study, it is noticed that, important influential obser

vations can be overlooked if appropriate calibration points are not exercised.

In this dissertation, (i) a comparison of various statistics by using the 

calibration points which are obtained, from the exact distributions and Bon-

4
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ferroni’s inequality is done, (ii) Diagnostic statistics are developed for the 

multivariate regression model and MANOVA model, (iii) With use of the 

missing value techniques, some of the methods are extended to the regres

sion model with correlated errors. For the regression model with correlated 

errors, an estimator of the parameter vector is obtained, using the whole 

data set and without the ith observation. The distance between the two 

estimators with and without the ith observation in some appropriate norm 

will give the measure of influence. Some diagnostic statistics are then found, 

using the intervention analysis, first introduced by Box and Tiao (1975).

The scheme of presentation of this dissertation is as follows:

(1) In Chapter 2 briefly reviewed the literature, introduce the notations, 

and summarize some available results.

(2) Chapter 3 deals with comparison studies in order to determine an 

optimal set of statistics for detection of outliers and influential observations. 

Two kinds of comparison studies are done: (a) Using several data sets stud

ied by different authors, (b) A  detailed simulation study using an EMSL 

subroutine to generate a linear regression model.

(3) In Chapter 4 diagnostic statistics are developed for multivariate re

gression models. Examples are presented to illustrate the methods. Further, 

it is shown that some of the statistics can easily be used for identifying the

5
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outliers and influential observations from MANOVA models.

(4) Chapter 5 deals with the regression model with autocorrelated errors. 

The finding is that the likelihood displacements, along with some of the 

statistics, can be used for detecting the influential observations.

6
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2. R EVI E W

A large number of statistical measures have been proposed in the lit

erature for detecting the outliers and influential observations in the linear 

regression model. These measures along with an examination of their inter

relationships are presented in the following.

In Section 2.1, are presented the linear regression model and notations. 

In Sections 2.2 to 2.8, are described various statistics that have been used in 

the literature. In Section 2.9 is suggested a simple modification of the avail

able statistics which performs slightly better in many cases for identifying 

the influential observations.

2.1 Notations

Consider the linear regression model

Y  =  X/3 +  e, (2.1)

where Y is an nxl vector of response or dependent variable; X is an nxm 

matrix of predictors, including one constant predictor; /? is a m xl vector 

of unknown parameters to be estimated; and e is an nxl vector of random 

disturbances each with zero mean and unknown variance a2. Let t/t-, zj, 

* = ’1 ,2 , . . . ,  n, denote the ith element of Y and the ith row of X respectively, 

and X j , j  =  1 , 2 , . . . ,  m, denote the j th  column of X. By the ith observation

7
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is meant the row of (zj : y,), that is, the ith row of the augmented matrix 

X* =  (X  : Y) .  The notation “( t)” or “[jf]” written as a subscript to a quantity 

is used to indicate the i th  observation or the j th  variable deleted respectively. 

Thus, for example, X(t-j is the matrix X with the ith row deleted, and Xy]  is 

the matrix X with the j t h  column deleted, and 0y) is the vector of estimated 

parameters when the i th  observation is omitted.

2.2 Standard Estimation Results in Least Squares

The least squares theory gives 0  =  (X'X)~1X'Y,  Cov(0) =  o 2[X'X)~1. 

And 0  ~  N m{0, ^ { X ' X ) - 1), Y  =  X 0  =  PY,  where P  =  X { X ' X ) ~ l X',  Pi =  

x ' i i X 'X r ' z i ,  Y  ~  N n( X 0 , a 2P)  and E) denotes a m -  dimensional

multivariate normal distribution with mean vector ft and covariance matrix 

E. Also, e =  Y  - Y  =  { I -  P)Y,  var{e) =  a 2{I -  P),  e ~  Nn(0,a2(I -  P)),  

S S E  =  e'e, and a 2 =  e'e/(n — m), the residual mean square estimate of a2. 

Let /3(j) and u2̂  be the estimates of 0  and a 2 when the ith observation is 

deleted. It is assumed throughout that (X'X) -1 exists.

2.3 Diagnostic Plots

Several diagnostic plots have been proposed in the literature. For ex

ample, see Belsley, Kuh and Welsch (1980), Cook and Weisberg (1982) and 

Atkinson (1985) and references therein. In Section 3.2 are to be considered a 

few plots through scaled values of different statistics against each observation.

8
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Scaling is done so that the calibration point is unity.

2.4 Measures Based on Residuals

Many commonly used tests for detecting outliers are based on the stan

dardized residuals

t% =  — .. r , i  =  1, 2, . . . ,  n, (2.2)
a y / ( I  -  Pi )

A

where e* =  y» —£*/?. If there are no outliers in the data it can be easily shown 

that t^/(n — m) has beta distribution with parameters 1/2 and (n-m -i)/2. 

Anscombe (1960) and Daniel (1960) were among the first authors to propose 

the use of U for detecting a single outlier in the linear regression models. It 

can be shown that, under normality, d ^  and e,- are independent (see Cook 

and Weisberg (1982) , pp.20 - 21), and the studentized residuals are defined

as

— a \ j* — 1>2,. . .  ,n, (2-3)
^(Ovl1 -  Pi)

where d?.x =  p(,) ŷ(*).. -phe distribution of i* is student’s t with (n-[*) ( n —rn — i j  ' v

m-1) degrees of freedom. Computationally easier form for d ^  can be given

as

a 2 2 ^  • i  o  t o  a \a (i )= a  ------------ i , * =  l , 2 , . . . , n .  (2.4)
11 n — m  — 1

9
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2.5 Measures Based on Influence Curve

An important class of measures of the influence of the ith observation 

on the regression results is based on the idea of the influence curve or influ

ence function introduced by Hampel (1968, 1974). The influence function is 

defined as

T F i x - u - F - T \ -  l i m r [̂ 1 ~ £) jr + £g(z»,y»)]-:r(jF) l r x\xx, yt, r  , 1 ) — , (2.5)

where T(.) is a vector-valued functional defined on the set of all cumulative 

distribution functions and — 1 at (xt-,yt) and zero elsewhere. The

function IF{ measures the influence on T of adding one observation (xt-,yt) 

to a large sample. Let F be the empirical distribution function based on 

the full sample and F(,) be the empirical distribution function when the ith 

observation is deleted. The empirical influence curve (EIC) for $  is found by 

substituting F ^  for F and /?(,) for T[F,(,•)) in (2.5) and obtaining

E lC i  =  { n - -  x S {i)) , i  =  1, 2, . . . ,n ,  (2.6)

where /3(t) =  (X ^  X(t)) “ 1 Y(t). The quantity (y,- — ®j4(t)) caAe(l the 

predicted residual, because the ith observation does not enter in the calcu

lation of $(,•). Miller (1974) showed that

$  -  /%  =  (X 'X )-1*;- ^ - , i  =  1 , 2 , . . .  ,n. (2.7)

10
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Using the relation (2.7) the predicted residual can be written as

Vi ~ =  e»/l -  Pi

and substituting this in (2.6) one can obtain

F  T/~i  t -  i \ ( \ r l y \ - l „ t  e » „• _  i  9  „  ( ?  o \-  r  2 • 5n-

The sample influence curve (SIC) for /? is found by omitting the limit in (2.5)

J _ tti r t rn/ ___ O    1 rpi^and. baling r — r  ̂± yr ) — t — — J-iliS gives

SICi = { n -  iKX'Xy'x 'Avi  -  Z i fa )

=  (n — —̂— , i  =  1 ,2 , . . .  ,n. (2.9)
1 — pi

The sensitivity curve (SC) for /? is obtained by setting F =  F ^ ,  T (F^ )  —

 ̂ *• 1/?(,•) and e =  ^. This gives

SCi =  n { X ' X ) - 1x'i - ^ — , i =  1 , 2 , . . . ,  n. (2.10)
1 — p*

Since is a vector, it must be normalized so that the observations can be 

ordered in a meaningful way. The class of norms which are location and scale 

invariant is given by

w m - V w w k  (2.11)
G C/

n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for any appropriate choice of M and C. A large value of Di(M,C)  indicates 

that the ith  observation has strong influence on the estimated coefficients 

relative to M and C.

Cook’s distance: Cook (1977) suggested the measure

m o2
(2 .12)

to assess the influence of the ith observation. At first sight, it might seem 

that computing C,-, i =  1, 2, . . . ,  re, requires (n+1) regressions, one regression 

using the full data and n regressions using the reduced data . However, 

substituting (2.7) in (2.12) yields

x!{{X'X)  ~ 1 {X’X) {X'X) ~1 Xj ef
Ci = m ( l - p i )  a 2{l — pi)

v
-*-,* =  1, 2, . . . ,  n. (2.12a)

1 — pi m

This measure, called Cook’s distance, can be thought of as the scaled distance
A A ,

between /? and /3̂ . Cook (1979) suggested that each C, be compared to the 

percentiles of the central F-distribution with m and (n-m) d.f. It is clear 

from equation (2.12a) that C{ can be expressed as Ci =  oc.;t̂ , where, under 

the assumption that X is nonstochastic, the oti,i =  l , 2 , . . . , n ,  are known 

but unequal constants. Hence C,- is a monotonic function of t2.

Welsch-Kuh’s distance: The influence of the ith observation on the pre

dicted value yi can be measured by the change in the prediction at when

12
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the ith observation is deleted, that is,

\m -  &(»)[ _  1 xiiP ~ { =  1 2  n . (2.13)
cry/Pi <*y Pi

Welsch and Kuh (1977), Welsch and Peters (1978) and Belsley et al.(1980) 

suggested using d(,) as an estimate of a  in (2.13) and named the expression 

in (2.13) as DFFITSi.  For simplicity, we will refer to (2.13) by WK{.  Thus

W K  =  I =  le» < { x ' x ) ^ x i \
G(i)VPi i1 - P i )  °{i)y/Pi

=  l*fl V r - ^ , t  =  l , 2 , . . . , n .  (2.14)
1 ~Pi

Belsley, Kuh and Welsch (1980) suggested using 2 y ^  as a calibration point 

for WKi.

Welsch’s distance: Using the empirical influence curve based on (n-1) 

observations, which is defined in (2.8) as an approximation to the influence 

curve for (3 and setting M  =  and C =  (n — 1)<t^, (2.11) becomes

Wi =  T2 = ( n ~ W 2 ’ * =  1 , 2 , . . . ,  n. (2.15)
"(t)^ t’M V- Ptl

Comparing (2.14) and (2.15) yields

Wi =  W Ki y/7— i =  1 ,2 , . . . ,  n. (2.16)
1 -  Pi

Welsch (1982) suggested using Wi as a diagnostic tool for identifying the 

influential observations. The fact that W K i  is easier to interpret has led

13
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some people to prefer WKi  over W{. It is clear from (2.16) that W{ gives 

more emphasis to high leverage points. The equation (2.16) suggests that 

the calibration points for Wi can be obtained by multiplying the calibration 

points for W Ki  hy [n(n — 1) /(n — m)]1/ 2.

Modified Cook’s distance: Atkinson (1981) has suggested using a modi

fied version of C,- for the detection of influential observations. The proposed 

measure is

< w * « * ' * ) ,  m^ 4 > )

=  KI =  =   *• <2-17>

which, apart from a constant factor, is the same as WKi.  was originally 

proposed by Welsch and Kuh (1977) and subsequently by Welsch and Peters 

(1978) and Belsley et al. (1980). The suggested calibration point for Ct* is

Vn —m

2.6 Measures Based on Volume of Confidence Ellipsoids

Under the normality, the 100(1 — a) percent joint confidence region for 

(3 is obtained from

{ j 3 - 0 ) ' { X ' X ) ( p - p )
mu2 < F ( a ; m , n  — m ), (2.18)

where F (a m,m ;n — m ) is the upper a  percentile point of the central F- 

distribution with m and (n-m) degrees of freedom. The diagnostic measures

14
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based on the influence curve can be interpreted as measures which are based 

on the change in the center of the confidence ellipsoid given by (2.18) when 

the ith observation is deleted.

Andrews-Pregibon statistic: Andrews and Pregibon (1978) suggested 

the ratio which measures the influence of the ith observation on the volume 

of the confidence ellipsoid and the ratio is

S S E d e t ( X ' X )  ’  ~

where

S S E {i) =  Yfa(I  -  P(0 )y(0 =  S S E  -  i =  1, 2, . . . ,  n. (2.20)

Lemma 2.6.1: Let B and C be mxp matrices. If A is a mxm nonsingular 

matrix, then det(A — BC') =  det(A)det[I — C'A- 1B).

Substituting A — X ' X  and B =C =x,, in Lemma (2.6.1) one can obtain

det(X'(i)X (i)) =  det(X'X) -  Xi^ )

=  det{X'X){  1 -  x 'AX'Xy'x i )  =  det{X'X){ l  -  Pi). (2.21) 

Now APi can be written as APi =  1 — (1 — Pi)-§§jp-, where S§s e ) ~

Covariance Ratio: One can assess the influnce of the ith observation by 

comparing the estimated variance of /? and the estimated variance of /?(,),

15
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that is, by comparing a2 (X'X)  1 and 6-^(X |^X(,)) x. Belsley et al. (1980) 

suggested using the ratio

det(X'x )  _

'  d e t l » 2( X ’X \ - ' ]  \ 62 )  d e t l x {.)X (i)) ’ ....................

(2 .22)

for that purpose. After substituting (2.4) and (2.21) in (2.22) one can obtain

Covri =  - I ------------ f )  ,*  =  1 , 2 ( 2 . 2 3 )
1 — pi \ n  — m — 1 )

A rough calibration point is \Covri — l| >  Belsley, Kuh and Welsch

(1980) called (2.23) COVRATIO.

Cook-Weisberg statistic: Under the assumption of normality, the 100(1—

a) percent joint confidence ellipsoid for /?, when the ith observation is deleted

is

0  -  -  h o )  ................................---------------------------------------- <  F[a:m,n — m — 1). (2.24)
m a fi)

Cook and Weisberg (1980) proposed the logarithm of the ratio of the volume 

of the region in (2.24) to that in (2.18) as a measure of the influence of the ith 

observation on the volume of confidence ellipsoid for ft which can be written

as

Y ' \ i = 1 , 2................................(2.25)
\F (a ;  m ,n  — m — 1 ) )  h  ’ ’ ’ v ’

16
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m 
+  2 *

Substituting (2.4) and (2.21) in (2.25) one can obtain

1 , , m ,  ( n - m - 1 \
CWi =  - M l  -  Pi) +  - l o g )

, (  F(ot] m ,n  — m) \  . . .

U ( o i . m . »  -  m -  1 ) )  ’ ‘ _

where F(a; . , . )  is the upper a  percentile point of F- distribution with ap

propriate degrees of freedom. Cook and Weisberg (1980) say the following 

about CWi\ “if this quantity is large and positive, then deletion of the ith 

observation will result in a substantial decrease in volume...[ and if it is] large 

and negative, it will result in a substantial increase in volume”. From (2.23), 

it is seen that CWi is related to Covr,- by

1, . , m , (  F (a:m ,n  — m) \  . „ ^
c w i =  ~ 7; lo9 {Covri) + —log[ —  -y ), * =  l , 2 , . . . , n .  (2.27)

2 2 \F (a - ,m ,n  — m  -  1) /

The second term on the right hand side of (2.27) does not depend on i; thus, 

CWi and Covri are equivalent.

2.7 Measures based on the Likelihood Function

Let 6 be a (mxl) parameter vector partitioned as O' =  (0'l 5$2) and 

the maximum likelihood estimator (mle) of 6 based on n observations be 

O' =  (0[,0'2). Further, let 0'^ =  (^i(j)j 2̂(1)) m ê  ̂ obtained by

using all but the ith observation. Let 1(0) and l(0(i)) be the log-likelihood 

functions when 0 is repalced by 0 and 0(t) respectively. Cook and Weisberg

17
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(1982) defined the likelihood displacement for 6 by

LDi{6) =  2[l(0) -Z(0(O)], * =  1 , 2 , . . . , » .  (2.28)

Usually LD{{B) is compared with X2{a > q) where X2(“ 5 9) is the a  percentile 

point of the x 2 distribution with q degrees of freedom and q is the dimension 

of 0. Suppose one is interested only in estimating 0\, then the likelihood 

displacement for 6 is defined as

LDi(01|02) =  2 [10)  -  * =  1,2, . . .  ,n, (2.29)

A A

where 2̂ (^i(*)) is the mle of 02 when 0i is repalced by It is fairly

straight forward to apply the general results (2.28) and (2.29) to the linear 

regression model (2.1). Let 1(0, a 2) be the log-likelihood function based on 

all n observations. Let 0  and a 2 be the mle’s of 0  and a 2 respectively. Let 

the mle’s of 0  and a 2 be /?(,) and d 2̂  respectively when the ith observation 

is deleted. Then the likelihood displacement (2.28) for (/?,o2) is given by

LDi{(3,o2) =  2[l(0,a2) - l ( 0 {i),afi))}, » =  1,2,.

where

1(0, v 2) =  ~ l o g ( a 2) -  ^ -  ^log(2ir) (2.30)

and

'(/%).*<.')) =  -  x f a n r  -  x $ m ),

18
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=  -  ? /off(27r) -  ~2 ( ? - n \2 -  (» -  1). *' =  l»2, . . . ,re.  (2.31) ̂ i  — Pi)

Substituting (2.30) and (2.31) in (2.28), one can write

LDi{P, a 2) =  nlog I ^  , 2 -  1, » =  1 ,2 , . . . ,  n. (2.32)
V °  )

Note that LDi((3,tr2) is useful if we are interested in estimating both /? and 

a2. If the only interest is in estimating j3 or a 2, then the likelihood displace

ment can be obtained by using equation (2.29). The likelihood displacement 

for estimating only (3 is

LDi[p\a2) =  2 { l 0 , a 2) -  I(% , * 2(/?(.)))] (2.33)

and that for estimating (7̂  IS

LDi{a2\0) =  2 [10 , a 2) -  (l(o2{i), ^ a 2{i))} (2.34)

Note that

l 0 ( i ) ,< r 2 0 ( i ) ) )  =  2jt) -  ^ l o g ( ° 2i f o ) ) )  ~  ( 2 -35)

and hence by substituting (2.30) and (2.35) in (2.33) one can obtain

L D 0 \ a 2) =  nlog{° 2^ ^ ) =  nlog{ 1 +  C<), * =  1 ,2, . . .  ,n,  (2,36)
o n — m

where C{ is given by (2.12). Thus LDi(/3\a2) is compared to the percentage

points of x 2(a; m). Noting that

l {tfi),0{°ti))) =  - | ^ f f ( 27r) -  _  2̂'37^

19
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and substituting (2.30) and (2.37) in (2.34) yields

d2
LDi(a2\/3) =  nlog(-££)  +  n -^ - -  n, i =  1 , 2 , . . . ,  n. (2.38)

It should be noted that the likelihood displacements axe based on the prob

ability model used, whereas the other measures of influence are numerical. 

An advantage or tne liKcimouu displacement is that it can be extended to 

models other than the normal linear model.

2.8 Influnce of an Observation on a Single Coefficient 

The influnce of the ith observation on the j th  coefficient of /? can be 

measured, as suggested in Cook and Weisberg (1980), by

D . . -  ei Pi ~  P»[i] _  t 2 Pi -  Pi[j) • _ 1 o • _  1 2  m

(2.39)

where Pi[j] is the ith diagonal element of P y j =  X[y](X'y j^[y  ])- 1 -Xjy ], and 

X[yj is the matrix with the j th  column deleted. The equation (2.39) can be 

simplified to

f? tw2
A y  =  Y ^ p T W W j ’ * =  2 ’ ' - ’ ’ n ;  j  = 2 ’ ' ’ ' ’ m ’ ^ • 4°^

where is the ith element of Wj =  (I — Py])Xj,  X j  is the j th  column of X. 

Instead of D ,y one can use D as suggested in Belsley et al. (1980), where

Dh  = Y i - P i  s/w ]w :-’ * =  J =  (2-41)

20
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The suggested calibration point for D^- is

2.9 Modified Measures

(a) Many studies on outliers and influential observations in regression 

models are based on either ft- or t \  and p,-. The statistic t*{ detects the signif

icant differences between predicted and observed values of the response for 

the ith observation. But this t\ does not provide sufficient information about 

changes in the parameter estimates due to the deletion of the ith observa

tion. Some of the most influential data points can have relatively small t \  

and hence the calibration point corresponding to t ? can not detect these ex

treme points. One way of overcoming this situation is to scale ft* by (1 — p,), 

which measure can be called as modified t \  (Mff).  Thus modified t \  is

Mt*i = - ^ - , i  =  l , 2 , . . . , n .  (2.42)
1 - P i

A large value of modified t \  indicates that the ith observation is outlier, in

fluential or both. Hence, max (M t ?) may be used as a statistic for identifying 

an extreme observation in the data.

(b) A measure of goodness of fit of the regression is the multiple corre

lation coefficient, R 2, which is estimated as a correlation coefficient between 

the observed and predicted Y’s. Usually outlying or influential observations 

have drastic adverse effect on R 2. The values of R 2 and R2̂  differ consid

erably, especially when the ith observation is an influential one. Therefore,

21
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the influence of the ith observation can be measured by

( i ) ~  W r l - » J f o l  ( M *>

where Y(t) is the sample mean dropping the ith observation,

and for any matrix A, A(,) is A after dropping the ith row. It may be noted 

that can be easily computed using the PROC MATRIX of SAS program. 

A very small value of R2̂ , (that is much smaller than jR2) means the ith 

observation is influential.

22
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3. E MP E R I C A L  S T U D Y  IN L I N E A R  R E G R E S S I O N

In this Chapter two types of comparison studies have been made for 

determining an optimal statistic. This included: (i) a detailed simulation 

study, and (ii) using several data sets studied by different authors. Different 

choices of the design matrix of regression model are considered to study the 

performance of these statistics. The designs A and B are chosen to study the 

performance of the various statistics for detecting the outliers in the case of 

multicollinearity. Designs C and D are chosen to study the performance of 

the statistics for identifying the influential observations.

Hoaglin and Kempthorne (1986), mentioned in their comment on Chat- 

terjee and Hadi (1986), that the calibration points considered in that paper 

are the rule of thumb. They also pointed out that one should use calibration 

points computed using the exact distributions. For example, Cook(l979) 

suggested that C,-, the Cook’s distance of the ith observation, be compared 

with the quantiles of the central F distribution with m and (n-m) degrees 

of freedom, where m is the number of parameters and n is the number of 

observations in the regression model. In many cases this calibration point 

cannot identify the influential observation and hence it reduces the capa

bility of Ci in detecting an influential observation. Another widely used 

regression diagnostic statistic is W K i ,  which is defined by Belsley, Kuh and
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Welsch (1980) and a calibration point suggested by them is 2y ^ .  With this 

calibration point, important observations can be overlooked, and some in

fluential observations may not be detected. Therefore, the statistics require 

clear criteria and guidelines for identifying outliers and influential observa

tions.

A limited study to compare certain statistics is done by Balasooriya 

and Tse (1986) and Balasooriya, Tse and Liew (1987). Many important and 

useful statistics were omitted in their comparison study. This motivated the 

simulation study for determining an optimal statistic for identifying outliers 

and influential observations taking most of the statistics available into con

sideration. In this study a large number of statistics are considered and their 

calibration points are recomputed. They are further compared by using their 

power to detect outliers and/or influential observations. Apart from certain 

constants, all the statistics are functions of i,- (standardized residual) or t\  

(studentized residual) and p,- (the ith diagonal element of the prediction ma

trix). A reasonable rule of thumb for large p,-, as suggested by Hoaglin and

Welsch (1978) and born cut by our experience, is The distribution of

i2i? is student’s t with (n-m-l) degrees of freedom and reJ m follows a beta 

distribution with parameters |  and llLzlZLiIl, Using an appropriate cutoff 

value for pj and the above exact distributions, the calibration points for var-
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ious statistics can be obtained. In this study, various statistics axe compared 

by studying their capability to detect outliers and/or influential observations 

using the calibration points which are obtained by using the exact distri

butions and Bonferoni’s inequality. In many cases it was found that the 

performances of these statistics, using these almost exact calibration points, 

increased considerably.

Computation of calibration points using the exact distribution and Bon

feroni’s inequality is summarized below. Let Tt-, i — 1 , 2 , . . . ,  n be statistics, 

such that the marginal distribution of each Tt- is identical. If a decision crite

rion is based on Max  (T;), for example a decision is made if M ax. (T'i) >  Ta , 

then the cutoff value Ta for M ax.  (Tt) can be obtained as follows: If Ta is 

such that

P[Max.  (Ti) > Ta] < a

then

P(T{ >  Tafor some *) < a

that is

PlUffi > iy ] < a.
i

But

P[U (r< >  Ta)] <  ' E ' P p i  > Ta).
i i

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Therefore, if Ta is such that

P[Ti > Ta} <  - ,  n

then

P[Max. {Ti) >  Ta\ <  a, *' =  1 , 2 , . . . ,  n.

Such a point Ta we call as calibration point. Knowing the exact distribution 

of Ti it is, in practice, possible to find Ta for some choice of a. Although, a 

does not have the same meaning as in the testing of hypotheses problems, in 

this study a  is chosen to be 0.05.

To illustrate the above method, consider the Cook’s statistic C,- with 

n =  19, m  =  4, and a =  0.05. The criterion suggested by Cook is to 

identify the kth observation as influential if Ck =  Max.  (C,). To find a 

calibration point for Ck the above method can be used. It is known that

1^ n —m —l  
2 ’ 2 ), i =  1 , 2 , Problem is to find Ca such

that

P[Max.  (Cf) > C a] <  a

that is, to find Ca such that

But such a Ca using the cutoff value of beta distribution is

n — m pi
m  1 — pi

(0.2323).
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As it is mentioned before taking a common value of for pi, Ca can be 

taken to be 0.6335.

The statistics used for simulation study are summarized below. The 

Bonferoni’s inequality and the exact distributions were used to compute the 

calibration points. In section 3.1, a simulation study is presented together 

with some general conclusions. In section 3.2 are described the data sets and 

the performances of the various statistics; also given are several plots of the 

statistics based on a unit calibration point.
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Table 3.1 Various Statistics and Calibration Points

Statistics

and

Notations

Calibration Points 

Suggest by 

Different Authors

Calibration Points 

in this Study: 

Based on

** ~  <V(i- Pi)

f* —

* C(i)\/(i-Pi)

APi =  p i +  f a

<~'i ~  Ĥ pTT ™ 

W K < =

Wi =  W K iy/ {

c ;  -  w K iy/ ^

M t i =  IT^T)

Z°
2

ta.(n — m — 1)

2 ( m + 1) 
n

Fa (m, n — m)

V ®

3 y/m

V n^n

t^(n — m — 1)

0 ( 1, »="=•)

t(n — m  — 1)

/? (* ,2= f = 1)

+ ___ *>Vt ___ "J ̂
f#o Xj

t(n — m  — 1) 

t(n — m — 1)
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Table 3.1 Various Statistics and Calibration Points (contd.)

Statistics Calib. Points Calib. Points

and Suggest by in this Study:

Notations Diff. Authors Based on

LDi(l3\o*) =  n l o g ( ^ C i  +  1) x | ( w » -  1)

LDi{(3,a2) -  n i t w i t )

+nlog( 1 bi) +  1. x « M

t2where bi =  —l—* tl—m

LDi(a2\(3) - n l o g i ^ , )

+nlog( 1 bi) +

4 [y')V(.)-(n -i)y (̂ )]

Xa(l) 0 { l s =T=k )

Here Z&, t ° ,  Fa , and x |  are standard cutoff values of N{  0, 1), t, F, and 

X2 distributions with appropriate degrees of freedom.

3.1 Performances of the Various Statistics for Simulated Data 

In this section are to be compared the performances of the statistics 

under the following designs. The designs A and B are chosen so as to study 

the performances of the various statistics in detecting the outliers when the 

design matrix is multicollinear. In designs C and D influential observations
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are introduced by considering the values of R 2, the multiple correlation co

efficient. The different design matrices of the regression model considered in 

the study are as follows.

Design A  : X nxm =  Pnxn Anxm Qmxm, where P and Q are orthogonal

, and 7 =  Diag{qi , . . . , 7m) is a diagonal matrixmatrices, A = 7mxm
0 (n-m)xm.

such that 71 >  72 > • • • > 7m >  0. If 71 -F 7m is large then there exists

multicollinearity. Two sets of this ratio axe chosen.

Design B  : X  =  { X i j ) \  

X % j  — (l OL ) Z { j  "h CL Z i tYn-\-h  * lj 2 , . • . , n , j  — 1, 2, . . .  , 171,

where Zij, i  =  1,2, . . . , n , j  =  1 ,2 ,. . . , m  +  1, are all independent N(0,1) 

variables. Here corr(Xij,Xiji) =  a 2, j  ^  j 1. Large values of a  indicates 

higher degree of multicollinearity. These different values are considered for 

a  : 0, .1, .2, .3, .4, .5, .6, .7, .8, .9.

Design C  : Consider the simple regression model

Vi =  Po+ Pi^i +  e,-, * =  1 , 2 , . . . ,  n.

If y and x are standardized then R 2 = (Y^^iHi)2, that is | R |= | xjt/j +  

2-21/2 +  . . . ,  ~\~xnyn | . To find xi,  X2 , . . . .  xn such that M nxn ^nxi =  P(i)nxi> 

solve M nxnX nxi =  I2(t)nxi for a given M and P(,). The P(t) represents the 

multiple correlation coefficient.
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Design D  : Suppose it is known beforehand that a particular data set 

has influential observations. By using this design matrix the model (2.1) is 

simulated. Then the various statistics are computed and their performances 

noted.

The IMSL subroutine RNNOR is used to generate the standared normal 

variables e. For a  =  1, and fli =  i, i — 1 ,2 , . . .  ,m,  and for different designs 

described above the model Y  =  X/3 +  e is simulated.

Mean S h i f t  Outliers : A mean shift model is

Y  =  X/3 +  do6i + e  (3.1)

where S.; is a n x l column vector with one at the i tk  row and zeros elsewhere. 

For the designs A and B , 1000 random samples are generated with n=10, 

15, 20, and 50. For each sample, one observation is selected at random and 

an outlier is created by adding da to mean shift model (3.1). Values of d 

are chosen to be 0 (no outlier), 1, and 3.5. The proportions of the number 

of times out of 1000, different statistics detect outliers are tabulated in the 

Tables 3.2 - 3,9. To economize here on space, the results are presented for 

some values of sample sizes only.

For design A, values for n=10, 20, and 50 and (71, 72) =  (1,2) and 

(0.005, 2) are presented in Table 3.2. First, it is noted that the multi

collinearity introduced in the manner of design A does not reduce the power
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to detect outliers, of any statistics. Next, kurtosis has about 40 - 50 per

cent capability of detecting the outliers for different sample sizes, which is 

higher or almost equal to what other statistics could do. For small sample 

(n=10) only t,-, t \  and LDi(<r2\j3) have about 30 percent power to detect 

outliers, whereas for moderate to high sample size (n=20, 50) along with the 

above, M t J and LDi((3,a2) have about 40 - 50 percent power of detecting 

the outliers.

For design B, values for a  — 0, .9(.l) and n=10 are presented in Table 

3.3, and that for n=20 and n=50 are presented in Table 3.4 and Table 3.5 

respectively. One may note that different choices of a  describe different levels 

of multicollinearity. However, examination of the Tables 3.3 - 3.5 reveals that 

the multicollinearity does not affect the power of these statistics in detecting 

outliers. Kurtosis in the present case has varying power 10 - 30 percent for 

small sample (n=10) and about 20 - 50 percent for n=20 and 50. All the 

statistics mentioned in the previous paragraph have about 20 - 30 percent 

power for small sample and about 40 - 50 percent for large sample. The 

conclusion, is that for detection of mean shift outliers, two or three of the 

above statistics along with kurtosis may be used.

Scale S h i f t  Outliers : Consider the scale shift outlier model

Y  =  X 0  + v {d) (3.2)
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where r j^  =  £*> for all k ^  i  and 77̂  =  c* eda. Values of d here are chosen 

to be 0, 1 and 3.5, with d=3.5 giving a very high value for the variance. 

Various results are given in the Tables 3.6 - 3.9.

For designs A and B it is observed that multicollinearity does not affect 

the power of these statistics. For a moderate increase in the variance and 

for different sample sizes the statistics; U, t±, Mt%, LDi(a2\/3), LDi(/3,a2), 

and kurtosis have about 50 - 60 percent power to detect outliers, in both 

designs A and B. For large variance these statsitics perform better in all the 

above cases. Thus, there is not much difference from the conclusions which 

are made for the mean shift model.

The results for designs C and D are presented in Table 3.10 and 3.11 

respectively. Along with the influential observations, which are introduced 

through the selection of design itself, are introduced outliers of mean shift 

type (model (3.1)) for d=0, 1, and 3.5. Here d=0 means only influential 

observations in the data. The columns in Table 3.10 and 3.11 corresponding 

to d=0 for designs C and D show that, performance of Wt- is better than 

the other statistics. However, C{ and LDi{(i\a2) are also good competitors 

for Wi. Further, as expected, it is observed that the statistics; ti, t?, and 

LDi(a2\P) may be used to detect outliers (see columns corresponding to 

d=3.5) but not influential observations.
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Table 3.2: Proportions of Detecting Outliers for Design A 
(mean shift model for n=10, 20, and 50)

Statistics n=10 n=20 n=50
7=1,2 7=.005,2 7=1,2 7=.005,2 7=1,2 7=.005,2

ti
.697(.269)
.083(.046)

(.054)

.697(.267)

.082(.045)
(.053)

.855(.395)

.118(.047)
(.047)

.855(.396)

.120(.048)
(.046)

.916(.466)

.149(.061)
(.052)

.918(.466)

.148(.060)
(.048)

t*i
.762(.279)
.105(.050)

(.056)

.760(.277)

.105(.047)
(.054)

.861(.401)

.123(.049)
(.047)

.861(.400)

.125(.051)
(.049)

.99l(.467)

.373(.062)
(.052)

.991(.466) 

.375(.060) 
(.050)

Ci
0(.004)
0(.026)

(.044)

0(.004)
0(.026)

(.044)

.669(.074)

.036(.099)
(.100)

.640(.066) 

.028(.097) 
(.093)

.871(.029)

.102(.047)
(.048)

.870(.023)

.104(.048)
(.050)

W Ki
.400(.009)
.025(.018)

(.022)

.398 (.008) 

.025(.047) 
(.022)

.746(.063) 

.056(.055) 
(.060)

.727(.051) 

.045 (.052) 
(.055)

.980(.047)

.308(.031)
(.030)

.980(.040)

.309(.032)
(.021)

c :
.400(.009)
.026(.018)

(.022)

.400(.008)

.025(.017)
(.022)

.745 (.064) 

.056(.055) 
(.060)

.727(.051) 

.045(.052) 
(.055)

.980(.051)

.308(.031)
(.032)

.980(.051) 

.309(.032) 
(.031)

Wi
.317(.006)
.017(.031)

(.046)

.315(.005)

.017(.031)
(.046)

.721(.101)

.047(.107)
(.080)

,698(.085)
.040(.101)

(.099)

.980(.066)

.307(.052)
(.052)

.980(.057) 

.308 (.036) 
(.047)

Mt*
.617(.142)
.058(.033)

(.047)

.615(.142)

.058(.033)
(.046)

.836(.350) 

.109(.040) 
(.046)

.834(.348) 

.108 (.039) 
(.043)

.991(.510)

.370(.054)
(.042)

.991 (.509) 

.372(.056) 
(.041)

APi
.264(0)
.011(0)

(0)

.264(0)

.011(0)
(0)

.668 (.064) 

.035(.006) 
(.007)

.665 (.060) 

.079(.007) 
(.006)

.824(.249)

.080(.014)
(.016)

.821(.244)

.082(.013)
(.013)

L O W  | ct2)
0(.004)
0(.026)

(.044)

0(.004)
0(.026)

(.044)

.668(.064) 

.091 (.098) 
(.100)

.665(.060)

.079(.097)
(.093)

.824(.249)

.015(.047)
(.048)

.821(.244)
-082(.013)

(.045)

£ A (/? ,a 2)
.569(.175)
.050(.053)

(.061)

.568(.175)

.050(.052)
(.061)

.819(.365)

.092(.085)
(.082)

,818(.362)
.091(.081)

(.083)

.925(.444)

.156(.085)
(.080)

.925 (.436) 

.158(.086) 
(.068)

£ A V  | P)
.696(.269)
.082(.046)

(.054)

.695(.267)

.081(.045)
(.053)

.859(.395)

.123(.047)
(.047)

.860(.396) 

.123 (.048) 
(.046)

.972(.464)

.264(.060)
(.052)

.972(.463) 

.265 (.061) 
(.049)

Kurtosis
(.440)
(.057)
(.040)

(.440)
(.057)
(.040)

(.417)
(.063)
(.052)

(.429)
(.060)
(.048)

(.470)
(.065)
(.064)

(.472)
(.065)
(.063)

The first two rows are the proportions of detecting the correct outlier. The figures are in 
percentages where first row corresponds to d=3.5 and second row to d = l.  For d=3.5 and 1, 
the figures given in the parentheses are the proportions of detecting the outliers. For d=0, the 
figures in the third row, are the estimated level of significance.
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Table 3.3: Proportions of Detecting Outliers for Design B
(mean shift model for n=10)

Statistics CK— 0 at=.l a= .2 a = .3 a= .4
.616(.214) .679(.257) .545(.179) .634(.248) .591(.214)

U .061(.041) •081(.04lj .079(.038) .069(.043) .084(.039)
(.040) (.050) (.056) (.044) (.054)

.692(.221) •761(.272) ,638(.191) .706(.257) .666(.224)
*? .088(.042) .107(.045) ,104(.044) •084(.044) .101(.040)

(.042) (.057) (.061) (.050) (.058)
.686(.012) .200(.065) .812(.022) .722 (.017) .722(.044)

Ci .146(.037) .098(.020) .213(.039) .102 (.003) .056(.109)
(.031) (.060) (.016) (.013) (.020)

.692(.060) .566(.045) .750(.114) .714(.094) .694(.069)
W K i .121(.017) .100(.017) .116(.020) .114(.008) .083(.035)

(.019) (.033) (.027) (.033) (.031)
.692 (.060) .567(.046) .750(.114) .714(.096) .693(.069)

c t .121(.017) .100(.018) .163 (.020) .114(.008) .084(.035)
(.019) (.033) (.027) (.033) (.031)

.692(.066) .508(.068) .783(.144) .717(.108) .705(.095)
Wi .132(.037) .100(.026) .192 (.038) .112(.011) .011(.084)

(.035) (.059) (.048) (.066) (039)
.692(.216) .662(.184) .714(.252) .709(.227) .680(.255)

Mt* .108 (.052) • 101(.041) .143 (.065) .117(.026) .091(.072)
(.039) (.054) (.052) (.049) (.045)

.294(0) .289(0) .305(0) .327(0) .304(0)
APi .023(0) .022(0) .022(0) .021(0) .022(0)

(0) (0) (0) (0) (0)
,700(.010) .234(.065) .819(.022) .732(.022) .734(.043)

LDi(f)\cr2) .150(.036) .100(.020) .218(.038) .107(.003) .061(.108)
(.031) (.058) (.016) (.013) (.062)

.615(.215) .604(.219) .639(.222) .637(.256) .609(.233)
L D i(p ,a 2) .071(.047) .079(.051) ,107(.061) .090(.040) .047(.063)

(.051) (.060) (.063) (.061) (.064)
,616(.212) .677(.257) .545(.179) .634(.248) .591(.214)

LDi{a2\P) .060(.041) .081(.041) .097(.038) .097(.038) .083(.039)
(.039) (.052) (.056) (.044) (.054)
(.120) (.308) (.135) (.150) (.162)

Kurtosis (.042) (.036) (.047) (.036) (.036)
(.044) (.015) (.048) (.074) (.047)

The first two rows are the proportions of detecting the correct outlier. The figures are in per
centages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the 
figures in the third row, are the estimated level of significance.
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Table 3.3: (continued)

Statistics a= .5 a=.6 a= .7 ct=.8 a= .9

U
.649(.257)
.085(.059)

(.051)

.631(.239) 

.075(.050) 
(.042)

.633(.229) 

.093 (.049) 
(.043)

.684(.251)
,079(.055)

(.055)

.603(.225)
,085(.057)

(.039)

*?
.721(.265)
.125(.062)

(.053)

.715(.253)

.103(.051)
(.047)

.708(.243)

.124(.052)
(.052)

.750(.257)

.106(.057)
(.059)

.681(.240)

.110(.059)
(.043)

Ci
.071(.103)

0(.074)
(.008)

.331(.080)

.015(.040)
(.080)

.606(.119)
0(.011)

(.073)

.143(.007)

.034(.021)
(.086)

.580(.020)

.031(.080)
(.031)

W Ki
.509(.042) 
.024(.022) 

(.022)

.573(.043)

.058(.028)
(.044)

.665 (.058) 

.041 (.011) 
(.019)

.555(.024)

.116(.030)
(.043)

.635 (.053) 

.073(.027) 
(.015)

c i
.510(.043)
,024(.022)

(.022)

.575(.043)

.058(.028)
(.044)

.665(.058)

.042(.011)
(.019)

.557(.024)

.116(.030)
(.043)

.638(.053)

.073(.027)
(.015)

Wt
.460(.072) 
.018(.049) 

(.042)

.528(.081)
,052(.042)

(.067)

.654(.116)

.031(.018)
(.053)

.494(.002)

.119(.044)
(.067)

.619(.058) 

.068 (.059) 
(.030)

Mt*
.622(.198)
.067(.029)

(.049)

.633(.22S)

.073(.036)
(.060)

.679(.256)

.077(.030)
(.049)

.661(.177)

.110(.042)
(.053)

.650(.210)
,090(.055)

(.044)

APi
.277(0)
.014(0)

(0)

.290(0)

.014(0)
(0)

.300(0)

.015(0)
(0)

.285(0)

.020(0)
(0)

.302(0)

.019(0)
(0)

L D M a 2)
.099(.100)

0(.074)
(.008)

.353(.080)

.021(.038)
(.080)

.633(.118)
O(.Ol)

(.073)

.170(.007)

.131(.034)
(.084)

.597(.020)

.040(.079)
(.031)

L D itf .o * )
.565(.227)
.052(.061)

(.055)

.578(.211)

.058(.061)
(.066)

.603(.221) 

.062 (.056) 
(.056)

.596(.201)

.083(.063)
(.063)

,582(.212)
.069(.073)

(.055)

LDi{o*\p)
.649(.257)
.084(.059)

(.051)

,631(.239)
.074(.050)

(.042)

.633(.229) 

.093 (.049) 
(.043)

.683(.251)

.079(.055)
(.055)

,603(.225)
.085(.057)

(.039)

Kurtosis
(.335)
(.080)
(.048)

(.277)
(.049)
(.071)

(.193)
(.050)
(.045)

(.350)
(.053)
(.058)

(.172)
(.059)
(.043)

The first two rows sire the proportions of detecting the correct outlier. The figures axe in per
centages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, the 
figures given in the parentheses axe the proportions of detecting the outliers. For d=0, the 
figures in the third row, are the estimated level of significance.
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Table 3.4: Proportions of Detecting Outliers for Design B 
(mean shift model for n=20)

Statistics a = 0 a = .l a = . 2 a= .3 a = .4

U
.790(.352)
.114(.049)

(.050)

.848(.387)

.117(.056)
(.052)

.815.(.390) 

.118(.053) 
(.045)

.848(.422)

.124(.052)
(.050)

,818(.361)
.130(.060)

(.056)

n
.804(.360)
.120(.052)

(.051)

.856(.394)

.125(.053)
(.053)

.824(.397)

.126(.056)
(.048)

.858(.430)

.134(.052)
(.051)

.831(.366)

.140(.065)
(.058)

Ci
.932(.300)
.192(.023)

(.059)

.893(.182)

.031(.007)
(.069)

.929(.202)

.186(.050)
(.029)

.718(,053)

.219(.047)
(.015)

.925(.179)

.040(.026)
(.048)

W K i
.919(.033)
.176(.015)

(.024)

.886(.219)

.046(.008)
(.037)

.920(.279)

.179(.049)
(.020)

.757(.063)

.201(.027)
(.021)

.917(.264)

.065(.020)
(.035)

c*
.919(.332)
,176(.015)

(.035)

.886(.219)

.046(.008)
(.037)

.920(.297)

.179(.048)
(.020)

.757(.064)

.200(.027)
(.021)

.917(.265) 

.065 (.020) 
(.035)

Wi
.932(.386)
.188(.029)

(.060)

.889(.296)

.041(.012)
(.065)

.929(.324)

.182(.070)
(.045)

.741(.083)

.218(.052)
(.035)

.927(.297)

.057(.030)
(.054)

M t;
.867(.481)
.187(.047)

(.048)

.865(.413)

.110(.038)
(.043)

.865(.489)
,157(.065)

(.045)

,833(.372)
.155(.061)

(.042)

.872(.470)

.155(.053)
(.045)

APi
.815(.108)
.082(.003)

(.007)

.760(.109)

.041(.002)
(.005)

.815(.132)
,079(.002)

.(002)

.683(.079)

.115(.003)
(.003)

.815(.113)

.046(0)
(.005)

LDi(f$\a2)
.957(.300)
.270(.023

(.058)

.930(.182) 

.071 (.007) 
(.068)

.953(.202)

.157(.065)
(.060)

.837(.202) 

.291 (.047) 
(.030)

.952(.178)

.097(.026)
(.048)

LDi(f),<r2)
.878(.486)
,152(.069)

(.062)

.872(.437)

.092(.055)
(.064)

.889(.476)

.162(.080)
(.050)

.807(.384)

.167(.075)
(.060)

.890(.456)

.106(.053)
(.062)

LDi{a21/3)
.802(.352)
.127(.052)

(.050)

.854(.385)

.137(.055)
(.051)

.821(.390)

.128(.053)
(.048)

,858(.422)
.131(.049)

(.050)

.829(.361)

.138(.049)
(.056)

Kurtosis
(.213)
(.041)
(.045)

(.328
(.052)
(.056)

(.283)
(.058)
(.049)

(.328)
(.044)
(.047)

(.261)
(.049)
(.052)

The first two rows are the proportions of detecting the correct outlier. The figures are in per
centages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the 
figures in the third row, are the estimated level of significance.
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Table 3.4: (continued)

Statistics a = . 5 a= .6 a= .7 a= .8 a = .9

U
.794(.330) 
.131(.049) 

(.057)

.844(.393)

.134(.051)
(.044)

.887(.480) 

.136(.054) 
(.054)

.863(.419)

.132(.053)
(.051)

.833(.360) 

.133 (.050) 
(.046)

n
.804(.337)
.139(.064)

(.059)

.854(.402)

.142(.053)
(.047)

.892(.485)

.141(.022)
(.055)

.868 (.426) 

.141(.056) 
(.055)

.845(.371)

.139(.050)
(.050)

Ci
.935(.144)
.281(.016)

(.057)

.702(.035)

.198(.032)
(.053)

.882(.069)
082(.028)

(.037)

.747(.033)
,015(.021)

(.060)

,935(.092)
.031(.018)

(.057)

W K i
.918(.234)
.253(.023)

(.035)

.761(.042)

.189(.023)
(.032)

.862(.049) 

.092(.017) 
(.025)

.787(.067)

.047(.013)
(.024)

.927(.222)

.022(.020)
(.049)

Ci
.918(.235)
.253(.023)

(.035)

.759(.044)

.189(.023)
(.032)

.862(.049)

.192(.018)
(.025)

.787(.068)

.047(.013)
(.024)

.926(.223)

.022(.020)
(.049)

Wt
.935(.258)
.281(.026)

(.060)

.843(.108)

.196(.038)
(.060)

.896(.085)

.086(.032)
(.049)

.774(.067)

.060(.029)
(.060)

.934(.223)

.041(.027)
(.080)

Mt*
.847(.445)
.151(.050)

(.050)

.848(.398)

.196(.038)
(.053)

.854(.390)

.154(.058)
(.043)

.854(.400) 

.163 (.047) 
(.045)

.886(.559)

.176(.054)
(.046)

APi
.788(.106)
.132(.007)

(.006)

.733(.074)

.092(.004)
(.004)

.678(.077)

.06l(.002)
(.003)

.697(.082)

.047(.004)
(.003)

.804(.105) 

.045(.002) 
(.009)

LDi(p\a*)
,956(.144)
.268(.144)

(.057)

.903 (.039) 

.903(.039) 
(.035)

.936(.069)

.936(.069)
(.037)

.865 (.033) 

.865(.033) 
(.065)

,961(.092) 
.961 (.092) 

(.070)

a2)
.872(.435)
,195(.057)

(.065)

.844(.387)

.164(.057)
(.056)

.816(.360)

.140(.052)
(.062)

.835(.405) 

.135 (.058) 
(.057)

,903(.438)
.125(.057)

(.072)
.801(.329)
.139(.048)

(.057)

.484(.392)

.141(.051)
(.045)

.891(.480)

.140(.058)
(.056)

.868(.418)
,158(.053)

(.051)

.84l(.360)

.137(.048)
(.046)

Kurtosis
(.214)
(.045)
(.064)

(.380)
(.043)
(.050)

(.482)
(.053)
(.049)

(.428)
(.052)
(.059)

.(291)
(.062)
(.055)

The first two rows are the proportions of detecting the correct outlier. The figures are in per
centages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the 
figures in the third row, are the estimated level of significance.
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Table 3.5: Proportions of Detecting Outliers for Design B
(mean shift model for n=50)

Statistics a= 0 a = .l a= .2 a= .3 a= .4

ti
.918(.483)
.150(.044)

(.050)

.907(.418) 

.168(.045) 
(.050)

.923.(502)

.176(.050)
(.048)

.934(.490)

.185(.054)
(.047)

.915(.465)

.178(.046)
(.054)

t;
.980(.484)
.362(.046)

(.050)

.975(.485)

.412(.045)
(.050)

.981(.502)

.398(.050)
(.048)

.989(.490) 

.418 (.054) 
(.047)

.982(.466) 

.408(.048) 
(.053)

Ci
.819(.047)
.013(.022)

(.028)

.893(.060)

.016(.019)
(.036)

.708(.019) 

.030(.004) 
(.042)

.852(.011)

.036(.043)
(.016)

.911(.013)

.021(.270)
(.018)

W K i
.961(.037)
.164(.018)

(.024)

.974(.080)

.186(.019)
(.022)

.939(.019) 

.119(.005) 
(.028)

.979(.02l)

.233(.031)
(.012)

.978 (.016) 

.196(.020) 
(.026)

c ;
.961(.038)
.164(.018)

(.026)

971(.084)
.186(.019)

(.025)

.938(.018)

.117(.005)
(.031)

.975(.024)

.231(.030)
(.014)

.976(.068)

.194(.020)
(.023)

Wi
.961(.068)
.155(.022)

(.034)

.974(.106) 

.18l(.019) 
(.043)

.938(.029)

.206(.014)
(.046)

.978 (.026) 

.229(.039) 
(.042)

.978(.070)

.186(.024)
(.046)

Mt*
.976(.446)
.374(.052)

(.045)

.975 (.470) 

.398(.046) 
(.048)

.980(.456) 

.381(.047) 
(.049)

.988 (.469) 

.407(.049) 
(.046)

.982(.451)

.393(.063)
(.050)

APi
.804(.253)
.034(.008)

(.023)

.837(.287)

.050(.008)
(.020)

.803(.217)
,038(.005)

(.180)

.830(.236)

.063(.022)
(.016)

.840(.254)

.005(.008)
(.027)

L D i{p \°2)
.670(.409) 
.030(.018) 

(.028)

.635 (.060) 

.040(.017) 
(.039)

.55l(.021)

.010(.002)
(.042)

.520(.012)

.120(.036)
(.016)

.648 (.013) 

.020(.019) 
(.026)

L D i { p ,^ )
.9i'7(.443)
,091(.020)

(.073)

.915(.481)

.125(.021)
(.061)

.895(.419)
,116(.016)

(.069)

.932(.443)

.147(.025)
(.061)

.927(.452)

.131(.020)
(.057)

LDiicr* \p)
.961(.480)
.255(.044)

(.050)

.944(.478)

.290(.044)
(.045)

.964(.501)

.287(.049)
(.042)

.972(.489)

.297(.054)
(.046)

.952(.461)
,294(.054)

(.056)

Kurtosis
(.484)
(.042)
(.057)

(.455
(.048)
(.046)

(.513)
(.054)
(.051)

(.497)
(.053)
(.045)

(.455)
(.051)
(.059)

The first two rows are the proportions of detecting the correct outlier. The figures are in per
centages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the 
figures in the third row, are the estimated level of significance.
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Table 3.5: (continued)

Statistics a= ,5 a=.6 a= .7 a= .8 a = .  9

ti
.928(.514)
.150(.047)

(.045)

,902(.454)
.157(.047)

(.046)

.926(.4681) 

.168(.042) 
(.057)

.914(.497)

.170(.054)
(.051)

.923 (.476) 

.163(.056) 
(.045)

n
.989(.514)
.372(.047)

(.046)

.976(.455)

.370(.047)
(.045)

.984(.470)

.1GS(.042)
(.058)

.080(.497) 

.394(.054) 
(.051)

.985(.478)

.409(.058)
(.045)

Ci
.898(.026)
.304(.017)

(.026)

.944(.135)

.089(.026)
(.022)

.810(.003)
286(.040)

(.018)

.633(.008)

.071(.025)
(.033)

.822 (.017) 

.007(.028) 
(.019)

W K i
.886(.016)
.403(.016)

(.035)

.987(.203)
,430(.017)

(.028)

.961(.010)

.496(.029)
(.044)

.924(.012)

.267(.022)
(.026)

.973 (.027) 

.138(.021) 
(.017)

c t
.876(.017)
.402(.016)

(.040)

.984(.210)

.319(.017)
(.029)

.961(.010)

.493(.027)
(.046)

.921(.012) 

.265 (.022) 
(.028)

,971(.030)
.137(.021)

(.020)

w t
.876(.027)
.417(.016)

(.052)

.988(.229)

.318(.022)
(.046)

.961(.011)

.502(.033)
(.052)

.922 (.020) 

.259(.024) 
(.039)

.971(.037)

.120(.026)
(.045)

Mt*
.984(.480) 
.396(.049) 

(.048)

.979(.473)

.365(.050)
(.046)

.982(.442)

.401(.061)
(.052)

.979(.441)

.381(.054)
(.038)

.985(.551)

.384(.065)
(.044)

APi
.773(.230)
.197(.008)

(.018)

.881(.301)

.062(.015)
(.020)

.812(.213)

.182(.010)
(.037)

.792(.206)

.071(.011)
(.037)

.790(.262)
,050(.014)

(.022)

LDi(P\cr2)
.645(.026)
.115(.014)

(.023)

.795(.141)

.050(.020)
(.025)

,507(.003)
.108(.027)

(.031)

.589(.008)

.024(.022)
(.033)

.030(.040)

.030(.040)
(.059)

LDi (fi,cr2)
.883(.443)
.276(.017)

(.060)

.946(.498)

.164(.022)
(.057)

.916(.405)

.271(.022)
(.062)

.887(.395) 

.159(.020) 
(.066)

.920(.438)

.112(.027)
(.065)

LDi(a2\f$)
.967(.510)
.261(.047)

(.045)

.954(.447)

.276(.047)
(.046)

.963(.466)

.271(.049)
(.055)

.965 (.494) 

.273(.053) 
(.050)

.968(.472)

.286(.053)
(.050)

Kurtosis
(.529)
(.052)
(.046)

(.423)
(.060)
(.045)

(.469)
(.050)
(.055)

(.498)
(.059)
(.055)

(.454)
(.053)
(.054)

The first two rows are the proportions of detecting the correct outlier. The figures are in per
centages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the 
figures in the third row, are the estimated level of significance.
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Table 3.6: Proportions of Detecting Outliers for Design A
(scale shift model for :n=10, 20, 50)

Statistics n= 10 n==20 n==50
7=1,2 7=.005, 2 7=1,2 7=.005,2 7=1,2 7=.005,2
.720(.555) ,720(.552) .765(.634) .768(.635) .768(.646) .767(.646)

ti .319(.149) .319(.149) .420(.191) .425(.194) .456(.226) .451(.225)
(.054) (.053) (.047) (.045) (.052) (.049)

.740(.565) .740(.565) .769(.635) .770(.640) .846(.646) .846(.646)

.365(.161) .364(.156) .428(.194) .433(.196) .625(.227) .624(.225)
(.056) (.054) (.047) (.046) (.052) (.049)

0(.012) 0(.012) .701(.048) .696(.041) .743(.332) .742(.318)
c t 0(.024) 0(.023) .295(.088) .276(.08l) .398(.039) .394(.034)

(.044) (.044) (.100) (.094) (.048) (.045)
.604(.215) .603(.215)

.189(.012)
.727(.418) .725(.406) .824(.454) .823(.444)

W K i ,190(,012) ,328(.073) .320(.068) .590(.063) .587(.052)
(.022) (.022) (.060) (.056) (.030) (.021)

.604(.215) .604(.215) .727(.418) .725(.406) .824(.456) .822(.451)
c : .190(.012) ,190(.012) .328(.073) .319(.068) .588(.066) .587(.052)

(.022) (.022) (.060) (.055) (.032) (.024)
.518(.184) .581(.184) .721(.419) .711(.405) .824(.460) .821(.451)

Wi ,158(.027) .158(.027) .317(.115) .307(.103) .587(.079) .585(.056)
(.046) (.046) (.048) (.056) (.052) (.047)

.688(.548) .688(.547) .763(.597) .764(.596) .844(.620) .843(.62l)
Mt* .281(.157) .281(.147) .409(.163) .409(.187) .624(.188) .622(.196)

(.047) (.046) (.046) (.044) (.042) (.041)
.548(0) .548(0) .699(.459) .699(.462) .725(.50) .725(.567)

APi .132(0) .132(0) .295(.054) .292(.052) .353(.129) .353(.127)
(0) (0) (.007) (.006) (.016) (.013)
0(.012) (.012) .753(.048) .747(.040) .642(.335) ,638(.321)

LD i(p  | a 2) 0(.023) 0(.023) .382(.088) .292(.052) .205(.039) .197(.034)
(.044) (.041) (.043) (.099) (.048) (.045)

.677(.516) .666(.515) .755(.622) .757(.621) ,770(.635) ,770(.630)
L D t f . o * ) .256(.119) .256(.116) .384(.208) .385(.203) .467(.232) .465(.223)

(.061) (.060) (.082) (.068) (.080) (.068)
,720(.555) .720(.552) .768(.634) .769(.635) .811(.646) .810(.645)

LDi{a2 [ /?) .319(.149) .319(.148) .428(.191) .431(.194) .549(.224) .547(.223)
(.054) (.053) (.047) (.045) (.052) (.049)
(.630) (.630) (.634) (.646) (.640) (.640)

Kurtosis (.215) (.215) (.213) (.217) (.215) (.215)
(.040) (.040) (.052) (.051) (.064) (.064)

The first two rows axe the proportions of detecting the correct outlier. The figures are in 
percentages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, 
the figures given the parentheses are the proportions of detecting the outliers. For d=0, figures 
in the third row, are the estimated level of significance.
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Table 3.7: Proportions of Detecting Outliers for Design B
(scale shift model for n=10)

Statistics a= 0 a = .l a= .2 a=.3 a= .4

U
.691(.543)
.317(.162)

(.040)

.656(.503)

.315(.138)
(.050)

.677(.5139)

.277(.144)
(.056)

.647(.508)

.331(.150)
(.044)

.682(.538)

.304(.149)
(.054)

n
.725(.546)
.366(.268)

(.042)

.676(.509)

.360(.152)
(.057)

.705(.523)

.319(.148)
(.061)

.679(.516)

.371(.160)
(.050)

.704(.545)

.348(.153)
(.056)

Ci
0(.073)
0(.010)

(.031)

.832(.088)

.352(.304)
(.060)

,658(.023)
.380(.060)

(.016)

.656(.007)

.325(.050)
(.013)

.487(.030)

.139(.045)
(.020)

W K i
.504(.162)
.147(.016)

(.019)

.761(.435)

.357(.120)
(.033)

.687(.361)
,352(.076)

(.027)

.670(.352)

.237(.063)
(.033)

.637(.303)

.265(.039)
(.031)

c*
.504(.163) 
.148 (.016) 

(.019)

761(.435)
.357(.120)

(.033)

.687(.435)

.353(.076)
(.027)

.671(.352)

.237(.063)
(.033)

.639(.303)

.266(.030)
(.031)

Wi
.465(.156)
.109(.022)

(.035)

.778 (.489) 

.357(.279) 
(.059)

.678(.356)

.365(.115)
(.048)

,668(.347)
.296(.101)

(.066)

.623(.285)

.243(.058)
(.039)

Mt*
.639(.430)
.267(.147)

(.039)

.741(.499)

.357(.136)
(.054)

.696(.513)

.339(.140)
(.052)

.674(.498) 

.227(.139) 
( n/lQ̂V.w

.676(.525)

.302(.152)
(.045)

APi
.517(0)
.125(0)

(0)

.583(0)

.146(0)
(0)

.552(0)

.152(0)
(0)

.536(0)

.109(0)
(0)

.545(0)

.139(0)
(0)

LDii,e\o2)
0(.073)
0(.008)

(.031)

.791(.087)

.357(.301)
(.059)

.666(.023)

.389(.060)
(.016)

.664(.007)

.309(.055)
(.013)

.498(.028)

.150(.050)
(.02)

LDi(f),o2)
.623(.500)
,248(.136)

(.051)

.708 (.545) 

.310(.196) 
(.060)

.672(.503)

.299(.164)
(.063)

.642(.503)

.261(.145)
(.061)

.656(.527)

.275(.143)
(.064)

LDi (o-2 |/3)
.691(.543)
.316(.162)

(.039)

.671(.485)

.315(.138)
(.050)

.677(.513)

.275(.144)
(.056)

.647(.508)
,331(.150)

(.044)

.682(.538)

.304(.149)
(.054)

Kurtosis
(.464)
(.252)
(.044)

(.492)
(.111)
(.075)

(.488)
(.124)
(.048)

(.451)
(.166)
(.074)

(.565)
(.177)
(.047)

The first two rows are the proportions of detecting the correct outlier. The figures are in per
centages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the 
figures in the third row, are the estimated level of significance.
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Table 3.7: (continued)

Statistics a=.5 a= .6 a —.7 cs=.8 cs=.9

ti
.677(.534)
.310(.154)

(.051)

.680(.518)

.314(.143)
(.042)

.8698(.531)

.326(.154)
(.043)

.708 (.558) 

.345(.147) 
(.055)

.683(.552)

.309(.147)
(.039)

i t
.705(.539)
.360(.149)

(.053)

.707(.525)

.361(.149)
(.047)

.723(.543)

.365(.161)
(.047)

.732 (.566) 

.381(.159) 
(.052)

.711(.558)

.345(.155)
(.059)

Ci
.608(.004) 
.287(.003) 

(.008)

.714(.009)

.042(.039)
(.050)

.638(.078)
0(.116)

(.073)

0(.008) 
.113 (.037) 

(.086)

(.158)
.225(.002)

(.031)

W K i
.664(.350)
.322(.041)

(.022)

.711(.378)

.233(.030)
(.044)

.692(.347)

.171(.028)
(.019)

.536(.154) 

.279(.042) 
(.043)

.603 (.255) 

.294(.034) 
(.015)

c ;
,664(.352)
.322(.041)

(.022)

.711(.379)

.234(.030)
(.044)

.692(.347)
,174(.028)

(.019)

.536(.154) 

.282 (.042) 
(.043)

.603(.256)

.295(.034)
(.015)

Wi
,654(.341)
.315(.041)

(.042)

.713(.389)

.209(.048)
(.067)

.684(.360)

.136(.085)
(.053)

.490(.116) 

.255 (.051) 
(.067)

.581(.302)

.280(.033)
(.030)

Mt*
.685(.523)
.340(.146)

(.049)

.708(.495)

.299(.123)
(.060)

.705(.509)

.268(.140)
(.049)

.673(.550)

.341(.150)
(.053)

.661(.515)

.322(.132)
(.044)

APi
.550(0)
.156(0)

(0)

.563(0)

.130(0)
(0)

.553(0)

.124(0)
(0)

.542(0)

.150(0)
(0)

.539(0)

.150(0)
(0)

LDi[f)\o2)
.615(.003)
.298(,003)

(.008)

.718(.009)

.058(.038)
(.080)

.650(.077)
0(.116)

(.073)

0(.007)
.128(.037)

(.084)

0(.157)
.234(.00l)

(.031)

L D i{p ,a 2)
.657(.526)
.300(.146)

(.055)

.681(.523)

.263(,126)
(.066)

.684(.525)

.259(.133)
(.056)

.663(.514)

.298(.136)
(.063)

.650(.520)

.281(.136)
(.055)

LDi [a2 1/?)
.677(.534)
.310(.154)

(.051)

.680(,518)

.313(.143)
(.042)

.698(.531)

.326(.154)
(.043)

.707(.588)

.345(.147)
(.055)

.683 (.552) 

.308(.147) 
(.039)

Kurtosis
(.533)
(.139)
(.048)

(.423)
(.192)
(.071)

(.518)
(.231)
(.045)

(.663)
(.181)
(.058)

.(603)
(.144)
(.043)

The first two rows are the proportions of detecting the correct outlier. The figures are in per
centages where first row corresponds to d=3.5 and second row to d=l. For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the 
figures in the third row, are the estimated level of significance.
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Table 3.8: Proportions of Detecting Outliers for Design B
(scale shift model for n=20)

Statistics a= 0 a = .l a=.2 a = . 3 a= .4

U
.763(.604)
.416(.200)

(.050)

.752(.609)

.440(.208)
(.052)

.745 (.599) 

.427(.223) 
(.045)

.756(.626)

.409(.214)
(.050)

.748(.624) 

.397(.203) 
(.056)

n
.768(.607)
.425(.205)

(.051)

.755(.615)
,446(.211)

(.053)

.752(.599)

.434(.224)
(.048)

.759(.627)

.418(.219)
(.051)

.766(.611)

.407(.207)
(.058)

Ci
.791(.514)
.310(.026)

(.059)

,754(.477)
.279(.038)

(.069)

.755(.492)
.58(.026)

(.029)

,636(.30l)
.091(.052)

(.015)

.759(.452)
,254(.023)

(.048)

W K i
.791(.514) 
.332 (.044) 

(.034)

.754(.477)

.327(.051)
(.037)

.755(.492)

.186(.023)
(.020)

.636(.301)

.212(.028)
(.021)

.759(.453)

.296(.043)
(.035)

c?
.791(.514)
.332(.044)

(.035)

754(.477)
.327(.051)

(.037)

.754(.492)

.186(.023)
(.020)

.636(.802)

.212(.028)
(.021)

.759(.453) 

.296(.040) 
(.035)

Wi
.794(.518)
•324(.054)

(.060)

.753(.471)

.314(.059)
(.065)

.755(.514)

.161(.034)
(.045)

.616(.34)

.196(.057)
(.035)

.758 (.452) 

.282(.039) 
(.054)

Mt*
.775(.602)
.409(.211)

(.048)

,755(.593)
.420(.205)

(.043)

.753(.585)

.382(.203)
(.045)

.756(.599)

.377(.208)
(.042)

.763 (.590) 

.375 (.200) 
(.045)

APi
.726(.472)
.282(.057)

(.07)

.705 (.456) 

.301(.068) 
(.005)

.699(.439)

.267(.058)
(.002)

.683(.465)

.276(.050)
(.003)

,720(.446)
,271(.062)

(.005)

LDi(p  |o2)
.826(.398)
.411(.026)

(.058)

.796(.456)

.376(.038)
(.068)

.788(.232) 

.141 (.026) 
(.060)

.621(.081)

.198(.052)
(.030)

.803 (.060) 

.342 (.023) 
(.048)

L D i(p ,a2)
.783(.617)
.388(.198)

(.062)

.753(.613)

.397(.196)
(.064)

.752(.618)
■347(.180)

(.050)

.753(.613)

.346(.182)
(.060)

.762 (.607) 

.354(.191) 
(.062)

LDi{o*\0)
.767(.603)
.425(.200)

(.050)

.753 (.609) 

.446(.207) 
(.051)

.750(.599)

.434(.223)
(.048)

.783(.626)

.424(.214)
(.050)

.764(.606)

.407(.203)
(.056)

Kurtosis
(.585)
(.207)
(.045)

(.603)
(.215)
(.056)

(.581)
(.248)
(.048)

(.655)
(.250)
(.047)

(.602)
(.204)
(.052)

The first two rows are the proportions of detecting the correct outlier. The figures are in per
centages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the fig
ures in the third row, are the estimated level of significance.
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Table 3.8: (continued)

Statistics a= .5 a= .6 a= .7 a= .8 a= .9

U
.748(.624)
.437(.202)

(.057)

.756(.600)

.380(.193)
(.044)

.758(.621)

.422(.214)
(.054)

.722(.630)

.415(.215)
(.051)

.759(.601)

.404(.187)
(.046)

n
.757(.625)
.447(.206)

(.059)

.760(.602)

.392(.197)
(.047)

.763(.623)

.428(.218)
(.055)

.777(.631)

.426(.221)
(.055)

.757(.604) 

.413 (.193) 
(.050)

Ci
.606(.086)
.348(.004)

(.057)

.580(.092)

.288(.009)
(.053)

.787(.347)

.086(.028)
(.037)

.716(.150)

.191(.008)
(.060)

.655(.090)

.541(.100)
(.057)

W K i
.640(.342)
.374(.050)

(.035)

,569(.325) 
.318 (.034) 

(.032)

.784(.523)

.203(.025)
(.025)

.750(.346)

.265(.018)
(.024)

.682(.341)

.522(.134)
(.049)

c t
,640(.342)
.374(.050)

(.035)

658(.325)
.318(.034)

(.032)

.784(.533) 

.703 (.026) 
(.025)

.749(.346)

.265(.018)
(.024)

.682(.341)

.520(.134)
(.049)

Wi
.632(.323)
.364(.046)

(.060)

.641(.304)

.307(.034)
(.060)

.786(.532)

.179(.034)
(.049)

.781(.432)

.244(.021)
(.060)

.675(.328)

.541(.149)
(.080)

Mt*
.731(.613)
.425(.198)

(.050)

.745(.589)

.373(.188)
(.053)

.768(.603)

.396(.196)
(.043)

.752(.618)

.389(.201)
(.045)

.733(.519)

.457(.198)
(.046)

APi
.655(.453)
.317(.063)

(.006)

.679(.438)

.207(.051)
(.004)

.736(.489)

.261(.059)
(.003)

.685(.453)

.275(.055)
(.003)

.673 (.428) 

.409(.073) 
(.003)

LDi{P\cr2)
.653(.086) 
.438 (.004) 

(.057)

.675.(.050) 

.369(.009) 
(.035)

.809(.347)

.179(.028)
(.037)

.798(.135)

.277(.008)
(.065)

.700(.100)

.595(.100)
(.070)

L D i{P ,a2)
.713 (.610) 
.412(.182) 

(.065)

.730(.570)

.355(.176)
(.056)

.769(.631)

.366(.189)
(.062)

.731(.591)

.361(.185)
(.057)

,719(.57S)
.481(.231)

(.072)

LDi(cr2\/3)
.756(.624)
.445(.200)

(.057)

.759(.600)

.389(.193)
(.045)

.763(.621)

.426(.212)
(.056)

.774(.630)

.423(.215)
(.051)

.755(.602)

.413(.197)
(.046)

Kurtosis
(.629)
(.207)
(.064)

(.628)
(.191)
(.050)

(.609)
(.245)
(.049)

(.640)
(.232)
(.059)

.(618)
(.159)
(.055)

The first two rows are the proportions of detecting the correct outlier. The figures are in per
centages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the fig
ures in the third row, are the estimated level of significance.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.9: Proportions for Detecting Outliers for Design B
(Scale shift model for n=50)

Statistics a= 0 a = .l a= .2 a= .3 q=.4

U
.791(.635)
.451(.207)

(.050)

.762(.631)

.464(.247)
(.050)

.787(.642)

.475(.236)
(.048)

.790(.641)
,459(.246)

(.047)

.775 (.634) 

.473(.238) 
(.054)

n
.864(.635)
.625(.207)

(.050)

.840(.631)

.621(.247)
(.050)

,858(.642)
.651(.236)

(.048)

.854(.642)

.619(.246)
(.047)

.844(.634)

.635(.238)
(.043)

Ci

W K i

.771(.401) 

.406(.059) 
(.028) 

.860(.480) 

.587(.074) 
(.024)

or at ion\

.698(.187) 

.241(.037) 
(.036) 

.796(.381) 

.460(.032) 
(.022) 

* T f \ A t  00<l\

.762(.362) 

.323(.053) 
(.042) 

.851(.468) 

.545(.047) 
(.028) 

OCA/ A *70̂

.599{.110) 

.404(.030) 
(.016) 

.761(.239) 

.581(.064) 
(.012) 

7C C ( O A Q)

.680(.080) 

.264(.043) 
(.018) 

.795(.376) 

.487(.041) 
(.026) 

vai! a*77\• I  i • y

.482(.044)
(.023)

. o o t y . t u & j

.582 (.074) 
(.026)

.450(.035)
(.025)

• uau(.tl i i )

.539(.050)
(.031)

« i y
.575 (.067) 

(.014)

Wi
.858(.493)
.586(.098)

(.034)

,796(.384)
.451(.047)

(.043)

.851(.473)

.541(.075)
(.046)

.755(.398)

.581(.070)
(.042)

.794(.388)

.483(.058)
(.046)

Mt*
.863(.641)
.652(.188)

(.045)

.835(.651)

.613(.241)
(.048)

.857(.638)

.643(.211)
(.049)

.851(.659) 

.615 (.218) 
(.046)

.837(.613)
,624(.230)

(.050)

APi
.747(.576)
.366(.137)

(.023)

.702(.550)

.337(.148)
(.020)

.737(.577)

.338(.158)
(.018)

.711(.565)

.371(.153)
(.016)

.716(.560)
,339(.165)

(.027)

L D i W 2 )

.661(.404) 

.208(.059) 
(.028)

,572(.188)
.160(.037)

(.039)

.652(.366)

.156(.054)
(.042)

.574(.112)

.222(.031)
(.016)

.530(.089)

.188(.043)
(.026)

LDi(P,er2)
.799(.640)
.457(.221)

(.073)

.750(.656)

.425(.233)
(.061)

.794(.644)

.454(.243)
(.069)

.761(.655)

.470(.246)
(.061)

.763(.652)

.438(.230)
(.057)

LDi{a2\0)
-826(.635)
.542(.206)

(.050)

.801(.631)

.548(.245)
(.045)

,830(.642)
.570(.235)

(.042)

.825(.641)

.549(.240)
(.046)

.811(.633)

.555(.237)
(.056)

Kurtosis
(.631)
(.211)
(.057)

(.659)
(.260)
(.046)

.646)
(.244)
(.051)

(.652)
(.248)
(.045)

.(625)

.(251)
(.059)

The first two rows are the proportions of detecting the correct outlier. The figures tire in per
centages where first row corresponds to d=3.5 and second row to d = l. For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the 
figures in the third row, are the estimated level of significance.
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Table 3.9 (continued)

Statistics a=.5 a= .6 a = . 7 a = .8 a= .9

U
.773(.647)
.469(.223)

(.045)

.771(.618)

.463(.211)
(.046)

.775 (.636) 

.437(.233) 
(.057)

.792(.660)

.446(.217)
(.051)

.780(.640)

.430(.206)
(.045)

n
.851(.647)
.646(.225)

(.046)

.843(.618)
•644(.21l)

(.045)

.866(.636) 

.615 (.233) 
(.058)

.871(.661)

.642(.217)
(.051)

.854(.640)

.593(.207)
(.045)

Gi
.711(.158)
.426(.lll)

(.033)

.809(.262)

.167(.032)
(.018)

.683 (.085) 

.434(.042) 
(.026)

.725(.190)

.453(.050)
(.033)

.695(.095)

.553(.149)
(.019)

W K i
.804(.383)
.814(.104)

(.035)

.871(.369)
A.t\A f n*yei\ 

(.028)

.798 (.360) 

.610(.076) 
(.044)

.829(.416)
AAof nna\I \f f 

(.026)

.809(.357)
•685(.149)

(.017)

c t
,801(.388)
.6I6(.107)

(.040)

.867(.371) 

.445 (.028) 
(.029)

.789(.368) 

.604(.080) 
(.046)

.822(.416)
/in^r aaa!.UO f .̂UOUj 

(.028)

.804(.360)
AOrt/ 4 rr>\ 

(.020)

Wi
.801(.398)
.610(.161)

(.052)

.872(.480) 

.415 (.037) 
(.046)

.790(.369)

.610(.085)
(.050)

.829(.428)

.643(.085)
(.039)

.804(.365)

.696(.169)
(.045)

Mt*
.846(.637)
,643(.212)

(.048)

.850(.617)
•634(.198)

(.046)

.863(.611)

.615(.230)
(.052)

.868 (.645) 

.643(.213) 
(.038)

.846(.630)

.630(.205)
(.044)

APi
,725(.582)
.306(.128)

(.018)

•767(.584)
.3 1 7 (.lll)

(.020)

.705(.550)

.368(.14l)
(.037)

.736(.604)

.378(.144)
(.022)

.715(.564)
-476(.150)

(.024)

LDi(/3\<T2)
.574(.174)
.217(.lll)

(.023)

.590(.363)

.126(.032)
(.025)

.539(.087)

.268(.042)
(.031)

.589(.193)

.273(.050)
(.033)

.553(.097)

.390(.150)
(.059)

LDi(p,cr2)
.767(.659)
.474(.259)

(.060)

.806(.645)

.415(.208)
(.057)

.762(.616) 

.471(.239) 
(.062)

.785 (.654) 

.482(.228) 
(.066)

.769(.657)

.534(.252)
(.065)

LD i(a2\p)
.817(.645)
.576(.219)

(.045)

.809(.616)

.562(.210)
(.046)

.822(.636)

.574(.232)
(.055)

.842(.658)

.548(.217)
(.050)

.825(.638)

.521(.200)
(.050)

Kurtcsis
(.638)
1 017} v-'*• !
(.046)

(.605) 
1 2*>5̂v—
(.045)

(.632)
(.227)
(.055)

(.660)
(.213)
(.055)

(.633)
(.183)
(.054)

The first two rows are the proportions of detecting the correct outlier. The figures are in per
centages where first row corresponds to d=3.5 and second row to d = l.  For d=3.5 and 1, the 
figures given in the parentheses are the proportions of detecting the outliers. For d=0, the 
figures in thei third row, are the estimated level of significance.
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Table 3.10: Proportions of Detecting Outliers and
Influential Observations for Design C

Statistics d=0 d = l d=3.5

ti .048(.030)

ti .059(.044)

Ci .025(.722)

W Ki .036(.516)

c? .036(.516)

Wi .033(.831)

Mt* .050(.622)

LDi(P\a2) .025(.722)

a 2) .040(.248)

LDi(*2\/3) .048(.031)

Kurtosis (.081)

.108(.035) .737(.260)

.135(.052) .785(.345)

.059(.703) .589(.795)

.095(.540) .699(.663)

.089(.511) .689(.661)

.088(.796) .676(.884)

.121(.631) .751(.754)

.016(.703) .593(.794)

.097(.271) .712(.463)

.106(.036) .734(.264)

(.067) (.390)

The figures are in percentages. For d = l and d=3.5, the figures are the proportions of detect
ing the correct outliers. The figures given in the parentheses for d = l and d=3.5, are the pro
portions of detecting the outliers. For d=0, the figures in the parentheses are the proportions 
of identifying the influential observations.
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Table 3.11: Proportions of Detecting Outliers and Influential

Observations for Design D

Statistics d=0 d = l d=3.5

U .041(.042) .134(.045) .833(.471)

n .042(.042) .144(.045) .888(.472)

Ci .009(.516) .026(.514) .619(.421)

W K i .013(.413) .047(.417) .720(.438)

c t .013(.417) .048(.418) .717(.435)

Wi .011(.648) .043(.616) .705(.658)

Mt* .038(.216) .129(.312) .874(.590)

L D itf  |o2) .009(.516) .025(.511) .614(.419)

LDi(p, a2 ) .030(.243) .092(.230) ,855(.551)

L D i W P ) .041(.042) .141(.045) .883(.471)

Kurtosis (.055) (.051) (.502)

The figures are in percentages. For d = l  and d=3.5, the figures are the proportions of detect
ing the correct outliers. The figures given in the parentheses for d = l  and d=3.5, are the pro
portions of detecting the outliers. For d=0, the figures in the parentheses are the proportions 
of identifying the influential observations.
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3.2 Performances of the Various Statistics for Real Data Sets 

Below are nine selected data sets previously used by many researchers 

for comparing the performances of various statistics to detect outliers and 

influential observations.
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Table 3.12 Several Data Sets

Data Sets Studied by Different Authors

Mickey, Dunn and Clark (1967) 

(n =  21, m =  2)

Andrews and Pregibon (1978) 

Draper and John (1981)

Snedecor and Cochran (1967)

(it =  21, m — 3)

Cook and Weisberg (1982)

Weisberg (1980) 

(n =  19, m  =  4)

Cook and Weisberg (1982)

Forbes (1857) 

(n =  17, m =  2)

Weisberg (1980)

Chatterjee and Price (1977) 

(n — 30, m  =  2)

Chatterjee and Price (1977)

Brownlee (1965) 

(n =  21, m =  4)

Cook (1979) 

Daniel and Wood (1971)

Moore (1975) 

(n =  20, m =  6)

Chatterjee and Hadi (1986)

Draper and Stoneman (1966) 

(n =  10, m =  3)

Tukey(1977a, b)

Aitchinson and Dunsmore (1975) 

(n =  16, m =  2)

Geisser (1987)
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The computed statistics axe summarized in Table 3.13. In Table 3.13, 

are presented the values of the statistics corresponding to those observations 

with extreme values for at least one of the statistics.

The results from Table 3.13 show that only the observation number 

19, 17, and 12, belonging to the data sets 1, 2, and 4 respectively, have 

tj, f,-, and L A 'K  I/?) exceeding the corresponding calibration points. It is 

noted further that deletions of these observations do not change the values 

of R 2 and the estimates of the regression parameters in any significant way. 

Hence, we declare these observations to be outliers. Although, several other 

statistics identify the observations 17 and 12 belonging to the data sets 2 and 

4 respectively as outliers, they fail to detect observation 19 of the data set 1 

as an outlier. Hence, it is suggested that the statistics A  t$, and LDi[o2\j5) 

be used for detecting outliers.

Next it is observed that the statistics A , W K i ,  Ct*, Wi, Aftf, APi , 

LDi(a2\/3), and LDi(p ,o2), have exceeded the corresponding calibration 

points for the observations 18, 3, 21, (1,17), and 16 respectively belong

ing to the data sets 1, 3, 6, 7, and 9. Further calculations have shown that 

these observations have strong influence on the parameter estimates and on 

the values of R 2. Hence, a marked claim is indicated that these observations 

are influential ones. The first observation belonging to the data set
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Table 3.13: Computed Statistics for Detecting Outliers 
and Influential Observations for Real Data sets

Data Sets Obs. U t'i Ci W Ki c t Wi Mt*i

Mickey, Dunn 18 
Sc Clark

.85 .84 .68* 1.15* 3.56* 8.75* 2.43

(n=21, m =2) 19 2.82* 3.6* .22 .85 2.63 3.92 3.8

Snedecor Sc 
Cochran

6 .79 .78 .17 .72 1.61 4.05 1.45

(n=18, m=3) 17 3.17* 5.36* .83* 2.67 5.98* 12.33* 6.69*

Weisberg 3 .81 .79 .92* 1.9* 3.68* 20.9* 5.34*

IIaoTt-HII 19 1.92 2.13 .20 .99 1.93 4.56 2.6

Forbes 12 3.7* 12.4* .46 3.24* 8.87* 13.4* 13.25*
(n=17, m=2) 17 .25 .25 .009 .13 .36 .60 .32

Chatterjee Sc 
Price

27 1.80 1.88 .19 .65 2.45 3.75 2.1

(n=30, m=2) 29 2.2 2.38 .26 .78 2.94 4.45 2.64

Brownlee 17 .60 .59 .06 .50 1.03 2.9 1.01

IIaT—1II 21 2.62 3.30 .69* 2.10* 4.32* 11.10* 4.65*

Moore 1 2.63 3.58 .59* 2.55* 3.9* 13.67* 5.4*
(n=20, m =6) 17 .97 .97 1.77* 3.26* 4.9* 49.7* 11.9*

Draper Sc 
Stoneman

1 2.1 3.25 1.07* 2.75 4.21 10.84* 5.6

(n=10, m=3) 4 .96 .96 .48 1.18 1.81 5.66 2.4

Aitchinson Sc 
Dunsmore

10 2.07 2.40 .41 1.05 2.78 4.44 2.86

(n=16, m =2) 16 1.84 2.04

*i-HOO 1.45* 3.72* 6.62* 3.06

Notes: (l) The numbers are the extreme values of the statistics for at least one of 
the statistics corresponding to these observations.

(2) Asterisk denots that the observations of exceeding the calibration point 
at 5% level of significance.
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Data Sets AP{
Table 3.13: (continued)

LDi((3 | a 2) LDi(P,a2) L D ^ a 2 | /?) *<0 R 2

Mickey, Dunn.66* 
& Clark

1.44* 1.48 .01 .112
.410

(n=21, m =)2 .45 .48 3.86 3.05* .572

Snedecor & .48 
Cochran

.10 .11 .001 .503
.482

(n=18, m=3) .73* 2.78* 23.5* 14.8* .525

Weisberg .85* 4.2* 4.66 .008 .021
.364

(n=19, m=4) .38 .98 1.81 .53 .457

Forbes .92* 1.03 145.6* 133.6* .9996
.995

(n=l7, m =2) .22 .02 .05 .03 .994

Chatterjee & .21 
Price

.42 .58 .11 .345
.396

(n=30, m=2) .25 .56 1.05 .38 .355

Brownlee .42 .32 .32 .02 .911
.914

(n=21, m=4) .58* 3.16* 8.34* 2.8 .949

Moore .66* 4.50* 14.6* 5.05 .831
.810

(n=20, m =6) .92* 11.3* 15.5* .003 .824

Draper & .78 
Stoneman

3.77* 17.17 5.77 .933
.900

(n=10, m —3) .66 1.85 2.12 .005 .941

Aitchinson & .42 
Dunsmore

.91 2.08 .81 .9622
.9554

(n=16, m=2) .49* 1.75 2.67 .38 .9586

Notes: (1) The numbers are the extreme values of the statistics for at least one of 
the statistics corresponding to these observations.

(2) Asterisk denots that the observations of exceeding the calibration point 
at 5% level of significance.
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8 is identified as influential by Ci, Wi, and LD{((3\a2) . The data set 5 

does not seem to have any aberrant observations. One sees that most of these 

statistics with the present calibration points are able to detect influential 

observations.

However, it is observed through a few plots that some of these statistics 

are more sensitive than the others. The four plots corresponding to the data 

sets 1, 3, 7, and 9 are examined by scaled values of different statistics drawn 

against each observation. Scaling is done so that the calibration point is 

unity. By examining the plots I - IV it is noted that Wi is more sensitive to 

influential observations than the rest of the statistics. The simulation study 

of section 3.1 also exhibits a similar pattern. Hence, it can be claimed that the 

procedure based on Wi is the best for detecting the influential observations. 

Further examination of these plots and simulation results yields that Ct-, the 

Cook’s distance with the new calibration point performs almost as good as 

Wi. Hence one may prefer to use C, because of its computational simplicity.

3.3 Influential Observations in Analysis of Variance

This section is concerned with the methods for identifying the influential 

observations in analysis of variance models (ANOVA). Very little attention 

has been given for ANOVA models for identifying the influential observations. 

Gentleman and Wilk (1975, 1980) and Pendleton (1985) have considered the
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problem of detection of outliers and influential observations respectively from 

the two-way classification ANOVA models. Pendleton (1985) has mentioned 

that diagnostic statistics, which depend upon the “delete one observation” 

principle such as Cook’s distance, may no longer apply. To examine these 

problems let us consider a balanced ANOVA model. The diagonals (pt) of the 

prediction matrix are all equal to the constant Since p,’s are constants, in 

the balanced situation, most of the regression diagnostic statistics of Table

3.1 are reduced to simple functions of the residuals. Therefore, the statistics 

ti and f ? contain all the information regarding an observation’s influence on 

the parameter estimates. However, in unbalanced ANOVA, the diagonals (pi) 

of the prediction matrix are not the same and it becomes essential to examine 

the diagnostic statistics of Table 3.1 to identify the influential observations. 

In the model

=  fi -f- oii -J- , j  =  1, 2,..., Tii5 i — 1, 2, ...fc, (^-3)

where

rii is the number of observations in the ith treatment, Ya is the response 

or dependent variable, p, the overall mean, a,-, the ith treatment effect and 

ety, the random error. The following examples will illustrate the use of these 

diagnostic statistics for identifying the influential observations. This set of 

data are collected by Federer (1955) and is taken from Searle (1971, P. 165).
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Federer (1955) reported an analysis of ruber producing plants called guayule, 

for which the plant weights were available for 54 plants of three different 

kinds; 27 of the normal, 15 off-types, and 12 aberrants. Only 6 plants are 

used for the purpose of illustration: n\ — 3, normals; ni  =  2, off-types; and 

7i3 =  1, aberrant. The diagonals of prediction matrix is pi =  1 /n,-, and the 

Pi for the last observation is 1.0. In this example, the residual of the last 

observation is zero, whereas C,- is infinity. Since the pi of a single response is 

1.0, most of the diagnostic statistics of Table 3.1 can no longer be applied. 

However, the statistics R ^ ,  and likelihood displacements can be used for 

identifying the influential observations and the statistics axe given in Table 

3.14 below.
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Table 3.14 Diagnostic Statistics for Federer’s Data

observation *(0 LDi(P,<r2) LDi{P\a2) LDi(a2\l3)

1 0.2093 0.9786 0.1282 0.1272 0.0734

2 0.1.5191 0.9892 4.1442 2.5739 1.2596

3 -2.5981 0.9953 16.5510 3.4300 8.01134

4 -0.5080 0.9926 0.6561 1.2351 0.0109

5 0.5080 0.9835 0.6560 1.2351 0.0109

6 0.0000 0.8033 4681.24 45.2132 0.0939

Inspection of the Table 3.14 shows that the observation 6 is most influen

tial. Also the values of R 2 and R 26  ̂ are 0.9803 and 0.8033 respectively. The 

goodness of fit of the regression hardly changes when the other observations 

are omitted, but changes substantially when the observation 6 is omitted. 

The observation 6 is the only point that is individually influential.

Another set of data was analyzed for balanced ANOVA. (See Pendleton 

(1985)). The model for this data is

Y i jk  =  f t  (3j + 'Y ij + €t j k j  (3-4)

where i  =  1 ,2 , . . . , 4  treatments, j  =  1,2 directions, k =  1 ,2 , . . . , 1 6  sub

jects. The experiments consists of 8 treatment-direction combinations. Six

teen subjects were used for each combination. Using SAS and manipulating
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with PROC MATRIX of SAS, different statistics are obtained which are given 

for a subset of the data in Table 3.15. From Table 3.15 is shown that the 

values of £,• and £? corresponding to the observations 43 and 47 exceed their 

calibration points. Other statistics such as WKi ,  LDi(P\a2), LDi((3,a2), 

LDi(a2\f3) and R 2̂  also exhibit that the observations 43 and 47 are influen

tial.

Sometimes ANOVA models may include restrictions on the elements 

of the parameter vector. Such kind of restrictions are quite different from 

the usual constraints frequently put for obtaining a solution to the normal 

equations. These restrictions are considered as part of the model, and these 

models are called restricted models. In general, the restrictions of the form 

H'(3 =  6 are considered as a part of the model, where H ' has full row 

rank. The restricted model is then Y  =  Xf3 -1- e with restriction H'(3 =  6. 

Most of the computer programs do not provide all the diagnostic statistics 

listed in Table 3.1. Regression procedures of SAS using the RESTRICT 

statement can provide a few of these statistics. However, one can easily 

compute other statistics. For example, likelihood displacements, and R 2̂  

by manipulating with the PROC MATRIX of SAS can be computed for 

identifying the influential observations from the restricted ANOVA models.
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Table 3.15: Influence Measures for a Subset 
of the Pendleton’s Data

Obs. U n W K i LDi{o2\P) LDi{(3,a2)L A (/? k 2
24 -0.0950 -0.0946 -0.0244 0.0038 0.0044 0.0006
25 -0.8673 -0.8664 -0.2237 0.0001 0.0535 0.0534
26 0.11880 0.1183 0.0305 0.0038 0.0048 0.0010
27 -0.9267 -0.9261 -0.2391 0.0001 0.0610 0.0610
28 -0.0950 -0.0946 -0.0244 0.0038 0.0044 0.0006
29 -1.0574 -1.0579 -0.2731 0.0002 0.0797 0.0794
30 -0.6415 -0.6399 -0.1652 0.0012 0.0303 0.0292
31 -0.9267 -0.9261 -0.2391 0.0001 0.0610 0.0610
32 -0.2851 -0.2840 -0.0733 0.0032 0.0090 0.0057
33 0.4633 0.4618 0.1192 0.0023 0.0175 0.0152
34 0.1188 0.1180 0.0305 0.0038 0.0048 0.0010
35 -0.926 -0.9261 -0.2391 0.0001 0.0610 0.0610
36 1.0455 1.0452 0.2700 0.0001 0.0779 0.0777
37 -1.2474 -1.2503 -0.3228 0.0017 0.1129 0,1106
38 -1.0217 -1.0210 -0.2638 0.0001 0.0743 0.0742
39 -1.1168 -1.1179 -0.2886 0.0004 0.0893 0.0886
40 -0.0950 -0.0946 -0.0244 0.0038 0.0044 0.0006
41 0.2732 0.2722 0.0702 0.0033 0.0086 0.0053
42 0.8791 0.8783 0.2267 0.0001 0.0550 0.0549
43 5.5365 6.3895 1.6497 5.8193 8.7240 2.1614
44 0.2851 1.2840 0.0733 0.0032 0.0090 0.0057
45 1.0334 1.0339 0.2669 0.0002 0.0761 0.0759
46 0.6890 0.6875 0.1775 0.0009 0.0345 0.0337
47 3.8256 4.0656 1.0497 0.9962 2.1723 1.0365
48 0.0950 0.0946 0.0244 0.0038 0.0044 0.0006
49 0.2732 0.2722 0.0702 0.0033 0.0086 0.0053
50 0.1188 0.1183 0.0305 0.0038 0.0048 0.0010
51 -0.5465 -0.5449 -0.1406 0.0018 0.0229 0.0212
52 -0.4752 -0.4736 -0.1223 0.0022 0.0182 0.0160
53 0.4633 0.4618 0.1192 0.0023 0.0175 0.0152
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In conclusions: (i) A set of statistics C,-, W{, and LDi(fl\o2) which per

forms better are obtained for identifying the influential observations, (ii) 

The conclusion based on simulation study, real data analysis and the plots of 

different statistics based on unit calibration points, the conclusion is that the 

statistic Wi is the best among all the statistics, (iii) However, C<, the Cook’s 

distance with the modified calibration point performs almost as good as Wi. 

Hence one may prefer to use C.- because of its computational simplicity, (iv) 

This study also suggests that a set of statistics t,-, tf,  and LD,(ct2|/?) can 

be used for detection of outliers. Further, it is noted that the statistic t*- 

with the modified calibration point performs better than the other statistics, 

(v) Finally, the statistics W Ki,  LDi(f3, a2), and LDi(o2\(3) may be used for 

detection of influential observations for the ANOVA models.
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4. M U L T IV A R IA T E  R E G R E S S IO N  MODEL

In recent years, there has been given much attention to the detection of 

outliers and influential observations within the framework of the usual linear 

regression model. Various measures have been proposed which emphasize 

different aspects of influence upon the regression. (For example, see Chapter 

2). In this chapter, generalization is made of some of the univariate measures 

of influence to the multivariate regression model. In this study several data 

sets are considered to illustrate the methods.

4.1 The Model and Notations 

Consider the multivariate regression model

Ynxk =  -XnxmBmxfc +  ^nxfc, rank(X) =  m. (4.1)

Assume rows of E to be independent, normally distributed each with kx 1 

mean vector zero, and kxk covariance matrix E, that is, vec(E) ~  N ( 0, E ig> 

In). We write (4.1) in the form

(Yi : . . .  : Yk) =  {Xfc  : . . .  : X 0 k) + (Et  : . . .  : Ek). (4.2)

The BLUE of is /?,- =  (X 'X )~1X'Yi, i =  1,2, . . . , k .  The residual vectors, 

Ei =  Yi — X$i,  i —  1, 2 , . . . , k, are correlated, that is, if E =  {E\ Ek)

and P  =  X (X /X ) - 1X /, then vec{E) ~  N{0, E <g> (J — P)). Note that, if B  =
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0 !  : : Pk) then E =  Y  — X B  and B  =  (X'X) 1X'Y.  An estimator of E is

E =  S / n - m ,  where S =  E'E.  Let E(j) =  EfaE(i)/(n — m — 1) where E^) =

y jt)  — ) -®(t) =  (/^l(t) : • P k { i)) a n d  /?r(i) =  ( '^ (t) '^ r(t))

r =  1, 2, . . . ,  A; , t =  1, 2, . . . , » ,  is the BLUE of /?r calculated by deleting the 

zih observation.

4.2 Measures based on Residual

Recently, Naik (1986) has proposed methods for detecting outliers, from 

the models of the form (4.1), on using the multivariate kurtosis of trans

formed residuals. Here, the methods are proposed for detection of influential

observations, which are extensions of the methods of chapter 2 for univariate

models. Define

rf =  — 1— i  =  1 ,2 , . . .  ,n, (4.3)
1 -  pi

and

T,- =  -—et-E ^  e,-, i  =  1 ,2 , . . .  ,n, (4-4)

A

where ej, e^,. . .  ,e'n are the rows of E,  each of dimension lxk.  It can be

r2shown that T? has Hotelling’s T 2 - distribution and j^—m-k) îas a 

distribution with parmeters  ̂ and (See Mardia, Kent and Bibby

(1979)).

A modified form of Tf  which is similar to M t\  (cf: (2.42)) can be defined
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as

M Ti =  , i  =  1 ,2 , . . .  n. (4.5)

This measure has some appealing performance for detecting the influenctial 

observations and outliers.

4.3 Measures Based on Influence Curve

Influence of ^lxm) on least square estimate of B  in the model (4.1)

is IF  =  (X 'X )~ l x(y1 — x'B)  (cf: Cook and Weisberg (1982), P.107). It is

evident that IF is an mxk  matrix. One c<*n mcusurs tlis miliisiic6 of } x j 

on B by defining

D{M, C) =  t r i l F ' M I F C - 1) (4.6)

for any appropriate choice of mxm symmetric matrix M  and kxk nonsingular 

matrix C. The sample influence curve of the ith observation (j/^xJ) can be 

defined as

SIFi =  ( n -  V W - ' x i M  -  x (B (0 )

=  { n - l ) { X ' X ) - 1z ie'i / l - p i . (4.7)

If Di(M, C) is D(M ,C)  as defined in (4.5) when IF is replaced by SIFi  then 

for M  =  X 'X  and C  =  (n — l ) 2m S one obtain

Di(X'X , (n — l ) 2mS) =  Ci, i =  1, 2, . ..,re,
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where

Ci =  pte(fl_ 1et/m ( l  -  p*)2 

=  PiTi Im {l  -  pi), i =  1 ,2 , . . .  ,n. (4.8)

It can be observed that C, measures the influence of the ith observation on B  

and is similar to the Cook’s distance for univariate regression. A calibration 

point for C* can be obtained using beta distribution.

Again if IF is replaced by SIFi  and M  =  X'X ,  C =  (n — l ) 2E(») one 

can get

Di{X'X, (n -  1)2E (0) =  W K i , i  =  1 ,2 , . . .  ,n,

where

W K i  =  f i - p . ) 2 c*;^ (0 e« =  (x -  p  ) Tt?’ * =  (4.9)

This measures the influence of the ith observation (y(- : x() on the ith pre-
A A A A

dieted value y[, where y\ is the ith row of Y  =  X B ,  is indicated by large 

values of W K A calibration point for this statistic can be taken to be

Similarly if M  =  X 'X  and C =  ^ 6iyes

Di(X'X,  ^ S ( i ) )  =  C?, * =  1 ,2 , . . . ,  n,— m)
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where

Pi{n — m) , * _ !
Ct = m• “ ( T ^ F eiSw ei

=  " f e r J & f  .  !L J 5  ,• = 1,2.......................(4.10)
m ( l - p f) m

This statistic is similar to the modified Cook’s distance and the calibration 

point for (4.10) can be obtained by multiplying calibration points for W Ki  

by *=*2.J m

Finally if M  — (X ^X ^) and C  =  (n — l)S(») then

i n  ~ ~  l)̂ (*)) = * — 1)2,...,n,

where

Wi =  -  X ix 'M X 'Xr 'x i ,

A little simplication gives,

Wi =  WX,-, i  =  1 ,2 , . . . ,  n. (4.11)
( 1 - p i ) 2 l - p t-

This statistic measures the influence on both B  and £  and is similar to the

Welsch distance (1982). The equation (4.11) suggests that the calibration

points for Wi can be obtained by multiplying the calibration points for WKi

bv J n—m ’
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4.4 Measures Based on Volume of Confidence Ellipsoids 

Andrews and Pregibon (1978) proposed measure (2.19), generalization 

is accomplished by replacing Vnxi with the multivariate observation matrix 

Vjjxfc- Consider the measure, given in (2.19) and define X* =  [X : Y). Now

x " x ' - ( v ' x  r r )  <«*>

and

det(X*'x*) =  det(X'X)det(Y'Y -  Y ' X i X ' X j ^ X ' Y ) ,

that is

det{X*'X*) =  det(X'X)det{E'E).  (4.13)

Similarly

deHX^Xfa)  =  det(X'(l)X (i))det(&w E (i)). (4.14)

Substituting (4.13) and (4.14) into (2.19) gives

=  d e t ( £ (^ ) d e t (E ’(ilE w ) .........

det(X'X)det(E'E)  1 1

Note that

det(Xjt)X (l)) =  det{X'X){  1 -  Pi). (4.16)

Therefore, applying (4.16) to the (4.15), one obtains

det(Efr-\E(i))

^ < =  f l - p 0  m * * )  , < ~ 1 , a  “ • ( 4 ' 1 7 )
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Covariance Ratio type statistic: Influence of the ith observation on the 

Covariance of B  can be measured by

det(Cov(vec(B(i)))) det[E(,) 0  (X foX ^ ) *] 

det(Cov(vec(B))) det[E 0  (X 'X )-1 ]

A simplification of which gives

1 k * A “

A  ~ P i .
<«•*«*

•

, * =  1, 2, . . .  ,n. (4.18)

The low and high value of (4.18) are considered significant. A lower calibra

tion point can be obtained using the fact that (cf: Rao (1973))

def (£) n - m - 1
(4.19)

Cook-Weisberg type statistic: The multivariate version of the statistic 

defined in (2.25) is

I d e t ( X ' X)  )  \  *((£,„) J

( F(a; m ,n  — m) 
F(a; m, n — m —

m/2
). (4.20)

where F (a ; .,.) is the upper a  percentile point of F  distribution with appro

priate degrees of freedom.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F[i) statistic: Here an influence measure based on the Wilks A statistic 

is introduced. Let

detiE'
A(o = ---- 7^-----} t } .  * =  1 ,2 , . . . ,  re.

Influence of the ith observation on the test statistic F (which is used to 

test the hypothesis that the regression parameters are zero) is obtained by 

computing

(1 ~ A(t))/(m — 1)
(i)_ A(i)/ ( n - m - l )  ’ ’ ( J

4.5 Influence on rows of B

Influence of the i th  observation on the j th  row of B can be measured by 

the statistic

T? u;?,-
— *--------tJ—, i  =  1,2 =  l ,2, . . . ,m, (4.22)
1 -  Pi WjWj

which is similar to (2.41) .

A calibration point can be suggested using the approximate value of l /n  

for wfiv- • ^  diagnostic strategy for the multivariate case which is similar to 

the univariate case (cf: Hoaglin and Kempthorne (1986)) begins with the 

following: (i) Plot the data to look at the scatter plots of Yi against Xj 

for i  =  1 , 2 ,k, j  =  1, 2, . . . , m.  (ii) Inspect the diagonal elements p,- of 

prediction matrix for high leverage. As suggested by Huber (1981), consider
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the observations with p,- larger than 0.5 as influential, (iii) Examine the par

tial leverage: the term o?- =  w?j jWjV/j  which appeals in (4.22) represents 

the contribution of the j th  variable to the leverage of the ith observation.

(iv) Study the influence of the individual observations through (4.8) - (4.11).

(v) Study the influence of individual observations on covariance matrix of B  

through COVRi  (4.18). (vi) Study the influence of the individual observa

tions on the estimated coefficients through Z?- (4.22).

4.6 Measures based on likelihood function

For the model (4.1) the likelihood displacement for B given E (cf: equa

tion 2.29) is given by LP,(jB|E) =  2[f(B,E)—Z(B(,),E(B(t)))], where E(B(,)) 

is the estimate of E when B is estimated by B ^ y  Simplifications yield

L D tm  = nlo9 (l +

=  nlog(l  H---- —— CA, i =  l , 2 , . . . , n ,  (4.23)
n — m

where Ct- is the statistic defined in (4.8). Thus the likelihood displacement 

leads to C,-. Similarly the statistic WK{  can be obtained by taking the differ

ence between two likelihood displacements. The joint likelihood displacement 

for (B,  S) is

LDi(B,  E) =  2[/(B,S) -  l (B {i), t {i))} 

det(£(j))
=  nlog

det{ E)
+  ^----- k, i =  1 ,2 , . . .  ,n. (4.24)

1 -  pi
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If E is the only parameter of interest, then the displacement is

LDi{V\B)  =  2[f(B,E) - / ( H ( E (0 ) ,E (t))],

where B (£({)) is the estimate of B when E is estimated by E (i). However 

=  B.  Thus,

det(£)
+  n[fr(E(tjE)  -  k], i  =  l , 2 , . . . , n .  (4.25)

Here tr(A) means the trace of the matrix A. The difference between (4.24) 

and (4.25) gives

LDAB,  E) -  LDi(E\B) =  ”  1 ,  WK±,  * =  1, 2. . . . ,  n, (4.26)
n — m  — 1

where W K i  is the statistic defined in (4.9).

4.7 Examples

In the following two multivariate data sets are considered to illustrate 

the methods. All the calculations that follow are done using SAS programs 

and manipulating with the PROC MATRIX of SAS.

1. Anderson’s data: The following data are taken from Anderson (1984, 

p.369). The dependent variables are weight of grain (Yi), and weight of straw 

(Y2). The independent variable is the amount of fertilizer Xy.
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Weight of grain (Fx) : 40 17 9 15 6 12 5 9 

Weight of straw (F2) : 53 19 10 29 13 27 19 30

Amount of fertiliser (Xx) : 24 11 5 12 7 14 11 18

Model: Ygx2 =  %8 x2  # 2x2 +  # 8x2 > rows of E are independently distributed 

as AT2(0, E). The first column of X above is a vector of ones and the second 

column is X \ .  For the dependent variables Y\ and Yi the fit is significant 

with the F- values of 7.878 and 71.026 respectively. Regression estimates 

along with the standard errors, individual t-values, and the corresponding 

p-values are given below.

variable /?x /?2 S.E.(fii) S.E.(f3i) t i  p — val t i  p — val

constant -3.752 -2.296 6.967 3.543 - .5 3 9  .609 -.648  .541

X i  1.402 2.141 0.500 0.254 2.807 .031 8.428 .0002

Estimate of E is E=S/  6, where

S = 382.554 143.023 
143.023 98.928

Different statistics for testing T =  0, where T is the matrix B after omitting 

the first row which corresponds to the constant term, are given below. For 

the definitions and uses of these statistics one can refer to Anderson (1984), 

Rao (1973) or Timm (1975).
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s ta tis tic s  values F —value p—value

Wilks lambda: 0.059 40.01 /\/\ n />
•UUU8

Pillai’s trace : 0.942 40.01 .0008

Hctelling-Lawley tracs ! 16.004 40.01 ,0008

Roy’s largest root : 16.004 40.01 .0008

All the criteria consistently reject the hypothesis. Next the several in

fluence measures described in section 3-6 are examined. Different influence 

measures are given in Table 4.1.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.1: Influence Measures for Anderson’s Data

L ___ ,__ X m  *****
K S U & C I  V I A V V U t t , Pi Ci WKi nrwr  e>.v  r j. MT* r n.r d

X J X S

1 0.620 0.923 7.825 3.720 31.198 34.172

2 0.137 0.406 0.818 0.376 6.950 3.563

3 0.360 0.548 0.450 2.009 0.540 0.730

4 0.127 0.402 0.958 0.284 9.051 5.231

5 0.254 0.470 0.006 1.788 0.023 0.145

6 0.131 0.404 0.048 1.189 0.363 0.163

7 0.137 0.406 0.123 1.045 0.914 0.240

8 0.233 0.457 1.700 0.402 9.842 6.571

Inspection of the Table 4.1 shows that based on all the different methods, 

the first observation is influential. In the following it can be seen how various 

statistics change by dropping the first observation. The Regression estimates 

along with the standard errors, individual t-values, and the corresponding 

p-values are given below.

variable /?x (32 S.E.(/3i) S.E.{p2) h  P ~  val *2 P ~ vaI

constant 7.858 2.204 5.361 3.845 1.466 .203 0.573 .592

X i  0.231 1.686 0.453 0.325 0.509 .632 5.190 .0035

The deletion of observation one increases the significance of constant
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but decreases the significance of the regression coefficients. Further, it may 

be noted that there is a drastic change in the estimate of E. The estimate 

now is E = S/5, where

[113.816 38.865'
“  [ 38.865 58.558 '

Various statistics for testing T =  0, are given below.

statistics values F —value p —value

Wilks lambda : 0.1355 12.764 .0184

Pillai’s trace : 0.8645 12.764 .0184

Hotelling-Lawley trace : 6.3819 12.764 .0184

Roy’s largest root : 6.3819 12.764 .0184

The results show that at 5 percent level of significance, the null hypoth

esis is rejected based on all the criteria. It may be noted that the p - values 

of the tests increased considerably.

2. Rohwer’s data: The data given in Table 4.2 were collected by Dr. W. 

D. Rohwer of University of California at Berkley and reproduced here from 

Timm (1975). Thirty two students from an upper-class, white, residential 

school, were selected at random to determine how well data from a set of 

paired -associated (PA), learning-proficiency tests may be used to predict 

childrens performances on the Peabody picture vocabulary test (Fx). The
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Table 4.2: Rohwer’s Data

yi 2/2 S/3

68 15 24 0
82 11 8 7

82 13 88 7

91 18 82 6
82 13 90 20
100 15 77 4
100 13 58 6
96 12 14 5
63 10 1 3

91 18 98 16

87 10 8 5

105 21 88 2
87 14 4 1
76 16 14 11
66 14 38 0
74 15 4 5

68 13 64 1
98 16 88 1
63 15 14 0
94 16 99 4
82 18 50 4

89 15 36 1
80 19 88 5
61 11 14 4

102 20 24 5
71 12 24 0
102 16 24 4

96 13 50 5
55 16 8 4
96 18 98 4
74 15 98 2
78 19 50 5

*2 *3 x4 *5

10 8 21 22
3 21 28 21
9 17 31 30

11 16 27 25

7 21 28 16

11 18 32 29

7 17 26 23

2 11 22 23

5 14 24 20
12 16 27 30

3 17 25 24

11 10 26 22
4 14 25 19

5 18 27 22
0 3 16 11
8 11 12 15

6 10 28 23

9 12 30 18

13 13 19 16

6 14 27 19

5 16 21 24

6 15 23 28

8 14 25 24

5 11 16 22
7 17 26 15

4 8 16 14

17 21 27 31

8 20 28 26

7 19 20 13

7 10 23 19

6 14 25 17

10 18 27 26
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other dependent variables are student achievement test ( I 2), and the 

ravin progressive matrices test (Y3) . The independent variables are the sum 

of the number of items correct out of 20 (on two exposures) to five types of PA 

tasks. The basic tasks axe named (Xi),  still (X2), named still (X3), named 

action (X4), and sentence still (X 5). The model: Y32x6-B6x3 +  # 32x3? rows 

of E  ~  iV3(0, E). The regression summary of Rohwer’s data are presented in 

Table 4.3a and 4.3b.

Table 4.3a: Regression Summary

variable
A

Pi
A

02
A

Pz S.E.{0{) S.E.{02) S.E.(p3)

constant 39.697 13.243 —28.467 12.268 2.614 25.719

Xi 0.067 0.059 3.257 0.618 0.131 1.295

x 2 0.369 0.492 2.996 0.715 0.152 1.500

X3 -0 .374 -0.164 -5.859 0.736 0.157 1.544

1.523 0.118 5.666 0.638 0.136 1.338

Xs 0.7410 - 0.121 -0.622 0.544 0.115 1.140
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Table 4.3b: Regression Summary (continued)

variable h p — val t 2 p — val *3 p — v

constant 3.236 0.0033 5.066 0.0001 1.107 0.2785

Xi 0.109 0.9142 0.451 0.6560 2.514 0.0185

0.517 0.6095 3.230 0.0034 1.998 0.0563

®3 -.508 0.6157 -1.044 0.3059 -3.792 0.0008

X4 2.385 0.0246 0.875 0.3898 4.234 0.0003

*6 0.754 0.4577 -1.045 0.3056 -0.546 0.5898

Estimates of /?i, /?2» and /?3 along with standard errors (S.E.) and values 

of t - statistic, are given in Tables 4.3a and 4.3b. For dependent variables 

Yi and Yz the fit is significant with F-values of 2.846 and 6.539; where as an 

F-value of 2.32 for Y2 shows an insignificant fit. Observing the p-values we 

see that the variables X 2 is significant for fitting Y2 on X. An estimate of E 

is E =  S / 26, where

(3898.990 281.386 1279.600 \
281.386 177.031 623.773

1279.600 623.773 17134.100 J

Different statistics for testing T =  0, are given in Table 4.4.
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Stastistics value

Table 4.4 

F —value p—value calibration point

Wilks lambda: 0.243 2.97 0.0012 0.388

Pillai’s trace: 1.039 2.75 0.0019 0.818

Hotelling-Lawley trace: 2.062 3.12 0.0007 1.229

Roy’s laxgest root: 1.465 7.62 0.0002 0.477

The p-values are baaed on the F-distribution. All the criteria, consis

tently reject the hypothesis. Now an examination of the several influence 

measures described in section 3-6 is made. Different influence measures are 

given in Table 4.5 and D -̂ are given in Table 4.6. Inspection of Table 4.5 

shows that the observation 5 is most influential using all the methods. Fur

ther, WKi  and COVRi  detect some other observations as influential also. 

But there is no other value which is detected as influential by all the criteria. 

Further, inspection of in Table 4.6 shows that observation 5 is influen

tial jointly with the variable 1. If variable 1 is removed from the analysis, 

observation 5 is not influential.

Rohwer’s second set of data for the low-socioeconomic status area were 

also analyzed and no influential observations were found. However, D re

vealed some observations to be influential in one dimension.
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Table 4.5 : Computed Influence Measures for Rohwer’s Data

Obs. L V i(^ \u ) LUi(B,'Z,) LDi(BjE) rp2At WKi Ci Covri

1 0.0272 1.1201 0.8069 3.6493 0.7316 0.0612 1.9343

2 0.0667 0.2955 0.2629 0.7605 0.2125 0.0652 1.2377

3 0.0031 0.7221 0.5426 2.8881 0.4769 0.0594 1.5045

4 0.0905 0.0815 0.0476 0.4804 0.0379 0.0550 0.6950

5 0.0701 7.4234 5.7112 4.3593 5.7367 0.1181 16.085

6 0.0916 0.1409 0.1075 0.4697 0.0857 0.0603 0.9126

7 0.0209 0.4020 0.1862 3.5061 0.1664 0.0534 1.2468

8 0.0993 1.6228 1.0723 4.7223 1.0129 0.0619 2.4971

9 0.1457 0.7994 0.2969 5.2071 0.2816 0.0537 1.7990

10 0.0932 0.4966 0.4647 0.4521 0.3723 0.0930 3.3330

11 0.0155 0.3970 0.3355 1.6508 0.2809 0.0596 1.1608

12 0.0323 1.1829 0.8474 3.7541 0.7716 0.0614 2.0022

13 0.0006 0.4188 0.3135 2.3244 0.2690 0.0569 1.1689

14 0.7447 2.9201 1.1906 8.8648 1.2837 0.0583 4.5757

15 0.1208 0.1510 0.1119 0.1772 0.0882 0.0764 1.7313

16 0.0236 0.9375 0.8620 1.4544 0.7223 0.0763 2.3232

17 0.1001 1.5976 1.0495 4.7321 0.9913 0.0616 2.4712

18 0.0527 0.4534 0.4160 0.9489 0.3395 0.0692 1.5453

19 0.0001 1.4729 1.2541 2.5937 1.1029 0.0726 2.5839

20 0.0019 0.4196 0.2745 2.7996 0.2395 0.0553 1.1938

21 0.3595 2.1688 1.1006 6.8286 1.1138 0.0593 3.3077

22 0.0489 0.3323 0.2958 1.0046 0.2415 0.0632 1.1932

23 0.0746 0.5746 0.2233 4.4197 0.2060 0.0533 1.5030

24 0.0127 0.6098 0.5341 1.7298 0.4499 0.0642 1.4755

25 1.5215 5.0784 1.8651 11.871 2.2129 0.0605 8.4837

26 0.0245 0.3635 0.3131 1.4352 0.2599 0.0602 1.1369

27 0.0396 3.0433 2.4079 3.8898 2.2578 0.0806 4.6405

28 0.0147 0.3107 0.2517 1.6718 0.2106 0.0574 1.0391

29 0.1017 2.9474 2.1599 4.7502 2.0774 0.0733 4.1627

30 0.0070 0.5113 0.3309 3.0810 0.2919 0.0558 1.3007

31 0.4661 1.8492 0.7126 7.4627 0.7310 0.0559 3.1320

32 0.1052 0.8469 0.4038 4.7892 0.3783 0.0550 1.7748
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Table 4.6: Values of 2?- for Rohwer’s Data

Obs. Const. X2 ®3 a4 xs

1 0.0922 0.0G23 0.1381 0.2132 0.0022 a  a < n  U.UIO

2 0.0583 0.0072 0.0665 0.0618 0.0022 0.001

3 0.3753 0.0081 0.0074 0.0217 0.0574 0.116

4 0.0035 0.0014 0.0122 0.0011 0.0013 0.000

5 0.0666 3.4972 0.0234 0.0013 0.0461 1.189

6 0.4413 0.0075 0.0023 0.0000 0.0173 0.003

7 0.0043 -0.0013 0.0143 0.0213 -0.0011 0.001

8 0.0511 0.0532 0.4181 0.0932 0.0194 0.274

9 0.0073 0.0323 0.0651 0.0037 0.0022 -0.001

10 0.0011 2.5746 0.0152 0.0417 0.0025 0.025

11 0.0023 0.0081 0.1593 0.0318 0.0061 0.047

12 0.0021 0.0031 0.2169 0.2941 0.1351 0.0161

13 0.0013 0.0834 0.0658 0.0164 0.0254 0.0092

14 -0.0011 0.3710 0.1843 -0.0021 0.0132 -0.0042

15 1.1295 0.0013 0.0061 0.0171 0.0000 0.0011

16 1.5783 0.0312 0.0513 0.0046 1.3934 0.0024

17 0.0411 0.0181 0.0276 0.3051 0.3686 0.0071

18 0.0114 0.0130 0.0243 0.0314 0.1725 n 0Q-4 0

19 0.3082 0.1541 1.1323 0.0671 0.1373 0.3864

20 0.0024 0.0033 0.0046 0.0076 0.1123 0.0555

21 0.0423 0.0372 0.2233 0.2172 0.4165 0.3121

22 0.0024 0.0395 0.0375 0.0171 0.0357 0.1171

23 0.0026 0.0091 0.0032 0.0254 0.0026 0.0373

24 0.4415 0.0316 0.0583 -0.0013 0.7324 0.3721

25 0.0152 0.0421 0.0414 0.2142 0.2263 1.2555

26 0.6424 0.0110 0.0012 0.0041 0.0333 0.0063

27 0.1272 0.1131 0.5111 0.2015 0.1282 0.0722

28 0.0434 0.0344 0.0091 0.0854 0.0011 0.0112

29 0.1962 0.1181 0.0262 0.7856 0.1543 0.4524

30 0.0482 0.0331 0.0133 0.1513 0.0212 0.0145

31 0.0084 0.1211 0.0000 0.0167 0.1272 0.2636

32 0.0592 0.0235 0.0184 0.0533 0.0011 0.0258
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4.8 Detection of Influential Observations in MANOVA 

In this section, it will be shown that some of the influence measures 

developed for the multivariate regression model can be used for MANOVA 

model for detecting the influential observations. Several examples are pre

sented to illustrate the diagnostic statistics.

Examples 4.9

Two examples will be presented to reflect the use of these diagnostics in 

identifying the influential observations.

Dental Data: A certain measurement in a dental study was made on 

each of 11 girls and 16 boys at ages 8, 10, 12 and 14. The data given in Table

4.7 is taken from Potthoff and Roy (1964). The model:

Yij =  fi +  oci +  e,-y, j  =  1 , 2 , . . . ,  riij, j  — 1,2, (4.27)

where ~  Nk(0, E), with k — 4, m =  2, ni  =  11, 712 =  16. An estimate of 

E =  S / 25, where

/135.386 67.920 97.756 67.756 \
67.920 104.619 73.179 82.929 J
97.756 73.179 161.393 103.268 I '

V 67.756 82.929 103.268 124.6437

The different statistics to test

jij =  i>- +  otj =  0 for  7 =  1, 2,

are given below.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.7: Dental Data

Obs. Vi V2 V3 y4

1 21.0 20.0 21.5 no a £iO.\J

2 21.0 21.5 24.0 25.5

3 20.5 24.0 24.5 26.0

4 23.5 24.5 25.0 26.5

5 21.5 23.0 22.5 23.5

6 20.0 21.0 21.0 22.5

7 21.5 22.5 23.0 25.0

8 23.0 23.0 23.5 24.0

9 20.0 21.0 22.0 21.5

10 16.5 19.0 19.0 19.5

11 24.5 25.0 28.0 28.0

12 26.0 25.0 29.0 31.0

13 21.5 22.5 23.0 26.5

14 23.0 22.5 24.0 27.5

15 25.5 27.5 26.5 27.0

16 20.0 23.5 22.5 26.0

17 24.5 25.5 27.0 28.5

18 22.0 22.0 24.5 26.5

19 24.0 21.5 24.5 25.5

20 23.0 20.5 31.0 26.0

21 27.5 28.0 31.0 31.5

22 23.0 23.0 23.5 25.0

23 21.5 23.5 24.0 28.0

24 17.0 24.5 26.0 29.5

25 22.5 25.5 25.5 26.0

26 23.0 24.5 26.0 30.0

27 22.0 21.5 23.5 25.0
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S ta tis tic s  value p—values(based on F )

Wilks lambda: 0.602 0.02

Pillai’s trace: 0.398 0.02

Hotelling-Lawley trace: 0.660 0.02

Roy’s Largest root: 0.660 0.02

These values suggest rejection of the hypothesis. Influence measures 

using different diagnostic statistics axe given in Table 4.8. Examination of 

Table 4.8 shows that the statistics LDi(E\B), LD{(B, £), WK{, COVRi 

and Tf  corresponding to the observations 20 and 24 exceed their respective 

calibration points. Further, examination of Table 4.8 reveals that in the 

MANOVA situation, WK{, COVRi and LDt (E|B) can be used for detection 

of influential observations.

Example 2: This set of data consists of 120 Medicare and non - Medicare 

benificiaries admitted during the years 1982 - 85, with the primary medical 

diagnosis of congestive heart failure. There are four dependent variables, 

namely: Yi=total length of stay; ¥ 2 =  severity of illness; ¥3 =  readmission; 

and Y4=  referral to home health agencies. The model for a vector response 

consisting of k=4 components is
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Table 4.8: Computed Influence Measures for Dental Data

Obs. Pi Ci WKi COVRi LDi{H | B)LD i(B ,E) LDt [B

1 0.091 0.063 0.247 1.277 0.032 0.395 0.263

2 0.091 0.063 0.198 1.229 0.061 0.308 0.214

3 0.091 0.063 0.237 1.268 0.037 0.373 0.251

4 0.091 0.063 0.176 1.207 0.077 0.278 0.192

5 0.091 0.063 0.083 1.117 0.174 0.154 0.093

6 0.091 0.063 0.075 1.111 0.183 0.146 0.085

7 0.091 0.063 0.051 1.089 0.214 0.118 0.059

8 0.091 0.063 0.105 1.140 0.145 0.178 0.119

9 0.091 0.063 0.211 1.243 0.052 0.332 0.226

10 0.091 0.063 0.770 1.851 0.268 1.854 0.668

11 0.091 0.063 0.492 1.535 0.025 0.960 0.472

12 0.063 0.059 0.324 1.351 0.023 0.761 0.312

13 0.063 0.059 0.114 1.063 0.083 0.209 0.124

14 0.063 0.059 0.199 1.175 0.011 0.383 0.208

15 0.063 0.059 0.870 2.262 1.335 3.678 0.649

16 0.063 0.059 0.198 1.179 0.011 0.382 0.206

17 0.063 0.059 0.055 0.989 0.172 0.122 0.063

18 0.063 0.059 0.065 1.001 0.155 0.131 0.073

19 0.063 0.059 0.269 1.272 0.002 0.577 0.267

20 0.063 0.059 6.499 25.276 53.992 72.928 1.418

21 0.063 0.059 0.494 1.611 0.234 1.473 0.435

22 0.063 0.059 0.153 1.115 0.040 0.272 0.163

23 0.063 0.059 0.124 1.077 0.069 0.226 0.135

24 0.063 0.059 2.679 6.928 13.494 21.149 1.119

25 0.063 0.059 0.389 1.449 0.079 1.011 0.362

26 0.063 0.059 0.206 1.185 0.008 0.399 0.212

27 0.063 0.059 0.125 1.0719 0.074 0.214 0.131
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Yijr — -H +  Pj +  'fxj ffjrj * — 1> 2, 3,4; j  1,2; r — 1 ,2 , . . . ,  60.

(4.28)

The vectors are all of order 4x1 and e*yr is assumed to be an N4 (0, E) random 

vector. Thus the responses consists of 4 measurements replicated 60 times 

at each of the possible combinations of levels of factors 1 (years 1982 - 85) 

and 2 ( Medicare and non - Medicare). The factor 1 has 4 levels and factor 

2 has 2 levels. A test for the hypothesis

H  : 7 n  = 7 1 2  =  ••• =  7 4 2  = 0

is conducted and the results using different criteria are given in Table 4.9.

Table 4.9

Statistics value F —value p—value

Wilks Lambda: 0.9394 1.21 0.2742

Pillai’s trace: 0.0613 1.20 0.2755

Hotelling-Lawley trace: 0.0636 1.21 0.2728

Roy’s Largest root: 0.0478 2.76 0.2756

It is observed based on all the criteria that there is no interaction effect. 

Now to test

H  : 01 =  0:2 =  0:3 =  0:4 =  0 
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the criteria are summarized in Table 4.9a.

Table 4.9a

statsitcs value F —value p—value

Wilks lambda: 0.9204 1.61 0.0852

Pillai’s trace: 0.0812 1.61 0.0846

Hotelling-Lawley trace: 0.0845 1.60 0.0859

Roy’s Largest root: 0.0532 3.07 0.0860

The results from Table 4.9a show that at 10 percent level of significance, 

we do reject the null hypothesis. In a similar manner the test criteria for 

testing the hypothesis H  : /?i =  fa  =  0, for factor 2 are given in Table 4.9b.

Table 4.9b

Statistics value F —value p—value

Wilks Lambda: 0.8909 7.00 0.0001

Pillai’s trace: 0.1090 7.00 0.0001

Hotelling-Lawley trace: 0.1223 7.00 0.0001

Roy’s largest root: 0.1223 7.00 0.0001

The conclusion follows that there is a significant difference between 

Medicare and non - Medicare subjects. Examination of the different diag

nostic statistics for identifying the influential observations is now conducted.
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The influence measures for this analysis axe shown for a subset of the data in 

the Tables 4.10 and 4.11 for Medicare and non - Medicare respectively. For 

economy of space, only Tf, W Ki,  Ci, LDi(B,  £ ) ,  LDi(B |E), and LD,(E|jB) 

are presented in the Tables. The measures Tf  and W K i  pinpoint that the 

observations 1, 5. 11, 22, 28, 30, 43, 62, 63, 90, and 100 are different from 

the rest of the observations. Observation number 22 is declared to be most 

influential by -££?,•(!?, E), LDi(T,\B), and W Ki.  From Table 4.11 it is clear 

that the observations 14, 26, 90, and 116 are different from all the others and 

the observation number 26 is influential. From this experience with several 

data sets , examining WKi,  LDi(B,  E), and LDi{T\B)  seems sufficient for 

detecting the influential observations in MANOVA situation.

In summary: (i) A generalization of the available statistics are carried 

out for the multivariate regression model. Based on several data analyses 

it is concluded that the statistics similar to Cook’s and Welsch’s statistics 

can be used for identifying the influential observations, (ii) The statistics 

W K i , Covr{, and LDi(L\B)  are useful measures for detection of influential 

observations in MANOVA models.
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Table 4.11:Infiuence Measures for medical Data (non - Medicare)

Obs. LDi{V\B) L£>i(B,Z) LDi{B  |E) t 2 W K i Ci

1 0.2297 0.8807 0.3733 11.4248 0.3939 0.0305

2 0.0003 0.2069 0.1450 4.1795 0.1441 0.0305

3 0.1368 0.6811 0.3209 9.6847 0.3339 0.0305

4 0.0401 0.0435 0.0.309 0.8667 0.0298 0.0305

5 0.7517 1.7890 0.5515 17.7260 0.6112 0.0305

6 0.0002 0.1786 0.1296 3.7204 0.1281 0.0305

7 0.0018 0.2328 0.1584 4.5778 0.1573 0.0305

8 0.0017 0.1523 0.1146 3.2647 0.1128 0.0305

9 0.0034 0.2492 0.1662 4.8185 0.1666 0.0305

10 0.3228 1.0616 0.4153 12.8523 0.4431 0.0305

11 0.0100 0.1064 0.0839 2.3828 0.0821 0.0305

12 0.0523 0.4602 0.2518 7.4613 0.2577 0.0305

13 0.0086 0.1119 0.0878 2.4945 0.0860 0.0305

14 0.0213 0.0750 0.0597 1.6863 0.0581 0.0305

15 0.0176 0.0835 0.0666 1.8843 0.0649 0.0305

16 0.0008 0.1635 0.1207 3.4628 0.1194 0.0305

17 0.0044 0.1323 0.1017 2.S961 Q09&8 0.0305

18 0.0236 0.0709 0.0557 1.5695 0.0541 0.0305

19 0.0010 0.1687 0.1192 3.4246 0.1185 0.0305

20 0.0195 0.0795 0.0637 1.7806 0.0614 0.0305

21 0.0176 0.0836 0.0666 1.8848 0.0649 0.0305

22 5.6092 8.2626 1.1446 44.0699 1.5196 0.0305

23 A  A nU.U1U6 0.1064 0.0839 2.3831 0.0821 0.0305

24 0.0009 0.2209 0.1524 4.3962 0.1515 0.0305

25 0.0135 0.0948 0.0754 2.1356 0.0736 0.0305

26 0.0001 0.1869 0.1345 3.8521 0.1330 0.0305

27 0.0019 0.2345 0.1590 4.6064 0.1586 0.0305

28 0.3633 1.1319 0.4313 13.4103 0.4624 0.0305

29 0.0317 0.0557 0.0427 1.2018 0.0414 0.0305

30 0.0179 0.0828 0.0661 1.8673 0.0644 0.0305

31 0.3676 1.1406 0.4331 13.4681 0.4644 0.0305

32 0.0388 0.0452 0.0325 0.9131 0.0314 0.0305
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Table 4.11 (continued)

Obs. LD.:(Z\B) LBi{B, E) 7 n  t nlr>\ uisi\0\£j) I f WKi Ci

33 0.0248 0.0677 0.0536 1.5103 0.0521 0.0305

34 0.0310 0.0568 0.0438 1.2319 0.0424 0.0305

35 0.1125 0.6233 0.3042 9.1383 0.3151 0.0305

36 0.0467 0.0354 0.0224 0.6261 0.0215 0.0305

37 0.0174 0.3328 0.2034 5.9531 0.2052 0.0305

38 0.0223 0.3544 0.2122 6.2249 0.2146 0.0305

33 0.0345 0.0513 0.0386 1.0842 0.0373 0.0305

40 0.0116 0.1008 0.07S9 2.2654 0.0781 0.0305

41 0.0434 0.0393 0.0265 0.7437 0.0256 0.0305

42 0.0176 0.3338 0.2039 5.9663 0.2057 0.0305

43 0.0329 0.0537 0.0409 1.1499 0.0396 0.0305

44 0.5753 1.5035 0.5027 15.942 0.5497 0.0305

45 0.0428 0.0405 0.0273 0.7663 0.0264 0.0305

46 0.0162 0.0877 0.0695 1.9673 0.0678 0.0305

47 0.0539 0.0271 0.0137 0.3832 0.0132 0.0305

48 0.0477 0.4455 0.2467 7.2994 0.2517 0.0305

58 0.0293 0 OKQ7 0.0464 1.3053 0.0450 0.0305

59 0.0026 0.2414 0.1625 4.7043 0.1622 0.0305

60 0.0027 0.2428 0.1631 4.7244 0.1629 0.0305

61 0.0092 0.2903 0.1852 5.3941 0.1860 0.0305

62 0.3750 1.1574 0.4358 13.5663 0.4677 0.0305

63 0.2362 0.8940 0.3765 11.5332 0.3979 0.0305

64 0.0045 n 1910
V i A V X U n m il 2.8861 0.0995 0.0305

65 0.0365 0.0483 0.0357 1.0027 0.0345 0.0305

66 0.0772 0.5325 0.2761 8.2335 0.2836 0.0305

67 0.0024 0.1467 0.1107 3.1631 0.1095 0.0305

68 0.0362 0.4072 0.2327 6.8599 0.2361 0.0305

69 0.0402 0.0434 0.0308 0.8628 0.02975 0.0305

70 0.0002 0.1944 0.1383 3.9807 0.1376 0.0305
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Table 4.11 (continued)

Obs. LDi(S\B) LD i[B ,T) LDi(B\£) rrI2
i W K i Ci

88 0.0442 0.0383 0.0254 0.7148 0.0246 0.0305
89 0.0387 0.0453 0.0327 0.9189 0.0316 0.0305
90 0.0317 0.0556 0.0427 l.2009 0.0414 0.0305
91 0.2802 0.9806 0.3970 12.2283 0.4216 0.0305
92 0.0859 0.5557 0.2835 8.4716 0.2921 0.0305
93 0.1201 n /) iiaV.V'tlO A rtAA/>v.ouyu A A4 f»09.01U0 A AA4 AU.O£14 a Annr U.UOUi)
94 0.0294 0.0594 0.0462 1.3001 0.0448 0.0305
95 0.0001 0.1928 0.1375 3.9552 0.1363 0.0305
96 0.0439 0.0387 0.0259 0.7266 0.0250 0.0305
97 0.0377 0.0466 0.0340 0.9555 0.0329 0.0305
98 0.0403 0.0431 0.0305 0.8556 0.0295 0.0305
99 0.0244 0.3632 0.2157 6.3334 0.2183 0.0305
100 0.5110 1.3955 0.4829 15.2298 0.5251 0.0305
101 0.0042 0.1334 0.1023 2.9180 0.1006 0.0305
102 0.0001 0.1951 0.1387 3.9918 0.1376 0.0305
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5. R E G R E S S I O N  M O D E L  WITH A U T O C O R R E L A T E D  ER RO RS

The study of outliers and influential observations have been done mostly 

for uncorrelated data such as the linear regresssion model. The main idea 

behind this study is to compute the measures as differences between the 

quantities obtained with and without the ith observation. The limitation 

of this approach is that it can not be e a s ily  generalized to the time series 

data, in which the deletion of one observation changes the error structure. 

However, it is a well known fact that in the regression situation the deletion 

procedure is equivalent to treating the observation as a missing value. There 

exists an extensive literature on estimation in linear regression models with 

first - order correlated errors when some observations are missing. Wansbeck 

and Kapteyn (1985) showed that the most efficient estimator is the maxi

mum likelihood estimator (mle) for a linear regression model with correlated 

errors when the observations are missing. In this chapter this missing value 

technique is applied to build some influence measures. The model and the 

estimators considered are described in the next section.

5.1 Model and Estimators

Consider the model

Y  =  Xf3 +  U, (5.1)

where U is an nxl vector, X is an nxm matrix, j3 is a mxl vector of parameters
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to be estimated, and Y is an nxl vector of dependent variables. It is assumed 

that E(U)=0 and E{UU') =  a2V, where

V =

(  1 
P

P
1

Pn_1\_ri—2

\ pn - l  pn - l  X J

It can be easily shown that |Y| =  (1 — p2)”-1 and

/  1
r— X _

(1 -  P2)

~P
,2

n
—p 1 +  p — p 0

0 0 .. 

(J +  p2C i-p C 2),

V 0  

1

- p  l J

( 1 - p2)

where

Ci =

and

C2 =

fO 0 0  . . . 0 0 0 \
0 1 0  . . . 0 0 0
0 0 1 . . . 0 0 0
: 1

Vo 0 0  . . . 0 0 0 /

(0 1 0 ... 0 0 0 \
l 0 1 ... 0 0 0

• • * • • 1
{0 0 0 ... 0 1 0 )

(5.2)

(5.2a)

(5.2b)

(5.2c)

The model (5.1) includes a scale parameter cr2, regression parameter 

and error structural parameter p. Let O' =  (/3',o2,p) and O' be the mle of O'

A

using the full data and 0 ^  be the mle assuming that the ith observation is 

missing and is computed, using the intervention analysis developed by Box
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and Tiao (1975). The likelihood function for the model (5.1) can be written

as

,2HP, <r ,p) 

= ( ^ ~ y /2{a'2)~n/2{l -  /)-(*-i)/2e-i/2[(y-x/3)V2v)-Hv-x/?)]

and the log likelihood as

l{P,o2,p) =  - ^ l o g { 2tt) -  | log{a2) -  ^ - ^ - l o g {  1 -  p2)

1 (y  -  X/?)'(J +  p2Ci -  pC2)(Y -  Xp) .  (5.4)
2er2( l  — p2)

The equation (5.4) can be rewritten in the form

l{P,°2,p)

n , n , ( 2 \  f a - 1 ) ,  f, 2 \  M  P* A 2=  ~ i ; lo9 { ^ )  -  - log{a  ) --------— log{ 1 - p  ) -
2 '  2 '  2 2 a 2 ( l - / > 2) 2<r2( l  — p 2)

pAz
2cr2 (1 — p 2) ’

(5.5)

where

A 1 =  ( Y - X P ) ' ( Y - X P ) ,  (5.5a)

i42 =  (y  -  X ^ 'C ^ y  -  XP),  (5.5b))

A3 =  ( Y -  X p y C 2(Y -  XP).  (5.5c)
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The likelihood function (5.5) yields the following non - linear maximum like

lihood (ML) equations which can be solved for the unknown /?, p, and a 2. 

The equations are:

$  =  [(.X ' X ) - x+ p 2X ' C x X - p X ,C2X } - 1{X,Y + p 2X 'C l Y - p X ,C2Y ], (5.6a)

Z2 =  ^  +  P*A * ~  (5>6b)

—p3(n — l}&2 -]- pzAz  +  p(2Ax — 2A2 +  2(n -  l )d 2) +  A3 =  0. (5.6c)

The matrices C\  and C2  are as defined in (5.2b) and (5.2c) respectively. To 

compute the estimators, when the ith observation is missing, we write the 

model (5.1) as

Y  =  X/3 +  w8(j) +  U, i =  1 , 2 , . . . ,  71, ('*•'0

where 6^  has one in the ith position and zero elsewhere. The effect of an 

intervention at the ith observation can be estimated by the parameter ui. 

The log likelihood for (5.7) is

=  -  jlost2ir) -  j 1os(p 2) -  ^  2 X̂ og(l -  p2)

- 2a2^ _  p2) uim) V + -  pC2)(y - x $ -  *«<„)]. (5.8)

Denoting the mles of /?, a 2, p, and u; by /?(,-), c 2̂ , and &(,) when the 

ith observation is missing, the ML equations using (5.8) can be written as
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follows:

/?(t) =  (X 'X  +  j faX 'CxX -  f a X ' C i X ) - 1 

[X'Y +  p ^ X 'C x Y  -  P(i)X 'C2Y  -  rt(i) (X'6{i) +  p ^ X ' C ^  -  p ^ X ' C r f ^ ) .

(5.9a)

» h  =  „ ( ! - «  A D i + e h D i - h n D z ) .  (5.9b)

[S '^Y -  X $ v )  +  p y ^ C ^ Y  -  X $ v )  -  f a S f a C i p r  -  X0M)}.  (5.9c) 

~p\i){n ~  +P(i)-^3 +  P(t)(2^i —2Z?2 +  2(n — l)d (2t)) +  Z?3 =  0 (5.9d)

where

£>x =  (Y -  X f o  -  "(i)fy))'(^  -  * 0 (0  -  *(0*C0)- (5-9e)

D 2 =  { Y -  x p {{) -  ^ S ^ Y C ^ Y  -  x p {i) -  <&«)«(.•))■ (5.9f)

D 3 =  (Y -  X P {i) -  a (i)S(i))C2(Y -  X/3(t) -  <&(,•)«(<)). (5.9g)

To obtain the mles from the equations (5.6a) - (5.6c), the following 

iterative steps axe required: (1) Set p =  0 and obtain estimator of (3, denote 

the resulting estimator by b(l).  (2) Set /3 — 6(1) and solve for p and denote 

the estimator of that by r(l). (3) Set p =  r(l) and obtain estimator for /? and 

denote the estimator by b(2). Repeat steps 2 and 3. Iteration is continued 

until the changes in the estimators of /? and p are sufficiently small or until
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the largest percentage change in any estimate is sufficiently small. (4) Now 

the stable estimates of /? and p are the mles, that is, /? and p. (5) Using the 

above mles for /? and p, mle of a 2 is obtained. In the same one can solved 

the equations (5.9a) - (5.9d), to obtain /§(,), /3(t) ,&(,) and d2̂ .

5.2 Influence Measures
A A

Let /? and /?(,) be as in the previous section. The statistic suggested by 

Cook (1977) (cf: equation 2.12) can be written as

0 - P (l)y{X'X)0-P( 0)
C/J A n  5  ̂— -L •md2 (5.10)

Similarly, I'F.K’i, U7t, and Ct* can be defined as:

W K i type statistic =  t =  1 , 2 , ( 5 . 1 1 )
<T(i)VPi

C* tyve statistic =  W K i J —— —, i  =  1, 2, . . . ,  n: (5.12)
m

Yl  |
Wi type statistic =  W K i J  , i =  1 ,2 , . . . ,  n. (5.13)

1 -  Pi

Further, Cour,- type statistic can be suggested as

........-
(5.14)

5.3 Measures Based on the Likelihood Function

In section (2.7) the influence of a single observation on the likelihood 

function has been described. The distances (2.32), (2.36), and (2.38) can be
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obtained for the model (5.1) in a similar manner. For, the mles of /?, a 2, 

and p based on the full data are substituted for j3, a 2, and p in (5.4). Which 

yields:

l { $ , v 2,P) =  - r̂ o g {2tt) -  ^ log(a2) -  ^  2 ^ log{l -  p2) -  (5.15)

When the ith observation is deleted, the mles of /?, a 2, and p are given by 

(5.9a) - (5.9d) and the log-iikelihood function in that case is-

*(/?(») >^(t)’%))

=  ~ l o g { 2tt) -  ^log(a2(i)) -  - /og(l  - p2t)) -  — g (5.16)

Substituting (5.15) and (5.16) in (2.28), yields

LDi{f3,o2,p) =  + { n -  1 )log (  . j  - 1 .  (5.17)

If the interest is only in estimating /?, then the likelihood displacement is 

LDi((3\cr2,p), which is anlogus to (2.33). Therefore,

2 1{P,°  iP)o*,p

=  l { P , < r 2 { P ) , P 2 { 0 ) )  = ~ ^ l o g ( 2 i r )  -  | l o g { a 2 [ P )) -  ^  2 1 /̂og(l -  p2(/?))

1 1 [ ( y - x ^ ^ j  +  p2^ ) ^ - ^ ^ ) ^ ) ^ - ^ / ? ) ] .  (5.18)
2a2((3) p2(/3)
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The equation (5.18) is maximized over the parameter space for a 2 and p 

keeping f3 fixed, which yields:

/(/?, a 2 (£),/>(/?)) =  log{2ir) -  |Zoff(a2(/3)) -  1 -  p2{ff)) -

(5.19)

Now setting /? =  in (5.19) the following is obtained:

>/>(/%)))

=  ~^log{2w) -  ^ loga20 {{)) -  1 -  p2(/?(t))) -  (5.20)

where

=  t ; — 1 7 3 - ^ K y  -  xha)V + e20a))Ci - ptfm)c,)(r - x$w)},n { l - p 2 (/?(,-)))
(5.20a)

and

P3(P(i))in ~  !) ° 20{i))  + P 2iP(i))E3 

+2p(/?(i))(E 1 -  E2 +  (n -  1)^2(%))) + £ 3 =  0, (5.20b)

with

E X =  { Y -  X $ {i)Y[Y -  X f a )  (5.20c)

E2 =  { Y -  X f a y C ^ Y  -  X f a )  (5.20d)
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E3 =  ( Y -  X 0 {i)YC2(Y -  X $ (i)). (5.20e)

Sustituting (5.15) and (5.20) in (2.29) yields:

LDi(/3\a2,p) =  nlog +  ( n -  lj/o g ^ 1 j  • (5.21)

Similarly, LDi(<j2\/3,p) is obtained by maximizing the log likelihood for f3 

and p keeping a 1 fixed. Let l(o2,(3,p) — l(a2,0 ( a 2),p(a2)). Then,

l(a2,/3(a2),p(a2)) =  ~ l o g { 2?r) -  |/off(<r2) -  ^-Zog(l -  p2{o2))

-\(Y -  XP{o2))'{I +  p2(o2)C\ ~  p{o2)C2){Y -  Xj3{o2))).
2 c 2 ( l  — p 2 (<r2))

(5.22)

Setting o 2 =  a 2̂  in (5.22) yields:

'(<’ fi>>0(^(i))-<’(a (i))) =  -  h — l l j o s f l  -  f>2(»(i)))

- ^ - t 1 -  p2(»hMY -  xpWqWwp -  m » i ,•;))> (5.23)

where

w  =  i1 +  P2( t f i ) ) c i ~  P(a fi))c 2)- 

Note that the cubic equation for p(d2,)) is

- P a{?\i))(n — ^ ( t )  + P 2[v{i))A3 +  2p{a2̂ ){Ax - A 2 +  { n -  l)d ft)) +  ^3 = 0,

(5.23a)
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where A i , A 2 and A3  are as defined previously, but estimate of p is replaced 

by p (d^ ). Then the right hand side of (5.23) becomes:

- j M * , , , )  -  -  1 -  -> K > ) ) ----------- 2 ^ 1 3 7 ; ^ ) )  ■ •

(5.24)

Substituting (5.15) and (5.24) in (2.29) one finds

( d?.\ \  (1 — p2(0f,O \
LA(a-| /?,p) = J + (n -  1) ^  j

(^1 +  P (g(,))^2 ~  P(g(2))^3)

*f0 ( i - p 2(*f0 ))
-  n. (5.25)

The likelihood displacement for p given /?, o L is obtained using the relation,

LDi{p\P,a2) =  2[10 ,p ,a 2) -  !(/?(£(,•)),ff2(/fy)),p(i))]. (5.26)

Note that,

*(£(*)» *2(0(»-))»0(P(i))) = ~ ^ l°9^2(P{i)) -  ^  2 ^ log{l ~  p\i\) -  (5.27)

Substituting (5.15) and (5.27) in (5.26) yields

LDi{p\p, a 2) -  nlog (j  ^2(t)^  + (» -  1 )log ^ ■■■■ , (5.28)

where

a2(fi(o) =   ̂ (Ai + p%)A2 -  m A*) (5-28a)
' P{i)>
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and

p =  (.X 'X  +  fifaX'CiX -  p ^ X ' C 2X ) - \ X ' Y  +  p f a X ' C t f  -  p(i)X 'C2Y).

(5.28b)

Again, if there is interest only in a 2 and p, then LDi(o2, p\P) is

L D i{c \p \p )  =  2{Up,a2J )  -  ir0(p{i),afi)) ,afi),p (i))}. (5.29)

That is,

max i  \ n , , 2\ in ~  1) i f- 2\

~ 2 a H l - p ^ {(¥ ~ +  , -  pC2)(Y -  Xf}(p,<72))}. (5.30)

The equation (5.30) reduces to

log{p2) -  ^  2 ^ /og(l -  p2) -  (5.31)

Next by setting <r2 =  d2̂  and p =  p(t) in (5.31) one can obtain

»*(*•))) =  f  ~ ^ 2 ^ - l°9{1 ~  fifa) “  \  (5-32)

Substituting (5.15) and (5.32) in (5.29)

LDi{o2,p\P) =  + n l o g ^  ^  ^  j  (5.33)

is obtained.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For algebric simplicity, if the estimate of p employing the full data is 

used, then

LDi(ft\a2, p), LDi(a2\(3,p) and LD{(o2, p\/3) reduce to the following:

LDAB\o2. o) =  n l o a i  — ^ , i =  1, 2, . . .  ,n,  (5.34)
x* i "  '  *- I  r r L  j  '  7

\  ~ /

where

o*(h)) =  „ (1 * p) l(y -  XW V  +  -  ^ ) ( r  -  *4(0)], (5.34a)

and p is same as in (5.6c);

LDi(o2\/3,p) =  nlog (  - f f  ̂  f  ̂  *2 ~ n> * =  (5.35)
\ v *  J  <r(i)(l - p (0)

and

LDi(o2, p\(3) =  n l o g ^ - Q - j , i  =  l , 2 , . . . , n .  (5. 36)

As noted earlier, the likelihood displacement L D ( . , .) can be interpreted in 

terms of the asymptotic confidence region. (See Cox and Hinkley, 1974, 

Chapter 9). That is

T.u (h \ — 9.\l(S\ — Kn) il <  v ' f / v :  n \.
 » -  /  — I.* \  *  . /  - v  /  J  —  / x  \  '  » a /  j

where %2 («; q) is the upper a. percentile point of the chi-squaxed distribution 

with q degrees of freedom and q is the dimension of 6. Therefore, LD{(.,.) 

can be compared with the x 2(a > ?)•
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Some diagnostic statistics are obtained based on the likelihood function 

using the missing value technique for detection of influential observations for 

the regression model with correlated errors.
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