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ABSTRACT

NAVIER-STOKES SIMULATION OF QUASI-AXISYMMETRIC AND
THREE-DIMENSIONAL SUPERSONIC VORTEX BREAKDOWN

Hamdy A. Kandil
Old Dominion University, 1993

Director: Dr. Osama A. Kandil

Computational simulation of supersonic vortex breakdown is considered for internal
and external flow applications. The interaction of a supersonic swirling flow with a
shock wave in bounded and unbounded domains is studied. The problem is formulated
using the unsteady, compressible, full Navier-Stokes equations which are solved using
an implicit, flux-difference splitting, finite-volume scheme. Solutions are obtained for
quasi-axisymmetric and three-dimensional flows. The quasi-axisymmetrié solutions are
obtained by forcing the components of the flowfield vector to be equal on two axial
planes, which are in close proximity to each other. For the flow in a bounded domain,
a supersonic swirling flow is introduced into a configured circular duct. The duct is
designed such that a shock wave intersects with the incoming swirling flow in the inlet
portion. For the quasi-axisymmetric flow problem, a parametric study is performed which
includes the effects of the Reynolds number, Mach number, swirl ratio and the type of
exit-boundary conditions on the development and behavior of vortex breakdown. The
effect of the duct wall boundary-layer flow on the vortex breakdown is also investigated.
For the same duct geometry, three-dimensional effects are studied along with the effect of

the duct wall boundary-layer flow. For the external flow application, a supersonic swirling
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jet is issued from a nozzle into a uniform supersonic flow of lower Mach number. For
the quasi-axisymmetric flow problem, the effects of the Reynolds number and the type of
downstream-boundary conditions are studied. For the three-dimensional flow problem,
the effects of the grid fineness, grid-point distribution, grid shape and swirl ratio on the
vortex breakdown are studied.

The results show several modes of vortex breakdown such as no-breakdown, transient
single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-

frequency breakdown and helical spiral breakdown.
In another application, a subsonic steady quasi-axisymmetric flow of an isolated
slender vortex core is considered. The solution is obtained using a simple set of parabolic

equations. The results are in excellent agreement with those of the full Navier-Stokes

equations.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The interaction of a longitudinal vortex and a transverse shock is a very important
flow phenomenon that usually develops in several external and internal flow applications.
For external flows, the transonic flow around delta wings in the high-angle-of-attack
range and the transonic and supersonic flows around strake-delta wing configurations in
the moderate to high-angle-of-attack range are some of the applications. Under some flow
conditions, vortex breakdown occurs behind the shock wave over the delta wing causing
a loss of lift. The problem is of great importance for high-performance airplanes where
the design emphasis has been on high-angle-of-attack maneuvering. In this application,
vortex breakdown produces severe buffet and may lead to premature fatigue failure of
the vertical tail. Such a breakdown is undesirable and flow control methods need to be
developed to delay the occurrence of vortex breakdown. For internal flows, the supersonic
inlet ingesting a vortex and the supersonic combustion chambers where fuel is injected in
a swirling jet are some of the applications. Jet growth, entrainment and decay, flame size,
shape and stability and combustion intensity are some of the large-scale effects of the
swirl on the flow field in combustion chambers. At critical values of swirl and pressure
gradients, vortex breakdown occurs with a recirculation zone behind the shock wave. The
recirculation zone plays an important role in flame stabilization by providing a hot flow
of recirculated combustion products and a reduced velocity region where flame speed

and flow velocity can be matched resulting in efficient combustion. Vortex breakdown in
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these application is desirable and hence its occurrence needs to be controlled for optimum
performance of the combustion chamber. For such problems, computational schemes are
needed to study, predict and control vortex-shock interaction including vortex breakdown.
The problem of vortex-shock interaction for internal flows is very complicated since it
includes several phenomena such as vortex breakdown, shock/boundary layer interaction
and boundary-layer separation. Recently, the high-speed digital computers have made it
possible to address these complex flow problems. Unfortunately, the literature lacks this
type of analysis. Most of the available research work has been focused on incompressible

flow problems with few exceptions.

1.2 Present Work

In the present study, the unsteady, compressible full Navier-Stokes equations are used
to study compressible vortex breakdowns and vortex-shock-wave interaction problems
both in bounded and unbounded computational domains. The present work is focused
on the existence of vortex breakdown as a result of vortex-shock interaction. In studying
the vortex-shock interaction, two applications are considered. The first problem is that
of a supersonic swirling flow in a configured circular duct where a shock wave is formed
at the entrance portion of the duct and the interaction of the formed shock with vortex
may result in bursting of the vortex core. In this application, a parametric study is
performed to consider the effects of the Reynolds number, Mach number, and swirl ratio
on the development and behavior of the vortex breakdown. The second problem is that
of a supersonic swirling jet issued from a convergent divergent nozzle into a uniform
supersonic free-stream domain. In this application, the effects of the swirl ratio and grid

on the development and behavior of the vortex breakdown are studied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Because of the expensive computational resources required for solving three-
dimensional flow problems, some of the computations in the present work have been
performed using the quasi-axisymmetric flow assumption to reduce the cost of com-
putations by solving only for two meridian planes. In this way, a larger number of
computational applications could be addressed and extensive understanding of the flow
physics could be gained. This assumption is widely used both for internal and exter-
nal flow applications in the majority of the available literature on incompressible vortex
breakdown. In another application, the full Navier-Stokes equations are reduced to a
simple set of steady quasi-axisymmetric boundary-layer-like equations by assuming the
flow to be steady and the vortex core to be slender. Selected flow cases are computed
using the three-dimensional unsteady full Navier-Stokes equations for better simulation of
the physical problem since the experimental studies show the vortex-breakdown problem

to be an unsteady three-dimensional flow.

In Chapter 2, a literature survey of research work concerning the vortex breakdown
problem is presented. Both experimental and computational works are reviewed where
empbhasis is placed on the early observations and understanding of the vortex breakdown
phenomenon. Because the literature lacks the analysis of the supersonic vortex breakdown

problem, the available work in incompressible vortex breakdown is reviewed in some

detail.

In Chapter 3, the unsteady, compressible, three-dimensional Navier-Stokes equations
are presented. The equations are then written in terms of time independent body-

conformed coordinates. Next, the equations are simplified for the steady flow case of

a slender vortex core.

In Chapter 4, the computational scheme used in the present study to solve the full

Navier-Stokes equations is presented. The computational scheme is an implicit, upwind,
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flux-difference splitting, finite volume scheme. It employs the flux-difference splitting
scheme of Roe which is based on the solution of the approximate one-dimensional
Riemann problem in each of the three directions. At the end of the Chapter, the initial

and boundary conditions are presented.

Numerical results are presented in Chapters 5-9. In Chapter 5, the reduced form of
the Navier-Stokes equations for the case of an isolated, subsonic, steady, slender vortex

is solved using a type-differencing scheme. The results are compared with those of the

full Navier-Stokes solver.

The results of the unsteady, full Navier-Stokes equations are presented in Chapters
6-9. Because of the unsteady nature of the vortex-breakdown flows, global time-
integration technique is used in all the present computed cases. Global-time stepping
is used to satisfy the stability of the computational scheme. Since the computational
scheme is first-order accurate in time and third-order accurate in space, very small time

steps are used to increase the accuracy in time without sacrificing of the computational

efficiency.

In Chapter 6, the problem of a supersonic swirling flow in a configured circular duct
is considered. A study was performed to select an optimum time step which satisfies
computational accuracy and efficiency. A typical flow case of M, = 1.75, R, = 10,000
and § = 0.32 was computed using global time steps of 0.0025 and 0.00125 for the same
computational grid. The results show negligible differences. Therefore, it was decided
to use the higher value of time step since it increases the efficiency of the computations
by saving one half of the computer time. Meanwhile, this value of time step maintains
the accuracy of the computed results. The results of a parametric study which includes
the effects of the Reynolds number, swirl ratio and Mach number on the development

and behavior of vortex breakdown are presented. The critical effects of the duct-wall and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



downstream boundary conditions on the vortex breakdown are addressed. The problem of
the interaction of a supersonic swirling flow and an oblique shock wave is also presented.

In Chapter 7, the problem of a supersonic swirling jet interacting with a shock wave
is solved. The effects of the Reynolds number and downstream boundary conditions on
the vortex breakdown are studied.

In Chapters 8 and 9 some of the problems presented in Chapters 6 and 7 are computed
using three-dimensional unsteady full Navier-Stokes equations. In Chapter 8, the effects
of the grid fineness and distribution and the swirl ratio are addressed for the problem of a
supersonic jet interacting with a shock wave. In Chapter 9, the supersonic swirling flow in
a circular duct is solved using viscous and inviscid wall boundary conditions for the duct
wall. The results show the formation of three-dimensional unsteady vortex-breakdown

modes. Concluding remarks and recommendations for future work are presented in

Chapter 10.
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CHAPTER 2
LITERATURE REVIEW

In this Chapter, a literature review of analytical, experimental and computational
works concerning vortex breakdown is presented. In general, the Chapter is divided into
three sections. In the first section, the interest is focused on the physical understanding
of the vortex-breakdown phenomenon where the important observations, definitions and
theories are reviewed. In the second section, the previous work in the area of incom-
pressible vortex breakdown is reviewed. Although the main interest in the present study
is compressible vortex breakdown, it is very important to review the incompressible flow
research work because most of the available literature has been focused on incompressible
vortex breakdown. The literature lacks the compressible vortex-breakdown studies, and
understanding the incompressible vortex-breakdown phenomenon could help in under-
standing the phenomenon of compressible vortex breakdown since the physics is similar
in both applications, except for the compressibility effects. In the third section, the avail-
able literature in the area of compressible vortex breakdown and vortex-shock interaction

is considered where emphasis is placed on research applications that may be compared

with the present work.

Many comprehensive reviews on experimental, theoretical and computational aspects
of vortex breakdown have been published by several authors. Among the important

reviews are those presented by Hall [1], Leibovich [2, 3], Newsome and Kandil [4] and
Escudier [5].
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2.1 Understanding the Vortex-Breakdown Phenomenon

2.1.1 Early Observations

The first observation of vortex breakdown was documented by Peckham and Atkinson
[6] on a Gothic wing of aspect ratio 1.0. They noticed that, at speeds greater than
150.0 ft/s and angles of attack between 20° and 30°, the decrease in temperature due to
expansion in the low pressure cores of the vortex sheets was sufficient to cause watef
vapor condensation which revealed the path of the cores. As the incidence was increased,
the length of the visible core decreased. The condensation trail appeared to "bell-out"
before disappearing.

In 1958, Elle [7] noticed the same phenomenon on a thin delta wing at low speed and
called it "vortex breakdown". He suggested that the breakdown may be due to the field

of vorticity around the vortex developing in such a way that the downstream transport

of fluid in the vortex core fails.

In 1960, Wérle [8] described how the free spiral vortices on delta wings suddenly
expand if the incidence is increased beyond a critical value. He suggested that the

phenomenon is due to transition from laminar to turbulent flow in the vortex.

In 1961, Lambourne and Bryer [9] conducted a general investigation of leading-edge
vortex flow for better description and understanding of the vortex-breakdown phenome-
non. They successfully captured two types of vortex breakdown, an axisymmetric bubble
type and an asymmetric spiral type. The bubble type was characterized by a stagnation
point along the vortex axis followed by a core enlargement and a limited region of re-
circulation flow. This type was noticed to be highly unsteady along the core axis and it
usually switched to the spiral-type. The spiral-type was characterized by a sudden decel-

eration of the fluid moving along the axis, followed by a kink, where the axial filament

7
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was deflected to a spiral configuration. This structure was follcwed by a breakdown
with large scale turbulence. They also studied the effects of external pressure gradients,
the incidence angle and the Reynolds number on the formation and position of vortex
breakdown. They suggested that the vortex breakdown or vortex (burst) may be due to
the usual pressure recovery associated with a tailing edge. They also reported a vortex

breakdown of an incompressible flow in a circular tube.

In 1962, Harvey {10] studied the vortex breakdown of a cylindrical vortex formed
in a long water tube. His results showed that there was a critical value of swirl ratio
beyond which a vortex breakdown occurred. It was noticed that, the vortex breakdown is
characterized by a spherical bubble of stagnation fluid downstream of which conditions

similar to those upstream of it are restored for a short distance until a second breakdown

occurs.

In 1964, Lowson [11] conducted some water tunnel flow experiments on a slender
delta wing. He found that the vortex breakdown is a non-axisymmetric instability. He

suggested that the pressure gradient plays an important role in the phenomenon.

2.1.2 Theories

Following Hall [1] and Escudier [5, 12], the different approaches and theories of

vortex breakdown can be categorized into three groups according to their principle ideas

as follows:

1. The breakdown is a transition between two states, an upstreamn supercritical state and

a downstream subcritical state.
2. The breakdown can occur as a consequence of some hydrodynamic instability.

3. The vortex breakdown is analogous to the two-dimensional boundary-layer separation.
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The first approach was introduced originally by Squire in 1960. Motivated by the early
observations of Elle [7], Werl€ [8] and others, Squire [13] suggested the first theoretical
model for the vortex breakdown. He suggested that, if standing waves were able to exist
on a vortex core, then disturbances, which are generally present downstream, will spread
forward along the vortex and cause breakdown. He considered only cylindrical vortices
and symmetrical disturbances and assumed the flow to be inviscid and incompressible.
For the three assumed forms of swirl distributions, it was found that the vortex breakdown
may occur when the maximum swirl velocity is "rather larger”" than the axial velocity.
Squire’s theory was supported by the experimental results obtained by Harvey [10]. The
first criticism of Squire’s theory came in 1971 when Sarpkaya [14] observed breakdowns

in flows with adverse pressure gradients and swirl ratios less than unity.

Benjamin [15, 16, 17] proposed that vortex breakdown is a transition between
two conjugate steady states of axisymmetric swirling flows. The transition is from a
supercritical flow, which cannot support standing waves, to a subcritical flow, which can
support standing waves. That is a direct analogy with the hydraulic jump in open-channel
flow. A universal characteristic parameter, N, was defined which delineates the critical
regions of the flow analogous to the Froude number for open-channel flow and Mach
number for compressible flow. This parameter is the ratio of absolute phase velocities of

long wavelength waves, which propagate along the vortex in the axial direction, where

C,+C-
e @1

and C. and C. are the velocities at which waves of extreme length propagate with and

N =

against the flow direction, respectively. A flow is said to be supercritical if N > 1 and
subcritical if N < 1. The computational results of Grabowsiky and Berger in 1976,

[18], showed that it was possible to obtain vortex breakdown with subcritical upstream

flow conditions.
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Bossel [19] proposed that vortex breakdown is a necessary feature of supercritical
flows having high swirl close to the critical state and some flow deceleration at and
near the axis. He assumed the flows to be steady and axisymmetric. He solved the
inviscid equations of motion using a prescribed rigid-body rotation at the upstream
boundary. It was found that the breakdown depends very much on the form assumed
for the downstream distribution of the stream function. Hall [1] suggested that a safer
proposal would be that a necessary condition for breakdown is that the upstream flow

is supercritical but near critical.

The second approach, which is the hydrodynamic instability, was introduced by
Ludwieg [20]. He proposed that vortex breakdown, with a local stagnation of the
axial flow, is a direct consequence of hydrodynamic instability with respect to spiral
disturbances. He found the stability boundary for inviscid flow spiraling in a narrow
annulus. He suggested that after the onset of the instability, spiral disturbances could
amplify, induce an asymmetry in the vortex core and subsequently lead to stagnation.
However, Leibovich and Stewartson [3] have pointed out that Ludwieg’s application of
his stability criterion to general vortex flows has no rational basis. It is also not expected
to apply to the bubble type of vortex breakdown which is near-axisymmetric. Howard and
Gupta [21] were able to derive a stability condition for non-dissipative swirling flows
subjected to axisymmetric disturbances. Recently, In 1983 Leibovich and Stewartson
[3] derived a sufficient condition for instability of unbounded columnar vortices. Some
other studies concerning the hydrodynamic stability of swirling flows were carried out

by Jones [22] and Lessen [23, 24].

The third approach was proposed by Hall [25, 26] who considered vortex breakdown
to be analogous to the separation of a two-dimensional boundary layer. Hall was the

first to show that the axial pressure gradient consists of the imposed external pressure

10
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gradient plus the swirl contribution. He solved the quasi-cylindrical form of the equations
of motion for an isolated slender vortex. The assumption of quasi-cylindrical flow was
justified by the experimental observations that showed the axial gradients of the flow
upstream of breakdown were small compared to the radial gradients and the stream
surfaces were approximately cylindrical. In his study, the vortex breakdown was detected
by the failure of the computations to converge. In 1967, Hall [26] attempted to reproducé
numerically the behavior of a vortex core that was set up experimentally by Kirkpatrick
[27] in a duct. He found a pronounced retardation of the flow along the axis, where the

duct was converging, and was unable to proceed further because of the failure of his

iterative computational scheme.

Similar approaches were used by Bossel [28], Mager [29], Kandil, et al. [30],

Krause [31, 32], Menne and Liu [33] and most recently by Kandil and Kandil [34] for

compressible vortex flows.

This method can be used to predict the occurrence and position of the abrupt change
corresponding to the vortex breakdown. The boundary-layer-like equations used in this
approach cannot be used to study the effects of the downstream boundary conditions since
the equations are parabolic in space and the computational method is a marching-in-space
technique. Therefore, there is no upstreamn influence and no description can be given of

the flow field at/or downstream of the breakdown region.

Recently, Stuart [35] presented a critical review of vortex breakdown theories. He
excluded the instability hypothesis and tried to unify the stagnation condition theory
(the boundary-layer analogy) and the theory of conjugate conditions (the hydraulic
jump analogy) in one theory. He considered the flow to be inviscid axisymmetric and
incompressible . He showed that flows which exhibit a stagnation-like tendency on the

axis evolve from a primary state A to another state B. If the state B is supercritical then

11
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it will jump to another subcritical state. The supercritical and subcritical states were
conjugate in Benjamin’s sense. The supercritical state was defined as the one that cannot

support very long waves while the subcritical state can support very long waves.

It is noticed that the phenomenon of vortex breakdown was first observed in 1957 and
the first theoretical model was proposed in 1960 and then some other models followed
but to date, there is still no general agreement regarding the essential nature of vortex

breakdown regarding how and why it happens.
Next we review the experimental studies conducted to examine and validate the

above theories. We start with the experimental work in the area of incompressible vortex

breakdown.

2.2 Incompressible Vortex Breakdown
2.2.1 Experimental Studies

In the experiments conducted by Sarpkaya [14, 36, 37] in a water tube, three types of
vortex breakdown were observed. These types are; mild (double helix) breakdown, spiral
breakdown (followed by turbulent mixing), and axisymmetric breakdown (followed by a
thicker vortex core, then a spiral breakdown, and finally by turbulent mixing). The type
and location of the breakdown were found to be dependent upon the Reynolds number
and circulation number of the flow. It was noticed in an axisymmetric breakdown that
the bubble included an inclined vortex ring whose axis was rotating about the tube axis.
It was shown that the axisymmetric breakdown may travel downstream responding to
gradual and abrupt changes in the upstream or downstream flow conditions, in a manner
analogous to the hydraulic jump in open-channel flows. In a later paper [37], it was shown
that the adverse pressure gradient resulting from the axisymmetric tube convergence has

a significant effect on the position of the vortex breakdown. Increasing the adverse

12
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pressure gradient moves the breakdown position upstream as long as the boundary does

not separate.

Faler and Leibovich [38] carried out a series of experiments and flow visualization to
study the incompressible vortex breakdown. Their studies revealed six distinct modes of
vortex breakdown depending on the values of Reynolds number and circulation. Among
those modes are the three modes captured by Sarpkaya [14]. They found that the flow
conditions upstream of bubble and spiral modes of breakdown were supercritical, in
the sense of Benjamin’s theory [15, 16, 17]. No axisymmetric disturbance patterns
were observed and the authors concluded that the "axisymmetric” vortex breakdown is a
misnomer that may lead to the over-emphasis of axial symmetry in theoretical work. In a
later paper, Faler and Leibovich [39] presented the internal structure of the recirculation
zone of the vortex breakdown. The time-averaged streamlines, in the interior of the
bubble, showed a two-celled structure. The internal cells were rotating in opposite
directions.

Garg and Leibovich [40] found, from experimental observations, that the bubble or
spiral types of vortex breakdown act like solid bodies in changing an upstream jet-like

flow into a wake-like flow. The wake regions were observed to be unstable to non-

axisymmetric disturbances.

Uchida, et al. [41] conducted an experiment on a bubble-type vortex breakdown
in a circular duct using air as the working fluid and LDV to measure the velocity
components. The results showed the measured breakdown to have a positive axial velocity
component around the center of the bubble. The flow was almost steady except for the
flow downstream of the bubble. In 1987, Uchida, et al. [42] studied the spiral-type
vortex breakdown in a pipe using water as the working fluid. The results showed the

phenomenon to be completely unsteady.
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The experimental studies showed the vortex-breakdown flow to be unsteady especially
downstream of the breakdown region. The unsteady behavior was studied by Chanaud
[43]. He studied the periodic motion that occurs in the vortex whistle and cyclone
separators at high Reynolds numbers beyond a reversed flow region. He concluded
that the motion can be described in terms of an oscillator which derives its energy from
hydrodynamic instability of the fluid within a reversed-flow region on the swirl axis. Also,
Cassidy and Falvey [44] presented observations and measurements made on the unsteady
vortex flow developing at high axial Reynolds numbers in straight tubes. They concluded
that the unsteady wall pressures, developed after vortex breakdown, are produced by a

helical vortex processing about the tube axis.

No general rules can yet be given regarding the type of breakdown to be expected for
any specified flow conditions. Under some conditions the forms can alternate randomly

even though the imposed flow conditions do not change.

According to Lowson [11], the vortex-breakdown phenomenon, attendant to leading-
edge vortices, always starts as a spiraling of the axial filament while the axisymmetric
bubble form is a later development of the primary spiral form under certain transient
conditions. On the other hand, It was shown by Lambourne [45] that the breakdown in
a tube is initially axisymmetric but becomes transient and unstable and finally changes
into the spiral form. He suggested that the spiral form should be regarded as arising from
instability of the axisymmetric form. In another application, Granger [46] performed
some experiments with a bathtub vortex. He described the development of the surge in
details. At some instance in the development, a sphere with an inclined vortex ring inside
was formed. Owing to pressure instabilities in the wake, the vortex ring was broken apart

and the trapped fluid was shed downstream along the vortex filament. The bubble shape

was then transformed to a single spiral filament.

14
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The observations of Escudier and Zehnder [47] and Sarpkaya [37] showed also the

random change of the vortex breakdown type.

It was also shown that the vortex breakdown has major effects on the performance
of delta wings. Hummel and Srinivasan [48] carried out flow measurements and
visualization of the vortex breakdown on two sharp-edged delta wings. Their results
showed that the slopes of the coefficients of lift, drag and moment dropped markedly
because of the vortex breakdown. Similar effects on the pitching moments of the tested

delta wings were presented by Wentz and Kohiman [49].
2.2.2 Theoretical and Computational Analysis

2.2.2.1 Steady Axisymmetric Equations

Hall [50] studied a steady axisymmetric swirling flow of an incompressible fluid.
He reduced the Navier-Stokes equations to a set of parabolic equations by assuming the
viscous vortex core to be slender and applying boundary-layer type approximations. He
used an implicit finite-difference method to solve the equations by marching in the axial
direction. The method was used to solve for the vortex breakdown, Hall [25, 26]. The
breakdown was detected by the failure of the computational iterative scheme to converge.
The results of a sample vortex showed the failure of the computations occurred with a

pronounced deceleration of the axial velocity, at a location close to the experimentally

observed position for breakdown.

Bossel [19, 28] showed that the Navier-Stokes equations for viscous incompressible
flow at high core Reynolds number can be reduced to three different systems. These
systems are: a boundary-like parabolic set in regions of quasi-cylindrical flow; an inviscid
elliptic equation where the vortex flow is expanding or contracting at or near the axis;

and Stokes equations in a very small region surrounding a free stagnation point. He used
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a Fourier-Bessel series to solve the inviscid set of equations in the vortex breakdown
region. The scheme captured the vortex breakdown bubbles. It was concluded that
vortex breakdown is a necessary feature of supercritical viscous vortex flows having high

swirl close to the critical condition, with some flow retardation at and near the axis.

Lavan, et al. [51] studied the swirling viscous flow in a circular duct. They developed
a linearized analytical solution which is valid for flows of large swirl ratios and small

Reynolds numbers.

Torrance and Kopecky [52] and Kopecky and Torrance [53] numerically solved
Navier-Stokes equations for axisymmetric incompressible flow of a rotating stream. An
explicit finite-difference scheme was used and conditions for the formation of an isolated

eddy were obtained. Results were presented for a range of Reynolds numbers and swirl

ratios.

Mager [29] solved the quasi-cylindrical momentum-integral equations for the flow in
the viscous core of a wing-tip vortex. Closed-form solutions with two separate branches
were obtained. He suggested that the disturbance due to the beginning of the spiral
breakdown causes the downstream asymmetric departure of the flow from its quasi-

cylindrical behavior and the formation of the upstream axisymmetric bubble.

Grabowski and Berger [18] solved the steady axisymmetric Navier-Stokes equations
for an unconfined viscous vortex for core Reynolds numbers up to 200. The method
of artificial compressibility was used to solve the incompressible governing equations.
Vortex breakdowns were obtained for subcritical upstream conditions, which is conflicting
with Benjamin’s theory. The results showed, for large values of swirl, a second axial
flow retardation that could be considered as a spiral following the vortex breakdown

bubble as observed in the experiments by Sarpkaya.
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Narain [54] used an implicit finite-difference scheme to solve the axisymmetric
viscous, incompressible Navier-Stokes equations for the flow case of a swirling jet in
a cylindrical duct. He found that increasing swirl ratio and Reynolds number, decreasing

surrounding stream velocity, and increasing the size of the tube enhanced the occurrence

and size of vortex breakdown.

Hafez, Kuruvila and Salas [55] solved the axisymmetric steady Navier-Stokes equa-
tions and the Euler equations for the vortex breakdown. Their approach was restricted
to low values of Reynolds numbers. Typical values of Reynolds numbers used were 100
and 200. The minimum grid-cell side was 1/16. The results showed the bubble size to be

decreased by increasing the swirl ratio which contradicts the experimental observations.

Salas and Kuruvila [56] solved the axisymmetric steady Navier-Stokes equations in
the stream function-vorticity formulation form using a second-order central-difference
scheme. They were able to obtain steady solutions for a range of Reynolds numbers
from 100 to 1800 by using direct matrix-inversion techniques. The minimum grid-cell

side was 1/16. Increasing the Reynolds number and/or the swirl parameter revealed multi

vortex-breakdown bubbles along the vortex axis.

Salas and Kuruvila [57] attempted to study the stability of their axisymmetric
solutions to three-dimensional perturbations. Their results showed a small effect at low

Reynolds numbers and a significant effect at higher Reynolds numbers.

The steady, axisymmetric Navier-Stokes and Euler equations were also used by Hafez,
et al. [58] and Beran [59] to numerically simulate the vortex breakdown in an unbounded
domain. The study was extended by Hafez and Ahmed [60] to cover both unbounded

and bounded vortex-flow domains. In both studies, steady multiple-bubble solutions

were obtained.
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2.2.2.2 Unsteady Quasi-Axisymmetric Equations

Krause, Shi and Hartwich [31] presented the first attempt to solve the time-dependent
axisymmetric Navier-Stokes equations for vortex-breakdown flows. The time-accurate
solutions revealed a two-celled internal structure of the vortex breakdown bubble, that
was observed experimentally by Faler and Leibovich [39]. Steady-state solutions were

obtained only for the cases with no vortex breakdown.

Shi [61, 62] showed that the solution of the time-dependent axisymmetric Navier-
Stokes equations did not depend on Reynolds number for low values of Reynolds number.
The time-accurate results showed the evolution, merging and shedding of the vortex
breakdown bubbles. He concluded that the flow appeared to be quasi-periodic. He
suggested that the periodic inner cells flowing downstream could be representing the

spiral tail behind a broken cell as observed in Sarpkaya’s experiments.

Benay [63] studied the swirling flow in a cylinder using the unsteady, axisymmetric
Navier-Stokes equations. A time-marching scheme was developed and used to obtain the

steady-state solution. The effects of swirl ratio, Reynolds number and inflow profiles on

the breakdown were studied.

Pagan and Benay [64] studied the effect of applying an adverse pressure gradient on
the outer boundary of an incompressible swirling flow in an unbounded domain. They
compared the results with their experimental results [65]. They concluded that pressure
gradient effect on the vortex breakdown was not local and the magnitude of the pressure
rise between inflow and exit sections played a major role. They carried out a parametric
study of the axisymmetric vortex breakdown occurrence conditions [66] . The parameters
included Reynolds number, velocities and pressure distribution on the outer boundary of

the vortex. Steady state solutions were obtained for low and moderate values of Reynolds
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numbers. For sufficiently large Reynolds numbers, pseudo-periodic unsteady solutions

were obtained.

Menne [67] solved the axisymmetric Navier-Stokes equations for unsteady swirling
flows. Cases of an isolated vortex and vortex flows in circular tubes were considered.
Several finite-difference methods and inflow-boundary conditions were used. Steady
and unsteady solutions were obtained depending on the type of inflow boundary condi-
tions. The vortex-breakdown-bubbles’ formation, merging and shedding were observed.

Reynolds number of 200 was used in the study.

Recently, Wu and Hwang [68] solved the unsteady, axisymmetric Navier-Stokes
equations for a confined swirling flow in a circular tube. A parametric study was per-
formed to investigate the effects of inflow boundary conditions, wall boundary conditions
and Reynolds number on the vortex breakdown structure. They concluded that the for-
mation of steady, periodic or unsteady vortex breakdowns depends on the combination

of the Reynolds number and boundary conditions. Reynolds numbers from 200 to 1000

were used in their study.

2.2.2.3 Three-Dimensional Equations

Nakamura, et al. [69, 70, 71] used the vortex-filament method to study the three-
dimensional vortex breakdown phenomenon under the assumption of nonlinear, inviscid
dynamics of vorticity. The method cannot take into account the viscous effects and
the effects of Reynolds number. The breakdown was produced by introducing three-
dimensional disturbances into the computational domain. The results showed the bubble-

type breakdown to be followed by a kink or spiral-type breakdown.

Spall [72] presented the first attempt to solve the three-dimensional Navier-Stokes

equations for incompressible vortex breakdown in an unbounded domain using a velocity-
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vorticity formulation. Two flow cases were considered. In the first case, the vortex core
was impeded in a uniform free-stream. In the second case, a pressure gradient was
imposed on the free-stream boundary by decelerating the axial velocity component in the
stream-wise direction. Typical Cartesian grids of 48x28x28 and 52x20x20 points were
used in the study with a minimum cell thickness of 0.13. Bubble-type breakdowns were
captured in both cases for a certain range of Rossby number. In a later paper, Spall,
Gatski and Ash [73] presented the internal structure of the three-dimensional bubble-type
vortex breakdown. The results showed the asymmetry and unsteadiness of the flow and
the existence of multiple vortex rings inside the bubble. The effects of the free-stream
axial velocity distribution on the position and type of vortex breakdown were studied
by Spall and Gatski [74]. Bubble-type and spiral-type were produced depending on the

imposed axial velocity deceleration.

Liu and Menne [75, 76] and Menne and Liu [77] studied the vortex flow in a slightly
diverging tube using Navier-Stokes equations. The flow was assumed nearly axisymmet-
ric and the non-axisymmetric influence was described by a Fourier decomposition in the
circumferential direction. The results of the axisymmetric set showed only one vortex
ring inside the bubble with no stagnation points on the vortex axis. The results of the
non-axisymmetric set of equations showed a two-cell vortex breakdown bubble. In this

case multi bubbles were observed along the axis.

Breuer and Hénel [78] used the concept of dual time-stepping to extend the classical
numerical methed of artificial compressibility to time-dependent applications. The
problem of unsteady three-dimensional breakdown of an isolated vortex was considered.
A Cartesian grid with 41x41x60 grid points was used in the study. The evolution and
internal structure of the vortex breakdown bubble at Reynolds numbers of 200 and 2000

were presented. It was noticed that the solution became highly asymmetric after a large
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computational time and a spiral type breakdown was developed. An axial pressure
gradient was imposed on the vortex outer boundary to provoke the vortex breakdown.
Hsu, et al. [79] wused a numerical method based on the concept of artificial
compressibility to solve the unsteady three-dimensional vortex breakdown problem in
an unbounded domain. Bubble-type vortex breakdowns were obtained for different flow
and boundary conditions. The solutions approached steady-state conditions. There were

no stagnation points or negative axial velocities along the vortex axis.

2.3 Compressible Vortex Breakdown
and Vortex/Shock Interaction

2.3.1 Experimental Work

Elle [80] carried out an experimental investigation of vortex breakdown on a 60°
delta wing at Mach numbers ranging from 0.7 to 1.03. For all the Mach numbers used
except 1.03, the flow field was characterized by a shock wave followed by a vortex
breakdown. The results showed that increasing the Mach number in the transonic zone
had a stabilization effect on the vortex core. As the Mach number was increased, the
position of the shock-vortex breakdown system moved downstream. At a Mach number
of 1.03, no vortex breakdown was observed on the delta wing surface. The author
rejected the idea that the vortex breakdown is a secondary effect of the shock wave-
vortex interaction. Instead, he suggested that the shock wave is a direct consequence of
the vortex breakdown.

Lambourne and Bryer [9] reported on the occurrence of a local region of supersonic
flow which was terminated by a shock wave on a delta wing at a freestream Mach
number of 0.9. The terminating shock wave intersected with the leading-edge vortex.
It was observed that a vortex breakdown occurred immediately behind the shock wave.

In their conclusion, it was suggested that the occurrence of the breakdown behind the
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shock could be associated with the strong pressure rise across the shock. Increasing
the freestream Mach number to 0.95 moved the shock-vortex breakdown system further

downstream.

Craven and Alexander [81] carried out wind tunnel tests on a 75° swept delta wing at
a Mach number of 2.0. It was found that the angle of attack at which vortex breakdown
occurred was somewhat less than that at lower speeds. They observed the spiral-type
vortex-breakdown region to be always bounded upstream by a conical shock wave.

Zatoloka, et al. [82] studied the interference of a compressible vortex filament at a
freestream Mach number of 3.0 with a strong bow shock in front of a blunt body. It was
noted that a stagnation zone with a conical shock was formed in front of the blunt body.
In another experiment, an airfoil, as a vortex generator, was placed at an angle of attack
ahead of an air-inlet-model entrance. The freestream Mach numbers were ranging from
1.4 to 1.95. 1t was observed that the interference of the vortex filament and the shock at
the entrance resulted in the dissipation of the vortex and the formation of a conical shock
with a stagnation point at the cone apex. It was concluded that the interaction caused a
significant deterioration of the inlet performance.

An extensive study of the compressible vortex-normal shock interaction was reported
by Delery and Horowitz [83]. In their study, the vortex produced using a half delta wing
was intersected by a normal shock wave at the entrance of a Pitot tube. A parametric
study was performed to obtain a swirl ratio limit, at each Mach number, beyond which the
vortex breakdown will take place. The range of Mach number considered was from 1.7

to 2.8. For the breakdown cases, the measurements showed recirculation zones behind

the interactions.

Schrader, et al. [84] studied the effects of Mach number and Reynolds number on

leading-edge vortices on a delta wing of an aspect ratio of 2 at a high angle of attack.
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The results showed the existence of supersonic pockets inside the primary vortices for
. transonic freestream Mach numbers. The supersonic pockets were terminated by a shock
wave. At low-speed the vortex breakdown appeared as a slow decrease in the lift and
it was coincident with the vortex-core lift-off. The high-speed lift-off revealed a sharp
decrease in the lift coefficient and caused significant rolling moments. There was no

clear evidence that the high-speed vortex breakdown was coincident with the lift-off.

Glotov [85] studied the interaction of a vortex core with a cone-cylinder body. It
was reported that the limit for the breakdown to take place was the critical Mach number
at which the oblique shock starts to detach. For Mach numbers greater than the critical
value, unsteady conical detached shocks at the interaction were observed. For Mach
numbers smaller than the critical value, the existence of a stagnation point and a reversed

flow region was reported.

The experiments of Bannink [86] on a 65° delta wing showed that vortex breakdown
at transonic speeds occurs more violently than at subsonic speeds. At an angle of attack
of 20°, no vortex breakdown occurred at Mach numbers of 0.6 and 0.7 while breakdown
occurred at Mach numbers of 0.75, 0.8 and 0.85. The position of the breakdown moved
upstream with increasing Mach number. The results showed that the vortex breakdown
was unsteady and asymmetric.

Erickson {87] studied the flow field of a 65° delta wing over a wide range of Mach
numbers. At Mach numbers of 0.85 and 0.9 the leading-edge vortex interacted with a
normal shock wave along the rear portion of the wing. The pressure distributions and total
lift, drag and pitching-moment characteristics suggested that the vortex-shock interaction

caused vortex breakdown over the wing at a slightly lower angle of attack.

Metwally, Settles and Horstman [88] presented the results of an experimental study

of the interaction of a supersonic swirling jet with a normal shock wave. The swirling
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jet was impeded in an inviscid freestream supersonic flow with a lower Mach number.
Because of the mismatch of the static pressures of the freestream and the vortex, a normal
shock was produced which intersected with the stream-wise vortex. In a typical case,
the supersonic swirling jet Mach number was 3.0 while the freestream Mach number
was 2.0. The intersection was characterized by the formation of a bubble shock with an
apparent stagnation point at the cone apex on the vortex centerline. A recompression
shock was observed downstream of interaction. A hypothetical model was suggested
which assumed the occurrence of vortex breakdown and a recirculation zone behind the

shock. However, their experiments did not support the hypothetical model.

The results of Cattafesta and Settles [89] supported the hypothetical model of
Metwally, et al. The vortex core diverged rapidly as a result of a strong interaction of a
swirling jet at a Mach number of 2.5 and a shock wave. The observations suggested the
occurrence of a reversed flow region behind the shock. A supersonic vortex-breakdown
curve, originally developed by Delery, et al. [90], was expanded to cover Mach numbers
up to 4.0.

Cutler and Levy [91] studied the flow characteristics of a supersonic swirling jet.
In the case of an overexpanded jet, a highly unsteady system of shocks was produced.
The results suggested the occurrence of vortex breakdown. No qualitative or quantitative
results were presented to support this suggestion.

The interaction of tip vortices and two-dimensional, conical and bow shock waves
were studied by Kalkhoran, et al. [92]. No apparent vortex breakdown was reported
as a result of vortex-oblique shock interaction. In a later paper, Kalkhoran, et al. [93]
studied the influence of the vortex strength and vortex-airfoil vertical separation distance
on the interaction. Unsteady detached shock waves were formed upstream of the airfoil

leading edge.
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2.3.2 Numerical Studies

Delery, et al. [90] were the first to consider compressible vortex breakdown problem.
They assumed the flow to be steady, inviscid and axisymmetric. Furthermore, they
assumed the stagnation enthalpy to be constant to avoid solving the energy equation.
The Mach numbers varied from 1.4 to 2.2 with different swirl ratios. The results showed

the dependency of the breakdown limit on the Mach number and swirl ratio.

Liu, Krause and Menne [94] studied the influence of compressibility on slender
vortices. By assuming the vortex core to be slender, the full Navier-Stokes equations
were reduced to a boundary-layer-like set of equations. Vortex breakdown was detected
by the failure of their iterative scheme to converge. The results showed the shifting of
the vortex breakdown position downstream with increasing Mach number. For Mach
numbers greater than 0.7, no vortex breakdown was captured for the flow conditions
considered.

Kandil and Kandil [34] presented the analysis and computation of a steady, com-
pressible, quasi-axisymmetric flow of an isolated slender vortex. The compressible
Navier-Stokes equations were reduced to a simpler set by using the slenderness and
quasi-axisymmetry assumptions. The resulting set of equations, along with a compati-
bility equation, were transformed from the diverging physical domain to a rectangular
computational domain. The governing equations were solved using a space marching
type-differencing scheme. Vortex-breakdown location was detected by the failure of the
scheme to converge. Computational examples included vortex flows at different Mach
numbers, swirl ratios and external axial-pressure gradients. Good agreement was shown
for a bench-mark case between the computed results using the slender-vortex equations
and those of a full Navier-Stokes solver, which were also produced by the same authors.

The results are presented in Chapter 5.
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Copening and Anderson [95] solved the three-dimensional Euler equations for shock-
vortex interactions at Mach numbers of 2.28 and 5.0. No vortex breakdown was obtained

in both cases.

Metwally, et al. {88] solved the quasi-axisymmetric Navier-Stokes equations for the
interaction of a supersonic swirling jet and a shock wave. The results showed a region of
reversed flow behind the shock wave. These results supported the authors’ hypothetical
model. The only set of flow conditions considered was for a flow case of a jet Mach

number of 3.0 and freestream Mach number of 2.0.

The first time-accurate Navier-Stokes solution for a supersonic vortex breakdown
was developed by Kandil, et al. [96]. They considered a supersonic, quasi-axisymmetric
vortex flow in a configured circular duct. The time-accurate solution of the unsteady,
compressible, full Navier-Stokes equations was obtained using an implicit, upwind, flux-
difference splitting finite-volume scheme. A shock wave was generated near the duct
inlet and an unsteady vortex breakdown was predicted behind the shock. The predicted
flow was characterized by the evolution, convection and shedding of vortex-breakdown
bubbles. The Euler equations were also used to solve the same problem. The Euler
solution showed increases in both the size and number of vortex-breakdown bubbles,
in comparison with those of the Navier-Stokes solutions. Only one value of Reynolds
number (10,000) was used in Ref. [96]. In a later paper [97], the study of this flow
was expanded using time-accurate computations of the Navier-Stokes equations with
a fine grid in the shock-vortex interaction region and for long computational times.
Several issues were addressed in that study. First, they showed the effect of Reynolds
number on the temporal evolution and persistence of vortex-breakdown bubbles behind
the shock. In that stage of computations, the conditions at the downstream exit were

obtained by extrapolating the components of the flowfield vector from the interior cell
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centers. Although the flow was supersonic over a large portion of the duct exit, subsonic
flow existed over a small portion of the exit around the duct centerline. Therefore,
selected flow cases were computed using Riemann-invariant-type boundary conditions
at subsonic points of the duct exit. Finally, the effect of swirl ratio at the duct inlet
was investigated. The results of that study will be presented in Chapter 6. The critical
effects of downstream-boundary conditions on supersonic vortex-breakdown were studied
by Kandil, et al. [98] for both internal and external flows. For this purpose, the
unsteady, compressible, full Navier-Stokes equations were used along with an implicit,
upwind, flux-difference splitting, finite-volume scheme for time-accurate solutions. For
the internal flow case, supersonic swirling flow in a configured duct is considered along
with four types of downstream boundary conditions. Keeping the duct geometry and the
upstream flow conditions fixed, the exit boundary conditions were varied. The four exit
boundary conditions included extrapolation of all the five variables from the interior cell
centers, specifying the downstream pressure by two methods and extrapolating the other
fiow conditions from the interior cell centers, and using a disk of specified radius at the
exit section. For the external flow case, a supersonic swirling jet issued from a nozzle
into a supersonic non-swirling flow of a lower Mach number. Two types of downstream
boundary conditions were considered. In the first type, extrapolation of all five variables
from the interior cell centers was used, while in the second type, the standard Riemann-

invariant-type boundary condition was used. The results will be presented in Chapters

6 and 7.

Kandil, Kandil and Liu [99] expanded their study of supersonic vortex breakdown
to include both quasi-axisymmetric and three-dimensional flow cases for both internal
and external flows. For internal flow cases, they presented time-accurate solutions

for the flow in a configured circular duct. For external flow cases, they presented
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time-accurate solutions for the shock-vortex interaction problem using different types
of grids. The results showed several modes of breakdown; e.g., no-breakdown, transient
single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-
frequency breakdown and helical breakdown. In a later paper by the same authors [100],
three-dimensional effects on supersonic vortex breakdown for both external and internal
flows were considered. For the internal flow case, the effects of the outer-wall boundary_
conditions were studied where both viscous and inviscid boundaries were considered.
For the external flow case, the effects of the grid shape and number and distribution of
the grid points on the vortex breakdown resulting from shock-vortex interaction were
studied. The results are presented in Chapter 8 for the internal flow case and in Chapter

9 for the external flow case.
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CHAPTER 3
FORMULATION

3.1 Introduction

For decades and because of the limitations on the computational facilities, many
restrictions were applied to the formulation of the vortex-breakdown problem. The
assumptions of steady, quasi-axisymmetric, inviscid slender vortex cores reduced the
Navier-Stokes equations to simpler forms that have been used to predict the possibil-
ity of vortex breakdown occurrence and its approximate position. The experimental
measurements showed the vortex breakdown to be an unsteady, three-dimensional phe-
nomenon. Therefore, some of the mathematical assumptions should be relaxed. A set
of unsteady quasi-axisymmetric viscous equations was recently used to solve for the
evolution and behavior of vortex breakdown of the bubble type [96]. However, the full
Navier-Stokes equations should be solved to account for the three-dimensional effects

and various modes of vortex breakdown.

In vortex flows, viscous effects are of great importance especially downstream of a
vortex breakdown region. In high Reynolds number viscous flows, the viscous effects
are concentrated near the vortex axis, adjacent to solid walls and in wake regions. More
grid points are needed in these regions for good resolution of those effects.

In this study, the unsteady, compressible, full Navier-Stokes equations are used to
formulate the problem of supersonic vortex breakdown. The usage of full Navier-Stokes

equations is made possible because of the available super-computer capabilities which

were not available few years ago.
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Assuming the flow to be steady and quasi-axisymmetric and the vortex core to be
slender, the Navier-Stokes equations are reduced to a simpler set that is used to predict
the possibility of vortex breakdown and its approximate position. Moreover, this set can
be used to produce a compatible set of inflow boundary conditions for the Navier-Stokes

computations.

3.2 Three-Dimensional Navier-Stokes Equations

The conservative form of the nondimensional, unsteady, compressible, Navier-Stokes

equations in terms of Cartesian coordinates (z1,z2,z3) is given by

oq a(Ej - E::) .
k. T NS Ay 3 =1-3 3.1
ot + Oz; 0 ' J .1
where the flow field vector, ¢ is given by
g = [p, pur, puz, pus, pe)’ (32)

and the inviscid flux vectors are given by

—

i
Ej= [Puj',puluj + 8;1p, puguj + 65op, pusuj + 6j3p, pu; (e + %)] ;7=1-3 (3.3)

1 i=j

where 6;; is the Kronecker delta function, §;; = { 0 itj

and the viscous fluxes are
(Ev)j = [0, 7j1, Tj2, Tj3, UmTjm — q5]° ;7 J=1-3, m=1-3 (3.4)

In the equations above, the variables are nondimensionalized using the corresponding
freestream variables. The reference parameters are L, aeo, L/Goo, poo and poo for the

length, velocity, time, density and molecular viscosity, respectively.

The total energy per unit mass, e , is nondimensionalized by a2, and the pressure,

p, is nondimensionalized by peoaZ..
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The pressure is related to the total energy per unit mass and density by the perfect

gas equation

1
p=(v—1)p|e—5(ui+uj +uj) (3.5)

where « is the ratio of specific heats which is assumed to be constant and its value is

1.4 in this study.

In Eq. (3.4), the 7 terms represent the Cartesian components of the shear-stress tensor
for a Newtonian fluid, where Stokes hypothesis is employed and the fifth term represents

the shear-dissipation power, up,7;m, and heat flux components.

The Cartesian components of the shear-stress tensor are given by

M (Oui  Ou; 2 Oug) ..
Tij = R (6:1:j+3:v,' 36,,6% ; 6,5,k=1—3 (3.6)

the shear-dissipation power and the heat flux components are given by

o 73,788 Ou;  Oum _ g . Ouy o _

UmTjm = E. um(amm + 92, 3 Ojm g jkbm=1-3 .
. _ﬂMoo 6T . ._1—3 (-)

U=G-DPR, 0z; 17

where the dimensionless viscosity, g, is calculated from Sutherland’s law

af 1+

where T' is the dimensionless temperature and ¢ is Sutherland’s constant, ¢ ~ 0.4317.

The Prandtl number, P;, is assumed to be constant with a value of 0.72 throughout the

calculations.

The freestream Reynolds number, R,, is defined by R, = @;Z;LL and the character-

istic length (L) is the initial radius of the vortex or the duct inlet radius. According to
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the characteristic parameters, the freestream flow variables are given by:

Poo = 1.0

o0 = Ty + (3.9)
1

Po = —

v
aoo=T°°=1-0

U = 1/“%“, -i-u%oo +u§°° =uj,
U

MOO = ———=U1°°
Goo

where M, is the freestream Mach number.

The unsteady Navier-Stokes equations in the Cartesian system are transformed into

time-independent body-conformed coordinates, ¢, ¢2 and ¢°; where

Em = Em(xla T2, .'113) (3.10)

The conservative form of the equations, in terms of the body-conformed coordinates, is

given by:
0§ 0 (o 4
5;+5{5—";(E—E,,)m_0,m~1-3 3.11)
and
= ¢ 1 "
Q= 7= j[Pa pu1, puz, pus, pej (3.12)

where ;17- = J1 is the Jacobian of the transformation from the Cartesian coordinates to

the body-conformed coordinates and is given by

_ d(z1, s z3) Tla Tl Tl
1 2 £3 1 2 2
oEEE) | T

¢t $3€2 3353
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The inviscid fluxes are given by
Enp == [akﬁmEk]

=%M%NMM+%WAW%%+%W%wd%+&€%MMm+M
(3.14)

where the contravariant velocity component in the (™, U, is given by

U = Ok ug ; k=1-3 (3.15)

andak_g—

The viscous and heat flux terms in the £° direction, (E,,) , is given by
8

= 1
(Ev)s = 7[0, Olor1, OkETra, Ok mhz, Ok’ (upThp — qi) ]f k,p=1-3 (3.16)

The shear-stress and heat-transfer terms in the above equation are given by

Meo 9 i -
Th = ﬂR <31£m ag:; + O a;i 35k15 i€ 6€m>

W 0
G-DBE ¢ g

(3.17)
qk =~

Expanding the first element of the three momentum elements of equation (3.16), we get

M°° g n 2 8 n 8 n
Om = [(akf OnE" ~ SOE D¢ )Z’g{: + e Ot ng] (3.18)

The second and third elements of the momentum elements are obtained by replacing

the subscript “1”, everywhere in equation (3.18), with 2 and 3, respectively. The last

element of equation (3.17) is given by

s My so on 2 n 0
Ol (upTip — qx) = MR [(&cﬁ Op€" — 3 & OkE )upaZ:
n ]' 71 2

(3.19)

where a is the dimensionless local speed of sound and a? = T.
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3.3 Slender Quasi-Axisymmetric Formulation

Starting with the steady, compressible Navier-Stokes equations which are expressed
in the cylindrical coordinates (Z,7 and ¢), assuming the isolated vortex core to be
slender [ % = 0(711-{:), —U”% = 0(711-{—) ], where L is the breakdown length, 7 the
radial velocity component and R, is the freestream Reynolds number, and assum-
ing the flow is quasi-axisymmetric [%%l = 0] , and performing an order-of-magnitude
analysis, [ b%’ <L % , 0K U ] the equations are reduced to a compressible, quasi-
axisymmetric, boundary-layer-like set.

The dimensionless form of the equations are given by:

Continuity:
0 14
—(pu) + = ==(prv) = 0 (3:20)
Axial momentum:
du Ou  Op My 0 ou
"(“ax + ”aT) T 8z - —5—1:(”8_7’) (3.2
Radial momentum:
w®  Op
P = (3.22)

Circumferential momentum:

ow Ow ww o O 30 (w
P(“a”aﬁ T) = Tza—r(*” 7(7)) (5:23)

The energy equation:

(ua_THQT_)_u?Lr op Mo 0 ( OT
P8z 78 ) T o T % T Br or\"* o )T

(@) 2y

Equation of state:
p= 17— pT (3.25)
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In equations (3.20)-(3.25), the nondimensional density, p, pressure, p, viscosity, x, speed
of sound, a, the cylindrical velocity components u, v and w along the z, r and ¢ coordinate
directions and temperature, T', are defined as the ratio of the corresponding physical
quantities to those in the freestream; namely poo, PoolZ, Koo, oo aNd aeo/cp, Where ¢,
is the specific heat at constant pressure. Moreover, M, is the freestream Mach number,
where M, = —:’- P, = pcp/K the Prandt]l number where K is the coefficient of thermal
conductivity and v the ratio of specific heats. The Prandtl number value is chosen as
0.72. The radius r and the radial velocity component v have been stretched by a small

parameter €¢; where

62 = -}— = Foo = Moo
Re  pooteats  [io (3.26)
R, = Poo‘u ool

where r; is the vortex viscous-core radius at the initial axial station. The molecular

viscosity is evaluated by Sutherland’s law, Eq. (3.8).

Next, a Levey-Lee-type transformation is introduced to transfer the diverging physical
domain into a constant-outer-boundary computational domain. The transformation from

the physical domain coordinates, (z,r), to the computational domain coordinates, (¢, 7),

is given by

z

§=/peﬂedw Ai—/
0

0

(3.27)

blb

where A is given by

wsp < MO _ r®)

fle) ~ (&)

where MSF is the modified shape factor characterizing the growth of the vortex-core

(3.28)

boundary and f(p) is a function relating the density integral at any axial station to that
at the initial station. Its value equals unity for incompressible flows. The subscript “e”

refers to external conditions and the subscript “;> refers to conditions at the initial station,
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The governing equations take the following form in the computational domain:

Continuity equation:

ov. 1 0 A
A —V = 2
Bn + Y aé(z\ur)+ prV (3.29)
the relation between v and V is given by
_ Peted , Au _on
v= P V 771: P ’ 772: - 8:6
n
h V= 1 _6_ / A d &30
where =~ B¢ ™Y Ul
0
Axial momentum:
Ju Ou 10p X w2 M 8 (crdu
— —_——= = = 0 —+ — —{ — — .
GV a = a s T (T ) G3D
where § = ——p; and ¢ = 2L,
Radial momentum:
Apz = O (3.32)
r n
Circumferential momentum;
ow Oow A M 0[] 30 (w
uge t Vgt oV~ buw = s 5 [cr %(;)] (3.33)

Energy equation:

UQZ_I_VQI:—-E?_R_!_é Vw2+ M 2. 6T
o¢ op pd p T P, A2r 0y r

el fzely

3.3.1 Inflow and Boundary Conditions

At the initial axial station, z = z;, the axial and circumferential velocity components,

u and w, respectively, and the temperature, T', are specified as follows:

u(r, ;) = ui(r)

: —2)
w(r,mi)=w,~(r)={§:’/'£2'° ) TSl (3.35)

T(r,z;) = Ti(r)
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The quasi-axisymmetric condition is used to obtain the following boundary conditions

at the vortex axis, r = 0

) oT
5%&@:V@J%ﬂd&@=5#m@=0 (3.36)

The vortex outer boundary, r = r, , is assumed to be a stream surface and the flow is
assumed inviscid with negligible diffusion. The kinematic equation of the stream surface

is given by:

A== (3.37)

The circumferential momentum reduces to

Jw A
— —we =0 3.38
where the viscous term has been neglected and equation (3.30) has been used to cancel

the coefficient of the (%%) term and to replace V.. This equation is integrated to give

1
the corresponding condition on the circumferential velocity at the boundary, we:

we = X’wei (3.39)

where we; = w(r,, z;)

Neglecting the viscous term in the axial momentum equation, Eq. (3.31), using
the stream surface condition, along with the radial momentum equation, the following

equation is obtained

aU/e . ape X 2
Pele B¢ = 9 +pe)‘we (3.40)

which can be reduced, using equation (3.39) to an equation on u, which is given by

Oue 1 0p. | A
ue—a? = —-’:—a%-i- ng', (3.41)
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Neglecting the viscous terms in the energy equation, (3.34), and using the stream-surface

condition, the following equation is obtained

0T, Op.
e _ e 42
From the equation of state, we get the condition on the density
Y Pe
-t e 4
Pe y-1 T, (3.43)
The pressure distribution at the outer boundary is specified
p(ro,z) = pe(z) (3.44)

In order to ensure that the vortex is slender, a compatibility condition must be satisfied
for the ratio between the radial velocity and axial velocity at any station. The equation

and the procedure are given in Appendix A.
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CHAPTER 4
COMPUTATIONAL SCHEMES FOR THREE-
DIMENSIONAL NAVIER-STOKES EQUATIONS

4.1 Introduction

In this Chapter, an upwind scheme is applied to the inviscid fluxes of the conserva-
tive form of the full Navier-Stokes equations in a body-conformed generalized coordinate
system. The scheme is a flux-difference splitting, finite-volume scheme. The aim of up-
wind schemes is to mimic the physical propagation of disturbances of the flow equations
into the difference equations. This can be achieved by the recognition of the direction of
propagation of information according to the theory of characteristics. Accordingly, type-
dependent differencing of the information travelling in opposite directions is introduced
in a separate and stable manner. Using upwind schemes, which take into account the
essential physical properties of the equations, prevents the creation of unwanted oscilla-
tions like those created by central-differencing schemes in the vicinity of discontinuities
which have to be damped by the addition of artificial-dissipation terms. In the flux-vector
splitting methods, only information from the physical properties is introduced, depending
upon the sign of eigenvalues of the inviscid Jacobians. The flux terms are split and
discretized directionally according to the sign of the associated propagation speed. The
physical properties can be introduced into the differencing equations by considering the
conservative variables as piecewise constant over the grid cells at each time step and
the time evolution is determined by the exact solution of the one-dimensional Riemann

problem at the inter-cell boundaries. This approach has been modified, where the local
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Riemann problem is approximately solved using approximate Riemann solvers. These
methods are called flux-difference splitting methods.

Upwind schemes can be used with either conservative or non-conservative forms
of the governing equations. The advantage of using the conservative form is that
shock waves and contact discontinuities evolve as parts of the solution process. The
disadvantage is that upwind differencing can be implemented more economically in a
non-conservative formulation but must be supplemented with a shock-fitting scheme for
accurate results. The available shock-fitting schemes are not able to treat complex shock
wave interactions efficiently. In general, upwind schemes require two-to-three times more
arithmetic operations than an equivalent central-difference method, if both are used to
solve the conservative formulation. The increase in the computational effort per iteration
is substituted by an improved rate of convergence and wider applicability to general
problems without the need for adjustable parameters.

In this Chapter, the finite-volume implementations of conservative methods are
discussed. Then, the application of the upwind flux-difference scheme to the three-
dimensional Navier-Stokes equation is presented. The scheme is capable of solving
time-dependent problems by using global time-stepping and the steady-flow problems by
using pseudo time-stepping to get asymptotic steady solutions. Because of the unsteady
nature of the vortex-breakdown flows, global time-integration technique was used in all
the presented calculations. At the end of this Chapter, the boundary and initial conditions

for the numerical simulations of quasi-axisymmetric and three-dimensional flow problems

are also discussed.
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4.2 Implicit Upwind Schemes

The presence of viscosity and heat conduction terms in the compressible, unsteady,
Navier-Stokes equations transforms the conservative forms of momentum and energy
into second-order partial differential equations. These equations are parabolic in time
and elliptic in space. The continuity equation is hyperbolic in space and time. The
coupled system of the Navier-Stokes equations is parabolic-hyperbolic in time and elliptic-
hyperbolic in space. The unsteady Navier-Stokes equations are integrated in time to take
advantage of the parabolic-hyperbolic nature of the equations in time. The unsteady
problems are solved using global time-stepping to obtain the solution history, while the
steady problems are solved using pseudo time-stepping to obtain an asymptotic steady-
state solution. Two types of schemes can be used to integrate the equations in time,
explicit and implicit schemes. Explicit schemes are simpler and require less computational
effort but the time step is restricted by stability considerations. Implicit schemes require
more computational effort and more computational time per iteration but they have less
restrictive stability bounds in choosing the time step in comparison with explicit schemes.

Thus, an implicit scheme was used in the present study.

4.2.1 Semi-Discrete Finite-Volume Formulation

The conservative form of the time-dependent, three-dimensional, full Navier-Stokes

equations, Eq. (3.1), is integrated over the computational domain coordinates (¢!, £2, £3)

as follows

T e !
- 5 » 4.1)
9@ 1 02 .3 8(Em—E””') 1702 703 _
]at deldedg +/———a—§7——d§d§d§ =0
v v
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It should be noted here that the product d¢!d¢2dé3 does not represent the cell volume.
‘We apply the equation in the integral form to a region R with closed boundaries OR.
The boundaries are aligned with the coordinate lines ¢!, £2 and  ¢2 in the physical

domain. The resulting integral equation takes the form

2 agagiet + [ (B~ Bu)agd + [ (B~ B)aag
% 5R oR 4.2)
+/(&-EQQM§=0
OR

The region R is divided into very small hexahedral cells. The boundaries of each cell
are aligned with the coordinate lines ¢!, ¢2 and ¢ in the physical domain.

The integral equation is applied to each hexahedral cell and then the hexahedral cell
in the physical domain is mapped on a unit cube in the computational domain whose

centroid is denoted by the subscripts ¢,j and k£ as shown in Fig. 4.1. The resulting

equation is given by

- (’\2 B sz)i,j-i—-;-,k + (Ez - Ev2>i,j——-,§-,k 4.3)

where the conservative variables, (J, located at the cell-center (¢, 7, k), are cell-averaged
values rather than point-wise values and the fluxes are evaluated at the cell interfaces
EXNES and  k+ 1.

The term 4 represents the cell volume bounded by the coordinates lines ¢!, ¢2 and
¢3. This volume is determined by summing the volumes of the six pentahedra forming
the hexagonal cell. Each pentahedron is defined by one of the six cell faces and a point

within the cell, which is the average of the eight vertices composing the cell.
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4.2.1.1 Time Integration

The Euler implicit-time differencing method is used to integrate numerically the semi-
discretized equation, Eq. (4.3), in order to advance the solution in time from some set
of initial conditions.

Using a Taylor series expansion, the flow vector Q at time level n + 1 is expressed

in terms of the vector value at time level n as follows

—

n+1
ot = gn + At(%?) + O(At)?, (4.4)

-

where At is the time step and the term (%%) is evaluated implicitly at time level n + 1.

The governing equations at time level n + 1 are given by

—\ n+l 7 n R+l
:f(ﬁ) + (‘—"5@— =0 @)

Substituting Eq. 4.5 into Eq. 4.4 gives

5 (3(Bn—Eu)\™"
z AQ+( — ) = O(At) 4.6)

J At oem
where
AG=@r - Qn 4.7)

Using Taylor series expansion, the inviscid and viscous fluxes at time level n + 1 can

be linearized as follows

e (M) AG = ~b6¢m(Bn — B,)" sm=1-3 (49)
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where I is the identity matrix and é,» ,m = 1 — 3, are spatial difference operators in

the ¢, €2 and  ¢3 directions, respectively.

The right-hand side of Eq. (4.9) represents the inviscid and viscous steady-state

residuals where the inviscid residual is given by

j%n = Sé‘mﬁm
(4.10)
=6 E1 + 6g2Eg + 0p3 B3
and the viscous residual is given by
ﬁn = 6£mEvm
4.11)

= 6By, + 8025y, + 8¢ By
For steady flows, the total residual goes to zero as time goes to infinity.

Solution of Eq. (4.9) requires solving a large banded block matrix at each time step,
which is very expensive. Therefore, the approximate factorization method by Beam and
Warming [101] is used to split the left-hand side of Eq. (4.9) into a sequence of simpler
operators in order to reduce the computational effort. The left-hand side of Eq. (4.9)

can be approximately factored as follows

I+ JAtsa (%%‘- - %)}

14 At (%QE_H

28] aQ
of %E @ 4.12)
I+ I8 | = — —2 | |AG = —JAL(R" - Rp)
0Q  0Q
In this form, the solution is obtained by solving the following three one-dimensional
problems i
I+ JAt6a 0fy _ OBy, 1 AG* = ~JAt (ﬁn —~ fz;})
0Q 0@ /|
[ aEZ aEv ] g -
I+ JAtbe | — — —=2 | |AQ™ = AQ* 4.13
e ( 90 00 ) Q Q (4.13)
I+ JAtées OBy _ 9F, AQ™ = AG*
0@ 0@ /)
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where the superscripts * and ** denote intermediate values. Solving each step of Eq.
(4.13) only requires the solution of a block tri- or penta-diagonal set of equations
depending on the spatial accuracy of the left-hand side operator. The solution of Eq.
(4.13) is accomplished through three sweeps in the ¢!, ¢2 and ¢3 directions and §" 1!

is obtained using the relation

Q! = g + AQ™ (4.14)

If a steady-state solution exists, the solution continues until the residual reaches a specified
small value. The convergence of the solution is accelerated using a local time stepping
procedure in which each cell is advanced in time by its own time step, according to
stability considerations at that point. If a time-accurate solution is required, a global time

stepping is used for all the grid cells.

Next, we consider the linearization and discretization of the inviscid flux vectors on
the left-hand side of Eq. (4.13) and the treatment of the viscous terms. The upwind

scheme used in the present study will be reviewed.

4.2.2 Higher Order Spatial Differencing of the Inviscid Fluxes

In order to difference the inviscid fluxes a Monotone Upstream-Centered Scheme
for Conservation Laws (MUSCL) is implemented in the solver used in the present study

which is called FTNS3D. This solver is a modified version of the CFL3D code [102,
103, 104, 105].

Consider the spatial operator in the ¢! direction, namely d¢1, operating on the flux

vector E;. The difference equation can be written as

6018y = By~ By (4.15)

i
2

)=
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where the interface flux is constructed as
E\L =E1(Q_,q+). 1
+ M3 (4.16)
= By (§i-1, @, Gi+1, Gi42, VE /)

In the equation above, j,k and n are kept constant and were dropped for convenience,
and the term |y¢!|/J represents the directed area of the cell face. The directed areas are
calculated as one-half the vector cross-product of the two diagonal vectors connecting
opposite vertex points of a cell face, taken such that the directed area is parallel to
the direction of increasing ¢!. The flow field vectors §* denote state variables on cell

interfaces determined from upwind-biased interpolations of the primitive variables which

are given by

1
Ty =G+ 710~ DA+ (14 0A G
2 @.17

Ty = 1= 310~ WAL+ (14 A g
where A, g; = forward differencing =¢;1; — ;.

A_g; = backward differencing =¢; — gj—1.

7 = (p,u1,u2,us, p)’

The parameter « forms a family of difference schemes; x=-1 corresponds to second-
order fully upwind differencing whose second-order truncation-error term in the ¢
direction has a value of LA¢!’ (636/ 8513) , & = 0 corresponds to Fromm scheme whose
truncation-error is & A£Y (836/ 8513) , & = 1/3 corresponds to third-order upwind biased
differencing with third-order truncation error and « = 1 corresponds to central differencing
with the first term of the truncation error equals to —+A£!’ (635/6613).

For the upwind-biased schemes, sometimes a flux limiter is needed to eliminate
oscillations in shock regions. A min-mod limiter [102] is used in most of the present
research applications. Flux-limited interpolations are identical in form to Eq. (4.17),

except that the operators A and A _ are replaced with A, and A_, respectively, where:
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A, = maz[0,min(AysignA_, BA_signAy)]signAL

A_ = maz[0,min(A_signA, BAysignA_)]signA_ (4.18)
and B = Sl
1—-«

The effect of the limiter is negligible in smooth flow regions. In the regions of flow with
high gradients, the accuracy reduces to first order. The interface flux values are evaluated
according to the flux-splitting method employed. In this study, the flux-difference splitting

method was considered.

4.3 Flux-Difference Splitting

The approximate Riemann solver of Roe [106] is based on a characteristic decompo-
sition of the fluid differences while ensuring the conservation properties of the scheme.

Consider a one-dimensional equation in the form

8¢ OE
Fri 0 (4.19)

when E is a linear function of q, Eq. (4.19) can be written as

97, , 97 _
gt Aga =0 (4.20)

where A = %—Iqi;.-. The exact solution of the Riemann problem in terms of the flux difference

is given by

3
Er-Ep =) ophier (4.21)
k=1

where A; and e; are the eigenvalues and eigenvectors of the Jacobian matrix A, respec-
tively, and oy represents the projection of the difference in § between the initial right
and left states onto the eigenvectors of A. From Fig. 4.2, it is clear that the flux at the

interface could be determined by either one of the following equations
Eiy1(d1,dr) = Ep + ) axdeer (4.22)
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+
Ei 1(q1,4r) = Er — > ardex (4.23)

where the signs on the summation symbols refer to the directions of the wave speeds.

Averaging Eq. (4.22) and Eq. (4.23), we get

- - 1
Eiy1(q1.qr) = 3

3
(EL + ER) - Z ak|/\,kek] (4.24)
k=1

If E is not a linear function of ¢, e.g. one-dimensional Euler equations, Roe [106]

developed the following solution for the approximate linearized problem

o7 07 _
ot Agn =0 (4.25)

where A is called Roe-average matrix. Itis required for the matrix A 1o have the following
list of properties to ensure uniform validity across flow discontinuities

1. It constitutes a linear mapping from ¢ to E.

2. Asp — §r — §, then A(Gr, 1) — A(Q).

3. Forany qr, 1,  A(qr,qr)* (dr—qz) = Er — Er.
4. The eigenvectors of A are linearly independent.

Using the third property, the flux difference between the left and right states can

be written as

Ep—E; = A(Gr - q1) (4.26)

The interface flux is thus

By (Gn,@1) = 5] (B + Br) - | ](Gn —a0) @27)

i+1

For three-dimensional generalized flows, Eq. (4.27) can be written as
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Py (00.01) = [ (Bue ) -

(Gr—~Qi)),, sm=1-3 @28
Where j,k and n are kept constants.

The last term in the above equation represents the dissipation contribution to the

interface flux and is given by [103]
(@~ a) = [i}ac

- o -

uyag + & a5 + ap

upay + €705 + a7 (4.29)

Uy + f;’;a5 -+ ag

~)
foyd ~ ~ ~ ~ a”
Hoy + umas + U6 + u2ar + uzag — ( )011

L y=1/
where
_|grad(€™) |~ Ap
= |22 | (- 2 (4.30)
1 d(E™) ||~ e A~
@ = = ﬂ}—g——) |ﬁm+E1(Ap+paAum)
1 |grad(e™ | - (4.31)
R 1ﬂm—-E](Ap—paAum)
Qs = o) + oy + a3 (4.32)
Qy = E(az - a3) (4.33)
rad(E™) |~ |, ~ —p o~ .
Q34 = g——}g—l |im| (PAU; — €7 pAUy) 5 j=1-3 (4.34)
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The ~ superscript denotes Roe-averaged values where

P =+/PLPR
u; = (uj, + ujp/pL PR)/(1 +/PL PR)

- (4.35)
H = (Hp+ Hp\/pL pr)/(1 + \/PL PR)
@ = (y-1)|H - @+ +3)/2]
where H is the Roe-average enthalpy.
The contravariant velocity normal to the cell interface is given by
Um = £u; ; j=1-3 (4.36)

The state variables, Qr and (), are obtained from Eq. 4.17 by replacing ¢* and ¢~

by @r and Qf, respectively.

4.4 Discretization of the Viscous Fluxes

In this section, the discretization of the viscous fluxes on the left-hand and right-hand

sides of Eq. (4.13) are considered. The viscous flux contributions on the left-hand side

of the difference equations are given by

oF oF OF oF
S8 2 46— 4 3 e =4 e L =13 4.37
éBQ éaQ £6Q€6Q m (4.37)
This can be written as
867 2 (B (€) + Bon(€2) + Bu (69)) (438)
a0 i

where Evm(fn) ; n=1,2 or 3 denotes the portion of the vector Evm containing only

terms that are functions of ¢™.

Differentiating the portions with terms that are functions of ¢" (where n # m)
will produce cross-derivative terms. The presence of these terms on the left-hand side

of the equation would destroy the efficiency of the upper and lower triangular matrix
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solution, by requiring a central differencing of these terms. Also, in some applications,
the viscous terms containing derivatives parallel to the solid body surface can be neglected
relative to those in the normal direction. This approximation is known as the thin-
layer approximation where only the viscous terms containing derivatives normal to the
body surface (along the coordinate line), are retained. In this study, the thin-layer
approximation was used only to simplify the viscous terms on the left-hand side of the
difference equation for better efficiency of the computer code; while the cross derivative
terms were retained on the right-hand side of the difference equation where they can
be evaluated explicitly. For the vortex-breakdown problem considered in this study, the
viscous effects are important in all three directions. The thin-layer-type viscous terms are
obtained from Eq. (3.16) by keeping only terms with derivatives in the direction under
consideration. For example, consider the first momentum term in the ¢3 direction. These
terms are obtained by setting the dummy and summation indices, s and m, respectively

equal to 3.

6u1
o0&

My [1 g2k Ouy,

Ou'ri = 2 2OE 018 se HOEAE | 1 k=1-3 (4.39)

The second and third momentum terms are obtained by replacing the subscript “1” by

“2” and “3” respectively.

In general, the three momentum equations in the {™  directions are given by

Mo (1, mn @ Oty
akgmfk,,z“—é—[-gakg Ot 82‘; + O™ ORe azs] D kmn=1-3 (4.40)

The energy equation in the €™  direction is given by

m My ma wm. OUE
O (“kap"‘Ik)E”R [‘35 Fpt™u Paém

ma om [ Otn 1 da®
0 (G4 o )| ke =13

4.41)
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The implicit viscous terms can be written as

Sgm (@-%"g—m)) = 6¢m Ay, (4.42)

where all the cross-derivative terms were dropped.
On the right-hand side of the difference equation, Eq. (4.3), the viscous terms’
contribution in the residual is given by
R, = 8aE, +6cEy, + 6By, = bgnk,, ; m=1-3 (4.43)
The viscous fluxes are linearized in time as follows:
Ertt = En 4 0(AY) (4.44)

The result is that the viscous terms at a time step n+1 are evaluated using the information

from the previous time step, n.

The fluxes are centrally differenced and a second-order approximation to the cross-

. . 2 .
derivative terms were used. For example, the term 5‘2-1—3157 can be written as:

0%y
_—_661662 = 5&162(‘&1)"]-
= o* (bpa(ui)ispjny + Spe(u)ioy,t) (4.45)
+ a” (55152(111)‘.__;_,1-_{_% + 55152(111)“_%,]._%)
where
bergr(ur)ipy it = (un)igy jgn — (W1); juq + (ua);j = ()i (4.46)
and
4. -1
ot +a” =3 (4.47)

If a symmetric difference is chosen, [107], then at = o~ = ;11- which gives

Lol Bl

1
bgrga(u);j = <(“1)i+1,j+1 - (ul):‘-{-l,j—l) - Z((ul)i—l,j+l - (ul)i-l,j—l) (4.48)
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4.5 Initial and Boundary Conditions

4.5.1 Initial Conditions

All the numerical calculations for the swirling flows in bounded computational
domains were obtained by using stagnation initial conditions for the interior domain.
Prescribed inflow conditions were used at the first axial station. These initial conditions
simulated the case of impulsively placing the duct in a supersonic swirling flow.

The numerical calculations of the swirling jet interacting with a shock wave in an
unbounded domain were obtained using freestream conditions for the entire computational
domain. This was done by assuming that the flow conditions in the entire computational
domain were equal to those of the wind-tunnel measurements. Hence, the present flow

case simulates a sudden discharge of a swirling supersonic jet from a nozzle into a

uniform supersonic flow.
4.5.2 Wall Boundary Conditions

The boundary conditions for the present work are implemented explicitly. On the
solid duct wall, two boundary conditions are used. The first boundary conditions are those
of a viscous surface where the no-slip and no-penetration conditions are enforced. The
velocity components are set equal to zero and the normal pressure gradient is assumed
to be zero. The adiabatic condition is maintained on the solid surface. The second

type of boundary condition is the inviscid surface boundary condition where the no-slip

condition is relaxed.
4.5.3 Exit Boundary Conditions

Several types of boundary conditions were investigated in this study. Some examples
are: extrapolation, Riemann-type boundary conditions, placing a solid disc at the exit

section and extrapolating the pressure gradient from the interior cell centers. Different
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types of exit boundary conditions are described in detail in the corresponding Chapters

of results, later in this study.
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CHAPTER 5
COMPRESSIBLE QUASI-AXISYMMETRIC
SLENDER-VORTEX FLOW AND BREAKDOWN

5.1 Introduction

In this Chapter, results obtained using the slender-vortex formulation described in
Chapter 3 are presented. The objective of the slender-vortex computations was to obtain
compatible inflow profiles that can be used for computations with the full Navier-Stokes
equations. Moreover, this method can be used to test the potential of some inflow profiles
to produce vortex breakdown under certain flow conditions. However, it ca