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ABSTRACT

ROBUST CONTROL OF NONLINEAR MULTIBODY FLEXIBLE

SPACE STRUCTURES

Atul G. Kelkar 

Department of Mechanical Engineering and Mechanics 

Old Dominion University 

Director: Dr. Thomas E. Alberts 

Co-Director: Dr. Suresh M. Joshi

A generic nonlinear math model of a multibody flexible system is developed. 

Asymptotic stability of such systems using dissipative compensators is established. It 

is proved that, under certain conditions, this class of systems exhibit global asymptotic 

stability under dissipative compensation. The dissipative compensators considered 

are static as well as dynamic dissipative compensators. The stability proofs are based 

on passivity approaches, Lyapunov methods, as well as a key property of such systems, 

i.e., skew-symmetricity of certain matrix. The importance of the stability results 

obtained is that the stability is robust to parametric uncertainties and modeling 

errors.

For static dissipative compensators, it is shown that stability is not only 

robust to parametric uncertainties and modeling errors but also to certain actua

tor and sensor nonlinearities. Actuator nonlinearities considered are (0, oo) sector
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monotonically non-decreasing type, which include realistic nonlinearities such as the 

saturation nonlinearity. In the presence of dead-zone and hysteresis type nonlineari

ties, system trajectories do not approach equilibrium point asymptotically, however, 

it is shown that there is a compact region of ultimate boundedness and system tra

jectories do not go unbounded. The sensor nonlinearities considered are (0, oo) sector 

nonlinearities.

A more versatile class of dissipative compensators, called dynamic dissipa

tive compensators, is next considered. A control designer has more design freedom 

with dynamic dissipative compensators than with the static dissipative type. The 

increased design degrees of freedom can be used to enhance the performance of the 

control system.

The synthesis techniques for static as well as dynamic dissipative compen

sators for multibody, nonlinear, flexible systems are currently unknown and it is a 

topic of future research. The asymptotic stability property of a static dissipative 

controller for multibody, nonlinear, flexible space structures is demonstrated through 

a simulation example. The example system used consists of a flexible 10-bay truss 

structure with a flexible, 2-link manipulator arm attached at one end of the truss. 

This example system is representative of the class of spacecraft envisioned for the 

future, missions. For dynamic dissipative compensators an application example is 

shown for a multibody planar system with an articulated member. The controller de

sign is based on locally linearized models in the configuration space of the articulated 

member. This example also demonstrates the use of dissipative compensators in the 

integrated design framework.
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Chapter 1 

INTRODUCTION

1.1 Literature Survey

Many space missions envisioned for the future will require multibody space systems. 

Examples of such structures include space platforms with multiple articulated pay

loads and space-based manipulators for on-orbit assembly and satellite servicing. Such 

systems are expected to have significant flexibility in the structural members as well 

as joints. Control systems design for multibody flexible systems is a difficult problem 

because of the large number of significant elastic modes with low inherent damping 

and the inaccuracies and uncertainties in the mathematical model. Furthermore, the 

dynamics of such systems are highly nonlinear. The literature contains a number of 

important stability results for certain subclasses of this problem; for example, linear 

flexible structures, nonlinear multibody rigid structures, and most recently multi

body flexible structures. Under certain conditions the input-output maps for such 

systems can be shown to be “passive” [1]. A stability theorem based on Popov’s 

hyperstability concepts [2] states that a passive linear system controlled by a strictly 

passive compensator is closed-loop stable. The Lyapunov and passivity approaches 

are used in [3] to demonstrate global asymptotic stability of linear flexible space 

structures (with no articulated appendages) for a class of dissipative compensators.

1
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2

These include collocated attitude controllers and collocated damping enhancement 

controllers. The stability properties were shown to be robust to first-order actua

tor dynamics and certain actuator/sensor nonlinearities. Multibody rigid structures 

comprise another class of systems for which stability results have been developed. 

Ideally, subject to certain restrictions, these systems can be categorized as “natu

ral systems” . Such systems are known to exhibit global asymptotic stability under 

static dissipative or proportional-and-derivative (PD) control. Upon recognition that 

rigid manipulators belong to the class of natural systems, a number of researchers, 

among them [4], [5], [6] and [7] have established global asymptotic stability of rigid 

manipulators employing PD control with gravity compensation. Stability of tracking 

controllers was investigated in [8] and [9] for rigid manipulators. In [10] an ex

tension of the results of [8] to the exponentially stable tracking control for flexible 

multilink manipulators, local to the desired trajectory, was done. Lyapunov stability 

of multilink flexible systems was addressed in [11].

Many researchers have worked on the stability of dissipative dynamical sys

tems. A detailed study of dissipative dynamical systems was done in [12] and [13]. 

It seems that there was a parallel development in the state-space approach and the 

transfer function approach for establishing passivity based theory for linear systems. 

Most of the noteworthy results were based on the theory of positive-real transfer ma

trices and their implications on the stability properties of the linear systems having 

positive-real transfer functions.

The most important result of all, the Kalman-Yacubovich Lemma, estab

lishes the equivalent conditions for positive-realness of a transfer function in terms 

of the state-space description of the system. Earlier( [14]) the positivity-based con

trollers were formulated for systems with elastic modes only. Later work (see [15]) 

considers these controllers to control both elastic and rigid body modes of the system. 

Some researchers studied the stability problem from the input-output perspective
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3

[16], [17]. A significant investigation was also done in [18]- [21] on the stabil

ity of nonlinear systems.

1.2 Contributions of this Thesis

The main objective of this dissertation is to extend the stability robustness results 

existing of linear, flexible space systems to multibody, nonlinear, flexible space sys

tems under dissipative control. As noted in the previous section, much work has been 

done in the control of linear dissipative systems and the foundation has been laid 

in the area of dissipative nonlinear systems. In particular, for rigid robotic systems, 

representing a class of multibody, nonlinear rigid systems, some important stabil

ity results were obtained in the 80’s. However, the global asymptotic stability for 

nonlinear, multilink, flexible space-structures under dissipative compensation has not 

been thoroughly addressed, and that is the subject of this thesis. Essentially, most 

of the results previously obtained in [3] and [15] for linear systems are extended 

here to nonlinear systems. First it is shown that flexible multibody systems exhibit 

asymptotic stability under static dissipative compensation. Furthermore, the effects 

of realistic nonlinearities in the actuators and sensors are investigated. The proofs 

given here use Lyapunov’s stability theorem along with Lasalle’s theorem to prove 

asymptotic stability. All the proofs exploit inherent passivity of the systems un

der consideration. The Lyapunov functions used are energy-type functions. In the 

case of actuator/sensor nonlinearities the proofs use energy-type Lyapunov function 

augmented with an appropriate positive definite function to prove global asymptotic 

stability. For systems with linear actuators and sensors, the stability proof by Lya

punov’s method can take a simpler form if the Work-Energy Rate principle [11] 

is used. However, since the work-energy rate principle is applicable only when the 

system is holonomic and scleronomic in nature, a more direct approach is used in 

evaluating the time derivative of the Lyapunov function so that the results are more
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4

general and account for the realistic actuator/sensor nonlinearities. Also dynamic 

dissipative compensators, which are shown to provide the robust stability and offer 

more design degrees of freedom, constitute the most general class of linear dynamic 

compensators for the class of systems under consideration.

1.3 Thesis Outline

The organization of the dissertation is as follows.

In Chapter 2, a mathematical model of a class of multibody, nonlinear, 

flexible space systems is developed. An effort is been made to keep the derivation 

as general as possible. The model system is assumed to have a branch geometry, so 

that, it can represent a large class of spacecraft. Kinematic quantities are derived 

using rotation transformation matrices. The equations of motion are based on the 

Lagrangian formulation. Finally the chapter is concluded with a theorem which 

establishes a very important property of the systems under consideration which is 

focal to the derivations done in the subsequent chapters.

Chapter 3 is aimed at building the necessary theoretical background in the 

area of dissipative systems. This chapter has essentially three parts. The first part 

reviews various control design methods that are currently available. The advantages 

and limitations of these methods are also noted. In particular, it is noted that these 

methods are not generally applicable to nonlinear systems. In the second part, some 

definitions related to the dissipativity and passivity are given. This part also reviews 

some linear system results to date which are instrumental in extending those results 

to the nonlinear case. The last section in the chapter establishes passivity of the 

nonlinear systems under consideration for the given supply rate and storage function. 

Essentially, this chapter lays the foundation for the theoretical development in the 

next two chapters.
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Chapter 4 establishes various stability results for nonlinear, multibody, flex

ible systems under static dissipative compensation. It is shown that static dissipative 

controllers result in global, asymptotic stability of these systems. The stability is 

robust to modeling errors and parametric uncertainties. Furthermore, it also shown 

that the asymptotic stability property holds even in the presense of certain realistic 

actuator/sensor nonlinearities. The chapter is concluded with the proof that shows 

that there exists a finite region of ultimate boundedness in the presense actuator 

deadzone or hysteresis nonlinearities and system trajectories do not go unbounded.

Chapter 5 extends the asymptotic stability results of chapter 4 to a more ver

satile class of compensators, namely, dynamic dissipative controllers. The conditions 

under which a linear dynamic dissipative controller can exhibit global asymptotic 

stability are derived. The results are very useful since they give the control designer 

more design degrees of freedom (over static dissipative type) which can be used for 

performance enhancement.

In Chapter 6 some numerical examples are given to demonstrate some of the 

theoretical results obtained in Chapters 4 and 5. It is demonstrated that the static 

dissipative controller stabilizes a nonlinear, multibody, flexible system. A numerical 

example using dynamic dissipative controller is given for a system which is assumed 

to be locally linear near its operating points. One application is also given for a linear, 

flexible, single-body structure.

Finally, some conclusions and possible directions for future research are given 

in Chapter 7.
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Chapter 2 

MATHEMATICAL MODEL

The objective of this chapter is to derive, in the most general form, the equations 

of motion for nonlinear, multibody, flexible, spacecraft. Some examples of these are 

satellites with flexible appendages such as solar arrays and antennas, the space-shuttle 

with remote manipulator system (RMS) and flexible space-platforms with multiple 

articulated payloads (space-station). The approach taken to derive the equations 

of motion is very general and applies to the systems falling under above mentioned 

category. The method used to derive the equations of motion is the well known Euler- 

Lagrange approach. The procedure involves obtaining the Lagrangian of the system, 

which is the difference of the kinetic and potential energy of the system, and then 

using Euler-Lagrange equations to derive the dynamical equations of motion.

2.1 M odeling Considerations

The systems under consideration can be schematically represented by the configu

ration shown in Figure 2.1. The purpose here is to represent a relatively general 

formulation of the equations of motion. It is assummed that all bodies in the system 

are flexible. The deformations in the bodies are assumed to be due only to elastic 

motion; however, any other deformations, such as, due to thermal effects, can also be 

modeled if required. The system model under consideration has cluster configuration.

6
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It consists of one central body attached to various appendage-bodies to form 

a branch geometry. For the purpose of derivation following notations are used. Let 

each body be denoted by Bn,, where, the first subscript indicates the branch the body 

belongs to, and the second subscript indicates the body number in that particular 

branch. The number and the locations of various bodies are arbitrary so that the 

system configuration is more general.

2.1.1 Coordinate System s

Consider Figure 2.2. X C,Y C, Z C is the inertial coordinate system and X&, Vjo, Z,o is 

the coordinate system attached to the central body. All other Xij,Yij ,Zij  are local 

coordinate systems. Each of these local coordinate systems is located at the point of 

connection between two bodies. The motion of each local coordinate system origin, 

0,-j, is defined with respect to the previous local coordinate frame. In the following 

section the kinematic quantities, such as, position and velocity, will be derived for 

any general particle mass at location, say P, will be derived.

2.2 Kinematics

Referring to Figure 2.2, the position vector of a point in a body, in the local reference 

frame, is given by

Sik =  a.fc +  Pik (2.1)

where, a,-* is the position vector of the point if the motion was only rigid body motion, 

and pik is the contribution due to the elastic motion. In general, for any particle mass 

dm at point P  in the body nv of zth branch, the positon vector is given by

np- l
rip =  r,-o + (2.2)

j=o

where, (2.3)
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Body

Body B n

Centra l  Body
Body b

Fig. 2.1 A schematic of the spacecraft model.

10o.to;
io

10

Ik
Xik a ik

Fig. 2.2 The coordinate systems.
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The matrix it!' in the above equation is the rotational transformation matrix between 

frames i and j .  Appendix A gives form and properties of these matrices. The velocity 

of P  is then given by taking the time derivative of Eq. 2.3.

rip =  r i0 +  K?0Sa +  i?;os«l + RioRilSi2 + .................. + ......+  Rinp̂ inp (2.4)
Tip Tip ){• 7 lp  — l

hr = + + E ^iiwi (2-5)
j=1 k=2j=l j=0

The time derivatives of R  and s are obtained as follows.

R'iksik = u kR'/kSik (2.6)

R}pik =  -R'if-s'ikuJk (2.7)
Tim

s i j  ~  P i j  ~  (fri jmQijm (2-8)
m=1

where, nm is the number of mode shapes to be used and (j>ijm is the mode shape vector.

The notation Cj indicates the “skew symmetric” matrix formed by the elements of

vector u>. So,if uJ =  {ujx,ujy,LOz}T then <1> is given by

0 - U z U3y

u  = OJz 0 - u x

3>
31

l U x 0

Substituting Eqs 2.6, 2.7 and 2.8 in Eq. 2.5 yields

(2.9)

(2 .10)

(2 .11)

nP k

j=l

Now rjp can be rewritten as

k=2j=l
U p - 1

+ Rij^ijQ
3=0

r i p  =  N p

where, 

N  =
I -RMX^RVsit) -RhiZ&Rfjsij) -RbiE&RSsv)

R°i(np -
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and

p = fro wi0 u>n Ui2 . . .  qi0 . . .  qinp f  (2.12)

The equation 2.10 along with Eqs. 2.11 and 2.12 gives the expression for velocity of 

any point P  in npth body of ith branch of the system. Having obtained the expressions 

for kinematic quantities required, the expressions for kinetic and potential energy of 

the system can be obtained.

2.3 Dynamics

2.3.1 K inetic Energy

The kinetic energy of the whole system is given by

T = \ p J u ^ i p dm (2.13)

where, p is the mass density, r,p is as given in Eq. 2.9 and f! denotes the domain of 

integration. Substituting Eq. 2.9 into Eq. 2.13 get

T  =  -fj, I  (N p)T Npdm
Z JQ

T  = f  pT( N t N)pdm  (2.14)
2 J n

This can be rewritten as

T  =  ^pTM(p)p (2.15)

where, M(p) is the mass-inertia matrix of the system and is given by

M(p)  =  p /  ( N TN)dm  (2.16)

M (p ) is symmetric and positive definite matrix.
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2.3.2 Potential Energy

The potential energy of the system could be due to many sources; such as, elastic 

displacement, thermal deformation, etc. The deformations due to thermal effects 

is not considered in the formulation here, however, it can be easily included in the 

formulation if desired. Thus, it is assumed that the potential energy has contribution 

from the strain energy, due to elastic deformations, only. Also, it assumed that the 

materials under consideration are isotropic in nature and that they obey Hook’s law.

Then for the isotropic materials obeying Hook’s law, the strain energy dif

ferential is given as

6V = J^(rT6edn (2.17)

which can be rewritten as

SV=  [  M  (2.18)
J n

where $  is the strain energy density and has the form

^ — O'xx̂ xx &yy€yy “I” • • • T Vyz^yz (2.19)

Now, for materials obeying Hook’s law, following equality holds.

aT = Ee (2.20)

The strain-displacement relation is given by

e = Vu  (2.21)

where, u is the general displacement vector and V  is the differential operator defined

by relations
1  r  3 • '

£ij =  „ u i , j  +  u j , i  +  ^ U k , i  =  (2.22)
1  L k =i .

The vector u can be expressed in terms of modal coordinates as

u = $q  (2.23)
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Now, from Eq. 2.21

Substituting in 8V, get

8e =  V$8q  (2.24)

8V = f  (7T8edQ 
Jn 

= [  eTE V $8qdn  
Jn

= [  qT(V $ )T EV$8qdQ
J n

= qT I  (V $ )TE V $dn6q  
Jn

= qTK8q (2.25)

where, K  is called the stiffness matrix of the system and is given by

K  = J ^ m f E V ^ d n  (2.26)

The potential energy of the system is, then given by

V =  i  qTKg  (2.27)

2.3.3 Equations of M otion

Using Eqs. 2.13 and 2.27 the Lagrangian of the system is formed as

L = T  - V  (2.28)

For the purpose of convenience L can be rewritten in the indicial notation as

L =  K  - V  = \ Y .  MiiPiPi ~  V(q) (2.29)
hi

The Euler-Lagrange equations for the system can then be derived from

d ( d L \  dL „ , x
( 2 - 3 0 )

where, Fk are generalized forces from non-conservative force field. Evaluating the 

derivatives,
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Q^k ~  53 MkjPj (2.31)

and

d t { d p k )  ~  S  Mkj^j +  ?  Mk3^

Also

=  13 M kjPi +  13 (2-32)
3 i,j ”*

_ \ s r '  d M j j  ^  dV  
d p k  2 ?  d p k  ‘ J d p k

Thus the Euler-Lagrange equations can be written

i ,  •• , v ^ r dMkj 1 dMij, .  . dV „Y , M ijPj +  £ {  8pi 2 8 n  }PiPi 8 n  -  Ft

k = l , . .. . ,n  (2.34)

By interchanging the order of summation and taking the advantage of symmetry, it

can be seen that

, ( d M k j  i . . 1 f d M k j  d M k i  1 . . tn orN
5 { ^ r ) T O = 5 S {^ r + ' ^ r }?'ft ( 2 -3 5 )

Hence

v -  r d M kj 1 d M i j , . .  ^  1 r dM kj d M ki dM tJ 1 . .

^  + - w ' "  ^ )ViVi ( 2 - 3 6 )

The terms

+ <2-37>

are known as Christoffel symbols. Note that, for each fixed k, we have Cijk =  c v  

Also
d V
Qpk — KkjQj (2.38)

Finally, then Euler-Lagrange equations of motion can be written as

53 MkjPj d- 53 CijkPiPj d- DkjP d~ KkjPj — Tfc, (& = 1,2,..., n) (2.39)
3 i,j
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where D is the inherent structural damping matrix and Dp is the vector of noncon

servative forces.

In the equations 2.39, there are four types of terms. The first involve the 

second derivative of the generalized coordinates. The second are quadratic terms in 

the first derivatives of p, where the coefficients may depend on p. These terms can be 

further classified into two types. Terms involving a product of the type p2 are called 

centrifugal, while those involving a product of the type pifj  where i ^  j  are called 

Coriolis terms. The third type are the ones which involve only the first derivative 

of the generalized coordinates and they are the dissipative forces due to the inherent 

damping. The fourth type of terms involve only p but not its derivatives. These arise 

from differentiating the potential energy. In the matrix-vector notation, the Eqs. 

2.39 are written, in compact form, as

M(p)p + C(p,p)p + Dp + K p  = F  (2.40)

The k, j-th  element of the matrix C(p,p) is defined as

n

c k j  —  c i i k ( p ) P i

=  +  (2.41)fr{ 2 1 dpi dpj dpk

Now, an important property of the systems whose equations of motion are given by 

2.40, is derived which is very pivotal to various stability results given in the following 

chapters.

T heorem  2 . 1  The matrix M(p) — 2 C(p,p) is skew symmetric.(i.e. if we define the 

matrix S(p,p) = M(p) — 2 C(p,p), then, the components njk of S  satisfy njk =  — njtj.

P ro o f 2 . 1  The k j-th  component of the time derivative o f the inertia matrix, M(p)

is given by the chain rule as

M ki = E
dp*

P i
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Therefore, the kj-th component of S  =  M  — 2C is given by

Skj =  Mkj -  2  Ckj

=  £
1 = 1

n

= £

d M ,kj d M kj  . d M k i  d M a+

1=1

dpi dpi dpj dpk
dMij dM ki

P i (2.42)
dpk dpj

Since the inertia matrix is symmetric, i.e., Af,-j =  Mji, it follows from 2 .f2  by 

interchanging the indices k and j  that

Sjk =  —Skj

This completes the proof.

Equation 2.40 will be the governing dynamical equation of motion for the 

class of systems considered in this report and will be used later in Chapters 3 and 4 

as representative mathematical model.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 3 

DISSIPATIVE CONTROLLERS

3.1 Introduction

Over the past two decades, considerable research has been performed on the control 

of linear, flexible, space systems. Examples of such systems include communication 

satellites, Earth observation systems, solar power satellites, etc., which are operat

ing in a linear range about a steady-state. The main control problem with these 

systems is that of controlling the zero-frequency, rigid body modes and suppress

ing the elastic vibrations [3]. Typically, these systems have a large number of low 

frequency, closely-spaced modes, inherently low structural damping (i.e. very small 

energy dissipation), and high degree of uncertainty in their models. In addition, exact 

mathematical models are not available and the approximate models developed have 

significant errors. All these factors make it necessary to design a controller which is 

not only robust to the unmodeled dynamics, but also to the parametric uncertainties. 

One common controller design approach is the “model-based” controllers. Typically, 

these controllers use a design model which is of reduced order. This approach is 

routinely used for controlling relatively rigid spacecraft, wherein only rigid modes are 

retained in the design model. Second-order notch filters are often incorporated to 

attenuate the contribution of elastic modes. This approach is generally not advisable

16
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when large number of elastic modes are prominent. Fig. 3.1 shows the effect of 

using a truncated design model. In building a control loop around the “controlled” 

modes (the modes used in the design model), a feedback loop is also inadvertantly 

built around the truncated (“residual”) modes. The resulting control system may 

cause the closed-loop system to be unstable. The unintentional excitation of resid

ual modes and unwanted contribution of the residual modes in the sensed output is 

termed, in the control literature, as “controll spillover” and “observation spillover”. 

The spillover problem may cause significant reduction in the performance, and even 

instability leading to the major failures. In view of this, the straightforward use of 

model-based controllers is inherently limited, and additional techniques must be used 

to obtain robustness.

At this point it may be worthwhile to look at the various control design 

methods, starting from classical control techniques up to the most recent, H <*, design 

techniques, available to a control designer and the advantages and shortcomings of 

these methods.

3.2 Survey of Control Design M ethods

The history of the control system design goes back to the classical control theory which 

was based on methods developed by Nyquist and Bode. Classical control theory was 

best suited for SISO (single-input single-output) linear time-invariant systems. In 

classical control theory the design is based on the transient response and frequency 

response characteristics of the system. However, classical control theory had severe 

limitations and difficulties for design of multivariable control systems and time vary

ing control systems. The so-called modern control theory, which uses the state-space 

approach, gained popularity in the sixties after the advent of computers. The modern 

control theory can be applied to the design of linear, multivariable control systems and 

linear, time-varying control systems that are optimal for given performance indices.
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Fig. 3.1 Effect of modal truncation
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However, there were many advantages of classical control techniques which were not 

possessed by modern control theory. For example, the characterization of a complex 

system is more easily done in terms of frequency response curves since frequency re

sponse tests are simple and can be made fairly accurately. The classical methods were 

extended to the multivariable case in the eighties, using frequency-domain singular 

value techniques. This area, which includes and //-synthesis methods, is currently 

an active area of research.

3.2.1 LQG M ethods:

With the study of state-space approach to multi-input multi-output systems, the 

problem of optimal control design attracted the attention of control designers which 

led to the linear-quadratic-Gaussian (LQG) theory. LQG controllers are basically op

timal controllers designed for minimizing a quadratic integral criterion (performance 

index) based on the performance specifications. Full details on the LQG design tech

niques can be obtained in various texts (for example see [22], [23], [24], etc.) Recent 

advances in these methods [28] allow the designer to shape the principal gains (i.e., 

the singular value frequency response) of the return ratio, at either the input or the 

output of the plant, to achieve required performance or robustness specifications. The 

problem addressed by the LQG method is the following.

Suppose a plant model in the state-space form is given by

x = A x - \-B u  + Tw (3.1)

y = C x  + v (3.2)

where w and v are white noise, i.e., zero-mean Gaussian stochastic processes, which 

are uncorrelated, having covariances

E {w w 7 } = W  > 0, E { v v t }  = V  > 0 (3.3)
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and

E { w v t }  = 0 (3.4)

In Eq. 3.1 « represents the vector of control input and in 3.2 y represents the 

measured outputs. The LQG problem is then to find the control law which minimizes 

the cost

J  =  ^im E{ J ( z t Q z  +  uTRu)dt} (3 .5 )

where

z = M x  (3.6)

is some linear combination of the states, and

Q = Qt > 0, R  = R T > 0 (3.7)

are weighting matrices.

The solution to the LQG problem, which uses the separation principle [2 2 ] 

(p.390), is then achieved by the following procedure. An optimal estimate x of the 

state x  is first obtained, and then this estimate is used (assuming it is the exact 

measurement of x) to solve the linear quadratic regulator problem. This procedure 

essentially reduces the problem in two sub-problems, the solutions to which are known. 

The solution to the first problem, i.e. estimation of the state, is given by Kalman-filter

theory. Figure 3.2 shows the block diagram of Kalman filter. It has the structure of

state estimator except that the gain matrix K j  is obtained differently. Note that the

inputs to the Kalman filter are the plant input and output vectors, u and y, and that

its output is the state estimate x.

The second sub-problem is to find the control signal which minimizes the 

(deterministic) cost
fOO
/  (z Qz + u Ru)dt 

Jo

with the assumption that

x  =  Ax  +  Bu
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The solution is the control signal u given by

u =  —K cx

where K c is the feedback gain matrix. The optimal state-feedback matrix K c is given 

by

K c = R~XB T P C (3.8)

where Pc satisfies the algebraic Riccati equation (ARE)

A t Pc +  PCA -  PcB R ' 1B t Pc +  M t Q M  =  0 (3.9)

and Pc =  P j  > 0. The Kalman-filter gain matrix K f  is given by

K f  = P}C TV ~ l (3.10)

where Pf  satisfies another ARE which is dual to 3.9

PsA t  + APf -  PsC TV - l CPs +  TW VT =  0 (3.11)

and Pf = P j  > 0. The matrices K c and K f  exist, provided that the systems 

with state-space realizations (A, B , QX/2M)  and (A, IW 1/2, C)  are stabilizable and 

detectable. Also, the matrices Pc and Pf  are the unique, symmetric positive definite 

solutions to the equations 3.9 and 3.11 respectively. Several algorithms are available 

to solve Eqs. 3.9 and 3.11.

The problem formulation given above, however, does not capture various 

aspects of the control problem such as, model uncertainties, non-linearities, various 

kinds of disturbances and possibly many constraints on the realistic solutions, none of 

which can easily be given mathematical representation. The most that can be done, is 

the simultaneous tuning of a large number of weighting parameters in matrices Q: R, V  

and W. In addition, the stability robustness properties with respect to inaccuracies 

in the modal parameters could not be properly assessed because it is difficult to 

effectively characterize the bounds on modeling errors in a time-domain setting. It
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was shown in [25] that LQG designs can exhibit arbitrarily poor stability margins. 

One possible remedy is to make the observer dynamics much faster than the desired 

state-feedback dynamics. However, it was again shown in [26] that this remedy does 

not work. The LQG/LTR method offers an approach to overcome some of these 

problems in the frequency domain.

3.2.2 LQG/LTR Method:

This method offers a way of designing the Kalman filter so that the full-state feedback 

properties are recovered at the input of the plant. It essentially involves placing some 

of the filter’s eigenvalues at the zeros of the plant and the remaining eigenvalues are 

allowed to become arbitrarily fast. The procedure adopted to design controller by 

this method [27], [28] is as follows:

Step 1 . Define a “design” model of the nominal plant which is an acceptable low 

frequency representation. Define the high frequency uncertainty (robustness) barrier 

and the low frequency performance barrier.

Step 2. Design a full state feedback controller based on the steady-state Kalman-Bucy 

filter. This assumes that the loop is broken at the plant output. Adjust the weighting 

matrices in the KBF design until its frequency response meets the robustness speci

fications at low frequencies.

Step 3. Design an LQ regulator to asymptotically “recover” the frequency response 

obtained in Step 2.

Step 4. Verify stability, robustness, and performance for the entire closed-loop system.

Thus, the LQG/LTR approach requires the characterization of the uncer

tainty in terms of a frequency-dependent upper bound. However, the performance 

of this technique is inherently limited since the LQG/LTR method does not account 

for the uncertainties in the parameters of the design model. Also the loop recovery 

techniques (LQG/LTR) are not suited for incorporating additive uncertainties. Since
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the procedure relies on cancellation of some of the plant dynamics (particularly ze

ros) by the filter dynamics, it is guaranteed to work only for minimum-phase plants. 

If right-half plane zeros exist in the plant, then this method may or may not work 

depending on whether these zeros lie beyond the operating bandwidth of the system, 

finally designed. Hence, the successful loop recovery may not necessarily give suffi

cient stability robustness to plant uncertainties. This problem is successfully handled 

by structured singular value (//-synthesis) design techniques.

Even if the full state feedback loop gains were recovered exactly, it would 

only ensure good robustness at input or output only, and not to the actual uncertain

ties, which are not limited to input and output.

3.2.3 H qo and //-Synthesis M ethod:

This relatively new approach to the feedback design has been considered as a major 

breakthrough in the feedback control methodology. The fundamental aspects of the 

technique are described below. The main idea is based on the fact that any uncertain 

plant under feedback control can be represented by Fig. 3.3, where P is the modified 

nominal plant and K is the controller. P and K are known accurately and any 

uncertainties have been pulled out into a block-diagonal system A. The transfer 

function from the external disturbance w to controlled output z, denoted as Tzw, is 

given by lower linear fractional transformation [30], denoted by F i(P ,K ), so that

z =  Tzww — Fi(P, K )w  (3.12)

Then, the standard optimization problem for robust performance is defined as [29]:

minimize \\DFi(P,K)D~1\\00 
K,D

where D  is a block-diagonal matrix with the same structure as A. The significance 

of this formulation is one can achieve robust stability and performance despite uncer

tainties. The minimization is done over all realizable controllers K ( s ) which stabilize

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



24

Fig. 3.2 Kalman-filter: block diagram
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Fig. 3.3 A standard representation of an uncertain plant
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the closed loop and over all Ds. To date only approximate methods are available for 

solving Eq. 3.13. The minimization problem given by Eq. 3.13 is solved by iteratively 

solving for D and I(. With fixed D  it becomes a standard problem and with 

fixed K  the minimization over D is convex, so at worst it can be performed by search 

techniques.

The Glover-Doyle algorithm [31] is used to solve the problem for fixed 

D. This approximate solution is known to give good results. However, this itera

tive scheme is known to have failed for certain problems. Also, numerical problems 

are quite formidable and the solutions obtained are quite conservative since the un

certainties are modeled as complex-valued, i.e, A is assumed to be complex. The 

parallel between the LQG method and H<x, method is, both methods require solv

ing two AREs, however, LQG method requires characterization of noise and LQG 

solutions are over smaller domain.

3.2.4 D issipative Controllers: A  Remedy?

In summary, the //qo///-synthesis design technique overcomes many of the difficulties 

of structural control including spillover problem and nonminimum phase transmis

sion zeros (note that, this was a limitation of LTR). However, in the case of flexible, 

light-weight space structures, which have numerous low-frequency, poorly damped 

modes, Hoo and //-synthesis design may be very conservative. Furthermore, for non

linear systems, LQG, LQG/LTR and Hoo///-synthesis techniques are not applicable. 

In [33] it was shown that for linear flexible structures an attractive alternative is of

fered by “dissipative controllers”. The only property required for guaranteed stability 

robustness with dissipative controllers is that the I/O  map of the plant is passive. In 

the case of linear systems, these controllers are known to be robust to uncertainties 

and modeling errors. In the recent past, much work has been done in developing the 

theory of dissipative controllers for linear dynamical systems. Dissipative controllers
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also offer the possibility of extension to nonlinear passive systems. It seems appropri

ate to review some background material on the disspative systems to help understand 

the theoretical developments given in the subsequent chapters.

The organization of the remainder of this chapter is as follows. In the first 

few sections some important definitions, as regards to the dissipativity and passivity, 

are given in the context of linear as well as nonlinear systems. Then, in the following 

sections, some key stability results, existing for linear systems under dissipative com

pensation, are noted. Finally, the passivity property of nonlinear systems for given 

supply rate function is established.

3.3 D issipativity and Passivity

Some basic concepts related to the notions of dissipativity and passivity are reviewed 

below. These concepts are necessary to understand the theories developed in the 

subsequent chapters.

3.3.1 M athem atical Preliminaries

Following are some mathematical terminologies and notations, that will be needed.

Let us suppose that the dynamical system, denoted by E, is defined through 

the sets U, U, Y , y , X  and the maps <f> and r, which are defined as follows:

(i) U is called the input space and consists of a class of U-valued functions on R. The 

set U is called the set of input values.

(n)T  is called the output space and consists of a class of T-valued functions on R. 

The set Y  is called the set of output values.

(Hi) X  is an abstract set called the state space.

(iv ) (j) is called the state transition function and is a map from R  x X  x U into X ,  

i.e. x =  <j>(xo, t , u ).

(■v) r is called the read-out function and is a map from X  x U into Y.
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Supply R a te , D issipation Inequality  and Available S torage

D efinition 1 .: Let w be the real valued function, called the supply rate, defined 

on U x Y .  It is assumed that for any U  G U and any y  G Y  the function w(t) = 

w(y(t),u(t))  satisfies
00

w(t)dt < oo for all t >  0

D efinition 2 .: A dynamical system with supply rate w is said to be dissipative if 

there exists a nonnegative function V  : X  —> R, called the storage function, such that 

for all U  G U, xq € X ,  and t > 0

V (x) — F(a:o) < /  w(t)dt 
Jo

where x = <f)(t,xo,u). The above inequality is called the dissipation inequality. 

D efinition 3.: The available storage, Va • X  —► R, of a system E with supply rate w 

is defined as
Va{x) = sup { - fo w ( t)d t}

t >  0Xq=X
u£U

D efinition 4.: If a system E with supply rate w is dissipative, the available storage 

Va is finite for all x € X .  Moreover, the storage function V  satisfies

0 < Va{x) < l/(x)

for each x € X  and Va itself is a possible storage function.

T runcations, E x tended  Spaces

D efinition 5.: For p G [1, oo), the set Lp =  Lp[0, oo) denotes the set of all functions 

/( .)  in X  such that the function t —* [|/(i)|]p is integrable over [0, oo). i.e.

f  OO

/( .)  € Lp for a fixed p € [l,oo) iff / [\f(t)\]pdt < oo
Jo
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D efinition 6 .: Let T  < oo; then the truncation operator Pt : X  —► X  is defined by 

setting

(PTX )( t)  =
x(t) t g [o,T]

V i G l
0 t > T

For brevity the function P?x is denoted as x j .

Definition 7.: For a fixed p G [1, oo], the symbol Lpe =  Lpe[0, oo) denotes the set of 

all functions /( .)  in X  such that f j ( . )  G Lv V T < oo. (Note that /( .)  itself may 

or may not belong to Lp). The space Lpe is called as the extension space of Lp. 

Definition 8 .: Let p 6  [1, oo] be fixed, and let T  < oo. Then for every /  € Lpe, the 

truncated norm ||/ ||x p is defined by

I I / I I tp  =  l l / r l lp  =  \ \ P T f \ \ P

Let p =  2 , and let T  < oo. Then for every / ,  g  G L 2e, the truncated inner product 

< f , g  > t  is defined by

<  f , 9  > t = <  I t , 9 t  > =  [  f ( t ) g ( t ) d t
Jo

The important thing to note here is that, for every p G [1, oo] and every /  G Lpe, the 

quantity ||/ ||x P is a well-defined finite real number for every T  < oo, though | |/ | |p is 

defined only if /  actually belongs to the unextended space Lp.

For the multi-input multi-output case the above definitions are modified to 

introduce the spaces Lp and Lpe.

Definition 9.: Let p  G [1, oo] and let n > 1 be an integer. Then the set L” 

(respectively L”e) consists of all n-tuples /( .)  =  [/i(.) / 2(.) . where /,(.) G

Lp (respectively in Lpe Vi. The norm of a function /( .)  G Lp is defined by

{ j n i / w i w *  if p <°°>
II/(-)IIp =  H ess.sup||/(t)|| if p = o o

tg[0,oo)

where || • || is the Euclidean norm on R n.

The truncated norm ||.||x : Lpe —» R  and the truncated inner product <

.,. >t '• LJe R  are defined in a manner analogous to the definition 8 .
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3.3.2 Dissipative Linear Dynamical System s 

Introduction

Since it is a great deal easier to deal with the nonlinear systems after better under

standing of linear system results, this section is devoted to the study of dissipative 

linear system results existing to date. The dissipativity of the system in the context 

of linear dynamical systems and their consequences on the stability properties of the 

system are studied. After reviewing the existing results on the conditions for dissi

pativeness for such systems the results on the dissipative controller design for linear 

systems are given. The supply rate functions that are of interest here are quadratic 

functions, and the one with primary focus would be

w =< u, y >= u'y

It is to be noted that the other type of supply rate functions in u and x are also 

possible. The consequences of the linear dynamical system being dissipative with 

respect to the supply rate w , given above, have been studied by many researchers and 

some established results are presented below. A thorough treatment of the dissipative 

linear systems can be found in [12], [13], [17], and many other places. An effort 

is made to be concise, yet elaborate enough, in covering the background material 

to help understand the concepts and motivation behind the work presented in the 

subsequent chapters.

D issipativity and Passivity

This section defines the concepts of dissipativity and passivity, which can only be 

applied to operators H  : L \e —► L%e. For the simplicity, it is assumed that m  — n. 

Note that, this will be tha case for collocated actuators and sensors. “Dissipativity” 

of an operator is an input-output property and is formally defined in the system 

theory literature (for example, see [17], [15]) as follows:
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Definition 10.- Let H iL ^  —> L%e , where Z^e denotes the extended Lebesgue space

as defined in [6 ]. and suppose Q, R ,S  are n x n matrices with Q and S  symmetric.

Then the operator H  is said to be “(Q, R , 5)-dissipative” if

< Hx, QHx >x +  < x, R x  >t  +

< H x ,S x > T> 0 , V T > 0 ,  VxeL£e (3.14)

(< .,. >t  denotes the L%e -inner product).

Various stability results for systems satisfying this general dissipativity def

inition can be found in the literature. However, the practical usefulness of many of 

these results is rather limited because the stability depends on the system parame

ters, and not solely on the dissipativity. A special case of dissipativity, wherein Q 

and R  are zero and S =  I, is called “passivity”. That is, H  is said to be passive if it 

is “(0n, 0n, 7n)- dissipative. H  is said to be “strictly passive” if it is dissipative with 

respect to (0 „, — e /„ ,/n) for some e > 0 , i.e., if

< x, Hx >x> e||x||^, V71 > 0, Vx 6

In the frequency-domain, the definitions of passivity and strict passivity take an 

equivalent form which relates to the “positive realness” and “strictly positive real

ness”,respectively, of the transfer function of the system.

Definition ll .-A  square transfer function Z (s ) is called positive-real if (i) Z(s) is 

real for real s (ii) Z(s)  is analytic for 7le[s] > 0 (iii) Z*(s) + Z(s)  is non-negative 

definite for Re[s] > 0 (* denotes the complex conjugate transpose)

Definition 12. A square transfer function Z(s)  is “strictly positive-real” if (i) Z(s) 

is real for real s (ii) Z(s)  is analytic for 72e[s] > 0 (iii) Z*(ju;) + Z ( ju )  is non-negative 

definite for all real uj

A considerable amount of literature is available on the use of positive-real 

matrices in the system theory. Many researchers have expanded on the basic stability 

theorem based on Popov’s hyperstability concept [2], Referring to the Fig. 3.4,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



31

the conditions for the stability based on the positivity arguments are given by the 

following theorem [2] [14],

Theorem 3.1 I f  in the feedback configuration shown in the Fig. 3.4, G(s) and K (s ) 

are square transfer matrices, then the closed-loop system is asymptotically stable if at 

least one of the transfer matrices is positive-real and the other is strictly positive-real.

Proof 3.1 The proof can be found in [14]•

Some of the worthy literature based on the theory of positive-real transfer 

matrices, and their implications on the stability of the linear systems having positive- 

real transfer functions can be found in [2], [34], [38], [14], [35], etc. Before closing 

this section one important result [34], in the literature known as Kalman-Yacubovich 

lemma, is given. This gives the equivalent condition for the positive-realness of the 

transfer function in terms of the state-space matrices.

Suppose (A ,B ,C ,T >) is an nth order minimal realization of G(s). Then, a necessary 

and sufficient condition [34] for G(s) to be positive-real is that there exists an n x n 

symmetric positive definite matrix P, and matrices W  and L such that

A t P  + P A  = - L L t

C = B t P + W t L

W TW  = V  + V T (3.15)

3.4 D issipative Controllers

In view of the background covered in the earlier sections, the term “dissipative con

trollers”, is defined here. As the name suggests, these controllers are based on the 

concept of dissipation of energy. Numerous references can be given (for example, see

[2], [3], [12], [13], [17], etc.) for the work done in the area of stability properties of

linear dissipative systems.
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Dissipative controllers basically use collocated compatible actuators and sen

sors. They employ output feedback and therefore they are easy to implement. It will 

be shown that, the closed-loop stability is guaranteed in the presense of parametric 

uncertainties as well as some realistic actuator/sensor nonlinearities. Since the con

trollers are not model-based and plant models are used only for optimizing control 

performance, they provide excellent stability robustness. The stability results are 

based on the concept of “energy dissipation” in the closed-loop feedback system.

Essentially, dissipative controllers are related to positivity-based controllers 

[14], but are significantly different from the latter because they are designed to control 

both rigid (zero-frequency) modes and elastic modes, and because they use feedback 

of both position (attitude) and rate. For the special case where rigid modes are not 

present (e.g., a ground test article) and only velocity sensors are used, the dissipative 

controller degenerates to a positivity controller.

3.4.1 Types of Dissipative Controllers

There are following different types of dissipative controllers.

(i) constant gain or static dissipative controllers

(ii) linear, time-invariant, dynamic dissipative controllers

(iii) linear, time varying and nonlinear dissipative controllers

A thorough treatment of the first two types for linear time invariant (LTI) 

space systems can be found in [3] and [15]. Following two sections will review some 

of the key results established for linear systems.

3.4.2 Static Dissipative Controllers for LTI system s

Consider a LTI system

A s p  +  B s p  +  C s p  =  r Tu
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where

,.T „ T \ TP — j 9  ) ) — d i ( i g \ J s , In q \i B s — di&Q[O3 , Z?n9xn,] (3.16)

(3.17)I3  . . .  I3

. . .  $ T 1 • • • Tmr
Cs — diflpfOs, An̂ xn,]} A —

2 /p  =  I>  t/r =  Tp (3.18)

This system represents the rigid-body rotational dynamics and the elastic 

motion of a linearized model of a flexible spacecraft with no articulated appendages

[3]. For example, this model can represent a large flexible space antenna, wherein yp 

and yr denote attitude and rate measurement vectors and u denote the control torque 

vector(applied at the same locations). The constant-gain or static dissipative control 

law is given by:

u — GpVp GTyr

where Gv and Gr are symmetric, positive-definite, proportional and rate gain matri

ces. It has been shown [3] that this control law gives guaranteed asymptotic stability 

(of the entire system consisting of both rigid and flexible modes) regardless of unmod

eled elastic modes or parameter uncertainties. (It was also shown in [3] that stability 

is maintained even if small imprecision exists in the collocation of the actuators and 

sensors).

Robustness to  A ctuator/Sensor Nonlinearities

In practice, the devices available for actuation and sensing are not perfect ( i.e., they 

are not linear and instantaneous). They have nonlinearities and phase lags. Some 

of the commonly occured nonlinearities are: saturation delays, relays, dead-zones, 

hysteresis, and many other sector nonlinearities. The control designer has to ensure 

that the controller is robust to these nonlinearities. The saturation nonlinearity is 

very commonly observed in the actuators and is as shown in Fig. 3.5. It can be seen 

that the output of the actuator, d’(i'), is linear in the region (—us, +vs) and constant
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outside the region. Fig. 3.6 shows another type of nonlinearity, called dead-zone 

nonlinearity. In this type of nonlinearity there is a deadband, in figure (—<$,+£), 

inside of which there is no output from the actuator. This type of nonlinearity 

presents a major problem in achieving asymptotic stability of the origin. Figures 3.7 

and 3.8 show, respectively, [0, oo)-sector monotonically increasing nonlinearity and 

(0, oo)-sector nonlinearity[Note: A single-valued function rj>(v) is said to belong to 

the (0 , oo) sector if V’(O) =  0  and ^ ( v )  > 0  for v ^  0 ; ij> is said to belong to the 

[0 , oo) sector if vip(v) > 0  ].

In [3] it was also shown that, if Gp and Gr are diagonal, the robust stability 

property of static dissipative controllers is carried over in the presence of:

1 ) monotonically increasing actuator nonlinearities, rate sensor nonlinearities belong

ing to the [0 , oo)-sector, and position sensor nonlinearities belonging to the (0 , oo)- 

sector, and

2 ) stable actuator dynamics ga(s) =  k/(s +  a), provided that gP!gr < a, where gp and 

gT denote the appropriate diagonal elements of Gv and Gr.

The gains, Gp and G>, can be designed to minimize a quadratic performance 

function or to obtain closed-loop eigenvalues close to the desired locations in the least- 

square sense [3]. However, a drawback of these controllers is that the performance 

may be inherently limited because of the structure of the controller.

3.4.3 Dynam ic D issipative Controllers for LTI system s

In order to obtain better performance while still retaining the guaranteed robustness 

to unmodeled dynamics and parameter uncertainties, a class of dynamic dissipative 

controllers (DDC) is suggested. Such controllers had been suggested in the past for 

controlling only the elastic motion [14], [36], [37]. These controllers are based 

on the fact that the “plant”, consisting only of the elastic modes and with velocity 

measurements as the output, is “passive” [or equivalently, the transfer function is
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Fig. 3.5 Saturation nonlinearity
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Fig. 3.6 Dead-zone nonlinearity
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\ |/(V )

Fig. 3.7 [0. oo)-sector monotonically increasing nonlinearity

Fig. 3.8 (0. oo)-sector nonlinearity
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“positive-real” ]. Then theorem 3.1 was used to design the controller. However, in 

[39], a DDC was presented for controlling both rigid and elastic modes. An extenssion 

to the multivariable case was done in [15]. One important result from [15] is given 

below which establishes the asymptotic stability of dynamic dissipative controllers for 

LTI systems under consideration.

Consider a feedback configuration shown in Fig. 3.9. Let a controller K ( s ) 

be represented by the minimal realization

xk = A kx k +  B kuk 

Vk =  Ckx k +  D kuk

Now, define

v = yk 

z = ( x l v T)T

Vc =  V

Equations 3.19 and 3.20 can be combined as:

i  =  A zz +  B zuk

(3.19)

(3.20)

Vc =  Csz

where

A z = A k 0 
Ck 0

B z = B k
Dk

C =  [ 0 /» ] (3.21)

Theorem  3.2 Consider plant G(s) with “yp” as the output. Suppose

i) A k is strictly Hurwitz

ii) There exists an (nk +  3) x (n*, + 3) matrix Pz = P j  > 0 such that

A tz Pz +  PZA Z =  - Q z = -d ia g ( L lL k,03)

where Lk is a 3 x n matrix such that (L k,A k) is observable, and L k (s l  — A k)~lB k has 

no transmission zeros in f?e[s] > 0
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iii)Cz = B jP z

iv)K(s) = C k(sl — Ak)~l Bk +  Dk has no transmission zeros at the origin Then the 

controller K  stabilizes G.

Proof 3.2 The detailed proof is given in [15].

The 6 -domain equivalence of the above theorem is also given in [15] which essentially 

states that, K (s) stabilizes G(s) i f  K (s) has no transmission zeros at s =  0, and 

K (s ) /s  is strongly positive-real (see [15] for a definition). Many times this condition 

is simpler to check than its equivalent state-space conditions. For example, if K (s)  is 

given by

K s )  = +  +  (3.22)
1 ’ s2 +  Ql 5  +  a 0 v }

then, K (s ) /s  is strongly PR [15] iff k ,a o ,a i,P q-,P\ are positive, and

ot\ -  A  > 0 (3.23)

a i/2o — <2 o/?i > 0 (3.24)

Also, in [15] it was shown that K (s ) /s  can be realized as a strictly proper controller, 

wherein both position and rate measurements are utilized, by using the following 

theorem.

Theorem 3.3 The plant G(s) is stabilized by the controller K ' given by:

&k — AkXk +  [ Bk — AkL L  (3.25)

uk = Ckx k (3.26)

where L is a solution of:

D k - C kL = 0 (3.27)

Proof 3.3 Refer to [15].
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Dissipative controllers offer a powerful method for robustly stabilizing linear 

single-body flexible systems. In the next two chapters it will be shown that, the 

theory of dissipative controllers can be extended to nonlinear multibody systems as 

well. This chapter will be concluded by some remarks on the passivity of nonlinear 

systems.

3.5 Passivity in M ultibody Nonlinear Systems

The concepts of dissipativity and passivity can be extended to the nonlinear systems 

as well. The asymptotic stability of interconnected passive systems has been studied 

in the literature by several authors (see [1] , [40], [16]) from operator theoretic point 

of view or from the state-space perspective (see [12], [13], [18]-[21]). In particular, 

in [18]- [2 1 ] number of important results were developed for passive systems based 

on suitable observability hypothesis. Recently, in [41] some of the stricter conditions 

used in the hypothesis in [18]- [2 1 ] were weakened and some generalizations were 

done. The aim of this section is to establish the passivity of the nonlinear, multibody, 

flexible systems, modeled by Eq. 2.40, so that, the stability theorems given earlier in 

this chapter for LTI systems can be extended to these systems.

Consider a closed-loop system shown in Fig. 3.10. P  is the nonlinear system 

under consideration and K  is the controller in the feedback loop, r is the reference 

input and u is the control input to the plant. Then, u can be expressed as

u = r — v (3.28)

Taking truncated inner product of both the sides with y yields

< y, u >T=< y ,r  >T -  < y ,v  >T (3.29)

Rearranging

< y, r > r= <  y ,u > T + < y , v > T (3.30)
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Now, if K  is strictly passive (i.e. < y ,v  > j>  e||?/||y/orsomee > 0), and if P  is simply 

passive (i.e. < y ,u  >T> 0 ), then < y ,r  > t >  IMIr =► ||y|M M |r > c||y||r =» ||y|| < 

e_1 |M |r => BIBO stable and closed-loop system is passive. This means that, if for 

some supply rate < y ,r  > t  system P  is dissipative then any strictly passive controller 

can stabilize the closed-loop system.

3.5.1 Passivity of Nonlinear, M ultibody, F lexible System s

Consider a system represented by Eq. 2.40. Assuming that all rigid degrees of 

freedom have associated with them a pair of collocated actuator/sensor, the vector 

of applied forces, F , is given by F  =  B Tu, where, B  is the influence matrix of the 

control input u and has the form

B = [hxk 0fcx(„_fr)] (3.31)

The stiffness and damping matrices K  and D  have the form,

I<  =
Ofcxfc 0  kx(n—k)

0 (n—k)xk K(n—k)x(n—k)
D = 0 kxk __0fcx(n—fc)

0(n—k)xk B(n—k)x[n—k)
(3.32)

where K  and D  are the flexural stiffness and damping matrices associated with the 

structural members, and the subscripts indicate submatrix dimensions.

Consider the storage function V  as

V = \ ? M ( v ) i , +  \ ? ( K  + K ,)p (3.33)

where, K p has the form

F p =
I<v 0 *Pkxk "kxin-k) 

®(n—k)xk 0(n—k)x(n—k)

The submatrix K v is symmetric positive definite, so that the sum (K  +  K p) is sym

metric positive definite matrix. Taking the time derivative of V  and using Eq. 2.40 

yields

V = f [ B Tu - C p - D p -  I<p] + -  f M p  + pT(I< +  K p)p (3.34)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

Using the property given in theorem 3.1, Eq. 3.32, and after several cancellations

V  = f u -  qTDq +  6t K p0 (3.35)

Now if u is selected as

u = r — K p0

then

V  = pTr — qTDq (3.36)

Again, using the argument that V  > 0 implies

[ T V d t>  0  
Jo

Substituting for V

0 <  /  qTr — qTDqdt (3.37)
Jo

=> f  qTD qdt<  f  pTrdt =$>< p ,r  >t> 0 (3.38)
Jo Jo

This means that, the system is passive for supply rate < p, r > t with storage function

V  =  \p r M (p)p + \p T(K  + K P)p- The next two chapters are devoted to the theoretical

development of the stability results by exploiting this passivity property of the system.
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Chapter 4

STATIC DISSIPATIVE 
CONTROLLERS (SDC)

4.1 Introduction

In this chapter it is proved that the stability properties derived for the linear time- 

invariant non-articulated flexible structures under dissipative compensation can be 

extended to the nonlinear, multibody flexible structures as well. The approach here 

is to use the mathematical model developed in Chapter 2, which is in a general form, 

to represent the multibody, nonlinear, flexible space systems. The organization of 

this chapter is as follows. In the first section the global asymptotic stability of static 

dissipative controllers has been established for the perfect actuators and sensors. 

Then, the results are extended to show the robustness of stability properties to certain 

realistic actuator/sensor nonlinearities. The effects of dead-zone nonlinearity in the 

actuators are also investigated.

4.2 Static D issipative Controllers w ith Perfect
Actuators /  Sensors

Recall the mathematical model of flexible multibody space structures given by 2.40:

M (p)p  +  C(p,p)p  +  Dp +  K p  =  B t u  (4.1)

45
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where {p} = {6T, qT}T, 0 is the ^-vector of rigid body coordinates and q is the 

(n — k ) vector of the flexural coordinates. M (p) =  M T(p) > 0 is the configuration- 

dependent mass-inertia matrix; C{p,p) corresponds to Coriolis and centrifugal forces; 

D  is the symmetric, positive semidefinite damping matrix; K  is the symmetric, pos

itive semidefinite stiffness matrix; and u is the k vector of applied torques. B  is the 

influence matrix of the control input u and has the form B  = [hxk Ofcx(n-/t)]- It 

should be noted that such systems always have zero-frequency modes associated with 

rigid-body coordinates.

Consider the static dissipative control law u, given by:

u — Gpyp GTyT (4-2)

where

yp — Bp and yr = Bp  (4.3)

yp and yT are measured angular position and rate vectors.

Theorem 4.1 Suppose Gp and Gr are symmetric and positive definite. Then, the

closed-loop system given by equations ^.1 and ^.2  is globally asymptotically stable.

Proof 4.1 Consider the Lyapunov function

V = \ v TM(p)i,+ l- f ( K  + B TGrB)p  (4.4)

V  is clearly positive definite since M (p) and (K  +  B TGPB ) are positive definite sym 

metric matrices. Taking the time derivative and letting K  =  ( K  +  B TGVB),

V  =  p T M p  +  \ - p T  M p  +  p T  K p  (4.5)

Using f . l  in 4-5, get,

V  =  p T [ B T u  —  C p  —  D p  — K p ]  +  \ - p T  M p  +  p T  K p  (4.6)
£
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Now substituting f . l  and 4 4-6>

V  = f B T{ -G p0 - G r6 ) + f { \ M - C )  p - p TD p - p TK p  + pTK p  (4.7)

V  =  pt { \ m  -  C)p -  pTK p  +  pTK p  -  f ( D  +  B t Gt B)p  (4.8)

Now, using a very important property o f the system, that ( |M  — C) is a skew sym

metric matrix, Eq. 2-42, which is the characteristic o f the systems whose dynamical 

equations o f motion have the same form  as Eq. 4-1, yields, pT{ \M  — C)p =  0 and, 

after some cancellations, obtain

V  =  - p T ( D  +  B T G T B ) p  (4.9) 

Since (D  + B T G r B )  is the positive definite symmetric matrix,

V  <  0 (4.10)

i.e., V  is negative semidefinite in p and p and

V  =  0 = > p  =  0 = > p  =  0 (4.11) 

Substituting in the closed-loop equation, get

(I< +  B TGpB )p  =  0 =>p = 0 (4.12)

Thus, V  is not zero along any trajectories; then, by LaSalle’s theorem, the system is 

globally asymptotically stable.

The significance of this result is that any nonlinear multibody system in this 

class can be robustly stabilized with this control law. In the case of manipulators, this 

means that one can accomplish any terminal position from any initial position with 

guaranteed asymptotic stability.
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4.3 Robustness to  A ctuator/Sensor Nonlinearities

Although, as shown in the proof of theorem 4.1, the static dissipative controller 4.2 

globally asymptotically stabilizes the nonlinear system 4.1 in the presence of perfect 

(i.e., linear, instantaneous) actuators and sensors, in practice, these devices have 

nonlinearities and phase lags. Therefore, for practical applications, the controller 4.2 

should be robust to the nonlinearities and the phase shifts in the actuator/sensor. 

In Chapter 2, different types of realistic nonlinearities present in the actuating and 

sensing devices are given. The following theorem extends the results of section 3.4.2 

to the case of nonlinear flexible multibody systems. That is, the robust stability 

property of the static dissipative controllers is proved in the presence of a wide class 

of actuator/sensor nonlinearities. In particular, it is proved that the static dissipative 

controller preserves global asymptotic stability when actuators have monotonically 

increasing nonlinearities and sensors have nonlinearities that belong to the (0 , oo) 

sector 3.4.2.

In the presence of actuator/sensor nonlinearities, the actual input is given

by:

u = il>*[-Gpil>p(yp) -  Gr^r(yr)} (4.13)

where 0 „, ipp, and ipT denote the actuator nonlinearity and the position and rate

sensor nonlinearities, respectively. Assuming Gp and Gr are diagonal,

= Ipai [ Gpilppitypi) Grl'^ r,'(?/r,')] (4.14)

It is assumed that ipai, Vv, and tpTi (i = 1,2 ,..., k) are continuous single-valued 

functions: R  —> R. The following theorem gives the sufficient conditions for stability.

T heorem  4.2 Consider the closed-loop system given by 4-%> 4-3, and 4-1$, 

where Gp and Gr are diagonal with positive entries. Suppose ipai> ippi> and 'Pri are 

single-valued, time invariant continuous functions, and that, fo r i  =  1 , 2 ,
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(i)ifiai(Q) = 0, 0 at are monotonically increasing (Fig. 3.7) and belong to (0, oo) sector.

(ii)'ippi, i{>ri belong to the (0, oo) sector(Fig. 3.8).

Then, the closed-loop system is globally asymptotically stable.

Proof 4.2 Let w = — yp =  —9 (k-vector). Define

(4-15)

^ r i { v )  =  - M - v )  (4.16)

I f  iftpi, 0j.( e(0, oo) or [0, oo) sector then tf>pi, 0 ri a/so belong to the same sector. Now, 

consider the following Lure-Postnikov Lyapunov function :

1 1 == ^ tW{_________
V  = -p TM (p)p  -I- -q r K q + Y )  J  il>ai{Gpitl>pi(v)}dv  (4.17)

where, K  is the symmetric positive definite part o f K . Taking the time derivative and 

using Eq. f . l ,

V  — pT[BTu — Cp — Dp — Kp] +  ]-pTM p  (4.18)

k _  _

+  J 2  ™ i M G p i i > Pi ( w i ) }  +  f K ( l  (4.19)
1 =  1

Upon several cancellations and using the “skew symmetric” property o /( |M  — C),

k k
V  = Y  u^ i  -  9TD q +  Y  «,i^«{Gp,-0pi(u>i)} (4.20)

1 = 1  1 = 1  

where, matrix D  is the positive definite part of D.

V  = ~qTDq -  Y  Wi(^ai[GTi^ ri(wi) + Gpiippi(wi)] (4.21)■~t \ h  -

i=i
-i>ai[Gpiippi(wi)}) (4.22)

/ / 0 at- are monotonic nondecreasing and belong to the (0, oo) sector, V  <  0, and 

it can be concluded that the system is at least Lyapunov-stable. Now it will be proved 

that, in fact, the system is globally asymptotically stable. From Eq. f.22, V  < —qTDq,
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and V  = 0 only when q =  0 and w = 0, which implies 0 =  O=>p  = O=>p  = O. 

Substituting in the closed-loop equation,

K p = B TM - G PM 9 )}  (4.23)

0 ipa{ Gp^p(yp)}

J q . 0

=> i/>a[—Gpil>p(6)] =  0, and q =  0 (4.25)

I f  ij)ai and xj)pi belong to the (0, oo) sector, — i>pi(v) — 0 only when v —

0. Therefore, 0 = 0. Thus, V  = 0 only at the origin, and the system is globally 

asymptotically stable.

4.3.1 Effect of Saturation Nonlinearity

In the case when actuator nonlinearities are of the monotonic nondecreasing rather 

than increasing type (such as saturation nonlinearity), V  can be 0 even if w ^  0. 

However, it will be shown that every system trajectory along which V  =  0, has to 

go to the origin asymptotically. When w ^  0, V  = 0 only when all actuators are 

saturated. Then, from the equations of motion, it means that system trajectories will 

go unbounded which is not possible since we have already proved that the system is 

Lyapunov-stable. Hence, system trajectories have to approach the origin asymptoti

cally and again the system is globally asymptotically stable.

4.4 Region of U ltim ate Boundedness in The Presence of 
Actuator Dead-zone Nonlinearity

In the previous section global asymptotic stability of nonlinear multibody flexible 

space-structures under static dissipative compensation was established. Furthermore, 

the stability was shown to be robust to certain actuator and sensor nonlinearities, 

modeling errors, and parametric uncertainty. In particular, it was proved that the 

static dissipative controller preserves global asymptotic stability when actuators have
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monotonically increasing nonlinearities and sensors have nonlinearities that belong 

to the (0, oo) sector. Although the saturation type actuator nonlinearity was allowed 

under the assumptions of the theorem, another realistic nonlinearity such as dead-zone 

nonlinearity was not allowed. In this section, the effects of dead-zone nonlinearity on 

the stability of the system are studied.

4.4.1 Region of U ltim ate Boundedness:

In the presence of deadzone in the actuator nonlinearity system under consideration 

will not have asymptotically stable origin, but will instead have the property of ulti

mate boundedness; i.e. for all initial conditions, solutions ultimately enter a compact 

region containing the origin in finite time, and remain in the region thereafter. Esti

mates of the extent of this region will be found by means of Lyapunov functions. A 

system under consideration, as given in Eq. 4.1, is:

M (p)p + C(p,p)p + Dp + K p  = B t u  (4.26)

The control law considered is, the static dissipative control law u, given by:

u = - G pyp -  Gryr (4.27)

where,

yp = B p and yr = B p  (4.28)

yp and yr are measured angular position and rate vectors. In the presence 

of actuator/sensor nonlinearities, recall that, the actual input is given by:

U =  ^a[-Gp^p(yp) -  Gr^r(yr)} (4.29)

where ip a , 0 P, and ipr denote the actuator nonlinearity and the position and rate 

sensor nonlinearities, respectively. Assuming Gp and Gr are diagonal,

Ui  —  "ipai[ G pi1ppi ( y pi)  Grilpr i{yTi) \  (4.30)
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It was also assumed that i[ai, rfpi, and 0rt- (i = 1 , 2 , k) are continuous single

valued functions: R  —» R. Then, theorem 4.2 gives the sufficient conditions for 

stability.

In the presence of deadzone, the condition (i ) of theorem 4.2 is violated and 

asymptotic stability can not be guaranteed. In order to show that the system has a re

gion of ultimate boundedness in the presence of deadzone in the actuators, we require 

the following definition and theorem taken from [42], with minor modifications:

D efinition: The system 4.1 is ultimately bounded in a compact region R  

if there exists a t\ such that, for all x (t0), x (t)eR , V t > t\ > t0.

T heorem  4.3 (Ref. to [42]) Let R  be a compact region containing the origin, defined 

by V (x) < 7 , where V (x) is a scalar function with continuous partial derivatives and 

the properties that

(i) V (x) > 0 x tR c

(ii) V{x) -* oo as |x| —> oo

(in )  — V (x) > 0 xeR°

where R° is the complement o f R. Then 4-1 ?s ultimately bounded in R.

The Lyapunov function for system 4.1, used in the proof of theorem 4.2,

1 I   rw{__ _
V  =  - f M ( p ) p  +  - q TK q  +  2  jf  

and, its time derivative along the trajectories of the system is

k

V  =  - q TD q -  Y ^ M M G r i ^ r i i w i )  +  Gp$ pi(Wi)\
t '= l

-fpai[Gpiifpi(wi)}) (4.32)

is given by 

(4.31)
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Let the actuator nonlinearity ifraiiv) has deadzone in the region \v\ < d. 

Then, from 4.31 and 4.32 it can be seen that V  is no more positive definite (p.d.) in 

p and p, and V  is no more negative definite (n.d.) in p. Now, the aim is to find the 

region %c in which V  will be p.d. and V  will be n.d. at least along the trajectories of 

the system. Then, the complement of K c, will be the required region of ultimate 

boundedness.

Let us define

$pi(wi) =  Gpiippi(wi) i = 1,2, ..k. (4.33)

and

« =  { P , P } T -

Then, the most conservative estimate of the region R  can be found as follows. 

Consider a region

Q, = {xeRn\Q>pi < d fo r  * = 1,2, ..A} (4-34)

Then, the required region R  is given by

% = {xeRn\V(x) < 7 } (4.35)

where

7  = m axK(i).

Now it can be seen that, in 7Zc K(x) is negative and V( x)  is positive along the nonzero 

trajectories of the system.

An estimate of the region of ultimate boundedness can be obtained in this 

manner. However, the computational methods to determine it remains a problem for 

future studies.
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4.5 Remarks

It is proved that, under static dissipative control, nonlinear, multibody, flexible space 

structures exhibit global asymptotic stability. The stability is not only robust to the 

modeling errors and parametric uncertainties, but also to a wide class of nonlinear

ities in the actuators and sensors. This has a significant practical value since the 

mathematical models of the system usually have substantial inaccuracies, and the ac

tuation and sensing devices available are not perfect. It is also shown that in the case 

of deadzone type actuator nonlinearity, although the system trajectories do not go to 

the equilibrium state asymptotically, they remain ultimately bounded in a compact 

region in the neighborhood of a equilibrium point. The next chapter extends some 

of the results of this chapter to a more versatile class of dissipative controllers, called 

dynamic dissipative controllers.
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Chapter 5

DYNAMIC DISSIPATIVE 
CONTROLLERS (DDC)

5.1 Introduction

In this chapter, stability characteristics of dynamic dissipative controllers are inves

tigated for multibody flexible space structures. The problem addressed is that of 

proving asymptotic stability of dynamic dissipative controllers. The stability proof 

uses the Lyapunov approach and exploits the inherent passivity of such systems. For 

such systems these controllers are shown to be robust to parametric uncertainties 

and unmodeled dynamics. The results are applicable to a large class of structures 

including flexible space structures with articulated flexible appendages.

In Chapter 4, it was shown that the static dissipative controllers are not 

only robust to parametric uncertainties and unmodeled dynamics but also to a wide 

range of actuator/sensor nonlinearities. This chapter is aimed at extending the results 

of Chapter 4, from static dissipative controllers to include a more versatile class of 

controllers known as dynamic dissipative controllers. The work of this chapter can also 

be considered as an extension of the stability results obtained for the linear case, noted 

in Chapter 3, to the nonlinear case. The stability proof given here uses Lyapunov 

approach along with LaSalle’s theorem and is based on Chapter 4. The Lyapunov
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function used is an energy type quadratic function augmented with an appropriate 

positive definite function to prove global asymptotic stability. The stability proof by 

Lyapunov’s method can take a simpler form if the Work-Energy Rate principle [1 1 ] 

is used. However, since the Work-Energy Rate principle is applicable only when the 

system is holonomic and scleronomic in nature, the more general approach of direct 

substitution of the equations of motion was employed in evaluating the time derivative 

of the Lyapunov function. Also, in [1 1 ], the virtual spring-mass-damper approach 

was taken to design the controller consisting of a second-order passive system which 

can be considered as a special class of the more general dynamic dissipative controllers 

considered in this chapter.

5.2 Dynam ic Dissipative Controllers

Rewriting the mathematical model 3.33 of flexible multibody space structures for 

convenience,

M(p)p + C (p ,p )p -\-D p  + K p  = B t u  (5.1)

where {p} =  {6T, qT}T, 6 is an r-vector of rigid body coordinates and q is an (n — r ) 

vector of the flexural coordinates. M(p) is the configuration dependent mass-inertia 

matrix; C(p,p) corresponds to Coriolis and centrifugal forces; D  is the damping 

matrix; K  is the stiffness matrix; and u is the vector of applied torques. The matrices 

M(p) and C(p,p) have coupling terms between 6 and q. It is assumed that each of 

the rigid body coordinates has an associated collocated actuator/sensor pair and 

that each actuator produces an external input going into the associated rigid-body 

coordinate only. Then, the input matrix B T has the form,

B 1 = Jrxr 
0(n—r)xr

Consider the system given by Eq. 5.1. Each of the collocated sensors mea

sures only the relative rigid rotation between the two members. Let yp and yr denote
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the measured angular position and rate vectors. Then, the output equations take the 

form,

yv =  B p and yr = B p (5.2)

Now consider the configuration of Fig. 5.1. Suppose a controller fC(s) is represented 

by the minimal realization:

x k = A kx k + B kuk 

yk = Ckx k + Dkuk

Define

v - y k 

z = ( x l v Tf

V c  =  V

Equations 5.3- 5.7 can be combined as:

i  =  A zz + B zuk 

Vc = Czz

where

A k 0
ck 0 B z = B k

Dk 0  / . ]

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

T heorem  5.1 Consider a nonlinear plant 5.1 with “yp” as the output. Suppose

i ) A k is strictly Hurwitz

ii) There exists an (n k +  r) x (n k +  r) matrix Pz = P j  > 0 such that

A tz Pz -\-PzA z =  - Q z = -d ia g (L k L k,0r) (5.11)
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where Lk is an r x  n matrix such that (Lk,A k) is observable, and Lk( s l  — A k)~l B k 

has no transmission zeros in i 2e[s] > 0

Hi) Cz =  B jP z (5.12)

iv) JC(s) =  Ck{sl — Ak)~lBk +  Dk has no transmission zeros at the origin.

Then the closed-loop system given by equations 5.1, 5.2, 5.8, and 5.9 is

globally asymptotically stable.

P ro o f 5.1 Consider the Lyapunov function,

V  = \p M ( V)p + )i qr K q + l- z TP ,z  (5.13)

where K  is the symmetric positive definite part o f K  (i.e., the part associated with

nonzero stiffness). Then

V = pM (p)p +  i pTM p  +  qTK q  + ^ ( z TPzz +  z TPzz ) (5.14)

which after substituting fo r  M (p)p using 5.1, and for z using 5.8, 5.14

becomes:

V  = pTB Tu — qTDq +  pT(^-M — C)p — pTK p

+qTK q  +  ^[(zTA Tz +  u lB j ) P zz +

z t P z ( A z z  + B zuk)] (5.15)

An important property for systems, whose dynamic equations are o f the form  5.1, 

is that the matrix { \M  — C) is skew symmetric 2-42. This property is exploited to 

recognize that pT(^M  — C)p =  0.

V  = pTB Tu -  qTDq +  ^ zt (A^Pz + +PzA z)z

+ 7}ul ( BI p z)z +  \ z r {PzB z)uk (5.16)

V  -  —qr Dq A pTB Tu -  ^ z TQzz  +  z TC ju k (5.17)

V -  - q TD q -  ^ z TQzz - u l y c + yJu k (5.18)
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Noting (Fig. 5.1) that u =  —yc =  —Czz and B p  =  yT =  Uk,

V  = - f D g  -  l- z TQ ,z (5.19)

Since D and Qz are positive definite, it follows that V  < 0, i.e., V  is negative semidef

inite in p, p, and z. Now V  =  0 only i f  q = 0  and Lkx k =  0 . Since (Ak ,Bk, L k) 

has no transmission zeros in Re(s) >  0 and (Ak , Lk) is observable, this requires that 

yr —> 0 and Xk —* 0. But, yr —* 0 => $ —> 0 =̂ - p —>0 then, with q =  0, this implies 

that p = 0. Substituting in the equation 5.1 get, 6 —* 6SS and q —> 0, where 6SS is 

some steady-state value o f 6. This only shows that the system is Lyapunov stable.

Now consider the configuration shown in Fig. 5.2 which is obtained by a 

nonsingular similarity transformation T  given by,

T  =
Ir 0 0
0 Ak Bk 
0 Ck Dk

(5.20)

Clearly, T  is nonsingular iff!C(s) has no transmission zeros at the origin. The trans

formed system has controller state equations

x k =  A kx k +  B kyp (5.21)

u -  ~Hk =  -  (Ckx h +  D kyp) (5.22)

Since transformation T  is linear and nonsingular, the transformed system is also 

Lyapunov-stable like the original system. Now it will be shown that the system is, in 

fact, asymptotically stable.

Suppose that the system is not asymptotically stable. Then, referring to 

Fig. 5.2, suppose the output yp reaches some steady-state value, say yp. Since tC(s) 

is linear time-invariant and has minimal realization 5.3- 5-4, the output yk o f the 

controller will also reach some steady-state yk. Consequently, the control input u will 

also have some constant value u. From the physical considerations it can be seen
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that the nonlinear system under consideration has the property that nonzero constant 

input u will produce some nonzero output yr (this is equivalent to the LTI property of 

having no zeros at the origin). However, it has already been shown that yr —> 0/ thus 

u —» 0  => yk —> 0  and x k —> 0 .

Now, from  the controller state equation 5.3,

x k -  0 =» x k = -A ^ B k y p  (5.23)

Substituting in equation 5-4 with yk =  0 yields

yk = 0 = Ckxk +  Dkyv =  (D k -  CkA f lB k)yv (5.24)

Since K,{s) satisfies a minimum phase condition, the matrix in the parenthesis is 

nonsingular and, therefore, from equation 5.24 yv —•► 0. This proves that the system  

is asymptotically stable.

Since no assumptions were made as regards to the modeling accuracy as well as 

parametric variations, the stability is robust to modeling errors and parametric un

certainties.

5.3 Remarks

It is proved that, under dynamic dissipative control, nonlinear multibody flexible 

space structures exhibit global asymptotic stability. The stability is robust to model

ing errors and parametric uncertainties as long as the I/O map from torque inputs to 

velocity outputs is passive. This result has a significant practical value. It enables a 

control designer to have more design freedom than is available with static dissipative 

controllers. Methods for designing such controllers is a challenging task and future 

work will address methods for controller synthesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 

NUMERICAL EXAMPLES

The purpose of this chapter is to introduce the example systems used to 

verify some of the stability results obtained in chapters 4 and 5. The synthesis of static 

as well as dynamic dissipative controllers for nonlinear systems is still a topic of future 

research. However, in the example problem, for the static dissipative compensaters, 

the controller gains are selected based on several trials, since the purpose is to validate 

(numerically) the stability results derived in chapter 4. The second example problem 

is the application of dynamic dissipative controllers to the linear systems, which is 

a special case of nonlinear systems. A systematic procedure can be employed to 

synthesize the dynamic dissipative controller for linear systems since the performance 

function is well defined. In the case of nonlinear systems, the performance function 

can not be well defined which makes the synthesis problem extremely difficult.

6.1 Application of SDC

The example system used for validation of theoretical results is shown in Fig. 6.1. It 

consists of a central 1 0 -bay, flexible truss with a two-link flexible manipulator at one 

end. This represents a flexible space-structure with flexible, articulated appendage. 

It has three pairs of collocated actuators and sensors; each one associated with the 

rigid degree of freedom. One of the actuator/sensor pairs is located at the center of 

the truss, and other two are at the joints between truss and arm 1 , and arm 1 and arm
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2, respectively. All bodies were modeled as flexible and their modal information was 

obtained using MSC/NASTRAN, a well known finite element commercially available 

software by Macneal-Schwendler Corporation. The complete nonlinear simulation was 

done using another commercially available software “DADS” for multibody analysis 

and design software by Computer Aided Design Software Inc.(CADSI), Oakdale, Iowa. 

Interested readers can refer to [43] for more information about the software.

6.1.1 M odel Description

The example structure has a 100 inches long 10-bay truss with a two-link manipulator 

at one end. Each of the arms has a length of 50 inches. The central truss has (refer 

Fig. 6 .1 ) 89 longerons, 40 battens, and 10 diagonals. Each of the arms is modeled 

with 10 CBAR elements in NASTRAN. The cross section of the arms is circular with 

1.0 inch diameter. The material chosen for the arms has a mass density of 4.14e-04 

lb — sec2 /  in*, modulus of elasticity E=le+07 lb /in2, and Poisson’s ratio of 0.33. The 

central truss is of the same material, and each of the truss members were modeled 

as 0.5in diameter bar elements. As shown in the Fig. 6 .1 , there are two revolute 

joints; one between the central truss member and arm 1 , and another between arm 

1 and arm 2. It is assumed that there are three actuator/sensor pairs, one each at 

the revolute joints and one at the center of the truss for attitude control. It is also 

assumed that both position and rate measurements are available. Note that Fig. 6 .1  

shows the zero position of the system.

6.1.2 Simulation Results

The control problem was set up as follows. The initial configuration of the system 

was chosen by setting revolute joint 2 at an angle of 1 rad. The objective was to 

restore the zero state of the system, i.e. the configuration shown in Fig. 6.1. After 

several trials a static dissipative controller was designed to accomplish the task. As 

the system starts moving all members start moving relative to one another and there
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Fig. 6 .1  Flexible space-truss with articulated appendage
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is a dynamic interaction between members. The simulation performed incorporated 

complete nonlinear and coupling effects. The joint angle and velocity responses for 

revolute joint 1 are shown Fig. 6.2 and Fig. 6.3, respectively. Similarly, the position 

and velocity responses for revolute joint 2 are shown in Fig. 6.4 and Fig. 6.5, respec

tively. The total energy of the system is also shown in Fig. 6 . 6  which indicates that 

system is reaching to the zero-energy state asymptotically. From all the responses 

it can be seen that static dissipative controller exhibits asymptotic stability for the 

class of systems under consideration.

Since the synthesis procedure for DDC for nonlinear systems is not yet 

available, and the method of trial and error is also very cumbersome (unlike SDC) to 

obtain the controller parameters, an example is used where design of DDC is based 

on the locally linearized models of the nonlinear system. The advantage of using 

DDC is that even though the plant model used to design the controller was linear, 

the controller provides asymptotic stability to the complete nonlinear system as long 

as the constraints on the controller design variables are satisfied. The next section 

gives the example which illustrates this approach [44]. The example also illustrates 

the suitability of DDC in the integrated design framework.

6.2 Application of DDC to Integrated Design

As an example of the application of dynamic dissipative controllers to multibody 

nonlinear space system, an integrated design problem is considered. The generic 

prototype considered is as shown in Fig. 6.7.

The system under consideration, illustrated in Fig. 6.7, is intended to rep

resent a simplified planar version of a flexible spacecraft with two articulated ap

pendages. It has an articulated, flexible link placed at one end and an antenna at 

the other end. Typically, the antenna has stringent pointing requirements while the 

articulated link is slewed for scanning or servicing purposes. Actuators are located
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at points A i ,A 2, and A 3 . The main truss (platform) attitude is maintained using 

torque actuator at point A 2. Two articulated members are attached to the main 

platform via hinged joints with torque actuators at points A\ and A3 . The member 

at point A \ is representative of an “antenna-like” member with precision pointing 

requirements, while the member attached at A 3 represents a slewing component such 

as a manipulator arm. For the present study, the actuators at A\ and A 2 are used 

to maintain constant platform attitude and antenna position, respectively, while the 

actuator at A 3 is used for slewing motion of the manipulator arm. All members are 

flexible, and for simplicity, each is modeled as a solid rod. The diameters of these 

rods are the structural design parameters in the optimization.

6.2.1 Integrated Design Approach

For pointing control it is generally acceptable to use a linearized model for the con

troller design. For a problem with linear vibratory motion, the linearization is per

formed relative to some prescribed nominal operating point. The resulting linearized 

model, and in-turn the controller design, depend upon the particular operating point. 

Since, in the case of problems with articulated appendages, there is no well defined 

operating point, any controller design must satisfy the performance requirements ev

erywhere in the configuration space. The integrated design problem is that of design

ing the controller concurrently with the structure to minimize a performance function 

consistent with a set of prescribed constraints. The conventional method is to design 

the structure first and then design the controller based on the fixed structural de

sign to satisfy a performance criterion. The design obtained through this sequential 

process is control optimized but not optimal in an overall integrated system sense. 

The integrated design procedure utilizes simultaneous design of the structure and 

controller for optimal interaction.
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The prototype structure used for the integrated design problem is made up 

of three sections. Each section is modeled as a solid rod. The diameter of each rod is 

treated as a structural design parameter. The objective is to achieve a design which is 

closed-loop stable throughout the entire configuration space of the articulated mem

ber and at the same time satisfies the constraints on the structural design variables. 

The constraints on the structural design variables are of the type d, < dmax, where 

di is the diameter of the i-th structural member. An additional requirement of mini

mizing control power is also added to the objective function. A schematic of a design 

procedure is shown in 6 .8 . For the purposes of this example, only the first three 

flexible modes of each member are considered in the design. The controller design is 

carried out in the presence of actuator noise and noise in the position and rate sensors 

which are collocated with the actuators. The performance function to be minimized 

is

J  = lim [  (ypQpyP + y jQ ryr + uTRu)dt  (6 .1 )
T —*oc ± Jo

where Qp, QT, and R  are symmetric and positive definite weighting matrices, and £  is 

an expectation operator. A dynamic dissipative controller consisting of three second- 

order blocks as in Eq. 3.22 is next designed. Using the transformation of Theorem 3.3 

with L = [7 ,',Si\T for C,(s), each C,(s) can be realized as a strictly proper controller:

£ci —
0  1

—  OtQi — O tu

'yi
flafji + Pii&i Si

V p i  “ t "  W p i  

V r i  ” 1 ”  W r i
%ci

u =  ( i l l ,  u 2 , U3 ) T ; Ui =  (I30i -  a 0i ) x ci

There are 18 control design variables ( a 0 i ,  ai,-, f l o i ,  f t u , 7 i , S i ,  i = 1,2,3) for 

the sixth-order controller. To ensure that the controller is dissipative, the constraints 

to be satisfied by the control design variables are 3.24, and that a 0l-, Oi,-, f io f in  must 

be positive for i = 1 , 2 ,3. Also, due to the strictly proper realization of the controller 

the constraints on fc,-s in 3.22 are now transformed into the following constraints.

(a i i  — P \ i ) S i  +  (ooi — f t a i ) 7 i  >  0
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where i — 1,2,3. The performance function J  can be computed by solving the 

steady-state covariance equation for the closed-loop state equation of the plant and 

controller.

A dynamic dissipative controller (DDC) was designed by performing numer

ical minimization of the performance function with respect to the 18 control design 

variables and 3 structural design variables. The DDC has guaranteed stability in the 

presence of higher modes as well as parametric uncertainties. In order to ensure a 

reasonable transient response, additional constraints were imposed that the real parts 

of the closed-loop eigenvalues be no greater than -0.05. The optimization routine used 

is ADS (A fortran program for Automated Design Synthesis) [45]. The goal of this 

example problem is to produce an integrated design which satisfies the constraints 

and minimizes a performance index throughout the configuration space. To this end, 

the configuration space is partitioned into N a segments, the performance index </,• 

(where J,- is given by Eq. 6.1 for i-th segment) is evaluated for each segment and the

sum of these segment indices is defined as the global performance index

N a

Jo = E J i  (6 -2 )
! = 1

It is this global performance index which is minimized in the design optimization. 

The configuration space is divided into N a = 24 segments representing 0.131 radian 

increments of the joint angle a  over the range 0 < a < ir radians. In sum, there 

are 25 configurations, and for each configuration there are 12 closed-loop eigenvalue 

constraints to be satisfied. Also, there are nine constraints on the control design 

variables. Therefore, the total number of constraints to be satisfied for each iteration 

of the optimization run is 309.

To reduce computational load, eigenvalues and eigenvectors are computed 

for only four baseline configurations and at intermediate configurations Taylor series 

approximations are used. The fourth-order approximation has been used for this 

example. The details of the first- and higher-order derivatives of the eigenvectors
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with respect to the change in the orientation of the appendage have been derived in 

[46]. The eigensystem analysis was done for the four baseline configurations. For all 

other configurations the eigensystem approximation scheme was used.

6.2.2 Results

The design of the prototype structure obtained satisfies dimensional requirements 

for the structure and yields a guaranteed stable controller for all possible operating 

configurations. The history of the global performance index Jq is plotted in 6.9.

After a few initial oscillations, the value steadily decreases to the convergence 

value of 2.497. The initial oscillations are due to the fact that the optimization 

algorithm first tries to satisfy constraints and then minimizes the performance index. 

Table 1 gives the initial and final design parameter values resulting from the global 

optimization and also from two local optimizations using baseline configurations, 

a  =  7t / 8  and a  =  7t / 2 . The final values of performance indices are also given. In the 

globally optimized case the value of J  given is an average value (where average value 

is given by j^ ) . Table 6.1 also gives the total number of violated constraints for the 

entire configuration space.

Note that the designs obtained differ in each of the three cases considered. 

The designs based on fixed operating points violate the design constraints at some 

other configurations. The global optimization gives some minimum level of guaranteed 

closed-loop stability. Because the controller is dissipative, stability is guaranteed even 

in the locally optimized cases, however, the degree of stability cannot be assured for 

all configurations. The final value of J  obtained through global optimization is larger 

than the one obtained through locally optimized designs, which is to be expected.
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Design
Variable
Number

Initial Design 
Variables

Design Variables at 
Globally Optimal 

Design

Design Variables at 
Locally (q = 7 t/3 )  

Optimal Design

Control Variables

<*01 62.741 80.000 18.291

<*n 4.0718 11.311 10.590

<*02 3.6209 0.73088 1.4234

<*12 3.0380 6.8356 3.3611

<*03 1.3871 1.4411 1.5688

<*13 1.7177 7.2483 3.8302

,#01 0.42742 0.95401 0.9391

# 1 1 3.9023 10.809 10.109

# 0 2 0 . 0 1 0 0 0.018721 0.0754

A# 12 1.2590 0.27666 0.5280

,#03 0.16199 0.04235 0.08971

#13 0.78550 0.39692 0.5604

6i 36.4140 80.000 65.021

<$2 80.0000 78.937 73.811

b~3 35.8080 40.619 37.644

71 70.0000 79.9937 69.967

7 2 18.331 79.859 30.770

7 3 6.9030 31.763 14.556
Structural Variables

r l 0.12593 0.074432 0.0662
r2 0.056056 0.059515 0.0552
r3 0.046352 0.076891 0.0675

Table 6.1 Comparison of design variables
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6.3 H oop/C olum n Antenna Example

This section illustrates another numerical example on the application of dynamic 

dissipative controller to the 1 2 2  meter diameter hoop-column antenna concept shown 

in Fig. 6.10.

The antenna consists of a deployable mast attached to a deployable hoop by 

cables held in tension. The antenna has many significant elastic modes which include 

mast bending, torsion, and reflective surface distortion. The objective is to control 

the attitude (including rigid and elastic components) at a certain point on the mast 

in the presence of actuator noise and noise in the attitude and rate sensors, which are 

collocated with three torque actuators, one for each axis. Table 6.2 shows the natural 

frequencies for the first 10 elastic modes. The open loop damping ratio is assumed 

to be 1 percent. A 1 2 th  order LQG controller, based on a design model consisting of 

the three rotational rigid modes and the first three elastic modes, was first designed 

to minimize:

J  =  lim ^=£ [  (yjQpVp + yjQrVr +  uTRu)dt (6.3)
1 —> o o  1  J o

with Q = 4 x 108 I3; Qr = 1 0 8 / 3 ; R  =  diag(0.1,0.1,1). The actuator noise covariance 

intensity was: O.I /3  (ft-lb) and the attitude and rate sensor noise covariance intensity 

was 10- 1 0  diag (0.25, 0.25, 2.5) [rad/sec and (rad/sec)2 respectively]. The optimal 

value of J  was 0.6036, and the closed-loop eigenvalues for the design model and 

the 12th-order controller are shown in Table 6.3. A dynamic dissipative controller 

consisting of three second-order blocks as in Eq. 3.22 was next designed. Using the 

transformation of Theorem 3.3 with L  =  [7 ,-, £,-]r  for K i(s), each K i(s) can be realized 

as a strictly proper controller:

Xki  =
0 1

Xki  +
-Qfoi -Q fij

'Hi yPi T" ^pi
Poili "I" yri T Wri

u  =  ( t i j ,  « 2 , U3) T ; Ui =  ( f a  -  a oi) x ki
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Fig. 6.10 Hoop/column antenna concept
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0.75
1.35
1.70
3.18
4.53
5.59
5.78 
6.84 
7.40
8.78

Table 6.2 First 10 natural frequencies

-0.0035+0.0194i 
-0.0183+ 0.0458i 
-0.0160 + 0.0502i 
-0.3419+0.5913i 
-0.7179+ 0.6428i 
-0.8479+0.5653i 
-0.6482+ 1.6451i 
-0.4536+ 2.1473i 
-0.3764 + 2.5522i

Table 6.3 Closed-loop eigenvalues for dynamic dissipative controller
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The constraints to be satisfied are Eq. 3.24, and that a 0;, ai,-, /?oi, A i are positive 

(i=l,2,3). Thus there are 18 design variables for this sixth-order compensater. The 

performance function in Eq. 6.3 can be computed by solving the steady-state covari

ance equation for the closed-loop state equation for the plant and the controller. A 

dynamic dissipative controller (DDC) was designed by performing numerical min

imization of the performance function with respect to the 18 design variables. In 

order to ensure a reasonable transient response, an additional constraint is imposed, 

that the real parts of the closed-loop eigenvalues be not greater than -0.0035.

6.3.1 R esults

Table 6.3 shows the resulting closed-loop eigenvalues. Although the value of J for the 

DDC was 1.2674 (about twice that for the LQG controller), the closed-loop eigenval

ues indicate good performance. Furthermore, the LQG controller, which was based 

on the first six modes, caused instability when higher modes were included in the 

’’evaluation” model, whereas the DDC has guaranteed stability in the presence of 

higher modes as well as parametric uncertainties.
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Chapter 7

CONCLUSIONS AND FUTURE 
RESEARCH

7.1 Introduction

In this chapter, the principal results of this dissertation are summarized. Some conclu

sions about the stability results for static and dynamic dissipative compensators are 

presented and their significance is given. The chapter concludes with the suggestions 

for the future work which needs to be done in the related area.

7.2 Comments on Dynamic Modeling

The derivation of the dynamical equations of motion, given in chapter 2, is very 

general, i.e., any open-chained multibody, nonlinear, flexible system can be modeled 

by following the same methodology. Although the derivation of potential energy 

expression assumed that the system potential energy has contribution only from the 

elastic motion, any other form of potential energy can also be added in a similar 

manner. There are no specific assumptions regarding the geometrical aspects of the 

members. The flexibility is incorporated by using assumed modes method, however, 

any other technique for modeling flexibility can also be incorporated.
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In summary, the mathematical model has been developed in a very compact 

form and is applicable to a wide class of multibody systems.

7.3 Stability W ith SDC

In chapter 4, it is proved that, nonlinear, multibody, flexible space structures exhibit 

global asymptotic stability under static dissipative control. The stability was shown 

to be robust not only to the modeling errors and parametric uncertainties, but also to 

a wide class of nonlinearities in the actuators and sensors. This result has a significant 

practical value since the mathematical models of the system usually have substantial 

inaccuracies, and the actuation and sensing devices available are not perfect. In other 

words, under certain conditions, with static dissipative controller, one can reposition 

any articulated payload on the space structure with guaranteed stability, even with 

imperfect actuators and sensors, as long as the conditions of the theorem are satisfied. 

It is also shown that in the case of deadzone type actuator nonlinearity, although 

the system trajectories do not go the equilibrium state asymptotically, they remain 

bounded in a compact region in the neighborhood of equilibrium point. This result 

is also very important since the deadzone type nonlinearities are very common and 

the controller design should at least assure that the system trajectories do not go 

unbounded. The numerical example given in chapter 6  validates some of the results.

7.4 Stability W ith DDC

The stability results obtained in chapter 4 for static dissipative controllers were ex

tended to a more versatile class of controllers called dynamic dissipative controllers. 

These controllers are basically linear dynamic controllers satisfying certain dissipa- 

tivity constraints. The result, that the dynamic dissipative controller can provide 

asymptotic stability to a nonlinear, multibody system, has significant practical value. 

The advantage of using dynamic dissipative controllers over the static dissipative type
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is that the control designer has more design freedom which can be used for perfor

mance enhancement. For linear systems, these controllers are shown to give either 

equally good or better performance [33] than any other controller. In the case of 

nonlinear systems, however, other control techniques, such as, LQG, LQG/LTR, Hoo, 

^-synthesis, etc., are not applicable (at least till now) to these systems and therefore, 

at present, the dissipative compensators seem to be the only potential candidates for 

nonlinear systems. In view of this, the theoretical developments done in chapters 

4 and 5 are very instrumental in the control of nonlinear, multibody systems. The 

next section gives further enhancements that are needed to be done in this area and 

possible avenues that can be taken.

7.5 Future Research

The work presented in this dissertation suggests several problems for future investi

gation.

The most important one being the synthesis methods for both static and 

dynamic dissipative controllers. The synthesis of dynamic disspative compensators 

is very difficult even in the case of linear systems. In the case of linear systems, 

the performance function is well-defined and some systematic design procedure seems 

possible. However, in the case of nonlinear systems there is no systematic procedure 

known to design the controller. In view of this it seems that the synthesis of dissipative 

controllers for nonlinear systems is a challenging problem and offers a good poten

tial for future research. Apart from synthesis procedure, some more enhancements 

are needed to the robust stability results to incorporate: i) certain imperfections in 

the collocation of actuators/sensors, ii) actuator dynamics in the case of dynamic 

dissipative controllers.

Another area for research is the use of nonlinear controllers in the dissi

pative framework. The theoretical development done in the area of passivity-based
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controllers could be extended to include nonlinear controllers. Although it seems to 

be a very difficult task at present, it has a good potential for research.

In the case of spacecraft with articulated payloads, in particular, the robotic 

manipulators, some manipulator tasks may require tracking of certain trajectory, 

which is another potential problem for investigation. For the rigid robots this problem 

has been addressed by many researchers and continued research is being done. In the 

case of flexible manipulators, however, this problem is still not solved.

There are several other interesting topics, such as combined active and pas

sive control using passive damping techniques, neural network controllers, etc., that 

are worthy of investigation.
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APPENDIX A

Rotation Transformation Matrices

A 3 x 3 rotation matrix can be defined as a transformation matrix which 

operates on a vector in a three-dimensional euclidean space and maps its coordinates 

expressed in a rotated coordinate system to a reference coordinate system. Figure 

A.l shows a reference coordinate system, O X Y Z , and the rotated coordinate sys- 

tem(for example, a body fixed coordinate system), O X "Y "Z " . Let the orientation of 

O X "Y "Z "  be obtained by following sequence of rotations of O X Y Z :

i) rotate by angle 0 about OZ

ii) rotate by angle 6 about new y axis

iii) rotate by angle 0  about new x  axis

Then, corresponding rotation matrices are given by

Rz.tb —

<70 -S(j> 0 
S(j) C<j> 0 

0  0  1

‘  c e  0 S0
R y,e — 0 1 0

i
1 Co O c e

1 0 0
R x,4> ~ 0 Cil> -Sil>

0 Si/) <70
and the composite rotation matrix is given by

R$,8,tjj  —  Rz,4>Ry,6Rx,il
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c<i)Ce c<f>S6Sxj) -  s<j>Cxi) c < t > s e c +  s<j>s^ '

S<t>S0 S(j>S6S^ + C(t>Ci) S(j)SdC ^-C 4> S^  (A.l) 
- S 6  COSip COCi!> \

A .l Properties o f Rotation Matrices

Several useful properties of rotation matrices are given below.

1. Each column vector of rotation matrix is a representation of the rotated axis unit 

vector expressed in terms of the axis unit vectors of the reference frame, and each 

row vector is a representation of the axis unit vector of the reference frame expressed 

in terms of the rotated axis unit vectors of the O X "Y "Z "  frame.

2. The determinant of a rotation matrix is +1 for a right-handed coordinate system 

and -1  for a left-handed coordinate system.

3. Since each row is a vector representation of orthonormal vectors, the inner product 

of each row with each other row equals zero. Same thing holds for columns.

4. The inverse of a rotation matrix is the transpose of the rotation matrix, i.e.

R - 1 = R t and R R t = I3 

where, / 3 is a 3 x 3 identity matrix.
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APPENDIX B 

NASTRAN Data Files for Arms

NASTRAN FILES=(D B01)

ID  CLASS IV  GENERIC MODEL 

APP DISP 

SOL 3 

TIME 5000

COMPILE DMAP=S0L3, S0UIN=MSCS0U 

ALTER 24

0UTPUT2 GPL,BGPDT,, , / / - l / 2 1  

ALTER 26

0UTPUT2 E C T ,, , , / / 0 / 2 1  

ALTER 73

0UTPUT4 MGG,, , , / / - l / 2 2  

0UTPUT4 , , , , / / - 2 / 2 2  

0UTPUT2 OGPWG,, , , / / 0 / 2 1  

$ ALTER 406

$ 0UTPUT2 L A M A , , , , / / - 1 / 5 1  

$ 0UTPUT2,, , , / / - 9 / 5 1  

ALTER 416

89
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0UTPUT2 LAM A,, , , / / 0 / 2 1  

ALTER 439 

$ 0UTPUT2 0UGV1,, , , / / - l / 5 2  

$ 0UTPUT2,, ,  , / / - 9 / 5 2  

0UTPUT2 QUGV1,, , , / / 0 / 2 1  

0UTPUT2,, , , / / - 9 / 2 1  

ALTER 100

0UTPUT4 KGG,, , , / / - l / 2 3  

0UTPUT4 , , , , / / - 2 / 2 3  

ENDALTER 

CEND

TITLE= GENERATION OF DADS FLEXIBLE INPUT 

SUBTITLE= ELEMENT : ARM 1 

OUTPUT 

LINES = 40 

SUBCASE 1 

METHOD = 1 

DISP = ALL 

SPC = 100 

BEGIN BULK

PARAM GRDPNT 0

MAT1,2 0 1 ,1 .0 E + 0 7 ,, 0 . 3 3 , 4 . 1 4 E -0 4 , 0 .

E IG R ,1 ,S IN V ,0 .0 ,1 0 0 .0 ,6 ,2 , , , + e ig r l

+ e ig r l ,m a s s

SPC1, 100 , 123456, 1

GRID, 1 , , 0 . ,  0 . ,  0 .

GRID, 2 , , 5 . ,  0 . ,  0 .
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GRID, 3 , , 1 0 . ,  0 . ,  0 .

GRID, 4 ,  , 1 5 . ,  0 . ,  0 .

GRID, 5 , , 2 0 . ,  0 . ,  0 .

GRID, 6 , , 2 5 . ,  0 . ,  0 .

GRID, 7 , , 3 0 . ,  0 . ,  0 .

GRID, 8 , , 3 5 . ,  0 . ,  0 .

GRID, 9 , , 4 0 . ,  0 . ,  0 .

G R ID ,10 , , 4 5 . ,  0 . ,  0 .

G R ID ,11, , 5 0 . ,  0 . ,  0 .

CBAR, 1 , 102 , 1 , 2 , 1 . ,  0 . ,  1.

CBAR, 2 , 102 , 2 , 3 , 1 . ,  0 . ,  1.

CBAR, 3 , 102 , 3 ,  4 ,  1 . ,  0 . ,  1.

CBAR, 4 , 10 2 , 4 ,  5 , 1 . ,  0 . ,  1.

CBAR, 5 , 102 , 5 , 6 , 1 . ,  0 . ,  1.

CBAR, 6 , 102 , 6 , 7 ,  1 . ,  0 . ,  1.

CBAR, 7 , 102 , 7 , 8 , 1 . ,  0 . ,  1.

CBAR, 8 , 102 , 8 ,  9 , 1 . ,  0 . ,  1.

CBAR, 9 , 102 , 9 ,1 0 ,  1 . ,  0 . ,  1.

CBAR,10, 1 0 2 ,1 0 ,1 1 , 1 . ,  0 . ,  1.

PBAR,1 0 2 ,2 0 1 ,0 .786E+00, 0 . 786E+00, 1 . 57E+00, ,  0 . 

ENDDATA
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APPENDIX C

NASTRAN Data File for Central 
Truss

NASTRAN F ILES=(D B01)

ID  CLASS IV  GENERIC MODEL 

APP DISP 

SOL 3 

TIME 5000

COMPILE DMAP=S0L3, S0UIN=MSCS0U 

ALTER 24

0UTPUT2 GPL,BGPDT, , , / / - ! / 1 1  

ALTER 26

0UTPUT2 E C T ,, , , / / 0 / l l  

ALTER 73

0UTPUT4 MGG,, , , / / —1 /1 2  

0UTPUT4 , , , , / / " 2 / 1 2  

0UTPUT2 OGPWG,, , , / / 0 / l l  

ALTER 406

0UTPUT2 LAM A,, , , / / - l / 5 1

92
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0UTPUT2,, , , / / —9 /5 1  

ALTER 416

0UTPUT2 LAM A,, , ,1/0/11  

ALTER 439

0UTPUT2 0UGV1, , , , / / - 1 / 5 2  

0UTPUT2,, , , / / - 9 / 5 2  

0UTPUT2 OUGV1, , , , / / 0 / 1 1  

0UTPUT2,, , , / / - 9 / l l  

ALTER 100

0UTPUT4 KGG,, , , / / - l / 1 3  

0UTPUT4 , , , , / / - 2 / 1 3  

ENDALTER 

CEND

TITLE= GENERATION OF DADS FLEXIBLE INPUT 

SUBTITLE= ELEMENT : MAIN TRUSS 

OUTPUT 

LINES = 40 

SUBCASE 1 

METHOD = 1 

DISP = ALL 

SPC = 100 

BEGIN BULK

PARAM GRDPNT 0

MAT1, 201 , 1 . 0E+07 , , 0 . 3 3 , 4 . 1 4 E -0 4 , 0 .

E IG R ,1 ,S IN V ,0 . 0 , 1 0 0 . 0 , , 3 2 , , , + e ig r l

+ e ig r l ,m a s s

SUP0RT,42,456
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SPC1,1 0 0 ,1 2 3 ,4 6  

GRID, 1 , , 0 . ,  0 . ,  0 . 

GRID, 5 , , 1 0 . ,  0 . ,  0 . 

GRID, 9 , , 2 0 . ,  0 . ,  0 .

GRID 13, , 3 0 . ,  0 . ,  0 .

GRID 17, , 4 0 . ,  0 . ,  0 .

GRID 21 , , 5 0 . ,  0 . ,  0 .

GRID 25 , , 6 0 . ,  0 . , 0 .

GRID 29 , , 7 0 . ,  0 , 0 .

GRID 3 3 , , 8 0 . ,  0 . , 0 .

GRID 3 7 , , 9 0 . ,  0 . ,  0 .

GRID 4 1 , , 1 0 0 .,  0 . ,  0

GRID 2 , , 0 . ,  1 0 . ,  0 .

GRID 6 , , 1 0 . ,  1 0 . ,  0 .

GRID 10, to o O O

GRID 14, , 3 0 . ,  1 0 . ,  0

GRID 18, o O o

GRID 2 2 ,

ooHo10

GRID 2 6 , , 6 0 . ,  1 0 . ,  0

GRID 3 0 ,

OoHoh
-

GRID 3 4 ,

oorHO00

GRID 3 8 , CO o 1—
k 

o o

GRID 4 2 , , 1 0 0 .,  1 0 . ,

GRID, 3 , , 0 . , 1 0 . , - 1 0 .  

GRID, 7 ,  , 1 0 . , 1 0 . , - 1 0 .  

GRID, 11 , , 2 0 . , 1 0 . , - 1 0 .  

GRID, 15 , , 3 0 . , 1 0 . , - 1 0 .
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GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

19, , 4 0 . , 1 0 . , -1 0 .

2 3 , , 50 . , 1 0 . , - 1 0 .

2 7 , , 60 . , 1 0 . , - 1 0 .

3 1 , , 7 0 . , 1 0 . , - 1 0 .

3 5 , , 8 0 . , 1 0 . , - 1 0 .

CO CO , 9 0 . , 1 0 . , - 1 0 .

4 3 , , 100 . ,1 0 . , - 1 0 .

4 , , o . , 0 . ,  - 10 .

8 , , 1 0 . , 0 . , - 1 0 .

1-̂ to , 20 . , o . , -1 0 .

1 6 , , 3 0 . , o . , - 1 0 .

20 , , 4 0 . , o . , - 1 0 .

2 4 , , 50 . , o . , - 1 0 .

28 , , 60 . , o. , - 1 0 .

3 2 , , 70 . , o . , - 1 0 .

CDCO , 80 . , o. , - 1 0 .

4 0 , , 90 . , o. , - 1 0 .

4 4 , , 100 . ,  0 . , -1 0

4 5 , , 100 . ,  5 . , 0 .

4 6 , , 50 . , 5 . , - 5 .

1 , 101 , 1 , 2 , 0 . ,  1

2 , 101 , 2 , 3, 0 . ,  1

3, 1 0 1 ,3 , 4 ,  0 • > 1 .

4, 1 0 1 ,4 , 1 , o • 1 •

5 , 1 0 1 ,5 , 6 , 0 • 9 •

6 , 1 0 1 ,6 , 7 ,  0 • > •

7, 1 0 1 ,7 , 8 , 0 • 9 *
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CBAR, 8 , 101, 8 , 5 ,  0 . ,  1. , 1 •

CBAR, 9 , 101, 9 , 1 0 , 0 . ,  1 * » 1.

CBAR, 10, 101 , 1 0 , 11 , 0 . 9 * , 1.

CBAR, 11 101 1 1 , 12 , 0 . 9 * , 1 .

CBAR, 12 101 1 2 , 9 , 0 . , 1. 1.

CBAR, 13 101 1 3 , 14 , 0 . 9 9 •

CBAR, 14 101 14 , 15 , 0 . 9 * 9 * •

CBAR, 15 101 1 5 , 16 , 0 . 9 **■ 9 + •

CBAR, 16 101 16 , 13 , 0 . 9 * 9 •

CBAR, 17 101 1 7 , 18 , 0 . 9 * 9 •

CBAR, 18 101 1 8 , 19 , 0 . 9 9 * •

CBAR, 19 101 1 9 , 2 0 , 0 . 9 9 •

CBAR, 20 101 2 0 , 17 , 0 . , 1 . 1 .

CBAR, 21 101 2 1 , 2 2 , 0 . . 1 , 1.

CBAR, 22 101 2 2 , 2 3 , 0 . , 1 . 1 .

CBAR, 23 101 2 3 , 2 4 , 0 . , 1 . 1 .

CBAR, 24 101 2 4 , 2 1 , 0 . , 1. 1 .

CBAR, 25 101 2 5 , 2 6 , 0 . , 1 . 1 .

CBAR, 26 101 2 6 , 2 7 , 0 . , 1 . 1 .

CBAR, 27 101 2 7 , 2 8 , 0 . , 1. 1 .

CBAR, 28 101 2 8 , 2 5 , 0 . , 1 . 1 .

CBAR, 29 101 2 9 , 3 0 , 0 . , 1. 1 .

CBAR, 30 101 3 0 , 3 1 , 0 . , 1 . 1 .

CBAR, 31 101 3 1 , 3 2 , 0 . , 1 , 1.

CBAR, 32 101 3 2 , 2 9 , 0 . ,

CBAR, 33 101 3 3 , 3 4 , 0 . , 1 •

CBAR, 34 101 3 4 , 3 5 , 0 . ,
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CBAR, 3 5 , 101 3 5 , 3 6 , 0 . ,  1 . ,  1.

CBAR, 3 6 , 101 3 6 , 3 3 , 0 . ,  1 . ,  1.

CBAR, 3 7 , 101 3 7 , 3 8 , 0 . ,  1 . ,  1 .

CBAR, 3 8 , 101 38 , 3 9 , 0 . ,  1 . ,  1 .

CBAR, 3 9 , 101 3 9 , 4 0 , 0 . ,  1 . ,  1.

CBAR, 4 0 , 101 4 0 , 3 7 , 0 . ,  1 . ,  1.

CBAR, 4 1 , 101 4 1 , 4 5 , 0 . ,  1 . ,  1

CBAR, 4 2 , 101 4 2 , 4 3 , 0 . ,  1 . ,  1.

CBAR, 4 3 , 101 4 3 , 4 4 , 0 . ,  1 . ,  1.

CBAR, 4 4 , 101 4 4 , 4 1 , 0 . ,  1 . ,  1.

CBAR, 4 5 , 101 2 , 6 , 1 . ,  1 . ,  0 .

CBAR, 4 6 , 101 6 ,1 0 ,  1 . ,  1 . ,  0 .

CBAR, 4 7 , 101 10 , 14 , 1 . ,  1 . ,  0

CBAR, 4 8 , 101 14, 18 , 1 . ,  1 . ,  0

CBAR, 4 9 , 101 18, 2 2 , 1 . ,  1 . ,  0

CBAR, 5 0 , 101 22 , 26 , 1 . ,  1 . ,  0 .

CBAR, 5 1 , 101 26 , 3 0 , 1 . ,  1 . ,  0

CBAR, 5 2 , 101 3 0 , 3 4 , 1 . ,  1 . ,  0 .

CBAR, 5 3 , 101 3 4 , 3 8 , 1 . ,  1 . ,  0 .

CBAR, 5 4 , 101 3 8 , 4 2 , 1 . ,  1 . ,  0 .

CBAR, 5 5 , 101 3 , 7 , 1 . ,  1 . ,  0 .

CBAR, 5 6 , 101 7 , 11 , 1 . ,  1 . ,  0 .

CBAR, 5 7 , 101 11, 15 , 1 . ,  1 . ,  0

CBAR, 5 8 , 101 15, 19 , 1 . ,  1 . ,  0

CBAR, 5 9 , 101 19, 23 , 1 . ,  1 . ,  0

CBAR, 6 0 , 101 2 3 , 2 7 , 1 . ,  1 . ,  0 .

CBAR, 6 1 , 101 27, 3 1 , 1 . ,  1 . ,  0
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CBAR, 62, 101 3 1 , 3 5 , 1 . , 1. , 0 .

CBAR, 63, 101 3 5 , 39 , 1 . , 1. , 0 .

CBAR, 64, 101 3 9 , 4 3 , 1 . , 1. , 0 .

CBAR, 65, 101 4 , 8 , 1 . ,  1 ♦ 0.

CBAR, 66, 101 8 , 12, 1 . , 1 . , 0 .

CBAR, 67, 101 12 , 16 , 1 . , 1 . ,  0

CBAR, 68, 101 16 , 20 , 1. , 1 . ,  0

CBAR, 69, 101 2 0 , 24 , 1 . , 1. , 0 .

CBAR, 70, 101 2 4 , 28 , 1 . , 1. ,  0 .

CBAR, 71, 101 28 , 32 , 1. , 1 . ,  0

CBAR, 72 , 101 3 2 , 36 , 1 . , 1. , 0 .

CBAR, 73, 101 3 6 , 4 0 , 1 . , 1. , 0 .

CBAR, 74, 101 4 0 , 4 4 , 1 . , 1. , 0 .

CBAR, 75 , 101 1 , 5 , 1 . , 1 . , 0 .

CBAR, 76, 101 5 , 9 , 1 . ,  1 • 0 .

CBAR, 77 , 101 9 , 13, 1 . , 1 . , 0 .

CBAR, 78, 101 13 , 17 , 1. , 1 . ,  0

CBAR, 79 , 101 17 , 21 , 1. , 1 . ,  0

CBAR, 80, 101 2 1 , 2 5 , 1 . , 1. , 0 .

CBAR, 81 , 101 2 5 , 29 , 1. , 1 . ,  0

CBAR, 82 , 101 2 9 , 33 , 1 . , 1. , 0 .

CBAR, 83, 101 3 3 , 3 7 , 1 . . 1. ,  0 .

CBAR, 84 , 101 3 7 , 4 1 , 1 . , 1. , 0 .

CBAR, 85 , 101 45, 4 2 , 0 . , 1. , 1.

CBAR, 86 , 101 2 1 , 4 6 , 0 . , 0 . , 1.

CBAR, 87 , 101 2 2 , 4 6 , 0 . , 0 . , 1.

CBAR, 88 , 101 2 3 , 4 6 , 0 . , 0 . , 1 .
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99

CBAR, 89 , 101, 2 4 , 4 6 , C) . ,  0 . ,  1.

$ B a tt ens

CBAR, 90 , 101 , 3 , 6 , 0 , 0 . ,  1.

CBAR, 91 , 101, 6 , 11, 0 . ,  0 . ,  1.

CBAR, 92, 101, 1 1 , 14, 0 . ,  0 . ,  1.

CBAR, 93 , 101, 14 , 19, 0 . ,  0 . ,  1.

CBAR, 94 , 101, 1 9 , 22 , 0 . ,  0 . ,  1.

CBAR, 95, 101, 2 2 , 2 7 , 0 . ,  0 . ,  1.

CBAR, 96 , 101, 2 7 , 3 0 , 0 . ,  0 . ,  1.

CBAR, 97, 101, 3 0 , 3 5 , 0 . ,  0 . ,  1.

CBAR, 98 , 101, 3 5 , 3 8 , 0 . ,  0 . ,  1.

CBAR, 99 , 101, 3 8 , 4 3 , 0 . ,  0 . ,  1.

CBAR, 100, 101 , 1 , 8 , 0 . ,  0 . ,  1.

CBAR, 101, 101 8 , 9 , 0 . ,  0 . ,  1.

CBAR, 102, 101 9 , 16, 0 . ,  0 . ,  1.

CBAR, 103, 101 16 , 17, 0 . ,  0 . ,  1.

CBAR, 104, 101 17 , 24 , 0 . ,  0 . ,  1.

CBAR, 105, 101 24 , 2 5 , 0 . ,  0 . ,  1.

CBAR, 106, 101 25 , 3 2 , 0 . ,  0 . ,  1.

CBAR, 107, 101 32 , 3 3 , 0 . ,  0 . ,  1.

CBAR, 108, 101 33 , 4 0 , 0 . ,  0 . ,  1.

CBAR, 109, 101 40 , 4 1 , 0 . ,  0 . ,  1.

CBAR, 110, 101 1 , 6 , 0 . ,  1 . ,  0 .

CBAR, 111, 101 6 , 9 , 0 . ,  1 . ,  0 .

CBAR, 112, 101 9 , 14, 0 . ,  1 . ,  0 .

CBAR, 113, 101 14 , 17 , 0 . ,  1 . ,  0 .

CBAR, 114, 101 17 , 2 2 , 0 . ,  1 . ,  0 .
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CBAR, 115, 101 2 2 , 2 5 , 0 . ,  1 . , 0 .

CBAR, 116, 101 2 5 , 3 0 , o . ,  i . , 0 .

CBAR, 117, 101 3 0 , 3 3 , o . ,  i . , 0 .

CBAR, 118, 101 3 3 , 3 8 , 0 . ,  1 . , 0 .

CBAR, 119, 101 3 8 , 4 1 , 0 . ,  1 . , 0 .

CBAR, 120, 101 3 , 8 ,  0 . ,  1 . ,  0 •

CBAR, 121, 101 8 , 11 , 0 . ,  1 . , 0 .

CBAR, 122, 101 11, 1 6 , o . ,  1 . , 0 .

CBAR, 123, 101 16, 19 , o . ,  1 . , 0 .

CBAR, 124, 101 19, 2 4 , 0 . ,  1 . , 0 .

CBAR, 125, 101 24 , 2 7 , o . ,  1 . , 0 .

CBAR, 126, 101 27 , 3 2 , 0 . ,  1 . , 0 .

CBAR, 127, 101 3 2 , 3 5 , 0 . ,  1 . , 0 .

CBAR, 128, 101 35 , 4 0 , o . ,  i . , 0 .

CBAR, 129, 101 4 0 , 4 3 , 0 . ,  1 . , 0 .

$ D ia g o n a ls

CBAR, 130, 101 1, 3 ,  0 . ,  1 . ,  0

CBAR, 131, 101 9 , U , 0 . ,  1 . ,  0 .

CBAR, 132, 101 17, 19 , 0 . ,  1 . , 0 .

CBAR, 133, 101 2 5 , 2 7 , 0 . ,  1 . , 0 .

CBAR, 134, 101 3 3 , 3 5 , 0 . ,  1 . , 0 .

CBAR, 135, 101 4 1 , 4 3 , 0 . ,  1 . , 0 .

CBAR, 136, 101 6 , 8 ,  0 1 . ,  0

CBAR, 137, 101 14, 16 , 0 . ,  1 . , 0 .

CBAR, 138, 101 3 0 , 3 2 , 0 . ,  1 . , 0 .

CBAR, 139, 101 3 8 , 4 0 , 0 . ,  1 . , 0 .
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$MPC, 100 , 4 5 , 1 , 1 .0 ,  4 6 , 1 , - 1 . 0

$MPC, 100 , 4 5 , 2 , 1 .0 ,  4 6 , 2 , - 1 .0

$MPC, 100 , 4 5 , 3 ,  1 .0 ,  4 6 , 3 , - 1 . 0

$MPC, 100 , 4 7 , 1 , 1 .0 ,  4 8 , 1 , - 1 . 0

$MPC, 100 , 4 7 , 2 , 1 .0 ,  4 8 , 2 , - 1 . 0

$MPC, 100 , 4 7 , 3 , 1 .0 ,  4 8 , 3 , - 1 . 0

P B A R ,1 0 1 ,2 0 1 ,0 .1 9 6 E + 0 0 ,4 .9 E -0 2 ,4 .9 E -0 2 ,,0 .0

$PBAR,1 0 2 ,2 0 1 , .7 0 0 0 0 0 0 E + 0 0 ,.0 3 8 9 9 2 9 E -0 0 ,.0 3 8 9 9 2 9 E -0 0 ,, . 1520115E-01 

ENDDATA
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APPENDIX D 

DADS Verbose File for the Model

ANALYSIS

CREATE SYSTEM.DATA 

UNITS

ANALYSIS.TYPE 

STARTING.TIME 

ENDING.TIME 

PRINT.INTERVAL 

GRAVITY.SEA.LEVEL 

X.GRAVITY 

Y.GRAVITY 

Z.GRAVITY 

SCALE.GRAVITY.COEF 

MATRIX.OPERATIONS 

REDUNDANCY.CHECK 

LU.TOL

ASSEMBLY.TOL 

BYPASS.ASSEMBLY 

OUTPUT.FILE

:=  ' INCHES'

= 'DYNAMIC' 

= ' 0 . 0 '

= '3 0 . 0 '

= '0 . 0 5 '

= '3 8 6 .0 8 8 ' 

= ' 0 . 0 '

=  ' 0 . 0 '

=  ' - 1 . 0 '

=  ' 0 . 0 '

= 'SPARSE'

= 'TRUE'

= ' 1 .0 D -1 2 ' 

= ' 2 . O D-3 '

= 'FALSE '

= 'BOTH'
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REFERENCE.FRAME 

DEBUG.FLAG

UP

CREATE DYNAMIC.DATA 

REACTION.FORCES 

FORCE.COORDINATES 

PRINT.METHOD 

MAX.INT.STEP 

SOLUTION.TOL 

INTEGRATION. TOL 

METHOD.INTEGRATION 

PRINT.FREQ

UP

UP

FORCE

CREATE RSDA 

NAME

JOINT.NAME 

ORIENTATION.ANGLE 

SPRING.CONSTANT 

DAMPING.COEFFICIENT 

ACTUATOR.TORqUE 

CURVE.SPRING 

CURVE.DAMPER 

CURVE.ACTUATOR 

ANGULAR.UNITS 

TYPE

:=  'LOCAL'

:=  'FALSE '

= 'FALSE '

= 'GLOBAL'

= 'INTERPOLATED' 

=  ' 0 . 0 5 '

=  ' 0 . 0 0 1 '

=  ' 0 . 0 0 0 1 '

= 'VARIABLE'

= ' 0 '

= 'RSDA1'

= ' REV1 '

=  ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= 'NONE'

= 'NONE'

= 'NONE'

= 'DEGREES'

= 'B ID IRECTIO NAL'
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UP

CREATE RSDA

NAME

JOINT.NAME 

ORIENTATION.ANGLE 

SPRING.CONSTANT 

DAMPING.COEFFICIENT 

ACTUATOR.TORqUE 

CURVE.SPRING 

CURVE.DAMPER 

CURVE.ACTUATOR 

ANGULAR.UNITS 

TYPE

UP

UP

JOINTS

CREATE BRACKET.JOINT 

NAME

BODY.1 .NAME 

BODY.2 . NAME 

P.ON.BODY.1 

P.ON.BODY.2 

q.O N.BO DY.1 

q.ON.BODY.2 

R.ON.BODY.1 

R.ON.BODY.2 

NODE.1

= 'RSDA2'

= 'REV2'

= ' 0 . 0 '

=  ’ 0 . 0 '

=  >0 . 0 '

= ' 0 . 0 '

= 'NONE'

= 'NONE'

= ’ NONE'

= ’DEGREES'

= ’BIDIRECTIONAL’

= 'B R A l'

= 'PHOCG'

= ’ PHASEO'

= ( 0 . 0 , 0 . 0 , 0 . 0  )

=  (  5 0 . 0 ,  5 . 0 ,  - 5 . 0  )  

= ( 0 . 0 , 0 . 0 , 1 . 0  )

=  (  5 0 . 0 ,  5 . 0 ,  - 4 . 0  )

= C 1.0, 0.0, 0.0 )

=  (  5 1 . 0 ,  5 . 0 ,  - 5 . 0  )  

= 'O’
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NODE.2

UP

CREATE B R A C K ET.JO IN T

NAME

BODY.1 .NAME 

BODY.2 . NAME 

P.ON.BODY.1 

P.ON.BODY.2 

Q.ON.BODY.1 

q.ON.BODY.2 
R.ON.BODY.1 

R.ON.BODY.2 

NODE.1 

NODE.2

UP

CREATE BRACKET.JOINT 

NAME

BODY.1 .NAME 

BODY.2 . NAME 

P.ON.BODY.1 

P.ON.BODY.2 

Q.ON.BODY.1 

q.ON.BODY.2 
R.ON.BODY.1 

R.ON.BODY.2 

NODE.1 

NODE.2

:=  >46’

= ' BRA2'

= 'PHASEO'

= 'BASE '

= ( 1 0 0 .0 ,  5 .0 ,  0 .0  ) 

= ( 0 , 0 , 0  )

= ( 1 0 0 .0 ,  5 .0 ,  1 .0  ) 

= C 0 , 0 , 1 )

= ( 1 0 1 .0 ,  5 .0 ,  0 .0  ) 

= ( 1 , 0 , 0  )

= >45’

= >0>

= ’BRA3’

= 'ARM IBS'

= 'ARM1’

= ( 0 . 0 , 0 . 0 , 0 . 0  )

= ( 0 , 0 , 0 . 0  )

= ( 0 . 0 , 0 . 0 , 1 . 0  )

= ( 1 . 0 , 0 , 0 . 0  )

= ( 1 . 0 , 0 . 0 , 0 . 0  )

= ( 0 , 0 , - 1. 0 )

= >Q>

= >1>
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UP

CREATE B R A C K ET.JO IN T

NAME

BODY.1 .NAME 

BODY.2 . NAME 

P.ON.BODY.1 

P.ON.BODY.2 

Q.ON.BODY.1 

q.ON.BODY.2 
R.ON.BODY.1 

R.ON.BODY.2 

NODE.1 

NODE.2

UP

CREATE BRACKET.JOINT 

NAME

BODY.1 .NAME 

BODY.2 . NAME 

P.ON.BODY.1 

P.ON.BODY.2 

q.ON.BODY.1 

q.ON.BODY.2 

R.ON.BODY.1 

R.ON.BODY.2 

NODE.1 

NODE.2

UP

= ' BRA4' 

= ' ARM1'

= 'ARM1 2 ' 

= (  5 0 .0 ,  

= ( 0 , 0 , 

= ( 5 1 .0 ,  

= ( 0 , 0 , 

= ( 5 0 .0 ,  

= C 1 , 0 , 

=  ' 1 1 '

= ' 0 '

= ' BRA5'

= ' ARM21'

= 'ARM2'

= ( 0 . 0 , 0 

= ( 0 , 0 , 

= ( 0 . 0 , 0 

= ( 0 , 0 , 

= ( 1 . 0 , 0 

= ( - 1 , 0 , 

= >0>

= ' 1 '

0 . 0 , 0 . 0  )

0  )

0 . 0 , 0 . 0  )

1 )

0 . 0 , - 1 . 0  ) 

0  )

. 0 , 0 . 0  )

0  )

. 0 , 1 . 0  )

- 1 )

. 0 , 0 . 0  )

0  )
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CREATE R EVO LU TE.JO IN T

NAME : = 'REV1'

BODY.1 .NAME : = 'BASE'

BODY.2 . NAME ; = 'ARM1BS'

P.ON.BODY.1 : = ( 0 .0 ,  0 .0 ,  0 .0  )

P.ON.BODY.2 : = ( 0 , 0 , 0 )

Q.ON.BODY.1 : = ( 0 , 1 , 0 )

Q.ON.BODY.2 : = ( 0 , - 1 ,  0 )

R.ON.BODY.1 : = ( 1 .0 ,  0 .0 ,  0 .0  )

R.ON.BODY.2 : = ( 1 , 0 , 0 )

NODE.1 : = 'O '

NODE.2 : = 'O '

SATE REVOLUTE.JOINT

NAME ; = ’ REV2'

BODY.1 .NAME : = 'ARM12'

BODY.2 . NAME : = ' ARM21'

P.ON.BODY.1 : = ( 0 , 0 , 0 )

P.ON.BODY.2 ; = C 0 , 0 , 0 )

q.ON.BODY.1 : = ( 0 , 1 , 0 )

q.ON.BODY.2 : = ( 0 , - 1 ,  0 )

R.ON.BODY.1 : = ( 1 , 0 , 0 )

R.ON.BODY.2 : = ( 1 , 0 , 0 )

NODE.1 : = ’ O'

NODE.2 . = 'O '

UP

UP
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CREATE BODY

NAME

CENTER.OF.GRAVITY 

TYPE.ANGULAR.COORD 

ANGLE.1 

ANGLE.2 

ANGLE. 3

FIXED.TO.GROUND 

MASS

INERTIA.XXL 

INERTIA.YYL 

IN E R TIA .ZZL 

INERTIA.XYL 

IN ER TIA .XZL 

INER TIA .YZL 

XG.FORCE 

YG.FORCE 

ZG.FORCE 

XL.TORQUE 

YL.TORQUE 

ZL.TORQUE 

CURVE.XGF 

CURVE.YGF 

CURVE.ZGF 

CURVE.XLT 

CURVE.YLT 

CURVE.ZLT

= ' PHASEO;

= ( - 5 0 .0 ,  - 5 . 0 ,  5 .0  ) 

= 'EULER'

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= 'FALSE '

= '0 .0 0 6 9 7 '

= '0 .1 1 6 '

= '5 . 8 7 '

= '5 . 8 7 '

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 .0 '

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= 'NONE'

= 'NONE'

= 'NONE'

= 'NONE'

= 'NONE'

= 'NONE'
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SIGN.EO 

ANGULAR.UNITS 

FLEXIBLE 

SUPERELEMENT

UP

CREATE BODY 

NAME

CENTER.OF.GRAVITY 

TYPE.ANGULAR.COORD 

ANGLE.1 

ANGLE.2 

ANGLE.3

FIXED.TO.GROUND 

MASS

INERTIA.XXL 

INERTIA.YYL 

IN ER TIA .ZZL 

INERTIA.XYL 

INER TIA .XZL 

IN ER TIA .YZL 

XG.FORCE 

YG.FORCE 

ZG.FORCE 

XL.TORQUE 

YL.TORQUE 

ZL.TORQUE 

CURVE.XGF

'P O S IT IV E '

'DEGREES'

'TRUE'

'FALSE'

'PHOCG'

( 0 , 0 , 0  ) 

EULER'

0 . 0 '

0 .0 '

0 . 0 '

FALSE'

0 . 0 0 0 1 '

0 . 0001 '

0 . 0001 '

0 . 0001 '

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '

0 .0 '

0 . 0 '

0 . 0 '

NONE'
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CURVE.YGF 

CURVE.ZGF 

CURVE.XLT 

CURVE.YLT 

CURVE.ZLT 

SIGN.EO 

ANGULAR.UNITS 

FLEXIBLE 

SUPERELEMENT

UP

CREATE BODY 

NAME

CENTER.OF.GRAVITY 

TYPE.ANGULAR.COORD 

ANGLE.1 

ANGLE.2 

ANGLE.3

FIXED.TO.GROUND 

MASS

INERTIA .XXL 

INERTIA .YYL 

IN ER TIA .ZZL 

INERTIA .XYL 

IN ER TIA .XZL 

INER TIA .YZL 

XG.FORCE 

YG.FORCE

'NONE'

'NONE'

'NONE’

'NONE'

'NONE1

'P O S IT IV E '

'DEGREES'

'FALSE'

= 'FALSE'

' ARM1'

( 5 0 , 0 , 5 ) 

EULER'

9 0 '

- 9 0 '

- 9 0 '

FALSE'

1 .6 3 E -0 2 '

3 .4 0 '

3 .4 0 '

0 .8 1 5 E -0 2 ' 

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '
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ZG.FORCE 

XL.TORQUE 

Y L . TORQUE 

ZL.TORQUE 

CURVE.XGF 

CURVE.YGF 

CURVE.ZGF 

CURVE.XLT 

CURVE.YLT 

CURVE.ZLT 

SIGN.EO 

ANGULAR.UNITS 

FLEXIBLE 

SUPERELEMENT

UP

CREATE BODY 

NAME

CENTER.OF.GRAVITY 

TYPE.ANGULAR.COORD 

ANGLE.1 

ANGLE.2 

ANGLE.3

FIXED.TO.GROUND 

MASS

INERTIA.XXL 

INERTIA.YYL 

IN ERTIA .ZZL

' O . O '

>0 . 0 '

' 0 . 0 '

' 0 . 0 '

'NONE'

'NONE'

'NONE'

'NONE'

'NONE'

'NONE'

'P O S IT IV E '

'DEGREES'

'TRUE'

'FALSE '

'ARM2'

( 5 0 , 0 , 55 ) 

'EULER'

'- 1 8 0 '

' - 1 8 0 '

' 0 '

'FALSE '

' 1 . 6 3 E -0 2 '

'0 .8 1 5 E -0 2 '

'3 . 4 0 '

'3 . 4 0 '
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INERTIA.XYL 

INERTIA .XZL 

INERTIA.YZL 

XG.FORCE 

YG.FORCE 

ZG.FORCE 

XL.TORQUE 

YL.TORQUE 

ZL.TORQUE 

CURVE.XGF 

CURVE.YGF 

CURVE.ZGF 

CURVE.XLT 

CURVE.YLT 

CURVE.ZLT 

SIGN.EO 

ANGULAR.UNITS 

FLEXIBLE 

SUPERELEMENT

UP

CREATE BODY 

NAME

CENTER.OF.GRAVITY 

TYPE.ANGULAR.COORD 

ANGLE.1 

ANGLE.2 

ANGLE.3

' O . O '

' O . O '

'O.O'

'O.O'

’O.O’

’0 . 0 ’

' O . O '

’0 . 0 '

’ O.O'

'NONE'

'NONE'

’ NONE'

’ NONE’

’ NONE’

'NONE'

’ PO SIT IVE '

’ DEGREES’

’ TRUE’

’ FALSE’

'BASE’

( 50, 0,  5 ) 

’ EULER’

’0 . 0 ’

’0 . 0 ’

’0 . 0 ’
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FIXED.TO.GROUND 

MASS

INERTIA.XXL 

INERTIA.YYL 

INERTIA .ZZL 

INERTIA.XYL 

INERTIA.XZL 

INERTIA.YZL 

XG.FORCE 

YG.FORCE 

ZG.FORCE 

XL.TORQUE 

Y L . TORQUE 

Z L . TORQUE 

CURVE.XGF 

CURVE.YGF 

CURVE.ZGF 

CURVE.XLT 

CURVE.YLT 

CURVE.ZLT 

SIGN.EO 

ANGULAR.UNITS 

FLEXIBLE 

SUPERELEMENT

UP

CREATE BODY 

NAME

FALSE'

O.OOOl'

0 . 0 0 0 1 '

0 . 0001 '

0 . 0 0 0 1 '

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '

0 . 0 '

NONE'

NONE'

NONE'

NONE'

NONE'

NONE’

PO SITIVE '

DEGREES'

FALSE'

FALSE'

ARM1BS’
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CENTER.OF.GRAVITY 

TYPE.ANGULAR.COORD 

ANGLE.1 

ANGLE.2 

ANGLE.3

FIXED.TO.GROUND 

MASS

INERTIA.XXL 

INERTIA.YYL 

IN ER TIA .ZZL 

INERTIA.XYL 

INERTIA.XZL 

INERTIA .YZL 

XG.FORCE 

YG.FORCE 

ZG.FORCE 

XL.TORQUE 

YL.TORQUE 

ZL.TORQUE 

CURVE.XGF 

CURVE.YGF 

CURVE.ZGF 

CURVE.XLT 

CURVE.YLT 

CURVE.ZLT 

SIGN.EO 

ANGULAR.UNITS

:= ( 50, 0, 5 ) 

EULER'

0 . 0 '

0 . 0 '

0 . 0 '

FALSE' 

0 . 0 0 0 1 ' 

0 . 0 0 0 1 ' 

0 . 0 0 0 1 ' 

0 . 0 0 0 1 '

0 . 0 '

0 . 0  

0 . 0  

0 . 0  

0 . 0  

0 .0  

0 . 0  

0 . 0  

0 . 0 '

NONE'

NONE'

NONE'

NONE'

NONE'

NONE' 

PO SIT IVE ' 

DEGREES'
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FLEXIBLE

SUPERELEMENT

UP

CREATE BODY 

NAME

CENTER.OF.GRAVITY 

TYPE.ANGULAR.COORD 

ANGLE.1 

ANGLE.2 

ANGLE.3

FIXED.TO.GROUND 

MASS

INERTIA .XXL 

INERTIA .YYL 

IN E R TIA .ZZL 

INERTIA .XYL 

IN ER TIA .XZL 

IN ER TIA .YZL 

XG.FORCE 

YG.FORCE 

ZG.FORCE 

XL.TORQUE 

YL.TORQUE 

ZL.TORQUE 

CURVE.XGF 

CURVE.YGF 

CURVE.ZGF

:=  'FALSE '

:=  'FALSE '

= 'ARM12'

= ( 50, 0, 55 ) 

= 'EULER'

=  ' 0 . 0 '

=  ' 0 . 0 '

=  ' 0 . 0 '

= 'FALSE '

=  ' 0 . 0 0 0 1 '

=  ' 0 . 0 0 0 1 '

=  ' 0 . 0 0 0 1 '

=  ' 0 . 0 0 0 1 '

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

=  ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= ' 0 . 0 '

= 'NONE'

= 'NONE'

= 'NONE'
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CURVE.XLT 

CURVE.YLT 

CURVE.ZLT 

SIGN.EO 

ANGULAR.UNITS 

FLEXIBLE 

SUPERELEMENT

UP

CREATE BODY 

NAME

CENTER.OF.GRAVITY 

TYPE.ANGULAR.COORD 

ANGLE.1 

ANGLE.2  

ANGLE.3

FIXED.TO.GROUND 

MASS

INERTIA.XXL 

INERTIA.YYL 

IN E R TIA .ZZL 

INER TIA .XYL 

IN ER TIA .XZL 

IN ER TIA .YZL 

XG.FORCE 

YG.FORCE 

ZG.FORCE 

XL.TORQUE

'NONE*

'NONE'

'NONE'

'P O S IT IV E '

'DEGREES'

'FALSE '

'FALSE '

'ARM21'

(  5 0 , 0 , 55 ) 

'EULER'

' 0 . 0 '

' 0 . 0 '

' 0 . 0 '

'FA LS E '

' 0 . 0001 '

' 0 . 0 0 0 1 '

' 0 . 0 0 0 1 '

' 0 . 0001 '

' 0 . 0 '

' 0 . 0 '

' 0 . 0 '

' 0 . 0 '

' 0 . 0 '

' 0 . 0 '

' 0 . 0 '
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YL.TORQUE 

Z L . TORQUE 

CURVE.XGF 

CURVE.YGF 

CURVE.ZGF 

CURVE.XLT 

CURVE.YLT 

CURVE.ZLT 

SIGN.EO 

ANGULAR.UNITS 

FLEXIBLE 

SUPERELEMENT

UP

CREATE FLEXIBLE 

NAME

BODY.NAME 

FILE.NAME 

NUMBER.MODES 

FORCE.NODE 

XG.FORCE 

YG.FORCE 

ZG.FORCE 

RELATIVE.DAMPING

UP

CREATE FLEXIBLE 

NAME

BODY.NAME

:=  ' O . O '

: =  ' 0 . 0 '

:=  'NONE'

:=  'NONE'

:=  'NONE'

:=  'NONE'

:=  'NONE'

:=  ’ NONE'

:=  'P O S IT IV E '

:=  'DEGREES'

:=  'FALSE '

:=  'FALSE '

:=  'PHASEOF'

:=  'PHASEO'

:= 'trusso l_dads.dat'  

:= ' 2 '

:= ' 0 '

:= ' 0 . 0 '

: =  ' 0 . 0 '

: =  ' 0 . 0 '

:= '0.005'

:=  'ARM1F'

:=  'ARM1'
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FILE.NAME 

NUMBER.MODES 

FORCE.NODE 

XG.FORCE 

YG.FORCE 

ZG.FORCE 

RELATIVE.DAMPING

UP

CREATE FLEXIBLE 

NAME

BODY.NAME 

FILE.NAME 

NUMBER.MODES 

FORCE.NODE 

XG.FORCE 

YG.FORCE 

ZG.FORCE 

RELATIVE.DAMPING

UP

CREATE IN IT IAL.C O N D IT IO N  

NAME

BODY.1 .NAME 

BODY.2 . NAME 

ELEMENT.NAME 

TYPE.IN ITIAL.C O ND 

IN IT IA L .V A LU E  

TIME.DERIVATIVE

:= 'armlol_dads.dat' 

: =  ' 2 '

:= 'O '

:=  'O.O'

:= ' O.O'

:= ' O.O'

:= '0.005'

= ' ARM2F'

= ' ARM2J

= 'arm2ol_dads.dat' 

=  > 2 '

= 'O'

= 'O.O'

= ' O . O ’

= 'O.O'

= '0.005'

= ' I N I 1 '

= 'PHOCG'

= 'NONE'

= 'NONE'

= 'X '

=  ' 0 '

=  ' 0 . 0 '
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OMEGA.Y 

OMEGA.Z 

P.ON.BODY.1 

P.ON.BODY.2 

EXTRA.COORD 

ANGULAR.UNITS

UP

CREATE IN IT IA L.C O N D IT IO N  

NAME

BODY.1 .NAME 

BODY.2 . NAME 

ELEMENT.NAME 

TYPE.IN ITIAL.COND 

IN IT IA L .V A LU E  

TIME.DERIVATIVE 

OMEGA.Y 

OMEGA.Z 

P.ON.BODY.1 

P.ON.BODY.2 

EXTRA. COORD 

ANGULAR.UNITS

UP

CREATE IN IT IAL.C O N D IT IO N  

NAME

BODY.1 .NAME 

BODY.2 . NAME 

ELEMENT.NAME

= ' O . O '

= ' O.O'

= ( O.O, O.O, 0 . 0  ) 

= ( 0 . 0 , 0 . 0 , 0 . 0  ) 

=  > 0 >

= ' DEGREES'

= ' I N I 2 '

= ' PHOCG'

= 'NONE'

= 'NONE'

= >y >

= >0’

= ' 0 . 0 ’

= ' 0 . 0 '

= ' 0 . 0 '

= ( 0 . 0 , 0 . 0 , 0 . 0  ) 

= ( 0 . 0 , 0 . 0 , 0 . 0  ) 

=  >0 '

= ’DEGREES’

= »IN I3»

= 'PHOCG'

= 'NONE'

= 'NONE'
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TYPE.IN ITIAL.CO ND 

IN IT IA L .V A LU E  

TIME.DERIVATIVE 

OMEGA.Y 

OMEGA.Z 

P.ON.BODY.1 

P.ON.BODY.2 

EXTRA.COORD 

ANGULAR.UNITS

UP

CREATE IN IT IA L.C O N D IT IO N  

NAME

BODY.1 .NAME 

BODY.2 . NAME 

ELEMENT.NAME 

TYPE.IN ITIAL.CO ND 

IN IT IA L .V A LU E  

TIME.DERIVATIVE 

OMEGA.Y 

OMEGA.Z 

P.ON.BODY.1 

P.ON.BODY.2 

EXTRA.COORD 

ANGULAR.UNITS

UP

CREATE IN IT IA L.C O N D IT IO N  

NAME

:= 'Z'

:=  'O '

:=  ' O . O '

: =  ’ O.O'

:= ' O . O '

: =  ( O.O,  O.O,  0 . 0  ) 

:= ( 0 . 0 , 0 . 0 , 0 . 0  ) 

: =  ' O '

:=  ’ DEGREES'

:=  ' I N I 4 '

:=  'PHOCG'

:=  ’ NONE'

:=  'NONE'

:=  'ORIENTATION'

: =  ' 0 . 0 '

: =  ' 0 . 0 '

: =  ' 0 . 0 '

: =  ' 0 . 0 '

:= ( 0 . 0 , 0 . 0 , 0 . 0  ) 

:= ( 0 . 0 , 0 . 0 , 0 . 0  ) 

:= ' 0 '

:=  'DEGREES’

:=  ' I N I 5 '
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BODY.1 .NAME 

BODY.2 . NAME 

ELEMENT.NAME 

TYPE.IN ITIAL.CO ND 

IN IT IA L .V A LU E  

TIME.DERIVATIVE 

OMEGA. Y 

OMEGA.Z 

P.ON.BODY.1 

P.ON.BODY.2 

EXTRA.COORD 

ANGULAR.UNITS

UP

CREATE POINT.OF.INTEREST 

NAME

BODY.NAME 

P.ON.BODY 

NODE

UP

CREATE POINT.OF.INTEREST 

NAME

BODY.NAME 

P.ON.BODY 

NODE

=  'NO NE'

= 'NONE'

= 'RSDA2'

= 'REL.ANGLE'

=  ' 1 . 0 '

=  ' 0 . 0 '

=  ' 0 . 0 '

=  ' 0 . 0 '

= ( 0 . 0 , 0 . 0 , 0 . 0  ) 

= ( 0 . 0 , 0 . 0 , 0 . 0  ) 

=  ' 0 '

= 'RADIANS'

= 'ARM 1TIP '

= ' ARM1'

= ( 50.0,  0 .0 ,  0.0 ) 

=  ' 1 1 '

= ' ARM2TIP'

= 'ARM2'

= ( 50.0,  0 .0 ,  0.0 ) 

=  ' 1 1 '
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