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ABSTRACT

SYSTEM IDENTIFICATION AND CONTROL OF CAVITY NOISE REDUCTION

Chien-Hsun Kuo
Old Dominion University, 1998
Director: Dr. Jen-Kuang Huang

This dissertation first presents indirect closed-loop system identification through
residual whitening, then identifies the cavity noise system and applies controllers to
reduce the noise. High speed air flow over the cavity produces a complex oscillatory flow-
field and induces pressure oscillations within the cavity. The existence of cavities induces
large pressure fluctuations which generate undesirable and loud noise. This may have an
adverse effect on the objects, such as reducing the stability and performance of overall
system, or damaging the sensitive instruments within the cavity.

System identification is the process of building mathematical models of dynamical
systems based on the available input and output data from the systems. The indirect sys-
tem identification by residual whitening is used to improve the accuracy of the identifica-
tion result, and the optimal properties of the Kalman filter could be enforced for a finite set
of data through residual whitening. Linear Quadratic Gaussian (LQG) and deadbeat con-
trollers are applied to obtain the desired system performance. Linear Quadratic Gaussian
(LQG) control design is the technique of combining the linear quadratic regulator (LQR)
and Kalman filter together, namely, state feedback (LQR) and state estimation (Kalman
filter). Deadbeat control design is to bring the output to zero, and both indirect and direct
algorithms are applied. For the indirect method, one needs to calculate the finite difference
model coefficient parameters first, then form the control parameters. In the recursive direct
algorithms, however, one can compute the control parameters directly. When systems
change with time, the system parameters become time-varying. An adaptive predictive
control is needed for this situation. Since the system parameters are time-varying, the con-
trol parameters need to be updated in order to catch up with the systems’ changes. The
classical recursive least-squares technique is used for the recursive deadbeat controller,

and it could be operated for on-line application.
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CHAPTERI

INTRODUCTION

1.1 Background and Problem Statement

High speed air flow inside a cavity produces a complex oscillatory flowfield and
induces pressure oscillations within the cavity. Cavities exist in many aerodynamic config-
urations, such as the weapons’ bay and wheel wells on aircraft, and also the recessed areas
on some missile configurations. The existence of cavities induces large pressure fluctua-
tions which generate undesirable and loud noise. This may have an adverse effect on the
objects, such as influencing the stability and performance of the overall system, or damag-
ing the sensitive instruments within the cavity. Hence, the noise reduction inside a cavity
is an important issue to resolve for avoiding unnecessary damage and cost, and enhancing
the system structure and achieving the desired system performance.

Cavities with length-to-depth ratio smaller than 10 are called open cavities. In
these the shear layer attaches at or downstream of the rear wall. The closed cavities are
those with length-to-depth ratio greater than 13 and the shear layer may attach on the floor
of the cavity. In the work of this dissertation I will deal with open cavities. In open cavi-
ties, the shear layer, which forms between the high-speed external flow and low-speed
recirculatory flow within the cavities, deflects into the cavity and partially blocks the pres-

sure waves which travel back and fourth along the longitudinal direction inside the

cavityl. A reverse flow is developed by the low-pressure region behind the front wall and
the high-pressure region in front of the rear wall. The airflow separates from the front edge
and has lower pressure than the free-stream because of the high speed external stream
when it enters the cavity. As the airflow approaches the rear wall, the pressure will rise
because the airflow will be retarded. Thus a captive eddy is generated within the cavity.
For open cavities, the airflow pressure distribution is quite constant over most of the cavity

length, except it will rise sharply when approaching the rear wall. In a previous study,

The journal mode adapted for this dissertation is American Institute of Aeronautics and
Astronautics (AIAA).
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Rossiter® concluded that the unsteady pressures operating in and around an open cavity in
a subsonic and transonic airflow may contain both random and periodic components and.
in general, the random component predominates in shallow cavity whose length-to-depth

ratio is smaller than 4. Figure 1.1 shows the process of the feedback loop inside the cavity

as follows:3 1) The pressure wave from a previous trailing-edge disturbance reaches the
front wall and reflects. Another wave which already reflected off the front wall approaches
the rear wall. At this time, the shear layer is deflected above the rear wall. 2) The shear
layer oscillation travels downstream in a wave-like pattern and eventually hits the trailing
edge. 3) The shear layer, which is now below the trailing edge at the rear wall, forms an
upstream traveling compression wave. 4) The upstream and downstream compression
waves meet and interact near the cavity center. 5) After the interaction, the waves continue
in their respective directions. 6) The shear layer is now above the trailing edge and the
oscillation cycle repeats.

The investigations for the airflow over a cavity have been well studied according to
different kinds of length-to-depth ratio and airflow speed, since cavity flows emit strong
acoustic tones which may have an adverse effect on the systems. Many experimental and

computational studies of cavities with suppression devices have been performed by

researchers. Sarohia and Massier® used a continuous mass addition at the base of the cav-

ity to stabilize the shear layer and achieved a stabilizing effect on cavity shear flows. Sarno

and Franke® studied the effects of manipulating the shear layer over the cavity leading

edge by using static and oscillating fences and steady and pulstating flow injection at the

leading edge. Kim and Chokani> implemented the computation of the supersonic turbulent
flow over a two-dimensional rectangular cavity with passive venting. The passive venting
control is performed by using a porous surface over a vent chamber in the cavity floor.
Jeng and Payne6 proposed a method based on the porous plate idea of Kim and Chokani.
They replaced one of the cavity walls (forward and aft bulkhead, floor) with a porous wall

and adjoining vent chamber to suppress the pressure fluctuations within the cavity. Baysal

et al.! performed two dimensional, computational simulations for the transonic, turbulent
flows past a cavity with two suppression devices. One with a rear face ramp and the other

with a spoiler at the front lip.
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System identification or modeling is the process of building mathematical models
of dynamical systems based on the available input and output data from the systems. This
technique is important in a diversity of fields such as communication, economics, statis-
tics, system dynamics and control. For an unknown system, it is mostly required to iden-
tify the system model before one can perform the control design. There are many system
identification techniques according to different kinds of need such as the nature of the sys-
tem and the purpose of identification. Before performing the system identification, one
needs to choose a suitable model structure first, and then the model parameters are chosen
to minimize a defined cost function which indicates the fitness of the model to the input
and output data. In reality when one identifies a system from the input and output data in
time domain, the available data length is not long enough and the chosen model order is
not sufficiently large, then the residual may not be minimized and white. It may be possi-

ble to get a more accurate model by whitening the residual. In the mean time, by some

reformulation, one may choose a smaller model order to identify the system.7

The aim of studying control is how to determine appropriate control signals so that
the system behavior could satisfy a required specification. Mathematically, the specific
important signals are represented by a set of equations called the control law. In the Linear
Quadratic Regulator (LQR) control design, one requires all of the states’ information for
performing state feedback. State feedback strategy is a common technique in controlling
linear systems. However, in general, not all of the states can be measured directly. One
needs to deduce some information from the measured output, which is corrupted by noise.

by filtering it. In 1960 Kalman published his famous method for sequential state estima-

tion of discrete systems, known as the Kalman filter, using state space formulation.® This

paper is a landmark in modern control theory. Two years later, a version of Kalman filter

for continuous systems was published.9 With the Kalman filter, the state estimation can be
reconstructed from the output. Thus one can implement the LQR control design through
state feedback. The technique of combining state feedback and state estimation is called
Linear Quadratic Gaussian (LQG) control design.

For systems with unknown disturbances and considerable uncertainties, one needs

to design a controller which can catch up with systems’ changes. Adaptive control
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techniquesm'17 become important in this issue. Since the system parameters are varying
with time, a parameter estimation algorithm which has the capability of tracking the time
variations is needed. The classical recursive least-squares technique is one of the
approaches. When systems are time-invariant, the gain of the algorithm decreases to zero
eventually since the system parameters are time constant. For time-varying systems. the
gain will adjust itself according to systems variations. Hence, it can be used for real time
1pplication.

1.2 Objective

The objective of this dissertation is to identify the noise system by using the whit-
ening residual method, and apply a suitable controller to reduce the noise.

First, system identification techniques are shown for both open-loop and closed-
loop system. A residual whitening method is developed for indirect closed-loop system
identification. Since the exact model order is usually unknown, there is residual left. By
whitening the residual, one can extract more information from the residual to improve the
system identification. In the mean time, one can also use a smaller order to identify the
system. Through residual whitening, the residual is minimized and whitened. Hence, one
can obtain a more accurate model by adjusting the system parameters.

Second, one can apply Linear Quadratic Gaussian (LQG) and adaptive control to
obtain the desired system performance, i.e., to reduce the noise. Linear Quadratic Gauss-
ian (LQG) control design is the technique of combining the linear quadratic regulator
(LQR) and Kalman filter together, namely, state feedback (LQR) and state estimation
(Kalman filter). Using the Kalman filter technique, one can obtain the optimal estimate of
states in stochastic systems. Then the estimated states are used for state feedback design
which minimizes a performance index. One can identify a steady-state Kalman filter gain
from the available input and output data. By choosing suitable weighting matrices through
state feedback design, one can obtain the desired system performance.

When systems change with time, the system parameters become time-varying. An
adaptive predictive control is needed for this situation. Since the system parameters are
time-varying, the control parameters need to be updated in order to catch up with systems

changes. A recursive deadbeat controller for systems without direct transmission input
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term is presented for on-line operation. The recursive deadbeat control design will bring
the system output to deadbeat (zero). During the processes, the gain matrices are com-
puted in every sampling interval, so the control parameters are updated for real time appli-

cation. Here, a classical recursive least-squares method is used for on-line calculation.
1.3 Dissertation Outline

Chapter II introduces the existing open-loop and closed-loop system identification
techniques. One can build mathematical models of dynamical systems by analyzing a suf-
ficient number of input and output data through the system identification techniques. The
closed-loop system identification is needed for marginally stable or unstable systems
which are required to have a fcedback centrol to make the overall system stable. One
needs to choose a suitable model according to different needs before identifying the sys-
tem. Some basic model structures and the least-squares technique for both batch and
recursive formulation which will be used for a later chapter are shown.

Chapter IIT proposes the indirect closed-loop system identification through resid-
ual whitening. Normally, when one identifies a system from input-output data in a time
domain, it is assumed that the data length is long enough and the autoregressive with exo-
geneous input (ARX) model order is sufficiently large. In the residual whitening method,
one uses the autoregressive moving average with exogeneous input (ARMAX) model
which includes the dynamics of noise instead of ARX model to minimize and whiten the
residual. The properties of the residual sequence, i.e., the orthogonal conditions, will con-
vert to the optimal properties of the Kalman filter. One can also relax the requirement of
the model order to reduce the computation burden, especially for several input and output
systems. A simulation of 5 degrees of freedom of the large angle magnetic suspension test
facility (LAMSTF ) system which is unstable is also provided.

Chapter IV provides the material for Linear Quadratic Gaussian (LQG) control
design and Kalman filters. The LQG control design includes continuous-time and discrete-
time approaches. The LQG control separates design problems into two stages, namely,
state feedback (LQR) and state estimation (Kalman filter). One can use a Kalman filter to
estimate the optimal state from output data, then perform the state feedback (LQR) tech-
nique to obtain desired system performance. A filter-innovation model is also derived for

the steady-state Kalman filter gain.
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Chapter V shows the deadbeat controller design without the direct transmission
term. First, a multi-step ahead prediction output is derived. After obtaining the ARX coef-
ficient parameters, one can integrate the prediction output equations and solve for the
deadbeat control force. This is off-line calculation. Then, a recursive least-squares solution
for deadbeat control design is presented. One can perform the adaptive control for on-line
operation and the formulation satisfied simultaneously system identification and deadbeat
controller design requirements, i.e., the system identification and deadbeat control are
built into one formulation.

Chapter VI verifies the control design algorithm by numerical simulation. The sim-
ulation uses experimental single input and single output data (SISO), both LQG and adap-
tive control design are performed. And both control design methods are applicable to
multi-input and multi-output cases.

Finally, chapter VII provides conclusions and prospects for the extension of this

research.
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Figure 1.1 Typical Oscillation Cycle
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CHAPTER IT

DIRECT AND INDIRECT SYSTEM IDENTIFICATION

ALGORITHM

2.1 Introduction

In general, one can distinguish between different identification situations for dif-
ferent treatments as follows: First, one distinguishes between linear and nonlinear sys-
tems. The linear one is easier to be identified than the nonlinear one because of the linear
properties of superposition. Second, one distinguishes between time-invariant and time-
varying systems. The latter being systems whose parameters vary with time. Systems may
be considered as time-invariant if their parameters vary slowly in comparison with the
time needed for adequate identification. Third is a classification of deterministic and sto-
chastic system. In realism all systems contain noise in process and measurement. The
knowledge of deterministic systems is helpful to understand the process of stochastic sys-
tems. Fourth is a classification of discrete and continuous systems and it is usually

straightforward to transform the formulation between continuous and discrete systems.
Basically, we can classify two methods for system identification, the nonparame-

teric method and the parametric method.!8-20 The earliest methods of control system iden-
tification are those based on frequency, step and impulse responses which are called
nonparameteric system identification methods since they do not employ a finite-dimen-
sional parameter vector in the search for a best description. These are developed in classi-
cal control theory. In modern control, we use the parameter method to attempt to fit a
model which best represents the data from the observation of input and output sequences
of our system. Therefore, a family set of candidate models is chosen first and then the par-
ticular member of this family set which is the most suitable for describing the input and

output data is determined. A model of a system is a description of its properties, suitable
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for a certain purpose. In section 2.2, some different model structures are introduced. Least

21-23 is a classical technique. It has been used widely, especially in

squares estimation
curve fitting problems where it is desired to determine a function (for example, polynomi-
als, exponential functions, sine and cosine functions) that best fits a set of data points in
the sense of minimizing the sum squares differences between the measured data and the
estimated, or proposed function. Recursive techniques could reduce storage requirements
when estimating the parameters by the least-squares method from updated input and out-
put data, and increase computational efficiency. The batch and classical recursive least

squares estimation methods are introduced in section 2.3. In section 2.4, the observer/Kal-

man filter identification?*?” (OKID) for stable systems without requiring feedback con-
trol is introduced. For identifying marginally stable or unstable systems, however,

feedback control is required to ensure the overall system stability. There are generally

three classifications to identify systems operating in close:d-loop.zg'30 One way is called
direct identification which treats the bounded plant input-output data exactly as if they
were obtained from an open-loop experiment. Another way is to treat the closed-loop sys-
tem as a whole. First you have to identify the closed-loop system dynamics, then deter-

mine the open-loop system dynamics with the known controller dynamics from the
identified closed-loop system dynamics. This is called indirect identification.?! The other

approach is called jointly input-output identification.3? In this approach, the feedback con-
troller is unknown and the input and output are considered as a joint process and the out-
put of the system is driven by noise only. The indirect method is given in section 2.5. For
any dynamics system, although its system Markov parameter is unique, the realized state-
space model is in a different coordinate. In order to compare the identified state-space
model with the analytical model, both models need to be in the same coordinate. In section
2.6, a unique coordinate transformation matrix is derived to convert the realized state-
space model, such that both models, the identified and the analytical models, can be com-
pared in the same coordinate.

2.2 Types of Model Structures

System identification deals with the problem of building the mathematical models

of dynamical systems according to the input and output data. The criterion of model qual-
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10

ity is normally based on how well the models could perform when they attempt to ‘fit’ the
measured data. A prior knowledge regarding the system would be very helpful in choosing
model structure, although some information may be learned from analyzing measured
data. In the following, four different types of model structures will be discussed, some of
them will be used later on in this work.

2.2.1 AR Model

AR means Auto-Regressive. The output is an autoregressive of itself. The model

can be described as follows:

q
Y= DAy ite 2.1)

i=1
where a; are the AR model parameters and e, is a random white noise.

2.2.2 ARX Model

The ARX model where AR refers to AutoRegressive part and X refers to the eXo-
geneous part is commonly used in developing recursive system identification technique.

The model can be given as follows:

q q
Vi = z a;ye_;i+ Z biu,_;+e, (2.2)

i=1 i=1
where y, _; are the autoregressive part, u«, _; are the exogeneous part, a; and b; are the

ARX parameter coefficients. The ARX model will be used in open-loop and closed-loop

system identification later on.
2.2.3 MA Model
The MA model represents the Moving-Average term. It can be given as follows:
q
Vi = Z ae._;+e; (2.3)
i=1
where a; are the moving average parameters and e, _; are white, gaussian noise terms.

2.2.4 ARMAX Model

The ARMAX represents the AutoRegressive Moving Average with eXogeneous

input model. It is a combination of ARX and MA models, and will be used later on for
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whitening residual. The ARMAX model is given as follows:
q q q
Vi = Z ayr_;+ z b, _;+ Z Cir_;+e (2.4)
i=1 i=1 i=1
where a;, b;, c; are the ARMAX parameters.

The basic difference between ARX and ARMAX models is that the ARMAX model con-
tains the moving average terms, i.e. noise dynamics.

2.3 Least Squares Method

The method of least squares was first used by Gauss and he applied this approach
practically for astronomical computations at the end of eighteen century. He defined “the
most probable value of the unknown quantities will be one for which the sum of squares ot
the differences between the actually observed and computed values multiplied by numbers
that measure the degree of precision is a minimum.” In a great many different fields
including the system identification applications, the least squares method reached a signif-

icant achievement and was modified according to different requirements.

2.3.1 Batch Solution of the Least Squares

Let y, and v, be the observation and measurement noise at time k, where
k=1,2,..,1[, yand v, both are m X | vector. Assume that 8 is a constant ¢ dimen-
sional vector of parameters to be estimated with the observations linear in 8

Y,=H6+V (2.5)

where Y{ = [yl Vs oo yJ , H;r = I:hl hs ... Iz,], v’ = [Vl vy ... vl:l .and Y,. V. and
H, are mI X 1, m{x 1 vector and ml X g matrix, respectively.

It is desired to obtain the estimate of 6 that minimizes the sum squares of
Y,— H,8 . Denote the estimate of 8 based on the k data samples as 6 and introduce the

error associated with the k—th measurement as e, = yk—hkék, k=12,...[. This

error is normally called the measurement error or the residual. The performance criterion

becomes
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J=(Y,-H®) R (Y,-Hp) (2.6)

where R is a weighting matrix, and J is called a cost function, risk function, etc. For R

equals to identity matrix /, the method of minimizing Equation (2.6) is called procedure

of least squares(LS). R of general positive definite form is usually called the denotation of

weighted least squares. R equals the covariance matrix of noise. the procedure becomes a
minimum variance estimation.

The solution of minimizing the quadratic cost function is to differentiate it with

respect to the parameters and equate the result to zero. Thus for R = [

aJ
55 = _2H, (Y,-H ) = 0

and the least squares estimate of 9 is

6=HH) HY, @7

Equation (2.7) is the batch solution of the least squares method. It is noted that the qua-

dratic cost function Equation (2.6) attains an absolute minimum if and only if 6 = 0,

where 6 is obtained from Equation (2.7), and the least squares estimate of the matrix of
parameter 9 is unbiased if the mean values of the components of noise vector V are zeros

and if the matrix A, and V are mutually independent.

2.3.2 Classical Recursive Least Squares

Recursive identification algorithms are of great interest in control and estimation
problems, and related areas such as recursive least squares and adaptive methods. Recur-
sive techniques could reduce storage requirements when estimating the parameters by the
least squares method from updated input and output data, and increase computational effi-
ciency. It can also be used for on-line system identification in real time if one’s data pro-
cessing device can keep pace with the rate of the data acquisition. A requirement that is

often satisfied because of the capabilities of contemporary microprocessors.

Y, H,
Define Y, ., = “I Hewr = ¢

T
. where Y, = ll:'vl Yy ... v,;l. and
Yiwl sy
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H: = [hl hy ... hk] Denote the estimate of 8 based on the k& observations as ék, the
least squares estimate of parameter is according to Equation (2.7)
6= (H£+1Hk+1)_[HZ+1Yk+1
= [H{Hk+hZ+lllk+l]_l[HZYk+hZ+lylc+l]

After using matrix inversion lemma, one can get

Ocst = Okt My, gyt — s 80) (2.8)

T, \h, T Ty =L, 70
WhereMk+l =(Hka) lzk+l[l+lzk+l(Hka) h/\"l’l] .
The term A, lék may be considered as the prediction of y, | based on the estimate of

parameters 6x and on the set of measurements h; . | - So, Equation (2.8) could be rewrit-
ten as

ék+l = ék+Mk+1()’k+1—S’k+1) (2.9)
One can see that the estimate parameters ék+ 1 is equal to the previous estimate ék cor-

rected by the weighting coefficients M, , ; multiplies the error between the observation
Y, and the predicted value ¥, , ,. The predicted value y,, | = h,, 6 is equal to the
measured data y, _, only if the exact system model with parameters ék = 0, isavail-

able and if the noise is absent. In such a case, the correction is zero. To calculate M, _, in

. Tor ! .
a recursive way, one define P, = (H H;) . After some arrangement. the recursive least

squares algorithm could be formulated as follows:

T T

My = Pehy (U + D Prhy ] (2.10)
T

Peoy= UM b (1P (2.11)

Bks1 = ék+Mk+1(yk+1‘5’k+1) (2.12)
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2.4 Open-Loop System Identification Algorithm
In open-loop system identification, we excite the system directly without adding a

controller, and identify the system model from the input and output data. Chen et al.3?
introduced a method to identify a state space model from a finite difference model. The
difference model, called autoregressive with exogeneous input (ARX), is derived from
Kalman filter theories. However, the method required an ARX model of large order which
causes intensive computation. In Ref.34 a system is identified through a state observer,
which can use a much smaller ARX model order than that derived through Kalman filter,
but the derivation is based on deterministic approach. In Ref.35 the projection filters
which were originally derived for deterministic systems are developed for the identifica-
tion of linear open-loop stochastic systems. This approach has proved that least-squares
identification of a finite difference model converges to the model derived from the projec-
tion filters, which the recursive projection filter of order one is identical to the Kalman fil-
ter. The open-loop observer/Kalman filter identification (OKID) is introduced in the
following.
2.4.1 Algorithm for Open-Loop System

A finite-dimensional, linear, discrete-time, time invariant stochastic system can be
expressed as:

Xpo1 = Axp+Bug+w, (2.13)

Ve = Cxp+v, (2.14)

. x 1 ix1 . . . x 1
where is x, € R"™" the state vector, ue R™ "' is the signal input vector, and y e R"®

is the output vector; [A, B, C] are the system matrices. The sequence of process noise
nxl . noxl . .

we R and measurement noise ve& R are assumed white, Gaussian, zero mean.

The noises w, and v, are also assumed uncorrelated with covariance Q and R, respec-

tively.
Equations (2.13), (2.14) can also be expressed as

%1 = Ak, +Bu, + AKe, (2.15 a)

Ve = Cxp+g, (2.15 b)
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xl . . ~ . .
where €, € R"” " is the output residual and equals g, = y, — Y45 1t's zero mean, white,

nxno

Gaussian. X, and y, are the estimated state and output, respectively. K € R is the

-1
steady-state Kalman filter gain which satisfies K = PC T[R +CPC T] .Pe R"*"isthe
solution of the steady-state algebraic Riccati equation. The existence of K is guaranteed if

1
the system is detectable and (A, QZJ is stabilizable. !°

-1
P = APAT - APCT[R+CPCT] cPaAT + Q. (2.16)

The system in Equation (2.15) can also be expressed as
v = CX +¢, (2.17 b)

Then the relation between signal input and output with zero initial condition through

Equation (2.17) could be described as
ye= 3 CA'AKy,_;+ 3 CA' " 'Bu,_;+¢, (2.18)
i=1 i=1
where A = A— AKC. Since A is asymptotically stable, A '<oifiz q for a sufficient
large number ¢ 27 Thus Equation (2.18) becomes

q q
Ve = X, @y it 3 b+ (2.19)

i=1 i=1

where
a; = CA 'AK . b, = CAT'B,i=1,2,....q (2.20)

The model described by Equation (2.19) is the open-loop ARX model which

directly represents the relationship between the signal input and output of the open-loop

system. g is the open-loop system ARX model order, and a;, b;, the open-loop ARX

model parameters, can be estimated through the least squares method. Suppose that N

data points of y, and u,, k = 0, 1, ..., N -1, are given. The batch least squares solution
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for estimating the parameters a;, b; is

-1
6o/ud YVolud( Vole Volud) (2-21 )

where

Y = [yo 7R )’N-l:l 2 Ooria = [bl ay ... b, a;l .

0 uy ... Uy | - Uy _>

0 yg - Yg-1 -+ Yn-2
Vokia = ... ... ..

0 00 u .. Uy _g-1

_O 0 0 yp ... IN-g-1

First, we need to obtain the open-loop system and Kalman filter Markov parame-

ters, since the Markov parameters are uniquely determined for each system. Then we can
realize system matrices(A, B, C) from the open-loop system Markov parameters and Kal-

man filter gain K from the open-loop Kalman filter Markov parameters. The open-loop
system Markov parameters Y (k) = ca* ' , and the open-loop Kalman filter Markov
parameters Y (k) = CAk_ [AK, k=1,2,...,q can be obtained from the coefficients,

a., b;

IR

Y (k) = b, + Z a;Y (k- (2.22)
i=1
k-1

Y (k) = ap+ D a;¥ (k—1i) (2.23)

i=1
where Y (0) = 0, Y,(0) = I which is an identity matrix.
2.4.2 Recover System Matrices and Kalman Filter Gain

To recover system matrices, an eigensystem realization method is applied. Then

the recovered system matrices and the open-loop Kalman filter Markov parameters could

be used for identifying Kalman filter gain. A realization is to obtain a set of (A4, B, C)
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through the computation of the open-loop system Markov parameters Y (&), for which

the discrete-time model, Equations (2.13) and (2.14), is satisfied. For the first step, form a

Hankel matrix A (k — 1) from the open-loop system Markov parameters,

Y (k) Y (k+l).. Y (k+B-1)
Y(k+1) Y(k+2) .. Y(k+B)

Hk—1) =

Y (k +a— 1) Ys(l;.-;- o) Y (k+ a+ B-2)]
where Y (k) is the k —th open-loop Markov parameter.
Using singular value decomposition (SVD) of H(0)

H(0) = ULV’ (2.24)

A n —th order discrete state space model can be identified as

l !

A=3’UH()W,E® (2.25)
L
B=3VIE, (2.26)
L
c=E Uz (2.27)

where X is the upper left hand n X n partition of £ containing the n largest singular val-

ues which are in the monotonically non-increasing order along the diagonal. U, and V,

are the matrices formed by the first n columns of singular vectors associated with the n

singular  values from U and V, respectively. EZ‘- = [[m. 0, --- Om],

T . . .
E,, = [[no 0, --- Ono:l ,and ni the number of inputs, no the number of outputs.

Once the open-loop A and C are obtained. one can calculate the open-loop Kalman filter

gain from the open-loop Kalman filter Markov parameters and A, C as follows:
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Y, (1)
K =00y o"| T2 (2.28)
| ¥ (K)]
.
2
where O = cA
ca”

The identified Kalman filter gain can be used for state estimation.

2.4.3 Computation Steps for OKID

1. Collect input « and output y data from the experiment.

2. Estimate the ARX model parameters a;,b; from Equations (2.19) to (2.21) by choos-

ing suitable ARX model order ¢ .

3. Obtain the open-loop system Markov parameters Y (k) and Kalman filter Markov
parameters Y, (k) by Equations (2.22) and (2.23).

4. Recover the system matrices by using eigensystem realization method, Equations
(2.25-2.27) and the Kalman filter gain by Equation (2.28).

2.5 Closed-Loop System Identification Algorithm

Closed-loop system identification (CLID) collects reference input and output data
from a closed-loop system, which is different from an open-loop system identification.
There are several instances when we need to use closed-loop system identification. The
system may be operating in a closed-loop and only closed-loop data are measurable for
identification. For example, marginally or unstable systems need to have a feedback con-
trol to ensure overall systems’ stability. For such systems, it is not desirable to identify the
open-loop system model without adding the controller. The following introduces the indi-

rect method for identifying the open-loop system model from closed-loop data with

known feedback dynamics.3‘l In the indirect CLID method, we calculate the closed-loop

ARX model coefficient matrices in the beginning, from which one can find the closed-
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loop system Markov parameters. By using closed-loop system Markov parameters with
known controller Markov parameters, the open-loop system Markov parameters are iden-
tified. Then, one can realize open-loop system matrices by applying the eigensystem real-
ization method, and recover the Kalman filter gain from the identified matrices and open-

loop Kalman filter Markov parameters.

2.5.1 Algorithm for Closed-loop System
A finite-dimensional, linear, discrete-time, time invariant stochastic system can be
expressed as:
X1 = Axp+Bug+w, (2.29)
Ve = Cxp+v, (2.30)

x| . ix 1 . . . x 1
where x; € R™™ " is the state vector, u € R™™ " is the signal input vector, and y e R"’

is the output vector; [A, B, C] are the system matrices. The sequence of process noise
we R and measurement noise v e R"™" are assumed white, Gaussian. zero mean.
The noises w, and v, are also assumed uncorrelated with covariance Q and R, respec-
tively.
Equations (2.29), (2.30) can also be expressed as
Xpe) = AX +Bu + AKe, (2.31 a)
Y= Cx+g, (2.31b)

nox 1

where g, € R is the output residual and equals €, = y,— J,; it’s zero mean, white,

Gaussian. %, and 3, are the estimated state and output, respectively. K € R" ™" is the

-1
steady-state Kalman filter gain which satisfies K = PC'[R+CPC'| .Pe R ™" is the

solution of the steady-state algebraic Riccati equation. The existence of K is guaranteed if

1
2

the system is detectable and (A, Q') is stabilizable.

Here, a dynamic feedback controller is added to ensure the system's stability. A dynamic

feedback controller can be expressed as:
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Prvt = AyPrt By (2.32)

where p,, r,, [Ad B, C, D,| are the controller state, reference input to the closed-loop

system and state-space matrices of the controller, respectively.
Taking Equations (2.31), (2.32), (2.33) together, the augmented closed-loop system dy-

namics becomes

Meor = AN+ B+ A K g (2.34)
Ve = Cn+g; (2.35)
where

X A+ BD,C BC B
ne= | A= 4 d’B‘=H

Py Bdc Ad 0

AK+BD,

ACKC = l: Bd , and Cc = I:CO]

It is noted that K. can be considered as the Kalman filter gain for the closed-loop system
and is guaranteed exist when the closed-loop system A_ is nonsingular. Substituting (2.35)
into (2.34) yields

Mes1 = AN+ Bor+AK y, (2.36)
where A, = A.—A K _C_ is guaranteed to be asymptotically stable since the steady-state

Kalman filter gain K exists. The z-transform of (2.36) and (2.35) yields

N(2) = (2-A0) " (AK_y(2) + B.r(2) 2.37)

y(z) = C.n(2) +£(2) (2.38)
Substituting (2.37) into (2.38) yields

W@) = Coz—A0) (ALK y(2) + B,r(2)) +£(2) (2.39)
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A. I .one

Taking the inverse z-transform of Equation (2.39) with (z —ZC)-I =

u'[\/]g

i{

could get the relation between reference input and output with zero initial condition as

oo —’_l oa —.-l
Yk = Z CCA:' ACKcyk-i+ Z CCA: Bcrk-i+8k (2.40)

i: l i= l
Since 4, is asymptotically stable, Xci_l =0 if i 2 g for a sufficient large number ¢ . Thus
Equation (2.40) becomes

q q

i=1 i=1
where

—i-1 —i-1
¢;=CA. AK_.,d;=CA' B,i=12.,9 (242

i

Equation (2.41) is the closed-loop ARX model which directly represents the rela-
tionship between the reference input and output of the closed-loop system. ¢ is the closed-
loop system ARX model order, and c;, d; are the closed-loop ARX model parameters and
they are used to find the closed-loop system and Kalman filter Markov parameters. Sup-

pose that there are N data points of y, and r, k = 0, 1, ..., N -1, are given. The batch

least squares solution for estimating the parameters c;, d; is,

T T -1
Octia = YV etid(VetiaV ctia) (2.43)

where

Y = l:yo Vi Vg e yN_l]’ Bt = [dl ¢ - d, CrJ

0 rg ... Fg—1 -+ Tn-2

0 yg ... Yg-1 - YN-2
Vetia = |... ... ...

000 ry .. FN—g-1

_0 0 0 yy ... IN-q-1
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4 uses reference

Note that V;;, is slightly different from V ;;, of Equation (2.21), V

oki. cli

b.

i» C» d; represent different

input r instead of signal input u, and the coefficient matrices a;,

parameters. The z-transforms of Equations (2.32) to (2.35) can be used to derive u(z) and

y(@)
u(@) = Y V(02 (@) +r(2) (2.44)
k=0
y@) = Y V(0 @)+ Y V(7 e ) (2.45)
k=1 k=0

where Y, (k) = C,4A, ™' B, is the controller Markov parameters, ¥, (k) = C,A.*"'B_,

Y (k) = C.A ck— 'A K are the closed-loop system and Kalman filter Markov parame-

ters, respectively. It is noted that Y ,(0) = D,,and Y,.(0) = I.
Next, the closed-loop system and Kalman filter Markov parameters can be recursively cal-

culated from the estimated coefficient matrices, c;, d; of the closed-loop ARX model

k
Yo (k) = dp+ D ;Y (k=1i) (2.46)
=1
k
Vietk) = Y ;¥ (k=0) (2.47)

i=1
[tis also noted that ¥ (0) = 0,and Y, .(0) = [ and ¢; = d;= 0 when i>gq.
Then, by using the closed-loop system Markov parameters Y (k) and the Kalman filter

Markov parameters Y, (k) , and the known controller Markov parameters Y ,(k) ; one can
derive the open-loop system Markov parameters Y (k) = CA*™'B and Kalman filter

Markov parameters Y, (k) = ca*lak.
Jj ok

Yi()) = YD = X, X V(DY y(k=DY (j=k) (2.48)
k=1li=1
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j ok
Vi) = YD) = X, D V(DY (k=D)Y (k) (2.49)
k=1li=1

Note that Y, (0) = 0,and Y,.(0) = [

After obtaining the open-loop system and Kalman filter Markov parameters, one
can use the method mentioned in section 2.4.2 to realize the open-loop system matrices
and recover the open-loop Kalman filter gain.

2.5.2 Computation Steps for CLID

1. Collect reference input and output data from the experiment.

2. Estimate the closed-loop ARX model parameters c;,d; from Equations (2.41) to (2.43)

by choosing suitable ARX model order q.
3. Compute the closed-loop system and Kalman filter Markov parameters from the esti-

mated coefficient matrices c;,d; by using (2.46) and (2.47).

4. Calculate the open-loop system and Kalman filter Markov parameters from the closed-
loop system Markov parameters, the closed-loop Kalman filter Markov parameters,
and the controller Markov parameters computed from the known controller dynamics.
by using (2.48) and (2.49).

5. Recover the open-loop system matrices by using the eigensystem realization method,
Equations(2.25) to (2.27) and the open-loop Kalman filter gain by Equation (2.28).

2.6 Coordinate Transformation

For any dynamics system, although its system Markov parameter is unique, the
realized state-space model is in a different coordinate. In order to compare the identified
state-space model with the analytical model, both models need to be in the same coordi-
nate. In this section, a unique coordinate transformation matrix is derived to transform any
realized state-space model to be in a form normally used for a structural dynamic system,
so that both models, the identified and the analytical models, can be compared in the same
coordinate. This transformation matrix, however, exists only if one half of the states can be
measured directly. If this condition is not satisfied, other transformation matrices may

exist, but they usually are not unique.
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Consider a structural dynamic system
Mp+Dp+Kp = Gu (2.50)
where p is a displacement, « the control force, G the control influence matrix, and M,
D, and K are the mass, damping, and stiffness matrices, respectively. One can get state-
space model as

X=A,x+B u (2.51 a)

y=C,x (2.51b)

[ 0
where A, = Ol e B, = e C,, the output matrix and x =
-M"K-M"'D MG

Assume the displacement p can be measured, then C,, = [1 O:I . First, one needs to con-

|;.ﬁ'

vert the realized discrete-time system matrices [A B C] to continuous-time system matri-

ces [As B, Cil .If A is diagonalized by matrix O, then

07'40 = A 2.52)

4, = ot g (2.53)
T

B, = (A-1)"'A,B (2.54)

¢ J is full rank. Let P be

where T is the sampling time. It is assumed that the matrix {
S

the transformation matrix

-1
P=[pp)= { CiJ (2.55)

then

- CP CP
plp=|C [Pl p,,] = L 2= |10
CA; - CA,P, CAP, 01
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CA,P, CAP
plap=| 1770 2 [0 ’J (2.56)
CA,P, CA[P, X
_ B, [c,B |
P [BS = C 5 = m-m = O (2.57)
cAB| |caB| |x
cP = [cP, cPy = [1 0] (2.58)

Note that CP = C,,. According to above, the identified continuous-time model

[A ; B Ci' can be transformed to be [P—l AP P 'p CP:| which is in the form of Equa-

tion (2.51). So, now both models are in the same coordinate, and can be compared.
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CHAPTER III

INDIRECT IDENTIFICATION THROUGH RESIDUAL WHITENING

3.1 Introduction

In theory, when one identifies a system from input-output data in a time domain. it
is assumed that the data length is long enough and the ARX model order is sufficiently
large. Then the identified observer tends to be the optimal Kalman filter gain in the pres-
ence of process and measurement noise. Under these conditions, the resultant residual of
the filter is minimized, uncorrelated with the input and output data, and also white. How-
ever, in practice, since only a finite set of data is available and choosing the large ARX
model order is limited by the computation constraint, the identified system model and
observer may not be optimal. In Reference 7, the residual whitening method is used to
improve observer/Kalman identification (OKID). In this chapter, the residual whitening
method will be performed in closed-loop system identification (CLID) indirect method.
Through residual whitening, the optimal properties of the Kalman filter could be enforced
for a finite set of data. This means that for a given set of finite data, one can identify the
system and observer whose residual is minimized, orthogonal to the time-shifted versions
of itself and to the given set of input-output data, instead of being uncorrelated to input-
output data and white. The rationale for these conditions is that when the data length tends
to infinity, the orthogonal conditions which are imposed on the residual sequence will con-
vert to the optimal properties of the Kalman filter. And one can also relax the requirement
of the model order to reduce the computation burden, especially for several input and out-
put systems.

In section 3.2, the ARX model of the CLID indirect method will be converted to

ARMAX model by adding and subtracting the term My, for reducing the requirement of

the model order. The basic difference between ARX model and ARMAX model is that the
ARMAX model includes dynamics of noise. The residual whitening for ARMAX model
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is introduced in section 3.3. The orthogonal conditions that the residual is orthogonal to
the time-shifted versions of itself and to the given set of input-output data are discussed in
section 3.4. In section 3.5, it shows the iterative procedure for residual whitening identifi-
cation. In section 3.6, how to recover open-loop system and Kalman filter Markov param-
eters from residual whitening process for the ARMAX model is introduced. After
obtaining the open-loop system and Kalman filter Markov parameters, one can use the
method mentioned in section 2.4.2 to realize the open-loop system matrices and recover
the open-loop Kalman filter gain. Finally, in section 3.7, the NASA Large Angle Magnetic
Suspension Test Facility (LAMSTF) is briefly introduced and used as the numerical
example for indirect CLID residual whitening. Several tables and figures will be shown in
this section.
3.2 Model Structures

The indirect CLID algorithm has been introduced in section 2.5.1. For conve-
nience, some of them will be rewritten in this section. A finite-dimensional, linear, dis-
crete-time, time invariant stochastic system can be expressed as:

Xpo1 = Ax+Bug +wy 3.1

Ve = Cxp+vy (3.2)

x1 . (X1 . . . x 1
where x, € R"”" is the state vector, u e R™ ™" is the signal input vector, and y € R™

is the output vector; [A, B, C] are the system matrices. The sequence of process noise

nxl . noxl1 . .
we R and measurement noise v € R are assumed white, Gaussian, zero mean.
The noises w, and v, are also assumed uncorrelated with covariance Q and R, respec-

tively.
Equations (3.1), (3.2) can also be expressed as

'%k'i'-l = Aik+Bllk+AK8k (3.3 a)

x1 . . o e .
where g, € R"°™ " is the output residual and equals €. = ¥y — ¥, 1Us zero mean. white.

Gaussian. X, and y, are the estimated state and output, respectively. K € R"™" is the
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-1
steady-state Kalman filter gain which satisfies K = PCT[R +CPC T] .Pe R"™" isthe
solution of the steady-state algebraic Riccati equation. The existence of K is guaranteed if

t
the system is detectable and (A, QZJ is stabilizable.

Here, a dynamic feedback controller is added to ensure the system's stability. A dy-
namic feedback controller can be expressed as:

Prey = AP+ By, (3.4)

u, = Cypp+Dyy .+ 1, (3.5)

where p,, r, [A +B,CyD d] are the controller state, reference input to the closed-loop

system and state-space matrices of the controller, respectively.

Taking Equations (3.3), (3.4), (3.5) together, the augmented ciosed-loop system dy-
namics becomes

nk-{- 1 = Acnk + Bcrk + AcKcsk (3-6)

Vi = CNyp+ & (3.7)

= % A A+BD,CBC, . _[B
el ° B, Al ° o

. |:AK;-‘IBD‘,} ndC, = [c

where

>
~
"

In order to reduce the requirement of model order, the term My, will be added and
subtracted to the right hand side Equation (3.6) to yield
Neat = AN+ Berp + ALK g + My, - My,
= AN +B.rp+AK g +M(C M +E)—-My,
= (A +MC )N +(AK + Mg, +B.ri,— My, (3.8)

and
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Ve = CN+g (3.9
Now the new relationship of reference input and output becomes

o0 -icl oo —ic] oo il —
Y= 5 CA:. (-M)y,_;+ Y CA. Bry_;+Y CA; Me,_+g, (3.10)

i=1 i=1 i=1
where

Ac= A +MC., M = M+AK, (3.11)

Make .Zlc asymptotically stable, A:—l =0 if { 2 p for a sufficient large number p, Equa-

tion (3.10) becomes

P P P
Ve = DMVt Dt D SE it (3.12)

=1 i=1 i=1

where
~i-1 ~i-1 ~i-l—= .
h;=CA, (-M),t;=C,A. B..s;,=C.A. M,i=12..,p

Equation (3.12) is an ARMAX model containing the dynamics of residual which is differ-

ent with Equation (2.41). To see Equation (3.12) is a particular ARMAX model more clear-
ly, define a delay operator q—l ,suchthatz, | = q-lzk. Equation (3.12) becomes
-1 -1 -1
D(q Dy, = E(q u,+F(q )&, (3.13)
where the delay operator polynomials are
-1 -1 1 -2 2Pl -p
D(g )=I1+CMq +CAMqg +..+C.A, Mq
-1 -1 ~ -2 ~p=1_ -p
E(q )=CB.q +CAB.q +..+C.,A. Bg
-1 = -l - = -2 ~p-l— _p
Flq )=1+CMq +CAMq +...+C,A. Mg
Asstated in (3.11), AC = A_+MC,,the matrix M is used to make the new system

Equations (3.8) (3.9) more stable than the original one in Equations (3.6) and (3.7), espe-
cially, since it can be used to reduce the requirement of ARMAX model order p. In the

original system (3.6) (3.7), K. is working as an observer gain which includes Kalman filter

gain K. We don’t want to lose the information about the Kalman filter by making the ob-
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server equation more stable than the filter. The matrix M, however, could be chosen such
that A, = A .+ MC_ is as stable as it could be without losing the Kalman filter informa-

tion. In other words, we can choose appropriate matrix M to limit the number of ARMAX
model order which needn’t be several times larger than the true order of the system. In

Equation (3.13) the relationship between K. and M is clearly defined, where K. appears

only in the noise model.

3.3 Residual Whitening

Suppose there are N data points of y, and «, are given, k = 0, 1, ..., N - 1. De-
fine
B = [tl hy ...t hp:l W= [s[ Sy -ne Sp]
0 g g €1 En-2
=10 0¢g ...¢_, En-3 =
0 ... 0 & .- &y_p-y
0 ry Fo-1 'v_2
0 Yo - Ypi YN-2
Vetia = | oo ... Y= [.Vo Vi --- -"N-l]
0 ... 0 ry S IN—p-1
0 0 ¥y e Yyopoy

Then Equation (3.12) could be written in a matrix form

The residual sequence R

equals

R=Y-0V_ —¥YW

= Y-

The cost function

oo

4
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N-1
J=Y e = tr(RRT) (3.16)
k=0

Assuming the residual matrix W is available at this moment, then the least squares solution

of the parameters fand ‘¥ that minimize the cost function J is

-1
+ T T
[é ‘i’] - Yl:vclid:l - Y[VT, y WT] VeiiaVeiia VeiaW G.17)
cit

T T
W WViia WW
One can derive the parameter 6 to be a sum of ordinary least squares indirect CLID and a

bias termS. To see this, first expand the inverse matrix directly

-1

T T
Vclidvclid VclidW = [Qll QI'{I
WVZ,M ww’ Qa1 On
where
T. -1 T -1
0, = (v r+vwia ! 'wa) (3.18 2)
~1 _
Q,, = ~(vvhy vwir™ (3.18 b)
Q, = -A"'WA (3.18 ¢)
Oxn = A (3.18d)
and
-1
A=vivvh  n = wu-av)yw’ (3.19)

Combining (3.17) and (3.18) together, the estimated parameters could be expressed as
6 = YA-Fwa (3.20)
¥ = YU-AV)W A (3.21)

Examining the first term for  in Equation (3.20), it is the same as Equation (2.43) which
is the ordinary least squares solution for indirect CLID; and in the second term one may

consider it as a bias term. One can write, hence,
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™~

é - eLS_.ebias (3.22)
where
-1
6™ = vA = yvi(vvh
i - n -1
0% = wiva = ¥wvT(vv)
Equation(3.20) could also be written as
¥ = y(I-AV)W A
-1 -1
= r-o"vywTtww —wviivvy vwT)
- -1
= Switww —wvT vy vw™y (3.23)

~LS .
where & denotes the colored residual between the measurement Y and the least squares

. . e 4. LS
estimation from indirect CLID 6V _;;,.

The bias term e”‘*” in Equation (3.22) is composed of residual. In the deterministic
case W = 0, the bias equals zero and the parameter ¥ will also be zero. The system, here,

could be accurately identified regardless of the choice of M as long as .:‘.c = A.+MC_is

stable enough and the ARMAX model order is chosen large enough. Normally, the dead

beat gain M is not related to the Kalman gain K which is contained in K_. Both M and

K. appear only in the noise model C(q-l) . The dead beat gain M could be used to make

A, more stable, so we can restrict the number of ARMAX model order. This is the advan-
tage of adding the gain M .
3.4 Properties of the Residual Sequence

N-1
The residual sequence, minimizing the cost function J = Z €. €, in the least
k=0

squares sense, has two other properties.
First property: The residual sequence is orthogonal to the reference input and output data

sequence. It is described by the following equations.
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N-1 N-1

T
Zskrk =0, Zﬁkrk_,-=o
k=0 k=i

N-1 r
Y ey =0,i=12..,p (3.24)
k=1

Second property: The residual sequence is also orthogonal to the time-shifted versions of
itself.

N-1 r
Y e =0,i=12..,p (3.25)
k=1

These properties could be identified by multiplying both sides of Equation (3.15) with

[VT WT] , and replace [9 \y] by the least squares solution of Equation (3.17) to yield as

clid

the following

T T| — T Tl _ [ T T
R[Vclid W:I Y[Vclid W] Y'_Vclid W}

il ([ vl

Equation (3.26) indicates RVY 4 =0, RW' = 0 which yield the properties of the resid-

cli
ual sequence.
3.5 Iterative Procedure for Identification

In this section, an iterative identification procedure for ARMAX model parameters
and residual sequence is shown. The initial estimate of residual sequence could be comput-
ed from the ordinary least squares solution of indirect CLID. Then one can identify the AR-
MAX model parameters. The iterative procedure continues when the residual sequence is

updated and a new set of ARMAX model parameters is generated.

Step 1: An initial estimate of the parameter 6, denoted by BLS, is computed from the ordi-

nary least squares solution. And the other parameter ‘¥ is assumed to be zero in the
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beginning.

~ T T _[ .

O = YVeig(VesiaVectia) (3.27)
¥o=0 (3.28)

Equation (3.27) is exactly the same as Equation (2.43) which is the ordinary least squares

solution for indirect CLID.
Step 2: Calculate the colored residual sequence " which corresponds to the initial esti-
mate ARMAX model parameter éLS.
= v-8"v, (3.29)
It is noted that &~° is also the initial estimate of white residual sequence denoted by
&y = Ro.
Step 3: Construct the residual matrix W which is composed of residual sequence by using
the estimated residual sequence R, according to Equation (3.14). Then the param-
eter ¥ could be updated by Equation (3.23).
¥y = eBSW I WoWs - WoV T (Vo Vie) VoWl (3.30)

The updated parameter ¥, is used to correct the initial bias as follows

abias o o 5 T T -l
61" = ¥WoA = ¥ WoV iV eiaV o) (3.31)
6, = 67 -8t (3.32)

Step 4: Compute the new whitened residual sequence R, by using the estimated parameters
8, and ¥, as follows

Ry = Y-8,V -¥ W (3.33)

Step 5: Iterate the procedure from step 3 to step 4 by generating the new residual matrix

Wl and using the updated parameters 6, and ¥, . The next cycle is calculated as

follows, for example,
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s LS T o oT o T T - T ~1

Yo = " WilWiW =WV (VeiaVetia) VeriaWi | (3.34)
and

‘\b. (=3 ~ ~ ~ -l

6% = WA = ¥ W,V (Vo V) (3.35)

s ALS b

6, =87 -6," (3.36)

3.6 Recover System Matrices and Kalman Filter Gain

After having obtained the ARMAX model estimated parameters 6, and ¥, one can
use the estimated coefficients to construct the closed-loop system Markov parameters

k
c

'lBC, Kalman filter Markov parameters Y, .(k) = C Ak-[ACK - and

c'c

Y, (k) = C.A

Y, (k) = CAS'M, k=1,2,..,pp+1,... It is noted that Y, (0) =0,

mc C

Y..(0) =1I,and t; = h;

3

= 5; = 0 when i > p, where p isthe ARMAX model order, and

t;, h;, s; are the estimated ARMAX model parameters.

Remember that

8 = [t[ hy oo t, by P = [51 $2 - SP]

-in -1 ~i
hy = CA. '(-M),1; = C,A; 'B,,s5; = C,A,

C Cc { c

-1

One can first obtain Markov parameters sequence Y (k) = C CA,; B., and
Y, (k) = C.AS™'M by following
k
Yo (k) = tp+ D BY (ki) (3.37)
i=1
k-1
Vpolk) = =+ D 1Y, (ki) (3.38)
i=1
Next, for the closed-loop Kalman filter Markov parameters ¥, = CL.A/;_ lA(_K o~ 1Us de-

rived from both estimated parameters 6 and ‘¥'. Note that
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hy+s = C(-M)+C.(M+AK) = CAK,
which is equal to Y .(1)
Y (1) = hy+5 (3.39)

To obtain ¥, (2), one can use

hy+sy = CAA,+MCAK_ = Y, (2)-h Y (1)
to yield

Y1c(2) = hy+ 55+ 0 Y, (1) (3.40)
Similarly, one can find Y, .(3) by following

2

hy+sy = C.ALAK +CMCAAK +CAMCAK,
= Yo (3) = ¥ (2) = hy Y (1)
to yield
Y1o(3) = hy+s3+ 1Y (2) +hy Y (1) (3.41)

By induction, one can show that the sequence Y, (k) equals

k-1
Yie(k) = by +sp+ Y ¥ (k=i) (3.42)

i=1
Then, by using the closed-loop system Markov parameters Y, (k) and the Kalman filter
Markov parameters Y, .(k), and the known controller Markov parameters Y 4(k); one can

derive the open-loop system Markov parameters Y (k) = CAk_ 'B and Kalman filter

Markov parameters Y (k) = ca*lak.

ik
Y(J) = YD) = Y, 3 Y ()Y glk=0)Y (j—Fk) (343
k=1li=1
J k
Vi) = YD = Y, X V(DY y(k= )Y (j~k) (3.44)
k=1li=1

Note that Y (0) = 0,and Y, (0) = [
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After obtaining the open-loop system and Kalman filter Markov parameters, one
can use the method mentioned in section 2.4.2 to realize the open-loop system matrices
and recover the open-loop Kalman filter gain.

3.7 Numerical Simulations

In this section the NASA Large Angle Magnetic Suspension Test Facility (LAM-
STF) is briefly introduced and used as an example for indirect CLID whitening residual.
This facility has been assembled by NASA Langley Research Center for a ground-based
experiment that can be used to develop and evaluate the technology issues associated with
magnetic suspension at large gaps, accurate suspended-element control at large gaps, and
accurate position sensing at large gaps. This technology is applicable to future efforts that

range from magnetic suspension of wind-tunnel models to advanced spacecraft experiment

isolation and pointing system37. The analytical model has been derived in detail in Refer-
ence 38 and 39. From open-loop eigenvalues, it has been found that there are three unstable
modes and two stable oscillatory modes. Since the system is unstable, a controller is re-
quired to ensure overall system’s stability.

This facility basically consists of five electromagnets (see figure 3.1) which active-
ly suspend a small cylindrical permanent magnet. The cylinder is a rigid body and has six
degrees of freedom, namely, three displacements (x, y and z) and three rotations (pitch. yaw
and roll). The roll of the cylinder is uncontrollable and is assumed to be motionless. Five
pairs of LEDs and photo detectors are used to indirectly sense the pitch and yaw angles.
and three displacements of the cylinder’s centroid. The inputs consist of five currents into
five electromagnets and the outputs are five voltage (position) signals from the five photo
detectors. Very briefly, the currents into the electromagnet generate a magnetic field which
produces a net force and torque on the suspended cylinder.

The details of the suspended cylinder, the coils, power amplifiers, and the position

sensors are described in the following section*’. The mathematical mode of the system has
been derived in detail in Reference 38 and 39. Only the final system matrices will be pro-

vided in a later section.
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Figure 3.1 Large-Angle Magnetic Suspension Test Facility (LAMSTF) configuration
3.7.1 System Specifications
The suspended cylinder is an aluminum tube filled with 16 wafers of Neodymium-

Iron-Boron permanent magnet material. Each magnetic wafer is 0.7963 cm in diameter and

0.3135 cm long, having a magnetization of about 9.5493 x 10~ A/m. The suspended cyl-
inder will be put at a height of about 10 cm above the coils.

There are five coils mounted on the circumference of a circle of about 13.77 cm

radius, at a spacing of 72 apart, on a 1/2” thick, square aluminum plate. The current
through the coils is controlled by five switching power amplifiers, capable of delivering a

maximum of 30A continuous and 60A peak level. The amplifiers function in a voltage-to-

current converter mode and are set in a gain of 3 A/V to have a flat response.
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The detection of the suspended cylinder’s position is performed by five sets of in-
frared LEDs and photo detectors. These LED-photo detector pairs are installed in two per-
pendicular planes (vertical and horizontal), which allow detection of five degrees-of-
freedom of the cylinder. The beams from the infrared LEDs, which are incident on the pho-
to detectors, would be partially blocked by the cylinder. The relative position of the cylin-

der can then be determined from the amount of light received by the photo detectors.
3.7.2 System Model

The analytical model has been derived in detail in Reference 38 and 39. Here, the
discrete time state-space parameters of LAMSTF are shown for sampling rate of 250 Hz as

follows:

A finite-dimensional, linear, discrete-time, time invariant stochastic system can be
expressed as:

X = A+ Bug+w,,

Vi = Cxp+v,

A=Ay 4y

1.1687 0.0006 —0.0000 0.0000 0.0000
~0.0000 1.1629 —~0.0000 ~0.0000 —0.0000
~0.0000 0.0001 1.0178 -0.0017 -0.0037
0.0000 0.0000 0.0001 1.0051 0.0001
0.0000 0.0002 —-0.0004 0.0008 1.0106
0.0000 —0.0000 ~0.0021 —0.0240 0.0005
0.0000 —0.0001 ~0.0064 —0.0001 -0.0213
—0.0000 —0.0000 0.0109 -0.0009 —0.0045
0.0000 —-0.0000 ~0.0086 0.0009 0.0032
| 0.0000 -0.0000 0.0004 0.0002 0.0006 |

Ay =
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r-O.OOOO 0.0000 -0.0000 -0.0000 —0.0633
—0.0000 0.0000 -0.0000 0.0000 -0.0396
0.0021 0.0074 -0.0127 0.0112 0.0254
0.0295 0.0006 0.0015 -0.0011 —-0.0218
—-0.0018 0.0223 0.0066 -0.0039 —-0.0242

Ao 0.9908 0.0028 -0.0010 0.0003 -0.0154
-0.0041 0.9692 0.0064 0.0004 -0.0066
0.0021 0.0050 0.9260 -0.0549 0.0625
0.0009 0.0031 -0.0589 0.9125 0.1245
| 0.0012 0.0545 -0.0002 -0.0002 —-0.1009
0.0035 0.0706 0.0519 -0.0363 —0.0633
—0.0434 -0.0326 ~0.0340 -0.0425 -0.0396
0.0580 -0.0454 0.0983 -0.0361 0.0254
-0.0926 -0.0315 0.0881 0.0865 -0.0218
B = 0.1160 0.0124 0.0263 0.0982 -0.0242
—0.1015 -0.0368 0.1033 0.0854 -0.0154
0.1373 0.0057 0.0719 0.0859 -0.0066
—0.0159 -0.0637 -0.1326 0.1165 0.0625
0.0158 -0.1531 -0.0261 0.0041 0.1245
|—-0.0484 —0.0800 -0.0513 -0.0553 -0.1009]
C= Cii Cl’l]
-0.0313 0.4029 -0.0469 0.2269 -0.0381
0.0291 -0.4213 0.0006 0.2248 0.0290
Cy = -0.4423 0.1071 0.1809 0.0553 0.0669
-0.4254 -0.1184 -0.1787 -0.0092 -0.0829
0.4495 -0.0763 0.0754 0.0273 -0.1861
| 0.3889 0.1015 -0.0614 0.0085 0.1739
-0.1961 0.1274 -0.0363 0.0198 -0.1513
-0.2097 -0.1079 -0.0130 0.0297 0.1502
Cpp = -0.0618 —-0.0906 -0.0418 -0.2228 -0.0472
- 0.0200 0.1217 -0.2197 -0.0559 0.0630
-0.0400 0.1239 0.2109 0.0827 0.0464
| 0.0012 -0.1277 0.0386 0.1913 -0.0634
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For simulation, the discrete-time state-space parameters of dynamics output feedback con-

troller can be modeled as:
Prs1 = AyPrt By,

The matrices are

03333 0 0 0 0
0 03333 0 0 0
Ay 0 0 06000 O 0
0 0 0 0.6000 O
0 0 0 0  0.6000]
[-0.0206 0.0206 0 0 0 0
0 0 -0.0098 —0.0098 0.0098 0.0098
B, 0 0  0.0003 -0.0003 -0.0003 0.0003
0 0 -0.0003 0.0003 —0.0003 0.0003
| 0.0004 0.0004 0 0 0 0 |
0.0796 0.0000 7.3872 0.0000 —-5.5493
0.1032 0.0716 —5.9772 4.3222 -1.7160
C; = 1.0e+03x(0,0886 0.0442 2.2836 -6.9917 4.4907
0.0886 —0.0442 2.2836 6.9917 4.4907
10.1032 -0.0716 ~5.9772 —4.3222 —1.7160)]
10.8171 3.9903 -7.0133 7.0133 7.0133 -7.0133
6.7151 —2.1362 11.2687 —8.3349 —3.0144 0.0807
D, = |-2.1923 —9.7904 -7.9381 9.7505 —5.4144 3.6020

-2.1923 -9.7904 3.6020 -5.4144 9.7505 -7.9381
| 6.7151 -2.1362 0.0807 -3.0144 —8.3349 11.2687|

In numerical simulations the number of model order (ARX for indirect CLID and
ARMAX for residual whitening) is evaluated at 7, 15, 30, and the process and measurement
noise (variance) varies from 0.01% to 20%. The number of data points is 5000. After the
indirect CLID (CLID) and its residual whitening (CLID/rw) are performed, both sets of the
open-loop system Markov parameters of the identified models are reconstructed. To eval-

uate the accuracy of the identified result, the reconstructed Markov parameters are
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compared with the true ones. Because there are five inputs and five outputs in this system,
each open-loop system Markov parameter is a five-by-five matrix. To compare two matri-
ces, F-norm is used here. Therefore, the error between the first 30 true and reconstructed

open-loop system Markov parameters is defined as

ai—1a i-1
lca’="8|r

(=1

where the head =~ denotes the reconstructed ones, and the F-norm is defined as

Jz(diag(XT X X)), X is a matrix. Table 3.1 to Table 3.3 shows the error result of open-

loop system Markov parameters of nonwhitening one (CLID) and whitening one (CLID/
rw) compared with the true one. The CLID/rw solution is obtained after 4 cycles of itera-
tion. Figure 3.2 to 3.5 shows the plots of convergence of whitened residual norm and auto-
correlation of the whitened residual.
Table 3.1: Error Percentage of the Open-Loop System Markov Parameters

(Model Order for ARX or ARMAX=7)

(Vi"?;;ie) A yT - YSC’L‘iD
0.01% 1.0334% | 1.0234%
1% 15.4462% | 9.9266%
5% 34.4472% | 14.3700%
10% 44.7841% | 23.7707%
15% 492913% | 34.8206%
20% 56.5067% | 38.4626%
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Table 3.2: Error Percentage of the Open-Loop System Markov Parameters
(Model Order for ARX or ARMAX=15)

(VIz:Ir?zl;ie) S S vl - Yscf‘iD
0.01% 0.9066% | 1.0250%
1% 8.8467% | 9.5389%

5% 12.3540% | 13.0617%
10% 21.4697% | 21.0527%
15% 29.3945% | 30.8258%
20% 30.9603% | 30.8680%

Table 3.3: Error Percentage of the Open-Loop System Markov Parameters
(Model Order for ARX or ARMAX=30)

Noise T ..CLID CLID

(Variance) Y, Y Y: -Y, g

0.01% 0.9788% 1.2630%

1% 9.4574% 8.7023%

5% 13.6627% 15.8037%

10% 24.8745% 22.3979%

15% 31.2659% 30.8230%

20% 32.9591% 32.2228%

3.8 Concluding Remark

From Table 3.1, one can see the residual whitening one obtains a better result than
the one without whitening. In Table 3.2 and 3.3, there is not much difference between these

two, since the model order is large enough and the residual is almost white. Actually, for
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the high level of noise cases, the most significant error is from the original estimated pa-
rameters which have been corrupted by the disturbance. Hence, it’s desired to design a filter
which can reduce the influence of disturbances, then the system identification will have a

more accurate model.
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Figure 3.2 Convergence of whitened residual norm for ARX=ARMAX=7.
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Figure 3.3 Auto-correlation of whitened residual for ARX=ARMAX=7.
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Figure 3.4 Convergence of whitened residual norm for ARX=ARMAX=15
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Figure 3.5 Auto-correlation of whitened residual for ARX=ARMAX=15.
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CHAPTER IV

THE LQG CONTROL DESIGN

4.1 Introduction

This chapter introduces Linear Quadratic Gaussian (LQG) control design for both
continuous and discrete-time domains, a discrete-time version of the Kalman filter for
state estimation, and the procedure of the iterative LQG control design through closed-
loop system identification.

The linear quadratic regulator (LQR) and the Kalman filter can be combined
together to design a dynamic regulator. This procedure is called linear quadratic Gaussian
(LQG) design. The performance of a closed-loop system can be arbitrarily adjusted only
through full state feedback. In most of the realistic systems, we may not have a sensing
system to measure all states. In such a case, output feedback control is required. The LQG
control design is the most systematic approach to output feedback design. Another impor-
tant advantage of LQG is that since the compensator structure is generated from the proce-
dure, it needs not be known in advance. This makes LQG control design useful for
controlling the complicated systems (e.g., space structure, aircraft engines), where one
may not know the exact compensator structure. The LQG control separates the design into
two stages, namely, state feedback (LQR) and state estimation (Kalman filter). Figure 4.1
plots an LQG control system. The system is a stochastic system, since the plant is dis-
turbed by process noise and the output is corrupted by measurement noises. In state esti-
mation the optimal estimate of state is established by using the information of the system
output. To achieve this, one needs the statistics of the process and measurement noise to
design a steady state Kalman filter gain which is used for state estimation. Then the esti-
mated state through Kalman filter is used for state feedback. The state feedback is
designed to minimize a performance index described by system states and inputs with

weighting matrices. Basically the LQG uses the output information to accomplish state
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feedback through state estimation. By selecting proper design parameters of state estima-

tion, the performance of the LQG control can achieve that of a true full state feedback. 41-

43
Measurement
Process Noi
Noise oise
Reference + v output
Input Actuator + y
r u Plant +
=) > =) >
A (Controlled System)
4 y
r-- - - - - - - - ""—-""--" """ 97"T""-—""—"— — - i |
[ l
| I
| !
| State State |
- .. -——

I Feedback Estimation l
| Estimated [
l State |
I [
L e e = r—Y————— —_—_———_————_—— = J

|

|

L — — = LQG Controller

Figure 4.1 LQG Control System

4.2 Continuous Time Approach

A finite-dimensional, linear, discrete-time, time invariant stochastic system can be

expressed as:

X = Ax+Bu+w “4.1)

y = Cx+v 4.2)

x1 . (x 1 . . . x 1
where xe R"” " is the state vector, ue R™” " is the signal input vector, and y € R"’

is the output vector; [A, B, C] are the system matrices. The sequence of process noise
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nxl . noxl . .
we R and measurement noise v R are assumed white, Gaussian, zero mean.

The noises w and v are also assumed uncorrelated with covariance Q and R, respec-
tively.
First, for state feedback, LQG control is designed to minimize the performance index

associated with state and input vectors
o, T T A
J = [5G Mx+u’ Nudr (4.3)

where M and N are weighting matrices. The matrices M and N determine the relative
importance of the error and the expenditure of the energy of the control signals. Generally
speaking, a larger M, which makes the error more important, gives less state error so that

the system will respond quicker. A larger N, which makes the control signals more impor-
tant, results in less input so that the system has lower response. In order to insure there is a

solution to minimize the performance, M needs to be positive semidefinite and N needs to
be positive definite. The optimal feedback control can be determined** as follows

w=-N"BTsx (4.4)
where S can be solved from the following algebraic Riccati equation

T -1 T <

0=AS+SA-SBN B S+M 4.5)
Second, for state estimation, the state estimation law is

% = AX+Bu+G(y-C%) (4.6)
where G is the estimation gain and ¥ is the estimated state. The estimated state can be

corrected by the measurement output. The estimation gain is designed to minimize the

covariance of the error between the true and estimated states

[FElG-0x -] @)
based on the covariance matrices of the process and measurement noises. The optimal
estimation gain can be found*’ as

G = LCTR™ (4.8)

where L can be solved from the following Riccati equation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0=AL+LA"+Q-LCTR'CL (4.9)

So, one can solve Equation (4.6) to have the estimated states and uses them to find out the
optimal control input from Equation (4.4).
4.3 Discrete Time Approach

The recent revolutionary advances in digital computers, such as the great advances
made in large-scale integration of semiconductors, the availability of low cost micropro-
cessors and microcomputers which can be used for various control functions, and the
development of suitable programming techniques, have increased influence on the tech-
niques of system identification and control. It is easier to maintain and modify computer
codes in digital computers than wire connections in analog computers, and also the digital
computers provide high flexibility for implementing control laws as compared with analog
computers. However, a sampling rate is required to allow digital computers to process
control laws. In general, the sampling rate will affect the closed-loop system performance
and stability. The sampling and quantizing processes tend to result in more errors which
degrade system performance. If a low sampling rate is necessary for the process of a more
complex control law, one may need to use discrete time approach for LQG control to
maintain the performance and stability of the closed-loop system. Most system identifica-
tion techniques are based on discrete time systems. The following introduces the discrete
time LQG control.

A finite-dimensional, linear, discrete-time, time invariant stochastic system can be
expressed as:

Xpoy = Axp+ Bug+w, (4.10)

Ve = Cxp+V, (4.11)

nxl . (x 1 . . . 1 X |
where x, € R is the state vector, ue R™ is the signal input vector, and v € R"

is the output vector; [A, B, C] are the system matrices. The sequence of process noise

nxl . nox | . .
we R and measurement noise v € R are assumed white, Gaussian, zero mean.
The noises w, and v, are also assumed uncorrelated with covariance Q and R, respec-

tively. Since the procedure of the discrete time is similar to continuous time approach, it is
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summarized as follows*:

[. Performance index:

J = Z xZMxk+uZNuk 4.12)
k=1

2. Optimal state feedback:
T -l.T A
u, = -(N+B SB) B SAx, (4.13)
3. Riccati equation for state feedback:
s=A"(S-SBN"'BTS)A+Q (4.14)
4. Optimal state estimation:
. o T T -1 .
Y1 = A+ By, +ALC (CLC +R) (yp—cXp) (4.15)
5. Riccati equation for state estimation:
T T -1 T
L =A[L-LC (CLC +R) CLJA +Q (4.16)
4.4 Kalman Filter

The technique of Kalman filters can be applied to problems such as optimal esti-
mation, prediction, noise filtering, and stochastic optimal control. A Kalman filter can be
easily programmed on a digital computer, and can also be applied to stationary and non-

stationary processes. The discrete time Kalman filter with stationary, white process and

measurement noises which are uncorrelated to each other can be summarized as follows™’:

a. Assumptions:

E[w,] = 0, Elwgw;] = Q8(k - j)
E[v] = 0, E[vvi] = R8(k-J)

. - N
Elxg] = &g, E[(xg—X)(xg—%) 1 = Py
b. Prediction:

%, = AX_,+Bu,_, 4.17)

P, = AP;_ A" +Q (4.18)
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c. Measurement update:

o= 0+ Ky -cxp) (4.19)
= ([n_KkC)‘%I-(+Kky/:
P, = (I,-K,0)P, (4.20)

K, = P,cT(cP,cT+R)” @.21)

where O and R are the covariance matrices of process and measurement noises, respec-
tively; & the estimated state vector, P the corresponding estimation error covariance
matrix, /, the n-dimensional identity matrix, K, the Kalman filter gain and the super-

script - and + distinguish the estimates before and after taking account of the current mea-

surement data, respectively.

The inner operation of Kalman filtering can be explained as follows. Given the
state, x, _,attime Kk~ | and its corresponding error covariance, PZ_  » the Kalman filter

propagates the state and the error covariance to the next moment k£ ((4.17) and (4.18))

using the system model, and the results are x, and P,, respectively. This procedure is

called prediction or extrapolation, because the current state is calculated based on previous

data. Upon the arrival of the measurement y, at time &, there are two sources of informa-

tion about the state at time & : the propagated state with its error covariance and the new
measurement with measurement noise covariance. The measurement is related to the state
through measurement Equation (4.16). Using a minimum-mean-square estimation error
criterion, the Kalman filter provides a method of combining these two sources of informa-
tion into an optimal estimate of state x, . This is done by adding a modifying term to the
predicted value, where the modifying term is computed by premultiplying the output pre-
diction error (the difference between the real and predicted measurements) with a weight-
ing matrix. This weighting matrix is called the optimal Kalman filter gain, and is given by
Equation (4.21). This procedure is called measurement update. After measurement update,

the next prediction can be made, and so on. By this method the Kalman filter can use data
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recursively to yield the optimal estimated state. There is no need to keep a record of previ-

ous data.

To combine the prediction and measurement update, one can substitute (4.19) into

(4.17) and (4.20) into (4.18) by changing k£ to k-1 in (4.19) and (4.20). The result in an

alternative filter formulation which produces the a priori estimated state X, and error

covariance P, _, as follows
%, = AR, +Buy_ | +AK,_ (v ,-CEi_)) (4.22)

P, = A(P;_,-K,_,CP,_A"+Q (4.23)
Substituting (4.21) into (4.23) by changing k to k— | in (4.21) yields

. . - . S —
P, = A[P,_,-P,_,CT(CP;_,CT+R) CP,_,1A"+Q (4.24)
Comparing (4.24) and (4.16), one can have

lim P,_, =L (4.25)

koo

Substituting (4.25) into (4.21) yields

-1
lim K,_, = K = LCT(CLC" +R) (4.26)

k> o
This indicates that the steady state Kalman filter gain exists and is used for state estimation
in the LQG control. One can write (4.22) with the steady state Kalman filter gain as fol-
lows

If one defines the error between the actual output y, and the estimated output CX, as

residual €, , one can have

X1 = AR+ Bu,+ AKe, (4.28)
Vi = Cx +¢, (4.29)

In a Kalman filter sense, Equations (4.28) and (4.29) are the best description of a stochas-

tic system whose state space model is shown in (4.10) and (4.11). The model using the

prediction of (4.28) and (4.29) is called a filter-innovation model*®. This model has been
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used in previous chapters. The optimal controller using a Kalman filter can be used even if
there are no noise or disturbances in the system. One can identify the Kalman filter gain
from the input-output experimental data without estimating the covariance of the process

and measurement noises and solving the Riccati equation.

4.5 Iterative LQG Controller Design

In contrast to most existing LQG control designs which solve two separate, but
dual problems: the state feedback and state estimation design. Also, an iterative controller
design49 through closed-loop identification is introduced here. In the iterative LQG con-
trol design, the Kalman filter gain and open-loop state space model can be obtained simul-
taneously through closed-loop identification, except one needs to solve the state feedback
design which is based on the identified open-loop model. The performance index for state

feedback design is

J = z )’ZM)’L.-HIZ.-NIL,\. = 2 xZCTMka+uzNuk (4.30)
k=1 c =1

where weighting matrices M and N are design parameters. The following summarizes the

procedure of the iterative LQG controller design:

Step 1:Use the priori open-loop model and arbitrary covariance matrices of the process
and measurement noise to design the state feedback and Kalman filter, and calcu-
late the controller Markov parameters. The weighting matrices M and N for the
state feedback will remain the same in the following iterations.

Step 2:Excite the closed-loop system with random input and record the input and output
data.

Step 3:Perform the closed-loop system identification presented in section 2.5.2 to obtain

the identified open-loop system matrices, A, B, C and the Kalman filter gain K .

Step 4:Obtain the state feedback gain F by solving the corresponding Riccati equation
based on the identified open-loop model.

Step 5:Form the updated LQG controller in Equations (2.32) and (2.33) by using
Ayj=A-BF-AKC,B; = AR,C; = -F,and D, = 0.

Step 6:Calculate the updated controller Markov parameters and check the convergence of
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n
c = 2 " Yd(k)updale - Yd(k)previous"
k=0

If C is greater than a desired value, go back to Step 2, otherwise stop.
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(4.31)



CHAPTER V

ADAPTIVE CONTROL DESIGN

5.1 Introduction

The convention active control approach for dynamical systems could be classified
by four key steps, namely, system modeling, system identification validation, controller,
and finally the resulting system testing. For systems with unknown disturbances and con-
siderable uncertainties, the traditional approach is not quick enough to catch up with the
systems changes. As a result, on-line system identification computation and adaptive con-
troller design in real time become important in these situations.

Because of the variation of the system parameters with time, a parameter estima-

tion algorithm which is able to track the time-varying parameters is needed. Many adap-
tive control techniqucslo'l7 have been developed for this issue. There are two schemes that
are particularly interesting: model reference adaptive control (MRAC)!10 and self-tuning

regulator (STR)’!. The basic concept for model reference adaptive system is that of giving

a desired reference model and letting the system behave like it. One needs to be concerned

the stability of the overall system. The basic idea of a self-tuning regulator is to use a
parameter estimation with a minimum variance controller. In reference 17 and 52, Juang
proposed a deadbeat controller design using ARX model with direct transmission term.
Here, a deadbeat controller design without the direct transmission term is shown and
recursive formulation is also provided.

In section 5.2, a multi-step ahead output prediction is derived. One can derive
multi- step ahead output predictior from the basic one-step ahead prediction by using the
ARX model. Through the recursive formulation, one can calculate the multi-step ahead
coefficient parameters. And it turns out that one sequence of the parameters is the system

Markov parameters which can be used for identifying system matrices, and the other is the
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observer gain Markov parameters which can be realized to have a state estimation
observer. Section 5.3 shows how to design an indirect predictive control to let the system
output go to zero (deadbeat). Using the algorithm derived in section 5.2 for multi-step out-
put prediction, one could set up different control steps to design a deadbeat controller to
bring the system output to zero. In this method, one needs to estimate the ARX coefficient
parameters first, and use them to design a controller. The step-by-step computation is also
provided. In section 5.4, a classical recursive least-squares formulation is presented. This
technique combines system identification and predictive control design together. One
needn’t obtain the estimated ARX coefficient parameters first as one did in section 5.3.
The control parameters are updated in every sampling period. There is no matrix inverse

involved, and one can use this method for on-line application in real time.
5.2 Multi-Step Ahead Output Predictor
The input and output relation could be described by the ARX model where AR

refers to AutoRegressive part and X refers to the eXogeneous part.
q q
Ve = DAYkt Y, by
i=1 i=1
= alyk_ 1 +(l2yk_2 + ... +aqyk~q
(3.h

+byuyp_  + by 4+ +bquk-q

nixl| . . . x1 .
where e R™ ™" is the signal input vector, and ye R"*™" is the output vector. Note that

o Xno noxXni . . .
" ,b;e R"7™ i = 1,2, ..., q are the ARX coefficient parameters, and g is

[ ]

a;€ R
the ARX model order.

By changing the time step from & to k + [, Equation (5.1) can be rewritten as
Vel = Vet Vg1 ¥ ¥ AV g4
+bluk+b2uk—l+"'+bquk—q+l (5.2)

Replace y, in Equation (5.2) by Equation (5.1), one obtain
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Yeer = (@ap+ag)y,_H(aay+az)y, o+ ... +(aya,_(+a))ye_, . vaa,y,_y

+bup+(ab; + b))y _ + (aby +b3)uy, o+ ... +(a[bq__l +l7q)uk_q+ | +a[bquk—q
(5.3)

In Equation (5.3), the output at time step k + 1 is described by the past outputs from & — [
to k—q time steps instead of k£ to k+¢q— 1, and the past inputs from & to k —q time

steps instead of k to k—¢g + | time steps.

Define the following symbols

a(ll) = aya; +a,, b(l[)'z albl +b,

a(zl) = aa,+as, bél) = aby + by
(5.4
(n  _ y  _
ag_ = aa,_+a,, bq_l = albq_l +l)q
(1) _ ) _
a, = aa, ,bq = albq
and
(n _
by~ = b,
Then one can write Equation (5.3) as follows
(1 (1) (N
Yew1 = G Y1t ay Ypot ..o ¥a, Y,
(N (N (1) (1)
+by ‘up +by uy_ +by uk_2+...+bq Uy (5.5)
By similar way, one could conduct the output at time step k + j as
)] )] )]
Ye+j = O Vi1t Yot o+ a, Y,
. ,
+b§ iy 65, (5.6)

+b(lj)uk_l +bgj)uk_2+ +bflj)uk_q

where
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& = & Vg +a§™0 B = gUVp 4 pU=D

. - . . . .
ag./) = a([J )(l2+agj l), bgj) = a([./ l)b2+b§.l 1)
(5.7
o _  u-1n G- G _ G- (VR
a;_| = a a,_|+a; , bq_l = a bq_[ bq
and
by = pl~Y (5.8)
Note that ago) = a; and bf-o) =b;,fori =1,2,....
With some mathematical operation, Equation (5.8) could be expressed as
k
(k) (k-1)
by =be+ Y aby V. k=12..q (5.9)
i=1
Note 5" = 0.
In a similar way, @\’ = ¥~ "a, +a¥ ™" can also be described as
1 k-1 )
a([lw ) = a, + Zaia,;-l_l,k =1,2..,q (5.10)

i=1

Note that a(lo) =

a.
Compare Equation (5.9) and Equation (2.22) and one can see that actually bf)k) is equal to
system Markov parameters. On the other hand, Equation (5.10) is the same as Equation

(2.23), and a([k_ ') is the observer gain Markov parameters which can be realized to have a

state estimation observer.

5.3 Deadbeat Control Design

In this section, it shows to design a predictive control to let the system output go to

zero (deadbeat). Equation (5.6) can produce the following matrix equation, for

j = 01 11 21 ey 8§38 — 1,.-.,1—1.

l I}
Ve = Tuk+[3uz_q+ayz_q (5.11)
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Vi U
Yir1 ey
1— —
Ye S Yews | %% T | Upps
Yevs+1 Mpsse
Yk +1-1] | “k+1-1]
Ye-q Ui—gq
yZ_q: yk—q-i-l , uZ_q: u/\’—q-i-l
| Vi1 | | Yk |
[0
b 0
... 0
T=|85 57" .. o0
(s+1) (s) (n
by by by 0
(=1) ,(I-2) (I-s=1) ,(I-5-2)
_bo by ... by by 0_
bq bq_l b, a, a,_; a;
(1) (1 (0 (1
b,” b,_, by a,’ a,_, aj
_ (s) (s) (s} — (s) (s) ()
B - bq bq_ ces bl ’ o = aq aq_l oo a[
(s+1) ,(s+1) (s+1) (s+1) (s+1) (s+1)
bq bq_ ... by p ag_y " ... a
=1y ;-1 (-1 -1 u-n (-1}
-bq bq_ ... b | > ag_ ay

.o i . . .
The quantity y, and u, contain a total of / output and input data points from the

time step k to k+ /-1, respectively. However, y{_, and uj_, only include ¢ data
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points from the time step k—¢q to k— 1. The matrix T is normally called the Toeplitz

matrix which is formed from the system Markov parameters (bgl), ey b(()[— D ). In Equa-

tion (5.11) y,{, is composed of three terms, the 2°¢ and 3" terms are the known past input

and output vectors from the time step k—¢q to k-1, respectively. The first term, the
future input vector, could be designed for deadbeat (zero) feedback control.

If one wants to design a set of future control signals, say, from u; to u«, _._,,t0
make the future output sequence y; , ., Y4 . 4 s ---» © €qual to zero, one needs to design
predictive control to satisfy the condition. We assume the control operation only from u,
to u; , s, beyond and including «, _ . are all zero. The system is open loop before time

k and there are s steps of control action which are from the time step & to k+s—1.

Hence, one can write the following equation according to Equation (5.11) as

, 5
=T "k'*'B'“Z_,,'*'O"}’Z_,, (5.12)
where
[ Ve u
. u,
yZ+s = | Yk+s+1 , uz = k+1
_—vk+s+q—l_ _“k+s-[_
and
(s) (s-1) (1)
by by ... by
, JACh 1) b(s) b(2)
T" = T(sng+ l: sng+qny, lisn;) = 0 0 -+ Yo

(s+g-1) ; (s+q-2) (q)
_bo bo ... b
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B(sng + L:gng +sny, :)

o = asng + l:gng+sng, 1) =

(s) (s)
b‘l b‘l"
(s+1) (s+1)

bq bq_

.

(s) (s)
aq aq_!
(s+1) (s+1)

4q Ag-1

| “q g-1

(s+q-1) ;(s+g-1)
bq bq_

a(.s‘-(-q-l) (s+q-1) .

Equation (5.12) is a reduced version of (5.11) by cutting its first s equations and the equa-

tions beyond s + ¢ — | . The matrix T € R s formed by system Markov parame-

k . . . .
ters, bg ) Note that ni and no are the number of inputs and outputs, respectively, g is the

ARX model order and s is the number of control steps.

In Equation (5.12) we choose the number of rows for 7" to be qny. There is a rea-

son for this. If one flips the columns in the left/right direction and preserves the rows of

T’, it becomes a Hankel matrix of the pulse response. It is known that the Hankel matrix

has a maximum rank of n which is the order of the system if gny>n. By choosing any

number greater than gn, could not increase the rank of T”. And one also needs to choose

sn;2n in order to make sure that 77 has rank of n.

To make yj , . equal to deadbeat (zero), i.e.,

q -
Viees =

Yi+s

Yewrs+l

_yk+:+q—l_

the feedback control u;, will be
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k = T Buk-q'*'ayk_ :
u,. could be obtained from the first n; rows of Equation (5.13) as
w, = —first n; rows of {{ T'1'[(B'u?_ +o’y! 1}
k= i k-q Yk-q

=a;* Y+ ary*y_,+ ... +aty_,

+b[*uk_[+b2*llk_2+...+bq*llk_q (5.14)
where a ¥, ..., aq* and b *, ..., bq* are the control parameters to be computed for the

feedback control «, . In theory, the control action will bring the system to rest (zero) after

the time step & + s . Since the system has input and output uncertainties, however, the con-

trol action can only bring the system output down to the level of the uncertainties.

5.3.1 Computation Steps

[. Compute the estimated ARX coefficient parameters, a; and b;, i = 1,2, ..., ¢ from
given input and output data.

2. Use Equation (5.8) to form the Hankel-like matrix 7°. Note that the number of control

steps s should be chosen properly to make sure the rank of T is n or gn, whichever is
the least, where # is the order of the system, ¢ is the order of the ARX model, and n,, is

the number of the outputs.
3. Form matrices B’ and o by using Equation (5.7).
4. Calculate the feedback control parameters a*, ..., a q* and b.*, ..., b q* from Equation

(5.13).
5.4 Recursive Formula for Real-Time Application

In this section, a classical least-squares recursive formulation will be shown and it

satisfies both system identification and deadbeat controller design requirements. The
recursive formulation can be used for on-line operation when real time application is

required. According to Equation (5.11), one can write down

Yies = Tul ™ 4 Bluf_ +a'yi_, (5.15)
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where
- - r -
Yi+s Uy
q _ Ye q+s _ i,
Vies = k+s+1 LUy = k+1
_yk+s+q-u _ulc+s+q—-l_j
b BT b 0 o0 .0
2
T” - b(-"'*'l) b(S) B b( 2) b(l) 0 .0

......

b(‘l) b(‘I‘l) b(‘l“") )

..

- -2
b(s+q l)b(s+q )

.

and B, o', uz_q, yg_q are the same as in Equation (5.12). Note (5.15) is a slight differ-

ence with (5.12) in which we assume the control operation only from u«, to u. ._,,

. . +5 . - Ry
beyond and including u, , . are all zero; hence, we use T"uZ * instead of T’uy . Later on

it will show the same result for feedback control signal by using s steps of control action.
Actually, Equation (5.15) must be satisfied for any given input and output sequence, and

one can calculate the matrices 77, B” and o’ . Examining the matrix 7", one can see T” is

a submatrix of T”, i.e., T" = T"(:, l:sn;). Let’s rewrite Equation (5.15) as following

Voo = Tup+Toul, +PBuf_, +ayk —q (5.16)
where
0 Up v s
(N
b 0 u
_ 0 q _ '
To = , uk+.¥ - k+s+1

_uk+s+q— 1

One can solve «; by following

“k = (T") l:“_ —Tu,H_S Buk o'yl ‘;I

or in a simply matrix form
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Y

“e = [(T)“‘oc' ~T)" B ()" —(T')*To] 1 (5.17)

q
Yews

[kt s

Define the following quantities

Ee = [—(T’)*a' —(T')“B'] Ep = [(T’f' -(T’fTo]

and
q q
v‘l - yk—q q - Yi+s
k-q ~— * Vs T
llq lll
k- k+s

Then Equation (5.17) becomes

q
V.

u, = [E, E) o (5.18)
k

v'+.\‘

If one chooses the feedback control signal u,{,, i.e., the control operation only from «, to

Uy, < to bring the output to zero, as

q

5 q Yk - <
uk = Ecvk_q = [—(TI)+CXI _(T/)+BI] v 1 (3.19)
llL

which is the same as Equation(5.13), i.e., ”L = “[T] [B “A a"’Z J In order to
q = ¢

satisfy Equation (5.18), then the following equation should be held
q Y
Egviss = [(T')+ -(T')‘“To] q” =0 (5.20)

Up v s

Since uy, ; has been set to zero, and if T’ (sni X qno) is full rank gno with sni 2 gno,
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then yZ +s = 0, i.e., after s time steps, the feedback control force u,{, will bring the output

to rest (zero).

And the feedback control signal «, equals
u. = [the first n; rows of E(_] Vz_q

=E_ Vi (5.21)

_(1

One can use the input-output relationship of (5.18) to solve for £, and E,. In Equation

(5.18)

[

u, = (tlze first n; rows Ofl:Ec Eo:l) V/;—fl

Vi +s
q
%
= | k-q 99
- [Ecni Eom] q (3-22)
Viss
One can form the following equation to solve for E_,; and E; by using the application
of Equation (5.22)
Vq
= k-q 2
U/C - I:Ecm' Eom:] (5.23)
vi
k+s
where
U, = ["k Up o) --- u,_q_u_l]
yk-q yk—-q-(»l yl—2q-s+l Yiws Yees+1 - yl—q+l
Mg Y—ge1 - Uo2g-541 Uews  Mraser - Wogaet
a _ | ... q _
Vk--q - ! VL‘+S -
Y- Vi yl—q—s yk+s+q~l yk+s+q Y
__uk—l iy ul—q—: ] _L‘k+s+q-l uk+:+q iy B

And [ is the data length. One needs to choose [ large enough to make sure the solution
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exists.
As aresult, one can find [Ecm. Eam] from (5.23)

+
q

Vi
[E E] =Ug "1 (5.24)
V‘I

k+s
5.4.1 Recursive Algorithm

The following will use the classical recursive least squares method as shown in
section 2.3.2 to solve the coefficient parameters I:Ecm. Eom] for on-line operation.

Rewrite Equation (5.22) as

llk = Ehk—l (5.25)
where
vk—q
Yr Vi _
E= [Ecni Eomz| » Vi = ¢ ’ hk—[ = k-1 (5.26)
Uy Vi+s
_v/c+s+q-l_

Then, define the following quantities

My = hZPk-l[l +h,{P,~,_lh,\]“l (5:27)
e,y = Exhy (5.28)
Py = Py [1-nyh] (5.29)
Eger = Ek+|:z¢k+[—z'2k+l:|Mk (5.30)

Equations (5.27) to (5.30) are the basic recursive least squares formulations to identify the

gain matrix E which includes E_,; for the deadbeat controller design and E_,, for the

need of system identification. The initial values of P, and E; can be obtained by two
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approaches. One is to execute a small batch calculation after gathering a sufficient number
of data. The other is to assign a number to them, one can assign P, and £, as

KL54(no +niy) and O respectively, where K is a large positive number.

nix2q(ni+no)’
5.4.2 Computation Steps

l. Form the vector &, as shown in Equation (5.26) with the new component Vkss+q-1 38

the last ni + no rows.

2. Calculate the gain vector M ¢ (1 X2g(ni+no)) from Equation (5.27). Note that one

should compute h,{P,\,_l first, then use the result to calculate [”:Pk l]hk in order to

save the time for calculation.

3. Compute i, , | from Equation (5.28).

4. Obtain P, from Equation (5.29) for updating P, _, and use the values of #, and M,

obtained in 1*' and 2™ step, respectively.

5. Update the desired coefficient parameter, Ek, to obtain Ek+ i from Equation (5.30) by
. . . . ~ - {
using the new input u«, , |, the estimated input i, , , computed from 3™ step, and the

. d
gain vector M, computed from 2" step.
The recursive algorithm can be used for on-line application. No matrix inverse is needed

in the procedure. Only updating P, and M, will take more time than the other quantities.
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CHAPTER VI

NUMERCIAL VALIDATION

6.1 Introduction

High speed air flow over the cavity produces a complex oscillatory flowfield and
induces pressure oscillations within the cavity. The large pressure fluctuations induced
from the cavity generate undesirable and loud noise. This may have an adverse effect on
the stability and performance of overall system. This chapter uses a set of input and output
experimental data from the cavity in the subsonic fiow to demonstrate the feasibility of
system identification and controller design. The piezeroelectrical material works as an
actuator placed on the roof of the front wall of the open cavity. There are five pieces of
piezeroeletric material and each is 3” x 1”. The microphone placed on the center floor of
the cavity measures noise as output. The wind speed is about 60 m/s and the sampling rate
is Sk Hz. The top view of the configuration is shown on Figure 6.1. Our goal is to reduce
the noise, namely, let the output down to zero. For LQG control, system matrices for state
space model and Kalman filter gain are identified first, then a LQG controller is designed
to let the system reach the desired performance. For adaptive control, the recursive least-
squares technique is used. The formulation simultaneously satisfied system identification
and deadbeat controller design requirements, i.e., the system identification and deadbeat
control are built into one formulation. The control parameters are calculated first and the
feedback control force is formed to bring the system down to deadbeat (zero).

6.2 Numerical Results

In this section, although the simulation uses single input and output (SISO) data, it
is applicable to multiple inputs and outputs (MIMO) cases. Since the system is stable, one
could use the open-loop identification algorithm as shown in section 2.4 without adding

the controller.
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Figure 6.1 Top view of cavity noise system inside wind tunnel
6.2.1 Result for LQG Control

Figures 6.2 and 6.3 show the original input and output data, respectively. Figure
6.4 shows real and predicted output for data from [ to 1024 points, and Figure 6.5 shows
new test data and ARX predicted output from 1025 to 2048 data points. And the identified
system matrices and Kalman filter gain are

A =

[

09710 02826 5 _ 113719
~0.2826 0.9418] L9.5415

C; = [13719 -9.5415]

and Kalman filter gain

K; = 0.3369

-0.1520
In Figures 6.6 to 6.8, the LQG control design is performed to reduce the noise. The con-
troller is added after 1500 data points. Figure 6.6 shows the output after adding the LQG

controller. Figures 6.7 and 6.8 depict the plot for dynamic feedback and plot for actuator.

respectively. By constrainting the actuator range from 0.1 to 0.25, the plots are shown in
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Figures 6.9to 6.11.
6.2.2 Result for Adaptive Control
Figures 6.12 to 6.20 show the result of using adaptive control by the recursive

least-squares technique and the controller is turned on after 1500 data points. The model

order is ¢ = 2. From Figures 6.12 to 6.14, the number of control steps equals 2, Figure
6.12 shows the original input and the computed control force. Figure 6.13 depicts the
overall new input, i.e., the original input plus the control force. Figure 6.14 shows the out-
put after adding the control force. Figures 6.15 to 6.17 use 5 control steps, and the control
force is found out to be

u, = —0.3004u; _— 1.3805u, _,—0.0080y, _, +0.0145y, _,

Figures 6.18 to 6.20 use 10 control steps.
6.3 Concluding Remarks

One can see from Figures 6.4 and 6.5 that the prediction of the output is very accu-
rate when using ARX model structure. When constraining the actuator range, one can see
the result, which is shown in Figures 6.9 to 6.11, is almost the same as the one without
constrainting one. For adaptive control, if the control step is choosen to be 2 which is the
minimum number of steps as mentioned in section 5.3, one can see there is a peak when
the controller is turned on. One can avoid this by increasing the number of control steps.
Although increasing the control steps will eliminate the undesired peak, it doesn’t mean
more control steps will get a better result. This is observed from Figures 6.17 and 6.20. in

which the control steps are equal to 5 and 10, respectively.
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CHAPTER VII

CONCLUSIONS

7.1 Summary

An indirect closed-loop system identification through residual whitening has been
proposed. The cavity noise system is identified and the reduction of noise is achieved with
two active controllers, namely, LQG controller and deadbeat controller. The deadbeat con-
troller includes indirect and direct algorithms.

When one identifies a system from available input and output data in time domain.
the data length and the ARX model order are assumed to be long enough and sufficiently
large, respectively. The identified observer tends to be optimal Kalman filter gain in the
presence of process and measurement noises. In practice, however, one can't do it in this
way. Hence, there are certain errors existing in the identification process. Actually, the

major error is introduced by the truncation of the infinite ARX model series into a finite

model.>3 In the residual whitening method, the ARMAX model which includes dynamics
of noise is used instead of ARX model. Through residual whitening, the optimal proper-
ties of the Kalman filter could be enforced for a finite set of data, and the residual is mini-
mized, orthogonal to the time-shifted versions of itself and to the given set of input-output
data. The requirement of the model order could also be relaxed to reduce the computation
burden, especially for several inputs and outputs systems.

When high speed air flows over a cavity, it produces a complex oscillatory flow-
field and induces pressure oscillations within the cavity, and undesirable and loud noise
generated. This may have an adverse effect on the objects. Hence, it’s an important issue
to work on noise reduction.

In the existing LQG control design, the controllers are designed by solving two
separate, but dual problems: the state feedback design (LQR) and state estimation design

(Kalman filter). Through system identification, one can identify the system matrices and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

steady state Kalman filter gain. Then the estimated states through the Kalman filter are
used for state feedback. It needs trial-and-error approach to choose suitable weighting
matrices for state feedback design. Hence, basically the LQG uses the output information
to accomplish state feedback through state estimation.

In the deadbeat controller design, one can use either the indirect method or recur-
sive least-squares method to design the controller through multi-step ahead output predic-
tion. The multi-step ahead output prediction algorithms allow one to predict the future
output several steps away by using the ARX coefficient parameters and set up different
control steps to design a deadbeat controller which will bring the output to zero.

For the indirect method, one needs to calculate the estimated ARX coefficient
parameters first, then use the deadbeat control algorithms to find out the feedback control
parameters. For the classical recursive least-squares method, one can perform the adaptive
control for on-line operation. Here, the system identification and deadbeat control are built
into one formulation. Hence, one can simultaneously identify the system and perform
deadbeat controller design. In this recursive algorithm, the control parameters are updated
in every sampling period and no matrix inverse is involved.

7.2 Further Extension of the Research

One natural extension for the indirect closed-loop system identification through
residual whitening is to investigate its application for recursive algorithms. In the presence
of high process and measurement noises, however, the residual whitening method could
not reach a significant result. Since the output is highly corrupted by noise. one can’t
expect only to whiten the residual to have a better result. The estimated coefficient param-
eters are matching with the corrupted output instead of the ‘true’ output. Hence, one may

need to investigate another approach to ignore the influence of high noise, such as new

input design.54

In the deadbeat control design, one may use fast versions of the recursive least-
squares method, such as fast transversal filter and lattice filter,'®8 besides the classical

recursive least-squares. As the order of ARX model increases, the computation of classical

. . 2 . .
recursive least-squares increases on the order of n” for each recursion, where n is the

order of the model. However, the computation of the other two filters will only increase
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linearly with the filter order nn. Hence, they will be more suitable for on-line operation.
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