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ABSTRACT

IMPROVED FINITE ELEMENT METHODOLOGY FOR INTEGRATED
THERMAL~STRUCTURAL ANALYSIS

Pramote Dechaumphai

01ld Dominion University, 1982
Director: Dr. Earl A. Thornton

An integrated thermal-structural finite element approach for
efficient coupling of thermal and structural analysis is presented.
New thermal finite elements which yield exact nodal and element
temperatures for one-dimensional linear steady-state heat transfer
problems are developed. A nodeless variable formulation is used to
establish improved thermal finite elements for one-~dimensional
nonlinear transient and two—dimensional linear transient heat transfer
problems. The thermal finite elements provide detailed temperature
distributions without using additional element nodes and permit a
common discretization with lower order congruent structural finite
elements. The accuracy of the integrated approach is evaluated by
comparisons with analytical solutions and conventional finite element
thermal-structural analyses for a number of academic and more
realistic problems. Results indicate that the approach provides a
significant improvement in the accuracy and efficiency of thermal-

stress analysis for structures with complex temperature distributioms.
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Chapter 1
INTRODUCTION

The finite element method is ome of the most significant develop-
ments for solving problems of continuum mechanics. It was first
applied by Turmer et al. [1]* in 1956 for the analysis of complex
aerospace structures. With increasing availability of digital
computers, the method has become widespread and well recognized as
applicable to a variety of continuum problems. Applications of the
method to thermal problems were introduced in the middle of 1960's
for the solution of steady-state conduction heat transfer [2].
Thereafter, extensions of the method were made to both transient and
nonlinear analyses where nonlinearities may arise from temperature
dependent material properties and nonlinear boundary conditions.
Important publications of finite element heat transfer analysis
appear in references [3-12]. With these developments and consider-
able effort contributed during the past decade, the method has
gradually increased in thermal analysis capability and become a

practical technique for analyzing realistic thermal problems.

*The numbers in brackets indicate references.
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1.1 Current Status of Thermal-Structural Analysis

Thermal stresses induced by aerodynamic heating on advanced
space transportation vehicles are an important concern in structural
design. Nonuniform heating may have a significant effect on the
performance of the structures and efficient techniques for determining
thermal stresses are required. Frequently, the thermal analysis of
the structure is performed by the finite difference method.
Production-type finite difference programs such as MITAS and SINDA
have demonstrated excellent capabilities for analyzing complex
structures [13]. In structural analysis, however, the finite element
method is favorable due to better capabilities in modeling complex
structural geometries and handling various types of boundary condi-
tions. To perform coupled thermal-structural analysis with efficiency,
a computer program which includes both thermal and structural analysis
codes is preferred, and a single numerical method is desirable to
eliminate the tedious and perhaps expensive task of transferring
data between different analytical models.

Currently, the capabilities and efficiency of the finite element
method is analyzing typical heat transfer problems such as combined
conduction-forced convection is about the same as using the finite
difference method [14]. With the wide acceptance of the finite
element method in structures and its rapid growth in thermal analysis,
it is particularly well-suited for coupled thermal-structural
analysis. At present, several finite element programs which include
both thermal and structural analysis capabilities exist; e.g.

NASTRAN, ANSYS, ADINA and SPAR are widely used. These programs use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a common data base for transferring temperatures computed from a
thermal analysis processor to a structural analysis processor for
determining displacements and stresses. With the use of a common
finite element discretization, a significant reduction of effort in
preparing data is achieved and errors that may occur by manually

transferring data between analyses is eliminated.

1.2 Needs for Improving Finite Element Methodology

Although the finite element method offers high potential for
coupled thermal-structural analysis, further improvements of the
method are needed. Quite often, the finite element thermal model
requires a finer discretization than the structural model to compute
the temperature distribution accurately. Detailed temperature
distributions are necessary for the structural analysis to predict
thermal stress distributions including critical stress locations
accurately. Improvement of thermal finite elements is, therefore,
required so that a common discretization between the two analytical
models can be maintained.

Another need for improving the method includes a capability of
the thermal analysis to produce thermal loads required for the
structural analysis directly. At present, typical thermal-structural
finite element programs only transfer nodal temperatures computed
from the thermal analysis to the structural analysis. These nodal
temperatures are generally inadequate because additional information,
such as element temperature distributions and temperature gradients,

may be required to compute thermal stress distributions correctly.
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These needs are important in improvement of finite element
coupled thermal-structural analysis capability. The use of improved
thermal finite elements can reduce model size and computational
costs especially for analysis of complex aerospace vehicle structures.
Improved thermal elements will also have a direct effect in increasing
the structural analysis accuracy through improving the accuracy of
thermal loads.

To meet these requirements for improved thermal-structural
analysis and to demonstrate benefits that can be achieved, this
dissertation will develop an approach called integrated finite
element thermal-structural analysis. First, basic concepts of the
integrated finite element thermal-structural formulation are intro-
duced in Chapter 2. Finite elements which provide exact solutions
to one-dimensional linear steady-state thermal-structural problems
are developed in Chapter 3. Chapter 4 demonstrates the use of these
finite elements for linear transient analysis. Next, in Chapter 5
a generalized approach for improved finite elements is established
and its efficiency is demonstrated through thermal-structural
analysis with radiation heat transfer. Finally, in Chapter 6
extension of the approach to two dimensions is made with a new two-
dimensional finite element. In each chapter, benefits of utilizing
the improved finite elements are demonstrated by both academic and
realistic thermal-structural problems.

Throughout the development of the improved finite elements,
detailed analytical and finite element formulations are presented.
Such details are provided in the form of equations, finite element

matrices in tables and computer subroutines in appendices.
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Chapter 2

AN INTEGRATED THERMAL-STRUCTURAL FINITE
ELEMENT FORMULATION

2.1 Basic Concepts

Before applying the finite element method to thermal-structural
analysis, it is appropriate to establish basic concepts and procedures
of the method. Briefly described, the finite element method is a
numerical amalysis technique for obtaining approximate solutions to
problems by idealizing the continuum model as a finite number of
discrete regions called elements. These elements are connected at
points called nodes where normally the dependent variables such as
temperature and displacements are determined. Numerical computations
for each individual element generate element matrices which are then
assembled to form a set of linear algebraic equations (for
steady state problems) to represent the entire problem. These
algebraic equations are solved simultaneously for the unknown
dependent variables. Usually the more elements used, the greater
the accuracy of the results. Accuracy, however, can be affected by
factors such as the type of element selected to represent the con-

tinuum, and the sophistication of element interpolation functions.
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2.2 Element Interpolation Functions

The first step after replacing the continuum model by a
discrete number of finite elements is to determine a functional
relationship between the dependent variable within the element and
the nodal variables. The function that represents the variation of
a dependent variable is called the interpolation function. In thermal
analysis, the element temperature T(x,y,z,t) are generally expressed

in the form

T(X,y,2,t) = I_NT(X,YNZ)J {T(t)} (2.1)

where LNT(x,y,z)J denotes a row matrix of the element temperature
interpolation functions, and {T(t)} denotes a vector of nodal
temperatures. Similarly, in a structural analysis, the element

displacements, {8}, are expressed as,

{6Ge,y,2,8)) = [Ng(x,y,2)] {5(t)} (2.2)

where [Ns(x,y,z)] denotes a matrix of structural displacement inter—
polation functions, and {8(t)} denotes a vector of nodal
displacements.

Usually, polynomials are selected as element interpolation
functions and the degree of the polynomial chosen depends on the
number of nodes assigned to the element. Regardless of the algebraic
form, these interpolation functions have a value of unity at the node
to which it pertains and a value of zero at other nodes. For example,

linear temperature variation for a two-node one-dimensional rod
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element with nodal temperatures Tl and T2 at x =0 (node 1) and

x =L (node 2), respectively, can be written in the form

(

T, (t)

T(x,t) = Ll - %

[l I
| I—
A

T, (t)

\

By comparing this equation with the general form of the element
temperature variation, Eq. (2.1), the element interpolation functiomns

are

X

Nl(x) =1 - L

el

and Nz(x) =

These element interpolation functions, therefore, have the properties

of Ni = 1 at node i and Ni = (0 at the other node.

2.3 Finite Element Thermal Analysis

Once the type of elements and their interpolation functions have
been selected, the matrix equations expressing the properties of the
individual element are evaluated. In thermal analysis, the method of
weighted residuals [15] is frequently employed starting from the
governing differential equations. For condution heat transfer in a
three-dimensional anisotropic solid @ ©bounded by surface T

(Fig. 1), an energy balance on a small element is given by,

a4 99 aq
xSty
9x 3y 9z

y + Q(x,¥,2,t) = pc g_z(x,}’,z,t) (2.3)

where 9> 9,5 9, are components of the heat flow rate per unit area,

y

Q 1is the internal heat generation rate per unit volume, p is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘UOTIONPUOD JE9Y TeI9USS3 I0J UTBWOP UOTINTOS TRUOTSUDWIP 92ay] °T 814

b X
MOT4 3jeay Am
paT3Toads y
£
g
i93ysueay
(8] 2} Jesy
S1 fsanieradusy 9AT309AUO)
pat3Toadg Ky
%p
AP g
£
b
¢
J
Is
Jajsued], Jwvoy
M 10TIBTPRY
S130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



density, and c¢ dis the specific heat. Using Fourier's Law, the
components of heat flow rate for an anisotropic medium can be written

in the matrix form.

¢ ~ T e hY -
0 ko K, K, 3T/3x
{ Sk Ky, kg | 3 0T/Ry (2.4)
q, k3l k32 k33 3T/dz
\ L . .

where kij is the symmetric conductivity temsor. Figure 1 shows
several types of boundary conditions frequently encountered in the
analysis. These boundary conditions are (1) specified surface
temperatures, (2) surface heating, (3) surface convection, and

(4) surface radiation:

T = Tg on Sl (2.5a)
qxnx + qyny + qn, = -q on 82 (2.5b)
qxnx + qyny + q,n, = h(Tg - T,) on 33 (2.5¢)

- 4 _
qun + qyny +qn =o0el  -aq. on § (2.5d)

where Tg 1is the specified surface temperature; o, ny, n, are the
direction cosines of the outward normal to the surface, qg 1is the
surface heating rate unit area, h is the convection coefficient,

T, 1is the convective medium temperature, o is the Stefan-Boltzmann
constant, € 1is the surface emissivity, a 1is the surface ab;orp—
tivity, and q, 1is the incident radiant heat flow rate per unit

area.
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To apply the finite element technique, the domain
discretized into a number of elements.

nodes, the element temperature, Eq.

form

T(x,y,z,t) =

and the temperature gradients

These element temperature gradients can be written in the matrix

form,

where

matrix:

.

[B(Xsy, Z)]

_B_I_I‘_(X’y’z’t) =
9x

_@_T_(X’Y;Z,t) =
oy

ﬂ(XQYazst) =
A

_3_1 (x,y,z,t)

AT (x,y,z,t) .

3T (%,¥,2,t)

r
.z Ni(XSY’z) Ti(t)
i=1

within each element are

r aNi(X,Y,Z) Ti(t)

i=1 9%

r ON; (x,y,2) T,(t)

s

r
5 N, (%,y,2) Ti(t)

i=l 293z

= [B(x,y,2)] {T(t)}

is the temperature-gradient interpolation

For an element with r

(2.1), can be written in the

10

 dis first

(2.7a)

(2.7b)

(2.7¢)

(2.7d)

(2.8)
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0Ny 3Ny cee... ONp

9x X 39X

9N oN oN

. 1 2 r
B(x z = —= = e _— 2.9
[B(x,y,2)] 7 5y oy (2.9)

i T Ny

3z 3z 2z

Il

9 ~[k] [BI{T} (2.10)

where [k] denotes the thermal conductivity matrix.
In the derivation of the element equations, the method of
weighted residuals is applied to the energy equation, Eq. (2.3), for

each individual element (e). This method requires

9q 9q 9q
X y Z _ 9T -
f(e) (o + g+ 52 - Q¥ pegr) N =0 (2.11)

After the integrations are performed on the first three terms by

using Gauss's Theorem, a surface integral of the heat flow across

the element boundary, F(e), is introduced, and the above equations
become
q
s oN; 8N; ol .
(j @-n) Ny dr - o el 1% %)
F(e) NG
4
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- 3T _
fsz(e) Wy aa+ fg(e) pe e Npd2 =0 (2.12)

where ﬁ is the vector of conduction heat flux across the element
boundary and fi is a umit vector normal to the boundary. The

boundary conditions as shown in Eqs. (2.5a -2.5d) are then imposed,

(f (E-ﬁ)Nidr -J' quidF+J h(T -T,) N, dr

51 Sy Sq
q
4 oN; BN, BN, X
+f (0eT" - aq ) dI - J‘Q(e) 3x 3y oz 1y de )
S
4 qz
- QN, do + oc 2N de=o0 (2.13)
ey * (e) ot 1
Q Q

By substituting the vector of heat flow rate, Eq. (2.10), the above
element equations finally result in the matrix form,
[CI{T} + [[K.] + [Ky] + [K_1]{T}
(2.14)

={R} + {RQ} + {Rq} R} + (R}

where [C] is the element capacitance matrix; [Kc] s [Kh] and
[Kr] are element conductance matrices corresponding to conduction,

convection and radiation, respectively. These matrices are expressed

as follows:
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[c] = J;(e) pe {N} LNTJ aQ (2.15a)
_ T
[Kc] = J'Q(e) [BT] [k] [BT] aQ (2.15b)
[k ] = js b {N} [NTJ dar (2.15¢)
3
[k ]{T} = J. oeT? (N } dr (2.15d)
T 84 T

The right-hand side of the discretized equation (2.14) contains
heat load vectors due to specified nodal temperatures, internal heat
generation, specified surface heating, surface convection and surface

radiation. These vectors are defined by

{RC} = - J; (q+n) {NT} dar (2.16a)
1

{RQ} = j;(e) Q {NT} de (2.16b)

{Rq} = js qq {NT} dar (2.16c)
2

(R} = J; h T, {Ng} dr (2.164)
3

{R} = Js aq {NT} dr (2.16e)
4

where g is the vector of conduction heat flux across boundary that

is required to maintain the specified nodal temperatures.
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2.4 Finite Element Structural Analysis

In a finite element structural analysis, element matrices may
be derived by the method of weighted residuals, or by a variational
method such as the principle of minimum potential energy [17-19].

For simplicity in establishing these element matrices and understand-
ing general derivations, the last approach is presented herein.

The basic idea of this approach is to derive the static equilibrium
equations and then include dynamic effects through the use of
D'Alembert's principle.

Consider an elastic body in a three-dimensional state of stress.
The internal strain energy of an element (e) can be written in a

form,

1
u=3 59(6) le =eg) {o} an (2.17)

(e)

where @ is the element volume, {0} denotes a vector of stress
components; |e| and LEOJ denote row matrices of total strain and

initial strain components, respectively. Using the stress-strain

relations,

{o} = [D] {e - EO} (2.18)

where [D] is the elasticity matrix, the internal strain energy

becomes

1

U= E'j;(e) Le - EOJ [p] {e - eo} do
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or

U =-% J;(e) le] [D] {e} da - J;(e) le] [D] {egy) da

+3 J;(e) le,] [D] {ey} ag (2.19)

For each element, the potential energy of the external forces
may result from body forces and boundary surface tractions. The

potential energy due to body forces can be written in a form,
Vy = - J;(e) [s] (£} dn (2.20)

where {f} denotes a vector of body force components. Similarly,

the potential energy due to surface tractions is,
Vg = - J;(e) L8] (g} dr (2.21)

where {g} denotes a vector of surface traction components, and
e .

P( ) denotes the element boundary. The total element potential

energy, T, the sum of the internal strain energy and the potential

energy of the external forces is,

1
n =1 [Q(e) le] [D] fe} o - [Q(e) le] [0] {ey} dn

l o
+":'Z‘ j\g(e) [_on [D] {€O} daQ - J\Q(e) I_OJ {£} dg

_ f (ey L8] L} ar (2.22)
T
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For a three-dimensional finite element with r nodes, the

displacement field can be expressed as

.
r ( r
'~1(X,}’,Z,t).W T N.(x,y,2z) u.(t)
. 1 1
i=1
r -
{8} =qv(xys2,0)p = 4 I N (x,y,2) vi(t) p = [NJ{3) (2.23)
i=1
r
w(X,y,2,t) I N (x,y,2) w,(t)
\ b, i=1 )
\

where u, v, w are components of displacement in the three coordinate

directions. The vector of strain components can be computed from

s r
€ W Ju )
X ——
9X
e av
y 3y
e v
z 92
fe} = A o= 3 > = [B{5} (2.24)
Y ou oV
_._+_
4 oy 9xX
Y 3V aw
_..*__
vz dz oy
Y du  Bw
xz 3z + ox
\ y
~ J

where [Bs] is the strain-displacement interpolation matrix. By
substituting the element displacement vector, Eq. (2.23), and the
vector of strain components, Eq. (2.24) into Eq. (2.22), the total

element potential energy is expressed in terms of the nodal displace-~

ment vector {8} as
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" =.% 151 J;(e) [BS]T [p] [B] da® {3} - {8} g;(e)[Bs]T [p] {ey} an

1 =< T
- (3} fr(e) Ne1" (g3 ar (2.25)

The principle of minimum potential energy requires,

ane
3{8}

0

which yields the element equilibrium equations,
[Kg] {8} = {F.} + {Fg} + {Fg} + {Fr} (2.26)

where [K.] is the element stiffness matrix defined by

[Kg] = J;(e) [BS]T [D] [Bg] 4@ (2.27a)

The right hand side of the equilibrium equations contains force
vectors due to concentrated forces, body forces, surface tractions
and initial strain, respectively. The nodal force vectors due to

body forces and surface tractions are

_ T
{F } = j;(e) [Ng]© {£} do (2.27b)

T
{Fs} = J;(e) [Ng]™ {g} dr (2.27¢)
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For initial strains from thermal effects, the corresponding nodal
vector {FT} is due to the change of temperature from a reference
temperature of the zero-stress state and may be written as

dQ (2.274d)

_ T
{FT} = Sg(e) [Bs] [D] {a} (T “T_of)

where {o} is a vector of thermal expansion coefficients, T is
the element temperature distribution, and Tref is the reference
temperature for zero stress.

For elastic bodies subjected to dynamic loads, the effects of
inertia and damping forces must be taken into account. Using
D'Alembert's principle, the inertia force can be treated as a body

force given by

{£f} = - p{&} (2.28a)

where p 1is the mass per unit volume. By using element displacement
variations, Eq. (2.23), this inertia force is expressed in terms of

nodal displacements as

(g} = - o n] (5} (2.28b)

Similarly, the damping force which is usually assumed to be propor-—

tional to the velocity can be expressed in the form,

{6} = - wiNg] {3} (2.28¢)

where p 1is a damping coefficient. By substituting these inertia
and damping forces, Egs. (2.28b -2.28c), into Eq. (2.27b), the equi-

valent nodal body forces shown in Eq. (2.27b) become
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{(Fg} = j.gz(e) i 1 tE)an = J(Q(e) fNS]TTst_]m 5
_ JQ@,) Ng1" w N1 da {5} (2.29)

Finally, by using the static equilibrium equations, Eq. (2.26), with
the above equivalent nodal body force, the basic equations of struc-

tural dynamics can be written in the form,

M {6} + [Cg] (8} + [Kg] {3} = {F} + {Fg) + (F} + {Fg}  (2.30)

where [M] and [Cs] are the element mass and damping matrices,

respectively, and defined by

pd = [ oy W17 0 NG a0 (2.31a)
Q

[Cs] = fg(e) Ng]® 1 [Ng] do (2.31b)

In a general formulation of transient thermal-stress problem,
the heat conduction equation (2.3) contains a mechanical coupling
term in addition [16]. This coupling term represents the mechanical
energy associated with deformation of the continuum and in some
highly specialized problems (see Ref. 16) can affect the temperature
solution. In most of engineering applications, fortunately, this term
is insignificant and is usually disregarded in the heat conduction
equation. This simplification permits transient thermal solutions
and dynamic structural responses to be computed independently.

For a structural analysis where the inertia and damping effects

are negligible, the static structural response, Eq. (2.26), can be
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computed at selected times corresponding to the transient thermal
solutions. Such a sequence of computations, widely used in thermal-
structural applications, is called a quasi-static analysis. Results
of temperatures directly enter the structural analysis through the
computation of the thermal nodal force vector, Eq. (2.27d). Tempera-
tures also have an indirect effect on the analysis through the
structural material properties, since the elasticity matrix [D]

and the thermal expansion coefficient vector {a} are, in general,
temperature dependent. Temperature dependent properties may result

in a variation of the structural element stiffness matrix, Eq. (2.27a),

throughout the transient response.
2.5 1Integrated Approach

The representation of the element temperature distribution in
the computation of structural nodal forces is an important step in
the coupled thermal-structural finite element analysis. In typical
production-type finite element programs, element nodal temperatures
are the only information transferred from the thermal analysis to
the structural analysis. This general procedure is shown schemati-
cally in Fig. 2(a) and herein is called the conventional finite
element approach. Since the conventional thermal analysis only
provides nodal temperatures, an approximate temperature distribution
is assumed in the structural analysis which results in a reduction
in accuracy of displacements and thermal stresses.

To improve the capabilities and efficiency of the finite
element method, an approach called integrated thermal-structural

analysis is developed as illustrated by Fig. 2(b). The goals of
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the integrated approach are to: (1) provide thermal elements which
predict detailed temperature variations accurately, (2) maintain
the same discretization for both thermal and structural models with
fully compatible thermal and structural elements, and (3) provide
accurate thermal loads to the structural analysis to improve the
accuracy of displacements and stresses.

These goals of the integrated approach require developing new
thermal finite elements that can provide higher accuracy and effi-
ciency than conventional finite elements. The basic restriction on
these new thermal elements is the required compatability with the
structural elements to preserve a common discretization. Detailed
temperature distributions resulting from the improved thermal finite
elements can provide accurate thermal loads required for the
structural analysis by rigorously evaluating the thermal load

integral, Eq. (2.27d).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

EXACT FINITE ELEMENTS FOR ONE-DIMENSIONAL
LINEAR THERMAL-STRUCTURAL PROBLEMS

In general, polynomials are selected as element interpolation
functions to describe variations of the dependent variable within
elements. In one-dimensional analysis, the simplest polynomial which

provides a linear variation within an element is of the first order,

¢ =C1+sz (3.1)

where ¢ denotes the dependent variable such as temperature or
displacement; C; and Cy denote constants, and x is the coor-
dinate of a point within the element. A finite element with two

nodes is formulated by imposing the conditions at nodes,
0(x =0) = ¢1 $(x =L) = ¢y (3.2)

where L 1is the element length; ¢; and ¢2 are nodal values at
node 1 and 2, respectively. The dependent variable, therefore, can

be written in terms of nodal values as
= _ X X

or in the matrix form,

23
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by
- X X,
¢ = [(L - L (L)J 3 4, e
L 7
L o
= N N < ?
1 2 %,
= [N] (¢} (3.3)

where [NJ is the row matrix of element interpolation functions.

The type of finite element where the dependent variable is assumed

to vary linearly between the two element nodes is often used in one-
dimensional problems and is called a conventional finite element
herein. With the linear approximation, a large number of elements
are required to represent a sharply varying dependent variable. In
some special cases, however, conventional finite elements can provide
exact solutions when the solutions to problems are in the form of a
linear variation. For example, a linear temperature variation is the
exact solution of one-dimensional steady-state heat conduction in a
slab; therefore, the use of the conventional finite element leads to
an exact solution. Further observation [20] has shown that, under
some conditions, exact nodal values are obtained through the use of
this element type. Temperatures for steady-state heat conduction
with internal heat generation in a slab and deformations of a bar
loaded by its own weight are examples of this case. In the past,

the capability of conventional finite elements to provide exact
solutions has been regarded as a property of the particular equation

being solved and not applicable to general problems.
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In this chapter, finite elements that provide exact solutions
to one-dimensional linear steady-state thermal-structural problems
are given. The fundamental approach in developing exact finite
elements is based on the use of exact solutions to one-dimensional
problems governed by linear ordinary differential equations. A
general formulation of the exact finite element is first derived and
applications are made to various thermal-structural problems.
Benefits of utilizing the exact finite elements are demonstrated
by comparison with results from conventional finite elements and

exact solutions.
3.1 Exact Element Formulation

In this section, a general derivation of exact finite elements
is given. Exact finite elements for various thermal and structural
problems are derived and described in detail in the subsequent

sections. Consider an ordinary, linear, nonhomogeneous differential

equation,
n n-1
i_d) u RS ﬂ =
a SL+a T+ - ety oot agh = r(x) (3.4)
dx dx

where x 1is the independent variable, ¢(x) is the dependent

variable, a i=0, n are constant coefficients, and r(x) is

i
the forcing function. A general solutiom to the above differential

equation has the form

C; £, (x) + g(x) (3.5)

p(x) =
i=1

1

LI e =
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where Ci are arbitrary constants, fi(x) are typical functions in
the homogeneous solution and g(x) is a particular solution. For
example, a typical one-dimensional steady-state thermal analysis is
governed by second order differential equation of the form of

Eq. (3.4) and has a general solution

¢(x) = Cp £1(x) + Cy £,(x) + g(x) (3.6)

By comparing this general solution with the solution in the form of
polynomials used to describe a linear variation of dependent variable
in the conventional finite element, Eq. (3.1), basic differences
between these two solutions are noted: (1) the function fi(x) in
the general solution to a given differential equation can be forms
other than the polynomials, and (2) the general solution contains a
particular solution g(x) which is known in general and depends on
forcing function r(x) on the right hand side of the differential
equation (3.4).

3.1.1 Exact Element Interpolation Functions and Nodeless
Parameters

Once a general solution to a given differential is obtained,
exact element interpolation functions can be derived. TFor a typical
finite element with n degrees of freedom, n boundary conditions
are required. With the general solution shown in equation (3.5),

the required boundary conditions are

¢(xi) = ¢y i=1,2,..... , I (3.7)

where X; is the nodal coordinate and ¢i is the element nodal
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unknown at node i. After applying the boundary conditions, the
exact element variation of ¢(x) has the form,

n
$(x) = G(x) + I N;¢;

i=1
where Ni(x) is the element interpolation function corresponding
to node 1i. The function G(x) is a known function associated with
the particular solution. In general, this function can be expressed
as a product of a spatial function No(x) and a scalar term ¢0
which contains a physical forcing parameter such as body force,

surface heating, etc.;

6(x) = Ny(x) o

and, therefore, the exact element ¢(x) variation becomes,

27

n
o (x) = No(x) ¢y + z Ni¢i (3.8a)
i=1
or in the matrix form
( )
o
o1
_J ¢ )
$G) = [Ny N Ny Lo N [ =9 2 b= [Ny N e (3.8b)
d)n
\. /

Note that the element interpolation function Ni(xi) has a value
of unity at node i to satisfy the boundary conditions, Zq. (3.7),

thus the spatial function No(x) must vanish at nodes. Since the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

term ¢0 is a known quantity and neither relates to the element
nodal coordinates nor is identified with the element nodes, it is
called a nodeless parameter. Likewise, the corresponding spatial
function No(x) is called a nodeless interpolation function.
Comparison between element variations of a typical nodeless para-
meter finite element, Eq. (3.8), and the conventional linear finite

element, Eq. (3.3), is shown in Fig. 3.

3.1.2 Exact Element Matrices

After exact element interpolation functions are obtained, the
corresponding element matrices can be formulated. For the governing
ordinary differential equation, Eq. (3.4), typical element matrices
can be derived (see section 2.2) and element equations can be written

in the form,

r | - g 3 . W
Koo 1 %o Koo =++-- Kop %o Fo
e e e e e —_——— _———

i
|
K0 1 R Ky Kin 01 B
b 1 Fo= s > (3.9)
K0 1 %21 Ko Kon ) ¥
. | . . .
. ! ‘e : .
: | .. . :
Do ] :
Ik ,
KnO | I\nl Kn2 Rnn dJn Fn
L. — L / = “

where Kij’ i, j =0, n are typical terms in the element stiffness
matrix; Fi’ i =0, n are typical terms in the element load vector,
¢i’ i=1, n are the element nodal unknowns, and ¢0 is the element
nodeless parameter. Since the element nodeless parameter is known,

the above element equations reduce to
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:
2
NODELESS PARAMETER < _—» X

Fig. 3. Comparison of conventional and nodeless parameter
elements.,
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_ 7 4 ) ) r 3

Kll K12 ....... Kln ¢1 Fl KlO

K1 Ky Xon % Ty %50
. R R R G R (3.10)

Knl Kn2 Knn ¢n Fn KnO

— - \. p. k P, L P,

3.2 Exact Finite Elements in Thermal Problems

In one-dimensional linear steady-state thermal problems, typical
governing differential equations can be derived from a heat balance

on a small segment in the form,
d dT dT _
T (az(x) E;) + al(x) E§»+ ao(x) T = r(x) (3.11)

where T denotes the temperature, x denotes a typical one-
dimensional space coordinate in cartesian, cylindrical or spherical
coordinates; a., i=0, 1,2 are variable coefficients, and r(x)
is a function associated with a heat load for a given problem. A

general solution to the above differential equation has the form,

T(x) = Cl fl(x) + C2 fz(x) + g(x) (3.12)

where fl(x) and f2(x) are linearly independent solutions of the
homogeneous equation, Cl and 02 are constants of integration,
and g(x) 1is a particular solution. Since the particular solution
g(x) 1is known, the above general solution has two unknowns to be

determined. A finite element with two nodes, therefore, can be

formulated using the conditions,
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[}
3

T(xl) (3.13a)

T(x (3.13b)

il
=

2) 2

where X, i=1, 2 are nodal coordinates and Ti’ i=1,2 are the
nodal temperatures. Imposing these conditions on the general solu-

tion yields two equations for evaluating Cl and CZ’

i
]
|

T(xl) 1= C1 fl(xl) + C2 fZ(Xl) + g(xl)

|
H
I

T(XZ) =T, = Cl fl(x2) + C2 fz(xz) + g(xz)
or in matrix form

fl(xl) fz(xl) Cl T, - g(Xl)

£1(x) £,z ¢, Ty = 8(xy)

After Cl and 02 are determined and substituted into the general

solution, Eq. (3.12), the exact element temperature variation can

be written as
T(x) = No(x) TO + Nl(x) Tl + Nz(x) T2 (3.14a)

or in the matrix form,

T(x) = LNO N, Ny < T (3.14b)

where No(x) is the nodeless interpolation function and TO is the
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nodeless parameter; Nl(x) and Nz(x) are element interpolation
functions corresponding to node 1 and 2, respectively. These element
interpolation functions including the nodeless parameter are known

functions defined by

fl(x) fz(xz) - fl(x2) fz(x)

Nl(x) = . (3.15a)
fo(x) £f,(x) - £.(x) £,(x;)
Ny(x) = 1717 2 L 271 (3.15b)
W
£,(x) g(x,) - £.(x,) g(x,)
B 2\ 2 2¥2 1
No(x) TO = g(x) + . fl(X)
f.(x,) g(x;) - £.(x,) g(x,)
412 1 171 2 £, (x) (3.15¢)

W
where W = fl(xl) fz(xz) - fl(xz) fz(xl).

Using the exact element interpolation functions shown in
Eq. (3.14), and the governing differential equation, Eq. (3.11),
element matrices can be derived through the use of the method of

weighted residuals;

)

d dT T _ -
S\ [dx (a2 E;) + 3 Ix + aOT - r] Ni dx =0 i=0,1,2 (3.16)

X

Performing an integration by parts on the first term and substituting
for element temperature in terms of the interpolation functions,

Eq. (3.14), yields element equations in the form,
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[k + [K,] + [g1] <1 = {Q.} + {q} (3.17)

where [Kc]’ [K,], and [K;,] are the element conductance matrices
associated with the second, the first, and the zero-order derivative
term on the left hand side of the governing differential equation
(3.11), respectively; {Qc} is the element vector of conduction
heat flux across element boundary, and {Q} is the element load
vector from the heat load r(x) in the governing differential

equation. These matrices are defined as follows:

2
[K] = 5 -2, (99 | &) ax (3.18a)
*1
W)
k1 = a; {N} [%J dx (3.18b)
%,
)
[k 1 = S ag {N} [N] dx (3.18¢)
sl
r 3
)
{Q} = J [~ a, g—i- N] b (3.184d)
%y
S J
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)

{qQ} =S r{N} dx (3.18e)

%1

Depending on the complexity of element interpolation functions, the
element matrices may be evaluated in closed form or they may require
numerical integration. However, after the element matrices are

computed, typical element equations can be written in the form,

B - " W , N
Yoo ¥o1 Koz To Q
Kio X1 Ko | 3§ Tpp = Q)+ 4 Ql¥ (3.19)
Koo Ko Ky T, Q,

Since the nodeless parameter is known, the first equation is uncoupled
from the nodal unknowns in the second and third equations. Thus,
the exact element matrices have the same size as of the conventional

linear finite element and element equations can be written as

K K T Q Ko
= {q ) + - T (3.20)

Y 2 Q, %20

Note that, in general, the above conductance matrix is an
asymmetric matrix. This asymmetry is caused by the conductance.
matrix [Kv] shown in Eq. (3.18b) associated with the first-order
derivative in the governing differential equation, Eq. (3.11). To

obtain a symmetrical conductance matrix, the first-order derivative
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is eliminated by casting the governing differential equation in self-

adjoint form,

2 e £] 0w 1 = R (3.21)
where
da2

P(x) = exp(j‘l:(at1 + =) /a2] dx) (3.22a)

a.p
Qx) = - (3.22b)

ay
R(x) = £ (3.22¢)

a

Element matrices can then be derived using the method of weighted
residuals in the same manner as previously described. In this case,

element equations have the form,

[[K.] + [Ryll S T, ¢ = {Q:} + {Q} (3.23)

where the conductance matrices and heat load vectors are defined

by

%2

=4 _ dN, | dN
[k 1= J - P {3} dej dx (3.24a)

X1
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2
[ ] =f g {N} |N] dx (3.24b)
1
[ x,
= dT
{Qc} =4 -P ax N 4 (3.24c)
*1
\ J
*2
{9} = X R {N} dx (3.24d)
*1
Similarly, element equations for the two nodal unknowns are
K1 %2 1 _ Y %10
_ ~ = {Qc} +9_ - TO _ (3.25)
K12 Ky ) % %20
where Rij’ i,j =0,1,2 is the summation of the corresponding
coefficients in the conductance matrices [Kc] and [ﬁh];
X x
) 2 an, an, 2
Kij= S _Pﬂﬁ dx + S QNiNj dx (3.26)
*1 *1
i,3=0,1,2
An additional advantage of using the self-adjoint differential
equation is that the coefficients KlO and RZO shown on the right

hand side of Eq. (3.25) are identically zero. This result can be

proved by observing that the element interpolation function Ni’
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i=1,2 are the solution of the homogeneous differential equation,
Eq. (3.21), because N.i is a linear combination of the homogeneous

solutions fl(x) and fz(x) as shown in Egqs. (3.15a-b), i.e.

d dN; _ .
E—};[P—di-]+QNi-o i=1,2

Multiplying this equation by the nodeless parameter interpolation

function N, and performing integration by parts on the first term

0
yields

dNi dNi dN
P—— N + j‘ - P —*_0 dx + S QN, N. dx =0
X i 0

Then since the nodeless interpolation function NO vanishes at
nodes, i.e. at the coordinates Xy and Xy5 the above equations

yield

= {Q} + (3.27)

After element nodal temperatures are computed, exact temperatures
within an element can be obtained using the exact element temperature

variation, Eq. (3.14).
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To demonstrate the exact finite element formulation previously
derived, exact finite elements for eight heat transfer cases in
several solids of different shapes and a flow passage (Fig. 4) are
presented. In the first seven cases, heat transfer may consist of:
(1) pure conduction, (2) conduction with internal heat generation,
(3) conduction with surface heating, and (4) conduction with surface
convection. Case eight is a one-dimensional flow where heat transfer
may consist of fluid conduction and mass transport convection with
surface heating or surface convection. For these cases, the boundary

conditions considered are:

T = Constant (3.28a)
ar _

or -k = - 4 (3.28b)
T _ _

or -k = h(T -T_) (3.28c)

where k is the material thermal conductivity, q is the specified
surface heating rate per unit area, h is the convection coefficient,
and T, is the convection medium temperature. In each case, the
derivation of exact finite elements for appropriate heat transfer
cases are given for clarity. Governing differential equations and
the corresponding nodeless parameters, exact element interpolation
functions, and element matrices for all cases are shown in Tables 1

and 2 and Appendices A and B.

3.2.1 Rod and Slab
A rod element with arbitrary cross-sectional area A, circum-

ferential perimeter p and length L as shown in (Fig. 4, Case 1)
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Fig. 4. Exact finite elements for one-dimensional conduction
and convection cases.
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Table 2

Nodeless Parameters for Thermal Problems

41

0
Case Convection Source Surface Flux
(b) () (d)
2 2
1 T QL gpL”
o 2k 2kA
2
9 _— QL _
2k
2
3 _— Qb _—
4kw
—_ Q —_—
4 ok
2 2
5 T QL ql
© 2k 2kt
2 2
6 T Qb gb_
o 4kw bktw
2 2
7 _— Qa Qa_
k kt
8 T - 9pL
© me

where w = 1n(b/a).
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is subjected to intermal heat generation, surface heating, and
surface convection. Governing differential equations for each heat
transfer case in self-adjoint form are shown in Table 1. For example,
the governing differential equation for the case of conduction with

surface convection is

d dT _
- (kA‘ag) + hpT = hpT, (3.29)

where k is the material thermal conductivity, h is the convection
coefficient, and T_ is the convective medium temperature. A general

solution to the above differential equation is

T(x) = C; sinh mx + C2 cosh mx + T

where m = vhp/kA, and Cl and C2 are unknown constants. Applying

the boundary conditions at the nodes,

T(x=0) =T and T(x=L) = T

1 2

the two unknown constants are evaluated and the above solution

becomes

_ sinh m(L-x) sinh mx
TG = @ sinh mL  sinh mL) T

sinh m(L-x)

sinh mx
+ ¢ sinh mL

)T+ G T

9 (3.30)

This exact element temperature variation can be written in the form
of Eq. (3.14) where the element interpoation functions and the node-

less parameter are:
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sinh m(L-x) _ sinh mx,,

NO(X) =a- sinh mL sinh mL”’ T0 =T
(3.31)
_ sinh m(L-x) _ Sinh mx
Nl(x) " sinh mL 3 N ( ) sinh mL

As described in the previous section, element equations for a
typical self-adjoint differential equation have the form of Eq. (3.23),
and using the definitions of the element matrices shown in Eq. (3.24),

the element matrices for this problem are:

[R] = j {dN} LdNJ dx (3.32a)

L

X hp (N} |N] dx (3.32b)
6]

%]

L
X hpT_ {N} dx (3.32c)
0

—~

L1

(i
it

where [Rc] and [Rh] are conductance matrices corresponding to
conduction and convection, respectively, and {Q} is the load vector
due to surface convection. With the exact interpolation functions
shown in Eq. (3.31), the above element matrices can be evaluated in
closed form. Exact nodal temperatures and element temperature varia-
tion can then be computed using Eqs. (3.27) and (3.30), respectively.
For the cases where the rod is subjected to an internmal heat
generation or specified surface heating, exact element interpolation

functions and element matrices can be derived in the same manner as
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described above. It should be noted that only the conductance matrix
associlated with conduction and heat load vectors corresponding to
internal heat generation or surface heating exist in the two cases.
The exact conductance matrix and heat load vectors are found to be
identical to those from the conventional linear element. Therefore,
exact nodal temperatures can also be obtained through the use of

the conventional linear finite element in such cases. However, since
the linear temperature variation is not an exact solution to these
problems, the conventional linear finite element can not provide the
exact temperature distribution within the element.

The derivation of exact finite elements for one-dimensional heat
transfer in a slab follows the derivation for the exact rod element.
A slab with thickness L subjected to an internal heat generation
(Fig. 4, Case 2) where both sides of slab may be subjected to a
specified surface heating or surface convection. In Table 1, the
governing differential equations are shown only for the case of pure
conduction and conduction with internal heat generation because the
effects of surface heating and surface convection enter the problem
through the boundary conditions. For example, a governing differen-
tial equation describing heat conduction in a slab with specified
temperature T at x =0 (node 1) and surface convection at x = L

1

(node 2) is

d r, dTq_

T = [ Ix 0 (3.33)

where k denotes the material thermal conductivity. After solving

for the general solution to the governing differential equation above
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and applying nodal temperatures as boundary conditions at x = 0
and x = L, the exact element temperature variation is (see

Appendix A)

T = QL-D T+ @, = [NE N (3.34)

With the corresponding element conductance matrix shown in Appendix B,

exact element equations for this problem are

r N
ar ,
1 -1 T Qc, -k 5= (x=0)
k - -
i- = = < 4
ar ,__
1 1 T, O, k5o (x=L)

since at x = L (node 2) the boundary condition is

dT (x=L)

—k dx

= h(T, - T.,)

where h is the convection coefficient and T, is the surrounding

medium temperature, therefore, the above element equations become

kK _k —i 4T(x=0)
L L Tl k dx
= (3.35)
k k .
- T +h 12 hT,

the exact nodal unknown T2 can then be computed and the exact

element tempterature distribution is obtained using equation (3.34).
The same procedure can be applied for the case when the slab is

subjected to surface heating. In this case, the boundary condition

is
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where q denotes the specified surface heating. When the slab
consists several layers with different thermal conductivities, an
exact element can be used to represent each layer. If the slab is
subjected to surface heating or surface convection in addition, the
above procedure applies for the elements located at the outer

surfaces.

3.2.2 Hollow Cylinder and Sphere

A thermal model of a hollow cylinder with radial heat conduction
subjected to an internal heat generation is shown in Fig. 4, Case 3.
Specified heating or surface convection are considered through the
boundary conditions at the inner and outer surfaces of radii a and
b, respectively. Governing differential equations corresponding to
each heat transfer case are provided in Table 1. For example, the
governing differential equation for the case of pure conduction is

4 4t

ar - 0 (3.36)

k

where k 1is the material thermal conductivity, and r is the radial

coordinate. A general solution to the above differential equation is

T(r) = Cl + C2 Inr

Nodal temperatures are imposed on the element boundary conditions,

T(r=a) =T and T(r=b) =T

1 2
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and the exact element variation is obtained as (see Appendix A),

T(r) = L}n(b/r) lnﬂ:/a)J

(3.37)
W

T

where w = 1n(b/a). ©Note that the exact element variation for this
case is completely different from the linear element variation, there-
fore, the conventional linear finite element can not provide exact
element or nodal temperatures. Applying the method of weighted

residuals to the governing differential equation, element equations

are
[k, ] {1} = {Q.} (3.38a)
where
b
[R.] =S k(S [ 9] ¢ oar (3.38b)
a
b
Q) = <kr S v (3.38¢c)
a

Using the exact element interpolation functions shown in Eq. (3.37),

element equations for this case are

dT

K 1 -1 Tl -ka *a';
; = (3.39)

dT

- 1 —_—

1 1 T2 kb ar
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When the cylinder is subjected to surface heating or surface
convection, the same procedure previously described for the slab
can be used. For example, in case of convection heat transfer on

the outer surface, the boundary condition is

r=b; -k$L-ner,- 1)

where h 1is the convection coefficient and T, is the surrounding

medium temperature. Thus, the element equations, Eq. (3.39), become

k Kk daT
v W T ~ka Fr
= (3.40)
-k ok im T hb T
w w 2 ®©

Exact finite elements can be formulated for conduction heat
transfer in the radial direction of a hollow sphere with internal
heat generation. A thermal model of a hollow sphere with inner and
outer surface radii a and b, respectively, is illustrated in
Fig. 4, Case 4. The hollow sphere may be subjected to surface
heating or surface convection on both inmer and outer surfaces.

For heat conduction with internal heat generation, the governing

differential equation is (see Table 1)

d 2 dT4 _ 2
-k dr [r E;‘] = Qr (3.41)
where k 1is the material thermal conductivity, Q is the heat
generation rate per unit volume, and r is the independent variable
representing the radial coordinate. A general solution to this

differential equation is
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Cl
= —= + - =
T(r) - C,)

Due to the presence of the particular solution in the above general
solution, a nodeless parameter exists, and the exact element

variation is written in the form

T(x) = Np(r) Ty +Ny(x) T; + Ny(x) T, (3.42a)

where the element interpolation functions including the nodeless

parameter are:

Ng(r) = %(r—a) (b-1) (r+atb); Ty = _6%
- ab-r) b(r-a)
N & =T Ny () = oo (3.42b)

Element matrices can be derived using the method of weighted residuals

and element equations are resulted in the form

K] {1} = {Q.} + (@} (3.43a)

where these element matrices are defined by:

b
%] = an, dyy 2
(%] -[ k {0 Ldrj r“ dr (3.43b)
a
b
2 dT
Q) ={kr® N (3.43c)
a
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b
{Q} = X Q{N} e dr (3.43d)

a

If surface heating and surface convection are applied on the inner
and outer surface, the same procedure described for the cylinder is

required.

3.2.3 Thin Shells

Three thermal models of thin shells of revolution with cylin-
drical, conical and spherical shapes are presented (see Fig. 4).
These shells may be subjected to thermal loads such as surface
heating, surface convection, and internal heat generation as shown
in Fig. 4, Cases 5-7. 1In Case 5, a cylindrical shell of radius a,
thickness t and meridional coordinate s 1is considered. Governing
differential equations corresponding to different thermal loads are
shown in Table 1. These governing differential equations are in the
same form as for the rod element (Case 1). Therefore, the exact
rod element interpolation functions and element matrices previously
derived can be modified and used for the exact cylindrical shell
element.

A truncated conical shell element with thickness t is shown
in Fig. 4, Case 6. Governing differential equations corresponding to
internal heat generation and surface heating are given in Table 1.
These differential equations are in the same form as for the hollow
cylinder (Case 3) with surface heating, and therefore, element
interpolation functions and element matrices are similars. For

the case of the shell subjected to surface convection, a form of
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nonhomogeneous modified Bessel's differential equation results,

d2

ds

3

1dT _ h . _ _h
i e T (3.44)

haed

A general solution to the above differential equation includes
modified Bessel functions of the first and second kind of order zero.
A nodeless parameter also exists in this case due to the nonhomo-
geneous differential equation. Applying nodal temperatures as the
boundary conditions at s =a and s =Db, exact element interpola-
tion functions are obtained as shown in Appendix A.

Fig. 4, Case 7 shows a truncated spherical shell with radius
a and thickness t. The spherical shell may be subjected to
internal heat generation or surface heating. Governing differential
equations corresponding to these thermal loads are in the form of
Legendre's differential equation of order zero. For example, the
governing differential equation for the case of uniform surface

heating q 1is
2 2
1 -n") —5 = 2N o= - (3.45)

where n = sin (s/a). A general solution to the above differential

equation is

14+n

2
0]+ ¢, + L [1-n%] (3.46)

Cy
T=—FIn] 2 " 2kt

where Cl and C2 are unknown constants. By imposing nodal

temperatures as element boundary conditions at s =0 and s =L,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

exact element interpolation functions are obtained as shown in
Appendix A.

Due to the complexity of the exact element interpolation func-
tions that arise from the truncated conical shell with surface
convection and the truncated spherical shell, the corresponding
element matrices in closed form are not provided. The element
matrices, if desired, can be obtained using the element matrix
formulation shown in Equations (3.l4a-d) and performing the integra-

tions numerically.

3.2.4 Flow Passage

A thermal model of fluid flow in a passage with conduction and
mass transport convection is illustrated in Fig. 4, Case 8. The
fluid may be heated by surface heating, or surface convection.
Governing differential equations corresponding to these heat transfer
cases are given in Table 1. For simplicity, consider the case without
heat loads where the governing homogeneous differential equation is

given by

d dT . 4T _
- E); [kA E;{-] + me dx =0 (3'47)

where k is the fluid thermal conductivity, A is the flow cross-
sectional area, m is the fluid mass flow rate, and c¢ is the fluid

specific heat. A general solution to this differential equation is

T(x) = C1 + C2 exp (2o0x)

where Cl and 02 are arbitrary constants and o = me/2kA. An

exact finite element with length L and nodal temperatures T, and

1
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Tz at x =0 and x =L, respectively, can be formulated. The

exact element temperature variation is

T(x) = [1 - (3.48a)

As previously described, the appearance of the first-order derivative
term in the governing differential equation results in an unsymmetrical
conductance matrix (see Eq. (3.18b)). In this case, the corresponding

element conductance matrices are

2al, 1 -1
[K] = kaa L%&L_+l_)_ (3.48b)
™™ -1 -1 1
-1 1
_ hc .
[k 1 =5 (3.48¢c)
-1 1

where [Kc] and [Kv] denote conductance matrices representing
fluid conduction and mass transport fluid convection, respectively.
It has been shown that if the conventional finite element with
an optinum upwind weighting function is used, exact temperatures at
nodes can also be obtaimed [21]. With upwind weighting functions

the element temperature variation is expressed as,
X X 1
T(x) = [1-7+F - F@x) (3.49a)

where F(x) is the optimum upwind weighting function defined by
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2
F(x) = [coth (20L) - ?{lf] (3¢5 - %)
L

With these element interpolation functions, element conductance
matrices corresponding to the fluid conduction and mass transport

convection are

L
X ] = kA (3.49b)
€ upwind L
-1 1] 1 -1
_ Ic me o1
[Kv]upwind = + ) (coth (oL) - —3) (3.49¢)
-1 1 -1 1

It can be shown that the combination of these element conductance
matrices are identical to those obtained from the exact finite
element, Egs. (3.48b-c). Therefore, the conventional finite element
with the optimum upwind weighting function provide exact nodal
temperatures. However, since the upwind element temperature varia-
tion differs from the exact element temperature variation shown in
Eq. (3.48a), the finite element with the optimum upwind weighting
function does not provide the exact temperature variation within an

element.

3.3 Exact Finite Elements in Thermal~Structural Problems

With the general exact finite element formulation described
in section 3.1, exact structural finite elements can be developed
for problems governed by ordinary differential equations. For

example, exact finite elements for a rod lcaded by its own weight
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or a beam with a2 distributed load can be formulated. However, for
the purpose of demonstrating benefits on exact finite elements in
coupled thermal-structural problems, exact structural finite elements

subjected to thermal loads are considered herein.

3.3.1 Truss

Typical thermal and structural models for truss elements are
shown in Fig. 5. For a steady-state analysis, exact thermal finite
elements for internal heat generation, surface convection and
specified surface heating are presented in section 3.2. In this
section the exact element temperatures are used in the development
of truss elements for computations of displacements and thermal
stresses.

For a truss element subjected to a temperature change, thermal
strain is introduced in the stress-strain relation;

=E [ - o (T(x) - Tpop)] (3.50)

du(x)
0x dx

where Oy is the axial stress, E is the modulus of elasticity,

u 1is the axial displacement which varies with the axial coordinate
X, o 1is the coefficient of thermal expansion, T(x) is the
temperature, and Tyof 1s the reference temperature for zero stress.
The rod equilibrium equation with an assumption of negligible body

force is

do
X

dx =0 (3.51)

which when combined with the stress-strain relation, Eq. (3.50), and
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multiplied through by the truss cross-sectional area A, vyields

the governing differential equation,

EA = oEA — (3.52)

Since the temperature T is known from the thermal analysis, a
general solution to the above differential equation can be obtained.
An exact finite element can be formulated by applying the nodal
displacements uy and u, as the boundary conditions at x =0

and x = L, respectively. In this case, the exact element displace-

ment variation is

X L
u(x) = (aj~ T dx - a-% j T dx) + (1 —-%) uy + (%) u, (3.53)
0 0
or in the matrix form
Yo
u(x) = [Ny(x) N, (%) N, (x)] up o= [N {u} (3.54a)
u
2

where No(x) is the element nodeless interpolation function;

N., 1=1,2 are typical element interpolation functions, u

is
i

0

the nodeless parameter, and us, i =1,2 are the element nodal

displacements. The element interpolation functions are

X L
No(x) = uy T dx - a-% S T dx (3.54b)
0 0
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(3.54¢)

where, for convenience, the nodeless parameter u is taken as unity

0
in this case. Note that the element nodeless interpolation function,
No(x), vanishes at nodes and depends on the integrals of element
temperature variation obtained from the thermal analysis.

To derive exact element matrices, the method of weighted resid-
uals is applied to the equilibrium equation (3.51). After performing
an integration by parts and using the stress—strain relation,

Eq. (3.50), element equations and element matrices are obtained.
These element equations are in the same form as those obtained from

the variational principle described in section 2.3 and can be

expressed as

(K] (u} = {F} (3.55)

where [Ks] is the structural element stiffness matrix, {u} is
the vector of nodal displacements, and {FT} is the equivalent
nodal thermal load vector. The element matrices are defined by (see

Egqs. (2.27a) and (2.274))

Fooan an_

[KS] = AES‘ {E} LE'J dx (3.56a)
0
L st

{FT} = AEo, S {_?E;} (T - Tref) dx (3.56b)
0
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Using the exact displacement interpolation functions, Eq. (3.54a),
the element stiffness matrix above is a three by three matrix which
contains coefficients Kij’ i,j =0,1,2. Since the governing
differential equation, Eq. (3.52), can be cast in the self-adjoint
form (see section 3.2), this element stiffness matrix is symmetric
and K ;0 i=1,2 are zero. Both the element stiffness matrix and

0

the equivalent nodal thermal load vector can be evaluated in closed

form as,
1 1
_ AE
[Ks] =1 (3.57a)
-1 1
.
-1
{FT} = FT < (3.57b)
1
L
where
L
FT = AEq g (T - Tref) dx (3.57¢)
0

Once exact nodal displacements are determined, exact displacement
variation within an element can be computed from Eq. (3.53). Exact
element stress can also be obtained by substituting element displace-
ment variation, Eq. (3.53), into the stress-strain relation,

Eq. (3.50). 1In this case, the exact element stress in terms of

nodal displacements is
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L

uy _ u
o, = E [if__l -2 j (T = Tpes) dx] (3.58)
0

Using the exact element temperature variations obtained from the
thermal analysis (cases la-1d), both element nodeless interpolation
functions No(x), Eq. (3.54b), and the equivalent nodal thermal load

F Eq. (3.57c¢), can be evaluated in closed form as shown in Table

T’
3 and Appendix B, respectively.

3.3.2 Hollow Cylinder

For a hollow cylinder where the temperature T varies only in
the radial direction (Fig. 6), the only non-zero displacement is
u(r) and all shearing stresses are zero. The radial stress 0.

and circumferential stress Oy satisfy the equilibrium equation [22]

do g -0
—_r, r 8 _
- + ” 0 (3.59)

The stress-strain relations are

e =z [0, - v(og + 0,)] +a(T - Tpep) (3.60a)
88 =% [06 - V(Ur + OZ)] +U.(T - Tref) (3-6Ob)
<, =.% [Oz - V(Gr + Ue)] +o(T - Tpog) (3.60c)

where VvV 1is Poisson's ratio; €0 € and €, are the radial,

circumferential and longitudinal strain, respectively.
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Table 3

Truss Element Displacement Interpolation Functions, NS(X)*

Case No(X)
o(T,-T,)L aT,.L
1(a) —2 Y oy ¢ —9 (x + 3%% - 2x0)
2 6
TZ—Tl cosh mL + To(cosh mL~1)
1(b) af [(cosh mLX -1)
m sinh mL
17Ty
-~ X(cosh mL -1)] + - (sinh mLX - X sinh mL) }
a(TZ-Tl)L 2 aTOL 2 3
1(c) —5 X -x) + c (=X + 3X° - 2x7)
a(T,-T.)L oT. L
1(d) ——22—1— x%-x) + é’ (X + 3%% - 2%°)

*Tor all cases: Nl(X) = 1-X, NZ(X) = X where X = x/L.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

*JusWSTd OTIJouMASTXE JO STOPOW SS9I1S pue Tewiayl °*9 *SIg

1300W TYWYIHL TYNOISNIWIQ INO

(1) O ‘NOILVYINI9
1V3H TYNY3INI

1
.~ NOI1INAND?

NOILINANOID

TI00W NIVYLS INV1d
d0 SSIULS INVId

mb
a i
0 Jd
A0 .
- b *xn14
A )
0 \\ LY3H uos_m,:m\
o /m NOI193ANOD 2
0 (4) n

"Ly \\\
, \\\\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

For the case of a thin hollow cylinder, the assumption of plane
stress (UZ = 0) 1is used. Substituting the stress~strain relations,
Egs. (3.60a-b), into the equilibrium Eq. (3.59) and using the strain-

displacement relations.

(3.61)

Hle

€ = = and €g

where u denotes the radial displacement, the governing differential

equation for the case of plane stress is

d L dGu)y dr
e [r ir ] (L+v)o ar (3.62)

A general solution to this differential equation is given by

T
C
u(r) = (l*—v)~% 5 (T - Treg) T dr + Cl r + —f— (3.63)

0

Since the radial temperature variation T is known from the
thermal analysis (see section 3.2.2), the exact axisymmetric element
displacement variation can be derived by applying the nodal displace-

ments u, and u, as the boundary conditions at r =a and r = b,

1 2

respectively. The exact element displacement variation is

G ;
u(r) = (1 + v)-; 3 (T - Tref) r dr
a
2 2 b
@+ 2 -a) S (T = Tpeg) T dr
r (b2 - a2)
a
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2_ .2 2 _ .2
a(b” - 17) b (r® - a%)
+ 1 r (b2 _ a2)] Y + r (bZ _ a2)] b} (3.64)
or in the matrix form
u
u(r) = LNO(r) N; (r) Nz(r)J uy = [Ng| {u} (3.65a)
u
2

where No(r) is the element nodeless interpolation function; Ni’
i=1,2, are typical element interpolation functions, Uy is the

nodeless parameter, and us, i=1,2 are the element nodal displace-

ments. The element interpolation functions are

r
N () = (L + ) = j (T - Tpee) T dr
a
2_ 2 (
-1 +v) 9‘;%;2_:_%2% g (T = T of) T dr (3.65b)
a

2 2 2
= a®-r) y - b (7 - a%) (3.65c)
Ny (r) = [r (2 = a2)] and N, (r) = [ o - a2)]

Like for the exact truss element, the nodeless parameter ug is
taken as unity, and the element nodeless parameter No(r) vanishes
at nodes. Element matrices can be derived by following the same
procedure described for the truss element. In this case, the element

stiffness matrix and the equivalent nodal thermal load vector are
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b
k] =g (8,17 [p] [B,] T dr (3.662)

a

b
{FT} = S [BS]T [D] {o} (T - Tref) r dr (3.66b)

a

where [Bg] is the strain-displacement matrix obtained from

Eq. (3.61),

- . N\ fﬂ\ le sz ' ul N
r dr dr dr
1 (=91 ° < =IB {u} (3.67a)
. u N N %2
| 8 ) . T | T r | L J

[D] 1is the elasticity matrix (plane stress),
0] = —2— (3.67b)
1
and {a} dis the vector of coefficients of thermal expansion,

{a} = « (3.67¢)

Using the exact element interpolation functions, Eq. (3.65),
the element stiffness matrix and equivalent nodal load vectors
corresponding to the heat transfer cases (see section 3.2.2) can be

derived in closed form. Due to complexity of the element interpolation
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functions, a computer-based symbolic manipulation language MACSYMA
was used to perform the algebra and calculus required for these
element matrix derivations. Results of these element matrices and
exact element interpolation functions are shown in Appendix B and
Table 4, respectively.

Once nodal displacements are computed, exact thermal stresses
in both radial and circumferential directions can be determined.
Using the stress-strain relations, Eq. (3.60), and the strain-
displacement equations in the form of Eq. (3.67a), the element

stresses can be written in terms of nodal displacements as

= [D] [BS] {u} - (L + v) o(T - Tref) (3.68)
Og 1

For the plane strain case (Ez = 0), all equations formulated
for the case of plane stress above may be used by replacing
E.(l—vz) for E, v/(1-v) for v, and (1+v)a for o. In addi-
tion, the longitudinal stress exists in this case and can be computed

from the last equation of the stress-strain relations, Eq. (3.60c),

o, = v(or + oe) - aE (T - Tref) (3.69)

3.4 Applications

To demonstrate the capabilities of the exact thermal and
structural finite elements developed in sections 3.2 -3.3, the finite

element thermal analysis program TAP2 [23] and the finite structual
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Axisymmetric Element Displacement Interpolation Functions

67

2 2 2,2
Ny(0) = e (1 + 2w [P - B 2]
b (b™=-a”)
2 2.2
+ (T2 + WTO) [rzln(i) - SE—:%—Q%jE]
(b"-a")
2 2 2 2
+ Py [ lEma )y,
2b
2
Nl(r) - a(bz—r )
r(b™-a")
2
Nz(r) - b(rz—a )
r(b™~a”)
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analysis program STAP [24] are used. Elements discussed in this
chapter were added to these programs. Conventional finite elements are
also available in these programs, so comparisons between exact finite

elements and conventional finite elements could be made.

3.4.1 Coffee Spoon Problem

The exact rod element for conduction and convection described
in section 3.2.1 is used for one-dimensional heat transfer in a
coffee spoon [25], Fig. 7. The lower-half of the spoon submerged in
coffee is convectively heated by the coffee at 339 K, and the upper-
half is convectively cooled by the atmosphere at a temperature of
283 K. The ends of the one-dimensional spoon model are assumed to
have negligible heat transfer.

Three finite element models are used to represent the spoon:
(1) two exact finite elements, (2) two linear conventional finite
elements, and (3) ten linear conventional finite elements. Tempera-
ture variations computed by these three finite element models are
compared in Fig. 7. The figure shows that two conventional finite
elements predict nodal temperatures with fair accuracy but are unable
to provide details of the nonuniform temperature distribution includ-
ing the zero temperature gradients at both ends of the spoon. The
temperature variation obtained from ten conventional finite elements
is in excellent agreement with the result from two exact finite
elements. It should be noted, however, that an approximate solution
results from the use of conventional finite elements since the exact
solution to the problem is in terms of hyperbolic functions, which
were used in the exact element interpolation function (Appendix A,

Case 1b).
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Fig. 7. Conventional and exact finite element solutions
for coffee spoon with conduction and convection.
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3.4.2 Thermal Stresses in Hypersonic Wing

A 136 member truss model of a hypersonic wing [26], Fig. 8, was
chosen to illustrate the use of exact truss finite elements. The wing
is assumed to have varying convective heat along the leading edge, top
and bottom surfaces and is convectively cooled internally. Tempera-
tures along the wing root are specified. Two finite element thermal
models are used to represent the wing truss. The first model
consists of 136 exact condution-convection rod elements (see
section 3.2.1) with one element per truss member. The second model
is identical to the first model, but linear conventional finite
elements are used. Fig. 9 shows a comparison of temperature distri-
butions along the bottom members of the center rib of the wing truss.
Results show that the exact finite element model provides a realistic
temperature distribution which is characterized by higher temperatures
near the center of each truss member and lower temperatures at the
nodes. The conventional finite element model underestimates the
actual temperatures and is not capable of capturing the highly
nonlinear temperature distribution along the rib. Therefore, further
mesh refinement of the conventional finite element model is needed
if a realistic temperature distribution is to be predicted.

For the structural analysis, both models employ the same
discretization as in the thermal analysis. The structural boundary
conditions consist of constraining the nodes along the wind root.
Truss member temperatures obtained from the exact finite element
thermal model are directly transferred to the exact finite element
structural model for computations of displacements and thermal

stresses (see section 3.3.1). Likewise, displacements and thermal
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Fig. 9. Comparison of temperature and stress distributions
in wing truss, z=0.
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stresses computed from the conventional finite element structural
model are based upon linear member temperatures obtained from the
conventional finite element thermal model. Comparison of the thermal
stress distributions for the two analyses are made as shown in

Fig. 9. The figure shows that conventional finite elements under-—
estimate member stresses with a relatively large error. This error
is caused by the use of the inaccurate temperature distribution
from the conventional finite element thermal model. Comparative
temperature and stress distributions of other wing sections (not
shown) have similar trends. The results clearly demonstrate that
improved thermal-structural solutions can be obtained through the

use of exact finite elements.
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Chapter 4

MODIFICATION OF EXACT FINITE ELEMENT FORMULATION FOR
ONE-DIMENSIONAL LINEAR TRANSIENT PROBLEMS

In the preceding chapter, exact thermal finite elements for one-
dimensional steady-state heat transfer problems were presented.
Steady-state element temperature interpolation functions were
formulated in closed form based upon solving ordinary differential
equations. In transient analysis, exact element temperature inter-
polation functions cannot be obtaimed in closed form since general
solutions to typical transient problems are infinite series. However,
by modifying the steady-state element temperature interpolation
functions for the transient analysis, improved transient temperature
solutions can be obtained as described in this chapter.

In steady-state analysis, finite element temperature distribu-
tions are a function of only the spatial coordinate, but for transient
analysis, the element temperature distribution are a function of both
space and time. For example, a one-dimensional transient heat conduc-—

tion is governed by the partial differential equation,

2

ka &L = pep T (4.1)
5 2 ot
X

where k 1is the material thermal conductivity, p is the density,

¢ 1is the specific heat, A is the conduction area, and T 1is the

74
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temperature which varies with the spatial coordinate x and time ¢t.
A two-node linear conventional finite element may be used in the
analysis where the element temperature variation T is expressed

in the form (Fig. 10(a))

Tl(t) Tl(t)
T(x,t) = |1 -% %J = [N (x) N, () (4.2)
T, (t) T, ()

where Ni(x), i=1,2 are the element interpolation functions which
are a function of the spatial coordinate x; L 1is the element length,
and Ti(t), 1=1,2 are the time-dependent nodal temperatures.

With the heat equation shown in Eq. (4.1), the corresponding
element equations and element matrices can be derived as described

in section 2.3. Typical element equations have the form
[el (13 + [K] {T} = {Q} (4.3)

where {T} and {T} denote vectors of nodal temperatures and the
time rate of change of nodal temperatures, respectively. The matrix
[K] and the vector {Q} represent the conductance matrix and the heat
load vector, respectively, and have the same meaning as previously
described for the steady-state analysis in the preceding chapter.

The additional matrix [C] is called the capacitance matrix and defined

by (see Eq. (2.15a))

[c] =) peca {NT} LNTJ dx (4.4)

o
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Fig. 10. One-dimensional element interpolation functioms.
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For the linear interpolation functions shown in Eq. (4.2), the

capacitance matrix can be evaluated as

[c] = Best (4.5)
1 2 J
This form of the capacitance matrix, Eq. (4.5), is called a consistent
capacitance matrix because its definition is consistent with the
matrix formulation, Eq. (4.4). Quite often, the above capacitance
matrix is approximated by lumping the off-diagonal terms with the

diagonal terms to give,
[C] =—=— (4.6)

and is called a lumped capacitance matrix. It should be noted that
degradation of the solution accuracy may result from the use of the
lumped capacitance matrix compared with the consistent capacitance
matrix. However, computational advantages (e.g. explicit time
integration algorithms) may be achieved using the lumped capacitance

matrix whereas the loss of solution accuracy may be insignificant

[5].

4.1 The Nodeless Variable

In the preceding chapter, exact finite elements for steady-
state analysis are formulated based upon solving ordinary differential
equations. Exact element temperature variations after imposing nodal

temperatures as boundary conditions are written in the form,
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T(x) = No(x) TO + Nl(x) Tl + Nz(x) T2 (4.7)

where Ni’ i =1,2 are element interpolation functions; Ti’ i=1,2
are unknown nodal temperatures, No(x) is the element nodeless
interpolation function, and T0 is a known nodeless parameter.

For transient thermal problems, it is not possible to formulate
exact element interpolation functions in closed form because general
solutions to typical transient problems are infinite series. However,
since the transient response may approach exact steady-state solutions
as time becomes large, the use of the exact steady-state element
temperature variation in the form of Eq. (4.7) may provide better
accuracy of solutions than those obtained from the linear conventional
element, Eq. (4.2).

To use the steady-state element temperature variation for

transient analysis, Eq. (4.7) is written in the form,

T(x,t) = No(x) TO + Nl(x) Tl(t) + Nz(x) T2(t) (4.8)

where the unknown nodal temperatures Tl and T2 become a function

of time t. Since the nodeless parameter TO is known and independent
of time, the product of the nodeless interpolation function and the
nodeless parameter, No(x) TO, retains the same shape throughout
the transient response. Characteristics of the element temperature
variation expressed by Eq. (4.8) during the response are illustrated
in Fig. 10(b).

Equation (4.8) may not be a good representation for a transient

thermal response as will be shown by the following argument. As

described in section 3.1.1, the nodeless parameter T0 is a scalar
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quantity which contains a physical parameter associated with a given
heat load. TFor example, the nodeless parameter for a slab subjected
to a uniform internal heat generation rate Ql is given by (see

Table 2)

where k 1is the material thermal conductivity and L is the
element length. If a slab is modeled by an exact finite element,
the element temperature variation is given by (see Appendix A,

Case 2)

QL2

_X _xy 1 _Xx X
T=1 (1 L) - + (1 L) T, + (L) T,

where Tl and T2 are the element nodal temperatures. If both
surfaces of the slab have a specified temperature TS in addition,

the above equation becomes

Q12

=0) =X (1 - % L _X X
T(x,t=0) T (1 L) on + (1 L) TS + (L) TS (4.9)
For the case where the internal heat generation is raised instan-
taneously from Ql to Q2, the transient temperature variation
within the slab should gradually increase and reaches the new steady-

state temperature variation

2
Q,L

2k

w) = X _X _X X
T(x,t>x) I a L) + (1 L) T, + (L) T, (4.10)
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where the new nodeless parameter is

2
_ St

T
0 2k

Since the nodal temperatures at both sides of the slab are fixed,
the above two temperature variations, Eqs. (4.9 -4.10), suggest that
the nodeless parameter TO should vary with time so the element
temperature can change gradually during the transient response. This

argument leads to a modification of the element temperature variation

employed in the steady-state analysis, Eq. (4.8), to the form

T(x,t) = No(x) To(t) + Nl(x) Tl(t) + NZ(X) T2(t) (4.11)

where the nodeless parameter becomes an additional time-dependent
element unknown and is called a nodeless variable. A typical element
temperature variation with the nodeless variable To(t) is 1illus-

trated in Fig. 10(c).
4,2 Element Equations and Matrices

In this section, element equations and matrices for both the
nodeless parameter approach and nodeless variable approach are
presented. In the nodeless parameter approach, the element tempera-

ture variation shown in Eq. (4.8) can be written in the matrix form

To

T(x,t) = [NyGx) NyGx) Ny(x)f < 1, (t) (4.12)
T, (t)
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Using the definition of the element capacitance matrix shown in
Eq. (4.4), the capacitance matrix for the given element interpolation
functions can be derived. Element equations, Eq. (4.3), can then be

written explicitly as

— _— ¢ ~ — -, -~

COO cOl Coz aTO/at KOO 0 0 TO ( QO

cOl C11 Cl?_ < aTl/at r + 0 Kll K12 J Tl 2l Ql s (4.13)
Coz Cya Cpp | | 8T,/0t 0 Ky K || Ty Q)

— - - 7 — _J " J N J

where Cij’ i, =0,1,2 are typical terms in the capacitance matrix;
Kij and Qi’ i,j =0,1,2 are typical terms in the element stiffness
matrix and the heat load vector previously described in the steady-
state analysis. Since the nodeless parameter TO is constant, its
time-derivative BTO/at is zero. Therefore, the first equation
which involves the nodeless parameter is uncoupled from the nodal

unknowns in the second and third equations. Hence, the above equa-

tions reduce to

. - (4.14)

Note that these equations contain two basic element nodal unknowns
as for the linear conventional finite element. Once the mnodal
temperatures at a typical time are computed, element temperature
variation can be obtained using Eq. (4.12).

In the nodeless variable approach, the element temperature varia-—

tion shown in Eq. (4.11) can be written in the matrix form
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To(t)
T(x,t) = [NyG) N (x) N,(x)] T, (t) (4.15)

T,(t)

where To(t) denotes the element nodeless variable which is a func-
tion of time as the unknown nodal temperatures Tl(t) and Tz(t).
Since the element interpolation functions are identical to those
used in the nodeless parameter approach, the element matrices are

also identical. Element equations obtained using this approach have

the form
(c ¢ o |[%.) [ o o |[r.] QW
00 “ul “02 0 00 0 0
Coz S11 C21S3 Tl r + 0 Ky Ky |41yp = Q f (4.16)
C02 ‘12 sz_ \T2/ 0 K Kzz_ szJ Qz)

Because the nodeless variable is unknown, the equations are coupled

through the capacitance matrix due to the presence of T Thus

0
typical element equations obtained from the nodeless variable approach
contain three unknowns, i.e. one more unknown than the nodeless
parameter apporach or the linear conventional finite element.

An advantage of the nodeless parameter and nodeless variable
approaches is that both can provide an exact steady-state solution
at the initial condition for the transient response. As time becomes
large and new steady-state thermal equilibrium is reached, the exact
temperature distribution may be predicted by both approaches. It

should be noted that with the use of the nodeless variable approach

the temperature variation within the nodeless variable element can
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vary with time even though the element nodal temperatures are fixed.
This feature is characterized by the term No(x) To(t) shown in
Eq. (4.11) and is different from the linear conventional finite
element where the element temperature distribution is completely

controlled by nodal temperatures.

4.2.1 Rod Element

The rod element with heat conduction combined with surface
convection, internal heat generation, or surface heating previously
considered in Fig. 4, Cases la-d is extended for transient analysis.
For each heat transfer case, the governing differential equation for
the temperature distribution T(x,t) can be derived using an energy
balance on a small segment of the rod. These governing differentigl

equations are:

2
pcA T _ kA-é—E =0 (4.17a)
3t 2
9xX
2
pca 2T _1a 2T 1p7 = wptT, (4.17b)
at 3 2
X
2
pca <X - 1a 2T _ g (4.17¢)
ot 2
X
20
pca 2L _a 27T o (4.174)
ot sz

where A 1is the element cross—section area, h is the convection

coefficient, p is the cross-section perimeter, T is the surround-

ing medium temperature, and q is the specified surface heating rate
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per unit area. As one example, conduction with internal heat genera-
tion where the exact steady-state element temperature variation is

(see Appendix A, Case 1(b))

XX _X X
T(x,t) = L (1 L) TO + (1 L) Tl + (L) T2
To
= I_No(x) N () Ny ] 9Ty (4.18a)
T
2

where TO is the nodeless parameter given by (see Table 2)

2
ro= O

0 o (4.13b)

Using the exact element interpolation functions shown in Eq. (4.18a)
above, the capacitance matrix is derived using Eq. (4.4). The
conductance matrix and heat load vector are derived using Eqs. (2.15b)

and (2.16b), respectively. Therefore, the element equations are

- qr N — - 4 3
11 1 1 () 1
30 12 12/ To 3 O 01T 6
4 11 kA - - 1y
peAL | 7= 5 ¥ |3 Tl$+ 2o 1 14 Tl$ AL 7 ¢ (4.19)
101 . 1
2 % 3 LTz 0 -1 11T 7 |
b - / - -\ 4 \

In the nodeless parameter approach, the nodeless parameter TO

is constant and the above element equations reduce to
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11 1
3 6 B 1 - T 2

PCAL L 1%- = QAL (4.20)
11 . 1
£ = T -1 1T =
6 3 2 2 2
" J U “)

with two unknown nodal temperatures Tl(t) and Tz(t). It should
be noted that the element equations obtained from using the nodeless
parameter approach shown in Eq. (4.20) above are identical to those
obtained from the linear conventional finite element for this heat
transfer case. Thus, results of nodal temperatures during the
transient response are also identical. However, results of element
temperatures are different due to the difference of their element
interpolation functions, Eqs. (4.2) and (4.18b). As the transient
response reaches the steady-state, the nodeless parameter approach
provides exact solution for both nodal temperatures and element
temperature variations where only exact nodal temperatures are
obtained through the use of the linear conventional finite element.
In the nodeless variable apporach, the element equations with
two unknowns of nodal temperatures and an unknown of nodeless
variable shown in Eq. (4.19) must be solved simultaneocusly. It can
be seen from these equations that as the steady-state thermal
equilibrium is reached, the rate of change of nodal temperatures

and the nodeless variable vanish. Then the first equation yields

N

T QL

0 2k

which is identical to the nodeless parameter shown in Eq. (4.18b).

This means the nodeless variable varies during the transient response
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and provides the value required for computation of the exact
temperature variation when thermal equilibrium is reached.

For other heat transfer cases such as conduction with surface
convection or surface heating, the same procedure is applied.
Element matrices corresponding to each heat transfer case in the form
of Eq. (4.16) are given in Appendix C. Capabilities of the nodeless
paraneter and the nodeless variable finite elements for transient
analysis are evaluated by comparisons with an exact transient
conduction-convection solution and the linear conventional finite

element in the first example at the end of the chapter.

4.2.2 Axisymmetric Element

Similar to the rod element, the axisymmetric element previously
described in the steady-state heat transfer (Fig. &4, Case 3) is
extended for the transient analysis. Radial heat conduction is
combined with internal heat generation and specified surface heating
or surface convection on the inner or outer cylinder surfaces are
considered through the boundary conditions. The governing differ-
ential equations for the cases of pure conduction and conduction

combined with internal heat generation are

3t —;B—r 'a—r =0 (4.218.)
BT kB 9Ty _
ot r or ( Br) Q (4.21b)

respectively, where r denotes the radial coordinate.
Element equations can be derived by the method of weighted

residuals applied to the governing differential equatioms.
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Typical element equations are in the form of equation (4.16). The
element conductance matrix and heat load vector are identical to those
obtained in the steady-state analysis shown in Egs. (3.38b) and
(3.38c), respectively. The element capacitance matrix associated with

the rate of change of nodal temperatures has the form
[c] = S pc {N.} [N,| r dr (4.22)

For the element interpolation functions associated with the heat
transfer cases shown in Appendix A, the corresponding capacitance
matrix can be evaluated in closed form. Capacitance matrices in

the form of Eq. (4.16) are given in Appendix C.
4.3 Applications

4.3.1 Transient Heat Conduction in a Rod with Surface Convection

A rod with length L subjected to surface convection and
specified end temperatures is shown in Fig. 11(a). Initially the
rod is convectively cooled by a surrounding temperature at 255 K
and, at time ¢t = 0+, the surrounding temperature is raised
instantaneously to 589 K. Transient temperature distributions along
the rod are computed using: (1) the exact solution [27], (2) two
linear conventional finite elements, (3) two nodeless parameter
finite elements, and (4) two nodeless variable finite elements. 1In
each finite element model, the element lengths are taken to be equal
(L/2) with an unknown of nodal temperature at the center of the rod.

Comparisons of the temperature variations obtained from these three
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(a) Rod heated by surface convection.

Fig. 11. Conventional and nodeless variable finite element
solutions for a rod with surface convection.
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finite element models and the exact solution for t =0, 0.01 and
0.3 s. are made as shown in Fig. 11(b-d).

At time t = 0 while the rod is in thermal equilibrium, two
nodeless variable finite elements provide the exact steady-state
temperature distribution. Two conventional finite elements are
unable to provide details of the nonuniform temperature distribution
due to the assumption of linear temperature distribution within the
element. At time t = 0.0l s. (Fig. 11(c)) after the rod has been
convectively heated, the differences in the transient response
predicted by three finite element models are shown clearly. Two
linear conventional finite elements predict the unknown nodal
temperature at the center of the rod with fair accuracy but the
element temperature distributions are overestimated from the actual
temperature distribution with a relatively high error. Two nodeless
parameter finite elements yield the unknown nodal temperature with
the same accuracy as of two linear conventional finite elements but
predict extremely poor element temperature distributions. Two nodeless
variable finite elements provide the best approximation of the
unknown nodal temperature with excellent temperature distributions
within the elements. As the rod temperatures approach a new steady-~
state solution at time t = 0.3 s. (Fig. 11(d)), two linear
conventional finite elements yield a fair approximation of the
unknown nodal temperature but crudely approximate the temperature
distribution. Both the nodeless parameter finite elements and the
nodeless variable finite elements provide excellent prediction of
the unknown nodal temperature and details of the nonuniform tempera-

ture distribution.
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(b) Comparative temperature distributions at t =0 s.

Fig. 11. Conventional and nodeless variable finite element
solutions for a rod with surface convection.
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(c) Comparative temperature distributions at t =.01 s.

Fig. 11. Conventional and nodeless variable finite element
solutions for a rod with surface convection.
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(d) Comparative temperature distributions at t =.30 s.

Fig. 11. Conventional and nodeless variable finite element
solutions for a rod with surface convection.
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Even though the nodeless parameter approach employed in this
problem yields excellent representation of the temperature distribu-
tions at the beginning (t = 0 s.) and near the end (t = 3.0 s.)
of the response, the approach is unable to provide reasonable element
temperature distributions during the response. As shown in Fig. 11(c)
at time t = 0.01 s., temperatures obtained from the nodeless
parameter finite elements are characterized by bumps within the
elements. These unacceptable results are caused by using the steady-
state element temperature distribution with the constant nodeless
parameter for the transient analysis. Therefore, the nodeless
parameter approach should not be employed for transient response
predictions. Instead, the nodeless variable approach should be used
sinée it gives accuracy superior to the linear conventional finite
element throughout the response and predicts exact steady-state
solutions.

4.3.2 Transient Thermal Stresses in a Rod with Internal Heat
Generation

To further illustrate the use of the nodeless variable approach
for one-dimensional transient problems and demonstrate additional
benefits that can be achieved, an analysis of transient thermal
stresses in a rod with internal heat generation is presented.

A rod with constant cross-sectional area A and length L
encased between fixed walls is shown in Fig. 12(a). Both ends of
the rod have the specified temperatures at 311 K and 533 K at
x =0 and x =1L, respectively. Initially, the rod is subjected
to a uniform internal heat generation rate Q = 358 kW/m3 and is
0+

in the thermal equilibrium. At time ¢t = » the internal heat
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Fig. 12. Conventional and nodeless variable finite
element solutions for a fixed end rod with
internal heat generation.
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generation rate increases abruptly to 1073 kW/m3 and remains
constant thereafter. The rod is modeled using: (1) 20 linear
conventional finite elements, (2) two linear conventional finite
elements, and (3) two nodeless variable finite elements. Comparative
temperature distributions at time t =0, 0.1 and 1.0 hr. are
shown in Fig. 12(b). The figure shows that two nodeless variable
finite elements have the same capability in predicting transient
temperatures as 20 linear conventional finite elements. Two linear
conventional finite elements underestimate the temperature distribu-
tions with relatively large error throughout the tramnsient response.

In the structural analysis, three structural finite element
nodels with the same discretizations as for the thermal finite
element models are employed. Element temperatures obtained from
the thermal finite element model are transferred directly to the
structural finite element model for computation of displacements
and stresses. For the quasi-static analysis, the structural response
are computed at times corresponding to the transient thermal solu-
tions obtained previously. At each time, the equivalent nodal
thermal forces are computed using Eq. (3.537) and the element nodal
displacements are computed from Eq. (3.55). Once the element nodal
displacements are obtained, element displacement distributions and
element thermal stresses are computed from Egqs. (3.53) and (3.58),
respectively.

Displacement distributions obtained from the three structural
finite element models are shown in Fig. 12(c). The figure shows
that two linear conventional finite elements are inadequate ‘to

represent the details of nonuniform displacement distributions.
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Fig. 12. Conventional and nodeless variable finite
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Fig. 12. Conventional and nodeless variable finite
element solutions for a fixed end rod with
internal heat generation.
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Similar to the thermal analysis, displacement distributions obtained
from two nodeless variable finite elements and 20 linear conventional
finite elements are in excellent agreement throughout the transient
response. Comparative thermal stresses obtained from these finite
element models at the times mentioned above are given in Table 5.
Thermal stresses computed from two nodeless variable finite elements
and 20 linear conventional finite elements are equal since temperature
variations of these two finite element models coincided. Two linear
conventional finite elements underestimate the thermal stresses and
the error increases with time with a maximum of 10% at t = 1.0 hr.
These two examples clearly demonstrate benefits of using the
nodeless variable approach in one-dimensional transient thermal-
structural problems. Further applications of the nodeless variable
approach can be found in Ref. [28]. The use of the nodeless variable
for improving temperature solutions in the transient thermal
analysis directly improves accuracy of displacement and stress
distributions in the structural analysis. The advantages of the
nodeless variable approach for linear transient thermal-structural
problems have been demonstrated in this chapter. The approach will
be extended to nonlinear steady-state and transient thermal-structural

analysis which includes radiation heat transfer in the next chapter.
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Comparative Thermal Stresses for a Rod with
Internal Heat Generation
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Stress, MPa

20 Conv. Elements

Time, t 2 Conventional 2 Nodeless Variable
Hr. Elements Elements % Diff.
0 -507 -531 4.57%
0.1 -598 -640 6.5%
1.0 -652 -724 10.0%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

ONE-DIMENSIONAL THERMAL-STRUCTURAL FINITE ELEMENT ANALYSIS
WITH RADIATION HEAT TRANSFER

Due to their relatively low weight, high stiffness and ease of
fabrication, trusses have high potential for use in space structures
for solar collectors, antenna and space stations. Thermal analysis
of these structures includes conduction heat transfer combined with
significant radiation heat transfer. Radiation heat transfer intro-
duces a strong nonlinearity in the energy equation being solved.
Furthermore, a time dependent solution procedure is required for the
analysis due to the changing orientation of the structure during the
orbit.

In this chapter, finite element solution procedures for one-
dimensional transient thermal analysis with radiation heat transfer
are presented. Three finite element types are formulated: (1) an
isothermal element, (2) a linear conventional element, and (3) a
nodeless variable element. Accuracy and efficiency of the finite
elements are evaluated using two thermal-structural examples at the
end of the chapter.

5.1. Solution Procedures for One-dimensional Transient Thermal
Analysis with Radiation Heat Transfer
In this section, transient thermal analysis for a one-

dimensional finite element with radiation heat transfer is presented.

100
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The radiation surface is assumed to be diffuse, gray and opaque
which means the emitted radiation energy is uniformly distributed,
independent of wave length and the material does not transmit
radiation. For convenience all material thermal properties are
assumed constant.

For one-dimensional transient heat conduction in a rod with
surface radiation, the governing differential equation for the
temperature distribution T(x,t) can be derived using an energy
balance on a small segment. With the assumptions mentioned above,

the governing differential equation is

2
T 3T 4 _
St axz +eop, T =a pq 9, (5.1)

pcA

where p 1is the demsity, ¢ is the specific heat, A is the rod
cross-sectional area, k is the material thermal conductivity,
0 is the Stefan-Boltzmann constant, € is the surface emissivity,
a is the surface absorptivity, 9, is the incident surface heating
rate from distance directional sources per unit area, Pg and P,
are the cross-sectional perimeters for surface emitted energy and
incident energy, respectively.

Finite element equations corresponding to the governing differ-
ential equation (5.1) can be derived using the method of weighted
residuals as described in section 2.3. For this case, typical

element equations have the form

[c] {1} + [[R.] + [K ] {T} = {Q.} + {Q,} (5.2)

where [C] is the element capacitance matrix; [Kc] and [Kr] are
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the element conductance matrices corresponding to conduction and
radiation, respectively, {Qc} is the element vector of conduction
heat flux across element boundary, and {Qr} is the element heat
load vector due to incident radiation. These matrices are expressed

in the form of integrals over the element length L as follows:

L
[c] =S pcA {Ny} |Np] dx (5.3a)
0
L dNp AN,
[k ] =g kA {3 LE{J dx (5.3b)
0
L
k1 {1} = g € 0P, T {Np} dx (5.3¢)
0
L
)  =q|-wafn (5.4a)
0
L
{Q,} =§ ap, 4, {Np} dx (5.4b)
0

where [NTJ“ denotes the element temperature interpolation functions.
As shown in equation (5.3c), the conductance radiation matrix

contains the element temperature within the integral. The element

equations, Eq. (5.2), thus constitute a nonlinear set of equations.

Since the time rate of change of the temperature vector {T} also
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appears in the element equations, a transient nonlinear solution
procedure is required for the analysis.

Typical techniques for transient nonlinear solutions combine
a linear transient solution method and a steady-state nonlinear
solution method. The solution technique here uses a time-marching
scheme where temperatures are computed at the middle of the time
step, the Crank-Nicolson algorithm. At each time step, Newton-Raphson
iteration is used to correct for nonlinearities. Further details of
these methods including other solution algorithms can be found in
the finite element text, Ref. [15].

Starting from the element equations, Eq. (5.2), the time-
marching scheme is first applied by approximating the time rate of

change of nodal temperatures as
(1) === (T} - (T}) (5.5)
At n+l n :

where At is the time interval between the time step n and n+l
= + . Y

such that tn+l tn At {T}n and {T}n+1 are the vectors of

nodal temperatures at the time step n and n+l, respectively.

Since the Crank-Nicolson algorithm computes temperature solutions at

the middle of time steps, nodal temperatures at the middle of the

step are approximated by
-1
{rh =5 (T} + {T} ) (5.6)

where {T} denotes the vector of nodal temperatures at the middle
of the step. From this equation, the vector of nodal temperatures

at the step n+l is
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{T} = 2{T} - {T}n (5.7)

n+1

By combining Eqs. (5.5) and (5.7), the time rate of change of the
nodal temperature vector shown in Eq. (5.5) can be expressed in
terms of nodal temperatures at the middle of the step and step n

as
(f} == (1) - {1}) (5.8)
At n
Substituting Eq. (5.8) into Eq. (5.2), the element equations become,

2 2
[ZE'[C] + [k + [k 1] {1} = {Q .} + {q} + ZE'[C] {r}_ (5.9)

In Eq. (5.9), the vector of nodal temperatures {T}n that
appears on the right-hand side is known from the previous step.
Since the unknown nodal temperatures contained in the vector {T}
are computed at the middle of time step, the heat load vectors must
be evaluated at the same time. Once the unknown nodal temperature
vector {T} is obtained, the nodal temperature vector {T}n+l at
the step n+l can be computed from Eq. (5.7).

The element equations obtained by applying the Crank-Nicolson
algorithm shown in Eq. (5.9) are in the form of nonlinear algebraic

equations
k()] {1} = {qQ} (5.10)

where

[K(D] (1} = [z [€] + [K] + [K,]] {D) (5.11a)
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and

2
{Q} = {Qc} + {Q,} + 5 [C] {T} (5.11b)

For any temperature vector {T} that is not an exact solution to
equations shown in Eq. (5.10) above, an unbalanced nodal heat loads

exist which can be written in the form of a vector (¥} as

{v} = [R(D)] {T} - {Q} (5.12a)

or in tensor notations,
r
v, = = K,. T. - Q. (5.12b)

To develop the Newton-Raphson method a Taylor series expansion with

the first order-derivative accuracy is written as

3.
m 1 m
b ({TH) + (—BTJ- ATj =0 (5.13)

A set of algebraic equations is obtained in the form

m+l

[31™ (aTy™ = (r}™ (5.14)

where the superscript m denotes the mth iteration. The matrices
m . . .
[J]m and {R} are the Jacobian matrix and the residual load vector,

respectively, defined by

J.. = — (5.15a)
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R, = - wi (5.15Db)
At each iteration, the vector of nodal temperature increments
+
{AT}™ 1 is computed using Eq. (5.14) and a new temperature vector

is obtained from

(™ = (o™ + amy™ (5.16)

The iteration process is terminated when a convergence criteria
(such as the maximum nodal temperature increment is less than a
specified value) is met. For steady-state analysis, the equations
shown in Eq. (5.2) do not contain the time rate of change of nodal

temperatures, and only the Newton-Raphson iteration is required.
5.2 Element Formulations

In this section, three one-dimensional finite elements with
surface radiation are formulated. Crank-Nicolson and Newton-Raphson
methods described in the preceding section are employed for the

transient and nonlinear solutions, respectively.

5.2.1 1Isothermal Element

The isothermal element is a simple finite element suitable for
problems with negligible conduction heat transfer. A uniform
temperature variation is assumed alongbthe element that varies only
with time (Fig. 13(a)). This element is different from the finite
elements mentioned in the previous chapters since element temperature

is the only unknown for the isothermal element. Since the element
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(a) Isothermal element
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(b) Conventional element

(c) Nodeless variable element

Fig. 13. One-dimensional element interpolation
functions for nonlinear transient
analysis with radiation.
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neglects heat conduction, the governing differential equation shown

in Eq. (5.1) becomes

ar 4
pcA qt TeEopg, T =a Pq P, (5.17)

where T denotes the element temperature which is a function only
of time t.

The Crank-Nicolson algorithm is applied to the above differential
equation by first writing the rate of change of the element tempera-

ture in the form of Eq. (5.8),

|
I
3o
Il

2
ac (T Ty

where T denotes the element temperature at the middle of the step.
Substituting this equation into Eq. (5.17) yields a nonlinear
algebraic equation in the form

2 3 2
(At PcA + e op_ T )T =a Pq U + o0 pcA T (5.18)

After the element temperature T at the middle of the step shown in
the above equation is obtained, the element temperature at the end

of the step is computed from

T = 2T - Tn (5.19)

Next, the nonlinear algebraic equation shown in Eq. (5.18) is
solved by applying the Newton-Raphson method. In this case, the

unbalanced element heat load is given by (see Eq. (5.12)),
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2
q, - — pcA Tn (5.20)

) 3
v = ( At pcA + ¢ OPS T) T-ap it

q

Using Taylor series approximation, an algebraic equation is obtained

in the form

J AT =R (5.21)

where Jm and Rm are the Jacobian and the residual load at the

nth  iteration defined by

m_ 3y _ 2 3
J = 5T = Bt pcA + 4 €0P T (5.22a)
m _ _ 2 _ _ 4
R ==y = AT pcA (Tn T) £E0 Py T
(5.22b)
+ap, Py

At each iteration, the element temperature increment AT is computed

from Eq. (5.21) and a new element temperature is obtained from

m+1 1

L @ AT (5.23)

After the convergence criterion is met, the element temperature
shown in Eq. (5.23) is used in Eq. (5.19) to compute the element
temperature at the end of the step. The use of the isothermal element
does not require a set of simultaneous equations due to the assump-
tion of negligible heat conduction as previously mentioned. The
transient response of each element, therefore, can be computed

separately.
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The isothermal element is useful for modeling truss members
where heat conduction is negligible in comparison with the incident
heating and emitted radiation. Applications of the isothermal
element for transient analysis of truss-type structures with surface

radiation can be found in Refs. [29,30].

5.2.2 Conventional Element

For the conventional element, a linear temperature variation

is assumed between the two element nodes (Fig. 13(b)),

T, ()
] = [Ny (T} (5.24)
T, (t)

=
IS

where the unknown nodal temperatures Tl(t) and Tz(t) are a
function of time t. With the conduction~radiation differential
equation shown in Eq. (5.1), element equations can be derived as
shown in Eq. (5.2). The vector of unbalance nodal heat loads shown

in Eq. (5.12a) is written explicitly in the form
2
W = 57 el + IR {7} + [R 1{T) - Q) - {Q_}
2
alyvs [C] {T}n
or

2
{y} = e [cl{{T} - {T}n} + [Kc]{T} + [Kr]{T}

(5.25)
- Q3 - {Q,)
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For convenience nodal heat load vectors corresponding to each term

on the right-hand side of the above equation are introduced to yield
Wh={ug }+ {0 ¥+ {yp } = {05 } - {v, } 5.26
Y IPCC lch \PKr ch VQr ( )

The Jacobian matrices and the residual heat load vector can now be

formulated by using the definitions (see Eq. (5.15))

J.. = = and R, = -V,

For example, the first term on the right-hand side of Eq. (5.26) is
the heat load vector associated with the capacitance matrix,

2

the b = 57 lelidTy - {1} }

dx {{T} - {T}_}
n

L
2
=it g pcA {N_} [N
0

With the linear element interpolation functions shown in Eq. (5.24),

this term can be evaluated in closed form as

i1 B B
3 6

b } = = -

Cc” "t |1 1L T T
6 3 2 2

Using the definition of Jacobian Jij = Bwi/BTj, i,j = 1,2, the

corresponding Jacobian matrix is
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W=
O\

3,1 = 7¢ peAL = = [c] (5.27)

1
6

Wl

Similarly, the Jacobian matrix associated with the conductance conduc-

tion matrix is obtained in the form

[Jx 1 = [K.] - kb (5.28)

L
-1 1

The third term on the right-hand side of Eq. (5.26) is the heat load

vector associated with the radiation matrix,

L
4
€0 pg T {Ng} dx
0

N’Kr} = [K,] {1}

I

or

L
i S T
i3 T 3T, - €0 Pg Ni Nj dx
J 0
or
L
3
[JKr] = 4& eopy T {Ny} [Np] dx (5.29)

' 0
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With the linear element interpolation functions shown in Eq. (5.24),

this Jacobian matrix can be evaluated in closed form as

3 2 2 3 3 2 2 3
lOTl-+6TlT2-+3TlT2~+T2 2Tl-+3TlT2-+3TlT2-+2T2

—l-ecpsL

[JKr] - 15

3 2 2 3 3 2 2 3
2Tl-+3TlT2-+3T1T2-+2T2 Tl-F3T1T2-+6TlT2-+lOT2

L. -

(5.30)

It can be seen that the Jacobian matrix associated with the
radiation conductance matrix is strongly nonlinear since the unknown
nodal temperatures contribute to all terms in the matrix. The matrix
is sometimes [31] approximated by lumping these terms together
similar to the lumped capacitance matrix given in Eq. (4.6). The
lumped Jacobian matrix results in a much simpler form with zero off-

diagonal terms,

~
—_—
il
N
™
Q
o
(1))
|l
~~
8]
(O8]
'--I
~r

From Egqs. (5.15) and (5.26), the total residual load vector
is
(R} = = fugd = Db = D b+ (g )+ (9 ) (5.32)

For example, the residual load vector associated with the radiation

conductance matrix is
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{Rg,} = - (¥} = = [K.] {T)

L
4
—-S eopg T {NT} dx
0

Using the linear element interpolation functions shown in Eq. (5.24),

this residual load vector can be evaluated in closed form,

4 3 2,2 3 n

L 5Tl + 4T1T2 + 3T1T2 + 2T1T2 + T2
{RK}="%€°PSL (5.33)

r 4 3 2.2 3 4

Tl + ZTsz + 3TlT2 + 4T1T2 + 5T2

After all Jacobian matrices and residual heat load vectors are

computed, a final set of algebraic equations is obtained in the form

[31™ (aT}™1

= {R}™ (5.34a)

where the superscript m denotes the mthR iteration and,

[J] = [JCC] + [JKC] + (g, ] (5.34b)

{R} = {Rg .} + {Rg } + {Rg } + {Rq.} + {Rq,} (5.34c)

The solution of the temperature vector at successive times proceeds
as previously discussed for the isothermal element.

As shown in Eq. (5.34a), the transient and nonlinear solution
procedures lead to a set of algebraic equations. The Jacobian
matrices and the residual heat load vectors shown in Egs. (5.34b-c)
are thus necessary for the analysis. With the linear element inter-

polation functions shown in Eq. (5.24), these matrices can be
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evaluated in closed form and are given as computer subroutines in

Appendix D.

5.2.3 Nodeless Variable Element

In the preceding chapter, the nodeless variable approach was
introduced for improvement of temperature solutions in one-dimensional
linear transient analysis. The basic idea of the approach is the use
of the steady-state element temperature interpolation function derived
from the solution of a given ordinary differential equation. An
element nodeless variable is employed so that exact steady-state
solutions are obtained at the beginning and at the end of the
transient with realistic temperature distributions prediced throughout
the response. For one-dimensional conduction-radiation heat transfer,
it is not possible to obtain a closed form solution to the governing
differential equation, Eq. (5.1). However, the nodeless variable
approach is still useful for the analysis to provide improved
temperature solutions for the thermal element while maintaining the
same discretization as the two node structural element. The element
temperature distribution with a nodeless variable is written in the
form,

Ty(e)
T(x,t) = LNO(x) N, (x) Nz(x)_l T, (t) ¢ = |_NTJ {1} (5.35)
T, (t)

where No(x) is the nodeless variable interpolation function,
Ni(x), i=1,2 are typical element interpolation functions; To(t)
is the nodeless variable, and Ti(t), i=1,2 are the nodal tempera-

tures.
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As mentioned earlier, the nodeless variable interpoiation func-
tion NO must vanish at nodes in order to preserve continuity of
temperature between elements. There are wide choices for selecting
the nodeless variable interpolation function to meet this requirement.
The simplest function is in the form of polynomials with one order

higher than the linear element interpolation functions used in the

conventional finite element,

NoGx) =7 (1 - 3) (5.36a)
N (%) = 1 -% (5.36b)
N, (x) =% (5.36¢)

With these element interpolation functions, the element temperature
distribution, Eq. (5.35), results in a parabolic distribution over
the element length as illustrated in Fig. 13(c).

The use of the nodeless variable element for transient heat
conduction with surface radiation follows the same procedure
described for the linear conventional element. Typical element
equations derived from the method of weighted residuals shown in
Eq. (5.2) contain three unknowns. These element unknowns are the
nodeless variable TO and two nodal temperatures Tl and Tz.

For tramnsient solutibns, the Crank-Nicolson algorithm is applied,

and a set of nonlinear algebraic equations is obtained. Next the

Newton-Raphson method is used and a new form of simultaneous

Eq. (5.34a) is obtained where the Jacobian matrices and the residual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

load vectors are defined by Eqs. (3.54b-c), respectively. For example,
the Jacobian matrix contributed from the radiation conductance matrix

has the form

L
[JK ] =4 g eo p, T
0

3
{NT} LNTJ dx

Using the element nodeless variable temperature distribution and
their element interpolation functions shown in Eqs. (5.35) and (5.36),

respectively, this Jacobian matrix is written explicitly as,

L N,
- - 3
[JKr] =4 S €0 pg (NgTo + NyT; + NTp)7 ¢ Ny LNO N, N dx
0 N,

Due to the complexity of the Jacobian matrix as shown above and
other matrices that appear in Eq. -(5.34), the computer-based symbolic
manipulation language MACSYMA [32] was used to evaluate the matrices
in closed form. Results of the Jacobian matrices and the residual
load vectors are provided in the form of computer subroutines in
Appendix D.

After the Jacobian matrices and the residual load vectors are
computed, typical element equations shown in Eq. (5.34a) can be

written in the form,

— —m i+l g Nm
Joo Jo1 Jo2 ATy Ro
Jo 911 o |4 AT, b = 4R 6 (5.37)
Joo Jo1 a2 AT, R,

o — \ J | .
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These element equations contain unknowns in the increments of the
nodelss variable and the nodal temperatures, i.e. one more unknown
than those obtained from the linear conventional elément. Once these
unknowns are obtained, new values of the nodal temperatures and the
nodeless variable are computed using Eq. (5.16). After the iteration
process is terminated, the nodal temperatures and the nodeless
variable at the end of time step are computed from Eq. (5.7).
Finally, the temperature distribution within the element is computed
by using the element nodeless variable interpolation functions shown
in Eq. (5.35).

It should be noted that the nodeless variable interpolation
functions, Eq. (5.36), introduced in this section are applicable
when other heat transfer modes (such as surface convection) are
included in the analysis. The element temperature distribution in
the parabolic form can provide a more realistic temperature distribu-
tion than the linear conventional element. This type of the nodeless
variable interpolation functions suggests that the nodeless variable
approach can be generalized to other finite element types. To
investigate this possibility, a two-dimensional nodeless variable

thermal element is developed in the next chapter.
5.3 Applications

The effectiveness of the nodeless variabie finite element
described in this chapter is demonstrated for two examples of conduc-
tion and radiation heat transfer. The linear conventional finite
element described in section 5.2.2 is used in these two examples for

comparison of solution accuracy. Temperatures computed from the
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nodeless variable and linear conventional finite elements are used
in the structural analysis for computation of displacements and

thermal stresses.

5.3.1 Thermal Stress in a Rod with Surface Radiation

A rod with constant cross-section area A and length L
encased between fixed walls is shown in Fig. 14(a). The rod has
specified end temperatures at 311 K and 533 K at x =0 and
x = L, respectively, and is cooled along the surface by radiation
to zero medium temperature. The rod is modeled using (1) 20 conven-
tional elements with consistent Jacobian matrices (see Eq. 5.30)),
(2) two conventional elements with consistent Jacobian matrices,

(3) two conventional elements with lumped Jacobian matrices (see

Eq. (5.31)), and (4) two nodeless variable elements. The terms
consistent and lumped refer to the formulation of the Jacobian matrix
contributed by the radiation conductance matrix described in section
5.2.2,

Temperature distributions computed from these four finite
element models are compared as shown in Fig. 14(b). The figure shows
that two nodeless variable elements have the same capability in
predicting the unknown nodal temperature (at x/L = 0.5) and element
temperature distributions as 20 conventional finite elements. Two
conventional finite elements with consistent formulation underesti-
mate the unknown nodal temperature and crudely approximate temperature
distribution. Two conventional finite elements with lumped formula-
tion overestimate both the unknown nodal temperature and element

temperature distributions with relatively large error.
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Fig. 14. Conventional and nodeless variable finite
element solutions for a fixed end rod
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Fig. 14. Conventional nodeless variable finite element
solutions for a fixed rod radiating to space.
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In the structural analysis, four structural elements with the
same discretizations as for the thermal models are employed. Element
temperatures obtained from the thermal model are transferred directly
to the structural finite element model for computation of displace-
ments and stresses. The conventional structural finite elements
employ linear element displacement distributions as used in typical
finite element programs. The structural finite element for the
nodeless variable thermal element uses the exact displacement
distribution, Eq. (3.53), derived based upon the parabolic element
temperature distribution shown in Eq. (5.35). Displacement distribu-
tions obtained from these structural finite element models are
compared as shown in Fig. 14(c). The figure shows that two conven-—
tional finite elements are inadequate to represent the nonuniform of
displacement distribution. In addition, two conventional finite
elements with consistent and lumped formulations overestimate the
thermal stress (not shown) by 12 and 23 percent, respectively.
Displacement distributions obtained from two nodeless variable
finite elements and 20 conventional finite elements are in excellent
agreement where the difference in the thermal stresses is negligible
(less than 0.05 percent).

5.3.2 Thermal Analysis and Structural Response of a Space
Truss Module

A three member orbiting truss module shown in Fig. 15(a) is
used to demonstrate the efficiency of the nodeless variable finite
element. A typical truss member receives incident heating which is
a combination of: (1) solar heating, (2) earth emitting heating,

and (3) earth reflected solar heating. With the open-truss type
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element solutions for a fixed end rod
radiating to space.
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structure as shown in the figure, member to member radiation exchanges
are relatively small and are neglected. A geosynchronous orbit
(period of 24 hr.) is employed where solar heating is large compared
to the earth emitted heating. During the orbit, incident heating
normal to a typical truss member varies continuously due to the
changing orientation of the member. As the orbiting truss enters

and leaves the earth's shadow, the incident heating changes rapidly.
Member temperatures and structural deformations thus depend strongly
on the time-dependent incident heating.

To demonstrate the use of the conventional and the nodeless
variable finite elements formulated in the preceding seétion, the
truss module with properties of aluminum is considered. TFour finite
element models are employed where each truss member is represented
by: (1) 10 conventional elements with consistent formulation, (2) one
conventional element with consistent formulation, (3) one conventional
element with lumped formulation, and (4) one nodeless variable
element. Temperature distributions computed from these four finite
element models at a typical orbital position are shown in Fig. 15(b).
The figure shows that the nodeless variable finite element model
provides excellent prediction of the nodal temperatures and very
good element temperature distributions compared to the refined
conventional finite element model. The conventional finite elements
with consistent formulation tend to average the nonuniform tempera-
ture distributions and thus cannot provide accurate nodal temperatures.
The conventional finite elements with lumped formulation predict
nodal temperatures very well but yield large errors for member

interior temperatures. Comparative temperature distributions of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

*9Tnpow ssnaj 9oeds B Jo ssuodsold TRINIONIIS pPue SISATBUE TBWILYL °CT °*9T14

*s99a89p (09 = g 2I® ssnil Burlrqao
I9quall 991Y3 B JO UWOTINQIAISTP ainjeiadwel sarjzeredwo) (q)

S
e 1 1 0
I J 1 00c -7 001-
(438WIN/°3°4 1) T19VI¥YA SSINIAON O~-----0
(Y3I8W3IW/°3°4 1) @3dwn1 “IYNOIINIANOD v—-—V
(Y38WIW/°3°3 T ) INJLSISNOD TYNOIINIANO) V— ! —F 022
(YIGWIW/°3°4 0T) INILSISNOD TYNOIINIANOD

0s-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

finite element models at other orbital positions also show a similar
trend; the nodeless variable finite elements predict nodal tempera-
tures and member temperature distributions very accurately compared
to the refined conventional finite elements.

Temperature obtained from the four thermal finite element models
for a complete orbit are transferred to the structural finite element
models for computation of displacement histories. The quasi-static
analysis described in section 2.4 is employed for the computation
of the unknown nodal displacements. Fig. 15(c) shows a comparison
of typical member elongation histories computed from the finite
element models during the orbit. Since the temperature distributions
obtained from the nodeless variable finite element model and the
refined conventional finite element model are in very good agreement,
member elongation histories predicted by these two finite element
models almost coincide (maximum difference of 1 percent). Conven-
tional finite element models with consistent and lumped formulations
yield errors for member elongation up to 29 and 44 percent,
respectively. Such large errors result from the incapability of the
conventional finite element to provide realistic member temperature
distributions. Since the conventional finite element with consistent
formulation trends to average the member temperature as previously
mentioned, accuracy of the member elongation history obtained is thus
higher than the conventional finite element with lumped formulation.

These two examples clearly demonstrate the benefits of using
the nodeless variable finite elements in one-dimensional radiation-
conduction problems that are characterized by nonuniform temperature

distributions. The elements predict member temperatures accurately
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and are compatible with two-node structural elements to permit an
integrated thermal-structural analysis. Additional applications of
the nodeless variable finite element for one-dimensional thermal
problems with conduction and radiation heat transfer appear in

Ref. [33].
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Chapter 6
TWO~DIMENSIONAL NODELESS VARIABLE FINITE ELEMENTS

In the two preceding chapters the nodeless variable approach
was applied to one-dimensional linear thermal-structural analysis
and to nonlinear radiation heat transfer. The unique feature of the
approach is the use of an additional nodeless variable for a thermal
finite element. Improvement of solution accuracy is achieved while
the same discretization is employed for both thermal and strucitural
finite element models.

In this chapter the approach is extended for development of
two—-dimensional nodeless variable finite elements. Restrictions for
developing these finite elements are first discussed. Two nodeless
variable finite elements and their interpolation functions are
presented. Then the use of the nodeless finite elements for linear
thermal-structural analysis is described. Efficiency of the nodeless
variable finite elements is evaluated by comparison with the
conventional bilinear four-node finite element and exact solutions
in examples at the end of the chapter.

For simplicity in understanding characteristics of the two-
dimensional nodeless variable finite elements, a brief description
of a conventional bilinear four-node thermal finite element is
first given. The element temperature distribution for a bilinear

four-node element is expressed in the form,

130
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T=|_Nl N, N, N4J < 3 =LNTJ {1} (6.1)

where Ni’ i =1,4 are the element interpolation functions which
are a function of spatial coordinates in two-dimensions, and Ti,
i =1,4 are the time dependent nodal temperatures.

Fig. 16(a) shows a conventional four-node element with a general
quadrilateral shape. As described in section 2.3, typical finite
element matrices are in the form of integrals over the element
volume or along the element boundary. Such element matrices for
a quadrilateral shape are difficult to evaluate. To simplify the
element integrations, the quadrilateral element in the Cartesian
coordinate system (X,y) 1is transformed to a natural coordinate
system (&,n) as shown in Fig. 16(b). The two coordinate systems

are related by

4

X = Z Ni(g,n) X, = LNJ {x} (6.2a)
i=1
4

y= I Ny, =[N {y} (6.2b)
i=1

where Ni’ i =1,4 are the element shape functions defined by,

N, = $(1-8) (1-n) N, = $(1+E) (1-n)

o

(6.3a)

=
1

F(1+8) (1n) N, = $(1-8) (1n)
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(a) Global coordinates
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(1,1)

(—13_1)

(la_l)

(b) Natural coordinates

Fig. 16. Tour node isoparametric finite element in
global and natural coordinates.
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or in compact form,

N, =7 L+ EEDA + ) i=1,4 (6.3b)
where €i and ﬂi, i=1,4 are the nodal coordinates in the natural
coordinate system. For example, El =n; = -1, & =1, n, = -1,
etc.

When the shape functions Ni shown in Eq. (6.3) are used as
the element temperature interpolation functions in Eq. (6.1), this
conventional element is called an isoparametric quadrilateral element
because the same interpolation functions are used to interpolate
temperature and spatial coordinates.

Note that an element temperature interpolation function shown
in Eq. (6.3) has a value of unity at the node to which it pertains
and a value of zero at the other nodes. Along the element edge
(¢ = 1, n=+1), these element interpolation functions are linear.
Therefore, the temperature distribution along a typical element
edge varies linearly where the magnitude depends on the temperatures
of the two corner nodes located at that edge. When elements are
connected, the conventional quadrilateral element preserves
continuity of temperature along the element interfaces. The conti-
nuity of the element interface temperatures is a basic requirement
to assure convergence of the temperature solution as element size
decreases. This continuity requirement must be met when a new
thermal finite element is constructed. Further details of require-—
ments for a typical finite element to meet convergence criteria can

be found in Ref. [15].
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6.1 Two-Dimensional Nodeless Variable Thermal
Finite Elements

In several thermal-structural applications, a more detailed
finite element thermal model is required than the finite element
structural model. To maintain the same discretization for thermal
and structural models, new thermal finite elements are required. In
this section, two type of two-dimensional nodeless variable thermal
finite elements for improved temperature solutions are presented.
These elements predict more realistic temperature distributions than
the conventional finite element previously described. The basic
objectives for developing the new finite elements are: (1) the
elements should provide a nonlinear temperature distribution but
maintain four element nodes to be congruent with the four node
structural element, and (2) compatibility of temperature along
element interfaces must be preserved. The nodeless variable concept
previously described for one-dimensional element is extended to

two-dimensions to meet these objectives.

6.1.1 "Bubble" Nodeless Variable

One approach [34] for constructing nodeless variable finite
elements is to add a "bubble" function which vanishes along the
element boundaries. The element temperature distribution is written

in the form,

T
)
= < .
T I_N1 N, N N4J P NT, (6.4)
v T
3
T4
\ 7
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where NO is the nodeless interpolation (bubble) function defined

by
Ny = (1= - n)) (6.5)

and TO is the nodeless variable.

Along the element boundary (& = 1, n = %1), the bubble
function, Eq. (6.5), is identically zero. Therefore, the element
boundary temperature reduces to a linear variation as for the
conventional finite element and continuity of temperature along
element interfaces is preserved. Within the bubble nodeless variable
element, the temperature distribution is a combination of the
conventional element temperature distribution and a bubble function

where its magnitude is measured by the nodeless varaible T The

0"
combination thus permits a quadratic temperature distribution over
the element.

It should be noted that even though the bubble nodeless
variable finite element can provide a quadratic temperature distribu-
tion within the element, the temperature along the element boundary
is linear. To achieve further improvement of the temperature solu-
tion, the temperature distribution should vary nonlinearly along the
element boundary. With the idea of the bubble function, a nodeless
variable finite element with this behavior can be constructed. This
type of nodeless variable finite element is presented in the next

section.
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6.1.2 Boundary Nodeless Variable

In order to establish a nonlinear temperature distribution along
the four element edges as well as within the element interior, the
following four nodeless variable interpolation functions (see Fig. 17)

are employed

N =3 (L -gHA -n) (6.6a)
N =3 L+ E)A - 0D (6.6b)
No=3 @-HA+ (6.6¢)
Ng =2 (1= B - ) (6.6d)

where each interpolation function varies quadratically along one

edge and vanishes on the other edges. For example, the nodeless

variable interpolation function N5 varies as 1 - 52 along the
edge n = -1 and is identically zero on the other three edges.

As mentioned earlier, continuity of the temperature along the
element interfaces must be assured for convergence of the solution.
This restriction can be met by providing a nodeless variable for
each element edge. With a nodeless variable for each element edge,
element interpolation functions for a quadrilateral element can be

written in the form,

( 3 r N
T Tg
T, ) Ty
T=[N N, N, NJ 9 o[ 7 Vg Ng N, Ng] a (6.7)
3 T
7
T, Ty
\ /
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Fig. 17. Nodeless variable interpolation functions for
two-dimensional quadrilateral finite element.
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where Ti’ i =l,4 and 1 =5,8 are the nodal temperatures and the
nodeless variables, respectively. Element interpolation functions

Ni’ i=1,4 are the same as for the conventional bilinear four node
element given in Eq. (6.3), and Ni’ i=5,8 are the nodeless variable
interpolation functions given in Eq. (6.6).

The combination of the conventional and nodeless variable inter-
polation functions, Eq. (6.7), provides a quadratic temperature
distribution over the element but with only four element nodes.
Interelement compatibility is preserved since adjacent elements have
a common nodeless variable on adjoining edges. The magnitude of the
nonlinear variation on an element edge is measured by the correspond-
ing nodeless variable. Temperature distributions for the conventional
bilinear element and the nodeless variable element are compared in
Fig. 18.

6.2 Nodeless Variable Finite Element Formulation
for Thermal-Structural Analysis

In this section, the thermal finite element formulation for two-
dimensional linear transient analysis is described. The formulation
is valid for both the conventional element and the nodeless variable
element. A four node structural element which will be used in
junction with the thermal element for computation of thermal stresses

is also presented.

6.2.1 Linear Thermal Analysis

In two-dimensional transient heat conduction, the governing
differential equation for the temperature distribution T(x,y,t)

may be expressed in the form of
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QUADRATIC, 4-NODE ELEMENT
T(x,y,t) WITH NODELESS VARIABLES

CONVENTIONAL, BILINEAR
4-NODE ELEMENT ’

Fig. 18. Two-dimensional element interpolation
functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

2 g 2T

90X = X 0x + oy (ky By) +Q e (6.8)

where kx and ky are the thermal conductivities in x and vy
directions, respectively, Q is the internal heat generation rate
per unit volume, p is the density, and c¢ is the specific heat.

To derive the element equations and element matrices, the method
of weighted residuals (see section 2.3) is applied to the governing
differential equation (6.8). With the boundary conditions of
specified temperatures, surface heating and surface convection as

shown in Eqs. (2.5a-c), typical element equations have the form

[c] {T} + [Kc + K.h] {T} = {QC} + {QQ} + {Qq} + {Qh} (6.9)

where [C] 1is the element capacitance matrix; [Kc] and [Kh] are
element conductance matrices corresponding to conduction and convec—
tion, respectively. These matrices are expressed in the form of

integrals over the surface area A of an element with the thickness

t as follows:

[c] = ¢ JA pc {N;} [N dx dy (6.10a)
k] - ¢ jA (8]% [k 8, ax ay (6.100)
[x ] =1£ RN} [N] dx dy (6.10c)

where [BT] denotes the temperature gradient interpolation matrix,

and h is the convection coefficient. The right-hand side of the
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discretized equation (6.9) contains heat load vectors due to
specified nodal temperatures, internal heat generation, surface

heating, and surface convection. These vectors are defined by

{q,} = -js (q -A) (N} ds (6.11a)
1

{oq} = tJl; Q{N,} dx dy (6.11b)

(o} = L afv} ax dy (6.11c)

{Q 3 = J; h T, {N;} dx dy (6.11d)

where g 1is the vector of conduction heat flux across boundary Sl
that is required to maintain the specified nodal temperatures, q 1is
the surface heating rate per unit area, and T_ is the convective
medium temperature.

As mentioned earlier, a typical quadrilateral element in
Cartesian coordinates (x,y) is transformed to the natural coordi-
nates (&,n) to perform the element matrix integration. 1In
computation of the conduction conductance matrix (Eq. (6.10b)), for

example, the chain rule is first applied to relate the temperature

gradients in both coordinate systems,

4 N\ -1 N
ot [ox oy | [z
9& & of ox
< r = > (6.12)
3T 39X 3y oT
oan an  9n 9y
\ p, - - /
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Using the coordinate trasnformation shown in Eq. (6.2), the above

relations become

¢ \
T T
13 X
4 > = [J]J r
T oT
an oy
\ J .~ 7
or
’ N ( 3
oT oT
9x €&
-1
9 oo =[31 , (6.13)
oT 3T
ay J an
\ L )
where [J] is the Jacobian matrix defined by
4 BNi 4 BNi
L —= %, I —=— v,
=1 % 1 i=1 98 71
(3] = (6.14)
4 BNi 4 aNi
I —=x, I —/—— vy
i=p 90 2 i=1 on 7

Substituting the element temperature, Eq. (6.1) or (6.7), into the

right-hand side of Eq. (6.13) yields

,ﬂ‘ T,
3 T
J xf = [Bpem] 4 2L (6.15)
o1 :
\ y) Tr
\ J

where r 1is the number of the element unknowns; r =4 and 8 for

the conventional bilinear element and the nodeless variable
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element, respectively. The temperature gradient interpolation matrix

in the above equation is given by

MMy Ny
3E 3E g
-1
[BT(E,n)] = [J] (6.16)
MM
an on on

Using dx dy = |J| d¢ dn where 1J| is the determinant of [J],
the conduction conductance matrix terms of the natural coordinates

is

1

1
K=t X X [BT(S,n)]T [k] [Bp(&,m)] |J| dg dn  (6.17)
-1

-1

Next, the coefficients in the conduction conductance matrix
are computed by numerical integration; the Lagendre-Gauss method
is used where the above conduction conductance matrix is written in

the form,

NG NG

- T ‘
k] = iil jil Wy Wy [Bp(Egom) 17 [kl [Bp(E;n)] |3 anp) | (6.18)

where Wi, Wj denote Gauss weight factors, gi’ nj denote gauss

integration points and NG is the number of Gauss points in each
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coordinate direction. Gauss weight factors and Gauss integration
point coordinates can be found in Ref. [15].

Other element matrices shown in Eqs. (6.10 -6.11) can be
formulated in the same manner. For example, the conductance

matrix and the heat load vector associated with surface convection

are expressed as

NG NG T
[k ] =hizl jzl Wy W, [NT(E;i,nj)] [NT(Ei,nj)] IJ(gi,nj)| (6.19a)
NG NG T
= h W, W, 6.19b
{Q,} = BT, 2z jfl 1 Wy NpCen) 10 faceg,n)) | (6.19b)

In performing the numerical integration, the accuracy of the
matrices depends on the number of Gauss points used. In general,
the use of n Gauss points provides exact integration when the
integrand contains polynomials of order up to 2n -1. For the
conventional bilinear finite element, two Gauss points (NG = 2)
in each coordinate direction are normally used. Since the nodeless
temperature interpolation functions contain higher order of
polynomials than those for the conventional bilinear element,
more Gauss points should be used. For the linear thermal analysis

presented herein, three Gauss points in each coordinate direction
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was found by numerical tests to be appropriate for accurate node-
less variable element matrices.
After element matrices are computed, typical element equations

can be written in the form

[c] {1} + [K] {T} = {Q} (6.20)

The conventional bilinear element has four nodal temperatures as
the unknowns, thus the above element equations contain four
unknowns. The nodeless variable element has four nodal tempera-
tures and four nodeless variables as the element unknowns, therefore,
the element equations contain eight unknowns. In transient
analysis, these eight equations must be solved simultaneously
similar to the one-dimensional nodeless variable described in the
preceding chapter. 1In steady-state analysis, the four nodeless
variable unknowns can be eliminated from the element equations
using the matrix condensation technique [35]. The final number

of element equations thus reduces to be the same as of the conven-

tional bilinear element.

6.2.2 Structural Element

In this section, the congruent structural element is briefly
described. The element contains four nodes and permits the same
discretization with the conventional and nodeless variable thermal
elements described in the preceding sections. The element stiff-
ness matrix is the same as used in conventional four node structural

elements. However, the improved element temperature distributions,
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Eq. (6.7), are incorporately consistently in the thermal force
vector computation to yield an integrated thermal structural
element.

The structural element at each node has two in-plane displace-
ment unknowns u and v which may vary with the element local
coordinates x, y and time t. Element displacement distributions

are assumed in the form (see Eq. (2.23)),

u(x,y,t) N, 0 N
> = [NS]{S}
v(x,y,t) 0 N, 0 N, 0 N, 0 N u

(6.21)

where Ni’ i=1,4 are the element displacement interpolation
functions which have the same form as for the conventional finite
element temperature interpolation functions shown in Eq. (6.3).

For the quasi-static analysis, typical element equations shown

in Eq. (2.26) reduce to

[K,1 {8} = {F} (6.22)

where [KS] is the element stiffness matrix, and {FT} is the
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equivalent nodal thermal load vector. These matrices are expressed

in the form of integrals over the element volume V as

f [81" [p] (8] av (6.23a)

[KS] .,

{F_}

j; [BS]T [p] {a}(T(x,y,t) - T op) 4V (6.23b)

where [Bs] is the strain-displacement interpolation matrix obtained

from the strain-displacement relatioms,

r 3N r ~N
€4 au
9X
€ = M— = I
<y r < 5y [BS] (s} (6.24)
qu VvV
Y. o4 , oV
xy 3y *oax
Y P4 \ 4

[D] is the elasticity matrix defined by (plane stress),

F 1 v 0

D] =—% | v 1 0 (6.25)

where V 1is Poisson's ratio. The vector {a} contains the thermal

expansion coefficients given by (plane stress)

{a} = a (6.26)
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T(x,y,t) 1is the element temperature computed using the conventional
or the nodeless variable thermal element ard Tref is the reference
temperature for zero stress. The elasticity matrix [D] and the
vector of thermal expansion coefficients shown in the above equations
can be used for plane strain by replacing E/(l-vz) for E, v(1-v)
for v, and (1+v)o for o.

Similar to the quadrilateral thermal element, numerical integra-
tion is required for computing the element matrices. Using the
Lagendre-Gauss method, the element stiffness matrix and the equivalent

thermal load vector shown in Eqs. (6.23a-b) are written in the form,

NG NG T

lkd = ¢ = S5 B G I DT I8 (Bgmp ] [3€E )| (6.272)
NG NG T

Bpd = 2 5 P B Gl D) (GEnp -1 0 [3G;,m)]

(6.27)

where T(Ei,nj) is the temperature at the element Gauss integration
point s and nye

Unlike the thermal finite element previously described, the nodal
displacement unknowns of the structural element are the vector
quantities. Transformation of the element matrices from the local
coordinates (x,y) to the global coordinates (X,Y,Z) is required.
In three-dimensions, the element stiffness matrix becomes a 12 by 12
matrix and similarly with the nodal force vector. Thus the element
equations contain a total of 12 equations with 12 nodal displacement
unkonwns in the global coordinates. After the global element matrices

are assembled and the nodal displacements are computed, element nodal
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displacements in the local coordinates can be obtained. Then the

element stresses can be computed from

%

Uy = [D] { [BS] {3} - {a} (T(XSY9t> - Tref)} (6-28)

T
Xy

6.3 Applications

To illustrate the performance of the two-dimensional nodeless
finite element presented in section 6.1.2, two examples are analyzed:
(1) a rectangular plate with surface convection, and (2) a simplified
wing section with aerodynamic heating. In each example, benefits
of the nodeless variable finite element are demonstrated by comparison
with results from conventional finite element and analytical solutioms.

6.3.1 Steady-State Heat Conduction in a Plate with Surface
Convection

A rectangular plate (Fig. 19(a)) has a specified temperature
TO along the boundaries. The plate is cooled by surface convection

to a zero medium temperature, T_ = 0. Using symmetry, a quarter of
the plate is first modeled by: (1) one conventional element, and
(2) one nodeless variable element.

Fig. 19(b) shows the comparative temperature distributions at
y = b/2 for an analytical solution [27], the conventional element
and the nodeless variable element solutions. For these models, the
conventional element gives a relatively high error compared to the

nodeless variable element. The largest error for both finite element

models occurs at the center of the plate (16% and 3% for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



150

——N|or ——tt—— | ——>]
s

——

-} a
D 2 i 2

(a) PLATE COOLED BY SURFACE CONVECTION

Fig. 19. Conventional and nodeless variable finite

element solutions for a plate with surface
convection.
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ANALYTICAL
&—-—A CONVENTIONAL F.E., | ELEMENT
O----O NODELESS VARIABLE FE., | ELEMENT

o 0.25 0.50
X
a

(b) COMPARATIVE TEMPERATURE DISTRIBUTIONS ALONG y= %

Fig. 19. Conventional and nodeless variable finite element
solutions for a plate with surface convection.
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conventional element and the nodeless variable element, respectively).
At the center of the plate, both elements show a discontinuity of
conduction heat flux indicating a need for mesh refinement. Next,

the plate is modeled by using four finite elements shown by the dotted
lines in Fig. 19(a); comparative temperature distributions are shown
in Fig. 19(c). Four conventional elements provide a fair estimate

of the temperature variation, but four nodeless variable elements
yield excellent predictions for both nodal and element temperatures.
Comparisons of temperatures at other sections of the plate (not shown)
demonstrate that four nodeless variable elements provide excellent

agreement with the analytical solution for the entire plate.

6.3.2 Simplified Wing Section with Aerodynamic Heating

To demonstrate the usefulness of the two~dimensional nodeless
variable elements in aerospace thermal-structural analysis, a simpli-
fied wing section is analyzed (Fig. 20(a)). Top and bottom skins
of the wing section are connected by three corrugated spars and are
subjected to symmetrical, nonuniform time-dependent aerodynamic
heating.

Three finite element models are employed to computed temperatures.
For a unit depth in the spanwise direction, the first model consists
of seven conventional elements; two elements each for the top and
bottom skins and one element for each spar. The second model is
identical to the first model except nodeless variable elements are
used. The third model uses a refined mesh (not shown) with 35 conven-

tional elements.
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ANALYTICAL
&—-—A CONVENTIONAL FE., 4 ELEMENTS
O-——-O NODELESS VARIABLE F.E., 4 ELEMENTS

06t
<

o

0.25 0.50

X
a

(c) COMPARATIVE TEMPERATURE DISTRIBUTIONS ALONG y = %

Fig. 19. Conventional and nodeless variable finite element
solutions for a plate with surface convection.
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q, a2
T1|.4 KW/ m? T
r—— 8.5 kW/m
— 5 -t -t
TOP SKIN

CORRUGATED
SPAR

BOTTOM SKIN

(a) SIMPLIFIED WING SECTION WITH AERODYNAMIC HEATING

Fig. 19. Conventional and nodeless variable finite element
solutions for a simplified wing section with
aerodynamic heating.
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Comparative skin temperature distributions at t = 150 s. are
shown in Fig. 20(b); the number of elements cited is for the skin
only. The nodeless variable finite element model predicts a realistic
temperature distribution and gives very good agreement with the
result from the refined conventional finite element model. The crude
conventional finite element model underestimates the average skin
temperature and is unable to provide details of the nonuniform
temperature distribution.

In computation of the skin thermal stress, classical beam
theory [16] is employed for comparison with two finite element stress
analyses. Detailed temperature distributions from the refined
conventional finite element thermal model are used to compute the
stress Iy from beam theory. Temperature distributions from the
crude conventional thermal finite element model and the nodeless
variable thermal finite element model are transferred to a structural
finite element model with the same discretization for the stress
computations. Comparative stress distributions at t = 150 s. are
presented in Fig. 20(c). The advantage of using the improved
temperature distributions from the nodeless variable finite element
model in computing stresses is clearly demonstrated. These stress
distributions are in excellent agreement with the result from beam
theory with both the critical stress and its location accurately
predicted. Using the temperature distribution from the crude
conventional finite element model yields significant errors in the
stress distribution and is unaccetable for this problem.

These two examples clearly demonstrate the benefits of the

two—dimensional nodeless variable finite element that can be obtained
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500 —

T (y,150),K

CONVENTIONAL F.E., 10 ELEMENTS
&—-—4A CONVENTIONAL FE., 2 ELEMENTS
O-—--O NODELESS VARIABLE F.E., 2 ELEMENTS

3501
1 | |
-| 0 |

L
b

(b) COMPARATIVE TEMPERATURE DISTRIBUTIONS
ALONG CHORDWISE DIRECTION, t =150 s.

Fig. 20. Conventional and nodeless variable finite element
solutions for a simplified wing section with

aerodynamic heating.
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150

[ ——— BEAM THEORY
&—-—~A CONVENTIONAL F.E., 2 ELEMENTS
O-—--O NODELESS VARIABLE F.E., 2 ELEMENTS
¢
100
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(c) COMPARATIVE THERMAL STRESS DISTRIBUTIONS
ALONG CHORDWISE DIRECTION, t = 150 s.

Fig. 20. Conventional and nodeless variable finite element
solutions for a simplified wing section with
aerodynamic heating.
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for thermal-structural analysis. Additional applications, a summary
of the nodeless variable approach and the thermal-structural finite

element formulation presented in this chapter appear in Ref. [36].
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Chapter 7
CONCLUDING REMARKS

An integrated approach for improved thermal-structural finite
element analysis is presented. The approach was motivated by aero-
space applications to improve thermal-structural finite element
analysis capabilities. An important goal is to eliminate the
incompatibility between thermal-structural analyses where a more
detailed finite element model is required for the thermal analysis
than for the structural analysis. The integrated approach is
characterized by: (1) thermal and structural finite elements
formulated with common geometric discretization for full compatibility
during the coupling of the analyses, (2) accurate nodal and element
temperatures provided by improved thermal finite elements, and (3)
accurate thermal loads for the structural finite element analysis to
further improve accuracy of the structural response.

Basic concepts and procedures of the integrated thermal-structural
finite element analysis are described. New thermal finite elements
for improved thermal analysis accuracy are developed. Thermal finite
elements which yield exact nodal and element temperatures for one-
dimensional linear steady-state heat transfer problems are presented.
These thermal finite elements are formulated based upon using closed-
form solutions of the governing differential equations. For general

heat transfer problems where closed-form solutions are not available,

159
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improved thermal finite elements are developed by employing the
nodeless variable formulation. The nodeless variable finite element
uses extra unknowns as element variables to permit higher order
element temperature interpolation functions. Detailed element
temperature distributions are obtained without using additional
element nodes while a common discretization with lower order congruent
structural finite elements are maintained.

Nodeless variable finite elements are formulated for the
following heat transfer cases: (1) one-dimensional linear transient
analysis, (2) one-dimensional nonlinear transient analysis with
radiation, and (3) two-dimensional linear transient analysis.

General formulations of the nodeless variable finite elements for

each heat transfer case are described in detail. For comparison,
conventional finite elements customarily used in typical finite
element programs are also presented. Results of temperatures obtained
from the thermal analysis are transferred directly to the structural
analysis to compute displacements and stresses.

To demonstrate the capabilities and efficiency of the integrated
finite element approach, several examples in academic and more
realistic problems are employed. The accuracy of the approach is
evaluated by comparisons with analytical solutions and conventional
thermal-structural analyses. Results indicate that the integrated
finite element approach provides a significant improvement in the
accuracy and efficiency of thermal-structural analysis and offers

potential for applications to other coupled problems.
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APPENDIX A

EXACT FINITE ELEMENT INTERPOLATION FUNCTIONS

Exact element interpolation functions in the form of equation
(3.14) for the thermal finite element Cases 1-8 (Figure 4 and Table 1,
pp. 39 and 40) are presented. Nodeless parameters are shown in
Table 2 (p. 41). The lower case letters in parentheses denote heat
load cases defined in Table 1. General solutions to the differenﬁial

equations for Cases 6 and 7 appear in reference [37].

Rod (Case 1)

Nl =1 —-% N2 = %- (a,c,d)
Ny =1 -
W - SRR w - Onm (b)
NO =1 - Nl - N2

where m = /hp/kA.

Slab (Case 2)
y=1-% N, =3 (a,c)
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Hollow Cylinder (Case 3)
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=1 .0 =1 &
Nl = ln(r) N2 =3 1n(a) (a,c)
2 2
= 10y + 2 1,8y -
N, = ln(a) += 1n() 7 W (a,c)
b b
_ b
where w = 1n(—) .
a
Hollow Sphere (Case 4)
_ a(b-r) _ b(r-a)
N = Tbma) Ny = T(o-a) (a,¢)
_1
NO = ;(r-—a) (b-r) (r+a+b)
Cylindrical Shell (Case 5)
-1 .5 ¢ =S
Nl =1 T 1\2 I (a,c,d)
=8¢ _ &
Nog = L(l L)
_ sinh m(L-s) _ sinh ms
Ny sinh mL Ny = sinh mL (&)
NO =1 - Nl - N2

where m = vh/kt .
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Conical Shell (Case 6)

=1, 2 -1
Nl = W,ln(s) N2 p- ln(a) (a,c,d)
2 2
2 a b s
N, =1n(=) + = In(=) - < w
0 a b2 s b2
. Io(ms) Ko(mb) - Io(mb) Ko(ms) )

1° I,(ma) Ky(mb) - I;(mb) K(ma)

Io(ma) Ko(ms) - Io(ms) Ko(ma)
2 Io(ma) Ko(mb) - Io(mb) Ko(ma)

1~-N, -N

=4
i

where w = ln(g), m = Yh/kt; IO and KO are modified Bessel

functions of the first and second kind of order zero, respectively.

Spherical Shell (Case 7)

1+sin(s/a)
. _ 1-sin(s/a)
Nl -4 NZ NZ - 1n 1+sin(L/a) (a,c,d)
1-sin(L/a)
N0 = 1n [cos(s/a)] - N2 in [ecos(L/a)]
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Flow Passage (Case 8)

Nl=l-i——:—:§—zz N2=%—::——;§ (a,d)
Ng=1- N,
Ny = e Si;l?nﬁaé?) N = L) 2122 Si{ (®)
Ng=1-N -1,

where o = mc/2kA, B = VoZ + m2, and m = vhp/KA .
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APPENDIX B

FINITE ELEMENT MATRICES FOR ONE-DIMENSIONAL
LINEAR STEADY-STATE PROBLEMS

Exact finite element matrices for the thermal and structural
finite elements described in Chapter 3 are presented. Thermal
conductance matrices and heat load vectors are given in the form of
equation (3.27) for Cases 1-6 and equation (3.17) for Case 8
(Figure 4 and Table 1, pp. 39 and 40). These finite element
matrices are derived using the exact element interpolation functions
shown in Appendix A. Similarly, structural stiffness matrices and
equivalent nodal forces due to thermal loads are derived using the
element displacement interpolation functions shown in Tables 3 and
4 (pp. 61 and 67). The lower case letters in parentheses denote

heat load cases defined in Table 1.
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THERMAL FINITE ELEMENT MATRICES

Rod (Case 1)

Conductance Matrices:

Kll = K22 = kA/L
Ky, = - kA/L
Kll = KZZ = (hp cosh mL)/(m sinh mL)
ElZ = - hp/(m sinh mL)
Heat Load Vectors:
Q; = Q, = QAL/2
Q = Q, = apL/2
where m = /EE7EK .
Slab (Case 2)
Conductance Matrices:
Ky = Kpp = K/L
Kpp = - KL

170

(a,c,d)

(b)

()

(d)

(a,c)
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Heat Load Vector

Q = Q, = /2 (c)
Hollow Cylinder (Case 3)
Conductance Matrices
ill = Ezz = k/w (a,c)
KlZ = - k/w
Heat Load Vector
3, = (- a%/2 + % a%) / 4w) (©)

= Q (b2/2 - (%= a2y [ 4w)

fe)
[\
[

where w = In(b/a)

Hollow Sphere (Case 4)

Conductance Matrices

Kip =Kyy = kab/(b-a) (a,c)
I—<12 = -~ kab/(b-a)
Heat Load Vector
q; = Qa(2a’ + b° - 3a%b) /(6(b-2)) (o)
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q, = Qb(a® + 2b° - 3ab%) / (6(b-a))

Cylindrical Shell (Case 5)

Conductance Matrices

Kll = K22 = k/L (a,c,d)
Kpp = - K1
Ell = RZZ = (h cosh mL) / (mt sinh mL) (b)
KlZ = - h/(mt sinh mL)
Heat Load Vectors
Q = q, = qQu/2 (c)
Q = Q, = aL/2t (d)
51 = 62 = kT (cosh mL - 1) / (mt sinh mL) (b)
where m = vh/kt .
.Conical Shell (Case 6)
Conductance Matrices
Rll = E22 = k/w (a,c,d)
E12 = - k/w
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Heat Load Vectors

= Q(-a%/2 + (b%-a?)/4w) ()

O
'—I
|

3, = Q%72 - (b2-a”) /4w)

a(-a%/2t + (b%-a2) /4wt) ()

L
'—l
I

a(2/2t - (b%=a2)/but)

O
»N
]

where w = 1n(b/a)

Flow Passage (Case 8)

Conductance Matrices

Koy, =X, = kaa (e?T + 1)/2L _1) (a,d)
fepp ~ ey 77 Keyy
Ke | = KAC(BH/26) - (a/2) - (8°E(E+P)/2067)) (b)
K, = KA((BH/26) + (a/2) - (8°E(E-F)/206%))
Ko =K, = kA(-(8°EH/2a67) - (§F/26))

12 21
KV11 = Kv12 = - /2 (a,d)
KV21 = Ig’zz = mc/2
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KV11 = - KV22 = - mc/2 (b)
KV12 - szl = BE/oC

K, = Be(BH/0) + (@) - (B'E(P+E)/a6®)) /205" -a®) (®)
K, = BR((BH/O) ~ (@) = (B°E(PE) /™)) /2(¢” -a®)

K, =K = mp((EPER/ac?) - (8/0)) /2(e o)

Heat Load Vectors

Ql = qp(1 _eZaL+ 2aLl) /2a(1 _e2aL) (d)
Q, = ap(-1 +e™* —201 &®) /20(1 -2
\ 2 2
Ql = hpT_(B(H+E-F) -aG) /G(R” -a’) (b)
2 2
Qz = hpT_(B(H-E-F) +aG) /G(B” -a”)

mc/2kA, B8 = Ya"+m", m= vvhp/kA, E = sinh oL ,

where o

F = cosh ¢L., G = sinh BL , H = cosh BL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



175

STRUCTURAL FINITE ELEMENT MATRICES

Truss Element (Case 1)

Stiffness Matrices

Kll = K22 = AE/L (a,b,c,d)
Ky = Ky = - AE/L
Force Vectors
Fl = - F2 = - aEA(TO/6 + (T1+T2)/2) (a,c,d)
Fl = - F2 = - aEA(ClTO + CZ(T1+T2)) (b)
where Cy = 1 - (2(cosh mL - 1)/mL sinh mL)

C, = (cosh mL - 1)/mL sinh mL

Axisymmetric Element (Case 3, Plane Stress)

Stiffness Matrices

2

Ky, = B((6” +a?) - v(o%- a2)) /(1 -vH) b - ah) (a,c)
K22 = E((bz-az) + v(bz-az))/(l —vz)(bz-az)
Ky, = E(-2ab)/(1-v%) (b* -a?)
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Force Vectors

F, = - aEo P/2w(1l -v) (b2 -az) (a,c)
2 2
F2 = bEaP/2w(l -v) (b~ -a“)
where P = (-2a2w + b2 - a2) (Tl + a2w TO/ b2)

+ (2b2w - b2 + az)(Tz + w TO)

2

4 4 2 2 2
- -a)w To/b —2(b—a)wTref
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APPENDIX C

FINITE ELEMENT MATRICES FOR ONE-DIMENSIONAL
LINEAR TRANSIENT PROBLEMS

Finite element capacitance matrices for the thermal rod and
axisymmetric elements described in Chapter 4 are presented. The
conductance matrix coefficients LY and heat load vector
components Qo are presented; the coefficients Kij and Qi’

i,j = 1,2 appear in Appendix B, Cases 1 and 3. The lower case

letters in the parentheses denote heat load cases defined in Table 1.
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Rod Element

Capacitance Matrices

00

01

11

12

00

01

11

C12

pcAL/30

Q
[

02 = pcAL/12

C

29 pcAL/3
pcAL/6

pcA(((cosh mL ~ 1)/sinh mL) (L/sinh mL - 3/m) + L)

= pcA((1 - cosh mL) (mL - sinh mL)/2m sinh2 mL)

(@]
|

02

)

pcA((sinh mL cosh mL - mL)/2m sinh2 mL)

pcA((mL cosh mL - sinh mL)/2m sinh2 mL)

Conductance Matrices

Koo

kA/3L

K (hp/m) (mL. = 2(cosh mL -~ 1)/sinh mL)

00

Heat Load Vectors

Q QAL/6

Q qpL/6
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(a,c,d)

(b)

(a,c,d)

(b)

(c)

(d)
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Q0 = hpT, (L - 2(cosh mL - 1)/m sinh mL) (b)

where m = vhp/ka

Axisymmetric Element

Capacitance Matrices

2 4

COO = pc(bz—az)(4w2(a4+va2b + b4) + 9w(a4—b ) (a,c)
+ 6(a”-b5)?) /26p

Cop = - peha’n’ + w(7a%43b%) (a%-b?) + 4(a>dH)?) /16w

Gy, = pc(@d®e® + w(7b%+3a%) (a%b%) + 4(a%-b%)2) /16wb>

Cll = pc(bz—a2(1+2w+2w2))/4w2

C12 = pc(az—b2 + W(az—bz))/4w2

C22 = pc(b2(1—2w+2w2) - a2)/l+w2

Conductance Matrices

K00 = kw(w(l—(a/b)A) - (l—(a/b)z)z) (a,c)

Heat Load Vector

Qp = (@W?/4) (1-a*/p") - (1-a?/pH?) (o)
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APPENDIX D

FINITE ELEMENT MATRICES FOR ONE-DIMENSIONAL NONLINEAR
TRANSIENT ANALYSIS WITH RADIATION HEAT TRANSFER

Jacobian matrices and residual heat load vectors for the
conventional finite element and the nodeless variable finite
element described in Chapter 5 are presented. These element
matrices which appear in Eq. (5.34) are given in the form of computer
subroutines. The subroutines are written in FORTRAN IV where the

definitions of variables used are provided.
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